
Toil Documentation
Release 3.2.2a1

UCSC Computational Genomics Lab

June 28, 2016

Contents

1 Installation 3
1.1 Prerequisites . 3
1.2 Basic installation . 3
1.3 Building & testing . 4

1.3.1 Running Mesos tests . 5

2 Cloud installation 7
2.1 Installation on AWS for distributed computing . 7

2.1.1 CGCloud in a nutshell . 7
2.2 Installation on Azure . 8
2.3 Installation on OpenStack . 11
2.4 Installation on Google Compute Engine . 11

3 Running a workflow 13
3.1 Running quick start . 13
3.2 Running CWL workflows . 13
3.3 Running a Toil pipeline in detail . 14

3.3.1 Changing the log statements . 17
3.3.2 Restarting after introducing a bug . 17
3.3.3 Getting stats from our pipeline run . 18

4 Running in the cloud 19
4.1 Running on AWS . 19
4.2 Running on Azure . 19
4.3 Running on Open Stack . 21
4.4 Running on Google Compute Engine . 21

5 Command line interface and arguments 23
5.1 Logging . 23
5.2 Stats . 23
5.3 Restart . 23
5.4 Clean . 24
5.5 Batch system . 24
5.6 Default cores, disk, and memory . 24
5.7 Job store . 24
5.8 Miscellaneous . 24

6 Developing a workflow 25
6.1 Scripting quick start . 25

i

6.2 Job basics . 25
6.3 Invoking a workflow . 26
6.4 Specifying arguments via the command line . 27
6.5 Resuming a workflow . 27
6.6 Functions and job functions . 28
6.7 Workflows with multiple jobs . 28
6.8 Dynamic job creation . 30
6.9 Promises . 30
6.10 Managing files within a workflow . 31

6.10.1 Staging of files into the job store . 33
6.11 Services . 34
6.12 Checkpoints . 35
6.13 Encapsulation . 35

7 Toil API 37
7.1 Job methods . 37
7.2 Job.FileStore . 41
7.3 Job.Runner . 43
7.4 Toil . 43
7.5 Job.Service . 45
7.6 FunctionWrappingJob . 45
7.7 JobFunctionWrappingJob . 46
7.8 EncapsulatedJob . 46
7.9 Promise . 46
7.10 Exceptions . 47

8 Toil architecture 49
8.1 Optimizations . 50

8.1.1 Read-only leader . 50
8.1.2 Job chaining . 50
8.1.3 Preemptable node support . 51
8.1.4 Caching . 51

9 The batch system interface 53

10 The job store interface 55

11 src 61
11.1 toil package . 61

11.1.1 Subpackages . 61
11.1.2 Submodules . 75
11.1.3 toil.common module . 75
11.1.4 toil.job module . 76
11.1.5 toil.jobWrapper module . 76
11.1.6 toil.leader module . 76
11.1.7 toil.realtimeLogger module . 76
11.1.8 toil.resource module . 77
11.1.9 toil.toilState module . 77
11.1.10 toil.version module . 77
11.1.11 toil.worker module . 77
11.1.12 Module contents . 77

12 Indices and tables 79

Python Module Index 81

ii

Toil Documentation, Release 3.2.2a1

Toil is a workflow engine entirely written in Python. It features:

• Easy installation, e.g. pip install toil.

• Common Workflow Language (CWL) support

Complete support for the draft-3 CWL specification, allowing it to execute CWL workflows.

• Workflow Description Language (WDL) support

Draft support for the WDL specification, allowing it to execute WDL workflows.

• Cross platform support

Develop and test on your laptop then deploy on any of the following:

– Commercial clouds: - Amazon Web Services (including the spot market) - Microsoft Azure - Google
Compute Engine

– Private clouds: - OpenStack

– High Performance Computing Environments: - GridEngine - Apache Mesos - Parasol - Individual multi-
core machines

• A small API

Easily mastered, the Python user API for defining and running workflows is built upon one core class.

• Complete file and stream management:

Temporary and persistent file management that abstracts the details of the underlying file system, providing a
uniform interface regardless of environment. Supports both atomic file transfer and streaming interfaces, and
provides encryption of user data.

• Scalability:

Toil can easily handle workflows concurrently using hundreds of nodes and thousands of cores.

• Robustness:

Toil workflows support arbitrary worker and leader failure, with strong check-pointing that always allows re-
sumption.

• Efficiency:

Caching, fine grained, per task, resource requirement specifications, and support for the AWS spot market mean
workflows can be executed with little waste.

• Declarative and dynamic workflow creation:

Workflows can be declared statically, but new jobs can be added dynamically during execution within any
existing job, allowing arbitrarily complex workflow graphs with millions of jobs within them.

• Support for databases and services:

For example, Apache Spark clusters can be created quickly and easily integrated within a toil workflow as a
service, with precisely defined time start and end times that fits with the flow of other jobs in the workflow.

• Open Source: An Apache license allows unrestricted use, incorporation and modification.

Contents:

Contents 1

http://commonwl.org
http://commonwl.org
https://github.com/broadinstitute/wdl
https://github.com/broadinstitute/wdl
https://aws.amazon.com/
https://aws.amazon.com/ec2/spot/
https://azure.microsoft.com
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://www.openstack.org/
http://gridscheduler.sourceforge.net/
http://mesos.apache.org/
https://users.soe.ucsc.edu/~donnak/eng/parasol.htm

Toil Documentation, Release 3.2.2a1

2 Contents

CHAPTER 1

Installation

1.1 Prerequisites

• Python 2.7.x

• pip > 7.x

1.2 Basic installation

To setup a basic Toil installation use

pip install toil

Toil uses setuptools’ extras mechanism for dependencies of optional features like support for Mesos or AWS. To install
Toil with all bells and whistles use

pip install toil[aws,mesos,azure,google,encryption,cwl]

Here’s what each extra provides:

• The aws extra provides support for storing workflow state in Amazon AWS. This extra has no native dependen-
cies.

• The google extra is experimental and stores workflow state in Google Cloud Storage. This extra has no native
dependencies.

• The azure extra stores workflow state in Microsoft Azure Storage. This extra has no native dependencies.

• The mesos extra provides support for running Toil on an Apache Mesos cluster. Note that running Toil on SGE
(GridEngine), Parasol or a single machine does not require an extra. The mesos extra requires the following
native dependencies:

– Apache Mesos

– Python headers and static libraries

• The encryption extra provides client-side encryption for files stored in the Azure and AWS job stores. This
extra requires the following native dependencies:

– Python headers and static libraries

– Libffi headers and library

• The cwl extra provides support for running workflows written using the Common Workflow Language.

3

https://pip.readthedocs.org/en/latest/installing.html
https://pythonhosted.org/setuptools/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies
http://mesos.apache.org/
http://commonwl.org

Toil Documentation, Release 3.2.2a1

Apache Mesos

Only needed for the mesos extra. Toil has been tested with version 0.25.0. Mesos can be installed on Linux
by following the instructions on https://open.mesosphere.com/getting-started/install/. The Homebrew package
manager has a formula for Mesos such that running brew install mesos is probably the easiest way to
install Mesos on OS X. This assumes, of course, that you already have Xcode and Homebrew.
Please note that even though Toil depends on the Python bindings for Mesos, it does not explicitly declare that
dependency and they will not be installed automatically when you run pip install toil[mesos]. You
need to install the bindings manually. The Homebrew formula for OS X installs them by default. On Ubuntu
you will need to download the appropriate .egg from https://open.mesosphere.com/downloads/mesos/ and in-
stall it using easy_install -a <path_to_egg>. Note that on Ubuntu Trusty you may need to upgrade
protobuf via pip install --upgrade protobuf before running the above easy_install com-
mand.
If you intend to install Toil with the mesos extra into a virtualenv, be sure to create that virtualenv with

virtualenv --system-site-packages

Otherwise, Toil will not be able to import the mesos.native module.

Python headers and static libraries

Only needed for the mesos and encryption extras. The Python headers and static libraries can be installed on
Ubuntu/Debian by running sudo apt-get install build-essential python-dev and accord-
ingly on other Linux distributions. On Mac OS X, these headers and libraries are installed when you install the
Xcode command line tools by running xcode-select --install, assuming, again, that you have Xcode
installed.

Libffi headers and library

Libffi is only needed for the encryption extra. To install Libffi on Ubuntu, run sudo apt-get install
libffi-dev. On Mac OS X, run brew install libffi. This assumes, of course, that you have Xcode
and Homebrew installed.

1.3 Building & testing

For developers and people interested in building the project from source the following explains how to setup virtualenv
to create an environment to use Toil in.

