

 Navigation

 	
 index

 	
 next |

 	Toil 3.0.8a1 documentation

Scripting Quick Start

See README for installation. Toil’s Job class contains the Toil API, documented below.
To begin, consider this short toil script:

from toil.job import Job
from optparse import OptionParser

class HelloWorld(Job):
 def __init__(self):
 Job.__init__(self, memory=100000, cores=2, disk=20000)
 def run(self, fileStore):
 fileId = getEmptyFileStoreID()
 self.addChild(wrapJobFn(childFn, fileId,
 cores=1, memory="1M", disk="10M"))
 self.addFollowOn(FollowOn(fileId),

def childFn(target, fileID):
 with target.fileStore.updateGlobalFileStream(fileID) as file:
 file.write("Hello, World!")

class FollowOn(Job):
 def __init__(self,fileId):
 Job.__init__(self)
 self.fileId=fileId
 def run(self, fileStore):
 tempDir = self.getLocalTempDir()
 tempFilePath = "/".join(tempDir,"LocalCopy")
 with readGlobalFileStream(fileId) as globalFile:
 with open(tempFilePath, w) as localFile:
 localFile.write(globalFile.read())

def main():
 parser = OptionParser()
 Job.Runner.addToilOptions(parser)
 options, args = parser.parse_args(args)
 Job.Runner.startToil(HelloWorld(), options)

if __name__=="__main__":
 main()

The script consists of three Jobs - the object based HelloWorld and FollowOn Jobs,
and the function based childFn Job. The object based Jobs inherit from the Job class,
and must invoke the Job constructor and implement the run method, where the user’s code
to be executed should be placed.

Note that the constructor takes optional resource parameters, which specify the cores,
memory, and disk space needed for the job to run successfully. These resources can be
specified in bytes, or by passing in a string as in the constructor for the wrapJobFn().

Also notice the two types of descendant Jobs. HelloWorld specifies childFn as a child Job,
and FollowOn as a follow on Job. The only difference between a parent, children, and a
follow on is the order of execution. Parents are executed first, its children, finally
followed by the follow ons. The children and follow on jobs are run in parallel.

Toil Docs

Contents:

	Toil API
	Job Methods

	Job.FileStore

	Job.Runner

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, UCSC Computational Genomics Lab.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Toil 3.0.8a1 documentation

Toil API

Job Methods

	
class toil.job.Job(memory=None, cores=None, disk=None)[source]

	Represents a unit of work in toil. Jobs are composed into graphs
which make up a workflow.

This public functions of this class and its nested classes are the API
to toil.

	
addChild(childJob)[source]

	Adds the child job to be run as child of this job. Returns childJob.
Child jobs are run after the Job.run method has completed.

See Job.checkJobGraphAcylic for formal definition of allowed forms of
job graph.

	
addChildFn(fn, *args, **kwargs)[source]

	Adds a child fn. See FunctionWrappingJob.
Returns the new child Job.

	
addChildJobFn(fn, *args, **kwargs)[source]

	Adds a child job fn. See JobFunctionWrappingJob.
Returns the new child Job.

	
addFollowOn(followOnJob)[source]

	Adds a follow-on job, follow-on jobs will be run
after the child jobs and their descendants have been run.
Returns followOnJob.

See Job.checkJobGraphAcylic for formal definition of allowed forms of
job graph.

	
addFollowOnFn(fn, *args, **kwargs)[source]

	Adds a follow-on fn. See FunctionWrappingJob.
Returns the new follow-on Job.

	
addFollowOnJobFn(fn, *args, **kwargs)[source]

	Add a follow-on job fn. See JobFunctionWrappingJob.
Returns the new follow-on Job.

	
addService(service)[source]

	Add a service of type Job.Service. The Job.Service.start() method
will be called after the run method has completed but before any successors
are run. It’s Job.Service.stop() method will be called once the
successors of the job have been run.

:rtype : An instance of PromisedJobReturnValue which will be replaced
with the return value from the service.start() in any successor of the job.

	
checkJobGraphAcylic()[source]

	Raises a JobGraphDeadlockException exception if the connected component
of jobs containing this job contains any cycles of child/followOn dependencies
in the augmented job graph (see below). Such cycles are not allowed
in valid job graphs. This function is run during execution.

A job B that is on a directed path of child/followOn edges from a
job A in the job graph is a descendant of A,
similarly A is an ancestor of B.

A follow-on edge (A, B) between two jobs A and B is equivalent
to adding a child edge to B from (1) A, (2) from each child of A,
and (3) from the descendants of each child of A. We
call such an edge an “implied” edge. The augmented job graph is a
job graph including all the implied edges.

For a job (V, E) the algorithm is O(|V|^2). It is O(|V| + |E|) for
a graph with no follow-ons. The former follow on case could be improved!

	
checkJobGraphConnected()[source]

	Raises a JobGraphDeadlockException exception if getRootJobs() does not
contain exactly one root job.
As execution always starts from one root job, having multiple root jobs will
cause a deadlock to occur.

	
checkJobGraphForDeadlocks()[source]

	Raises a JobGraphDeadlockException exception if the job graph
is cyclic or contains multiple roots.

	
encapsulate()[source]

	See EncapsulatedJob.

:rtype : A new EncapsulatedJob for this job.

	
getRootJobs()[source]

	A root is a job with no predecessors.
:rtype : set, the roots of the connected component of jobs that
contains this job.

	
getUserScript()[source]

	

	
run(fileStore)[source]

	Do user stuff here, including creating any follow on jobs.

The fileStore argument is an instance of Job.FileStore, and can
be used to create temporary files which can be shared between jobs.

The return values of the function can be passed to other jobs
by means of the rv() function.

Note: We disallow return values to be PromisedJobReturnValue instances
(generated by the Job.rv() function - see below).
A check is made that will result in a runtime error if you attempt to do this.
Allowing PromisedJobReturnValue instances to be returned does not work because
the mechanism to pass the promise uses a jobStoreFileID that will be deleted once
the current job and its descendants have been completed. This is similar to
scope rules in a language like C, where returning a reference to memory allocated
on the stack within a function will produce an undefined reference.
Disallowing this also avoids nested promises (PromisedJobReturnValue
instances that contain other PromisedJobReturnValue).

	
rv(argIndex=None)[source]

	Gets a PromisedJobReturnValue, representing the argIndex return
value of the run function (see run method for description).
This PromisedJobReturnValue, if a class attribute of a Job instance,
call it T, will be replaced by the actual return value when the
T is loaded. The function rv therefore allows the output
from one Job to be wired as input to another Job before either
is actually run.

