
Toil Documentation
Release 3.10.1

UCSC Computational Genomics Lab

Sep 01, 2017

Getting Started

1 Overview 3
1.1 Installation . 3
1.2 Quickstart Examples . 6

2 Overview 17
2.1 Toil Workflow Options and Command Line Interface . 17
2.2 CWL in Toil . 20
2.3 Deploying a Workflow . 20
2.4 Running in AWS . 23
2.5 Running in Azure . 28
2.6 Running in Openstack . 31
2.7 Running in GCE . 32
2.8 Running in HPC Environments . 32

3 Overview 33
3.1 Developing a Workflow . 33
3.2 Toil API . 48
3.3 Batch System API . 59
3.4 Job Store API . 61

4 Overview 69
4.1 Running tests . 69
4.2 Developing with the Toil Appliance . 70
4.3 Maintainer’s Guidelines . 72

5 Toil Architecture 75
5.1 Optimizations . 77
5.2 Toil support for Common Workflow Language . 78

6 Toil Environment Variables 81

i

ii

Toil Documentation, Release 3.10.1

Toil is an open-source pure-Python workflow engine that lets people write better pipelines.

Check out our website for a comprehensive list of Toil’s features and read our paper to learn what Toil can do in the
real world. Feel free to also join us on GitHub and Gitter.

Getting Started 1

http://toil.ucsc-cgl.org/
http://biorxiv.org/content/early/2016/07/07/062497
https://github.com/BD2KGenomics/toil
https://gitter.im/bd2k-genomics-toil/Lobby

Toil Documentation, Release 3.10.1

2 Getting Started

CHAPTER 1

Overview

This section describes how to install the Toil software and provides some “quickstart” examples for using it.

The installation document describes how to prepare for and install the Toil software. Specifically, the installation
describes

Installation

This document describes how to prepare for and install the Toil software. Note that we recommend running all the
Toil commands inside a Python virtualenv. Instructions for installing and creating a Python virtual environment are
provided below.

Preparing your Python runtime environment

Toil currently supports only Python 2.7. If you don’t satisfy this requirement, consider using anaconda to create an
alternate Python 2.7 installation.

Install Python virtualenv using pip.

$ sudo pip install virtualenv

Create a virtual environment called venv in your home directory.

$ virtualenv ~/venv

Or, if using an Apache Mesos cluster (see mesos in the Extras section below).

$ virtualenv ~/venv --system-site-packages

Activate your virtual environment.

$ source ~/venv/bin/activate

3

https://virtualenv.pypa.io/en/stable/
https://conda.io/docs/py2or3.html
https://pip.readthedocs.io/en/latest/installing/
https://mesos.apache.org/gettingstarted/

Toil Documentation, Release 3.10.1

Basic Installation

Toil can be easily installed using pip:

$ pip install toil

Now you’re ready to run your first Toil workflow!

Installing extra features

Some optional features, called extras, are not included in the basic installation of Toil. To install Toil with all its bells
and whistles, first install any necessary headers and libraries (python-dev, libffi-dev). Then run

$ pip install toil[aws,mesos,azure,google,encryption,cwl]

Here’s what each extra provides:

Extra Description
aws Provides support for managing a cluster on Amazon

Web Service (AWS) using Toil’s built in Cluster Util-
ities. Clusters can scale up and down automatically. It
also supports storing workflow state. This extra has no
native dependencies.

google Experimental. Stores workflow state in Google Cloud
Storage. This extra has no native dependencies.

azure Stores workflow state in Microsoft Azure. This extra
has no native dependencies.

mesos Provides support for running Toil on an Apache Mesos
cluster. Note that running Toil on other batch systems
does not require an extra. The mesos extra requires the
following native dependencies:

• Apache Mesos (Tested with Mesos v1.0.0)
• Python headers and static libraries

Important: If you want to install Toil with the mesos
extra in a virtualenv, be sure to create that virtualenv
with the --system-site-packages flag:

$ virtualenv ~/venv --system-site-
→˓packages

Otherwise, you’ll see something like this:

ImportError: No module named mesos.native

encryption Provides client-side encryption for files stored in the
Azure and AWS job stores. This extra requires the fol-
lowing native dependencies:

• Python headers and static libraries
• libffi headers and library

cwl Provides support for running workflows written using
the Common Workflow Language. This extra has no
native dependencies.

4 Chapter 1. Overview

https://aws.amazon.com/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://azure.microsoft.com/
https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/gettingstarted/
http://www.commonwl.org/

Toil Documentation, Release 3.10.1

Python headers and static libraries

Only needed for the mesos and encryption extras.

On Ubuntu:
$ sudo apt-get install build-essential python-dev

On macOS:
$ xcode-select --install

Encryption specific headers and library

Only needed for the encryption extra.

On Ubuntu:
$ sudo apt-get install libssl-dev libffi-dev

On macOS:
$ brew install libssl libffi

Or see Cryptography for other systems.

Preparing your AWS environment

To use Amazon Web Services (AWS) to run Toil or to just use S3 to host the files during the computation of a workflow,
first set up and configure an account with AWS.

1. If necessary, create and activate an AWS account

2. Create a key pair in the availability zone of your choice (our examples use us-west-2a).

3. Follow Amazon’s instructions to create an SSH key and import it into EC2.

4. Finally, you will need to install and configure the AWS Command Line Interface (CLI).

Preparing your Azure environment

Follow the steps below to prepare your Azure environment for running a Toil workflow.

1. Create an Azure account.

2. Make sure you have an SSH RSA public key, usually stored in ~/.ssh/id_rsa.pub. If not, you can use
ssh-keygen -t rsa to create one.

Building from source

If developing with Toil, you will need to build from source. This allows changes you make to Toil to be reflected
immediately in your runtime environment.

First, clone the source:

$ git clone https://github.com/BD2KGenomics/toil
$ cd toil

1.1. Installation 5

https://cryptography.io/en/latest/installation/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#how-to-generate-your-own-key-and-import-it-to-aws
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://azure.microsoft.com/en-us/free/

Toil Documentation, Release 3.10.1

Then, create and activate a virtualenv:

$ virtualenv venv
$. venv/bin/activate

From there, you can list all available Make targets by running make. First and foremost, we want to install Toil’s build
requirements. (These are additional packages that Toil needs to be tested and built but not to be run.)

$ make prepare

Now, we can install Toil in development mode (such that changes to the source code will immediately affect the
virtualenv):

$ make develop

Or, to install with support for all optional Installing extra features:

$ make develop extras=[aws,mesos,azure,google,encryption,cwl]

To build the docs, run make develop with all extras followed by

$ make docs

The quickstart examples document provides step-by-step examples for getting started with Toil. Specifically, the
quickstart describes

Quickstart Examples

Running a basic workflow

A Toil workflow can be run with just three steps.

1. Install Toil (see Installation)

2. Copy and paste the following code block into helloWorld.py:

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="1G", cores=1, disk="1G"):
return "Hello, world!, here's a message: %s" % message

if __name__ == "__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
with Toil(options) as toil:

output = toil.start(Job.wrapFn(helloWorld, "You did it!"))
print output

3. Specify a job store and run the workflow like so:

(venv) $ python helloWorld.py file:my-job-store

6 Chapter 1. Overview

Toil Documentation, Release 3.10.1

Note: Don’t actually type (venv) $ in at the beginning of each command. This is intended only to remind the user
that they should have their virtual environment running.

Congratulations! You’ve run your first Toil workflow on the singleMachine batch system (the default) using the
file job store.

The batch system is what schedules the jobs Toil creates. Toil supports many different kinds of batch systems
(such as Apache Mesos and Grid Engine) which makes it easy to run your workflow in all kinds of places. The
singleMachine batch system is primarily used to prepare and debug workflows on the local machine. Once ready,
they can be run on a full-fledged batch system (see Batch System API).

Usually, a workflow will generate files, and Toil needs a place to keep track of things. The job store is where Toil keeps
all of the intermediate files shared between jobs. The argument you passed in to your script file:my-job-store
indicated where. The file: part just tells Toil you are using the file job store, which means everything is kept in
a temporary directory called my-job-store. (Read more about Job Store API.)

Toil is totally customizable! Run python helloWorld.py --help to see a complete list of available options.

For something beyond a “Hello, world!” example, refer to A (more) real-world example.

Running a basic CWL workflow

The Common Workflow Language (CWL) is an emerging standard for writing workflows that are portable across
multiple workflow engines and platforms. Running CWL workflows using Toil is easy.

1. First ensure that Toil is installed with the cwl extra (see Installing extra features).

(venv) $ pip install toil[cwl]

This installs the toil-cwl-runner and cwl-runner executables. These are identical - cwl-runner is
the portable name for the default system CWL runner.

2. Copy and paste the following code block into example.cwl:

cwlVersion: v1.0
class: CommandLineTool
baseCommand: echo
stdout: output.txt
inputs:
message:

type: string
inputBinding:

position: 1
outputs:
output:

type: stdout

and this code into example-job.yaml:

message: Hello world!

3. To run the workflow simply enter

(venv) $ toil-cwl-runner example.cwl example-job.yaml

Your output will be in output.txt

1.2. Quickstart Examples 7

https://mesos.apache.org/gettingstarted/
http://www.commonwl.org/

Toil Documentation, Release 3.10.1

(venv) $ cat output.txt
Hello world!

To learn more about CWL, see the CWL User Guide (from where this example was shamelessly borrowed).

To run this workflow on an AWS cluster have a look at Running a CWL Workflow on AWS.

For information on using CWL with Toil see the section CWL in Toil

A (more) real-world example

For a more detailed example and explanation, we’ve developed a sample pipeline that merge-sorts a temporary file.
This is not supposed to be an efficient sorting program, rather a more fully worked example of what Toil is capable of.

Running the example

1. Download the example code.

2. Run it with the default settings:

(venv) $ python sort.py file:jobStore

The workflow created a file called sortedFile.txt in your current directory. Have a look at it and notice
that it contains a whole lot of sorted lines!

This workflow does a smart merge sort on a file it generates. A file called fileToSort.txt. The sort is smart
because each step of the process—splitting the file into separate chunks, sorting these chunks, and merging them
back together—is compartmentalized into a job. Each job can specify it’s own resource requirements and will
only be run after the jobs it depends upon have run. Jobs without dependencies will be run in parallel.

3. Run with custom options:

(venv) $ python sort.py file:jobStore --numLines=5000 --lineLength=10 --workDir=/
→˓tmp/ --overwriteOutput=True

Here we see that we can add our own options to a Toil script. The first two options determine the number of
lines and how many characters are in each line. The last option is a built-in Toil option where temporary files
unique to a job are kept.

Describing the source code

To understand the details of what’s going on inside. Let’s start with the main() function. It looks like a lot of code,
but don’t worry, we’ll break it down piece by piece.

def main(options=None):
if not options:

deal with command line arguments
parser = ArgumentParser()
Job.Runner.addToilOptions(parser)
parser.add_argument('--numLines', default=defaultLines, help='Number of lines

→˓in file to sort.', type=int)
parser.add_argument('--lineLength', default=defaultLineLen, help='Length of

→˓lines in file to sort.', type=int)
parser.add_argument("--fileToSort", help="The file you wish to sort")
parser.add_argument("--outputFile", help="Where the sorted output will go")

8 Chapter 1. Overview

http://www.commonwl.org/v1.0/UserGuide.html

Toil Documentation, Release 3.10.1

parser.add_argument("--overwriteOutput", help="Write over the output file if
→˓it already exists.", default=True)

parser.add_argument("--N", dest="N",
help="The threshold below which a serial sort function is

→˓used to sort file. "
"All lines must of length less than or equal to N or

→˓program will fail",
default=10000)

parser.add_argument('--downCheckpoints', action='store_true',
help='If this option is set, the workflow will make

→˓checkpoints on its way through'
'the recursive "down" part of the sort')

options = parser.parse_args()

do some input verification
sortedFileName = options.outputFile or "sortedFile.txt"
if not options.overwriteOutput and os.path.exists(sortedFileName):

print("the output file {} already exists. Delete it to run the sort example
→˓again or use --overwriteOutput=True".format(sortedFileName))

exit()

fileName = options.fileToSort
if options.fileToSort is None:

make the file ourselves
fileName = 'fileToSort.txt'
if os.path.exists(fileName):

print "Sorting existing file", fileName
else:

print 'No sort file specified. Generating one automatically called %s.' %
→˓fileName

makeFileToSort(fileName=fileName, lines=options.numLines, lineLen=options.
→˓lineLength)

else:
if not os.path.exists(options.fileToSort):

raise RuntimeError("File to sort does not exist: %s" % options.fileToSort)

if int(options.N) <= 0:
raise RuntimeError("Invalid value of N: %s" % options.N)

Now we are ready to run
with Toil(options) as workflow:

sortedFileURL = 'file://' + os.path.abspath(sortedFileName)
if not workflow.options.restart:

sortFileURL = 'file://' + os.path.abspath(fileName)
sortFileID = workflow.importFile(sortFileURL)
sortedFileID = workflow.start(Job.wrapJobFn(setup, sortFileID,

→˓int(options.N), options.downCheckpoints,
memory=sortMemory))

else:
sortedFileID = workflow.restart()

workflow.exportFile(sortedFileID, sortedFileURL)

First we make a parser to process command line arguments using the argparse module. It’s important that we add the
call to Job.Runner.addToilOptions() to initialize our parser with all of Toil’s default options. Then we add
the command line arguments unique to this workflow, and parse the input. The help message listed with the arguments
should give you a pretty good idea of what they can do.

Next we do a little bit of verification of the input arguments. The option --fileToSort allows you to spec-

1.2. Quickstart Examples 9

https://docs.python.org/2.7/library/argparse.html

Toil Documentation, Release 3.10.1

ify a file that needs to be sorted. If this option isn’t given, it’s here that we make our own file with the call to
makeFileToSort().

Finally we come to the context manager that initializes the workflow. We create a path to the input file prepended with
'file://' as per the documentation for toil.common.Toil() when staging a file that is stored locally. Notice
that we have to check whether or not the workflow is restarting so that we don’t import the file more than once. Finally
we can kick off the workflow by calling toil.common.Toil.start() on the job setup. When the workflow
ends we capture its output (the sorted file’s fileID) and use that in toil.common.Toil.exportFile() to move
the sorted file from the job store back into “userland”.

Next let’s look at the job that begins the actual workflow, setup.

def setup(job, inputFile, N, downCheckpoints):
"""
Sets up the sort.
Returns the FileID of the sorted file
"""
job.fileStore.logToMaster("Starting the merge sort")
return job.addChildJobFn(down,

inputFile, N,
downCheckpoints,
memory='1000M').rv()

setup really only does two things. First it writes to the logs using Job.FileStore.logToMaster() and then
calls addChildJobFn(). Child jobs run directly after the current job. This function turns the ‘job function’ down
into an actual job and passes in the inputs including an optional resource requirement, memory. The job doesn’t
actually get run until the call to Job.rv(). Once the job down finishes, its output is returned here.

Now we can look at what down does.

def down(job, inputFileStoreID, N, downCheckpoints, memory=sortMemory):
"""
Input is a file and a range into that file to sort and an output location in which
to write the sorted file.
If the range is larger than a threshold N the range is divided recursively and
a follow on job is then created which merges back the results else
the file is sorted and placed in the output.
"""
Read the file
inputFile = job.fileStore.readGlobalFile(inputFileStoreID, cache=False)
length = os.path.getsize(inputFile)
if length > N:

We will subdivide the file
job.fileStore.logToMaster("Splitting file: %s of size: %s"

% (inputFileStoreID, length), level=logging.
→˓CRITICAL)

Split the file into two copies
midPoint = getMidPoint(inputFile, 0, length)
t1 = job.fileStore.getLocalTempFile()
with open(t1, 'w') as fH:

copySubRangeOfFile(inputFile, 0, midPoint+1, fH)
t2 = job.fileStore.getLocalTempFile()
with open(t2, 'w') as fH:

copySubRangeOfFile(inputFile, midPoint+1, length, fH)
Call down recursively. By giving the rv() of the two jobs as inputs to the

→˓follow-on job, up,
we communicate the dependency without hindering concurrency.
return job.addFollowOnJobFn(up,

job.addChildJobFn(down, job.fileStore.
→˓writeGlobalFile(t1), N, downCheckpoints,

10 Chapter 1. Overview

Toil Documentation, Release 3.10.1

checkpoint=downCheckpoints,
→˓memory=sortMemory).rv(),

job.addChildJobFn(down, job.fileStore.
→˓writeGlobalFile(t2), N, downCheckpoints,

checkpoint=downCheckpoints,
→˓memory=sortMemory).rv()).rv()

else:
We can sort this bit of the file
job.fileStore.logToMaster("Sorting file: %s of size: %s"

% (inputFileStoreID, length), level=logging.
→˓CRITICAL)

Sort the copy and write back to the fileStore
shutil.copyfile(inputFile, inputFile + '.sort')
sort(inputFile + '.sort')
return job.fileStore.writeGlobalFile(inputFile + '.sort')

Down is the recursive part of the workflow. First we read the file into the local filestore by calling Job.FileStore.
readGlobalFile(). This puts a copy of the file in the temp directory for this particular job. This storage will
disappear once this job ends. For a detailed explanation of the filestore, job store, and their interfaces have a look at
Managing files within a workflow.

Next down checks the base case of the recursion: is the length of the input file less than N (remember N was an option
we added to the workflow in main). In the base case, we just sort the file, and return the file ID of this new sorted file.

If the base case fails, then the file is split into two new tempFiles using Job.FileStore.getLocalTempFile()
and the helper function copySubRangeOfFile. Finally we add a follow on Job up with Job.
addFollowOnJobFn(). We’ve already seen child jobs. A follow-on Job is a job that runs after the current job
and all of its children (and their children and follow-ons) have completed. Using a follow-on makes sense because
up is responsible for merging the files together and we don’t want to merge the files together until we know they are
sorted. Again, the return value of the follow-on job is requested using Job.rv().

Looking at up

def up(job, inputFileID1, inputFileID2, memory=sortMemory):
"""
Merges the two files and places them in the output.
"""
with job.fileStore.writeGlobalFileStream() as (fileHandle, outputFileStoreID):

with job.fileStore.readGlobalFileStream(inputFileID1) as inputFileHandle1:
with job.fileStore.readGlobalFileStream(inputFileID2) as inputFileHandle2:

merge(inputFileHandle1, inputFileHandle2, fileHandle)
job.fileStore.logToMaster("Merging %s and %s to %s"

% (inputFileID1, inputFileID2,
→˓outputFileStoreID))

Cleanup up the input files - these deletes will occur after the completion
→˓is successful.

job.fileStore.deleteGlobalFile(inputFileID1)
job.fileStore.deleteGlobalFile(inputFileID2)
return outputFileStoreID

we see that the two input files are merged together and the output is written to a new file using job.FileStore.
writeGlobalFileStream(). After a little cleanup, the output file is returned.

Once the final up finishes and all of the rv() promises are fulfilled, main receives the sorted file’s ID which it uses
in exportFile to send it to the user.

There are other things in this example that we didn’t go over such as Checkpoints and the details of much of the the
Toil API.

1.2. Quickstart Examples 11

Toil Documentation, Release 3.10.1

At the end of the script the lines:

if __name__ == '__main__'
main()

are included to ensure that the main function is only run once in the ‘__main__’ process invoked by you, the user.
In Toil terms, by invoking the script you created the leader process in which the main() function is run. A worker
process is a separate process whose sole purpose is to host the execution of one or more jobs defined in that script. In
any Toil workflow there is always one leader process, and potentially many worker processes.

When using the single-machine batch system (the default), the worker processes will be running on the same machine
as the leader process. With full-fledged batch systems like Mesos the worker processes will typically be started on
separate machines. The boilerplate ensures that the pipeline is only started once–on the leader–but not when its job
functions are imported and executed on the individual workers.