After cloning the source and cd-ing into the project root, create a virtualenv and activate it:

virtualenv venv
. venv/bin/activate

Simply running

make

from the project root will print a description of the available Makefile targets.

Once you created and activated the virtualenv, the first step is to install the build requirements. These are additional
packages that Toil needs to be tested and built, but not run:

4 Chapter 1. Installation

https://open.mesosphere.com/getting-started/install/
http://brew.sh/
https://developer.apple.com/xcode/
http://brew.sh/
http://brew.sh/
https://open.mesosphere.com/downloads/mesos/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://sourceware.org/libffi/
https://sourceware.org/libffi/
https://developer.apple.com/xcode/
http://brew.sh/

Toil Documentation, Release 3.2.2a1

make prepare

Once the virtualenv has been prepared with the build requirements, running

make develop

will create an editable installation of Toil and its runtime requirements in the current virtualenv. The installation is
called editable (also known as a development mode installation) because changes to the Toil source code immediately
affect the virtualenv. Optionally, set the extras variable to ensure that make develop installs support for optional
extras. Consult setup.py for the list of supported extras. To install Toil in development mode with all extras run

make develop extras=[aws,mesos,azure,google,encryption,cwl]

Note that some extras have native dependencies as listed in Basic installation. Be sure to install them before running
the above command. If you get

ImportError: No module named mesos.native

make sure you install Mesos and the Mesos egg as described in Apache Mesos and be sure to create the virtualenv with
--system-site-packages.

To build the docs, run make develop with all extras followed by

make docs

To invoke the tests (unit and integration) use

make test

Run an individual test with

make test tests=src/toil/test/sort/sortTest.py::SortTest::testSort

The default value for tests is "src" which includes all tests in the src subdirectory of the project root. Tests that
require a particular feature will be skipped implicitly. If you want to explicitly skip tests that depend on a currently
installed feature, use

make test tests="-m 'not azure' src"

This will run only the tests that don’t depend on the azure extra, even if that extra is currently installed. Note the
distinction between the terms feature and extra. Every extra is a feature but there are features that are not extras,
the gridengine and parasol features fall into that category. So in order to skip tests involving both the Parasol
feature and the Azure extra, the following can be used:

make test tests="-m 'not azure and not parasol' src"

1.3.1 Running Mesos tests

See Apache Mesos. Be sure to create the virtualenv with --system-site-packages to include the Mesos Python
bindings. Verify by activating the virtualenv and running .. pip list | grep mesos. On OS X, this may come
up empty. To fix it, run the following:

for i in /usr/local/lib/python2.7/site-packages/*mesos*; do ln -snf $i venv/lib/python2.7/site-packages/ ; done

1.3. Building & testing 5

https://pythonhosted.org/setuptools/setuptools.html#development-mode

Toil Documentation, Release 3.2.2a1

6 Chapter 1. Installation

CHAPTER 2

Cloud installation

2.1 Installation on AWS for distributed computing

We use CGCloud to provision instances and clusters in AWS. Thorough documentation of CGCloud can be found in
the CGCloud-core and CGCloud-toil documentation. Brief steps will be provided to those interested in using CGCloud
for provisioning.

2.1.1 CGCloud in a nutshell

Setting up clusters with CGCloud has the benefit of coming pre-packaged with Toil and Mesos, our preferred batch
system for running on AWS. If you encounter any issues following these steps, check official documentation which
contains Troubleshooting sections.

1. virtualenv ~/cgcloud

2. source ~/cgcloud/bin/activate

3. pip install cgcloud-core

4. pip install cgcloud-toil

5. Add the following to your ~/.profile, use the appropriate region for your account. 5a. export
CGCLOUD_ZONE=us-west-2a

5b. export CGCLOUD_PLUGINS="cgcloud.toil:$CGCLOUD_PLUGINS"

6. Setup credentials for your AWS account in ~/.aws/credentials:

[default]
aws_access_key_id=PASTE_YOUR_FOO_ACCESS_KEY_ID_HERE
aws_secret_access_key=PASTE_YOUR_FOO_SECRET_KEY_ID_HERE
region=us-west-2

7. Register your SSH key. You can create one with ssh-keygen. 7a. cgcloud register-key
~/.ssh/id_rsa.pub

8. Create a template toil-box which will contain necessary prerequisites 8a. cgcloud create -IT
toil-box

9. Create a small leader/worker cluster 9a. cgcloud create-cluster toil -s 2 -t m3.large

10. SSH into the leader: cgcloud ssh toil-leader

At this point, any toil script can be run on the distributed AWS cluster following instructions in Running on AWS.

7

https://github.com/BD2KGenomics/cgcloud/
https://github.com/BD2KGenomics/cgcloud/
https://github.com/BD2KGenomics/cgcloud/blob/master/core/README.rst
https://github.com/BD2KGenomics/cgcloud/blob/master/toil/README.rst
https://github.com/BD2KGenomics/cgcloud/
https://github.com/BD2KGenomics/cgcloud/

Toil Documentation, Release 3.2.2a1

2.2 Installation on Azure

While CGCloud does not currently support cloud providers other than Amazon, Toil comes with a cluster template
to facilitate easy deployment of clusters running Toil on Microsoft Azure. The template allows these clusters to be
created and managed through the Azure portal.

Detailed information about the template is available here.

To use the template to set up a Toil Mesos cluster on Azure, follow these steps.

1. Make sure you have an SSH RSA public key, usually stored in ~/.ssh/id_rsa.pub. If not, you can use
ssh-keygen -t rsa to create one.

2. Click on the deploy button above, or navigate to https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2FBD2KGenomics%2Ftoil%2Fmaster%2Fcontrib%2Fazure%2Fazuredeploy.json
in your browser.

3. If necessary, sign into the Microsoft account that you use for Azure.

4. You should be presented with a screen resembling the following:

5. Fill out the form on the far right (marked “1” in the image), giving the following information. Important fields
for which you will want to override the defaults are in bold:

(a) AdminUsername: Enter a username for logging into the cluster. It is easiest to set this to match your
username on your local machine.

(b) AdminPassword: Choose a strong root password. Since you will be configuring SSH keys, you will not
actually need to use this password to log in in practice, so choose something long and complex and store
it safely.

8 Chapter 2. Cloud installation

https://github.com/BD2KGenomics/toil/blob/master/contrib/azure/README.md

Toil Documentation, Release 3.2.2a1

(c) DnsNameForMastersPublicIp: Enter a unique DNS name fragment to identify your clus-
ter within your region. For example, if you are putting your cluster in westus, and
you choose awesomecluster, your cluster’s public IP would be assigned the name
awesomecluster.westus.cloudapp.azure.com.

(d) JumpboxConfiguration: If you would like, you can select to have either a Linux or Windows “jumpbox”
with remote desktop software set up on the cluster’s internal network. By default this is turned off, since it
is unnecessary.

(e) DnsNameForJumpboxPublicIp: If you are using a jumpbox, enter another unique DNS name fragment
here to set its DNS name. See DnsNameForMastersPublicIp above.

(f) NewStorageAccountNamePrefix: Enter a globally unique prefix to be used in the names of new storage
accounts created to support the cluster. Storage account names must be 3 to 24 characters long, include
only numbers and lower-case letters, and be globally unique. Since the template internally appends to this
prefix, it must be shorter than the full 24 characters. Up to 20 should work.

(g) AgentCount: Choose how many agents (i.e. worker nodes) you want in the cluster. Be mindful of your
Azure subscription limits on both VMs (20 per region by default) and total cores (also 20 per region by
default); if you ask for more agents or more total cores than you are allowed, you will not get them all,
errors will occur during template instantiation, and the resulting cluster will be smaller than you wanted it
to be.

(h) AgentVmSize: Choose from the available VM instance sizes to determine how big each node will be.
Again, be mindful of your Azure subscription’s core limits. Also be mindful of how many cores and how
much disk and memory your Toil jobs will need: if any requirement is greater than that provided by an
entire node, a job may never be scheduled to run.

(i) MasterCount: Choose the number of “masters” or leader nodes for the cluster. By default only one is used,
because although the underlying Mesos batch system supports master failover, currently Toil does not.
You can increase this if multiple Toil jobs will be running and you want them to run from different leader
nodes. Remember that the leader nodes also count against your VM and core limits.

(j) MasterVmSize: Select one of the available VM sizes to use for the leader nodes. Generally the leader node
can be relatively small.

(k) MasterConfiguration: This is set to masters-are-not-agents by default, meaning that the leader
nodes will not themselves run any jobs. If you are worried about wasting unused computing power on your
leader nodes, you can set this to masters-are-agents to allow them to run jobs. However, this may
slow them down for interactive use, making it harder to monitor and control your Toil workflows.