	Parameters:	argIndex – If None the complete return value will be returned, if argIndex

is an integer it is used to refer to the return value as indexable
(tuple/list/dictionary, or in general object that implements __getitem__),
hence rv(i) would refer to the ith (indexed from 0) member of return value.

	
static wrapFn(fn, *args, **kwargs)[source]

	Makes a Job out of a function.

Convenience function for constructor of FunctionWrappingJob

	
static wrapJobFn(fn, *args, **kwargs)[source]

	Makes a Job out of a job function.

Convenience function for constructor of JobFunctionWrappingJob

Job.FileStore

The FileStore is an abstraction of a Toil run’s shared storage

	
class Job.FileStore(jobStore, jobWrapper, localTempDir)[source]

	Class used to manage temporary files and log messages,
passed as argument to the Job.run method.

	
deleteGlobalFile(fileStoreID)[source]

	Deletes a global file with the given fileStoreID. Returns true if
file exists, else false.

	
getEmptyFileStoreID()[source]

	Returns the ID of a new, empty file.

	
getLocalTempDir()[source]

	Get the local temporary directory. This directory will exist for the
duration of the job only, and is guaranteed to be deleted once
the job terminates.

	
globalFileExists(fileStoreID)[source]

	:rtype : True if and only if the jobStore contains the given fileStoreID, else
false.

	
logToMaster(string)[source]

	Send a logging message to the leader. Will only ne reported if logging
is set to INFO level (or lower) in the leader.

	
readGlobalFile(fileStoreID, localFilePath=None)[source]

	Returns a path to a local copy of the file keyed by fileStoreID.
The version will be consistent with the last copy of the file
written/updated to the global file store. If localFilePath is not None,
the returned file path will be localFilePath.

	
readGlobalFileStream(fileStoreID)[source]

	Similar to readGlobalFile, but returns a context manager yielding a
file handle which can be read from. The yielded file handle does not
need to and should not be closed explicitly.

	
updateGlobalFile(fileStoreID, localFileName)[source]

	Replaces the existing version of a file in the global file store,
keyed by the fileStoreID.
Throws an exception if the file does not exist.

	
updateGlobalFileStream(fileStoreID)[source]

	Similar to updateGlobalFile, but returns a context manager yielding
a file handle which can be written to. The yielded file handle does
not need to and should not be closed explicitly.

	
writeGlobalFile(localFileName)[source]

	Takes a file (as a path) and uploads it to to the global file store, returns
an ID that can be used to retrieve the file.

	
writeGlobalFileStream()[source]

	Similar to writeGlobalFile, but returns a context manager yielding a
tuple of 1) a file handle which can be written to and 2) the ID of
the resulting file in the job store. The yielded file handle does
not need to and should not be closed explicitly.

Job.Runner

The Runner contains the methods needed to configure and start a Toil run.

	
class Job.Runner[source]

	Used to setup and run a graph of jobs.

	
static addToilOptions(parser)[source]

	Adds the default toil options to an optparse or argparse
parser object.

	
static getDefaultOptions(jobStore)[source]

	Returns an optparse.Values object of the
options used by a toil.

	
static startToil(job, options)[source]

	
Runs the toil workflow using the given options
(see Job.Runner.getDefaultOptions and Job.Runner.addToilOptions)
starting with this job.

	raises:	toil.leader.FailedJobsException if at the end of function their remain

failed jobs

 Copyright 2015, UCSC Computational Genomics Lab.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Toil 3.0.8a1 documentation

Index

 A
 | C
 | D
 | E
 | G
 | J
 | L
 | R
 | S
 | U
 | W

A

 	

 	addChild() (toil.job.Job method)

 	addChildFn() (toil.job.Job method)

 	addChildJobFn() (toil.job.Job method)

 	addFollowOn() (toil.job.Job method)

 	

 	addFollowOnFn() (toil.job.Job method)

 	addFollowOnJobFn() (toil.job.Job method)

 	addService() (toil.job.Job method)

 	addToilOptions() (toil.job.Job.Runner static method)

C

 	

 	checkJobGraphAcylic() (toil.job.Job method)

 	checkJobGraphConnected() (toil.job.Job method)

 	

 	checkJobGraphForDeadlocks() (toil.job.Job method)

D

 	

 	deleteGlobalFile() (toil.job.Job.FileStore method)

E

 	

 	encapsulate() (toil.job.Job method)

G

 	

 	getDefaultOptions() (toil.job.Job.Runner static method)

 	getEmptyFileStoreID() (toil.job.Job.FileStore method)

 	getLocalTempDir() (toil.job.Job.FileStore method)

 	

 	getRootJobs() (toil.job.Job method)

 	getUserScript() (toil.job.Job method)

 	globalFileExists() (toil.job.Job.FileStore method)

J

 	

 	Job (class in toil.job)

 	Job.FileStore (class in toil.job)

 	

 	Job.Runner (class in toil.job)

L

 	

 	logToMaster() (toil.job.Job.FileStore method)

R

 	

 	readGlobalFile() (toil.job.Job.FileStore method)

 	readGlobalFileStream() (toil.job.Job.FileStore method)

 	

 	run() (toil.job.Job method)

 	rv() (toil.job.Job method)

S

 	

 	startToil() (toil.job.Job.Runner static method)

U

 	

 	updateGlobalFile() (toil.job.Job.FileStore method)

 	

 	updateGlobalFileStream() (toil.job.Job.FileStore method)

W

 	

 	wrapFn() (toil.job.Job static method)

 	wrapJobFn() (toil.job.Job static method)

 	

 	writeGlobalFile() (toil.job.Job.FileStore method)

 	writeGlobalFileStream() (toil.job.Job.FileStore method)

 Copyright 2015, UCSC Computational Genomics Lab.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		Toil 3.0.8a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, UCSC Computational Genomics Lab.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_modules/index.html

 Navigation

 		
 index

 		Toil 3.0.8a1 documentation »

 All modules for which code is available

		toil.job

 © Copyright 2015, UCSC Computational Genomics Lab.
 Created using Sphinx 1.3.1.