Typing python sort.py --help will show the complete list of arguments for the workflow which includes both
Toil’s and ones defined inside sort.py. A complete explanation of Toil’s arguments can be found in Toil Workflow
Options and Command Line Interface.

Logging

By default, Toil logs a lot of information related to the current environment in addition to messages from the batch
system and jobs. This can be configured with the --logLevel flag. For example, to only log CRITICAL level
messages to the screen:

(venv) $ python sort.py file:jobStore --logLevel=critical --overwriteOutput=True

This hides most of the information we get from the Toil run. For more detail, we can run the pipeline with
--logLevel=debug to see a comprehensive output. For more information, see Logging.

Error Handling and Resuming Pipelines

With Toil, you can recover gracefully from a bug in your pipeline without losing any progress from successfully-
completed jobs. To demonstrate this, let’s add a bug to our example code to see how Toil handles a failure and how
we can resume a pipeline after that happens. Add a bad assertion at line 52 of the example (the first line of down()):

def down(job, inputFileStoreID, N, downCheckpoints, memory=sortMemory):
...
assert 1 == 2, "Test error!"

When we run the pipeline, Toil will show a detailed failure log with a traceback:

(venv) $ python sort.py file:jobStore
...
---TOIL WORKER OUTPUT LOG---
...
m/j/jobonrSMP Traceback (most recent call last):
m/j/jobonrSMP File "toil/src/toil/worker.py", line 340, in main
m/j/jobonrSMP job._runner(jobGraph=jobGraph, jobStore=jobStore,
→˓fileStore=fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1270, in _runner
m/j/jobonrSMP returnValues = self._run(jobGraph, fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1217, in _run
m/j/jobonrSMP return self.run(fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1383, in run
m/j/jobonrSMP rValue = userFunction(*((self,) + tuple(self._args)), **self._
→˓kwargs)

12 Chapter 1. Overview

Toil Documentation, Release 3.10.1

m/j/jobonrSMP File "toil/example.py", line 30, in down
m/j/jobonrSMP assert 1 == 2, "Test error!"
m/j/jobonrSMP AssertionError: Test error!

If we try and run the pipeline again, Toil will give us an error message saying that a job store of the same name already
exists. By default, in the event of a failure, the job store is preserved so that the workflow can be restarted, starting
from the previously failed jobs. We can restart the pipeline by running:

(venv) $ python sort.py file:jobStore --restart --overwriteOutput=True

We can also change the number of times Toil will attempt to retry a failed job:

(venv) $ python sort.py --retryCount 2 --restart --overwriteOutput=True

You’ll now see Toil attempt to rerun the failed job until it runs out of tries. --retryCount is useful for non-systemic
errors, like downloading a file that may experience a sporadic interruption, or some other non-deterministic failure.

To successfully restart our pipeline, we can edit our script to comment out line 30, or remove it, and then run

(venv) $ python sort.py --restart --overwriteOutput=True

The pipeline will run successfully, and the job store will be removed on the pipeline’s completion.

Collecting Statistics

A Toil pipeline can be run with the --stats flag to allows collection of statistics:

(venv) $ python sort.py --stats --overwriteOutput=True

Once the pipeline finishes, the job store will be left behind, allowing us to get information on the total runtime and
stats pertaining to each job function:

(venv) $ toil stats file:jobStore
...
Batch System: singleMachine
Default Cores: 1 Default Memory: 2097152K
...

Once we’re done, we can clean up the job store by running

(venv) $ toil clean file:jobStore

Note, by default if --stats is not included and the pipeline finishes successfully then toil clean is run automatically
and the job store is cleaned up. This was the case with the above examples. See options to prevent this behavior.

Launching a Toil Workflow in AWS

After having installed the aws extra for Toil during the Installation and set up AWS (see Preparing your AWS envi-
ronment), the user can run the basic helloWorld.py script (Running a basic workflow) on a VM in AWS just by
modifying the run command.

Note that when running in AWS, users can either run the workflow on a single instance or run it on a cluster (which is
running across multiple containers on multliple AWS instances). For more information on running Toil workflows on
a cluster, see Running in AWS.

1.2. Quickstart Examples 13

Toil Documentation, Release 3.10.1

1. Launch a cluster in AWS using the launch-cluster command. The arguments keyPairName, nodeType, and
zone are required to launch a cluster.

(venv) $ toil launch-cluster <cluster-name> \
--keyPairName <AWS-key-pair-name> \
--nodeType t2.medium \
--zone us-west-2a

2. Copy helloWorld.py to the /tmp directory on the leader node using the rsync-cluster command. Note that
the command requires defining the file to copy as well as the target location on the cluster leader node.:

(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> helloWorld.py :/tmp

3. Login to the cluster leader node using the ssh-cluster command. Note this command will log you in as the root
user

(venv) $ toil ssh-cluster --zone us-west-2a <cluster-name>

4. Run the Toil script in the cluster. In this particular case, we create an S3 bucket called my-S3-bucket in the
us-west-2 availability zone to store intermediate job results.

$ python /tmp/helloWorld.py aws:us-west-2:my-S3-bucket

Along with some other INFO log messages, you should get the following output in your terminal window:
Hello, world!, here's a message: You did it!

5. Exit from the SSH connection.

$ exit

6. Use the destroy-cluster command to destroy the cluster. Note this command will destroy the cluster leader node
and any resources created to run the job, including the S3 bucket.

(venv) $ toil destroy-cluster --zone us-west-2a <cluster-name>

Running a CWL Workflow on AWS

After having installed the aws and cwl extras for Toil during the Installation and set up AWS (see Preparing your
AWS environment), the user can run a CWL workflow with Toil on AWS.

1. First launch a node in AWS using the launch-cluster command.

(venv) $ toil launch-cluster <cluster-name> \
--keyPairName <AWS-key-pair-name> \
--nodeType t2.micro \
--zone us-west-2a

2. Copy example.cwl and example-job.cwl from the CWL example to the node using the rsync-cluster
command.

(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> \
example.cwl example-job.cwl :/tmp

3. Launch the CWL workflow using the ssh-cluster utility.

14 Chapter 1. Overview

Toil Documentation, Release 3.10.1

(venv) $ toil ssh-cluster --zone us-west-2a <cluster-name> \
toil-cwl-runner \
/tmp/example.cwl \
/tmp/example-job.yml

Tip: When running a CWL workflow on AWS, input files can be provided either on the local file system or in
S3 buckets using s3:// URI references. Final output files will be copied to the local file system of the leader
node.

4. Destroy the cluster.

(venv) $ toil destroy-cluster --zone us-west-2a <cluster-name>

1.2. Quickstart Examples 15

Toil Documentation, Release 3.10.1

16 Chapter 1. Overview

CHAPTER 2

Overview

This section describes how to run Toil in various environments, including locally, in the cloud, and with using CWL.

Specifically, the running Toil section documents detail for the following:

Toil Workflow Options and Command Line Interface

The toil CLI supports the following commands as arguments:

status - Reports the state of a Toil workflow

rsync-cluster - Rsyncs into the toil appliance container running on the leader of the cluster

stats - Reports statistical data about a given Toil workflow.

launch-cluster - Launches a toil leader instance with the specified provisioner

destroy-cluster - Terminates the specified cluster and associated resources

kill - Kills any running jobs trees in a rogue toil.

clean - Delete the job store used by a previous Toil workflow invocation

ssh-cluster - SSHs into the toil appliance container running on the leader of the cluster

Toil also provides several command line options when running a toil script (see Quickstart Examples), or using Toil to
run a CWL script. Many of these are described below. For most Toil scripts, executing:

$ python MY_TOIL_SCRIPT.py --help

will show this list of options.

It is also possible to set and manipulate the options described when invoking a Toil workflow from within Python using
toil.job.Job.Runner.getDefaultOptions(), e.g.

17

Toil Documentation, Release 3.10.1

options = Job.Runner.getDefaultOptions("./toilWorkflow") # Get the options object
options.logLevel = "INFO" # Set the log level to the info level.

with Toil(options) as toil:
toil.start(Job()) # Run the script

Logging

Toil hides stdout and stderr by default except in case of job failure. For more robust logging options (default is INFO),
use --logDebug or more generally, use --logLevel=, which may be set to either OFF (or CRITICAL), ERROR,
WARN (or WARNING), INFO or DEBUG. Logs can be directed to a file with --logFile=.

If large logfiles are a problem, --maxLogFileSize (in bytes) can be set as well as --rotatingLogging, which
prevents logfiles from getting too large.

Stats

The --stats argument records statistics about the Toil workflow in the job store. After a Toil run has finished, the
command toil stats <jobStore> can be used to return statistics about cpu, memory, job duration, and more.
The job store will never be deleted with --stats, as it overrides --clean.

Restart

In the event of failure, Toil can resume the pipeline by adding the argument --restart and rerunning the python
script. Toil pipelines can even be edited and resumed which is useful for development or troubleshooting.

Clean

If a Toil pipeline didn’t finish successfully, or is using a variation of --clean, the job store will exist until it is
deleted. toil clean <jobStore> ensures that all artifacts associated with a job store are removed. This is
particularly useful for deleting AWS job stores, which reserves an SDB domain as well as an S3 bucket.

The deletion of the job store can be modified by the --clean argument, and may be set to always, onError,
never, or onSuccess (default).

Temporary directories where jobs are running can also be saved from deletion using the --cleanWorkDir, which
has the same options as --clean. This option should only be run when debugging, as intermediate jobs will fill up
disk space.

Batch system

Toil supports several different batch systems using the --batchSystem argument. More information in the Batch
System API.

Default cores, disk, and memory

Toil uses resource requirements to intelligently schedule jobs. The defaults for cores (1), disk (2G), and memory (2G),
can all be changed using --defaultCores, --defaultDisk, and --defaultMemory. Standard suffixes like
K, Ki, M, Mi, G or Gi are supported.

18 Chapter 2. Overview

Toil Documentation, Release 3.10.1

Job store

Running toil scripts has one required positional argument: the job store. The default job store is just a path to where the
user would like the job store to be created. To use the quick start example, if you’re on a node that has a large /scratch
volume, you can specify the jobstore be created there by executing: python HelloWorld.py /scratch/
my-job-store, or more explicitly, python HelloWorld.py file:/scratch/my-job-store. Toil
uses the colon as way to explicitly name what type of job store the user would like. The other job store types are AWS
(aws:region-here:job-store-name), Azure (azure:account-name-here:job-store-name),
and the experimental Google job store (google:projectID-here:job-store-name). Different types of
job store options can be looked up in Job Store API.

Miscellaneous

Here are some additional useful arguments that don’t fit into another category.

• --workDir sets the location where temporary directories are created for running jobs.

• --retryCount sets the number of times to retry a job in case of failure. Useful for non-systemic failures like
HTTP requests.

• --sseKey accepts a path to a 32-byte key that is used for server-side encryption when using the AWS job
store.

• --cseKey accepts a path to a 256-bit key to be used for client-side encryption on Azure job store.

• --setEnv <NAME=VALUE> sets an environment variable early on in the worker

For implementation-specific flags for schedulers like timelimits, queues, accounts, etc.. An environment variable can
be defined before launching the Job, i.e:

export TOIL_SLURM_ARGS="-t 1:00:00 -q fatq"

Running Workflows with Services

Toil supports jobs, or clusters of jobs, that run as services (see Services) to other accessor jobs. Example services
include server databases or Apache Spark Clusters. As service jobs exist to provide services to accessor jobs their
runtime is dependent on the concurrent running of their accessor jobs. The dependencies between services and their
accessor jobs can create potential deadlock scenarios, where the running of the workflow hangs because only service
jobs are being run and their accessor jobs can not be scheduled because of too limited resources to run both simulta-
neously. To cope with this situation Toil attempts to schedule services and accessors intelligently, however to avoid a
deadlock with workflows running service jobs it is advisable to use the following parameters:

• --maxServiceJobs The maximum number of service jobs that can be run concurrently, excluding service
jobs running on preemptable nodes.

• --maxPreemptableServiceJobs The maximum number of service jobs that can run concurrently on
preemptable nodes.

Specifying these parameters so that at a maximum cluster size there will be sufficient resources to run accessors in
addition to services will ensure that such a deadlock can not occur.

If too low a limit is specified then a deadlock can occur in which toil can not schedule sufficient service jobs concur-
rently to complete the workflow. Toil will detect this situation if it occurs and throw a toil.DeadlockException
exception. Increasing the cluster size and these limits will resolve the issue.

2.1. Toil Workflow Options and Command Line Interface 19

Toil Documentation, Release 3.10.1

CWL in Toil

The Common Workflow Language (CWL) is an emerging standard for writing workflows that are portable across
multiple workflow engines and platforms. Toil has full support for the CWL v1.0.1 specification.

Running CWL Locally

To run in local batch mode, provide the CWL file and the input object file:

$ toil-cwl-runner example.cwl example-job.yml

For a simple example of CWL with Toil see Running a basic CWL workflow.

Running CWL in the Cloud

To run in cloud and HPC configurations, you may need to provide additional command line parameters to select and
configure the batch system to use.

To run a CWL workflow in AWS with toil see Running a CWL Workflow on AWS.

Deploying a Workflow

You can deploy a workflow locally (on a single machine) or remotely (i.e. distributed on a cluster), as described below.

Deploying a Local Workflow

If a Toil workflow is run on a single machine (that is, single machine mode), there is nothing special you need to do.
You change into the directory containing your user script and invoke it like any Python script:

$ cd my_project
$ ls
userScript.py ...
$./userScript.py ...

This assumes that your script has the executable permission bit set and contains a shebang, i.e. a line of the form

#!/usr/bin/env python

Alternatively, the shebang can be omitted and the script invoked as a module via

$ python -m userScript

in which case the executable permission is not required either. Both are common methods for invoking Python scripts.

The script can have dependencies, as long as those are installed on the machine, either globally, in a user-specific
location or in a virtualenv. In the latter case, the virtualenv must of course be active when you run the user script.

20 Chapter 2. Overview

Toil Documentation, Release 3.10.1

Deploying a Remote Workflow

If, however, you want to run your workflow in a distributed environment, on multiple worker machines, either in the
cloud or on a bare-metal cluster, your script needs to be made available to those other machines. If your script imports
other modules, those modules also need to be made available on the workers. Toil can automatically do that for you,
with a little help on your part. We call this feature remote-deployment of a workflow.

Let’s first examine various scenarios of remote-deploying a workflow and then take a look at deploying Toil, which, as
we’ll see shortly cannot be remotely deployed. Lastly we’ll deal with the issue of declaring Toil as a dependency of a
workflow that is packaged as a setuptools distribution.

Toil can be easily deployed to a remote host, given that both Python and Toil are present. The first order of business
after copying your workflow to each host is to create and activate a virtualenv:

$ virtualenv --system-site-packages venv
$. venv/bin/activate

Note that the virtualenv was created with the --system-site-packages option, which ensures that globally-
installed packages are accessible inside the virtualenv. This is necessary as Toil and its dependencies must be installed
globally.

From here, you can install your project and its dependencies:

$ tree
.
- util
| - __init__.py
| - sort
| - __init__.py
| - quick.py
- workflow

- __init__.py
- main.py

3 directories, 5 files
$ pip install fairydust
$ cp -R workflow util venv/lib/python2.7/site-packages

Ideally, your project would have a setup.py file (see setuptools) which streamlines the installation process:

$ tree
.
- util
| - __init__.py
| - sort
| - __init__.py
| - quick.py
- workflow
| - __init__.py
| - main.py
- setup.py

3 directories, 6 files
$ pip install .

Or, if your project has been published to PyPI:

$ pip install my-project

2.3. Deploying a Workflow 21

http://setuptools.readthedocs.io/en/latest/index.html

Toil Documentation, Release 3.10.1

In each case, we have created a virtualenv with the --system-site-packages flag in the venv subdirectory
then installed the fairydust distribution from PyPI along with the two packages that our project consists of. (Again,
both Python and Toil are assumed to be present on the leader and all worker nodes.) We can now run our workflow:

$ python -m workflow.main --batchSystem=mesos ...

Important: If workflow’s external dependencies contain native code (i.e. are not pure Python) then they must be
manually installed on each worker.

Warning: Neither python setup.py develop nor pip install -e . can be used in this process
as, instead of copying the source files, they create .egg-link files that Toil can’t remotely-deploy. Similarly,
python setup.py install doesn’t work either as it installs the project as a Python .egg which is also not
currently supported by Toil (though it could be in the future).

Also note that using the --single-version-externally-managed flag with setup.py will prevent
the installation of your package as an .egg. It will also disable the automatic installation of your project’s
dependencies.

Remote deployment with sibling modules

This scenario applies if the user script imports modules that are its siblings:

$ cd my_project
$ ls
userScript.py utilities.py
$./userScript.py --batchSystem=mesos ...

Here userScript.py imports additional functionality from utilities.py. Toil detects that userScript.
py has sibling modules and copies them to the workers, alongside the user script. Note that sibling modules will be
remotely-deployed regardless of whether they are actually imported by the user script–all .py files residing in the same
directory as the user script will automatically be remotely-deployed.

Sibling modules are a suitable method of organizing the source code of reasonably complicated workflows.

Remotely deploying a package hierarchy

Recall that in Python, a package is a directory containing one or more .py files—one of which must be called
__init__.py—and optionally other packages. For more involved workflows that contain a significant amount of
code, this is the recommended way of organizing the source code. Because we use a package hierarchy, we can’t
really refer to the user script as such, we call it the user module instead. It is merely one of the modules in the package
hierarchy. We need to inform Toil that we want to use a package hierarchy by invoking Python’s -m option. That
enables Toil to identify the entire set of modules belonging to the workflow and copy all of them to each worker. Note
that while using the -m option is optional in the scenarios above, it is mandatory in this one.

The following shell session illustrates this:

$ cd my_project
$ tree
.
- utils
| - __init__.py
| - sort

22 Chapter 2. Overview

https://github.com/BD2KGenomics/toil/issues/1367
https://docs.python.org/2/tutorial/modules.html#packages

Toil Documentation, Release 3.10.1

| - __init__.py
| - quick.py
- workflow

- __init__.py
- main.py

3 directories, 5 files
$ python -m workflow.main --batchSystem=mesos ...

Here the user module main.py does not reside in the current directory, but is part of a package called util, in a
subdirectory of the current directory. Additional functionality is in a separate module called util.sort.quick
which corresponds to util/sort/quick.py. Because we invoke the user module via python -m workflow.
main, Toil can determine the root directory of the hierarchy–my_project in this case–and copy all Python modules
underneath it to each worker. The -m option is documented here

When -m is passed, Python adds the current working directory to sys.path, the list of root directories to be con-
sidered when resolving a module name like workflow.main. Without that added convenience we’d have to run the
workflow as PYTHONPATH="$PWD" python -m workflow.main. This also means that Toil can detect the
root directory of the user module’s package hierarchy even if it isn’t the current working directory. In other words we
could do this:

$ cd my_project
$ export PYTHONPATH="$PWD"
$ cd /some/other/dir
$ python -m workflow.main --batchSystem=mesos ...

Also note that the root directory itself must not be package, i.e. must not contain an __init__.py.

Relying on shared filesystems

Bare-metal clusters typically mount a shared file system like NFS on each node. If every node has that file system
mounted at the same path, you can place your project on that shared filesystem and run your user script from there.
Additionally, you can clone the Toil source tree into a directory on that shared file system and you won’t even need
to install Toil on every worker. Be sure to add both your project directory and the Toil clone to PYTHONPATH. Toil
replicates PYTHONPATH from the leader to every worker.

Using a shared filesystem

Toil currently only supports a tempdir set to a local, non-shared directory.

Using Docker with Toil

Toil comes with the Toil Appliance, a Docker image with Mesos and Toil baked in. It’s easily deployed, only needs
Docker, and allows for workflows to be run in single-machine mode and for clusters of VMs to be provisioned. For
more information, see the Running in AWS section.