(l) JumpboxVmSize: If you are using a jumpbox, you can select a VM instance size for it to use here. Again,
remember that it counts against your Azure subscription limits.

(m) ClusterPrefix: This prefix gets used to generate the internal hostnames of all the machines in the cluster.
You can use it to give clusters friendly names to differentiate them. It has to be a valid part of a DNS name;
you might consider setting it to match DnsNameForMastersPublicIp. You can also leave it at the
default.

(n) SwarmEnabled: You can set this to true to install Swarm, a system for scheduling Docker containers.
Toil does not use Swarm, and Swarm has a tendency to allocate all the cluster’s resources for itself, so you
should probably leave this set to false unless you also find yourself needing a Swarm cluster.

(o) MarathonEnabled: You can set this to true to install Marathon, a scheduling system for persistent jobs
run in Docker containers. It also has nothing to do with Toil, and should probably remains et to false.

(p) ChronosEnabled: You can set this to true to install Chronos, which is a way to periodically run jobs on
the cluster. Unless you find yourself needing this functionality, leave this set to false. (All these extra
frameworks are here because the Toil Azure template was derived from a Microsoft template for a generic
Mesos cluster, offering these services.)

2.2. Installation on Azure 9

Toil Documentation, Release 3.2.2a1

(q) ToilEnabled: You should leave this set to true. If you set it to false, Toil will not be installed on the
cluster, which rather defeats the point.

(r) SshRsaPublicKey: Replace default with your SSH public key contents, beginning with ssh-rsa.
Paste in the whole line. Only one key is supported, and as the name suggests it must be an RSA key. This
enables SSH key-based login on the cluster.

(s) GithubSource: If you would like to install Toil from a nonstandard fork on Github (for exam-
ple, installing a version inclusing your own patches), set this to the Github fork (formatted as
<username>/<reponame>) from which Toil should be downloaded and installed. If not, leave it
set to the default of BD2KGenomics/toil.

(t) GithubBranch: To install Toil from a branch other than master, enter the name of its branch here. For
example, for the latest release of Toil 3.1, enter releases/3.1.x. By default, you will get the latest
and greatest Toil, but it may have bugs or breaking changes introduced since the last release.

6. Click OK (marked “2” in the screenshot).

7. Choose a subscription and select or create a Resource Group (marked “3” in the screenshot). If creating a
Resource Group, select a region in which to place it. It is recommended to create a new Resource Group for
every cluster; the template creates a large number of Azure entitites besides just the VMs (like virtual networks),
and if they are organized into their own Resource Group they can all be cleaned up at once when you are done
with the cluster, by deleting the Resource Group.

8. Read the Azure terms of service (by clicking on the item marked “4” in the screenshot) and accept them by
clicking the “Create” button on the right (not shown). This is the contract that you are accepting with Microsoft,
under which you are purchasing the cluster.

9. Click the main “Create” button (marked “5” in the screenshot). This will kick off the process of creating the
cluster.

10. Eventually you will receive a notification (Bell icon on the top bar of the Azure UI) letting you know that your
cluster has been created. At this point, you should be able to connect to it; however, note that it will not be ready
to run any Toil jobs until it is finished setting itself up.

11. SSH into the first (and by default only) leader node. For this, you need to know the AdminUsername and
DnsNameForMastersPublicIp you set above, and the name of the region you placed your cluster in. If
you named your user phoebe and named your cluster toilisgreat, and placed it in the centralus re-
gion, the hostname of the cluster would be toilisgreat.centralus.cloudapp.azure.com, and you
would want to connect as phoebe. SSH is forwarded through the cluster’s load balancer to the first leader node
on port 2211, so you would run ssh phoebe@toilisgreat.centralus.cloudapp.azure.com
-p 2211.

12. Wait for the leader node to finish setting itself up. Run tail -f
/var/log/azure/cluster-bootstrap.log and wait until the log reaches the line completed
mesos cluster configuration. At that point, kill tail with a ctrl-c. Your leader node is now
ready.

13. At this point, you can start running Toil jobs, using the Mesos batch system (by passing --batchSystem
mesos --mesosMaster 10.0.0.5:5050) and the Azure job store (for which you will need a separate
Azure Storage account set up, ideally in the same region as your cluster but in a different Resource Group). The
nodes of the cluster may take a few more minutes to finish installing, but when they do they will report in to
Mesos and begin running any scheduled jobs.

14. Whan you are done running your jobs, go back to the Azure portal, find the Resource Group you created for your
cluster, and delete it. This will destroy all the VMs and any data stored on them, and stop Microsoft charging
you money for keeping the cluster around. As long as you used a separate Asure Storage account in a different
Resource Group, any information kept in the job stores and file stores you were using will be retained.

10 Chapter 2. Cloud installation

Toil Documentation, Release 3.2.2a1

For more information about how your new cluster is organized, for information on how to access the Mesos Web UI,
or for troubleshooting advice, please see the template documentation.

2.3 Installation on OpenStack

Our group is working to expand distributed cluster support to OpenStack by providing convenient Docker containers
to launch Mesos from. Currently, OpenStack nodes can be setup to run Toil in singleMachine mode following the
basic installation instructions: Basic installation

2.4 Installation on Google Compute Engine

Support for running on Google Cloud is experimental, and our group is working to expand distributed cluster sup-
port to Google Compute by writing a cluster provisioning tool based around a Dockerized Mesos setup. Currently,
Google Compute Engine nodes can be configured to run Toil in singleMachine mode following the basic installation
instructions: Basic installation

2.3. Installation on OpenStack 11

https://github.com/BD2KGenomics/toil/blob/master/contrib/azure/README.md

Toil Documentation, Release 3.2.2a1

12 Chapter 2. Cloud installation

CHAPTER 3

Running a workflow

3.1 Running quick start

Starting with Python, a Toil workflow can be run with just three steps.

1. pip install toil

2. Copy and paste the following code block into HelloWorld.py:

from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
return "Hello, world!, here's a message: %s" % message

j = Job.wrapFn(helloWorld, "You did it!")

if __name__=="__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
print Job.Runner.startToil(j, options) #Prints Hello, world!, ...

3. python HelloWorld.py file:jobStore

Now you have run Toil on singleMachine (default batch system) using the FileStore job store. The first positional
argument after the .py is the location of the job store, a place where intermediate files are written to. In this example,
a folder called jobStore will be created where HelloWorld.py is run from. Information on the jobStore can be found
at The job store interface.

Run python HelloWorld.py --help to see a complete list of available options.

For something beyond a hello world example, refer to Running a Toil pipeline in detail

3.2 Running CWL workflows

The Common Workflow Language (CWL) is an emerging standard for writing workflows that are portable across
multiple workflow engines and platforms. To run workflows written using CWL, first ensure that Toil is installed
with the “cwl” extra as described in Basic installation. This will install the executables cwl-runner and cwltoil
(these are identical, where cwl-runner is the portable name for the default system CWL runner). To learn more
about CWL, see the CWL User Guide.

To run in local batch mode, simply provide the CWL file and the input object file:

13

http://commonwl.org
http://commonwl.org/draft-3/UserGuide.html

Toil Documentation, Release 3.2.2a1

cwltoil example.cwl example-job.yml

To run in cloud and HPC configurations, you may need to provide additional command line parameters to select and
configure the batch system to use. Consult the appropriate sections.

3.3 Running a Toil pipeline in detail

For a detailed example and explanation, we’ll walk through running a pipeline that performs merge-sort on a temporary
file.