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

_static/plus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_modules/toil/job.html

 Navigation

 		
 index

 		Toil 3.0.8a1 documentation »

 		Module code »

 Source code for toil.job

#!/usr/bin/env python

Copyright (C) 2015 UCSC Computational Genomics Lab
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
from __future__ import absolute_import
import os
import sys
import importlib
from argparse import ArgumentParser
import xml.etree.cElementTree as ET
from abc import ABCMeta, abstractmethod
import tempfile
import uuid
import time
import copy_reg
import cPickle
import logging

from bd2k.util.humanize import human2bytes
from io import BytesIO

from toil.resource import ModuleDescriptor
from toil.common import loadJobStore

logger = logging.getLogger(__name__)

from toil.lib.bioio import (setLoggingFromOptions,
 getTotalCpuTimeAndMemoryUsage, getTotalCpuTime)
from toil.common import setupToil, addOptions
from toil.leader import mainLoop

class JobException(Exception):
 def __init__(self, message):
 super(JobException, self).__init__(message)

[docs]class Job(object):
 """
 Represents a unit of work in toil. Jobs are composed into graphs
 which make up a workflow.

 This public functions of this class and its nested classes are the API
 to toil.
 """
 def __init__(self, memory=None, cores=None, disk=None):
 """
 This method must be called by any overiding constructor.

 Memory is the maximum number of bytes of memory the job will
 require to run. Cores is the number of CPU cores required.
 """
 self.cores = cores
 self.memory = human2bytes(str(memory)) if memory is not None else memory
 self.disk = human2bytes(str(disk)) if disk is not None else disk
 #Private class variables

 #See Job.addChild
 self._children = []
 #See Job.addFollowOn
 self._followOns = []
 #See Job.addService
 self._services = []
 #A follow-on, service or child of a job A, is a "successor" of A, if B
 #is a successor of A, then A is a predecessor of B.
 self._predecessors = set()
 # Note that self.__module__ is not necessarily this module, i.e. job.py. It is the module
 # defining the class self is an instance of, which may be a subclass of Job that may be
 # defined in a different module.
 self.userModule = ModuleDescriptor.forModule(self.__module__)
 #See Job.rv()
 self._rvs = {}

[docs] def run(self, fileStore):
 """
 Do user stuff here, including creating any follow on jobs.

 The fileStore argument is an instance of Job.FileStore, and can
 be used to create temporary files which can be shared between jobs.

 The return values of the function can be passed to other jobs
 by means of the rv() function.

 Note: We disallow return values to be PromisedJobReturnValue instances
 (generated by the Job.rv() function - see below).
 A check is made that will result in a runtime error if you attempt to do this.
 Allowing PromisedJobReturnValue instances to be returned does not work because
 the mechanism to pass the promise uses a jobStoreFileID that will be deleted once
 the current job and its descendants have been completed. This is similar to
 scope rules in a language like C, where returning a reference to memory allocated
 on the stack within a function will produce an undefined reference.
 Disallowing this also avoids nested promises (PromisedJobReturnValue
 instances that contain other PromisedJobReturnValue).
 """
 pass

[docs] def addChild(self, childJob):
 """
 Adds the child job to be run as child of this job. Returns childJob.
 Child jobs are run after the Job.run method has completed.

 See Job.checkJobGraphAcylic for formal definition of allowed forms of
 job graph.
 """
 self._children.append(childJob)
 childJob._addPredecessor(self)
 return childJob

[docs] def addService(self, service):
 """
 Add a service of type Job.Service. The Job.Service.start() method
 will be called after the run method has completed but before any successors
 are run. It's Job.Service.stop() method will be called once the
 successors of the job have been run.

 :rtype : An instance of PromisedJobReturnValue which will be replaced
 with the return value from the service.start() in any successor of the job.
 """
 jobService = ServiceJob(service)
 self._services.append(jobService)
 return jobService.rv()

[docs] def addFollowOn(self, followOnJob):
 """
 Adds a follow-on job, follow-on jobs will be run
 after the child jobs and their descendants have been run.
 Returns followOnJob.

 See Job.checkJobGraphAcylic for formal definition of allowed forms of
 job graph.
 """
 self._followOns.append(followOnJob)
 followOnJob._addPredecessor(self)
 return followOnJob

 ##Convenience functions for creating jobs

[docs] def addChildFn(self, fn, *args, **kwargs):
 """
 Adds a child fn. See FunctionWrappingJob.
 Returns the new child Job.
 """
 return self.addChild(FunctionWrappingJob(fn, *args, **kwargs))

[docs] def addChildJobFn(self, fn, *args, **kwargs):
 """
 Adds a child job fn. See JobFunctionWrappingJob.
 Returns the new child Job.
 """
 return self.addChild(JobFunctionWrappingJob(fn, *args, **kwargs))

[docs] def addFollowOnFn(self, fn, *args, **kwargs):
 """
 Adds a follow-on fn. See FunctionWrappingJob.
 Returns the new follow-on Job.
 """
 return self.addFollowOn(FunctionWrappingJob(fn, *args, **kwargs))

[docs] def addFollowOnJobFn(self, fn, *args, **kwargs):
 """
 Add a follow-on job fn. See JobFunctionWrappingJob.
 Returns the new follow-on Job.
 """
 return self.addFollowOn(JobFunctionWrappingJob(fn, *args, **kwargs))

 @staticmethod
[docs] def wrapJobFn(fn, *args, **kwargs):
 """
 Makes a Job out of a job function.

 Convenience function for constructor of JobFunctionWrappingJob
 """
 return JobFunctionWrappingJob(fn, *args, **kwargs)

 @staticmethod
[docs] def wrapFn(fn, *args, **kwargs):
 """
 Makes a Job out of a function.

 Convenience function for constructor of FunctionWrappingJob
 """
 return FunctionWrappingJob(fn, *args, **kwargs)

[docs] def encapsulate(self):
 """
 See EncapsulatedJob.

 :rtype : A new EncapsulatedJob for this job.
 """
 return EncapsulatedJob(self)

 ##
 #The following function is used for passing return values between
 #job run functions
 ##

[docs] def rv(self, argIndex=None):
 """
 Gets a PromisedJobReturnValue, representing the argIndex return
 value of the run function (see run method for description).
 This PromisedJobReturnValue, if a class attribute of a Job instance,
 call it T, will be replaced by the actual return value when the
 T is loaded. The function rv therefore allows the output
 from one Job to be wired as input to another Job before either
 is actually run.