Running in AWS

Toil jobs can be run on a variety of cloud platforms. Of these, Amazon Web Services (AWS) is currently the best-
supported solution. Toil provides the Cluster Utilities to conveniently create AWS clusters, connect to the leader of the

2.4. Running in AWS 23

https://docs.python.org/2/using/cmdline.html#cmdoption-m

Toil Documentation, Release 3.10.1

cluster, and then launch a workflow. The leader handles distributing the jobs over the worker nodes and autoscaling to
optimize costs.

The fastest way to get started with Toil in a cloud environment is by using Toil’s autoscaling capabilities to handle
node provisioning. Autoscaling is a powerful and efficient tool for running your cluster in the cloud. It manages your
cluster for you and scales up or down depending on the workflow’s demands.

The Running a Workflow with Autoscaling section details how to create a cluster and run a workflow that will dynam-
ically scale depending on the workflow’s needs.

The Static Provisioning section explains how a static cluster (one that won’t automatically change in size) can be
created and provisioned (grown, shrunk, destroyed, etc.).

To setup AWS, see Preparing your AWS environment.

Toil Provisioner

The Toil provisioner is included in Toil alongside the [aws] extra and allows us to spin up a cluster.

Getting started with the provisioner is simple:

1. Make sure you have Toil installed with the AWS extras. For detailed instructions see Installing extra features.

2. You will need an AWS account and you will need to save your AWS credentials on your local machine. For
help setting up an AWS account see here. For setting up your aws credentials follow instructions here.

The Toil provisioner is built around the Toil Appliance, a Docker image that bundles Toil and all its requirements (e.g.
Mesos). This makes deployment simple across platforms, and you can even simulate a cluster locally (see Developing
with the Toil Appliance for details).

Choosing Toil Appliance Image

When using the Toil provisioner, the appliance image will be automatically chosen based on the pip installed version of
Toil on your system. That choice can be overriden by setting the environment variables TOIL_DOCKER_REGISTRY
and TOIL_DOCKER_NAME or TOIL_APPLIANCE_SELF. See Toil Environment Variables for more information on
these variables. If you are developing with autoscaling and want to test and build your own appliance have a look at
Developing with the Toil Appliance.

For information on using the Toil Provisioner have a look at Running a Workflow with Autoscaling.

Details about Launching a Cluster in AWS

Using the provisioner to launch a Toil leader instance is simple using the launch-cluster command. For example,
to launch a cluster named “my-cluster” with a t2.medium leader in the us-west-2a zone, run:

(venv) $ toil launch-cluster my-cluster \
--nodeType t2.medium \
--zone us-west-2a \
--keyPairName <your-AWS-key-pair-name>

The cluster name is used to uniquely identify your cluster and will be used to populate the instance’s Name tag. In
addition, the Toil provisioner will automatically tag your cluster with an Owner tag that corresponds to your keypair
name to facilitate cost tracking.

The nodeType is an EC2 instance type. This only affects any nodes launched now.

24 Chapter 2. Overview

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files
https://aws.amazon.com/ec2/instance-types/

Toil Documentation, Release 3.10.1

The --zone parameter specifies which EC2 availability zone to launch the cluster in. Alternatively, you can specify
this option via the TOIL_AWS_ZONE environment variable. Note: the zone is different from an EC2 region. A region
corresponds to a geographical area like us-west-2 (Oregon), and availability zones are partitions of this area
like us-west-2a.

For more information on options try:

(venv) $ toil launch-cluster --help

Static Provisioning

Toil can be used to manage a cluster in the cloud by using the Cluster Utilities. The cluster utilities also make it easy
to run a toil workflow directly on this cluster. We call this static provisioning because the size of the cluster does not
change. This is in contrast with Running a Workflow with Autoscaling.

To launch a cluster with a specific number of worker nodes we use the -w option.:

(venv) $ toil launch-cluster my-cluster --nodeType t2.micro \
-z us-west-2a --keyPairName your-AWS-key-pair-name -w 3

This will spin up a leader node with three additional workers, all using t2.micro VMs.

Now we can follow the instructions under Running in AWS to start the workflow on the cluster.

Currently static provisioning is only possible during the cluster’s creation. The ability to add new nodes and remove
existing nodes via the native provisioner is in development, but can also be achieved through CGCloud. Of course the
cluster can always be deleted with the destroy-cluster utility.

Note: CGCloud also can do static provisioning for an AWS cluster, however it is being phased out in favor of the Toil
provisioner.

Uploading Workflows

Now that our cluster is launched, we use the rsync-cluster utility to copy the workflow to the leader. For a simple
workflow in a single file this might look like:

(venv) $ toil rsync-cluster -z us-west-2a my-cluster toil-workflow.py :/

Note: If your toil workflow has dependencies have a look at the Deploying a Remote Workflow section for a detailed
explanation on how to include them.

Running a Workflow with Autoscaling

Autoscaling is a feature of running Toil in a cloud whereby additional cloud instances are launched to run the workflow.
Autoscaling leverages Mesos containers to provide an execution environment for these workflows.

1. Download sort.py.

2. Launch the leader node in AWS using the launch-cluster command.

2.4. Running in AWS 25

https://github.com/BD2KGenomics/cgcloud
https://github.com/BD2KGenomics/cgcloud

Toil Documentation, Release 3.10.1

(venv) $ toil launch-cluster <cluster-name> \
--keyPairName <AWS-key-pair-name> \
--nodeType t2.micro \
--zone us-west-2a

3. Copy the sort.py script up to the leader node.

(venv) $ toil rsync-cluster <cluster-name> sort.py :/tmp

4. Login to the leader node.

(venv) $ toil ssh-cluster <cluster-name>

5. Run the script as an autoscaling workflow.

$ python /tmp/sort.py \
aws:us-west-2:autoscaling-sort-jobstore \
--provisioner aws --nodeType c3.large \
--batchSystem mesos --mesosMaster <private-IP>:5050
--logLevel DEBUG

Note: In this example, the autoscaling Toil code creates an instance of flavor c3.large and launches a Mesos
slave container inside it. The container then runs the sort.py script which first generates a file to sort, then sorts
that file, and finally creates a sorted file. Toil also creates a bucket in S3 called aws:us-west-2:autoscaling-sort-
jobstore to store intermediate job results.

6. View the generated file to sort.

$ head fileToSort.txt

7. View the sorted file.

$ head sortedFile.txt

For more information on other autoscaling (and other) options have a look at Toil Workflow Options and Command
Line Interface and/or run:

$ python my-toil-script.py --help

Important: Some important caveats about starting a toil run through an ssh session are explained in the ssh-cluster
section.

Preemptability

Toil can run on a heterogeneous cluster of both preemptable and non-preemptable nodes. Our preemptable node
type can be set by using the --preemptableNodeType <> flag. While individual jobs can each explicitly spec-
ify whether or not they should be run on preemptable nodes via the boolean preemptable resource requirement,
the --defaultPreemptable flag will allow jobs without a preemptable requirement to run on preemptable
machines.

We can set the maximum number of preemptable and non-preemptable nodes via the flags --maxNodes <> and
--maxPreemptableNodes <>.

26 Chapter 2. Overview

Toil Documentation, Release 3.10.1

Specify Preemptability Carefully

Ensure that your choices for --maxNodes <> and --maxPreemptableNodes <> make sense for your work-
flow and won’t cause it to hang - if the workflow requires preemptable nodes set --maxPreemptableNodes to
some non-zero value and if any job requires non-preemptable nodes set --maxNodes to some non-zero value.

Finally, the --preemptableCompensation flag can be used to handle cases where preemptable nodes may not
be available but are required for your workflow.

Using Mesos with Toil on AWS

The mesos master and agent processes bind to the private IP addresses of their EC2 instance, so be sure to use the
master’s private IP when specifying --mesosMaster. Using the public IP will prevent the nodes from properly
discovering each other.

Cluster Utilities

There are several utilities used for starting and managing a Toil cluster using the AWS provisioner. They are installed
via the [aws] extra. For installation details see Toil Provisioner. The cluster utilities are used for Running in AWS
and are comprised of toil launch-cluster, toil rsync-cluster, toil ssh-cluster, and toil
destroy-cluster entry points. For a detailed explanation of the cluster utilities run:

toil --help

For information on a specific utility run:

toil launch-cluster --help

for a full list of its options and functionality.

Note: Boto must be configured with AWS credentials before using cluster utilities.

launch-cluster

Running toil launch-cluster starts up a leader for a cluster. Workers can be added to the initial cluster by
specifying the -w option. For an example usage see launch-cluster. More information can be found using the --help
option.

ssh-cluster

Toil provides the ability to ssh into the leader of the cluster. This can be done as follows:

$ toil ssh-cluster CLUSTER-NAME-HERE

This will open a shell on the Toil leader and is used to start an Running a Workflow with Autoscaling run. Issues with
docker prevent using screen and tmux when sshing the cluster (The shell doesn’t know that it is a TTY which
prevents it from allocating a new screen session). This can be worked around via:

2.4. Running in AWS 27

http://boto3.readthedocs.io/en/latest/guide/quickstart.html#configuration

Toil Documentation, Release 3.10.1

$ script
$ screen

Simply running screen within script will get things working properly again.

Finally, you can execute remote commands with the following syntax:

$ toil ssh-cluster CLUSTER-NAME-HERE remoteCommand

It is not advised that you run your Toil workflow using remote execution like this unless a tool like nohup is used to
insure the process does not die if the SSH connection is interrupted.

For an example usage, see Running a Workflow with Autoscaling.

rsync-cluster

The most frequent use case for the rsync-cluster utility is deploying your Toil script to the Toil leader. Note that
the syntax is the same as traditional rsync with the exception of the hostname before the colon. This is not needed in
toil rsync-cluster since the hostname is automatically determined by Toil.

Here is an example of its usage:

$ toil rsync-cluster CLUSTER-NAME-HERE \
~/localFile :/remoteDestination

destroy-cluster

The destroy-cluster command is the advised way to get rid of any Toil cluster launched using the launch-cluster
command. It ensures that all attached node, volumes, and security groups etc. are deleted. If a node or cluster in shut
down using Amazon’s online portal residual resources may still be in use in the background. To delete a cluster run

$ toil destroy-cluster CLUSTER-NAME-HERE

Running in Azure

This section describes how to deploy a leader node in Azure and launch a Toil cluster from the leader node to run
workflows. You’ll need an account in Azure prior to executing the steps in the document. To setup Azure, see
Preparing your Azure environment.

Note: Azure is available in Toil for experimental purposes. Only AWS is currently supported in Toil.

Launch a leader node in Azure

Toil comes with a cluster template to facilitate easy deployment of clusters running Toil on Microsoft Azure. The
template allows these clusters to be created and managed through the Azure portal.

To use the template to set up a Toil Mesos cluster on Azure, follow these steps.

28 Chapter 2. Overview

https://linux.die.net/man/1/nohup
https://linux.die.net/man/1/rsync
https://github.com/BD2KGenomics/toil/blob/master/contrib/azure/README.md
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2FBD2KGenomics%2Ftoil%2Fmaster%2Fcontrib%2Fazure%2Fazuredeploy.json

Toil Documentation, Release 3.10.1

1. Click on the blue deploy button above, or open the deploy link in your browser. If necessary, sign into the
Microsoft account that you use for Azure.

2. You should be presented with a screen resembling the following:

Fill out the form on the far right (marked 1 in the image) with the following information, then click OK (marked
2 in the image). Important fields for which you will want to override the defaults are in bold:

2.5. Running in Azure 29

https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2FBD2KGenomics%2Ftoil%2Fmaster%2Fcontrib%2Fazure%2Fazuredeploy.json

Toil Documentation, Release 3.10.1

AdminUsername A username for logging into the cluster. It’s easiest to
set this to match your username on your local machine.

AdminPassword Choose a strong root password. (Since you’ll be using
SSH keys, you won’t actually need to use this to log in
in practice, so choose something long and complex and
store it safely.)

DnsNameForMastersPublicIp Enter a unique DNS name fragment to identify your
cluster within your region.
For example, if your cluster is in westus and you
choose awesomecluster, your cluster’s public IP
would be assigned the name awesomecluster.
westus.cloudapp.azure.com.

JumpboxConfiguration If you’d like, you can select to have either a Linux or
Windows “jumpbox” with remote desktop software set
up on the cluster’s internal network. Disabled by de-
fault.

DnsNameForJumpboxPublicIp If you’re using a jumpbox, enter another unique DNS
name fragment here to set its DNS name. See
DnsNameForMastersPublicIp

NewStorageAccountNamePrefix Enter a globally-unique prefix to be used in the names
of new storage accounts created to support the clus-
ter. Storage account names must be 3 to 24 characters
long, include only numbers and lowercase letters, and
be globally unique. Since the template internally ap-
pends to this prefix, it must be shorter than the full 24
characters. Up to 20 should work.

AgentCount Choose how many agents (i.e. worker nodes) you want
in the cluster. Be mindful of your Azure subscription
limits on VMs and total cores (both limited to 20 per
region by default); if you ask for more agents or more
total cores than you are allowed, you won’t get them all,
errors will occur, and (like my paycheck) the resulting
cluster will be smaller than you want it to be.

AgentVmSize Choose from the available VM instance sizes to deter-
mine how big each node will be. Again, be mindful of
your Azure subscription’s core limits. Also be mind-
ful of how many cores and how much disk and memory
your Toil jobs will need: if any requirements is greater
than that provided by an entire node, a job may never be
schduled to run.

MasterCount Choose the number of masters or leader nodes for the
cluster. By default, only one is used, because while
the underlying Mesos batch system supports master
failover, Toil currently does not. You can increase this
if multiple Toil jobs will be running and you want them
to run from different leader nodes. Remember that the
leader nodes also count against your VM and core lim-
its.

MasterVmSize Select one of the available VM sizes to use for the
leader nodes. Generally, the leader node can be rela-
tively small.

MasterConfiguration This is set to masters-are-not-agents by de-
fault, meaning that the leader nodes won’t run any jobs
themselves. If you’re worried about wasting unused
computing power on your leader nodes, you can set this
to masters-are-agents to allow them to run jobs.
However, this may slow them down for interactive use,
making it harder to monitor and control your Toil work-
flows.

JumpboxVmSize If you’re using a jumpbox, you can select a VM instance
size for it to use here. Again, remember that it counts
against your Azure subscription limits.

ClusterPrefix This prefix is used to generate the internal hostnames
of all the machines in the cluster. You can use it to give
clusters friendly names to differentiate them. It has to be
a valid part of a DNS name; you might consider setting
it to match DnsNameForMastersPublicIp. You can also
leave it as the default.

SwarmEnabled Set to true to install Swarm, a system for scheduling
Docker containers. Toil doesn’t use Swarm (and it has a
tendency to allocate all the cluster’s resources for itself),
so it should be set to false unless you need it.

MarathonEnabled Set to true to install Marathon, a scheduling system
for persistent jobs run in Docker containers. Toil doesn’t
require this, so you can leave it set to false, unless you
need it.

ChronosEnabled Set to true to install Chronos, a way to periodically
run jobs on the cluster. Toil doesn’t require this, so you
can leave it set to false, unless you need it.

ToilEnabled You should probably leave this set to true. Setting
it to false will keep Toil from being installed on the
cluster, which rather defeats the point.

SshRsaPublicKey Replace default with your SSH public key contents,
beginning with ssh-rsa. Paste the whole line. Only
one key is supported, and, as the name suggests, it must
be an RSA key. This enables public key login on the
cluster.

GithubSource GitHub repository to install Toil from. Set to
BD2kGenomics/toil by default. Change it if you
want to use a non-standard fork on GitHub.

GithubBranch Branch to install Toil from. e.g. release/3.1.x
for the latest release of Toil 3.1. Defaults to master
(which may have bugs or breaking changes introduced
since the last release).

30 Chapter 2. Overview

Toil Documentation, Release 3.10.1

1. Choose a subscription and select or create a Resource Group (marked 3 in the screenshot). If creating a Resource
Group, select a region in which to place it. It is recommended to create a new Resource Group for every cluster;
the template creates a large number of Azure entitites besides just the VMs (like virtual networks), and if they
are organized into their own Resource Group they can all be cleaned up at once when you are done with the
cluster by deleting the Resource Group.

2. Read the Azure Terms of Service (by clicking on the item marked “4” in the screenshot) and accept them by
clicking the “Create” button on the right (not shown). This is the contract that you are accepting with Microsoft,
under which you are purchasing the cluster.

3. Click the main “Create” button (marked “5” in the screenshot). This will kick off the process of creating the
cluster.

4. Eventually, you’ll receive a notification (Bell icon on the top bar of the Azure UI) letting you know that your
cluster has been created. At this point, you should be able to connect to it; however, note that it will not be ready
to run any Toil jobs until it is finished setting itself up.

Launch a Toil Mesos Cluster

1. SSH into the first (and by default only) leader node. For this, you need to know the values AdminUsername and
DnsNameForMastersPublicIp were set to above, and the name of the region you placed your cluster in. If you
named your user phoebe and named your cluster toilisgreat, and placed it in the centralus region, the
hostname of the cluster would be toilisgreat.centralus.cloudapp.azure.com, and you would
want to connect as phoebe. SSH is forwarded through the cluster’s load balancer to the first leader node on
port 2211, so you would run ssh phoebe@toilisgreat.centralus.cloudapp.azure.com -p
2211.

2. Wait for the leader node to finish setting itself up. Run tail -f /var/log/azure/
cluster-bootstrap.log and wait until the log reaches the line completed mesos cluster
configuration. At that point, kill tail with a ctrl-c. Your leader node is now ready.

3. At this point, you can start running Toil jobs, using the Mesos batch system (by passing --batchSystem
mesos --mesosMaster 10.0.0.5:5050) and the Azure job store (for which you will need a separate
Azure Storage account set up, ideally in the same region as your cluster but in a different Resource Group). The
nodes of the cluster may take a few more minutes to finish installing, but when they do they will report in to
Mesos and begin running any scheduled jobs.

4. Whan you are done running your jobs, go back to the Azure portal, find the Resource Group you created for your
cluster, and delete it. This will destroy all the VMs and any data stored on them, and stop Microsoft charging
you money for keeping the cluster around. As long as you used a separate Asure Storage account in a different
Resource Group, any information kept in the job stores and file stores you were using will be retained.

For more information about how your new cluster is organized, for information on how to access the Mesos Web UI,
or for troubleshooting advice, please see the template documentation.

Running in Openstack

Our group is working to expand distributed cluster support to OpenStack by providing convenient Docker containers
to launch Mesos from. Currently, OpenStack nodes can be set up to run Toil in single machine mode by following the
Installation.

Note: Openstack is available in Toil for experimental purposes. Only AWS is currently supported in Toil.

2.6. Running in Openstack 31

https://github.com/BD2KGenomics/toil/blob/master/contrib/azure/README.md

Toil Documentation, Release 3.10.1

Toil scripts can be run by designating a job store location. Be sure to specify a temporary directory that Toil can use
to run jobs in with the --workDir argument:

$ python HelloWorld.py --workDir=/tmp file:jobStore

Running in GCE

After setting up Toil on Installation, Toil scripts can be run just by designating a job store location as shown in Running
a basic workflow.

Note: Google Cloud Storage is available in Toil for experimental purposes. Only AWS is currently supported in Toil.

If you wish to use the Google Storage job store, install Toil with the google extra (Installing extra features). Then,
create a file named .boto with your credentials and some configuration:

[Credentials]
gs_access_key_id = KEY_ID
gs_secret_access_key = SECRET_KEY

[Boto]
https_validate_certificates = True

[GSUtil]
content_language = en
default_api_version = 2

gs_access_key_id and gs_secret_access_key can be generated by navigating to your Google Cloud Stor-
age console and clicking on Settings. On the Settings page, navigate to the Interoperability tab and click Enable inter-
operability access. On this page you can now click Create a new key to generate an access key and a matching secret.
Insert these into their respective places in the .boto file and you will be able to use a Google job store when invoking
a Toil script, as in the following example:

$ python HelloWorld.py google:projectID:jobStore

The projectID component of the job store argument above refers your Google Cloud Project ID in the Google
Cloud Console, and will be visible in the console’s banner at the top of the screen. The jobStore component is a
name of your choosing that you will use to refer to this job store.