1. Copy and paste the following code into toil-sort-example.py:

from __future__ import absolute_import
from argparse import ArgumentParser
import os
import logging
import random

from toil.job import Job

def setup(job, input_file, n, down_checkpoints):
"""Sets up the sort.
"""
Write the input file to the file store
input_filestore_id = job.fileStore.writeGlobalFile(input_file, True)
job.fileStore.logToMaster(" Starting the merge sort ")
job.addFollowOnJobFn(cleanup, job.addChildJobFn(down,

input_filestore_id, n,
down_checkpoints=down_checkpoints,
memory='1000M').rv(), input_file)

def down(job, input_file_store_id, n, down_checkpoints):
"""Input is a file and a range into that file to sort and an output location in which
to write the sorted file.
If the range is larger than a threshold N the range is divided recursively and
a follow on job is then created which merges back the results else
the file is sorted and placed in the output.
"""
Read the file
input_file = job.fileStore.readGlobalFile(input_file_store_id, cache=False)
length = os.path.getsize(input_file)
if length > n:

We will subdivide the file
job.fileStore.logToMaster("Splitting file: %s of size: %s"

% (input_file_store_id, length), level=logging.CRITICAL)
Split the file into two copies
mid_point = get_midpoint(input_file, 0, length)
t1 = job.fileStore.getLocalTempFile()
with open(t1, 'w') as fH:

copy_subrange_of_file(input_file, 0, mid_point + 1, fH)
t2 = job.fileStore.getLocalTempFile()
with open(t2, 'w') as fH:

copy_subrange_of_file(input_file, mid_point + 1, length, fH)
Call down recursively

14 Chapter 3. Running a workflow

Toil Documentation, Release 3.2.2a1

return job.addFollowOnJobFn(up, job.addChildJobFn(down, job.fileStore.writeGlobalFile(t1), n,
down_checkpoints=down_checkpoints, memory='1000M').rv(),
job.addChildJobFn(down, job.fileStore.writeGlobalFile(t2), n,

down_checkpoints=down_checkpoints,
memory='1000M').rv()).rv()

else:
We can sort this bit of the file
job.fileStore.logToMaster("Sorting file: %s of size: %s"

% (input_file_store_id, length), level=logging.CRITICAL)
Sort the copy and write back to the fileStore
sort(input_file)
return job.fileStore.writeGlobalFile(input_file)

def up(job, input_file_id_1, input_file_id_2):
"""Merges the two files and places them in the output.
"""
with job.fileStore.writeGlobalFileStream() as (fileHandle, output_id):

with job.fileStore.readGlobalFileStream(input_file_id_1) as inputFileHandle1:
with job.fileStore.readGlobalFileStream(input_file_id_2) as inputFileHandle2:

merge(inputFileHandle1, inputFileHandle2, fileHandle)
job.fileStore.logToMaster("Merging %s and %s to %s"

% (input_file_id_1, input_file_id_2, output_id))
Cleanup up the input files - these deletes will occur after the completion is successful.
job.fileStore.deleteGlobalFile(input_file_id_1)
job.fileStore.deleteGlobalFile(input_file_id_2)
return output_id

def cleanup(job, temp_output_id, output_file):
"""Copies back the temporary file to input once we've successfully sorted the temporary file.
"""
job.fileStore.readGlobalFile(temp_output_id, userPath=output_file)
job.fileStore.logToMaster("Finished copying sorted file to output: %s" % output_file)

convenience functions
def sort(file):

"""Sorts the given file.
"""
filehandle = open(file, 'r')
lines = filehandle.readlines()
filehandle.close()
lines.sort()
filehandle = open(file, 'w')
for line in lines:

filehandle.write(line)
filehandle.close()

def merge(filehandle_1, filehandle_2, output_filehandle):
"""Merges together two files maintaining sorted order.
"""
line2 = filehandle_2.readline()
for line1 in filehandle_1.readlines():

while line2 != '' and line2 <= line1:
output_filehandle.write(line2)
line2 = filehandle_2.readline()

3.3. Running a Toil pipeline in detail 15

Toil Documentation, Release 3.2.2a1

output_filehandle.write(line1)
while line2 != '':

output_filehandle.write(line2)
line2 = filehandle_2.readline()

def copy_subrange_of_file(input_file, file_start, file_end, output_filehandle):
"""Copies the range (in bytes) between fileStart and fileEnd to the given
output file handle.
"""
with open(input_file, 'r') as fileHandle:

fileHandle.seek(file_start)
data = fileHandle.read(file_end - file_start)
assert len(data) == file_end - file_start
output_filehandle.write(data)

def get_midpoint(file, file_start, file_end):
"""Finds the point in the file to split.
Returns an int i such that fileStart <= i < fileEnd
"""
filehandle = open(file, 'r')
mid_point = (file_start + file_end) / 2
assert mid_point >= file_start
filehandle.seek(mid_point)
line = filehandle.readline()
assert len(line) >= 1
if len(line) + mid_point < file_end:

return mid_point + len(line) - 1
filehandle.seek(file_start)
line = filehandle.readline()
assert len(line) >= 1
assert len(line) + file_start <= file_end
return len(line) + file_start - 1

def make_file_to_sort(file_name, lines, line_length):
with open(file_name, 'w') as fileHandle:

for _ in xrange(lines):
line = "".join(random.choice('actgACTGNXYZ') for _ in xrange(line_length - 1)) + '\n'
fileHandle.write(line)

def main():
parser = ArgumentParser()
Job.Runner.addToilOptions(parser)

parser.add_argument('--num-lines', default=1000, help='Number of lines in file to sort.', type=int)
parser.add_argument('--line-length', default=50, help='Length of lines in file to sort.', type=int)
parser.add_argument("--N",

help="The threshold below which a serial sort function is used to sort file. "
"All lines must of length less than or equal to N or program will fail",
default=10000)

options = parser.parse_args()

if int(options.N) <= 0:
raise RuntimeError("Invalid value of N: %s" % options.N)

16 Chapter 3. Running a workflow

Toil Documentation, Release 3.2.2a1

make_file_to_srt(file_name='file_to_sort.txt', lines=options.num_lines, line_length=options.line_length)

Now we are ready to run
Job.Runner.startToil(Job.wrapJobFn(setup, 'file_to_sort.txt', int(options.N), False,

memory='1000M'), options)

if __name__ == '__main__':
main()

2. Run with default settings: python toil-sort-example.py file:jobStore.

3. Run with options: python toil-sort-example.py file:jobStore --num-lines 5000
--line-length 10 --workDir /tmp/

The if __name__ == ’__main__’ boilerplate is required to enable Toil to import the job functions defined in
the script into the context of a Toil worker process. By invoking the script you created the leader process. A worker
process is a separate process whose sole purpose is to host the execution of one or more jobs defined in that script.
When using the single-machine batch system (the default), the worker processes will be running on the same machine
as the leader process. With full-fledged batch systems like Mesos the worker processes will typically be started on
separate machines. The boilerplate ensures that the pipeline is only started once–on the leader–but not when its job
functions are imported and executed on the individual workers.

Typing python toil-sort-example.py --help will show the complete list of arguments for the workflow
which includes both Toil’s and ones defined inside toil-sort-example.py. A complete explanation of Toil’s arguments
can be found in Command line interface and arguments.

3.3.1 Changing the log statements

When we run the pipeline, we see some logs printed to the screen. At the top there’s some information provided to the
user about the environment Toil is being setup in, and then as the pipeline runs we get INFO level messages from the
batch system that tell us when jobs are being executed. We also see both INFO and CRITICAL level messages that are
in the user script. By changing the logLevel, we can change what we see output to screen. For only CRITICAL level
messages: python toil-sort-examply.py file:jobStore --logLevel=critical. This hides
most of the information we get from the Toil run. For more detail, we can run the pipeline with --logLevel=debug
to see a comprehensive output. For more information see Logging.

3.3.2 Restarting after introducing a bug

Let’s now introduce a bug in the code, so we can understand what a failure looks like in Toil, and how we would
go about resuming the pipeline. On line 30, the first line of the down() function, let’s add the line assert 1==2,
’Test Error!’. Now when we run the pipeline, python toil-sort-example.py file:jobStore,
we’ll see a failure log under the header - - - TOIL WORKER OUTPUT LOG- - -, that contains the stack trace. We
see a detailed message telling us that on line 30, in the down fuction, we encountered an error.

If we try and run the pipeline again, we get an error message telling us that a jobStore of the same name already
exists. The default behavior for the job store is that it is not cleaned up in the event of failure so that you can
restart it from the last succesful job. We can restart the pipeline by running python toil-sort-example.py
file:jobStore --restart. We can also change the number of times Toil will attempt to retry a failed job,
python toil-sort-example.py --retryCount 2 --restart. You’ll now see Toil attempt to rerun
the failed job, decrementing a counter until that job has exhausted the retry count. --retryCount is useful for non-
systemic errors, like downloading a file that may experience a sporadic interruption, or some other non-deterministic
failure.

3.3. Running a Toil pipeline in detail 17

Toil Documentation, Release 3.2.2a1

To succesfully restart our pipeline, we can edit our script to comment out line 30, or remove it, and then run python
toil-sort-example.py --restart. The pipeline will successfully complete, and the job store will be re-
moved.

3.3.3 Getting stats from our pipeline run

We can execute the pipeline to let use retrieve statistics with python toil-sort-example.py --stats. Our
pipeline will finish successfully, but leave behind the job store. Now we can type toil stats file:jobStore
and get back information about total runtime and stats pertaining to each job function.

We can then cleanup our jobStore by running toil clean file:jobStore

18 Chapter 3. Running a workflow

CHAPTER 4

Running in the cloud

There are several recommended ways to run Toil jobs in the cloud. Of these, running on Amazon Web Services (AWS)
is currently the best-supported solution.