 :param argIndex: If None the complete return value will be returned, if argIndex
 is an integer it is used to refer to the return value as indexable
 (tuple/list/dictionary, or in general object that implements __getitem__),
 hence rv(i) would refer to the ith (indexed from 0) member of return value.
 """
 #Check if the return value has already been promised and if it has
 #return it
 if argIndex in self._rvs:
 return self._rvs[argIndex]
 #Create, store, return new PromisedJobReturnValue
 self._rvs[argIndex] = PromisedJobReturnValue()
 return self._rvs[argIndex]

 ##
 #Cycle/connectivity checking
 ##

[docs] def checkJobGraphForDeadlocks(self):
 """
 Raises a JobGraphDeadlockException exception if the job graph
 is cyclic or contains multiple roots.
 """
 self.checkJobGraphConnected()
 self.checkJobGraphAcylic()

[docs] def getRootJobs(self):
 """
 A root is a job with no predecessors.
 :rtype : set, the roots of the connected component of jobs that
 contains this job.
 """
 roots = set()
 visited = set()
 #Function to get the roots of a job
 def getRoots(job):
 if job not in visited:
 visited.add(job)
 if len(job._predecessors) > 0:
 map(lambda p : getRoots(p), job._predecessors)
 else:
 roots.add(job)
 #The following call ensures we explore all successor edges.
 map(lambda c : getRoots(c), job._children +
 job._followOns + job._services)
 getRoots(self)
 return roots

[docs] def checkJobGraphConnected(self):
 """
 Raises a JobGraphDeadlockException exception if getRootJobs() does not
 contain exactly one root job.
 As execution always starts from one root job, having multiple root jobs will
 cause a deadlock to occur.
 """
 rootJobs = self.getRootJobs()
 if len(rootJobs) != 1:
 raise JobGraphDeadlockException("Graph does not contain exactly one root job: %s" % rootJobs)

[docs] def checkJobGraphAcylic(self):
 """
 Raises a JobGraphDeadlockException exception if the connected component
 of jobs containing this job contains any cycles of child/followOn dependencies
 in the augmented job graph (see below). Such cycles are not allowed
 in valid job graphs. This function is run during execution.

 A job B that is on a directed path of child/followOn edges from a
 job A in the job graph is a descendant of A,
 similarly A is an ancestor of B.

 A follow-on edge (A, B) between two jobs A and B is equivalent
 to adding a child edge to B from (1) A, (2) from each child of A,
 and (3) from the descendants of each child of A. We
 call such an edge an "implied" edge. The augmented job graph is a
 job graph including all the implied edges.

 For a job (V, E) the algorithm is O(|V|^2). It is O(|V| + |E|) for
 a graph with no follow-ons. The former follow on case could be improved!
 """
 #Get the root jobs
 roots = self.getRootJobs()
 if len(roots) == 0:
 raise JobGraphDeadlockException("Graph contains no root jobs due to cycles")

 #Get implied edges
 extraEdges = self._getImpliedEdges(roots)

 #Check for directed cycles in the augmented graph
 visited = set()
 for root in roots:
 root._checkJobGraphAcylicDFS([], visited, extraEdges)

 ##
 #The following nested classes are used for
 #creating jobtrees (Job.Runner),
 #managing temporary files (Job.FileStore),
 #and defining a service (Job.Service)
 ##

[docs] class Runner(object):
 """
 Used to setup and run a graph of jobs.
 """

 @staticmethod
[docs] def getDefaultOptions(jobStore):
 """
 Returns an optparse.Values object of the
 options used by a toil.
 """
 parser = ArgumentParser()
 Job.Runner.addToilOptions(parser)
 options = parser.parse_args(args=[jobStore])
 return options

 @staticmethod
[docs] def addToilOptions(parser):
 """
 Adds the default toil options to an optparse or argparse
 parser object.
 """
 addOptions(parser)

 @staticmethod
[docs] def startToil(job, options):
 """
 Runs the toil workflow using the given options
 (see Job.Runner.getDefaultOptions and Job.Runner.addToilOptions)
 starting with this job.

 :raises: toil.leader.FailedJobsException if at the end of function their remain
 failed jobs
 """
 setLoggingFromOptions(options)
 with setupToil(options, userScript=job.getUserScript()) as (config, batchSystem, jobStore):
 if options.restart:
 jobStore.clean() #This cleans up any half written jobs after a restart
 rootJob = job._loadRootJob(jobStore)
 else:
 #Setup the first wrapper.
 rootJob = job._serialiseFirstJob(jobStore)
 return mainLoop(config, batchSystem, jobStore, rootJob)

[docs] class FileStore:
 """
 Class used to manage temporary files and log messages,
 passed as argument to the Job.run method.
 """

 def __init__(self, jobStore, jobWrapper, localTempDir):
 """
 This constructor should not be called by the user,
 FileStore instances are only provided as arguments
 to the run function.
 """
 self.jobStore = jobStore
 self.jobWrapper = jobWrapper
 self.localTempDir = localTempDir
 self.loggingMessages = []

[docs] def writeGlobalFile(self, localFileName):
 """
 Takes a file (as a path) and uploads it to to the global file store, returns
 an ID that can be used to retrieve the file.
 """
 return self.jobStore.writeFile(self.jobWrapper.jobStoreID, localFileName)

[docs] def updateGlobalFile(self, fileStoreID, localFileName):
 """
 Replaces the existing version of a file in the global file store,
 keyed by the fileStoreID.
 Throws an exception if the file does not exist.
 """
 self.jobStore.updateFile(fileStoreID, localFileName)

[docs] def readGlobalFile(self, fileStoreID, localFilePath=None):
 """
 Returns a path to a local copy of the file keyed by fileStoreID.
 The version will be consistent with the last copy of the file
 written/updated to the global file store. If localFilePath is not None,
 the returned file path will be localFilePath.
 """
 if localFilePath is None:
 fd, localFilePath = tempfile.mkstemp(dir=self.getLocalTempDir())
 self.jobStore.readFile(fileStoreID, localFilePath)
 os.close(fd)
 else:
 self.jobStore.readFile(fileStoreID, localFilePath)
 return localFilePath

[docs] def deleteGlobalFile(self, fileStoreID):
 """
 Deletes a global file with the given fileStoreID. Returns true if
 file exists, else false.
 """
 return self.jobStore.deleteFile(fileStoreID)

[docs] def writeGlobalFileStream(self):
 """
 Similar to writeGlobalFile, but returns a context manager yielding a
 tuple of 1) a file handle which can be written to and 2) the ID of
 the resulting file in the job store. The yielded file handle does
 not need to and should not be closed explicitly.
 """
 return self.jobStore.writeFileStream(self.jobWrapper.jobStoreID)

[docs] def updateGlobalFileStream(self, fileStoreID):
 """
 Similar to updateGlobalFile, but returns a context manager yielding
 a file handle which can be written to. The yielded file handle does
 not need to and should not be closed explicitly.
 """
 return self.jobStore.updateFileStream(fileStoreID)

[docs] def getEmptyFileStoreID(self):
 """
 Returns the ID of a new, empty file.
 """
 return self.jobStore.getEmptyFileStoreID(self.jobWrapper.jobStoreID)