Running in HPC Environments

Toil is a flexible framework that can be leveraged in a variety of environments, including high-performance computing
(HPC) environments. Toil provides support for a number of batch systems, including Grid Engine, Slurm, Torque
and LSF, which are popular schedulars used in these environments. To use one of these batch systems specify the
“–batchSystem” argument to the toil script.

Due to the cost and complexity of maintaining support for these schedulars we currently consider these schedulars
to be “community supported”, that is the core development team does not regularly test or develop support for these
systems. However, there are members of the Toil community currently deploying Toil in HPC environments and we
welcome external contributions.

Developing the support of a new or existing batch system involves extending the abstract batch system class toil.
batchSystems.abstractBatchSystem.AbstractBatchSystem.

32 Chapter 2. Overview

http://www.univa.com/oracle
https://www.schedmd.com/
http://www.adaptivecomputing.com/products/open-source/torque/
https://en.wikipedia.org/wiki/Platform_LSF

CHAPTER 3

Overview

This section describes how to develop Toil workflows using the Toil API, the batch system API, and the job store API.

Specifically, the developing Toil section documents the following:

Developing a Workflow

This tutorial walks through the features of Toil necessary for developing a workflow using the Toil Python API.

Note: “script” and “workflow” will be used interchangeably

Scripting quick start

To begin, consider this short toil script which illustrates defining a workflow:

from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
return "Hello, world!, here's a message: %s" % message

j = Job.wrapFn(helloWorld, "woot")

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflow")
print Job.Runner.startToil(j, options) #Prints Hello, world!, ...

The workflow consists of a single job. The resource requirements for that job are (optionally) specified by keyword
arguments (memory, cores, disk). The script is run using toil.job.Job.Runner.getDefaultOptions().
Below we explain the components of this code in detail.

33

Toil Documentation, Release 3.10.1

Job basics

The atomic unit of work in a Toil workflow is a Job. User scripts inherit from this base class to define units of work.
For example, here is a more long-winded class-based version of the job in the quick start example:

from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return "Hello, world!, here's a message: %s" % self.message

In the example a class, HelloWorld, is defined. The constructor requests 2 gigabytes of memory, 2 cores and 3
gigabytes of local disk to complete the work.

The toil.job.Job.run() method is the function the user overrides to get work done. Here it just logs a message
using toil.fileStore.FileStore.logToMaster(), which will be registered in the log output of the leader
process of the workflow.

Invoking a workflow

We can add to the previous example to turn it into a complete workflow by adding the necessary function calls to
create an instance of HelloWorld and to run this as a workflow containing a single job. This uses the toil.job.
Job.Runner class, which is used to start and resume Toil workflows. For example:

from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return "Hello, world!, here's a message: %s" % self.message

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
print Job.Runner.startToil(HelloWorld("woot"), options)

Alternatively, the more powerful toil.common.Toil class can be used to run and resume workflows. It is used as
a context manager and allows for preliminary setup, such as staging of files into the job store on the leader node. An
instance of the class is initialized by specifying an options object. The actual workflow is then invoked by calling the
toil.common.Toil.start() method, passing the root job of the workflow, or, if a workflow is being restarted,
toil.common.Toil.restart() should be used. Note that the context manager should have explicit if else
branches addressing restart and non restart cases. The boolean value for these if else blocks is toil.options.restart.

For example:

from toil.job import Job
from toil.common import Toil

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")

34 Chapter 3. Overview

Toil Documentation, Release 3.10.1

self.message = message

def run(self, fileStore):
fileStore.logToMaster("Hello, world!, I have a message: %s"

% self.message)
if __name__=="__main__":

options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"

with Toil(options) as toil:
if not toil.options.restart:

job = HelloWorld("Smitty Werbenmanjensen, he was #1")
toil.start(job)

else:
toil.restart()

The call to toil.job.Job.Runner.getDefaultOptions() creates a set of default options for the workflow.
The only argument is a description of how to store the workflow’s state in what we call a job-store. Here the job-store
is contained in a directory within the current working directory called “toilWorkflowRun”. Alternatively this string
can encode other ways to store the necessary state, e.g. an S3 bucket or Azure object store location. By default the
job-store is deleted if the workflow completes successfully.

The workflow is executed in the final line, which creates an instance of HelloWorld and runs it as a workflow. Note all
Toil workflows start from a single starting job, referred to as the root job. The return value of the root job is returned
as the result of the completed workflow (see promises below to see how this is a useful feature!).

Specifying arguments via the command line

To allow command line control of the options we can use the toil.job.Job.Runner.
getDefaultArgumentParser() method to create a argparse.ArgumentParser object which can
be used to parse command line options for a Toil script. For example:

from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return "Hello, world!, here's a message: %s" % self.message

if __name__=="__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
print Job.Runner.startToil(HelloWorld("woot"), options)

Creates a fully fledged script with all the options Toil exposed as command line arguments. Running this script with
“–help” will print the full list of options.

Alternatively an existing argparse.ArgumentParser or optparse.OptionParser object can have Toil
script command line options added to it with the toil.job.Job.Runner.addToilOptions() method.

3.1. Developing a Workflow 35

https://docs.python.org/2/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/2/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/2/library/optparse.html#optparse.OptionParser

Toil Documentation, Release 3.10.1

Resuming a workflow

In the event that a workflow fails, either because of programmatic error within the jobs being run, or because of node
failure, the workflow can be resumed. Workflows can only not be reliably resumed if the job-store itself becomes
corrupt.

Critical to resumption is that jobs can be rerun, even if they have apparently completed successfully. Put succinctly,
a user defined job should not corrupt its input arguments. That way, regardless of node, network or leader failure the
job can be restarted and the workflow resumed.

To resume a workflow specify the “restart” option in the options object passed to toil.job.Job.Runner.
startToil(). If node failures are expected it can also be useful to use the integer “retryCount” option, which
will attempt to rerun a job retryCount number of times before marking it fully failed.

In the common scenario that a small subset of jobs fail (including retry attempts) within a workflow Toil will continue
to run other jobs until it can do no more, at which point toil.job.Job.Runner.startToil() will raise a
toil.leader.FailedJobsException exception. Typically at this point the user can decide to fix the script
and resume the workflow or delete the job-store manually and rerun the complete workflow.

Functions and job functions

Defining jobs by creating class definitions generally involves the boilerplate of creating a constructor. To avoid this the
classes toil.job.FunctionWrappingJob and toil.job.JobFunctionWrappingTarget allow func-
tions to be directly converted to jobs. For example, the quick start example (repeated here):

from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
return "Hello, world!, here's a message: %s" % message

j = Job.wrapFn(helloWorld, "woot")

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
print Job.Runner.startToil(j, options)

Is equivalent to the previous example, but using a function to define the job.

The function call:

Job.wrapFn(helloWorld, "woot")

Creates the instance of the toil.job.FunctionWrappingTarget that wraps the function.

The keyword arguments memory, cores and disk allow resource requirements to be specified as before. Even if they
are not included as keyword arguments within a function header they can be passed as arguments when wrapping a
function as a job and will be used to specify resource requirements.

We can also use the function wrapping syntax to a job function, a function whose first argument is a reference to
the wrapping job. Just like a self argument in a class, this allows access to the methods of the wrapping job, see
toil.job.JobFunctionWrappingTarget. For example:

from toil.job import Job

def helloWorld(job, message):
job.fileStore.logToMaster("Hello world, "
"I have a message: %s" % message) # This uses a logging function
of the toil.fileStore.FileStore class

36 Chapter 3. Overview

Toil Documentation, Release 3.10.1

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
print Job.Runner.startToil(Job.wrapJobFn(helloWorld, "woot"), options)

Here helloWorld() is a job function. It accesses the toil.fileStore.FileStore attribute of the job to log
a message that will be printed to the output console. Here the only subtle difference to note is the line:

Job.Runner.startToil(Job.wrapJobFn(helloWorld, "woot"), options)

Which uses the function toil.job.Job.wrapJobFn() to wrap the job function instead of toil.job.Job.
wrapFn() which wraps a vanilla function.

Workflows with multiple jobs

A parent job can have child jobs and follow-on jobs. These relationships are specified by methods of the job class, e.g.
toil.job.Job.addChild() and toil.job.Job.addFollowOn().

Considering a set of jobs the nodes in a job graph and the child and follow-on relationships the directed edges of
the graph, we say that a job B that is on a directed path of child/follow-on edges from a job A in the job graph is a
successor of A, similarly A is a predecessor of B.

A parent job’s child jobs are run directly after the parent job has completed, and in parallel. The follow-on jobs of a
job are run after its child jobs and their successors have completed. They are also run in parallel. Follow-ons allow
the easy specification of cleanup tasks that happen after a set of parallel child tasks. The following shows a simple
example that uses the earlier helloWorld() job function:

from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.fileStore.logToMaster("Hello world, "
"I have a message: %s" % message) # This uses a logging function
of the toil.fileStore.FileStore class

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = Job.wrapJobFn(helloWorld, "second or third")
j3 = Job.wrapJobFn(helloWorld, "second or third")
j4 = Job.wrapJobFn(helloWorld, "last")
j1.addChild(j2)
j1.addChild(j3)
j1.addFollowOn(j4)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
Job.Runner.startToil(j1, options)

In the example four jobs are created, first j1 is run, then j2 and j3 are run in parallel as children of j1, finally j4 is
run as a follow-on of j1.

There are multiple short hand functions to achieve the same workflow, for example:

from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.fileStore.logToMaster("Hello world, "

3.1. Developing a Workflow 37

Toil Documentation, Release 3.10.1

"I have a message: %s" % message) # This uses a logging function
of the toil.fileStore.FileStore class

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = j1.addChildJobFn(helloWorld, "second or third")
j3 = j1.addChildJobFn(helloWorld, "second or third")
j4 = j1.addFollowOnJobFn(helloWorld, "last")

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
Job.Runner.startToil(j1, options)

Equivalently defines the workflow, where the functions toil.job.Job.addChildJobFn() and toil.job.
Job.addFollowOnJobFn() are used to create job functions as children or follow-ons of an earlier job.

Jobs graphs are not limited to trees, and can express arbitrary directed acylic graphs. For a precise definition of legal
graphs see toil.job.Job.checkJobGraphForDeadlocks(). The previous example could be specified as a
DAG as follows:

from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.fileStore.logToMaster("Hello world, "
"I have a message: %s" % message) # This uses a logging function
of the toil.fileStore.FileStore class

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = j1.addChildJobFn(helloWorld, "second or third")
j3 = j1.addChildJobFn(helloWorld, "second or third")
j4 = j2.addChildJobFn(helloWorld, "last")
j3.addChild(j4)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
Job.Runner.startToil(j1, options)

Note the use of an extra child edge to make j4 a child of both j2 and j3.

Dynamic job creation

The previous examples show a workflow being defined outside of a job. However, Toil also allows jobs to be created
dynamically within jobs. For example:

from toil.job import Job

def binaryStringFn(job, depth, message=""):
if depth > 0:

job.addChildJobFn(binaryStringFn, depth-1, message + "0")
job.addChildJobFn(binaryStringFn, depth-1, message + "1")

else:
job.fileStore.logToMaster("Binary string: %s" % message)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")

38 Chapter 3. Overview

Toil Documentation, Release 3.10.1

options.logLevel = "INFO"
Job.Runner.startToil(Job.wrapJobFn(binaryStringFn, depth=5), options)

The job function binaryStringFn logs all possible binary strings of length n (here n=5), creating a total of
2^(n+2) - 1 jobs dynamically and recursively. Static and dynamic creation of jobs can be mixed in a Toil work-
flow, with jobs defined within a job or job function being created at run time.

Promises

The previous example of dynamic job creation shows variables from a parent job being passed to a child job. Such
forward variable passing is naturally specified by recursive invocation of successor jobs within parent jobs. This can
also be achieved statically by passing around references to the return variables of jobs. In Toil this is achieved with
promises, as illustrated in the following example:

from toil.job import Job

def fn(job, i):
job.fileStore.logToMaster("i is: %s" % i, level=100)
return i+1

j1 = Job.wrapJobFn(fn, 1)
j2 = j1.addChildJobFn(fn, j1.rv())
j3 = j1.addFollowOnJobFn(fn, j2.rv())

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
Job.Runner.startToil(j1, options)

Running this workflow results in three log messages from the jobs: i is 1 from j1, i is 2 from j2 and i is
3 from j3.

The return value from the first job is promised to the second job by the call to toil.job.Job.rv() in the line:

j2 = j1.addChildFn(fn, j1.rv())

The value of j1.rv() is a promise, rather than the actual return value of the function, because j1 for the given input
has at that point not been evaluated. A promise (toil.job.Promise) is essentially a pointer to for the return value
that is replaced by the actual return value once it has been evaluated. Therefore, when j2 is run the promise becomes
2.

Promises also support indexing of return values:

def parent(job):
indexable = Job.wrapJobFn(fn)
job.addChild(indexable)
job.addFollowOnFn(raiseWrap, indexable.rv(2))

def raiseWrap(arg):
raise RuntimeError(arg) # raises "2"

def fn(job):
return (0, 1, 2, 3)

Promises can be quite useful. For example, we can combine dynamic job creation with promises to achieve a job
creation process that mimics the functional patterns possible in many programming languages:

3.1. Developing a Workflow 39

Toil Documentation, Release 3.10.1

from toil.job import Job

def binaryStrings(job, message="", depth):
if depth > 0:

s = [job.addChildJobFn(binaryStrings, message + "0",
depth-1).rv(),

job.addChildJobFn(binaryStrings, message + "1",
depth-1).rv()]

return job.addFollowOnFn(merge, s).rv()
return [message]

def merge(strings):
return strings[0] + strings[1]

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
l = Job.Runner.startToil(Job.wrapJobFn(binaryStrings, depth=5), options)
print l #Prints a list of all binary strings of length 5

The return value l of the workflow is a list of all binary strings of length 10, computed recursively. Although a toy
example, it demonstrates how closely Toil workflows can mimic typical programming patterns.

Promised Requirements

Promised requirements are a special case of Promises that allow a job’s return value to be used as another job’s resource
requirements.

This is useful when, for example, a job’s storage requirement is determined by a file staged to the job store by an
earlier job:

from toil.job import Job, PromisedRequirement
from toil.common import Toil
import os

def parentJob(job):
downloadJob = Job.wrapJobFn(stageFn, "File://"+os.path.realpath(__file__),

→˓cores=0.1, memory='32M', disk='1M')
job.addChild(downloadJob)

analysis = Job.wrapJobFn(analysisJob, fileStoreID=downloadJob.rv(0),
disk=PromisedRequirement(downloadJob.rv(1)))

job.addFollowOn(analysis)

def stageFn(job, url, cores=1):
importedFile = job.fileStore.importFile(url)
return importedFile, importedFile.size

def analysisJob(job, fileStoreID, cores=2):
now do some analysis on the file
pass

if __name__ == "__main__":
with Toil(Job.Runner.getDefaultOptions("./toilWorkflowRun")) as toil:

toil.start(Job.wrapJobFn(parentJob))

Note that this also makes use of the size attribute of the FileID object. This promised requirements mechanism can
also be used in combination with an aggregator for multiple jobs’ output values:

40 Chapter 3. Overview

Toil Documentation, Release 3.10.1

def parentJob(job):
aggregator = []
for fileNum in range(0,10):

downloadJob = Job.wrapJobFn(stageFn, "File://"+os.path.realpath(__file__),
→˓cores=0.1, memory='32M', disk='1M')

job.addChild(downloadJob)
aggregator.append(downloadJob)

analysis = Job.wrapJobFn(analysisJob, fileStoreID=downloadJob.rv(0),
disk=PromisedRequirement(lambda xs: sum(xs), [j.rv(1)

→˓for j in aggregator]))
job.addFollowOn(analysis)

Limitations

Just like regular promises, the return value must be determined prior to scheduling any job that depends on the return
value. In our example above, notice how the dependant jobs were follow ons to the parent while promising jobs are
children of the parent. This ordering ensures that all promises are properly fulfilled.

FileID

This object is a small wrapper around Python’s builtin string class. It is used to represent a file’s ID in the file store, and
has a size attribute that is the file’s size in bytes. This object is returned by importFile and writeGlobalFile.

Managing files within a workflow

It is frequently the case that a workflow will want to create files, both persistent and temporary, during its run. The
toil.fileStore.FileStore class is used by jobs to manage these files in a manner that guarantees cleanup
and resumption on failure.

The toil.job.Job.run() method has a file store instance as an argument. The following example shows how
this can be used to create temporary files that persist for the length of the job, be placed in a specified local disk of the
node and that will be cleaned up, regardless of failure, when the job finishes:

from toil.job import Job

class LocalFileStoreJob(Job):
def run(self, fileStore):

scratchDir = fileStore.getLocalTempDir() #Create a temporary
directory safely within the allocated disk space
reserved for the job.

scratchFile = fileStore.getLocalTempFile() #Similarly
create a temporary file.

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
#Create an instance of FooJob which will
have at least 10 gigabytes of storage space.
j = LocalFileStoreJob(disk="10G")
#Run the workflow
Job.Runner.startToil(j, options)

3.1. Developing a Workflow 41

Toil Documentation, Release 3.10.1

Job functions can also access the file store for the job. The equivalent of the LocalFileStoreJob class is:

def localFileStoreJobFn(job):
scratchDir = job.fileStore.getLocalTempDir()
scratchFile = job.fileStore.getLocalTempFile()

Note that the fileStore attribute is accessed as an attribute of the job argument.

In addition to temporary files that exist for the duration of a job, the file store allows the creation of files in a global
store, which persists during the workflow and are globally accessible (hence the name) between jobs. For example:

from toil.job import Job
import os

def globalFileStoreJobFn(job):
job.fileStore.logToMaster("The following example exercises all the"

" methods provided by the"
" toil.fileStore.FileStore class")

scratchFile = job.fileStore.getLocalTempFile() # Create a local
temporary file.

with open(scratchFile, 'w') as fH: # Write something in the
scratch file.
fH.write("What a tangled web we weave")

Write a copy of the file into the file-store;
fileID is the key that can be used to retrieve the file.
fileID = job.fileStore.writeGlobalFile(scratchFile) #This write
is asynchronous by default

Write another file using a stream; fileID2 is the
key for this second file.
with job.fileStore.writeGlobalFileStream(cleanup=True) as (fH, fileID2):

fH.write("Out brief candle")

Now read the first file; scratchFile2 is a local copy of the file
that is read-only by default.
scratchFile2 = job.fileStore.readGlobalFile(fileID)

Read the second file to a desired location: scratchFile3.
scratchFile3 = os.path.join(job.fileStore.getLocalTempDir(), "foo.txt")
job.fileStore.readGlobalFile(fileID2, userPath=scratchFile3)

Read the second file again using a stream.
with job.fileStore.readGlobalFileStream(fileID2) as fH:

print fH.read() #This prints "Out brief candle"

Delete the first file from the global file-store.
job.fileStore.deleteGlobalFile(fileID)

It is unnecessary to delete the file keyed by fileID2
because we used the cleanup flag, which removes the file after this
job and all its successors have run (if the file still exists)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(Job.wrapJobFn(globalFileStoreJobFn), options)

42 Chapter 3. Overview

Toil Documentation, Release 3.10.1

The example demonstrates the global read, write and delete functionality of the file-store, using both local copies of
the files and streams to read and write the files. It covers all the methods provided by the file store interface.

What is obvious is that the file-store provides no functionality to update an existing “global” file, meaning that files
are, barring deletion, immutable. Also worth noting is that there is no file system hierarchy for files in the global file
store. These limitations allow us to fairly easily support different object stores and to use caching to limit the amount
of network file transfer between jobs.