On all cloud providers, it is recommended that you run long-running jobs on remote systems under screen. Simply
type screen to open a new screen‘ session. Later, type ‘‘ctrl-a and then d to disconnect from
it, and run screen -r to reconnect to it. Commands running under screen will continue running even when you
are disconnected, allowing you to unplug your laptop and take it home without ending your Toil jobs.

4.1 Running on AWS

See Installation on AWS for distributed computing to get setup for running on AWS.

Having followed the Running quick start guide, the user can run their HelloWorld.py script on a distributed cluster
just by modifiying the run command. Since our cluster is distributed, we’ll use the AWS Jobstore which creates a job
store in S3 instead of on file system.

Place the HelloWorld.py script on the leader node, and run:

python --batchSystem=mesos --mesosMaster=mesos-master:5050 \
HelloWorld.py aws:us-west-2:my-s3-jobstore

To run a CWL workflow:

cwltoil --batchSystem=mesos --mesosMaster=mesos-master:5050 \
--jobStore=aws:us-west-2:my-s3-jobstore \
example.cwl example-job.yml

When running a CWL workflow on AWS, input files can be provided either on the local file system or in S3 buckets
using s3:// URL references. Final output files will be copied to the local file system of the leader node.

4.2 Running on Azure

See Installation on Azure to get setup for running on Azure. This section assumes that you are SSHed into your
cluster’s leader node.

The Azure templates do not create a shared filesystem; you need to use the Azure Jobstore, which needs an Azure
Storage Account in which to store its job data. (Note that you can store multiple job stores in a single Azure Storage
Account.)

To create a new Storage Account, if you do not already have one:

19

Toil Documentation, Release 3.2.2a1

1. Click here, or navigate to https://portal.azure.com/#create/Microsoft.StorageAccount
in your browser.

2. If necessary, log into the Microsoft Account that you use for Azure.

3. Fill out the presented form. The Name for the account, notably, must be a 3-to-24-character string of letters
and lowercase numbers that is globally unique. For Deployment model, choose “Resource manager”. For
Resource group, choose or create a resource group different than the one in which you created your cluster.
For Location, choose the same region that you used for your cluster.

4. Press the “Create” button. Wait for your Storage Account to be created; you should get a notification in the
notifications area at the upper right.

Once you have a Storage Account, you need to authorize the cluster to access the Storage Account, by giving it the
access key. To do find your Storage Account’s access key:

1. When your Storage Account has been created, open it up and click the “Settings” icon.

2. In the “Settings” panel, select “Access keys”.

3. Select the text in the “Key1” box and copy it to the clipboard, or use the copy-to-clipboard icon.

You then need to share the key with the cluster. To do this temporarily, for the duration of an SSH or screen session:

1. On the leader node, run export AZURE_ACCOUNT_KEY="<KEY>", replacing <KEY> with the access key
you copied from the Azure portal.

To do this permanently:

1. On the leader node, run nano ~/.toilAzureCredentials.

2. In the editor that opens, navigate with the arrow keys, and give the file the following contents:

[AzureStorageCredentials]
<accountname>=<accountkey>

Be sure to replace <accountname> with the name that you used for your Azure Storage Account, and
<accountkey> with the key you obtained above. (If you want, you can have multiple accounts with dif-
ferent keys in this file, by adding multipe lines. If you do this, be sure to leave the AZURE_ACCOUNT_KEY
environment variable unset.)

3. Press ctrl-o to save the file, and ctrl-x to exit the editor.

Once that’s done, you are now ready to actually execute a job, storing your job store in that Azure Storage Account.
Assuming you followed the Running quick start guide above, you have an Azure Storage Account created, and you
have placed the Storage Account’s access key on the cluster, you can run the HelloWorld.py script by doing the
following:

1. Place your script on the leader node, either by downloading it from the command line or typing or copying it
into a command-line editor.

2. Run the command:

python --batchSystem=mesos --mesosMaster=10.0.0.5:5050 \
HelloWorld.py azure:<accountname>:hello-world001

To run a CWL workflow:

cwltoil --batchSystem=mesos --mesosMaster=10.0.0.5:5050 \
--jobStore=azure:<accountname>:hello-world001 \
example.cwl example-job.yml

Be sure to replace <accountname> with the name of your Azure Storage Account.

20 Chapter 4. Running in the cloud

https://portal.azure.com/#create/Microsoft.StorageAccount

Toil Documentation, Release 3.2.2a1

Note that once you run a job with a particular job store name (the part after the account name) in a particular Storage
Account, you cannot re-use that name in that account unless one of the following happens:

1. You are restarting the same job with the --restart option.

2. You clean the job store with toil clean azure:<accountname>:<jobstore>.

3. You delete all the items created by that job, and the main job store table used by Toil, from the account (destroy-
ing all other job stores using the account).

4. The job finishes successfully and cleans itself up.

4.3 Running on Open Stack

After getting setup with Installation on OpenStack, Toil scripts can be run just by designating a job store location as
shown in Running quick start. The location of temporary directories Toil creates to run jobs can be specified with
--workDir:

python HelloWorld.py file:jobStore --workDir /tmp/

4.4 Running on Google Compute Engine

After getting setup with Installation on Google Compute Engine, Toil scripts can be run just by designating a job store
location as shown in Running quick start.

If you wish to use the Google Storage job store, you must install Toil with the ‘google’ extra. Having done this, you
must create a file named ‘.boto’ in your home directory with the following format:

[Credentials]
gs_access_key_id = KEY_ID
gs_secret_access_key = SECRET_KEY

[Boto]
https_validate_certificates = True

[GSUtil]
content_language = en
default_api_version = 2

The gs_access_key_id and gs_secret_access_key can be generated by navigating to your Google Cloud Storage con-
sole and clicking on ‘Settings’. Then, on the Settings page, navigate to the Interoperability tab and click ‘Enable
interoperability access’. On this page you can now click ‘Create a new key’ to generate an access key and a matching
secret. Insert these into their respective places in the .boto file and you will be able to use a Google job store when
invoking a Toil script, as in the following example:

python HelloWorld.py google:projectID:jobStore

The ‘projectID’ component of the job store argument above refers your Google Cloud project ID in the Google Cloud
Console, and will be visible in the console’s banner at the top of the screen. The ‘jobStore’ component is a name of
your choosing that you will use to refer to this job store.

4.3. Running on Open Stack 21

Toil Documentation, Release 3.2.2a1

22 Chapter 4. Running in the cloud

CHAPTER 5

Command line interface and arguments

Toil provides many command line options when running a toil script (see Running a workflow), or using Toil to run a
CWL or WDL script. Many of these are described below. For most Toil scripts executing ‘–help’ will show this list of
options.

It is also possible to set and manipulate the options described when invoking a Toil workflow from within Python using
toil.job.Job.Runner.getDefaultOptions(), e.g.:

options = Job.Runner.getDefaultOptions("./toilWorkflow") # Get the options object
options.logLevel = "INFO" # Set the log level to the info level.

Job.Runner.startToil(Job(), options) # Run the script

5.1 Logging

Toil hides stdout and stderr by default except in case of job failure. For more robust logging options (default is INFO),
use --logDebug or more generally, use --logLevel=, which may be set to either OFF (or CRITICAL), ERROR,
WARN (or WARNING), INFO or DEBUG. Logs can be directed to a file with --logFile=.

If large logfiles are a problem, --maxLogFileSize (in bytes) can be set as well as --rotatingLogging, which
prevents logfiles from getting too large.

5.2 Stats

The --stats argument records statistics about the Toil workflow in the job store. After a Toil run has finished, the
entrypoint toil stats <jobStore> can be used to return statistics about cpu, memory, job duration, and more.
The job store will never be deleted with --stats, as it overrides --clean.

5.3 Restart

In the event of failure, Toil can resume the pipeline by adding the argument --restart and rerunning the python
script. Toil pipelines can even be edited and resumed which is useful for development or troubleshooting.

23

Toil Documentation, Release 3.2.2a1

5.4 Clean

If a Toil pipeline didn’t finish successfully, or is using a variation of --clean, the job store will exist until it is
deleted. toil clean <jobStore> ensures that all artifacts associated with a job store are removed. This is
particularly useful for deleting AWS job stores, which reserves an SDB domain as well as an S3 bucket.

The deletion of the job store can be modified by the --clean argument, and may be set to always, onError,
never, or onSuccess (default).

Temporary directories where jobs are running can also be saved from deletion using the --cleanWorkDir, which
has the same options as --clean. This option should only be run when debugging, as intermediate jobs will fill up
disk space.

