
Toil Documentation
Release 3.1.7a1

UCSC Computational Genomics Lab

June 06, 2016

Contents

1 Toil 3
1.1 Features . 3
1.2 Prerequisites . 4
1.3 Installation . 4
1.4 Scripting Quick Start . 5
1.5 Building & Testing . 6

2 User Tutorial 7
2.1 Job basics . 7
2.2 Job.Runner . 7
2.3 Functions and job functions . 9
2.4 Workflows with multiple jobs . 10
2.5 Dynamic Job Creation . 11
2.6 Promises . 11
2.7 Job.FileStore: Managing files within a workflow . 12
2.8 Services . 14
2.9 Encapsulation . 15
2.10 Toil Utilities . 16

3 Toil API 17
3.1 Job Methods . 17
3.2 Job.FileStore . 20
3.3 Job.Runner . 22
3.4 Job.Service . 23
3.5 FunctionWrappingJob . 23
3.6 JobFunctionWrappingJob . 23
3.7 EncapsulatedJob . 24
3.8 Promise . 24
3.9 Exceptions . 25

4 The batch system interface 27
4.1 Implementing the batch system interface tutorial . 27
4.2 Toil Abstract Batch System API . 27

5 The job store interface 29
5.1 Implementing the job store interface tutorial . 29
5.2 Toil Abstract Job Store API . 29

6 Indices and tables 33

i

ii

Toil Documentation, Release 3.1.7a1

Contents:

Contents 1

Toil Documentation, Release 3.1.7a1

2 Contents

CHAPTER 1

Toil

1.1 Features

Toil is a workflow engine entirely written in Python. It features:

• Easy installation, e.g. pip install toil.

• A small API

Easily mastered, the user API is built upon one core class.

• Cross platform support

Develop and test on your laptop then deploy on any of the following:

– Commercial clouds + Amazon Web Services (including the spot market) + Microsoft Azure

– Private clouds + OpenStack

– High Performance Computing Environments + GridEngine + Apache Mesos + Parasol + Individual multi-
core machines

• Complete file and stream management:

Temporary and persistent file management that abstracts the details of the underlying file system, providing a
uniform interface regardless of environment. Supports both atomic file transfer and streaming interfaces, and
provides encryption of user data.

• Scalability:

Toil can easily handle workflows concurrently using hundreds of nodes and thousands of cores.

• Robustness:

Toil workflows support arbitrary worker and leader failure, with strong check-pointing that always allows re-
sumption.

• Efficiency:

Caching, fine grained, per task, resource requirement specifications, and support for the AWS spot market mean
workflows can be executed with little waste.

• Declarative and dynamic workflow creation:

Workflows can be declared statically, but new jobs can be added dynamically during execution within any
existing job, allowing arbitrarily complex workflow graphs with millions of jobs within them.

3

https://aws.amazon.com/
https://aws.amazon.com/ec2/spot/
https://azure.microsoft.com
https://www.openstack.org/
http://gridscheduler.sourceforge.net/
http://mesos.apache.org/
https://users.soe.ucsc.edu/~donnak/eng/parasol.htm

Toil Documentation, Release 3.1.7a1

• Support for databases and services:

For example, Apache Spark clusters can be created in seconds and easily integrated within a toil workflow as a
service, with precisely defined time start and end times that fits with the flow of other jobs in the workflow.

• Draft Common Workflow Language (CWL) support

Complete support for the draft 2.0 CWL specification, allowing it to execute CWL workflows.

• Open Source: An Apache license allows unrestricted use.

1.2 Prerequisites

• Python 2.7.x

• pip > 7.x

1.3 Installation

To setup a basic Toil installation use

pip install toil

Toil uses setuptools’ extras mechanism for dependencies of optional features like support for Mesos or AWS. To install
Toil with all bells and whistles use

pip install toil[aws,mesos,azure,encryption]

Here’s what each extra provides:

• The aws extra provides support for storing workflow state in Amazon AWS. This extra has no native dependen-
cies.

• The azure extra stores workflow state in Microsoft Azure Storage. This extra has no native dependencies.

• The mesos extra provides support for running Toil on an Apache Mesos cluster. Note that running Toil on SGE
(GridEngine), Parasol or a single machine does not require an extra. The mesos extra requires the following
native dependencies:

– Apache Mesos

– Python headers and static libraries

• The encryption extra provides client-side encryption for files stored in the Azure and AWS job stores. This
extra requires the following native dependencies:

– Python headers and static libraries

– Libffi headers and library

4 Chapter 1. Toil

https://pip.readthedocs.org/en/latest/installing.html
https://pythonhosted.org/setuptools/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies
http://mesos.apache.org/

Toil Documentation, Release 3.1.7a1

Apache Mesos

Only needed for the mesos extra. Toil has been tested with version 0.25.0. Mesos can be installed on Linux
by following the instructions on https://open.mesosphere.com/getting-started/install/. The Homebrew package
manager has a formula for Mesos such that running brew install mesos is probably the easiest way to
install Mesos on OS X. This assumes, of course, that you already have Xcode and Homebrew.
Please note that even though Toil depends on the Python bindings for Mesos, it does not explicitly declare that
dependency and they will not be installed automatically when you run pip install toil[mesos]. You
need to install the bindings manually. The Homebrew formula for OS X installs them by default. On Ubuntu
you will need to download the appropriate .egg from https://open.mesosphere.com/downloads/mesos/ and in-
stall it using easy_install -a <path_to_egg>. Note that on Ubuntu Trusty you may need to upgrade
protobuf via pip install --upgrade protobuf before running the above easy_install com-
mand.

Python headers and static libraries

Only needed for the mesos and encryption extras. The Python headers and static libraries can be installed on
Ubuntu/Debian by running sudo apt-get install build-essential python-dev and accord-
ingly on other Linux distributions. On Mac OS X, these headers and libraries are installed when you install the
Xcode command line tools by running xcode-select --install, assuming, again, that you have Xcode
installed.

Libffi headers and library

Libffi is only needed for the encryption extra. To install Libffi on Ubuntu, run sudo apt-get install
libffi-dev. On Mac OS X, run brew install libffi. This assumes, of course, that you have Xcode
and Homebrew installed.

1.4 Scripting Quick Start

Toil’s Job class (toil.job.Job) contains the Toil API, documented below. To begin, consider this short toil script
which illustrates defining a workflow:

from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
return "Hello, world!, here's a message: %s" % message

j = Job.wrapFn(helloWorld, "woot")

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflow")
print Job.Runner.startToil(j, options) #Prints Hello, world!, ...

The workflow consists of a single job, which calls the helloWorld function. The resource requirements for that job are
(optionally) specified by keyword arguments (memory, cores, disk).

The toil.job.Job.Runner class handles the invocation of Toil workflows. It is fed an options ob-
ject that configures the running of the workflow. This can be populated by an argument parser object using
toil.job.Job.Runner.getDefaultArgumentParser(), allowing all these options to be specified via
the command line to the script. See User Tutorial for more details.