Staging of files into the job store

External files can be imported into or exported out of the job store prior to running a workflow when the toil.
common.Toil context manager is used on the leader. The context manager provides methods toil.common.
Toil.importFile(), and toil.common.Toil.exportFile() for this purpose. The destination and
source locations of such files are described with URLs passed to the two methods. A list of the currently supported
URLs can be found at toil.jobStores.abstractJobStore.AbstractJobStore.importFile(). To
import an external file into the job store as a shared file, pass the optional sharedFileName parameter to that
method.

If a workflow fails for any reason an imported file acts as any other file in the job store. If the workflow was configured
such that it not be cleaned up on a failed run, the file will persist in the job store and needs not be staged again when
the workflow is resumed.

Example:

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
def __init__(self, inputFileID):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.inputFileID = inputFileID

with fileStore.readGlobalFileStream(self.inputFileID) as fi:
with fileStore.writeGlobalFileStream() as (fo, outputFileID):

fo.write(fi.read() + 'World!')
return outputFileID

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"

with Toil(options) as toil:
if not toil.options.restart:

inputFileID = toil.importFile('file:///some/local/path')
outputFileID = toil.start(HelloWorld(inputFileID))

else:
outputFileID = toil.restart()

toil.exportFile(outputFileID, 'file:///some/other/local/path')

Using Docker containers in Toil

Docker containers are commonly used with Toil. The combination of Toil and Docker allows for pipelines to be fully
portable between any platform that has both Toil and Docker installed. Docker eliminates the need for the user to do

3.1. Developing a Workflow 43

Toil Documentation, Release 3.10.1

any other tool installation or environment setup.

In order to use Docker containers with Toil, Docker must be installed on all workers of the cluster. Instructions for
installing Docker can be found on the Docker website.

When using Toil-based autoscaling, Docker will be automatically set up on the cluster’s worker nodes, so no additional
installation steps are necessary. Further information on using Toil-based autoscaling can be found in the Running a
Workflow with Autoscaling documentation.

In order to use docker containers in a Toil workflow, the container can be built locally or downloaded in real time from
an online docker repository like Quay. If the container is not in a repository, the container’s layers must be accessible
on each node of the cluster.

When invoking docker containers from within a Toil workflow, it is strongly recommended that you use
dockerCall(), a toil job function provided in toil.lib.docker. dockerCall provides a layer of abstrac-
tion over using the subprocessmodule to call Docker directly, and provides container cleanup on job failure. When
docker containers are run without this feature, failed jobs can result in resource leaks.

In order to use dockerCall, your installation of Docker must be set up to run without sudo. Instructions for setting
this up can be found here.

An example of a basic dockerCall is below:

dockerCall(job=job, tool=’quay.io/ucsc_cgl/bwa’, work_dir=job.fileStore.getLocalTempDir(), parame-
ters=[’index’, ‘/data/reference.fa’])

dockerCall can also be added to workflows like any other job function:

from toil.job import Job

align = Job.wrapJobFn(dockerCall, tool=’quay.io/ucsc_cgl/bwa’, work_dir=job.fileStore.getLocalTempDir(),
parameters=[’index’, ‘/data/reference.fa’]))

if __name__==”__main__”: options = Job.Runner.getDefaultOptions(”./toilWorkflowRun”) op-
tions.logLevel = “INFO” Job.Runner.startToil(align, options)

cgl-docker-lib contains dockerCall-compatible Dockerized tools that are commonly used in bioinformatics analy-
sis.

The documentation provides guidelines for developing your own Docker containers that can be used with Toil and
dockerCall. In order for a container to be compatible with dockerCall, it must have an ENTRYPOINT set to a
wrapper script, as described in cgl-docker-lib containerization standards. Alternately, the entrypoint to the container
can be set using the docker option --entrypoint. The container should be runnable directly with Docker as:

$ docker run <docker parameters> <tool name> <tool parameters>

For example:

$ docker run -d quay.io/ucsc-cgl/bwa -s -o /data/aligned /data/ref.fa

Services

It is sometimes desirable to run services, such as a database or server, concurrently with a workflow. The toil.job.
Job.Service class provides a simple mechanism for spawning such a service within a Toil workflow, allowing
precise specification of the start and end time of the service, and providing start and end methods to use for initialization
and cleanup. The following simple, conceptual example illustrates how services work:

from toil.job import Job

class DemoService(Job.Service):

44 Chapter 3. Overview

https://docs.docker.com/engine/getstarted/step_one/
https://docs.docker.com/engine/installation/linux/ubuntulinux/#/create-a-docker-group
https://github.com/BD2KGenomics/cgl-docker-lib/blob/master/README.md

Toil Documentation, Release 3.10.1

def start(self, fileStore):
Start up a database/service here
return "loginCredentials" # Return a value that enables another
process to connect to the database

def check(self):
A function that if it returns False causes the service to quit
If it raises an exception the service is killed and an error is reported
return True

def stop(self, fileStore):
Cleanup the database here
pass

j = Job()
s = DemoService()
loginCredentialsPromise = j.addService(s)

def dbFn(loginCredentials):
Use the login credentials returned from the service's start method
to connect to the service
pass

j.addChildFn(dbFn, loginCredentialsPromise)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(j, options)

In this example the DemoService starts a database in the start method, returning an object from the start method
indicating how a client job would access the database. The service’s stop method cleans up the database, while the
service’s check method is polled periodically to check the service is alive.

A DemoService instance is added as a service of the root job j, with resource requirements specified. The return value
from toil.job.Job.addService() is a promise to the return value of the service’s start method. When the
promised is fulfilled it will represent how to connect to the database. The promise is passed to a child job of j, which
uses it to make a database connection. The services of a job are started before any of its successors have been run and
stopped after all the successors of the job have completed successfully.

Multiple services can be created per job, all run in parallel. Additionally, services can define sub-services using
toil.job.Job.Service.addChild(). This allows complex networks of services to be created, e.g. Apache
Spark clusters, within a workflow.

Checkpoints

Services complicate resuming a workflow after failure, because they can create complex dependencies between jobs.
For example, consider a service that provides a database that multiple jobs update. If the database service fails and
loses state, it is not clear that just restarting the service will allow the workflow to be resumed, because jobs that
created that state may have already finished. To get around this problem Toil supports checkpoint jobs, specified as the
boolean keyword argument checkpoint to a job or wrapped function, e.g.:

j = Job(checkpoint=True)

A checkpoint job is rerun if one or more of its successors fails its retry attempts, until it itself has exhausted its retry
attempts. Upon restarting a checkpoint job all its existing successors are first deleted, and then the job is rerun to

3.1. Developing a Workflow 45

Toil Documentation, Release 3.10.1

define new successors. By checkpointing a job that defines a service, upon failure of the service the database and the
jobs that access the service can be redefined and rerun.

To make the implementation of checkpoint jobs simple, a job can only be a checkpoint if when first defined it has no
successors, i.e. it can only define successors within its run method.

Encapsulation

Let A be a root job potentially with children and follow-ons. Without an encapsulated job the simplest way to specify
a job B which runs after A and all its successors is to create a parent of A, call it Ap, and then make B a follow-on of
Ap. e.g.:

from toil.job import Job

A is a job with children and follow-ons, for example:
A = Job()
A.addChild(Job())
A.addFollowOn(Job())

B is a job which needs to run after A and its successors
B = Job()

The way to do this without encapsulation is to make a
parent of A, Ap, and make B a follow-on of Ap.
Ap = Job()
Ap.addChild(A)
Ap.addFollowOn(B)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(Ap, options)

An encapsulated job E(A) of A saves making Ap, instead we can write:

from toil.job import Job

A
A = Job()
A.addChild(Job())
A.addFollowOn(Job())

#Encapsulate A
A = A.encapsulate()

B is a job which needs to run after A and its successors
B = Job()

With encapsulation A and its successor subgraph appear
to be a single job, hence:
A.addChild(B)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(A, options)

Note the call to toil.job.Job.encapsulate() creates the toil.job.Job.EncapsulatedJob.

46 Chapter 3. Overview

Toil Documentation, Release 3.10.1

Depending on Toil

If you are packing your workflow(s) as a pip-installable distribution on PyPI, you might be tempted to declare Toil as
a dependency in your setup.py, via the install_requires keyword argument to setup(). Unfortunately,
this does not work, for two reasons: For one, Toil uses Setuptools’ extra mechanism to manage its own optional
dependencies. If you explicitly declared a dependency on Toil, you would have to hard-code a particular combination
of extras (or no extras at all), robbing the user of the choice what Toil extras to install. Secondly, and more importantly,
declaring a dependency on Toil would only lead to Toil being installed on the leader node of a cluster, but not the
worker nodes. Hot-deployment does not work here because Toil cannot hot-deploy itself, the classic “Which came
first, chicken or egg?” problem.

In other words, you shouldn’t explicitly depend on Toil. Document the dependency instead (as in “This workflow
needs Toil version X.Y.Z to be installed”) and optionally add a version check to your setup.py. Refer to the
check_version() function in the toil-lib project’s setup.py for an example. Alternatively, you can also just
depend on toil-lib and you’ll get that check for free.

If your workflow depends on a dependency of Toil, e.g. bd2k-python-lib, consider not making that dependency
explicit either. If you do, you risk a version conflict between your project and Toil. The pip utility may silently ignore
that conflict, breaking either Toil or your workflow. It is safest to simply assume that Toil installs that dependency
for you. The only downside is that you are locked into the exact version of that dependency that Toil declares. But
such is life with Python, which, unlike Java, has no means of dependencies belonging to different software components
within the same process, and whose favored software distribution utility is incapable of properly resolving overlapping
dependencies and detecting conflicts.

Best practices for Dockerizing Toil workflows

Computational Genomics Lab‘s Dockstore based production system provides workflow authors a way to run Dock-
erized versions of their pipeline in an automated, scalable fashion. To be compatible with this system of a workflow
should meet the following requirements. In addition to the Docker container, a common workflow language descriptor
file is needed. For inputs:

• Only command line arguments should be used for configuring the workflow. If the workflow relies on a config-
uration file, like Toil-RNAseq or ProTECT, a wrapper script inside the Docker container can be used to parse
the CLI and generate the necessary configuration file.

• All inputs to the pipeline should be explicitly enumerated rather than implicit. For example, don’t rely on one
FASTQ read’s path to discover the location of its pair. This is necessary since all inputs are mapped to their own
isolated directories when the Docker is called via Dockstore.

• All inputs must be documented in the CWL descriptor file. Examples of this file can be seen in both Toil-
RNAseq and ProTECT.

For outputs:

• All outputs should be written to a local path rather than S3.

• Take care to package outputs in a local and user-friendly way. For example, don’t tar up all output if there are
specific files that will care to see individually.

• All output file names should be deterministic and predictable. For example, don’t prepend the name of an output
file with PASS/FAIL depending on the outcome of the pipeline.

• All outputs must be documented in the CWL descriptor file. Examples of this file can be seen in both Toil-
RNAseq and ProTECT.

3.1. Developing a Workflow 47

https://github.com/BD2KGenomics/toil-lib/blob/master/setup.py
https://github.com/pypa/pip/issues/988
https://cgl.genomics.ucsc.edu/
https://dockstore.org/docs
https://dockstore.org/docs/getting-started-with-cwl
https://dockstore.org/docs/getting-started-with-cwl
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/protect
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/protect
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/protect

Toil Documentation, Release 3.10.1

Toil API

This section describes the API for writing Toil workflows in Python.

Job methods

Jobs are the units of work in Toil which are composed into workflows.

class toil.job.Job(memory=None, cores=None, disk=None, preemptable=None, unitName=None,
checkpoint=False)

Class represents a unit of work in toil.

__init__(memory=None, cores=None, disk=None, preemptable=None, unitName=None, check-
point=False)

This method must be called by any overriding constructor.

Parameters

• memory (int or string convertable by bd2k.util.humanize.
human2bytes to an int) – the maximum number of bytes of memory the job will
require to run.

• cores (int or string convertable by bd2k.util.humanize.
human2bytes to an int) – the number of CPU cores required.

• disk (int or string convertable by bd2k.util.humanize.
human2bytes to an int) – the amount of local disk space required by the
job, expressed in bytes.

• preemptable (bool) – if the job can be run on a preemptable node.

• checkpoint – if any of this job’s successor jobs completely fails, exhausting all
their retries, remove any successor jobs and rerun this job to restart the subtree. Job
must be a leaf vertex in the job graph when initially defined, see toil.job.Job.
checkNewCheckpointsAreCutVertices().

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters fileStore (toil.fileStore.FileStore) – Used to create local and
globally sharable temporary files and to send log messages to the leader process.

Returns The return value of the function can be passed to other jobs by means of toil.job.
Job.rv().

addChild(childJob)
Adds childJob to be run as child of this job. Child jobs will be run directly after this job’s toil.job.
Job.run() method has completed.

Parameters childJob (toil.job.Job) –

Returns childJob

Return type toil.job.Job

hasChild(childJob)
Check if childJob is already a child of this job.

Parameters childJob (toil.job.Job) –

Returns True if childJob is a child of the job, else False.

48 Chapter 3. Overview

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool

Toil Documentation, Release 3.10.1

Return type bool

addFollowOn(followOnJob)
Adds a follow-on job, follow-on jobs will be run after the child jobs and their successors have been run.

Parameters followOnJob (toil.job.Job) –

Returns followOnJob

Return type toil.job.Job

addService(service, parentService=None)
Add a service.

The toil.job.Job.Service.start() method of the service will be called after the run method
has completed but before any successors are run. The service’s toil.job.Job.Service.stop()
method will be called once the successors of the job have been run.

Services allow things like databases and servers to be started and accessed by jobs in a workflow.

Raises toil.job.JobException – If service has already been made the child of a job or
another service.

Parameters

• service (toil.job.Job.Service) – Service to add.

• parentService (toil.job.Job.Service) – Service that will be started before
‘service’ is started. Allows trees of services to be established. parentService must be a
service of this job.

Returns a promise that will be replaced with the return value from toil.job.Job.
Service.start() of service in any successor of the job.

Return type toil.job.Promise

addChildFn(fn, *args, **kwargs)
Adds a function as a child job.

Parameters fn – Function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to
specify resource requirements.

Returns The new child job that wraps fn.

Return type toil.job.FunctionWrappingJob

addFollowOnFn(fn, *args, **kwargs)
Adds a function as a follow-on job.

Parameters fn – Function to be run as a follow-on job with *args and **kwargs as argu-
ments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments
used to specify resource requirements.

Returns The new follow-on job that wraps fn.

Return type toil.job.FunctionWrappingJob

addChildJobFn(fn, *args, **kwargs)
Adds a job function as a child job. See toil.job.JobFunctionWrappingJob for a definition of a
job function.

Parameters fn – Job function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used
to specify resource requirements.

3.2. Toil API 49

https://docs.python.org/2/library/functions.html#bool

Toil Documentation, Release 3.10.1

Returns The new child job that wraps fn.

Return type toil.job.JobFunctionWrappingJob

addFollowOnJobFn(fn, *args, **kwargs)
Add a follow-on job function. See toil.job.JobFunctionWrappingJob for a definition of a job
function.

Parameters fn – Job function to be run as a follow-on job with *args and **kwargs as
arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword ar-
guments used to specify resource requirements.

Returns The new follow-on job that wraps fn.

Return type toil.job.JobFunctionWrappingJob

static wrapFn(fn, *args, **kwargs)
Makes a Job out of a function. Convenience function for constructor of toil.job.
FunctionWrappingJob.

Parameters fn – Function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource
requirements.

Returns The new function that wraps fn.

Return type toil.job.FunctionWrappingJob

static wrapJobFn(fn, *args, **kwargs)
Makes a Job out of a job function. Convenience function for constructor of toil.job.
JobFunctionWrappingJob.

Parameters fn – Job function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource
requirements.

Returns The new job function that wraps fn.

Return type toil.job.JobFunctionWrappingJob

encapsulate()
Encapsulates the job, see toil.job.EncapsulatedJob. Convenience function for constructor of
toil.job.EncapsulatedJob.

Returns an encapsulated version of this job.

Return type toil.job.EncapsulatedJob

rv(*path)
Creates a promise (toil.job.Promise) representing a return value of the job’s run method, or, in case
of a function-wrapping job, the wrapped function’s return value.

Parameters path ((Any)) – Optional path for selecting a component of the promised return
value. If absent or empty, the entire return value will be used. Otherwise, the first element
of the path is used to select an individual item of the return value. For that to work, the
return value must be a list, dictionary or of any other type implementing the __getitem__()
magic method. If the selected item is yet another composite value, the second element of
the path can be used to select an item from it, and so on. For example, if the return value is
[6,{‘a’:42}], .rv(0) would select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3.
To select a slice from a return value that is slicable, e.g. tuple or list, the path element should
be a slice object. For example, assuming that the return value is [6, 7, 8, 9] then .rv(slice(1,
3)) would select [7, 8]. Note that slicing really only makes sense at the end of path.

50 Chapter 3. Overview

Toil Documentation, Release 3.10.1

Returns A promise representing the return value of this jobs toil.job.Job.run()method.

Return type toil.job.Promise

prepareForPromiseRegistration(jobStore)
Ensure that a promise by this job (the promissor) can register with the promissor when another job referring
to the promise (the promissee) is being serialized. The promissee holds the reference to the promise
(usually as part of the the job arguments) and when it is being pickled, so will the promises it refers to.
Pickling a promise triggers it to be registered with the promissor.

Returns

checkJobGraphForDeadlocks()
See toil.job.Job.checkJobGraphConnected(), toil.job.Job.
checkJobGraphAcyclic() and toil.job.Job.checkNewCheckpointsAreLeafVertices()
for more info.

Raises toil.job.JobGraphDeadlockException – if the job graph is cyclic, contains
multiple roots or contains checkpoint jobs that are not leaf vertices when defined (see toil.
job.Job.checkNewCheckpointsAreLeaves()).

getRootJobs()

Returns The roots of the connected component of jobs that contains this job. A root is a job
with no predecessors.

:rtype : set of toil.job.Job instances

checkJobGraphConnected()

Raises toil.job.JobGraphDeadlockException – if toil.job.Job.
getRootJobs() does not contain exactly one root job.

As execution always starts from one root job, having multiple root jobs will cause a deadlock to occur.

checkJobGraphAcylic()

Raises toil.job.JobGraphDeadlockException – if the connected component of jobs
containing this job contains any cycles of child/followOn dependencies in the augmented job
graph (see below). Such cycles are not allowed in valid job graphs.

A follow-on edge (A, B) between two jobs A and B is equivalent to adding a child edge to B from (1) A,
(2) from each child of A, and (3) from the successors of each child of A. We call each such edge an edge
an “implied” edge. The augmented job graph is a job graph including all the implied edges.

For a job graph G = (V, E) the algorithm is O(|V|^2). It is O(|V| + |E|) for a graph with no
follow-ons. The former follow-on case could be improved!

checkNewCheckpointsAreLeafVertices()
A checkpoint job is a job that is restarted if either it fails, or if any of its successors completely fails,
exhausting their retries.

A job is a leaf it is has no successors.

A checkpoint job must be a leaf when initially added to the job graph. When its run method is invoked it
can then create direct successors. This restriction is made to simplify implementation.

Raises toil.job.JobGraphDeadlockException – if there exists a job being added to
the graph for which checkpoint=True and which is not a leaf.

defer(function, *args, **kwargs)
Register a deferred function, i.e. a callable that will be invoked after the current attempt at running this
job concludes. A job attempt is said to conclude when the job function (or the toil.job.Job.run()

3.2. Toil API 51

Toil Documentation, Release 3.10.1

method for class-based jobs) returns, raises an exception or after the process running it terminates abnor-
mally. A deferred function will be called on the node that attempted to run the job, even if a subsequent
attempt is made on another node. A deferred function should be idempotent because it may be called
multiple times on the same node or even in the same process. More than one deferred function may be
registered per job attempt by calling this method repeatedly with different arguments. If the same function
is registered twice with the same or different arguments, it will be called twice per job attempt.