[docs] def globalFileExists(self, fileStoreID):
 """
 :rtype : True if and only if the jobStore contains the given fileStoreID, else
 false.
 """
 return self.jobStore.fileExists(fileStoreID)

[docs] def readGlobalFileStream(self, fileStoreID):
 """
 Similar to readGlobalFile, but returns a context manager yielding a
 file handle which can be read from. The yielded file handle does not
 need to and should not be closed explicitly.
 """
 return self.jobStore.readFileStream(fileStoreID)

[docs] def getLocalTempDir(self):
 """
 Get the local temporary directory. This directory will exist for the
 duration of the job only, and is guaranteed to be deleted once
 the job terminates.
 """
 return self.localTempDir

[docs] def logToMaster(self, string):
 """
 Send a logging message to the leader. Will only ne reported if logging
 is set to INFO level (or lower) in the leader.
 """
 self.loggingMessages.append(str(string))

 class Service:
 """
 Abstract class used to define the interface to a service.
 """
 __metaclass__ = ABCMeta
 def __init__(self, memory=None, cores=None):
 """
 Memory and core requirements are specified identically to the Job
 constructor.
 """
 self.memory = memory
 self.cores = cores

 @abstractmethod
 def start(self):
 """
 Start the service.

 :rtype : An object describing how to access the service. Must be
 pickleable. Will be used by a job to access the service.
 """
 pass

 @abstractmethod
 def stop(self):
 """
 Stops the service.

 Function can block until complete.
 """
 pass

 ##
 #Private functions
 ##

 def _addPredecessor(self, predecessorJob):
 """
 Adds a predecessor job to the set of predecessor jobs. Raises a
 RuntimeError is the job is already a predecessor.
 """
 if predecessorJob in self._predecessors:
 raise RuntimeError("The given job is already a predecessor of this job")
 self._predecessors.add(predecessorJob)

 ##
 #The following functions are used to serialise
 #a job graph to the jobStore
 ##

 def _getHashOfJobsToUUIDs(self, jobsToUUIDs):
 """
 Creates a map of the jobs in the graph to randomly selected UUIDs.
 Excludes the root job.
 """
 #Call recursively
 for successor in self._children + self._followOns:
 successor._getHashOfJobsToUUIDs2(jobsToUUIDs)
 return jobsToUUIDs

[docs] def getUserScript(self):
 return self.userModule

 def _getHashOfJobsToUUIDs2(self, jobsToUUIDs):
 if self not in jobsToUUIDs:
 jobsToUUIDs[self] = str(uuid.uuid1())
 self._getHashOfJobsToUUIDs(jobsToUUIDs)

 def _createEmptyJobForJob(self, jobStore, updateID=None, command=None,
 predecessorNumber=0):
 """
 Create an empty job for the job.
 """
 return jobStore.create(command=command,
 memory=(self.memory if self.memory is not None
 else jobStore.config.defaultMemory),
 cores=(self.cores if self.cores is not None
 else float(jobStore.config.defaultCores)),
 disk=(self.disk if self.disk is not None
 else float(jobStore.config.defaultDisk)),
 updateID=updateID, predecessorNumber=predecessorNumber)

 def _makeJobWrappers(self, jobStore, jobsToUUIDs, jobsToJobs, predecessor, rootJob):
 """
 Creates a job for each job in the job graph, recursively.
 """
 if self not in jobsToJobs:
 #The job for the job
 assert predecessor in self._predecessors
 jobWrapper = self._createEmptyJobForJob(jobStore, jobsToUUIDs[self],
 predecessorNumber=len(self._predecessors))
 jobsToJobs[self] = jobWrapper

 #Add followOns/children to be run after the current job.
 for successors in (self._followOns, self._children):
 jobs = map(lambda successor:
 successor._makeJobWrappers(jobStore, jobsToUUIDs,
 jobsToJobs, self, rootJob), successors)
 if len(jobs) > 0:
 jobWrapper.stack.append(jobs)

 #Pickle the job so that its run method can be run at a later time.
 #Drop out the children/followOns/predecessors/services - which are
 #all recored within the jobStore and do not need to be stored within
 #the job
 self._children = []
 self._followOns = []
 self._services = []
 self._predecessors = set()
 #The pickled job is "run" as the command of the job, see worker
 #for the mechanism which unpickles the job and executes the Job.run
 #method.
 fileStoreID = jobStore.getEmptyFileStoreID(rootJob.jobStoreID)
 with jobStore.writeFileStream(rootJob.jobStoreID) as (fileHandle, fileStoreID):
 cPickle.dump(self, fileHandle, cPickle.HIGHEST_PROTOCOL)
 jobWrapper.command = ' '.join(('_toil', fileStoreID) + self.userModule.globalize())
 #Update the status of the job on disk
 jobStore.update(jobWrapper)
 else:
 #Lookup the already created job
 jobWrapper = jobsToJobs[self]
 assert jobWrapper.predecessorNumber > 1

 #The return is a tuple stored within the job.stack of the jobs to run.
 #The tuple is jobStoreID, memory, cores, disk, predecessorID
 #The predecessorID is used to establish which predecessors have been
 #completed before running the given Job - it is just a unique ID
 #per predecessor
 return (jobWrapper.jobStoreID, jobWrapper.memory, jobWrapper.cores, jobWrapper.disk,
 None if jobWrapper.predecessorNumber <= 1 else str(uuid.uuid4()))

 def _serialiseJobGraph(self, jobWrapper, jobStore):
 """
 Serialises the graph of jobs rooted at this job,
 storing them in the jobStore.
 Assumes the root job is already in the jobStore.
 """
 #Create jobIDs as UUIDs
 jobsToUUIDs = self._getHashOfJobsToUUIDs({})
 #Set the jobs to delete
 jobWrapper.jobsToDelete = list(jobsToUUIDs.values())
 #Update the job on disk. The jobs to delete is a record of what to
 #remove if the update goes wrong
 jobStore.update(jobWrapper)
 #Create the jobs for followOns/children
 jobsToJobs = {}
 for successors in (self._followOns, self._children):
 jobs = map(lambda successor:
 successor._makeJobWrappers(jobStore, jobsToUUIDs,
 jobsToJobs, self, jobWrapper), successors)
 if len(jobs) > 0:
 jobWrapper.stack.append(jobs)
 #Remove the jobs to delete list and remove the old command finishing the update
 jobWrapper.jobsToDelete = []
 jobWrapper.command = None
 jobStore.update(jobWrapper)

 def _serialiseFirstJob(self, jobStore):
 """
 Serialises the root job. Returns the wrapping job.
 """
 #Pickles the job within a shared file in the jobStore called
 #"firstJob"
 sharedJobFile = "firstJob"
 with jobStore.writeSharedFileStream(sharedJobFile) as f:
 cPickle.dump(self, f, cPickle.HIGHEST_PROTOCOL)
 #Make the first job
 command = ' '.join(('_toil',sharedJobFile) + self.userModule.globalize())
 jobWrapper = self._createEmptyJobForJob(jobStore, command=command)
 #Store the name of the first job in a file in case of restart
 with jobStore.writeSharedFileStream("rootJobStoreID") as f:
 f.write(jobWrapper.jobStoreID)
 #Return the first job wrapper
 return jobWrapper