1.4. Scripting Quick Start 5

https://open.mesosphere.com/getting-started/install/
http://brew.sh/
https://developer.apple.com/xcode/
http://brew.sh/
http://brew.sh/
https://open.mesosphere.com/downloads/mesos/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://sourceware.org/libffi/
https://sourceware.org/libffi/
https://developer.apple.com/xcode/
http://brew.sh/

Toil Documentation, Release 3.1.7a1

1.5 Building & Testing

For developers and people interested in building the project from source the following explains how to setup virtualenv
to create an environment to use Toil in.

After cloning the source and cd-ing into the project root, create a virtualenv and activate it:

virtualenv venv
. venv/bin/activate

Simply running

make

from the project root will print a description of the available Makefile targets.

If cloning from GitHub, running

make develop

will install Toil in editable mode, also known as development mode. Just like with a regular install, you may specify
extras to use in development mode after installing any native dependencies listed in Installation.

make develop extras=[aws,mesos,azure,encryption]

To invoke the tests (unit and integration) use

make test

Run an individual test with

make test tests=src/toil/test/sort/sortTest.py::SortTest::testSort

The default value for tests is "src" which includes all tests in the src subdirectory of the project root. Tests that
require a particular feature will be skipped implicitly. If you want to explicitly skip tests that depend on a currently
installed feature, use

make test tests="-m 'not azure' src"

This will run only the tests that don’t depend on the azure extra, even if that extra is currently installed. Note the
distinction between the terms feature and extra. Every extra is a feature but there are features that are not extras,
the gridengine and parasol features fall into that category. So in order to skip tests involving both the Parasol
feature and the Azure extra, the following can be used:

make test tests="-m 'not azure and not parasol' src"

1.5.1 Running Mesos Tests

See Apache Mesos. Be sure to create the virtualenv with --system-site-packages to include the Mesos Python
bindings. Verify by activating the virtualenv and running .. pip list | grep mesos. On OS X, this may come
up empty. To fix it, run the following:

for i in /usr/local/lib/python2.7/site-packages/*mesos*; do ln -snf $i venv/lib/python2.7/site-packages/ ; done

6 Chapter 1. Toil

https://pythonhosted.org/setuptools/setuptools.html#development-mode

CHAPTER 2

User Tutorial

This tutorial will guide you through the features of Toil from a user perspective.

2.1 Job basics

The atomic unit of work in a Toil workflow is a job (toil.job.Job). User scripts inherit from this base class to
define units of work. For example:

from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
fileStore.logToMaster("Hello, world!, I have a message: %s" %

self.message)

In the example a class, HelloWorld, is defined. The constructor requests 2 gigabytes of memory, 2 cores and 3
gigabytes of local disk to complete the work.

The toil.job.Job.run() method is the function the user overrides to get work done. Here it just logs a message
using toil.job.Job.FileStore.logToMaster(), which will be registered in the log output of the leader
process of the workflow.

2.2 Job.Runner

2.2.1 Invoking a workflow

We can add to the previous example to turn it into a complete workflow by adding the necessary function
calls to create an instance of HelloWorld and to run this as a workflow containing a single job. This uses the
toil.job.Job.Runner class, which is used to start and resume Toil workflows. For example:

from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")

7

Toil Documentation, Release 3.1.7a1

self.message = message

def run(self, fileStore):
fileStore.logToMaster("Hello, world!, I have a message: %s"

% self.message)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
Job.Runner.startToil(HelloWorld("woot"), options)

The call to toil.job.Job.Runner.getDefaultOptions() creates a set of default options for the workflow.
The only argument is a description of how to store the workflow’s state in what we call a job store. Here the job store
is contained in a directory within the current working directory called “toilWorkflowRun”. Alternatively this string
can encode an S3 bucket or Azure object store location. By default the job store is deleted if the workflow completes
successfully.

On the next line we specify a single option, the log level for the workflow, to ensure the message from the job is
reported in the leader’s log, which by default will be printed to standard error.

The workflow is executed in the final line, which creates an instance of HelloWorld and runs it as a workflow. Note all
Toil workflows start from a single starting job, referred to as the root job.

2.2.2 Specifying arguments via the command line

To allow command line control of the options we can use the toil.job.Job.Runner.getDefaultArgumentParser()
method to create a argparse.ArgumentParser object which can be used to parse command line options for a
Toil script. For example:

from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
fileStore.logToMaster("Hello, world!, I have a message: %s"

% self.message)

if __name__=="__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
options.logLevel = "INFO"
Job.Runner.startToil(HelloWorld("woot"), options)

Creates a fully fledged script with all the options Toil exposed as command line arguments. Running this script with
“–help” will print the full list of options.

Alternatively an existing argparse.ArgumentParser or optparse.OptionParser object can have Toil
script command line options added to it with the toil.job.Job.Runner.addToilOptions() method.

2.2.3 Resuming a workflow

In the event that a workflow fails, either because of programmatic error within the jobs being run, or be-
cause of node failure, the workflow can be resumed. Workflows can only not be reliably resumed if the job

8 Chapter 2. User Tutorial

Toil Documentation, Release 3.1.7a1

store itself becomes corrupt. To resume a workflow specify the “restart” option in the options object passed to
toil.job.Job.Runner.startToil(). If node failures are expected it can also be useful to use the integer
“retryCount” option, which will attempt to rerun a job retryCount number of times before marking it fully failed.

In the common scenario that a small subset of jobs fail (including retry attempts) within a workflow Toil will continue
to run other jobs until it can do no more, at which point toil.job.Job.Runner.startToil() will raise a
toil.job.leader.FailedJobsException exception. Typically at this point the user can decide to fix the
script and resume the workflow or delete the job-store manually and rerun the complete workflow.

2.3 Functions and job functions

Defining jobs by creating class definitions generally involves the boilerplate of creating a constructor. To avoid this the
classes toil.job.FunctionWrappingJob and toil.job.JobFunctionWrappingTarget allow func-
tions to be directly converted to jobs. For example:

from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.fileStore.logToMaster("Hello world, "
"I have a message: %s" % message) # This uses a logging function
of the Job.FileStore class

j = Job.wrapJobFn(helloWorld, "woot")

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(j, options)

Is equivalent to the complete previous example. Here helloWorld is an example of a job function, a function whose
first argument is a reference to the wrapping job. Just like a self argument in a class, this allows access to the methods
of the wrapping job, see toil.job.JobFunctionWrappingTarget.

The function call:

Job.wrapJobFn(helloWorld, "woot")

Creates the instance of the toil.job.JobFunctionWrappingTarget that wraps the job function.

The keyword arguments memory, cores and disk allow resource requirements to be specified as before. Even if they
are not included as keyword arguments within a function header they can be passed to as arguments when wrapping a
function as a job and will be used to specify resource requirements.

Non-job functions can also be wrapped, for example:

from toil.job import Job

def helloWorld2(message):
return "Hello world, I have a message: %s" % message

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
print Job.Runner.startToil(Job.wrapFn(helloWorld2, "woot"), options)

Here the only major difference to note is the line:

Job.Runner.startToil(Job.wrapFn(helloWorld, "woot"), options)

2.3. Functions and job functions 9

Toil Documentation, Release 3.1.7a1

Which uses the function toil.job.Job.wrapFn() to wrap an ordinary function instead of
toil.job.Job.wrapJobFn() which wraps a job function.