Examples for deferred functions are ones that handle cleanup of resources external to Toil, like Docker
containers, files outside the work directory, etc.

Parameters

• function (callable) – The function to be called after this job concludes.

• args (list) – The arguments to the function

• kwargs (dict) – The keyword arguments to the function

getTopologicalOrderingOfJobs()

Returns a list of jobs such that for all pairs of indices i, j for which i < j, the job at index i can
be run before the job at index j.

Return type list

Job.FileStore

The FileStore is an abstraction of a Toil run’s shared storage.

class toil.fileStore.FileStore(jobStore, jobGraph, localTempDir, inputBlockFn)
An abstract base class to represent the interface between a worker and the job store. Concrete subclasses will be
used to manage temporary files, read and write files from the job store and log messages, passed as argument to
the toil.job.Job.run() method.

__init__(jobStore, jobGraph, localTempDir, inputBlockFn)

open(*args, **kwds)
The context manager used to conduct tasks prior-to, and after a job has been run.

Parameters job (toil.job.Job) – The job instance of the toil job to run.

getLocalTempDir()
Get a new local temporary directory in which to write files that persist for the duration of the job.

Returns The absolute path to a new local temporary directory. This directory will exist for the
duration of the job only, and is guaranteed to be deleted once the job terminates, removing
all files it contains recursively.

Return type str

getLocalTempFile()
Get a new local temporary file that will persist for the duration of the job.

Returns The absolute path to a local temporary file. This file will exist for the duration of the
job only, and is guaranteed to be deleted once the job terminates.

Return type str

getLocalTempFileName()
Get a valid name for a new local file. Don’t actually create a file at the path.

Returns Path to valid file

Return type str

52 Chapter 3. Overview

https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Toil Documentation, Release 3.10.1

writeGlobalFile(localFileName, cleanup=False)
Takes a file (as a path) and uploads it to the job store.

Parameters

• localFileName (string) – The path to the local file to upload.

• cleanup (bool) – if True then the copy of the global file will be deleted once the job and
all its successors have completed running. If not the global file must be deleted manually.

Returns an ID that can be used to retrieve the file.

Return type toil.fileStore.FileID

writeGlobalFileStream(cleanup=False)
Similar to writeGlobalFile, but allows the writing of a stream to the job store. The yielded file handle does
not need to and should not be closed explicitly.

Parameters cleanup (bool) – is as in toil.fileStore.FileStore.
writeGlobalFile().

Returns A context manager yielding a tuple of 1) a file handle which can be written to and 2)
the ID of the resulting file in the job store.

readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=None)
Downloads a file described by fileStoreID from the file store to the local directory.

If a user path is specified, it is used as the destination. If a user path isn’t specified, the file is stored in the
local temp directory with an encoded name.

Parameters

• fileStoreID (toil.fileStore.FileID) – job store id for the file

• userPath (string) – a path to the name of file to which the global file will be copied
or hard-linked (see below).

• cache (bool) – Described in toil.fileStore.CachingFileStore.
readGlobalFile()

• mutable (bool) – Described in toil.fileStore.CachingFileStore.
readGlobalFile()

Returns An absolute path to a local, temporary copy of the file keyed by fileStoreID.

Return type str

readGlobalFileStream(fileStoreID)
Similar to readGlobalFile, but allows a stream to be read from the job store. The yielded file handle does
not need to and should not be closed explicitly.

Returns a context manager yielding a file handle which can be read from.

deleteLocalFile(fileStoreID)
Deletes Local copies of files associated with the provided job store ID.

Parameters fileStoreID (str) – File Store ID of the file to be deleted.

deleteGlobalFile(fileStoreID)
Deletes local files with the provided job store ID and then permanently deletes them from the job store. To
ensure that the job can be restarted if necessary, the delete will not happen until after the job’s run method
has completed.

Parameters fileStoreID – the job store ID of the file to be deleted.

3.2. Toil API 53

https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Toil Documentation, Release 3.10.1

classmethod findAndHandleDeadJobs(nodeInfo, batchSystemShutdown=False)
This function looks at the state of all jobs registered on the node and will handle them (clean up their
presence ont he node, and run any registered defer functions)

Parameters

• nodeInfo – Information regarding the node required for identifying dead jobs.

• batchSystemShutdown (bool) – Is the batch system in the process of shutting down?

logToMaster(text, level=20)
Send a logging message to the leader. The message will also be logged by the worker at the same level.

Parameters

• text – The string to log.

• level (int) – The logging level.

classmethod shutdown(dir_)
Shutdown the filestore on this node.

This is intended to be called on batch system shutdown.

Parameters dir – The jeystone directory containing the required information for fixing the
state of failed workers on the node before cleaning up.

Job.Runner

The Runner contains the methods needed to configure and start a Toil run.

class Job.Runner
Used to setup and run Toil workflow.

static getDefaultArgumentParser()
Get argument parser with added toil workflow options.

Returns The argument parser used by a toil workflow with added Toil options.

Return type argparse.ArgumentParser

static getDefaultOptions(jobStore)
Get default options for a toil workflow.

Parameters jobStore (string) – A string describing the jobStore for the workflow.

Returns The options used by a toil workflow.

Return type argparse.ArgumentParser values object

static addToilOptions(parser)
Adds the default toil options to an optparse or argparse parser object.

Parameters parser (optparse.OptionParser or argparse.
ArgumentParser) – Options object to add toil options to.

static startToil(job, options)
Deprecated by toil.common.Toil.run. Runs the toil workflow using the given options (see
Job.Runner.getDefaultOptions and Job.Runner.addToilOptions) starting with this job. :param toil.job.Job
job: root job of the workflow :raises: toil.leader.FailedJobsException if at the end of function their remain
failed jobs. :return: The return value of the root job’s run function. :rtype: Any

54 Chapter 3. Overview

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/optparse.html#module-optparse
https://docs.python.org/2/library/argparse.html#module-argparse
https://docs.python.org/2/library/optparse.html#optparse.OptionParser
https://docs.python.org/2/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/2/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 3.10.1

Toil

The Toil class provides for a more general way to configure and start a Toil run.

class toil.common.Toil(options)
A context manager that represents a Toil workflow, specifically the batch system, job store, and its configuration.

__init__(options)
Initialize a Toil object from the given options. Note that this is very light-weight and that the bulk of the
work is done when the context is entered.

Parameters options (argparse.Namespace) – command line options specified by the
user

config = None

Type toil.common.Config

start(rootJob)
Invoke a Toil workflow with the given job as the root for an initial run. This method must be called in the
body of a with Toil(...) as toil: statement. This method should not be called more than once
for a workflow that has not finished.

Parameters rootJob (toil.job.Job) – The root job of the workflow

Returns The root job’s return value

restart()
Restarts a workflow that has been interrupted. This method should be called if and only if a workflow has
previously been started and has not finished.

Returns The root job’s return value

classmethod getJobStore(locator)
Create an instance of the concrete job store implementation that matches the given locator.

Parameters locator (str) – The location of the job store to be represent by the instance

Returns an instance of a concrete subclass of AbstractJobStore

Return type toil.jobStores.abstractJobStore.AbstractJobStore

static createBatchSystem(config)
Creates an instance of the batch system specified in the given config.

Parameters config (toil.common.Config) – the current configuration

Return type batchSystems.abstractBatchSystem.AbstractBatchSystem

Returns an instance of a concrete subclass of AbstractBatchSystem

importFile(srcUrl, sharedFileName=None)
Imports the file at the given URL into job store.

See toil.jobStores.abstractJobStore.AbstractJobStore.importFile() for a full
description

exportFile(jobStoreFileID, dstUrl)
Exports file to destination pointed at by the destination URL.

See toil.jobStores.abstractJobStore.AbstractJobStore.exportFile() for a full
description

3.2. Toil API 55

https://docs.python.org/2/library/argparse.html#argparse.Namespace
https://docs.python.org/2/library/functions.html#str

Toil Documentation, Release 3.10.1

static getWorkflowDir(workflowID, configWorkDir=None)
Returns a path to the directory where worker directories and the cache will be located for this workflow.

Parameters

• workflowID (str) – Unique identifier for the workflow

• configWorkDir (str) – Value passed to the program using the –workDir flag

Returns Path to the workflow directory

Return type str

Job.Service

The Service class allows databases and servers to be spawned within a Toil workflow.

class Job.Service(memory=None, cores=None, disk=None, preemptable=None, unitName=None)
Abstract class used to define the interface to a service.

__init__(memory=None, cores=None, disk=None, preemptable=None, unitName=None)
Memory, core and disk requirements are specified identically to as in toil.job.Job.__init__().

start(job)
Start the service.

Parameters job (toil.job.Job) – The underlying job that is being run. Can be used to
register deferred functions, or to access the fileStore for creating temporary files.

Returns An object describing how to access the service. The object must be pickleable and will
be used by jobs to access the service (see toil.job.Job.addService()).

stop(job)
Stops the service. Function can block until complete.

Parameters job (toil.job.Job) – The underlying job that is being run. Can be used to
register deferred functions, or to access the fileStore for creating temporary files.

check()
Checks the service is still running.

Raises exceptions.RuntimeError – If the service failed, this will cause the service job
to be labeled failed.

Returns True if the service is still running, else False. If False then the service job will be
terminated, and considered a success. Important point: if the service job exits due to a
failure, it should raise a RuntimeError, not return False!

FunctionWrappingJob

The subclass of Job for wrapping user functions.

class toil.job.FunctionWrappingJob(userFunction, *args, **kwargs)
Job used to wrap a function. In its run method the wrapped function is called.

__init__(userFunction, *args, **kwargs)

Parameters userFunction (callable) – The function to wrap. It will be called with
*args and **kwargs as arguments.

56 Chapter 3. Overview

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/exceptions.html#exceptions.RuntimeError
https://docs.python.org/2/library/functions.html#callable

Toil Documentation, Release 3.10.1

The keywords memory, cores, disk, preemptable and checkpoint are reserved keyword argu-
ments that if specified will be used to determine the resources required for the job, as toil.job.Job.
__init__(). If they are keyword arguments to the function they will be extracted from the function
definition, but may be overridden by the user (as you would expect).

JobFunctionWrappingJob

The subclass of FunctionWrappingJob for wrapping user job functions.

class toil.job.JobFunctionWrappingJob(userFunction, *args, **kwargs)
A job function is a function whose first argument is a Job instance that is the wrapping job for the function.
This can be used to add successor jobs for the function and perform all the functions the Job class provides.

To enable the job function to get access to the toil.fileStore.FileStore instance (see toil.job.
Job.run()), it is made a variable of the wrapping job called fileStore.

To specify a job’s resource requirements the following default keyword arguments can be specified:

•memory

•disk

•cores

For example to wrap a function into a job we would call:

Job.wrapJobFn(myJob, memory='100k', disk='1M', cores=0.1)

EncapsulatedJob

The subclass of Job for encapsulating a job, allowing a subgraph of jobs to be treated as a single job.

class toil.job.EncapsulatedJob(job)
A convenience Job class used to make a job subgraph appear to be a single job.

Let A be the root job of a job subgraph and B be another job we’d like to run after A and all its successors have
completed, for this use encapsulate:

Job A and subgraph, Job B
A, B = A(), B()
A' = A.encapsulate()
A'.addChild(B)
B will run after A and all its successors have completed, A and its subgraph of
successors in effect appear to be just one job.

The return value of an encapsulatd job (as accessed by the toil.job.Job.rv() function) is the return value
of the root job, e.g. A().encapsulate().rv() and A().rv() will resolve to the same value after A or A.encapsulate()
has been run.

__init__(job)

Parameters job (toil.job.Job) – the job to encapsulate.

Promise

The class used to reference return values of jobs/services not yet run/started.

3.2. Toil API 57

Toil Documentation, Release 3.10.1

class toil.job.Promise(job, path)
References a return value from a toil.job.Job.run() or toil.job.Job.Service.start()
method as a promise before the method itself is run.

Let T be a job. Instances of Promise (termed a promise) are returned by T.rv(), which is used to reference the
return value of T’s run function. When the promise is passed to the constructor (or as an argument to a wrapped
function) of a different, successor job the promise will be replaced by the actual referenced return value. This
mechanism allows a return values from one job’s run method to be input argument to job before the former job’s
run function has been executed.

filesToDelete = set([])
A set of IDs of files containing promised values when we know we won’t need them anymore

__init__(job, path)

Parameters

• job (Job) – the job whose return value this promise references

• path – see Job.rv()

class toil.job.PromisedRequirement(valueOrCallable, *args)

__init__(valueOrCallable, *args)
Class for dynamically allocating job function resource requirements involving toil.job.Promise
instances.

Use when resource requirements depend on the return value of a parent function. PromisedRequirements
can be modified by passing a function that takes the Promise as input.

For example, let f, g, and h be functions. Then a Toil workflow can be defined as follows::
A = Job.wrapFn(f) B = A.addChildFn(g, cores=PromisedRequirement(A.rv()) C = B.addChildFn(h,
cores=PromisedRequirement(lambda x: 2*x, B.rv()))

Parameters

• valueOrCallable – A single Promise instance or a function that takes *args as input
parameters.

• *args (int or Promise) – variable length argument list

getValue()
Returns PromisedRequirement value

static convertPromises(kwargs)
Returns True if reserved resource keyword is a Promise or PromisedRequirement instance. Converts
Promise instance to PromisedRequirement.

Parameters kwargs – function keyword arguments

Returns bool

Exceptions

Toil specific exceptions.

exception toil.job.JobException(message)
General job exception.

__init__(message)

58 Chapter 3. Overview

https://docs.python.org/2/library/functions.html#int

Toil Documentation, Release 3.10.1

exception toil.job.JobGraphDeadlockException(string)
An exception raised in the event that a workflow contains an unresolvable dependency, such as a cycle. See
toil.job.Job.checkJobGraphForDeadlocks().

__init__(string)

exception toil.jobStores.abstractJobStore.ConcurrentFileModificationException(jobStoreFileID)
Indicates that the file was attempted to be modified by multiple processes at once.

__init__(jobStoreFileID)

Parameters jobStoreFileID (str) – the ID of the file that was modified by multiple work-
ers or processes concurrently

exception toil.jobStores.abstractJobStore.JobStoreExistsException(locator)
Indicates that the specified job store already exists.

__init__(locator)

exception toil.jobStores.abstractJobStore.NoSuchFileException(jobStoreFileID,
customName=None)

Indicates that the specified file does not exist.

__init__(jobStoreFileID, customName=None)

Parameters

• jobStoreFileID (str) – the ID of the file that was mistakenly assumed to exist

• customName (str) – optionally, an alternate name for the nonexistent file

exception toil.jobStores.abstractJobStore.NoSuchJobException(jobStoreID)
Indicates that the specified job does not exist.

__init__(jobStoreID)

Parameters jobStoreID (str) – the jobStoreID that was mistakenly assumed to exist

exception toil.jobStores.abstractJobStore.NoSuchJobStoreException(locator)
Indicates that the specified job store does not exist.

__init__(locator)

Batch System API

The batch system interface is used by Toil to abstract over different ways of running batches of jobs, for example
Slurm, GridEngine, Mesos, Parasol and a single node. The toil.batchSystems.abstractBatchSystem.
AbstractBatchSystem API is implemented to run jobs using a given job management system, e.g. Mesos.

Batch System Enivronmental Variables

Environmental variables allow passing of scheduler specific parameters.

For SLURM:

export TOIL_SLURM_ARGS="-t 1:00:00 -q fatq"

For TORQUE there are two environment variables - one for everything but the resource requirements, and another -
for resources requirements (without the -l prefix):

3.3. Batch System API 59

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Toil Documentation, Release 3.10.1

export TOIL_TORQUE_ARGS="-q fatq"
export TOIL_TORQUE_REQS="walltime=1:00:00"

For GridEngine (SGE, UGE), there is an additional environmental variable to define the parallel environment for
running multicore jobs:

export TOIL_GRIDENGINE_PE='smp'
export TOIL_GRIDENGINE_ARGS='-q batch.q'

Batch System API

class toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
An abstract (as far as Python currently allows) base class to represent the interface the batch system must provide
to Toil.

classmethod supportsHotDeployment()
Whether this batch system supports hot deployment of the user script itself. If it does, the
setUserScript() can be invoked to set the resource object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

Return type bool

classmethod supportsWorkerCleanup()
Indicates whether this batch system invokes workerCleanup() after the last job for a particular work-
flow invocation finishes. Note that the term worker refers to an entire node, not just a worker process.
A worker process may run more than one job sequentially, and more than one concurrent worker process
may exist on a worker node, for the same workflow. The batch system is said to shut down after the last
worker process terminates.

Return type bool

setUserScript(userScript)
Set the user script for this workflow. This method must be called before the first job is issued to this batch
system, and only if supportsHotDeployment() returns True, otherwise it will raise an exception.

Parameters userScript (toil.resource.Resource) – the resource object represent-
ing the user script or module and the modules it depends on.

issueBatchJob(jobNode)
Issues a job with the specified command to the batch system and returns a unique jobID.

:param jobNode a toil.job.JobNode

Returns a unique jobID that can be used to reference the newly issued job

Return type int

killBatchJobs(jobIDs)
Kills the given job IDs.

Parameters jobIDs (list[int]) – list of IDs of jobs to kill

getIssuedBatchJobIDs()
Gets all currently issued jobs

Returns A list of jobs (as jobIDs) currently issued (may be running, or may be waiting to be
run). Despite the result being a list, the ordering should not be depended upon.

Return type list[str]

60 Chapter 3. Overview

https://blogs.oracle.com/templedf/entry/configuring_a_new_parallel_environment
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str

Toil Documentation, Release 3.10.1

getRunningBatchJobIDs()
Gets a map of jobs as jobIDs that are currently running (not just waiting) and how long they have been
running, in seconds.

Returns dictionary with currently running jobID keys and how many seconds they have been
running as the value

Return type dict[str,float]

getUpdatedBatchJob(maxWait)
Returns a job that has updated its status.

Parameters maxWait (float) – the number of seconds to block, waiting for a result

Return type tuple(str, int) or None

Returns If a result is available, returns a tuple (jobID, exitValue, wallTime). Otherwise it returns
None. wallTime is the number of seconds (a float) in wall-clock time the job ran for or None
if this batch system does not support tracking wall time. Returns None for jobs that were
killed.

shutdown()
Called at the completion of a toil invocation. Should cleanly terminate all worker threads.

setEnv(name, value=None)
Set an environment variable for the worker process before it is launched. The worker process will typically
inherit the environment of the machine it is running on but this method makes it possible to override specific
variables in that inherited environment before the worker is launched. Note that this mechanism is different
to the one used by the worker internally to set up the environment of a job. A call to this method affects all
jobs issued after this method returns. Note to implementors: This means that you would typically need to
copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

classmethod getRescueBatchJobFrequency()
Gets the period of time to wait (floating point, in seconds) between checking for missing/overlong jobs.

classmethod setOptions(setOption)
Process command line or configuration options relevant to this batch system. The

Parameters setOption – A function with signature setOption(varName, parsingFn=None,
checkFn=None, default=None) used to update run configuration

Job Store API

The job store interface is an abstraction layer that that hides the specific details of file storage, for example standard
file systems, S3, etc. The AbstractJobStore API is implemented to support a give file store, e.g. S3. Implement
this API to support a new file store.

class toil.jobStores.abstractJobStore.AbstractJobStore
Represents the physical storage for the jobs and files in a Toil workflow.

__init__()
Create an instance of the job store. The instance will not be fully functional until either initialize()
or resume() is invoked. Note that the destroy() method may be invoked on the object with or
without prior invocation of either of these two methods.

initialize(config)
Create the physical storage for this job store, allocate a workflow ID and persist the given Toil configuration
to the store.