 @staticmethod
 def _loadRootJob(jobStore):
 """
 Loads the root job.
 :throws JobException: If root job is not in the job store.
 """
 with jobStore.readSharedFileStream("rootJobStoreID") as f: #Load the root job
 rootJobID = f.read()
 if not jobStore.exists(rootJobID):
 raise JobException("No root job (%s) left in toil workflow (workflow has finished successfully?)" % rootJobID)
 return jobStore.load(rootJobID)

 @classmethod
 def _loadUserModule(cls, userModule):
 """
 Imports and returns the module object represented by the given module descriptor.

 :type userModule: ModuleDescriptor
 """
 if not userModule.belongsToToil:
 userModule = userModule.localize()
 if userModule.dirPath not in sys.path:
 sys.path.append(userModule.dirPath)
 return importlib.import_module(userModule.name)

 @classmethod
 def _loadJob(cls, command, jobStore):
 """
 Unpickles a job.Job instance by decoding the command. See job.Job._serialiseFirstJob and
 job.Job._makeJobWrappers to see how the Job is encoded in the command. Essentially the
 command is a reference to a jobStoreFileID containing the pickle file for the job and a
 list of modules which must be imported so that the Job can be successfully unpickled.
 """
 commandTokens = command.split()
 assert "_toil" == commandTokens[0]
 userModule = ModuleDescriptor(*(commandTokens[2:]))
 userModule = cls._loadUserModule(userModule)
 pickleFile = commandTokens[1]
 if pickleFile == "firstJob":
 openFileStream = jobStore.readSharedFileStream(pickleFile)
 else:
 openFileStream = jobStore.readFileStream(pickleFile)
 with openFileStream as fileHandle:
 return cls._unpickle(userModule, fileHandle)

 @classmethod
 def _unpickle(cls, userModule, fileHandle):
 """
 Unpickles an object graph from the given file handle while loading symbols referencing
 the __main__ module from the given userModule instead.

 :param userModule:
 :param fileHandle:
 :return:
 """
 unpickler = cPickle.Unpickler(fileHandle)

 def filter_main(module_name, class_name):
 if module_name == '__main__':
 return getattr(userModule, class_name)
 else:
 return getattr(importlib.import_module(module_name), class_name)

 unpickler.find_global = filter_main
 return unpickler.load()

 ##
 #Functions to pass Job.run return values to the
 #input arguments of other Job instances
 ##

 def _setFileIDsForPromisedValues(self, jobStore, jobStoreID, visited):
 """
 Sets the jobStoreFileID for each PromisedJobReturnValue in the
 graph of jobs created.
 """
 #Replace None references with valid jobStoreFileIDs. We
 #do this here, rather than within the original constructor of the
 #promised value because we don't necessarily have access to the jobStore when
 #the PromisedJobReturnValue instances are created.
 if self not in visited:
 visited.add(self)
 for i in self._rvs.keys():
 promisedJobReturnValue = self._rvs[i]
 #Instances of PromisedJobReturnValue are replaced with jobStoreFileIDs
 if isinstance(promisedJobReturnValue, PromisedJobReturnValue):
 promisedJobReturnValue.jobStoreFileID = jobStore.getEmptyFileStoreID(jobStoreID)
 promisedJobReturnValue.jobStoreString = jobStore.config.jobStore
 self._rvs[i] = promisedJobReturnValue.jobStoreFileID
 #Now recursively do the same for the children and follow ons.
 for successorJob in self._children + self._followOns + self._services:
 successorJob._setFileIDsForPromisedValues(jobStore, jobStoreID, visited)

 @staticmethod
 def _setReturnValuesForPromises(job, returnValues, jobStore):
 """
 Sets the values for promises using the return values from the job's
 run function.
 """
 for i in job._rvs.keys():
 if i == None:
 argToStore = returnValues
 else:
 argToStore = returnValues[i]
 with jobStore.updateFileStream(job._rvs[i]) as fileHandle:
 if isinstance(argToStore, PromisedJobReturnValue):
 raise RuntimeError("A nested PromisedJobReturnValue has been found.") #We do not allow the return of PromisedJobReturnValue instance from the run function
 cPickle.dump(argToStore, fileHandle, cPickle.HIGHEST_PROTOCOL)

 ##
 #Functions associated with Job.checkJobGraphAcyclic to establish
 #that the job graph does not contain any cycles of dependencies.
 ##

 def _dfs(self, visited):
 """Adds the job and all jobs reachable on a directed path from current
 node to the set 'visited'.
 """
 if self not in visited:
 visited.add(self)
 for successor in self._children + self._followOns:
 successor._dfs(visited)

 def _checkJobGraphAcylicDFS(self, stack, visited, extraEdges):
 """
 DFS traversal to detect cycles in augmented job graph.
 """
 if self not in visited:
 visited.add(self)
 stack.append(self)
 for successor in self._children + self._followOns + extraEdges[self]:
 successor._checkJobGraphAcylicDFS(stack, visited, extraEdges)
 assert stack.pop() == self
 if self in stack:
 stack.append(self)
 raise JobGraphDeadlockException("A cycle of job dependencies has been detected '%s'" % stack)

 @staticmethod
 def _getImpliedEdges(roots):
 """
 Gets the set of implied edges. See Job.checkJobGraphAcylic
 """
 #Get nodes in job graph
 nodes = set()
 for root in roots:
 root._dfs(nodes)