2.4 Workflows with multiple jobs

A parent job can have child jobs and follow-on jobs. These relationships are specified by methods of the job class, e.g.
toil.job.Job.addChild() and toil.job.Job.addFollowOn().

Considering a set of jobs the nodes in a job graph and the child and follow-on relationships the directed edges of
the graph, we say that a job B that is on a directed path of child/follow-on edges from a job A in the job graph is a
successor of A, similarly A is a predecessor of B.

A parent job’s child jobs are run directly after the parent job has completed, and in parallel. The follow-on jobs of a
job are run after its child jobs and their successors have completed. They are also run in parallel. Follow-ons allow
the easy specification of cleanup tasks that happen after a set of parallel child tasks. The following shows a simple
example that uses the earlier helloWorld job function:

from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.fileStore.logToMaster("Hello world, "
"I have a message: %s" % message) # This uses a logging function
of the Job.FileStore class

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = Job.wrapJobFn(helloWorld, "second or third")
j3 = Job.wrapJobFn(helloWorld, "second or third")
j4 = Job.wrapJobFn(helloWorld, "last")
j1.addChild(j2)
j1.addChild(j3)
j1.addFollowOn(j4)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(j1, options)

In the example four jobs are created, first j1 is run, then j2 and j3 are run in parallel as children of j1, finally j4 is run
as a follow-on of j1.

There are multiple short hand functions to achieve the same workflow, for example:

from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.fileStore.logToMaster("Hello world, "
"I have a message: %s" % message) # This uses a logging function
of the Job.FileStore class

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = j1.addChildJobFn(helloWorld, "second or third")
j3 = j1.addChildJobFn(helloWorld, "second or third")
j4 = j1.addFollowOnJobFn(helloWorld, "last")

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(j1, options)

10 Chapter 2. User Tutorial

Toil Documentation, Release 3.1.7a1

Equivalently defines the workflow, where the functions toil.job.Job.addChildJobFn() and
toil.job.Job.addFollowOnJobFn() are used to create job functions as children or follow-ons of an
earlier job.

Jobs graphs are not limited to trees, and can express arbitrary directed acylic graphs. For a precise definition of legal
graphs see toil.job.Job.checkJobGraphForDeadlocks(). The previous example could be specified as a
DAG as follows:

from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.fileStore.logToMaster("Hello world, "
"I have a message: %s" % message) # This uses a logging function
of the Job.FileStore class

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = j1.addChildJobFn(helloWorld, "second or third")
j3 = j1.addChildJobFn(helloWorld, "second or third")
j4 = j2.addChildJobFn(helloWorld, "last")
j3.addChild(j4)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(j1, options)

Note the use of an extra child edge to make j4 a child of both j2 and j3.

2.5 Dynamic Job Creation

The previous examples show a workflow being defined outside of a job. However, Toil also allows jobs to be created
dynamically within jobs. For example:

from toil.job import Job

def binaryStringFn(job, message="", depth):
if depth > 0:

job.addChildJobFn(binaryStringFn, message + "0", depth-1)
job.addChildJobFn(binaryStringFn, message + "1", depth-1)

else:
job.fileStore.logToMaster("Binary string: %s" % message)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(Job.wrapJobFn(binaryStringFn, depth=5), options)

The binaryStringFn logs all possible binary strings of length n (here n=5), creating a total of 2^(n+2) - 1 jobs dynami-
cally and recursively. Static and dynamic creation of jobs can be mixed in a Toil workflow, with jobs defined within a
job or job function being created at run-time.

2.6 Promises

The previous example of dynamic job creation shows variables from a parent job being passed to a child job. Such
forward variable passing is naturally specified by recursive invocation of successor jobs within parent jobs. However,
it is often desirable to return variables from jobs in a non-recursive or dynamic context. In Toil this is achieved with
promises, as illustrated in the following example:

2.5. Dynamic Job Creation 11

Toil Documentation, Release 3.1.7a1

from toil.job import Job

def fn(job, i):
job.fileStore.logToMaster("i is: %s" % i, logLevel=100)
return i+1

j1 = Job.wrapJobFn(fn, 1)
j2 = j1.addChildJobFn(fn, j1.rv())
j3 = j1.addFollowOnJobFn(fn, j2.rv())

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(j1, options)

Running this workflow results in three log messages from the jobs: “i is 1” from j1, “i is 2” from j2 and “i is 3” from
j3.

The return value from the first job is promised to the second job by the call to toil.job.Job.rv() in the line:

j2 = j1.addChildFn(fn, j1.rv())

The value of j1.rv() is a promise, rather than the actual return value of the function, because j1 for the given input has
at that point not been evaluated. A promise (toil.job.PromisedJobReturnValue) is essentially a pointer to
the return value that is replaced by the actual return value once it has been evaluated. Therefore when j2 is run the
promise becomes 2.

Promises can be quite useful. For example, we can combine dynamic job creation with promises to achieve a job
creation process that mimics the functional patterns possible in many programming languages:

from toil.job import Job

def binaryStrings(job, message="", depth):
if depth > 0:

s = [job.addChildJobFn(binaryStrings, message + "0",
depth-1).rv(),

job.addChildJobFn(binaryStrings, message + "1",
depth-1).rv()]

return job.addFollowOnFn(merge, s).rv()
return [message]

def merge(strings):
return strings[0] + strings[1]

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
l = Job.Runner.startToil(Job.wrapJobFn(binaryStrings, depth=5), options)
print l #Prints a list of all binary strings of length 5

The return value l of the workflow is a list of all binary strings of length 10, computed recursively. Although a toy
example, it demonstrates how closely Toil workflows can mimic typical programming patterns.

2.7 Job.FileStore: Managing files within a workflow

It is frequently the case that a workflow will want to create files, both persistent and temporary, during its run. The
toil.job.Job.FileStore class is used by jobs to manage these files in a manner that guarantees cleanup and
resumption on failure.

12 Chapter 2. User Tutorial

Toil Documentation, Release 3.1.7a1

The toil.job.Job.run() method has a file store instance as an argument. The following example shows how
this can be used to create temporary files that persist for the length of the job, be placed in a specified local disk of the
node and that will be cleaned up, regardless of failure, when the job finishes:

from toil.job import Job

class LocalFileStoreJob(Job):
def run(self, fileStore):

scratchDir = fileStore.getLocalTempDir() #Create a temporary
directory safely within the allocated disk space
reserved for the job.

scratchFile = fileStore.getLocalTempFile() #Similarly
create a temporary file.

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
#Create an instance of FooJob which will
have at least 10 gigabytes of storage space.
j = LocalFileStoreJob(disk="10G")
#Run the workflow
Job.Runner.startToil(j, options)

Job functions can also access the file store for the job. The equivalent of the LocalFileStoreJob class is equivalently:

def localFileStoreJobFn(job):
scratchDir = job.fileStore.getLocalTempDir()
scratchFile = job.fileStore.getLocalTempFile()

Note that the fileStore attribute is accessed as an attribute of the job argument.