3.4. Job Store API 61

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/constants.html#None

Toil Documentation, Release 3.10.1

Parameters config (toil.common.Config) – the Toil configuration to initialize this job
store with. The given configuration will be updated with the newly allocated workflow ID.

Raises JobStoreExistsException – if the physical storage for this job store already ex-
ists

writeConfig()
Persists the value of the AbstractJobStore.config attribute to the job store, so that it can be
retrieved later by other instances of this class.

resume()
Connect this instance to the physical storage it represents and load the Toil configuration into the
AbstractJobStore.config attribute.

Raises NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

config
The Toil configuration associated with this job store.

Return type toil.common.Config

setRootJob(rootJobStoreID)
Set the root job of the workflow backed by this job store

Parameters rootJobStoreID (str) – The ID of the job to set as root

loadRootJob()
Loads the root job in the current job store.

Raises toil.job.JobException – If no root job is set or if the root job doesn’t exist in
this job store

Returns The root job.

Return type toil.jobGraph.JobGraph

createRootJob(*args, **kwargs)
Create a new job and set it as the root job in this job store

Return type toil.jobGraph.JobGraph

importFile(srcUrl, sharedFileName=None)
Imports the file at the given URL into job store. The ID of the newly imported file is returned. If the name
of a shared file name is provided, the file will be imported as such and None is returned.

Currently supported schemes are:

•‘s3’ for objects in Amazon S3 e.g. s3://bucket/key

•‘wasb’ for blobs in Azure Blob Storage e.g. wasb://container/blob

•‘file’ for local files e.g. file:///local/file/path

•‘http’ e.g. http://someurl.com/path

Parameters

• srcUrl (str) – URL that points to a file or object in the storage mechanism of a sup-
ported URL scheme e.g. a blob in an Azure Blob Storage container.

• sharedFileName (str) – Optional name to assign to the imported file within the job
store

Returns The jobStoreFileId of the imported file or None if sharedFileName was given

Return type FileID or None

62 Chapter 3. Overview

https://docs.python.org/2/library/functions.html#str
http://someurl.com/path
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/constants.html#None

Toil Documentation, Release 3.10.1

exportFile(jobStoreFileID, dstUrl)
Exports file to destination pointed at by the destination URL.

Refer to AbstractJobStore.importFile() documentation for currently supported URL schemes.

Note that the helper method _exportFile is used to read from the source and write to destination. To imple-
ment any optimizations that circumvent this, the _exportFile method should be overridden by subclasses
of AbstractJobStore.

Parameters

• jobStoreFileID (str) – The id of the file in the job store that should be exported.

• dstUrl (str) – URL that points to a file or object in the storage mechanism of a sup-
ported URL scheme e.g. a blob in an Azure Blob Storage container.

classmethod getSize(url)
returns the size of the file at the given URL

destroy()
The inverse of initialize(), this method deletes the physical storage represented by this instance.
While not being atomic, this method is at least idempotent, as a means to counteract potential issues with
eventual consistency exhibited by the underlying storage mechanisms. This means that if the method
fails (raises an exception), it may (and should be) invoked again. If the underlying storage mechanism is
eventually consistent, even a successful invocation is not an ironclad guarantee that the physical storage
vanished completely and immediately. A successful invocation only guarantees that the deletion will
eventually happen. It is therefore recommended to not immediately reuse the same job store location for a
new Toil workflow.

getEnv()
Returns a dictionary of environment variables that this job store requires to be set in order to function
properly on a worker.

Return type dict[str,str]

clean(jobCache=None)
Function to cleanup the state of a job store after a restart. Fixes jobs that might have been partially updated.
Resets the try counts and removes jobs that are not successors of the current root job.

Parameters jobCache (dict[str,toil.jobGraph.JobGraph]) – if a value it must
be a dict from job ID keys to JobGraph object values. Jobs will be loaded from the cache
(which can be downloaded from the job store in a batch) instead of piecemeal when recursed
into.

create(jobNode)
Creates a job graph from the given job node & writes it to the job store.

Return type toil.jobGraph.JobGraph

exists(jobStoreID)
Indicates whether the job with the specified jobStoreID exists in the job store

Return type bool

getPublicUrl(fileName)
Returns a publicly accessible URL to the given file in the job store. The returned URL may expire as early
as 1h after its been returned. Throw an exception if the file does not exist.

Parameters fileName (str) – the jobStoreFileID of the file to generate a URL for

Raises NoSuchFileException – if the specified file does not exist in this job store

Return type str

3.4. Job Store API 63

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Toil Documentation, Release 3.10.1

getSharedPublicUrl(sharedFileName)
Differs from getPublicUrl() in that this method is for generating URLs for shared files written by
writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL starts with ‘http:’,
‘https:’ or ‘file:’. The returned URL may expire as early as 1h after its been returned. Throw an exception
if the file does not exist.

Parameters sharedFileName (str) – The name of the shared file to generate a publically
accessible url for.

Raises NoSuchFileException – raised if the specified file does not exist in the store

Return type str

load(jobStoreID)
Loads the job referenced by the given ID and returns it.

Parameters jobStoreID (str) – the ID of the job to load

Raises NoSuchJobException – if there is no job with the given ID

Return type toil.jobGraph.JobGraph

update(job)
Persists the job in this store atomically.

Parameters job (toil.jobGraph.JobGraph) – the job to write to this job store

delete(jobStoreID)
Removes from store atomically, can not then subsequently call load(), write(), update(), etc. with the job.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job will succeed silently.

Parameters jobStoreID (str) – the ID of the job to delete from this job store

jobs()
Best effort attempt to return iterator on all jobs in the store. The iterator may not return all jobs and may
also contain orphaned jobs that have already finished succesfully and should not be rerun. To guarantee
you get any and all jobs that can be run instead construct a more expensive ToilState object

Returns Returns iterator on jobs in the store. The iterator may or may not contain all jobs and
may contain invalid jobs

Return type Iterator[toil.jobGraph.JobGraph]

writeFile(localFilePath, jobStoreID=None)
Takes a file (as a path) and places it in this job store. Returns an ID that can be used to retrieve the file at a
later time.

Parameters

• localFilePath (str) – the path to the local file that will be uploaded to the job store.

• jobStoreID (str or None) – If specified the file will be associated with that job
and when jobStore.delete(job) is called all files written with the given job.jobStoreID will
be removed from the job store.

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

64 Chapter 3. Overview

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/constants.html#None

Toil Documentation, Release 3.10.1

Returns an ID referencing the newly created file and can be used to read the file in the future.

Return type str

writeFileStream(*args, **kwds)
Similar to writeFile, but returns a context manager yielding a tuple of 1) a file handle which can be written
to and 2) the ID of the resulting file in the job store. The yielded file handle does not need to and should
not be closed explicitly.

Parameters jobStoreID (str) – the id of a job, or None. If specified, the file will be as-
sociated with that job and when when jobStore.delete(job) is called all files written with the
given job.jobStoreID will be removed from the job store.

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

Returns an ID that references the newly created file and can be used to read the file in the future.

Return type str

getEmptyFileStoreID(jobStoreID=None)
Creates an empty file in the job store and returns its ID. Call to fileEx-
ists(getEmptyFileStoreID(jobStoreID)) will return True.

Parameters jobStoreID (str) – the id of a job, or None. If specified, the file will be asso-
ciated with that job and when jobStore.delete(job) is called a best effort attempt is made to
delete all files written with the given job.jobStoreID

Returns a jobStoreFileID that references the newly created file and can be used to reference the
file in the future.

Return type str

readFile(jobStoreFileID, localFilePath)
Copies the file referenced by jobStoreFileID to the given local file path. The version will be consistent
with the last copy of the file written/updated.

The file at the given local path may not be modified after this method returns!

Parameters

• jobStoreFileID (str) – ID of the file to be copied

• localFilePath (str) – the local path indicating where to place the contents of the
given file in the job store

readFileStream(*args, **kwds)
Similar to readFile, but returns a context manager yielding a file handle which can be read from. The
yielded file handle does not need to and should not be closed explicitly.

Parameters jobStoreFileID (str) – ID of the file to get a readable file handle for

deleteFile(jobStoreFileID)
Deletes the file with the given ID from this job store. This operation is idempotent, i.e. deleting a file twice
or deleting a non-existent file will succeed silently.

Parameters jobStoreFileID (str) – ID of the file to delete

3.4. Job Store API 65

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Toil Documentation, Release 3.10.1

fileExists(jobStoreFileID)
Determine whether a file exists in this job store.

Parameters jobStoreFileID (str) – an ID referencing the file to be checked

Return type bool

updateFile(jobStoreFileID, localFilePath)
Replaces the existing version of a file in the job store. Throws an exception if the file does not exist.

Parameters

• jobStoreFileID (str) – the ID of the file in the job store to be updated

• localFilePath (str) – the local path to a file that will overwrite the current version
in the job store

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchFileException – if the specified file does not exist

updateFileStream(jobStoreFileID)
Replaces the existing version of a file in the job store. Similar to writeFile, but returns a context manager
yielding a file handle which can be written to. The yielded file handle does not need to and should not be
closed explicitly.

Parameters jobStoreFileID (str) – the ID of the file in the job store to be updated

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchFileException – if the specified file does not exist

writeSharedFileStream(*args, **kwds)
Returns a context manager yielding a writable file handle to the global file referenced by the given name.

Parameters

• sharedFileName (str) – A file name matching AbstractJobStore.fileNameRegex,
unique within this job store

• isProtected (bool) – True if the file must be encrypted, None if it may be encrypted
or False if it must be stored in the clear.

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

readSharedFileStream(*args, **kwds)
Returns a context manager yielding a readable file handle to the global file referenced by the given name.

Parameters sharedFileName (str) – A file name matching AbstractJob-
Store.fileNameRegex, unique within this job store

writeStatsAndLogging(statsAndLoggingString)
Adds the given statistics/logging string to the store of statistics info.

Parameters statsAndLoggingString (str) – the string to be written to the stats file

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

66 Chapter 3. Overview

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Toil Documentation, Release 3.10.1

readStatsAndLogging(callback, readAll=False)
Reads stats/logging strings accumulated by the writeStatsAndLogging() method. For each stats/logging
string this method calls the given callback function with an open, readable file handle from which the stats
string can be read. Returns the number of stats/logging strings processed. Each stats/logging string is only
processed once unless the readAll parameter is set, in which case the given callback will be invoked for all
existing stats/logging strings, including the ones from a previous invocation of this method.

Parameters

• callback (Callable) – a function to be applied to each of the stats file handles found

• readAll (bool) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

Returns the number of stats files processed

Return type int

3.4. Job Store API 67

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int

Toil Documentation, Release 3.10.1

68 Chapter 3. Overview

CHAPTER 4

Overview

This section describes how to contribute to the Toil open source project on github. Topics include how to run tests,
using the Toil appliance, and maintainer’s guidelines.

Specifically, the contributing section documents the following:

Running tests

To invoke all unit tests use

$ make test

To invoke all non-AWS integration tests use

$ make integration_test

To invoke all integration tests, including AWS tests, use

$ export TOIL_AWS_KEYNAME=<aws_keyname>; make integration_test

To skip building the Docker appliance and run tests that have no docker dependency use

$ make test_offline

To make integration tests easier to debug locally one can use

$ make integration_test_local

which runs the integration tests in serial and doesn’t redirect output. This makes it appears on the terminal as expected.

69

Toil Documentation, Release 3.10.1

Installing Docker with Quay

Docker is needed for some of the tests. Follow the appopriate installation instructions for your system on their website
to get started.

When running make test you might still get the following error:

$ make test
Please set TOIL_DOCKER_REGISTRY, e.g. to quay.io/USER.

To solve, make an account with Quay and specify it like so:

$ TOIL_DOCKER_REGISTRY=quay.io/USER make test

where USER is your Quay username.

For convenience you may want to add this variable to your bashrc by running

$ echo 'export TOIL_DOCKER_REGISTRY=quay.io/USER' >> $HOME/.bashrc

Run an individual test with

$ make test tests=src/toil/test/sort/sortTest.py::SortTest::testSort

The default value for tests is "src" which includes all tests in the src/ subdirectory of the project root. Tests that
require a particular feature will be skipped implicitly. If you want to explicitly skip tests that depend on a currently
installed feature, use

$ make test tests="-m 'not azure' src"

This will run only the tests that don’t depend on the azure extra, even if that extra is currently installed. Note the
distinction between the terms feature and extra. Every extra is a feature but there are features that are not extras, such
as the gridengine and parasol features. To skip tests involving both the Parasol feature and the Azure extra, use
the following:

$ make test tests="-m 'not azure and not parasol' src"

Running Mesos tests

If you’re running Toil’s Mesos tests, be sure to create the virtualenv with --system-site-packages to include
the Mesos Python bindings. Verify this by activating the virtualenv and running pip list | grep mesos. On
macOS, this may come up empty. To fix it, run the following:

for i in /usr/local/lib/python2.7/site-packages/*mesos*; do ln -snf $i venv/lib/
→˓python2.7/site-packages/; done

Developing with the Toil Appliance

To develop on features reliant on the Toil Appliance (i.e. autoscaling), you should consider setting up a personal
registry on Quay or Docker Hub. Because the Toil Appliance images are tagged with the Git commit they are based
on and because only commits on our master branch trigger an appliance build on Quay, as soon as a developer makes
a commit or dirties the working copy they will no longer be able to rely on Toil to automatically detect the proper
Toil Appliance image. Instead, developers wishing to test any appliance changes in autoscaling should build and

70 Chapter 4. Overview

https://www.docker.com/products/docker
https://quay.io/
https://quay.io/
https://hub.docker.com/

Toil Documentation, Release 3.10.1

push their own appliance image to a personal Docker registry. See Running a Workflow with Autoscaling and toil.
applianceSelf() for information on how to configure Toil to pull the Toil Appliance image from your personal
repo instead of the our official Quay account.

General workflow for using Quay

Here is a general workflow: (similar instructions apply when using Docker Hub)

1. Make some changes to the provisioner of your local version of Toil.

2. Go to the location where you installed the Toil source code and run:

$ make docker

to automatically build a docker image that can now be uploaded to your personal Quay account. If you have not
installed Toil source code yet check out Building from source.

3. If it’s not already you will need Docker installed and need to log into Quay. Also you will want to make sure
that your Quay account is public.

4. Set the environment variable TOIL_DOCKER_REGISTRY to your Quay account. If you find yourself doing
this often you may want to add:

export TOIL_DOCKER_REGISTRY=quay.io/<MY_QUAY_USERNAME>

to your .bashrc or equivalent.

5. Now you can run:

$ make push_docker

which will upload the docker image to your Quay account. Take note of the image’s tag for the next step.

6. Finally you will need to tell Toil from where to pull the Appliance image you’ve created (it uses the Toil release
you have installed by default). To do this set the environment variable TOIL_APPLIANCE_SELF to the url of
your image. For more info see Toil Environment Variables.

7. Now you can launch your cluster! For more information see Running a Workflow with Autoscaling.

Running Cluster Locally

The Toil Appliance container can also be useful as a test environment since it can simulate a Toil cluster locally. An
important caveat for this is autoscaling, since autoscaling will only work on an EC2 instance and cannot (at this time)
be run on a local machine.

To spin up a local cluster, start by using the following Docker run command to launch a Toil leader container:

docker run --entrypoint=mesos-master --net=host -d --name=leader --volume=/home/
→˓jobStoreParentDir:/jobStoreParentDir quay.io/ucsc_cgl/toil:3.6.0 --registry=in_
→˓memory --ip=127.0.0.1 --port=5050 --allocation_interval=500ms

A couple notes on this command: the -d flag tells Docker to run in daemon mode so the container will run in the
background. To verify that the container is running you can run docker ps to see all containers. If you want to
run your own container rather than the official UCSC container you can simply replace the quay.io/ucsc_cgl/
toil:3.6.0 parameter with your own container name.

4.2. Developing with the Toil Appliance 71

https://quay.io/
https://docs.quay.io/solution/getting-started.html

Toil Documentation, Release 3.10.1

Also note that we are not mounting the job store directory itself, but rather the location where the job store will be
written. Due to complications with running Docker on MacOS, I recommend only mounting directories within your
home directory. The next command will launch the Toil worker container with similar parameters:

docker run --entrypoint=mesos-slave --net=host -d --name=worker --volume=/home/
→˓jobStoreParentDir:/jobStoreParentDir quay.io/ucsc_cgl/toil:3.6.0 --work_dir=/var/
→˓lib/mesos --master=127.0.0.1:5050 --ip=127.0.0.1 ---attributes=preemptable:False --
→˓resources=cpus:2

Note here that we are specifying 2 CPUs and a non-preemptable worker. We can easily change either or both of these
in a logical way. To change the number of cores we can change the 2 to whatever number you like, and to change the
worker to be preemptable we change preemptable:False to preemptable:True. Also note that the same
volume is mounted into the worker. This is needed since both the leader and worker write and read from the job store.
Now that your cluster is running, you can run:

docker exec -it leader bash

to get a shell in your leader ‘node’. You can also replace the leader parameter with worker to get shell access in
your worker.

Docker-in-Docker issues

If you want to run Docker inside this Docker cluster (Dockerized tools, perhaps), you should also mount in the
Docker socket via -v /var/run/docker.sock:/var/run/docker.sock. This will give the Docker client
inside the Toil Appliance access to the Docker engine on the host. Client/engine version mismatches have been
known to cause issues, so we recommend using Docker version 1.12.3 on the host to be compatible with the Docker
client installed in the Appliance. Finally, be careful where you write files inside the Toil Appliance - ‘child’ Docker
containers launched in the Appliance will actually be siblings to the Appliance since the Docker engine is located on
the host. This means that the ‘child’ container can only mount in files from the Appliance if the files are located in a
directory that was originally mounted into the Appliance from the host - that way the files are accessible to the sibling
container. Note: if Docker can’t find the file/directory on the host it will silently fail and mount in an empty directory.

Maintainer’s Guidelines

In general, as developers and maintainers of the code, we adhere to the following guidelines:

• We strive to never break the build on master.

• Pull requests should be used for any and all changes (except truly trivial ones).

• The commit message of direct commits to master must end in (resolves # followed by the issue number
followed by).

Naming conventions

• The branch name for a pull request starts with issues/ followed by the issue number (or numbers, separated
by a dash), followed by a short snake-case description of the change. (There can be many open pull requests
with their associated branches at any given point in time and this convention ensures that we can easily identify
branches.)

• The commit message of the first commit in a pull request needs to end in (resolves # followed by the issue
number, followed by). See here for details about writing properly-formatted and informative commit messages.

72 Chapter 4. Overview

http://chris.beams.io/posts/git-commit/

Toil Documentation, Release 3.10.1

• The title of the pull request needs to have the same (resolves #...) suffix as the commit message. This
lets Waffle stack the pull request and the associated issue. (Fortunately, Github automatically prepopulates the
title of the PR with the message of the first commit in the PR, so this isn’t any additional work.)

Say there is an issue numbered #123 titled Foo does not work. The branch name would be issues/123-fix-foo
and the title of the commit would be Fix foo in case of bar (resolves #123).

• Pull requests that address multiple issues use the (resolves #602, resolves #214) suffix in the
request’s title. These pull requests can and should contain multiple commits, with each commit message refer-
encing the specific issue(s) it addresses. We may or may not squash the commits in those PRs.

Pull requests

• All pull requests must be reviewed by a person other than the request’s author.

• Only the reviewer of a pull request can merge it.

• Until the pull request is merged, it should be continually rebased by the author on top of master.

• Pull requests are built automatically by Jenkins and won’t be merged unless all tests pass.

• Ideally, a pull request should contain a single commit that addresses a single, specific issue. Rebasing and
squashing can be used to achieve that goal (see Multi-author pull requests).