 ##For each follow-on edge calculate the extra implied edges
 #Adjacency list of implied edges, i.e. map of jobs to lists of jobs
 #connected by an implied edge
 extraEdges = dict(map(lambda n : (n, []), nodes))
 for job in nodes:
 if len(job._followOns) > 0:
 #Get set of jobs connected by a directed path to job, starting
 #with a child edge
 reacheable = set()
 for child in job._children:
 child._dfs(reacheable)
 #Now add extra edges
 for descendant in reacheable:
 extraEdges[descendant] += job._followOns[:]
 return extraEdges

 def _modifyJobGraphForServices(self, fileStore):
 """
 Modifies the job graph to correctly schedule any services
 defined for this job.
 """
 if len(self._services) > 0:
 #Set the start/stop jobStore fileIDs for each service
 for service in self._services:
 service.startFileStoreID = fileStore.getEmptyFileStoreID()
 assert fileStore.globalFileExists(service.startFileStoreID)
 service.stopFileStoreID = fileStore.getEmptyFileStoreID()
 assert fileStore.globalFileExists(service.stopFileStoreID)

 def removePredecessor(job):
 assert self in job._predecessors
 job._predecessors.remove(self)

 #t1 and t2 are used to run the children and followOns of the job
 #after the services of the job are started
 startFileStoreIDs = map(lambda i : i.startFileStoreID, self._services)
 t1, t2 = Job.wrapJobFn(blockUntilDeleted, startFileStoreIDs), Job()
 #t1 runs the children of the job
 for child in self._children:
 removePredecessor(child)
 t1.addChild(child)
 self._children = []
 #t2 runs the followOns of the job
 for followOn in self._followOns:
 removePredecessor(followOn)
 t2.addChild(followOn)
 self._followOns = []
 #Wire up the self, t1 and t2
 self.addChild(t1)
 t1.addFollowOn(t2)
 #Now make the services children of the job
 for service in self._services:
 self.addChild(service)
 assert service._predecessors == set((self,))
 #The final task once t1 and t2 have finished is to stop the services
 #this is achieved by deleting the stopFileStoreIDs.
 t2.addFollowOnJobFn(deleteFileStoreIDs, map(lambda i : i.stopFileStoreID, self._services))
 self._services = [] #Defensive

 ##
 #Function which worker calls to ultimately invoke
 #a jobs Job.run method, and then handle created
 #children/followOn jobs
 ##

 def _execute(self, jobWrapper, stats, localTempDir, jobStore):
 """This is the core method for running the job within a worker.
 """
 if stats != None:
 startTime = time.time()
 startClock = getTotalCpuTime()

 baseDir = os.getcwd()
 #Run the job, first cleanup then run.
 fileStore = Job.FileStore(jobStore, jobWrapper, localTempDir)
 returnValues = self.run(fileStore)
 #Modify job graph to run any services correctly
 self._modifyJobGraphForServices(fileStore)
 #Check if the job graph has created
 #any cycles of dependencies or has multiple roots
 self.checkJobGraphForDeadlocks()
 #Set the promised value jobStoreFileIDs
 self._setFileIDsForPromisedValues(jobStore, jobWrapper.jobStoreID, set())
 #Store the return values for any promised return value
 self._setReturnValuesForPromises(self, returnValues, jobStore)
 #Turn the graph into a graph of jobs in the jobStore
 self._serialiseJobGraph(jobWrapper, jobStore)
 #Change dir back to cwd dir, if changed by job (this is a safety issue)
 if os.getcwd() != baseDir:
 os.chdir(baseDir)
 #Finish up the stats
 if stats != None:
 stats = ET.SubElement(stats, "job")
 stats.attrib["time"] = str(time.time() - startTime)
 totalCpuTime, totalMemoryUsage = getTotalCpuTimeAndMemoryUsage()
 stats.attrib["clock"] = str(totalCpuTime - startClock)
 stats.attrib["class"] = self._jobName()
 stats.attrib["memory"] = str(totalMemoryUsage)
 #Return any logToMaster logging messages
 return fileStore.loggingMessages

 ##
 #Method used to resolve the module in which an inherited job instances
 #class is defined
 ##

 @staticmethod
 def _resolveMainModule(moduleName):
 """
 Returns a tuple of two elements, the first element being the path
 to the directory containing the given
 module and the second element being the name of the module.
 If the given module name is "__main__",
 then that is translated to the actual file name of the top-level
 script without .py or .pyc extensions. The
 caller can then add the first element of the returned tuple to
 sys.path and load the module from there. See also worker.loadJob().
 """
 # looks up corresponding module in sys.modules, gets base name, drops .py or .pyc
 moduleDirPath, moduleName = os.path.split(os.path.abspath(sys.modules[moduleName].__file__))
 if moduleName.endswith('.py'):
 moduleName = moduleName[:-3]
 elif moduleName.endswith('.pyc'):
 moduleName = moduleName[:-4]
 else:
 raise RuntimeError(
 "Can only handle main modules loaded from .py or .pyc files, but not '%s'" %
 moduleName)
 return moduleDirPath, moduleName

 def _jobName(self):
 """
 :rtype : string, used as identifier of the job class in the stats report.
 """
 return self.__class__.__name__

class JobGraphDeadlockException(Exception):
 def __init__(self, string):
 super(JobGraphDeadlockException, self).__init__(string)

class FunctionWrappingJob(Job):
 """
 Job used to wrap a function.

 If dill is installed
 Function can be nested function class function, currently.
 *args and **kwargs are used as the arguments to the function.
 """
 def __init__(self, userFunction, *args, **kwargs):
 # FIXME: I'd rather not duplicate the defaults here, unless absolutely necessary
 cores = kwargs.pop("cores") if "cores" in kwargs else None
 disk = kwargs.pop("disk") if "disk" in kwargs else None
 memory = kwargs.pop("memory") if "memory" in kwargs else None
 Job.__init__(self, memory=memory, cores=cores, disk=disk)
 #If dill is installed pickle the user function directly

 #else use indirect method
 self.userFunctionModule = ModuleDescriptor.forModule(userFunction.__module__).globalize()
 self.userFunctionName = str(userFunction.__name__)
 self._args=args
 self._kwargs=kwargs

 def _getUserFunction(self):
 userFunctionModule = self._loadUserModule(self.userFunctionModule)
 return getattr(userFunctionModule, self.userFunctionName)

 def run(self,fileStore):
 userFunction = self._getUserFunction()
 return userFunction(*self._args, **self._kwargs)

 def getUserScript(self):
 return self.userFunctionModule

 def _jobName(self):
 return ".".join((self.__class__.__name__,self.userFunctionModule.name,self.userFunctionName))

class JobFunctionWrappingJob(FunctionWrappingJob):
 """
 Job used to wrap a function.
 A job function is a function which takes as its first argument a reference
 to the wrapping job.