In addition to temporary files that exist for the duration of a job, the file store allows the creation of files in a global
store, which persists during the workflow and are globally accessible (hence the name) between jobs. For example:

from toil.job import Job
import os

def globalFileStoreJobFn(job):
job.fileStore.logToMaster("The following example exercises all the"

" methods provided by the"
" Job.FileStore class")

scratchFile = job.fileStore.getLocalTempFile() # Create a local
temporary file.

with open(scratchFile, 'w') as fH: # Write something in the
scratch file.
fH.write("What a tangled web we weave")

Write a copy of the file into the file store;
fileID is the key that can be used to retrieve the file.
fileID = job.fileStore.writeGlobalFile(scratchFile) #This write
is asynchronous by default

Write another file using a stream; fileID2 is the
key for this second file.
with job.fileStore.writeGlobalFileStream(cleanup=True) as (fH, fileID2):

fH.write("Out brief candle")

Now read the first file; scratchFile2 is a local copy of the file

2.7. Job.FileStore: Managing files within a workflow 13

Toil Documentation, Release 3.1.7a1

that is read only by default.
scratchFile2 = job.fileStore.readGlobalFile(fileID)

Read the second file to a desired location: scratchFile3.
scratchFile3 = os.path.join(job.fileStore.getLocalTempDir(), "foo.txt")
job.fileStore.readGlobalFile(fileID, userPath=scratchFile3)

Read the second file again using a stream.
with job.fileStore.readGlobalFileStream(fileID2) as fH:

print fH.read() #This prints "Out brief candle"

Delete the first file from the global file store.
job.fileStore.deleteGlobalFile(fileID)

It is unnecessary to delete the file keyed by fileID2
because we used the cleanup flag, which removes the file after this
job and all its successors have run (if the file still exists)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(Job.wrapJobFn(globalFileStoreJobFn), options)

The example demonstrates the global read, write and delete functionality of the file store, using both local copies of
the files and streams to read and write the files. It covers all the methods provided by the file store interface.

What is obvious is that the file store provides no functionality to update an existing “global” file, meaning that files
are, barring deletion, immutable. Also worth noting is that there is no file system hierarchy for files in the global file
store. These limitations allow us to fairly easily support different object stores and to use caching to limit the amount
of network file transfer between jobs.

2.8 Services

It is sometimes desirable to run services, such as a database or server, concurrently with a workflow. The
toil.job.Job.Service class provides a simple mechanism for spawning such a service within a Toil work-
flow, allowing precise specification of the start and end time of the service, and providing start and end methods to use
for initialization and cleanup. The following simple, conceptual example illustrates how services work:

from toil.job import Job

class DemoService(Job.Service):

def start(self):
Start up a database/service here
return "loginCredentials" # Return a value that enables another
process to connect to the database

def stop(self):
Cleanup the database here
pass

j = Job()
s = DemoService()
loginCredentialsPromise = j.addService(s)

def dbFn(loginCredentials):
Use the login credentials returned from the service's start method

14 Chapter 2. User Tutorial

Toil Documentation, Release 3.1.7a1

to connect to the service
pass

j.addChildFn(dbFn, loginCredentialsPromise)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(j, options)

In this example the DemoService starts a database in the start method, returning an object from the start method
indicating how a client job would access the database. The service’s stop method cleans up the database.

A DemoService instance is added as a service of the root job j, with resource requirements specified. The return value
from toil.job.Job.addService() is a promise to the return value of the service’s start method. When the
promised is fulfilled it will represent how to connect to the database. The promise is passed to a child job of j, which
uses it to make a database connection. The services of a job are started before any of its successors have been run and
stopped after all the successors of the job have completed successfully.

2.9 Encapsulation

Let A be a root job potentially with children and follow-ons. Without an encapsulated job the simplest way to specify
a job B which runs after A and all its successors is to create a parent of A, call it Ap, and then make B a follow-on of
Ap. e.g.:

from toil.job import Job

A is a job with children and follow-ons, for example:
A = Job()
A.addChild(Job())
A.addFollowOn(Job())

B is a job which needs to run after A and its successors
B = Job()

The way to do this without encapsulation is to make a
parent of A, Ap, and make B a follow-on of Ap.
Ap = Job()
Ap.addChild(A)
Ap.addFollowOn(B)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(Ap, options)

An encapsulated job of E(A) of A saves making Ap, instead we can write:

from toil.job import Job

A
A = Job()
A.addChild(Job())
A.addFollowOn(Job())

#Encapsulate A
A = A.encapsulate()

2.9. Encapsulation 15

Toil Documentation, Release 3.1.7a1

B is a job which needs to run after A and its successors
B = Job()

With encapsulation A and its successor subgraph appear
to be a single job, hence:
A.addChild(B)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(A, options)

Note the call to toil.job.Job.encapsulate() creates the toil.job.Job.EncapsulatedJob.

2.10 Toil Utilities

TODO: Cover clean, kill, restart, stats and status. Note these should have APIs to access them as well as the utilities.

16 Chapter 2. User Tutorial

CHAPTER 3

Toil API

3.1 Job Methods

Jobs are the units of work in Toil which are composed into workflows.

class toil.job.Job(memory=None, cores=None, disk=None, cache=None)
Class represents a unit of work in toil.

This method must be called by any overiding constructor.

Parameters

• memory (int or string convertable by bd2k.util.humanize.human2bytes
to an int) – the maximum number of bytes of memory the job will require to run.

• cores (int or string convertable by bd2k.util.humanize.human2bytes
to an int) – the number of CPU cores required.

• disk (int or string convertable by bd2k.util.humanize.human2bytes
to an int) – the amount of local disk space required by the job, expressed in bytes.

• cache (int or string convertable by bd2k.util.humanize.human2bytes
to an int) – the amount of disk (so that cache <= disk), expressed in bytes, for storing
files from previous jobs so that they can be accessed from a local copy.

addChild(childJob)
Adds childJob to be run as child of this job. Child jobs will be run directly after this job’s
toil.job.Job.run() method has completed.

Parameters childJob (toil.job.Job) –

Returns childJob

Return type toil.job.Job

addChildFn(fn, *args, **kwargs)
Adds a function as a child job.

Parameters fn – Function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to
specify resource requirements.

Returns The new child job that wraps fn.

Return type toil.job.FunctionWrappingJob

17

Toil Documentation, Release 3.1.7a1

addChildJobFn(fn, *args, **kwargs)
Adds a job function as a child job. See toil.job.JobFunctionWrappingJob for a definition of a
job function.

Parameters fn – Job function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used
to specify resource requirements.

Returns The new child job that wraps fn.

Return type toil.job.JobFunctionWrappingJob

addFollowOn(followOnJob)
Adds a follow-on job, follow-on jobs will be run after the child jobs and their successors have been run.

Parameters followOnJob (toil.job.Job) –

Returns followOnJob

Return type toil.job.Job

addFollowOnFn(fn, *args, **kwargs)
Adds a function as a follow-on job.

Parameters fn – Function to be run as a follow-on job with *args and **kwargs as argu-
ments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments
used to specify resource requirements.

Returns The new follow-on job that wraps fn.