5.5 Batch system

Toil supports several different batch systems using the --batchSystem argument. More information in the The
batch system interface.

5.6 Default cores, disk, and memory

Toil uses resource requirements to intelligently schedule jobs. The defaults for cores (1), disk (2G), and memory (2G),
can all be changed using --defaultCores, --defaultDisk, and --defaultMemory. Standard suffixes like
K, Ki, M, Mi, G or Gi are supported.

5.7 Job store

Running toil scripts has one required positional argument: the job store. The default job store is just a
path to where the user would like the job store to be created. To use the Running quick start example, if
you’re on a node that has a large /scratch volume, you can specify the jobstore be created there by execut-
ing: python HelloWorld.py /scratch/my-job-store, or more explicitly, python HelloWorld.py
file:/scratch/my-job-store. Toil uses the colon as way to explicitly name what type of job store the user
would like. Different types of job store options can be looked up in The job store interface.

5.8 Miscellaneous

Here are some additional useful arguments that don’t fit into another category.

• --workDir sets the location where temporary directories are created for running jobs.

• --retryCount sets the number of times to retry a job in case of failure. Useful for non-systemic failures like
HTTP requests.

• --sseKey accepts a path to a 32-byte key that is used for server-side encryption when using the AWS job
store.

• --cseKey accepts a path to a 256-bit key to be used for client-side encryption on Azure job store.

• --setEnv <NAME=VALUE> sets an environment variable early on in the worker

24 Chapter 5. Command line interface and arguments

CHAPTER 6

Developing a workflow

This tutorial walks through the features of Toil necessary for developing a workflow using the Toil Python API.

6.1 Scripting quick start

To begin, consider this short toil script which illustrates defining a workflow:

from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
return "Hello, world!, here's a message: %s" % message

j = Job.wrapFn(helloWorld, "woot")

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflow")
print Job.Runner.startToil(j, options) #Prints Hello, world!, ...

The workflow consists of a single job. The resource requirements for that job are (optionally) specified by keyword
arguments (memory, cores, disk). The script is run using toil.job.Job.Runner.getDefaultOptions().
Below we explain the components of this code in detail.

6.2 Job basics

The atomic unit of work in a Toil workflow is a job (toil.job.Job). User scripts inherit from this base class
to define units of work. For example, here is a more long-winded class-based version of the job in the quick start
example:

from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return "Hello, world!, here's a message: %s" % self.message

In the example a class, HelloWorld, is defined. The constructor requests 2 gigabytes of memory, 2 cores and 3
gigabytes of local disk to complete the work.

25

Toil Documentation, Release 3.2.2a1

The toil.job.Job.run() method is the function the user overrides to get work done. Here it just logs a message
using toil.job.Job.FileStore.logToMaster(), which will be registered in the log output of the leader
process of the workflow.

6.3 Invoking a workflow

We can add to the previous example to turn it into a complete workflow by adding the necessary function
calls to create an instance of HelloWorld and to run this as a workflow containing a single job. This uses the
toil.job.Job.Runner class, which is used to start and resume Toil workflows. For example:

from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return "Hello, world!, here's a message: %s" % self.message

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
print Job.Runner.startToil(HelloWorld("woot"), options)

Alternatively, the more powerful toil.common.Toil class can be used to run and resume workflows. It is used as
a context manager and allows for preliminary setup, such as staging of files into the job store on the leader node. An
instance of the class is initialized by specifying an options object. The actual workflow is then invoked by calling the
toil.common.Toil.start() method, passing the root job of the workflow, or, if a workflow is being restarted,
toil.common.Toil.restart() should be used. Note that the context manager should have explicit if else
branches addressing restart and non restart cases. The boolean value for these if else blocks is toil.options.restart.

For example:

from toil.job import Job
from toil.common import Toil

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
fileStore.logToMaster("Hello, world!, I have a message: %s"

% self.message)
if __name__=="__main__":

options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"

with Toil(options) as toil:
if not toil.options.restart:

job = HelloWorld("Smitty Werbenmanjensen, he was #1")
toil.start(job)

else:
toil.restart()

The call to toil.job.Job.Runner.getDefaultOptions() creates a set of default options for the workflow.
The only argument is a description of how to store the workflow’s state in what we call a job-store. Here the job-store

26 Chapter 6. Developing a workflow

Toil Documentation, Release 3.2.2a1

is contained in a directory within the current working directory called “toilWorkflowRun”. Alternatively this string
can encode other ways to store the necessary state, e.g. an S3 bucket or Azure object store location. By default the
job-store is deleted if the workflow completes successfully.

The workflow is executed in the final line, which creates an instance of HelloWorld and runs it as a workflow. Note all
Toil workflows start from a single starting job, referred to as the root job. The return value of the root job is returned
as the result of the completed workflow (see promises below to see how this is a useful feature!).

6.4 Specifying arguments via the command line

To allow command line control of the options we can use the toil.job.Job.Runner.getDefaultArgumentParser()
method to create a argparse.ArgumentParser object which can be used to parse command line options for a
Toil script. For example:

from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return "Hello, world!, here's a message: %s" % self.message

if __name__=="__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
print Job.Runner.startToil(HelloWorld("woot"), options)

Creates a fully fledged script with all the options Toil exposed as command line arguments. Running this script with
“–help” will print the full list of options.

Alternatively an existing argparse.ArgumentParser or optparse.OptionParser object can have Toil
script command line options added to it with the toil.job.Job.Runner.addToilOptions() method.

6.5 Resuming a workflow

In the event that a workflow fails, either because of programmatic error within the jobs being run, or because of node
failure, the workflow can be resumed. Workflows can only not be reliably resumed if the job-store itself becomes
corrupt.

Critical to resumption is that jobs can be rerun, even if they have apparently completed successfully. Put succinctly,
a user defined job should not corrupt its input arguments. That way, regardless of node, network or leader failure the
job can be restarted and the workflow resumed.

To resume a workflow specify the “restart” option in the options object passed to
toil.job.Job.Runner.startToil(). If node failures are expected it can also be useful to use the in-
teger “retryCount” option, which will attempt to rerun a job retryCount number of times before marking it fully
failed.

In the common scenario that a small subset of jobs fail (including retry attempts) within a workflow Toil will continue
to run other jobs until it can do no more, at which point toil.job.Job.Runner.startToil() will raise a
toil.job.leader.FailedJobsException exception. Typically at this point the user can decide to fix the
script and resume the workflow or delete the job-store manually and rerun the complete workflow.

6.4. Specifying arguments via the command line 27

Toil Documentation, Release 3.2.2a1

6.6 Functions and job functions

Defining jobs by creating class definitions generally involves the boilerplate of creating a constructor. To avoid this the
classes toil.job.FunctionWrappingJob and toil.job.JobFunctionWrappingTarget allow func-
tions to be directly converted to jobs. For example, the quick start example (repeated here):

from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
return "Hello, world!, here's a message: %s" % message

j = Job.wrapFn(helloWorld, "woot")

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
print Job.Runner.startToil(j, options)

Is equivalent to the previous example, but using a function to define the job.

The function call:

Job.wrapFn(helloWorld, "woot")

Creates the instance of the toil.job.FunctionWrappingTarget that wraps the function.

The keyword arguments memory, cores and disk allow resource requirements to be specified as before. Even if they
are not included as keyword arguments within a function header they can be passed as arguments when wrapping a
function as a job and will be used to specify resource requirements.

We can also use the function wrapping syntax to a job function, a function whose first argument is a reference to
the wrapping job. Just like a self argument in a class, this allows access to the methods of the wrapping job, see
toil.job.JobFunctionWrappingTarget. For example:

from toil.job import Job

def helloWorld(job, message):
job.fileStore.logToMaster("Hello world, "
"I have a message: %s" % message) # This uses a logging function
of the Job.FileStore class

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
print Job.Runner.startToil(Job.wrapJobFn(helloWorld, "woot"), options)

Here helloWorld2 is a job function. It accesses the toil.job.Job.FileStore attribute of the job to log a
message that will be printed to the output console. Here the only subtle difference to note is the line:

Job.Runner.startToil(Job.wrapJobFn(helloWorld, "woot"), options)

Which uses the function toil.job.Job.wrapJobFn() to wrap the job function instead of
toil.job.Job.wrapFn() which wraps a vanilla function.

6.7 Workflows with multiple jobs

A parent job can have child jobs and follow-on jobs. These relationships are specified by methods of the job class, e.g.
toil.job.Job.addChild() and toil.job.Job.addFollowOn().