 To enable the job function to get access to the Job.FileStore
 instance (see Job.Run), it is made a variable of the wrapping job, so in the wrapped
 job function the attribute "fileStore" of the first argument (the job) is
 an instance of the Job.FileStore class.
 """

 def __init__(self, userFunction, *args, **kwargs):
 super(JobFunctionWrappingJob, self).__init__(userFunction, *args, **kwargs)
 self.fileStore = None

 def run(self, fileStore):
 userFunction = self._getUserFunction()
 self.fileStore = fileStore
 return userFunction(*((self,) + tuple(self._args)), **self._kwargs)

class ServiceJob(Job):
 """
 Job used to wrap a Job.Service instance. This constructor should not be called by a user.
 """
 def __init__(self, service):
 """
 :type service: Job.Service
 """
 Job.__init__(self, memory=service.memory, cores=service.cores)
 # service.__module__ is the module defining the class service is an instance of.
 self.serviceModule = ModuleDescriptor.forModule(service.__module__).globalize()
 #The service to run, pickled
 self.pickledService = cPickle.dumps(service)
 #An empty file in the jobStore which when deleted is used to signal
 #that the service should cease, is initialised in
 #Job._modifyJobGraphForServices
 self.stopFileStoreID = None
 #Similarly a empty file which when deleted is used to signal that the
 #service is established
 self.startFileStoreID = None

 def run(self, fileStore):
 #Unpickle the service
 userModule = self._loadUserModule(self.serviceModule)
 service = self._unpickle(userModule, BytesIO(self.pickledService))
 #Start the service
 startCredentials = service.start()
 #The start credentials must be communicated to processes connecting to
 #the service, to do this while the run method is running we
 #cheat and set the return value promise within the run method
 self._setReturnValuesForPromises(self, startCredentials, fileStore.jobStore)
 self._rvs = {} # Set this to avoid the return values being updated after the
 #run method has completed!
 #Now flag that the service is running jobs can connect to it
 assert self.startFileStoreID != None
 assert fileStore.globalFileExists(self.startFileStoreID)
 fileStore.deleteGlobalFile(self.startFileStoreID)
 assert not fileStore.globalFileExists(self.startFileStoreID)
 #Now block until we are told to stop, which is indicated by the removal
 #of a file
 assert self.stopFileStoreID != None
 while fileStore.globalFileExists(self.stopFileStoreID):
 time.sleep(1) #Avoid excessive polling
 #Now kill the service
 service.stop()

 def getUserScript(self):
 return self.serviceModule

class EncapsulatedJob(Job):
 """
 An convenience Job class used to make a job subgraph appear to
 be a single job.

 Let A be a root job potentially with children and follow-ons.
 Without an encapsulated job the simplest way to specify a job B which
 runs after A and all its successors is to create a parent of A' and then make B
 a follow-on of A'. In turn if we wish to run C after B and its successors then we
 repeat the process to create B', a parent of B, creating a graph in which A' is run,
 then A as a child of A', then the successors of A, then B' as a follow on of A',
 then B as a child of B', then the successors of B, then finally C as follow on of B',
 e.g.

 A, B, C = A(), B(), C() #Functions to create job graphs
 A' = Job()
 B' = Job()
 A'.addChild(A)
 A'.addFollowOn(B')
 B'.addChild(B)
 B'.addFollowOn(C)

 An encapsulated job of E(A) of A saves making A' and B', instead we can write:

 A, B, C = A().encapsulate(), B(), C() #Functions to create job graphs
 A.addChild(B)
 A.addFollowOn(C)

 Note the call to encapsulate creates the EncapsulatedJob.
 """
 def __init__(self, job):
 """
 job is the job to encapsulate.
 """
 Job.__init__(self)
 Job.addChild(self, job)
 self.followOn = Job()
 Job.addFollowOn(self, self.followOn)

 def addChild(self, childJob):
 return Job.addChild(self.followOn, childJob)

 def addService(self, service):
 return Job.addService(self.followOn, service)

 def addFollowOn(self, followOnJob):
 return Job.addFollowOn(self.followOn, followOnJob)

 def rv(self, argIndex=0):
 return self.followOn.rv(argIndex)

class PromisedJobReturnValue(object):
 """
 References a return value from a Job's run function. Let T be a job.
 Instances of PromisedJobReturnValue are created by
 T.rv(), which is used to reference the return value of T's run function.
 When passed to the constructor of a different, successor Job the PromisedJobReturnValue
 will be replaced by the actual referenced return value.
 This mechanism allows a return values from one Job's run method to be input
 argument to Job before the former Job's run function has been executed.
 """
 def __init__(self):
 #The None values are replaced with a actual values in Job._setFileIDsForPromisedValues
 self.jobStoreFileID = None #A file containing the actual pickled return value
 self.jobStoreString = None #This is the string used to load the jobStore.

def promisedJobReturnValuePickleFunction(promise):
 """
 This function and promisedJobReturnValueUnpickleFunction are used as custom pickle/unpickle
 functions to ensure that when the PromisedJobReturnValue instance p is unpickled it is replaced with
 the object pickled in p.jobStoreFileID
 """
 return promisedJobReturnValueUnpickleFunction, (promise.jobStoreString, promise.jobStoreFileID)

def promisedJobReturnValueUnpickleFunction(jobStoreString, jobStoreFileID):
 """The PromisedJobReturnValue custom unpickle function.
 """
 #If the attributes jobStoreFileID and jobStoreString are None then we return
 #a new empty PromisedJobReturnValue (this can happen if Promise is serialised between its creation
 #and the running of Job._setFileIDsForPromisedValues.
 if jobStoreString == None:
 assert jobStoreFileID == None
 return PromisedJobReturnValue()
 jobStore = loadJobStore(jobStoreString)
 with jobStore.readFileStream(jobStoreFileID) as fileHandle:
 value = cPickle.load(fileHandle) #If this doesn't work then the file containing the promise may not exist or be corrupted.
 return value

#This sets up the custom magic for pickling/unpickling a PromisedJobReturnValue
copy_reg.pickle(PromisedJobReturnValue,
 promisedJobReturnValuePickleFunction,
 promisedJobReturnValueUnpickleFunction)

def deleteFileStoreIDs(job, jobStoreFileIDsToDelete):
 """
 Job function that deletes a bunch of files using their jobStoreFileIDs
 """
 map(lambda i : job.fileStore.deleteGlobalFile(i), jobStoreFileIDsToDelete)

def blockUntilDeleted(job, jobStoreFileIDs):
 """
 Function will not terminate until all the fileStoreIDs in jobStoreFileIDs
 cease to exist.
 """
 while True:
 jobStoreFileIDs = [i for i in jobStoreFileIDs
 if job.fileStore.globalFileExists(i)]
 if len(jobStoreFileIDs) == 0:
 break
 time.sleep(1)

 © Copyright 2015, UCSC Computational Genomics Lab.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/down-pressed.png