Return type toil.job.FunctionWrappingJob

addFollowOnJobFn(fn, *args, **kwargs)
Add a follow-on job function. See toil.job.JobFunctionWrappingJob for a definition of a job
function.

Parameters fn – Job function to be run as a follow-on job with *args and **kwargs as
arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword ar-
guments used to specify resource requirements.

Returns The new follow-on job that wraps fn.

Return type toil.job.JobFunctionWrappingJob

addService(service)
Add a service.

The toil.job.Job.Service.start() method of the service will be called after the run method
has completed but before any successors are run. The service’s toil.job.Job.Service.stop()
method will be called once the successors of the job have been run.

Services allow things like databases and servers to be started and accessed by jobs in a workflow.

Parameters service (toil.job.Job.Service) – Service to add.

Returns a promise that will be replaced with the return value from
toil.job.Job.Service.start() of service in any successor of the job.

Return type toil.job.PromisedJobReturnValue

checkJobGraphAcylic()

Raises toil.job.JobGraphDeadlockException – if the connected component of jobs
containing this job contains any cycles of child/followOn dependencies in the augmented job
graph (see below). Such cycles are not allowed in valid job graphs.

18 Chapter 3. Toil API

Toil Documentation, Release 3.1.7a1

A follow-on edge (A, B) between two jobs A and B is equivalent to adding a child edge to B from (1) A,
(2) from each child of A, and (3) from the successors of each child of A. We call each such edge an edge
an “implied” edge. The augmented job graph is a job graph including all the implied edges.

For a job graph G = (V, E) the algorithm is O(|V|^2). It is O(|V| + |E|) for a graph with no
follow-ons. The former follow-on case could be improved!

checkJobGraphConnected()

Raises toil.job.JobGraphDeadlockException – if
toil.job.Job.getRootJobs() does not contain exactly one root job.

As execution always starts from one root job, having multiple root jobs will cause a deadlock to occur.

checkJobGraphForDeadlocks()

Raises toil.job.JobGraphDeadlockException – if the job graph is cyclic or contains
multiple roots.

See toil.job.Job.checkJobGraphConnected() and toil.job.Job.checkJobGraphAcyclic()
for more info.

effectiveRequirements(config)
Determine and validate the effective requirements for this job, substituting a missing explict requirement
with a default from the configuration.

Return type Expando

Returns a dictionary/object hybrid with one entry/attribute for each requirement

encapsulate()
Encapsulates the job, see toil.job.EncapsulatedJob. Convenience function for constructor of
toil.job.EncapsulatedJob.

Returns an encapsulated version of this job.

Return type toil.job.EncapsulatedJob.

getRootJobs()

Returns The roots of the connected component of jobs that contains this job. A root is a job
with no predecessors.

:rtype : set of toil.job.Job instances

getTopologicalOrderingOfJobs()

Returns a list of jobs such that for all pairs of indices i, j for which i < j, the job at index i can
be run before the job at index j.

Return type list

getUserScript()

hasChild(childJob)
Check if childJob is already a child of this job.

Parameters childJob (toil.job.Job) –

Returns True if childJob is a child of the job, else False.

Return type Boolean

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

3.1. Job Methods 19

Toil Documentation, Release 3.1.7a1

Parameters fileStore (toil.job.Job.FileStore) – Used to create local and glob-
ally sharable temporary files and to send log messages to the leader process.

Returns The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

rv(argIndex=None)
Gets a promise (toil.job.PromisedJobReturnValue) representing a return value of the job’s run
function.

Parameters argIndex (int or None) – If None the complete return value will be re-
turned, if argIndex is an integer it is used to refer to the return value as indexable (tu-
ple/list/dictionary, or in general an object that implements __getitem__), hence rv(i) would
refer to the ith (indexed from 0) member of the return value.

Returns A promise representing the return value of the toil.job.Job.run() function.

Return type toil.job.PromisedJobReturnValue, referred to as a “promise”

static wrapFn(fn, *args, **kwargs)
Makes a Job out of a function. Convenience function for constructor of
toil.job.FunctionWrappingJob.

Parameters fn – Function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource
requirements.

Returns The new function that wraps fn.

Return type toil.job.FunctionWrappingJob

static wrapJobFn(fn, *args, **kwargs)
Makes a Job out of a job function. Convenience function for constructor of
toil.job.JobFunctionWrappingJob.

Parameters fn – Job function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource
requirements.

Returns The new job function that wraps fn.

Return type toil.job.JobFunctionWrappingJob

3.2 Job.FileStore

The FileStore is an abstraction of a Toil run’s shared storage.

class Job.FileStore(jobStore, jobWrapper, localTempDir, inputBlockFn)
Class used to manage temporary files, read and write files from the job store and log messages, passed as
argument to the toil.job.Job.run() method.

This constructor should not be called by the user, FileStore instances are only provided as arguments to the run
function.

Parameters

• jobStore (toil.jobStores.abstractJobStore.JobStore) – The job store
for the workflow.

• jobWrapper (toil.jobWrapper.JobWrapper) – The jobWrapper for the job.

20 Chapter 3. Toil API

Toil Documentation, Release 3.1.7a1

• localTempDir (string) – A temporary directory in which local temporary files will
be placed.

• inputBlockFn (method) – A function which blocks and which is called before the
fileStore completes atomically updating the jobs files in the job store.

deleteGlobalFile(fileStoreID)
Deletes a global file with the given job store ID.

To ensure that the job can be restarted if necessary, the delete will not happen until after the job’s run
method has completed.

Parameters fileStoreID – the job store ID of the file to be deleted.

getLocalTempDir()
Get a new local temporary directory in which to write files that persist for the duration of the job.

Returns The absolute path to a new local temporary directory. This directory will exist for the
duration of the job only, and is guaranteed to be deleted once the job terminates, removing
all files it contains recursively.

Return type string

getLocalTempFile()
Get a new local temporary file that will persist for the duration of the job.

Returns The absolute path to a local temporary file. This file will exist for the duration of the
job only, and is guaranteed to be deleted once the job terminates.

Return type string

logToMaster(text, level=20)
Send a logging message to the leader. The message will also be logged by the worker at the same level.

Parameters

• string – The string to log.

• level (int) – The logging level.

readGlobalFile(fileStoreID, userPath=None, cache=True)
Get a copy of a file in the job store.

Parameters

• userPath (string) – a path to the name of file to which the global file will be copied
or hard-linked (see below).

• cache (boolean) – If True will use caching (see below). Caching will attempt to keep
copies of files between sequences of jobs run on the same worker.

If cache=True and userPath is either: (1) a file path contained within a directory or, recursively, a subdi-
rectory of a temporary directory returned by Job.FileStore.getLocalTempDir(), or (2) a file path returned
by Job.FileStore.getLocalTempFile() then the file will be cached and returned file will be read only (have
permissions 444).

If userPath is specified and the file is already cached, the userPath file will be a hard link to the actual
location, else it will be an actual copy of the file.

If the cache=False or userPath is not either of the above the file will not be cached and will have default
permissions. Note, if the file is already cached this will result in two copies of the file on the system.