Multi-author pull requests

• A pull request starts off as single-author and can be changed to multi-author upon request via comment (typically
by the reviewer) in the PR. The author of a single-author PR has to explicitly grant the request.

• Multi-author pull requests can have more than one commit. They must not be rebased as doing so would create
havoc for other contributors.

• To keep a multi-author pull request up to date with master, merge from master instead of rebasing on top of
master.

• Before the PR is merged, it may transition back to single-author mode, again via comment request in the PR.
Every contributor to the PR has to acknowledge the request after making sure they don’t have any unpushed
changes they care about. This is necessary because a single-author PR can be reabsed and rebasing would make
it hard to integrate these pushed commits.

4.3. Maintainer’s Guidelines 73

https://waffle.io/BD2KGenomics/toil

Toil Documentation, Release 3.10.1

74 Chapter 4. Overview

CHAPTER 5

Toil Architecture

The following diagram layouts out the software architecture of Toil.

These components are described below:

• the leader: The leader is responsible for deciding which jobs should be run. To do this it traverses the job
graph. Currently this is a single threaded process, but we make aggressive steps to prevent it becoming
a bottleneck (see Read-only Leader described below).

• the job-store: Handles all files shared between the components. Files in the job-store are the means by
which the state of the workflow is maintained. Each job is backed by a file in the job store, and atomic
updates to this state are used to ensure the workflow can always be resumed upon failure. The job-
store can also store all user files, allowing them to be shared between jobs. The job-store is defined
by the AbstractJobStore class. Multiple implementations of this class allow Toil to support
different back-end file stores, e.g.: S3, network file systems, Azure file store, etc.

• workers: The workers are temporary processes responsible for running jobs, one at a time per worker.
Each worker process is invoked with a job argument that it is responsible for running. The worker
monitors this job and reports back success or failure to the leader by editing the job’s state in the
file-store. If the job defines successor jobs the worker may choose to immediately run them (see Job
Chaining below).

• the batch-system: Responsible for scheduling the jobs given to it by the leader, creating a worker com-
mand for each job. The batch-system is defined by the AbstractBatchSystem class. Toil uses
multiple existing batch systems to schedule jobs, including Apache Mesos, GridEngine and a multi-
process single node implementation that allows workflows to be run without any of these frameworks.
Toil can therefore fairly easily be made to run a workflow using an existing cluster.

• the node provisioner: Creates worker nodes in which the batch system schedules workers. It is defined
by the AbstractProvisioner class.

• the statistics and logging monitor: Monitors logging and statistics produced by the workers and reports
them. Uses the job-store to gather this information.

75

Toil Documentation, Release 3.10.1

Fig. 5.1: Figure 1: The basic components of Toil’s architecture.

76 Chapter 5. Toil Architecture

Toil Documentation, Release 3.10.1

Optimizations

Toil implements lots of optimizations designed for scalability. Here we detail some of the key optimizations.

Read-only leader

The leader process is currently implemented as a single thread. Most of the leader’s tasks revolve around processing
the state of jobs, each stored as a file within the job-store. To minimise the load on this thread, each worker does as
much work as possible to manage the state of the job it is running. As a result, with a couple of minor exceptions,
the leader process never needs to write or update the state of a job within the job-store. For example, when a job is
complete and has no further successors the responsible worker deletes the job from the job-store, marking it complete.
The leader then only has to check for the existence of the file when it receives a signal from the batch-system to know
that the job is complete. This off-loading of state management is orthogonal to future parallelization of the leader.

Job chaining

The scheduling of successor jobs is partially managed by the worker, reducing the number of individual jobs the leader
needs to process. Currently this is very simple: if the there is a single next successor job to run and it’s resources fit
within the resources of the current job and closely match the resources of the current job then the job is run immediately
on the worker without returning to the leader. Further extensions of this strategy are possible, but for many workflows
which define a series of serial successors (e.g. map sequencing reads, post-process mapped reads, etc.) this pattern is
very effective at reducing leader workload.

Preemptable node support

Critical to running at large-scale is dealing with intermittent node failures. Toil is therefore designed to always be
resumable providing the job-store does not become corrupt. This robustness allows Toil to run on preemptible nodes,
which are only available when others are not willing to pay more to use them. Designing workflows that divide
into many short individual jobs that can use preemptable nodes allows for workflows to be efficiently scheduled and
executed.

Caching

Running bioinformatic pipelines often require the passing of large datasets between jobs. Toil caches the results from
jobs such that child jobs running on the same node can directly use the same file objects, thereby eliminating the need
for an intermediary transfer to the job store. Caching also reduces the burden on the local disks, because multiple jobs
can share a single file. The resulting drop in I/O allows pipelines to run faster, and, by the sharing of files, allows users
to run more jobs in parallel by reducing overall disk requirements.

To demonstrate the efficiency of caching, we ran an experimental internal pipeline on 3 samples from the TCGA
Lung Squamous Carcinoma (LUSC) dataset. The pipeline takes the tumor and normal exome fastqs, and the tu-
mor rna fastq and input, and predicts MHC presented neoepitopes in the patient that are potential targets for T-cell
based immunotherapies. The pipeline was run individually on the samples on c3.8xlarge machines on AWS (60GB
RAM,600GB SSD storage, 32 cores). The pipeline aligns the data to hg19-based references, predicts MHC haplotypes
using PHLAT, calls mutations using 2 callers (MuTect and RADIA) and annotates them using SnpEff, then predicts
MHC:peptide binding using the IEDB suite of tools before running an in-house rank boosting algorithm on the final
calls.

To optimize time taken, The pipeline is written such that mutations are called on a per-chromosome basis from the
whole-exome bams and are merged into a complete vcf. Running mutect in parallel on whole exome bams requires
each mutect job to download the complete Tumor and Normal Bams to their working directories – An operation that

5.1. Optimizations 77

Toil Documentation, Release 3.10.1

quickly fills the disk and limits the parallelizability of jobs. The script was run in Toil, with and without caching, and
Figure 2 shows that the workflow finishes faster in the cached case while using less disk on average than the uncached
run. We believe that benefits of caching arising from file transfers will be much higher on magnetic disk-based storage
systems as compared to the SSD systems we tested this on.

Toil support for Common Workflow Language

The CWL document and input document are loaded using the ‘cwltool.load_tool’ module. This performs normaliza-
tion and URI expansion (for example, relative file references are turned into absolute file URIs), validates the doc-
ument againsted the CWL schema, initializes Python objects corresponding to major document elements (command
line tools, workflows, workflow steps), and performs static type checking that sources and sinks have compatible types.

Input files referenced by the CWL document and input document are imported into the Toil file store. CWL documents
may use any URI scheme supported by Toil file store, including local files and object storage.

The ‘location’ field of File references are updated to reflect the import token returned by the Toil file store.

For directory inputs, the directory listing is stored in Directory object. Each individual files is imported into Toil file
store.

An initial workflow Job is created from the toplevel CWL document. Then, control passes to the Toil engine which
schedules the initial workflow job to run.

When the toplevel workflow job runs, it traverses the CWL workflow and creates a toil job for each step. The depen-
dency graph is expressed by making downstream jobs children of upstream jobs, and initializing the child jobs with
an input object containing the promises of output from upstream jobs.

Because Toil jobs have a single output, but CWL permits steps to have multiple output parameters that may feed into
multiple other steps, the input to a CWLJob is expressed with an “indirect dictionary”. This is a dictionary of input
parameters, where each entry value is a tuple of a promise and a promise key. When the job runs, the indirect dictionary
is turned into a concrete input object by resolving each promise into its actual value (which is always a dict), and then
looking up the promise key to get the actual value for the the input parameter.

If a workflow step specifies a scatter, then a scatter job is created and connected into the workflow graph as described
above. When the scatter step runs, it creates child jobs for each parameterizations of the scatter. A gather job is added
as a follow-on to gather the outputs into arrays.

When running a command line tool, it first creates output and temporary directories under the Toil local temp dir. It
runs the command line tool using the single_job_executor from CWLTool, providing a Toil-specific constructor for
filesystem access, and overriding the default PathMapper to use ToilPathMapper.

The ToilPathMapper keeps track of a file’s symbolic identifier (the Toil FileStore token), its local path on the host (the
value returned by readGlobalFile) and the the location of the file inside the Docker container.

After executing single_job_executor from CWLTool, it gets back the output object and status. If the underlying job
failed, raise an exception. Files from the output object are added to the file store using writeGlobalFile and the
‘location’ field of File references are updated to reflect the token returned by the Toil file store.

When the workflow completes, it returns an indirect dictionary linking to the outputs of the job steps that contribute to
the final output. This is the value returned by toil.start() or toil.restart(). This is resolved to get the final output object.
The files in this object are exported from the file store to ‘outdir’ on the host file system, and the ‘location’ field of File
references are updated to reflect the final exported location of the output files.

78 Chapter 5. Toil Architecture

Toil Documentation, Release 3.10.1

Fig. 5.2: Figure 2: Efficiency gain from caching. The lower half of each plot describes the disk used by the pipeline
recorded every 10 minutes over the duration of the pipeline, and the upper half shows the corresponding stage of the
pipeline that is being processed. Since jobs requesting the same file shared the same inode, the effective load on the
disk is considerably lower than in the uncached case where every job downloads a personal copy of every file it needs.
We see that in all cases, the uncached run uses almost 300-400GB more that the cached run in the resource heavy
mutation calling step. We also see a benefit in terms of wall time for each stage since we eliminate the time taken for
file transfers.

5.2. Toil support for Common Workflow Language 79

Toil Documentation, Release 3.10.1

80 Chapter 5. Toil Architecture

CHAPTER 6

Toil Environment Variables

There are several environment variables that affect the way Toil runs.

81

Toil Documentation, Release 3.10.1

TOIL_WORKDIR An absolute path to a directory where Toil will write its temporary files. This directory must
exist on each worker node and may be set to a different value on each worker. The
--workDir command line option overrides this. On Mesos nodes, TOIL_WORKDIR
generally defaults to the Mesos sandbox, except on CGCloud-provisioned nodes where it
defaults to /var/lib/mesos. In all other cases, the system’s standard temporary
directory is used.

TOIL_TEST_TEMP An absolute path to a directory where Toil tests will write their temporary files. Defaults to
the system’s standard temporary directory.

TOIL_TEST_INTEGRATIVEIf True, this allows the integration tests to run. Only valid when running the tests from the
source directory via make test or make test_parallel.

TOIL_TEST_EXPERIMENTALIf True, this allows tests on experimental features to run (such as the Google and Azure) job
stores. Only valid when running tests from the source directory via make test or make
test_parallel.

TOIL_APPLIANCE_SELFThe fully qualified reference for the Toil Appliance you wish to use, in the form
REPO/IMAGE:TAG. quay.io/ucsc_cgl/toil:3.6.0 and cket/toil:3.5.0
are both examples of valid options. Note that since Docker defaults to Dockerhub repos,
only quay.io repos need to specify their registry.

TOIL_DOCKER_REGISTRYThe URL of the registry of the Toil Appliance image you wish to use. Docker will use
Dockerhub by default, but the quay.io registry is also very popular and easily specifiable by
settting this option to quay.io.

TOIL_DOCKER_NAMEThe name of the Toil Appliance image you wish to use. Generally this is simply toil but
this option is provided to override this, since the image can be built with arbitrary names.

TOIL_AWS_ZONE The EC2 zone to provision nodes in if using Toil’s provisioner.
TOIL_AWS_AMI ID of the AMI to use in node provisioning. If in doubt, don’t set this variable.
TOIL_AWS_NODE_DEBUGDetermines whether to preserve nodes that have failed health checks. If set to True, nodes

that fail EC2 health checks won’t immediately be terminated so they can be examined and
the cause of failure determined. If any EC2 nodes are left behind in this manner, the security
group will also be left behind by necessity as it cannot be deleted until all associated nodes
have been terminated.

TOIL_SLURM_ARGSArguments for sbatch for the slurm batch system. Do not pass CPU or memory
specifications here. Instead, define resource requirements for the job. There is no default
value for this variable.

TOIL_GRIDENGINE_ARGSArguments for qsub for the gridengine batch system. Do not pass CPU or memory
specifications here. Instead, define resource requirements for the job. There is no default
value for this variable.

TOIL_GRIDENGINE_PEParallel environment arguments for qsub and for the gridengine batch system. There is no
default value for this variable.

TOIL_TORQUE_ARGSArguments for qsub for the Torque batch system. Do not pass CPU or memory specifications
here. Instead, define extra parameters for the job such as queue. Example: -q medium Use
TOIL_TORQUE_REQS to pass extra values for the -l resource requirements parameter.
There is no default value for this variable.

TOIL_TORQUE_REQSArguments for the resource requirements for Torque batch system. Do not pass CPU or
memory specifications here. Instead, define extra resource requirements as a string that goes
after the -l argument to qsub. Example: walltime=2:00:00,file=50gb There is no default
value for this variable.

TOIL_LSF_ARGS Additional arguments for the LSF’s bsub command. Instead, define extra parameters for the
job such as queue. Example: -q medium There is no default value for this variable.

• genindex

• search

82 Chapter 6. Toil Environment Variables

https://docs.python.org/2/library/tempfile.html#tempfile.gettempdir
https://docs.python.org/2/library/tempfile.html#tempfile.gettempdir
https://docs.python.org/2/library/tempfile.html#tempfile.gettempdir

Index

Symbols
__init__() (toil.common.Toil method), 55
__init__() (toil.fileStore.FileStore method), 52
__init__() (toil.job.EncapsulatedJob method), 57
__init__() (toil.job.FunctionWrappingJob method), 56
__init__() (toil.job.Job method), 48
__init__() (toil.job.Job.Service method), 56
__init__() (toil.job.JobException method), 58
__init__() (toil.job.JobGraphDeadlockException

method), 59
__init__() (toil.job.Promise method), 58
__init__() (toil.job.PromisedRequirement method), 58
__init__() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 61
__init__() (toil.jobStores.abstractJobStore.ConcurrentFileModificationException

method), 59
__init__() (toil.jobStores.abstractJobStore.JobStoreExistsException

method), 59
__init__() (toil.jobStores.abstractJobStore.NoSuchFileException

method), 59
__init__() (toil.jobStores.abstractJobStore.NoSuchJobException

method), 59
__init__() (toil.jobStores.abstractJobStore.NoSuchJobStoreException

method), 59

A
AbstractBatchSystem (class in

toil.batchSystems.abstractBatchSystem),
60

AbstractJobStore (class in
toil.jobStores.abstractJobStore), 61

addChild() (toil.job.Job method), 48
addChildFn() (toil.job.Job method), 49
addChildJobFn() (toil.job.Job method), 49
addFollowOn() (toil.job.Job method), 49
addFollowOnFn() (toil.job.Job method), 49
addFollowOnJobFn() (toil.job.Job method), 50
addService() (toil.job.Job method), 49
addToilOptions() (toil.job.Job.Runner static method), 54

C
check() (toil.job.Job.Service method), 56
checkJobGraphAcylic() (toil.job.Job method), 51
checkJobGraphConnected() (toil.job.Job method), 51
checkJobGraphForDeadlocks() (toil.job.Job method), 51
checkNewCheckpointsAreLeafVertices() (toil.job.Job

method), 51
clean() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 63
ConcurrentFileModificationException, 59
config (toil.common.Toil attribute), 55
config (toil.jobStores.abstractJobStore.AbstractJobStore

attribute), 62
convertPromises() (toil.job.PromisedRequirement static

method), 58
create() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 63
createBatchSystem() (toil.common.Toil static method),

55
createRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 62

D
defer() (toil.job.Job method), 51
delete() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 64
deleteFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 65
deleteGlobalFile() (toil.fileStore.FileStore method), 53
deleteLocalFile() (toil.fileStore.FileStore method), 53
destroy() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 63

E
encapsulate() (toil.job.Job method), 50
EncapsulatedJob (class in toil.job), 57
exists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 63
exportFile() (toil.common.Toil method), 55

83

Toil Documentation, Release 3.10.1

exportFile() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 63

F
fileExists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 65
filesToDelete (toil.job.Promise attribute), 58
FileStore (class in toil.fileStore), 52
findAndHandleDeadJobs() (toil.fileStore.FileStore class

method), 53
FunctionWrappingJob (class in toil.job), 56

G
getDefaultArgumentParser() (toil.job.Job.Runner static

method), 54
getDefaultOptions() (toil.job.Job.Runner static method),

54
getEmptyFileStoreID() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 65
getEnv() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 63
getIssuedBatchJobIDs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 60
getJobStore() (toil.common.Toil class method), 55
getLocalTempDir() (toil.fileStore.FileStore method), 52
getLocalTempFile() (toil.fileStore.FileStore method), 52
getLocalTempFileName() (toil.fileStore.FileStore

method), 52
getPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 63
getRescueBatchJobFrequency()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 61

getRootJobs() (toil.job.Job method), 51
getRunningBatchJobIDs()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 60

getSharedPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 63

getSize() (toil.jobStores.abstractJobStore.AbstractJobStore
class method), 63

getTopologicalOrderingOfJobs() (toil.job.Job method),
52

getUpdatedBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 61

getValue() (toil.job.PromisedRequirement method), 58
getWorkflowDir() (toil.common.Toil static method), 55

H
hasChild() (toil.job.Job method), 48

I
importFile() (toil.common.Toil method), 55

importFile() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 62

initialize() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 61

issueBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 60

J
Job (class in toil.job), 48
Job.Runner (class in toil.job), 54
Job.Service (class in toil.job), 56
JobException, 58
JobFunctionWrappingJob (class in toil.job), 57
JobGraphDeadlockException, 58
jobs() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 64
JobStoreExistsException, 59

K
killBatchJobs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 60

L
load() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 64
loadRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 62
logToMaster() (toil.fileStore.FileStore method), 54

N
NoSuchFileException, 59
NoSuchJobException, 59
NoSuchJobStoreException, 59

O
open() (toil.fileStore.FileStore method), 52

P
prepareForPromiseRegistration() (toil.job.Job method),

51
Promise (class in toil.job), 57
PromisedRequirement (class in toil.job), 58

R
readFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 65
readFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 65
readGlobalFile() (toil.fileStore.FileStore method), 53
readGlobalFileStream() (toil.fileStore.FileStore method),

53
readSharedFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 66

84 Index

Toil Documentation, Release 3.10.1

readStatsAndLogging() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 66

restart() (toil.common.Toil method), 55
resume() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 62
run() (toil.job.Job method), 48
rv() (toil.job.Job method), 50

S
setEnv() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 61
setOptions() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

class method), 61
setRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 62
setUserScript() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 60
shutdown() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 61
shutdown() (toil.fileStore.FileStore class method), 54
start() (toil.common.Toil method), 55
start() (toil.job.Job.Service method), 56
startToil() (toil.job.Job.Runner static method), 54
stop() (toil.job.Job.Service method), 56
supportsHotDeployment()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 60

supportsWorkerCleanup()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 60

T
Toil (class in toil.common), 55

U
update() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 64
updateFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 66
updateFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 66

W
wrapFn() (toil.job.Job static method), 50
wrapJobFn() (toil.job.Job static method), 50
writeConfig() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 62
writeFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 64
writeFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 65
writeGlobalFile() (toil.fileStore.FileStore method), 53
writeGlobalFileStream() (toil.fileStore.FileStore

method), 53

writeSharedFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 66

writeStatsAndLogging() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 66

Index 85

	Overview
	Installation
	Quickstart Examples

	Overview
	Toil Workflow Options and Command Line Interface
	CWL in Toil
	Deploying a Workflow
	Running in AWS
	Running in Azure
	Running in Openstack
	Running in GCE
	Running in HPC Environments

	Overview
	Developing a Workflow
	Toil API
	Batch System API
	Job Store API

	Overview
	Running tests
	Developing with the Toil Appliance
	Maintainer's Guidelines

	Toil Architecture
	Optimizations
	Toil support for Common Workflow Language

	Toil Environment Variables