28 Chapter 6. Developing a workflow

Toil Documentation, Release 3.2.2a1

Considering a set of jobs the nodes in a job graph and the child and follow-on relationships the directed edges of
the graph, we say that a job B that is on a directed path of child/follow-on edges from a job A in the job graph is a
successor of A, similarly A is a predecessor of B.

A parent job’s child jobs are run directly after the parent job has completed, and in parallel. The follow-on jobs of a
job are run after its child jobs and their successors have completed. They are also run in parallel. Follow-ons allow
the easy specification of cleanup tasks that happen after a set of parallel child tasks. The following shows a simple
example that uses the earlier helloWorld job function:

from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.fileStore.logToMaster("Hello world, "
"I have a message: %s" % message) # This uses a logging function
of the Job.FileStore class

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = Job.wrapJobFn(helloWorld, "second or third")
j3 = Job.wrapJobFn(helloWorld, "second or third")
j4 = Job.wrapJobFn(helloWorld, "last")
j1.addChild(j2)
j1.addChild(j3)
j1.addFollowOn(j4)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
Job.Runner.startToil(j1, options)

In the example four jobs are created, first j1 is run, then j2 and j3 are run in parallel as children of j1, finally j4 is run
as a follow-on of j1.

There are multiple short hand functions to achieve the same workflow, for example:

from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.fileStore.logToMaster("Hello world, "
"I have a message: %s" % message) # This uses a logging function
of the Job.FileStore class

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = j1.addChildJobFn(helloWorld, "second or third")
j3 = j1.addChildJobFn(helloWorld, "second or third")
j4 = j1.addFollowOnJobFn(helloWorld, "last")

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
Job.Runner.startToil(j1, options)

Equivalently defines the workflow, where the functions toil.job.Job.addChildJobFn() and
toil.job.Job.addFollowOnJobFn() are used to create job functions as children or follow-ons of an
earlier job.

Jobs graphs are not limited to trees, and can express arbitrary directed acylic graphs. For a precise definition of legal
graphs see toil.job.Job.checkJobGraphForDeadlocks(). The previous example could be specified as a
DAG as follows:

6.7. Workflows with multiple jobs 29

Toil Documentation, Release 3.2.2a1

from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.fileStore.logToMaster("Hello world, "
"I have a message: %s" % message) # This uses a logging function
of the Job.FileStore class

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = j1.addChildJobFn(helloWorld, "second or third")
j3 = j1.addChildJobFn(helloWorld, "second or third")
j4 = j2.addChildJobFn(helloWorld, "last")
j3.addChild(j4)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
Job.Runner.startToil(j1, options)

Note the use of an extra child edge to make j4 a child of both j2 and j3.

6.8 Dynamic job creation

The previous examples show a workflow being defined outside of a job. However, Toil also allows jobs to be created
dynamically within jobs. For example:

from toil.job import Job

def binaryStringFn(job, message="", depth):
if depth > 0:

job.addChildJobFn(binaryStringFn, message + "0", depth-1)
job.addChildJobFn(binaryStringFn, message + "1", depth-1)

else:
job.fileStore.logToMaster("Binary string: %s" % message)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
Job.Runner.startToil(Job.wrapJobFn(binaryStringFn, depth=5), options)

The binaryStringFn logs all possible binary strings of length n (here n=5), creating a total of 2^(n+2) - 1 jobs dynami-
cally and recursively. Static and dynamic creation of jobs can be mixed in a Toil workflow, with jobs defined within a
job or job function being created at run-time.

6.9 Promises

The previous example of dynamic job creation shows variables from a parent job being passed to a child job. Such
forward variable passing is naturally specified by recursive invocation of successor jobs within parent jobs. This can
also be achieved statically by passing around references to the return variables of jobs. In Toil this is achieved with
promises, as illustrated in the following example:

from toil.job import Job

def fn(job, i):
job.fileStore.logToMaster("i is: %s" % i, level=100)

30 Chapter 6. Developing a workflow

Toil Documentation, Release 3.2.2a1

return i+1

j1 = Job.wrapJobFn(fn, 1)
j2 = j1.addChildJobFn(fn, j1.rv())
j3 = j1.addFollowOnJobFn(fn, j2.rv())

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
Job.Runner.startToil(j1, options)

Running this workflow results in three log messages from the jobs: “i is 1” from j1, “i is 2” from j2 and “i is 3” from
j3.

The return value from the first job is promised to the second job by the call to toil.job.Job.rv() in the line:

j2 = j1.addChildFn(fn, j1.rv())

The value of j1.rv() is a promise, rather than the actual return value of the function, because j1 for the given input has
at that point not been evaluated. A promise (toil.job.Promise) is essentially a pointer to the return value that is
replaced by the actual return value once it has been evaluated. Therefore when j2 is run the promise becomes 2.

Promises can be quite useful. For example, we can combine dynamic job creation with promises to achieve a job
creation process that mimics the functional patterns possible in many programming languages:

from toil.job import Job

def binaryStrings(job, message="", depth):
if depth > 0:

s = [job.addChildJobFn(binaryStrings, message + "0",
depth-1).rv(),

job.addChildJobFn(binaryStrings, message + "1",
depth-1).rv()]

return job.addFollowOnFn(merge, s).rv()
return [message]

def merge(strings):
return strings[0] + strings[1]

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
l = Job.Runner.startToil(Job.wrapJobFn(binaryStrings, depth=5), options)
print l #Prints a list of all binary strings of length 5

The return value l of the workflow is a list of all binary strings of length 10, computed recursively. Although a toy
example, it demonstrates how closely Toil workflows can mimic typical programming patterns.

6.10 Managing files within a workflow

It is frequently the case that a workflow will want to create files, both persistent and temporary, during its run. The
toil.job.Job.FileStore class is used by jobs to manage these files in a manner that guarantees cleanup and
resumption on failure.

The toil.job.Job.run() method has a file-store instance as an argument. The following example shows how
this can be used to create temporary files that persist for the length of the job, be placed in a specified local disk of the
node and that will be cleaned up, regardless of failure, when the job finishes:

6.10. Managing files within a workflow 31

Toil Documentation, Release 3.2.2a1

from toil.job import Job

class LocalFileStoreJob(Job):
def run(self, fileStore):

scratchDir = fileStore.getLocalTempDir() #Create a temporary
directory safely within the allocated disk space
reserved for the job.

scratchFile = fileStore.getLocalTempFile() #Similarly
create a temporary file.

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
#Create an instance of FooJob which will
have at least 10 gigabytes of storage space.
j = LocalFileStoreJob(disk="10G")
#Run the workflow
Job.Runner.startToil(j, options)

Job functions can also access the file-store for the job. The equivalent of the LocalFileStoreJob class is equivalently:

def localFileStoreJobFn(job):
scratchDir = job.fileStore.getLocalTempDir()
scratchFile = job.fileStore.getLocalTempFile()

Note that the fileStore attribute is accessed as an attribute of the job argument.

In addition to temporary files that exist for the duration of a job, the file-store allows the creation of files in a global
store, which persists during the workflow and are globally accessible (hence the name) between jobs. For example:

from toil.job import Job
import os

def globalFileStoreJobFn(job):
job.fileStore.logToMaster("The following example exercises all the"

" methods provided by the"
" Job.FileStore class")

scratchFile = job.fileStore.getLocalTempFile() # Create a local
temporary file.

with open(scratchFile, 'w') as fH: # Write something in the
scratch file.
fH.write("What a tangled web we weave")

Write a copy of the file into the file-store;
fileID is the key that can be used to retrieve the file.
fileID = job.fileStore.writeGlobalFile(scratchFile) #This write
is asynchronous by default

Write another file using a stream; fileID2 is the
key for this second file.
with job.fileStore.writeGlobalFileStream(cleanup=True) as (fH, fileID2):

fH.write("Out brief candle")

Now read the first file; scratchFile2 is a local copy of the file
that is read only by default.
scratchFile2 = job.fileStore.readGlobalFile(fileID)

32 Chapter 6. Developing a workflow

Toil Documentation, Release 3.2.2a1

Read the second file to a desired location: scratchFile3.
scratchFile3 = os.path.join(job.fileStore.getLocalTempDir(), "foo.txt")
job.fileStore.readGlobalFile(fileID, userPath=scratchFile3)

Read the second file again using a stream.
with job.fileStore.readGlobalFileStream(fileID2) as fH:

print fH.read() #This prints "Out brief candle"

Delete the first file from the global file-store.
job.fileStore.deleteGlobalFile(fileID)

It is unnecessary to delete the file keyed by fileID2
because we used the cleanup flag, which removes the file after this
job and all its successors have run (if the file still exists)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(Job.wrapJobFn(globalFileStoreJobFn), options)

The example demonstrates the global read, write and delete functionality of the file-store, using both local copies of
the files and streams to read and write the files. It covers all the methods provided by the file-store interface.