Returns an absolute path to a local, temporary copy of the file keyed by fileStoreID.

:rtype : string

3.2. Job.FileStore 21

Toil Documentation, Release 3.1.7a1

readGlobalFileStream(fileStoreID)
Similar to readGlobalFile, but allows a stream to be read from the job store.

Returns a context manager yielding a file handle which can be read from. The yielded file
handle does not need to and should not be closed explicitly.

writeGlobalFile(localFileName, cleanup=False)
Takes a file (as a path) and uploads it to the job store.

If the local file is a file returned by toil.job.Job.FileStore.getLocalTempFile()
or is in a directory, or, recursively, a subdirectory, returned by
toil.job.Job.FileStore.getLocalTempDir() then the write is asynchronous, so fur-
ther modifications during execution to the file pointed by localFileName will result in undetermined
behavior. Otherwise, the method will block until the file is written to the file store.

Parameters

• localFileName (string) – The path to the local file to upload.

• cleanup (Boolean) – if True then the copy of the global file will be deleted once the
job and all its successors have completed running. If not the global file must be deleted
manually.

Returns an ID that can be used to retrieve the file.

writeGlobalFileStream(cleanup=False)
Similar to writeGlobalFile, but allows the writing of a stream to the job store.

Parameters cleanup (Boolean) – is as in toil.job.Job.FileStore.writeGlobalFile().

Returns a context manager yielding a tuple of 1) a file handle which can be written to and 2) the
ID of the resulting file in the job store. The yielded file handle does not need to and should
not be closed explicitly.

3.3 Job.Runner

The Runner contains the methods needed to configure and start a Toil run.

class Job.Runner
Used to setup and run Toil workflow.

static addToilOptions(parser)
Adds the default toil options to an optparse or argparse parser object.

Parameters parser (optparse.OptionParser or argparse.ArgumentParser)
– Options object to add toil options to.

static getDefaultArgumentParser()
Get argument parser with added toil workflow options.

Returns The argument parser used by a toil workflow with added Toil options.

Return type argparse.ArgumentParser

static getDefaultOptions(jobStore)
Get default options for a toil workflow.

Parameters jobStore (string) – A string describing the jobStore for the workflow.

Returns The options used by a toil workflow.

Return type argparse.ArgumentParser values object

22 Chapter 3. Toil API

Toil Documentation, Release 3.1.7a1

static startToil(job, options)
Runs the toil workflow using the given options (see Job.Runner.getDefaultOptions and
Job.Runner.addToilOptions) starting with this job. :param toil.job.Job job: root job of the workflow
:raises: toil.leader.FailedJobsException if at the end of function their remain failed jobs. :returns: return
value of job’s run function

3.4 Job.Service

The Service class allows databases and servers to be spawned within a Toil workflow.

class Job.Service(memory=None, cores=None, disk=None)
Abstract class used to define the interface to a service.

Memory, core and disk requirements are specified identically to as in toil.job.Job.__init__().

start()
Start the service.

Returns An object describing how to access the service. Must be pickleable. Will be used by
jobs to access the service (see toil.job.Job.addService()).

stop()
Stops the service.

Function can block until complete.

3.5 FunctionWrappingJob

The subclass of Job for wrapping user functions.

class toil.job.FunctionWrappingJob(userFunction, *args, **kwargs)
Job used to wrap a function. In its run method the wrapped function is called.

Parameters userFunction – The function to wrap. The userFunction will be called with the
*args and **kwargs as arguments.

The keywords “memory”, “cores”, “disk”, “cache” are reserved keyword arguments that if specified will be used
to determine the resources for the job, as toil.job.Job.__init__(). If they are keyword arguments to
the function they will be extracted from the function definition, but may be overridden by the user (as you would
expect).

getUserScript()

run(fileStore)

3.6 JobFunctionWrappingJob

The subclass of FunctionWrappingJob for wrapping user job functions.

class toil.job.JobFunctionWrappingJob(userFunction, *args, **kwargs)
A job function is a function whose first argument is a job.Job instance that is the wrapping job for the
function. This can be used to add successor jobs for the function and perform all the functions the job.Job
class provides.

To enable the job function to get access to the toil.job.Job.FileStore instance (see
toil.job.Job.Run()), it is made a variable of the wrapping job called fileStore.

3.4. Job.Service 23

Toil Documentation, Release 3.1.7a1

Parameters userFunction – The function to wrap. The userFunction will be called with the
*args and **kwargs as arguments.

The keywords “memory”, “cores”, “disk”, “cache” are reserved keyword arguments that if specified will be used
to determine the resources for the job, as toil.job.Job.__init__(). If they are keyword arguments to
the function they will be extracted from the function definition, but may be overridden by the user (as you would
expect).

run(fileStore)

3.7 EncapsulatedJob

The subclass of Job for encapsulating a job, allowing a subgraph of jobs to be treated as a single job.

class toil.job.EncapsulatedJob(job)
A convenience Job class used to make a job subgraph appear to be a single job.

Let A be the root job of a job subgraph and B be another job we’d like to run after A and all its successors have
completed, for this use encapsulate:

A, B = A(), B() #Job A and subgraph, Job B
A' = A.encapsulate()
A'.addChild(B) #B will run after A and all its successors have
completed, A and its subgraph of successors in effect appear
to be just one job.

The return value of an encapsulatd job (as accessed by the toil.job.Job.rv() function) is the return value
of the root job, e.g. A().encapsulate().rv() and A().rv() will resolve to the same value after A or A.encapsulate()
has been run.

Parameters job (toil.job.Job) – the job to encapsulate.

addChild(childJob)

addFollowOn(followOnJob)

addService(service)

rv(argIndex=None)

3.8 Promise

The class used to reference return values of jobs/services not yet run/started.

class toil.job.PromisedJobReturnValue(promiseCallBackFunction)
References a return value from a toil.job.Job.run() or toil.job.Job.Service.start()
method as a promise before the method itself is run.

Let T be a job. Instances of PromisedJobReturnValue (termed a promise) are returned by T.rv(), which is used to
reference the return value of T’s run function. When the promise is passed to the constructor (or as an argument
to a wrapped function) of a different, successor job the promise will be replaced by the actual referenced return
value. This mechanism allows a return values from one job’s run method to be input argument to job before the
former job’s run function has been executed.

24 Chapter 3. Toil API

Toil Documentation, Release 3.1.7a1

3.9 Exceptions

Toil specific exceptions.

class toil.job.JobException(message)
General job exception.

class toil.job.JobGraphDeadlockException(string)
An exception raised in the event that a workflow contains an unresolvable dependency, such as a cycle. See
toil.job.Job.checkJobGraphForDeadlocks().

3.9. Exceptions 25

Toil Documentation, Release 3.1.7a1

26 Chapter 3. Toil API

CHAPTER 4

The batch system interface

4.1 Implementing the batch system interface tutorial

The batch system interface is used by Toil to abstract over different ways of running batches of jobs, for example
GridEngine, Mesos, Parasol and a single node.

This tutorial will guide you through the batch system class (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem)
functions and how to implement them to support a new batch system.

TODO

4.2 Toil Abstract Batch System API

The toil.batchSystems.abstractBatchSystem.AbstractBatchSystem API is implemented to run
jobs using a given job management system, e.g. Mesos.

class toil.batchSystems.abstractBatchSystem.AbstractBatchSystem(config, maxCores,
maxMemory,
maxDisk)

An abstract (as far as python currently allows) base class to represent the interface the batch system must provide
to the toil.

This method must be called. The config object is setup by the toilSetup script and has configuration parameters
for the jobtree. You can add stuff to that script to get parameters for your batch system.

checkResourceRequest(memory, cores, disk)
Check resource request is not greater than that available.

environment = None
:type dict[str,str]

getIssuedBatchJobIDs()
A list of jobs (as jobIDs) currently issued (may be running, or maybe just waiting). Despite the result
being a list, the ordering should not be depended upon.

classmethod getRescueBatchJobFrequency()
Gets the period of time to wait (floating point, in seconds) between checking for missing/overlong jobs.

getRunningBatchJobIDs()
Gets a map of jobs (as jobIDs) currently running (not just waiting) and a how long they have been running
for (in seconds).

27

Toil Documentation, Release 3.1.7a1

getUpdatedBatchJob(maxWait)
Gets a job that has updated its status, according to the job manager. Max wait gives the number of seconds
to pause waiting for a result. If a result is available returns (jobID, exitValue) else it returns None. Does
not return anything for jobs that were killed.

issueBatchJob(command, memory, cores, disk)
Issues the following command returning a unique jobID. Command is the string to run, memory is an int
giving the number of bytes the job needs to run in and cores is the number of cpu cores needed for the job
and error-file is the path of the file to place any std-err/std-out in.

killBatchJobs(jobIDs)
Kills the given job IDs.

setEnv(name, value=None)
Set an environment variable for the worker process before it is launched. The worker process will typically
inherit the environment of the machine it is running on but this method makes it possible to override specific
variables in that inherited environment before the worker is launched. Note that this mechanism is different
to the one used by the worker internally to set up the environment of a job. A call to this method affects all
jobs issued after this method returns. Note to implementors: This means that you would typically need to
copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

NB: Only the Mesos and single-machine batch systems support passing environment variables. On other
batch systems, this method has no effect. See https://github.com/BD2KGenomics/toil/issues/547.

shutdown()
Called at the completion of a toil invocation. Should cleanly terminate all worker threads.

static supportsHotDeployment()
Whether this batch system supports hot deployment of the user script and toil itself. If it does, the __init__
method will have to accept two optional parameters in addition to the declared ones: userScript and toilD-
istribution. Both will be instances of toil.common.HotDeployedResource that represent the user script and
a source tarball (sdist) of toil respectively.

28 Chapter 4. The batch system interface

https://github.com/BD2KGenomics/toil/issues/547

CHAPTER 5

The job store interface

5.1 Implementing the job store interface tutorial

The job store interface is an abstraction layer that that hides the specific details of file storage,
for example standard file systems, S3, etc. This tutorial will guide you through the job store
(toil.jobStores.abstractJobStore.AbstractJobStore) functions and how to implement them to
support a new file store.

TODO

5.2 Toil Abstract Job Store API

The toil.jobStores.abstractJobStore.AbstractJobStore API is implemented to support a give file
store, e.g. S3.

class toil.jobStores.abstractJobStore.AbstractJobStore(config=None)
Represents the physical storage for the jobs and associated files in a toil.

Parameters config – If config is not None then the given configuration object will be written to
the shared file “config.pickle” which can later be retrieved using the readSharedFileStream. See
writeConfigToStore. If this file already exists it will be overwritten. If config is None, the shared
file “config.pickle” is assumed to exist and is retrieved. See loadConfigFromStore.

clean(rootJobWrapper, jobCache=None)
Function to cleanup the state of a jobStore after a restart. Fixes jobs that might have been partially updated.
Resets the try counts. Removes jobs that are not successors of the rootJobWrapper.

If jobCache is passed, it must be a dict from job ID to JobWrapper object. Jobs will be loaded from the
cache (which can be downloaded from the jobStore in a batch) instead of piecemeal when recursed into.

config

create(command, memory, cores, disk, predecessorNumber=0)
Creates a job, adding it to the store.

Command, memory, cores and predecessorNumber are all arguments to the job’s constructor.

:rtype : toil.jobWrapper.JobWrapper

delete(jobStoreID)
Removes from store atomically, can not then subsequently call load(), write(), update(), etc. with the job.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job will succeed silently.

29

Toil Documentation, Release 3.1.7a1

deleteFile(jobStoreFileID)
Deletes the file with the given ID from this job store. This operation is idempotent, i.e. deleting a file twice
or deleting a non-existent file will succeed silently.

deleteJobStore()
Removes the jobStore from the disk/store. Careful!

exists(jobStoreID)
Returns true if the job is in the store, else false.

:rtype : bool

fileExists(jobStoreFileID)
:rtype : True if the jobStoreFileID exists in the jobStore, else False

getEmptyFileStoreID(jobStoreID=None)
:rtype : string, the ID of a new, empty file.

jobStoreID is the id of a job, or None. If specified, when delete(job) is called all files written with the
given job.jobStoreID will be removed from the jobStore.

Call to fileExists(getEmptyFileStoreID(jobStoreID)) will return True.

getEnv()
Returns a dictionary of environment variables that this job store requires to be set in order to function
properly on a worker.

Return type dict[str,str]

getPublicUrl(fileName)
Returns a publicly accessible URL to the given file in the job store. The returned URL starts with ‘http:’,
‘https:’ or ‘file:’. The returned URL may expire as early as 1h after its been returned. Throw an exception
if the file does not exist.

getSharedPublicUrl(sharedFileName)
Returns a publicly accessible URL to the given file in the job store. The returned URL starts with ‘http:’,
‘https:’ or ‘file:’. The returned URL may expire as early as 1h after its been returned. Throw an exception
if the file does not exist.

jobs()
Returns iterator on all jobs in the store. The iterator will contain all jobs, but may also contain orphaned
jobs that have already finished succesfully and should not be rerun. To guarantee you only get jobs that
can be run, instead construct a ToilState object

:rtype : iterator

load(jobStoreID)
Loads a job for the given jobStoreID and returns it.

Return type toil.jobWrapper.JobWrapper

Raises NoSuchJobException if there is no job with the given jobStoreID

publicUrlExpiration = datetime.timedelta(365)

readFile(jobStoreFileID, localFilePath)
Copies the file referenced by jobStoreFileID to the given local file path. The version will be consistent
with the last copy of the file written/updated.

readFileStream(*args, **kwds)
Similar to readFile, but returns a context manager yielding a file handle which can be read from. The
yielded file handle does not need to and should not be closed explicitly.

30 Chapter 5. The job store interface

Toil Documentation, Release 3.1.7a1

readSharedFileStream(*args, **kwds)
Returns a context manager yielding a readable file handle to the global file referenced by the given name.

readStatsAndLogging(callback, readAll=False)
Reads stats/logging strings accumulated by the writeStatsAndLogging() method. For each stats/logging
string this method calls the given callback function with an open, readable file handle from which the stats
string can be read. Returns the number of stats/logging strings processed. Each stats/logging string is only
processed once unless the readAll parameter is set, in which case the given callback will be invoked for all
existing stats/logging strings, including the ones from a previous invocation of this method.

sharedFileNameRegex = <_sre.SRE_Pattern object>

update(job)
Persists the job in this store atomically.

updateFile(jobStoreFileID, localFilePath)
Replaces the existing version of a file in the jobStore. Throws an exception if the file does not exist.

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

updateFileStream(jobStoreFileID)
Similar to writeFile, but returns a context manager yielding a file handle which can be written to. The
yielded file handle does not need to and should not be closed explicitly.

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

writeConfigToStore()
Re-writes the config attribute to the jobStore, so that its values can be retrieved if the jobStore is reloaded.

writeFile(localFilePath, jobStoreID=None)
Takes a file (as a path) and places it in this job store. Returns an ID that can be used to retrieve the file at a
later time.

jobStoreID is the id of a job, or None. If specified, when delete(job) is called all files written with the
given job.jobStoreID will be removed from the jobStore.

writeFileStream(*args, **kwds)
Similar to writeFile, but returns a context manager yielding a tuple of 1) a file handle which can be written
to and 2) the ID of the resulting file in the job store. The yielded file handle does not need to and should
not be closed explicitly.

writeSharedFileStream(*args, **kwds)
Returns a context manager yielding a writable file handle to the global file referenced by the given name.

Parameters

• sharedFileName – A file name matching AbstractJobStore.fileNameRegex, unique
within the physical storage represented by this job store

• isProtected – True if the file must be encrypted, None if it may be encrypted or False
if it must be stored in the clear.

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

writeStatsAndLogging(statsAndLoggingString)
Adds the given statistics/logging string to the store of statistics info.

5.2. Toil Abstract Job Store API 31

Toil Documentation, Release 3.1.7a1

32 Chapter 5. The job store interface

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

33

Toil Documentation, Release 3.1.7a1

34 Chapter 6. Indices and tables

Index

A
AbstractBatchSystem (class in

toil.batchSystems.abstractBatchSystem),
27

AbstractJobStore (class in
toil.jobStores.abstractJobStore), 29

addChild() (toil.job.EncapsulatedJob method), 24
addChild() (toil.job.Job method), 17
addChildFn() (toil.job.Job method), 17
addChildJobFn() (toil.job.Job method), 17
addFollowOn() (toil.job.EncapsulatedJob method), 24
addFollowOn() (toil.job.Job method), 18
addFollowOnFn() (toil.job.Job method), 18
addFollowOnJobFn() (toil.job.Job method), 18
addService() (toil.job.EncapsulatedJob method), 24
addService() (toil.job.Job method), 18
addToilOptions() (toil.job.Job.Runner static method), 22

C
checkJobGraphAcylic() (toil.job.Job method), 18
checkJobGraphConnected() (toil.job.Job method), 19
checkJobGraphForDeadlocks() (toil.job.Job method), 19
checkResourceRequest() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 27
clean() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 29
config (toil.jobStores.abstractJobStore.AbstractJobStore

attribute), 29
create() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 29

D
delete() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 29
deleteFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 29
deleteGlobalFile() (toil.job.Job.FileStore method), 21
deleteJobStore() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 30

E
effectiveRequirements() (toil.job.Job method), 19
encapsulate() (toil.job.Job method), 19
EncapsulatedJob (class in toil.job), 24
environment (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

attribute), 27
exists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 30

F
fileExists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 30
FunctionWrappingJob (class in toil.job), 23

G
getDefaultArgumentParser() (toil.job.Job.Runner static

method), 22
getDefaultOptions() (toil.job.Job.Runner static method),

22
getEmptyFileStoreID() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 30
getEnv() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 30
getIssuedBatchJobIDs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 27
getLocalTempDir() (toil.job.Job.FileStore method), 21
getLocalTempFile() (toil.job.Job.FileStore method), 21
getPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 30
getRescueBatchJobFrequency()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 27

getRootJobs() (toil.job.Job method), 19
getRunningBatchJobIDs()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 27

getSharedPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 30

getTopologicalOrderingOfJobs() (toil.job.Job method),
19

35

Toil Documentation, Release 3.1.7a1

getUpdatedBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 27

getUserScript() (toil.job.FunctionWrappingJob method),
23

getUserScript() (toil.job.Job method), 19

H
hasChild() (toil.job.Job method), 19

I
issueBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 28

J
Job (class in toil.job), 17
Job.FileStore (class in toil.job), 20
Job.Runner (class in toil.job), 22
Job.Service (class in toil.job), 23
JobException (class in toil.job), 25
JobFunctionWrappingJob (class in toil.job), 23
JobGraphDeadlockException (class in toil.job), 25
jobs() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 30

K
killBatchJobs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 28

L
load() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 30
logToMaster() (toil.job.Job.FileStore method), 21

P
PromisedJobReturnValue (class in toil.job), 24
publicUrlExpiration (toil.jobStores.abstractJobStore.AbstractJobStore

attribute), 30

R
readFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 30
readFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 30
readGlobalFile() (toil.job.Job.FileStore method), 21
readGlobalFileStream() (toil.job.Job.FileStore method),

21
readSharedFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 30
readStatsAndLogging() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 31
run() (toil.job.FunctionWrappingJob method), 23
run() (toil.job.Job method), 19
run() (toil.job.JobFunctionWrappingJob method), 24

rv() (toil.job.EncapsulatedJob method), 24
rv() (toil.job.Job method), 20

S
setEnv() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 28
sharedFileNameRegex (toil.jobStores.abstractJobStore.AbstractJobStore

attribute), 31
shutdown() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 28
start() (toil.job.Job.Service method), 23
startToil() (toil.job.Job.Runner static method), 22
stop() (toil.job.Job.Service method), 23
supportsHotDeployment()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
static method), 28

U
update() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 31
updateFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 31
updateFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 31

W
wrapFn() (toil.job.Job static method), 20
wrapJobFn() (toil.job.Job static method), 20
writeConfigToStore() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 31
writeFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 31
writeFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 31
writeGlobalFile() (toil.job.Job.FileStore method), 22
writeGlobalFileStream() (toil.job.Job.FileStore method),

22
writeSharedFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 31
writeStatsAndLogging() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 31

36 Index

	Toil
	Features
	Prerequisites
	Installation
	Scripting Quick Start
	Building & Testing

	User Tutorial
	Job basics
	Job.Runner
	Functions and job functions
	Workflows with multiple jobs
	Dynamic Job Creation
	Promises
	Job.FileStore: Managing files within a workflow
	Services
	Encapsulation
	Toil Utilities

	Toil API
	Job Methods
	Job.FileStore
	Job.Runner
	Job.Service
	FunctionWrappingJob
	JobFunctionWrappingJob
	EncapsulatedJob
	Promise
	Exceptions

	The batch system interface
	Implementing the batch system interface tutorial
	Toil Abstract Batch System API

	The job store interface
	Implementing the job store interface tutorial
	Toil Abstract Job Store API

	Indices and tables