What is obvious is that the file-store provides no functionality to update an existing “global” file, meaning that files
are, barring deletion, immutable. Also worth noting is that there is no file system hierarchy for files in the global file
store. These limitations allow us to fairly easily support different object stores and to use caching to limit the amount
of network file transfer between jobs.

6.10.1 Staging of files into the job store

External files can be imported into or exported out of the job store prior to running a workflow
when the toil.common.Toil context manager is used on the leader. The context manager pro-
vides methods toil.common.Toil.importFile(), and toil.common.Toil.exportFile()
for this purpose. The destination and source locations of such files are described with
URLs passed to the two methods. A list of the currently supported URLs can be found at
toil.jobStores.abstractJobStore.AbstractJobStore.importFile(). To import an exter-
nal file into the job store as a shared file, pass the optional sharedFileName parameter to that method.

If a workflow fails for any reason an imported file acts as any other file in the job store. If the workflow was configured
such that it not be cleaned up on a failed run, the file will persist in the job store and needs not be staged again when
the workflow is resumed.

Example:

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
def __init__(self, inputFileID):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.inputFileID = inputFileID

with fileStore.readGlobalFileStream(self.inputFileID) as fi:
with fileStore.writeGlobalFileStream() as (fo, outputFileID):

fo.write(fi.read() + 'World!')
return outputFileID

6.10. Managing files within a workflow 33

Toil Documentation, Release 3.2.2a1

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"

with Toil(options) as toil:
if not toil.options.restart:

inputFileID = toil.importFile('file:///some/local/path')
outputFileID = toil.start(HelloWorld(inputFileID))

else:
outputFileID = toil.restart()

toil.exportFile(outputFileID, 'file:///some/other/local/path')

6.11 Services

It is sometimes desirable to run services, such as a database or server, concurrently with a workflow. The
toil.job.Job.Service class provides a simple mechanism for spawning such a service within a Toil work-
flow, allowing precise specification of the start and end time of the service, and providing start and end methods to use
for initialization and cleanup. The following simple, conceptual example illustrates how services work:

from toil.job import Job

class DemoService(Job.Service):

def start(self, fileStore):
Start up a database/service here
return "loginCredentials" # Return a value that enables another
process to connect to the database

def check(self):
A function that if it returns False causes the service to quit
If it raises an exception the service is killed and an error is reported
return True

def stop(self, fileStore):
Cleanup the database here
pass

j = Job()
s = DemoService()
loginCredentialsPromise = j.addService(s)

def dbFn(loginCredentials):
Use the login credentials returned from the service's start method
to connect to the service
pass

j.addChildFn(dbFn, loginCredentialsPromise)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(j, options)

In this example the DemoService starts a database in the start method, returning an object from the start method
indicating how a client job would access the database. The service’s stop method cleans up the database, while the

34 Chapter 6. Developing a workflow

Toil Documentation, Release 3.2.2a1

service’s check method is polled periodically to check the service is alive.

A DemoService instance is added as a service of the root job j, with resource requirements specified. The return value
from toil.job.Job.addService() is a promise to the return value of the service’s start method. When the
promised is fulfilled it will represent how to connect to the database. The promise is passed to a child job of j, which
uses it to make a database connection. The services of a job are started before any of its successors have been run and
stopped after all the successors of the job have completed successfully.

Multiple services can be created per job, all run in parallel. Additionally, services can define sub-services using
toil.job.Job.Service.addChild(). This allows complex networks of services to be created, e.g. Apache
Spark clusters, within a workflow.

6.12 Checkpoints

Services complicate resuming a workflow after failure, because they can create complex dependencies between jobs.
For example, consider a service that provides a database that multiple jobs update. If the database service fails and
loses state, it is not clear that just restarting the service will allow the workflow to be resumed, because jobs that
created that state may have already finished. To get around this problem Toil supports “checkpoint” jobs, specified as
the boolean keyword argument “checkpoint” to a job or wrapped function, e.g.:

j = Job(checkpoint=True)

A checkpoint job is rerun if one or more of its successors fails its retry attempts, until it itself has exhausted its retry
attempts. Upon restarting a checkpoint job all its existing successors are first deleted, and then the job is rerun to
define new successors. By checkpointing a job that defines a service, upon failure of the service the database and the
jobs that access the service can be redefined and rerun.

To make the implementation of checkpoint jobs simple, a job can only be a checkpoint if when first defined it has no
successors, i.e. it can only define successors within its run method.

6.13 Encapsulation

Let A be a root job potentially with children and follow-ons. Without an encapsulated job the simplest way to specify
a job B which runs after A and all its successors is to create a parent of A, call it Ap, and then make B a follow-on of
Ap. e.g.:

from toil.job import Job

A is a job with children and follow-ons, for example:
A = Job()
A.addChild(Job())
A.addFollowOn(Job())

B is a job which needs to run after A and its successors
B = Job()

The way to do this without encapsulation is to make a
parent of A, Ap, and make B a follow-on of Ap.
Ap = Job()
Ap.addChild(A)
Ap.addFollowOn(B)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(Ap, options)

6.12. Checkpoints 35

Toil Documentation, Release 3.2.2a1

An encapsulated job of E(A) of A saves making Ap, instead we can write:

from toil.job import Job

A
A = Job()
A.addChild(Job())
A.addFollowOn(Job())

#Encapsulate A
A = A.encapsulate()

B is a job which needs to run after A and its successors
B = Job()

With encapsulation A and its successor subgraph appear
to be a single job, hence:
A.addChild(B)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
Job.Runner.startToil(A, options)

Note the call to toil.job.Job.encapsulate() creates the toil.job.Job.EncapsulatedJob.

36 Chapter 6. Developing a workflow

CHAPTER 7

Toil API

7.1 Job methods

Jobs are the units of work in Toil which are composed into workflows.

class toil.job.Job(memory=None, cores=None, disk=None, preemptable=None, cache=None, check-
point=False)

Class represents a unit of work in toil.

This method must be called by any overriding constructor.

Parameters

• memory – the maximum number of bytes of memory the job will require to run.

• cores – the number of CPU cores required.

• disk – the amount of local disk space required by the job, expressed in bytes.

• preemptable – if the job can be run on a preemptable node.

• cache – the amount of disk (so that cache <= disk), expressed in bytes, for storing files
from previous jobs so that they can be accessed from a local copy.

• checkpoint – if any of this job’s successor jobs completely fails,

exhausting all their retries, remove any successor jobs and rerun this job to restart
the subtree. Job must be a leaf vertex in the job graph when initially defined, see
toil.job.Job.checkNewCheckpointsAreCutVertices(). :type cores: int or string
convertable by bd2k.util.humanize.human2bytes to an int :type disk: int or string convertable by
bd2k.util.humanize.human2bytes to an int :type preemptable: boolean :type cache: int or string con-
vertable by bd2k.util.humanize.human2bytes to an int :type memory: int or string convertable by
bd2k.util.humanize.human2bytes to an int

addChild(childJob)
Adds childJob to be run as child of this job. Child jobs will be run directly after this job’s
toil.job.Job.run() method has completed.

Parameters childJob (toil.job.Job) –

Returns childJob

Return type toil.job.Job

addChildFn(fn, *args, **kwargs)
Adds a function as a child job.

37

Toil Documentation, Release 3.2.2a1

Parameters fn – Function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to
specify resource requirements.

Returns The new child job that wraps fn.

Return type toil.job.FunctionWrappingJob

addChildJobFn(fn, *args, **kwargs)
Adds a job function as a child job. See toil.job.JobFunctionWrappingJob for a definition of a
job function.

Parameters fn – Job function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used
to specify resource requirements.

Returns The new child job that wraps fn.

Return type toil.job.JobFunctionWrappingJob

addFollowOn(followOnJob)
Adds a follow-on job, follow-on jobs will be run after the child jobs and their successors have been run.

Parameters followOnJob (toil.job.Job) –

Returns followOnJob

Return type toil.job.Job

addFollowOnFn(fn, *args, **kwargs)
Adds a function as a follow-on job.

Parameters fn – Function to be run as a follow-on job with *args and **kwargs as argu-
ments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments
used to specify resource requirements.

Returns The new follow-on job that wraps fn.

Return type toil.job.FunctionWrappingJob

addFollowOnJobFn(fn, *args, **kwargs)
Add a follow-on job function. See toil.job.JobFunctionWrappingJob for a definition of a job
function.

Parameters fn – Job function to be run as a follow-on job with *args and **kwargs as
arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword ar-
guments used to specify resource requirements.

Returns The new follow-on job that wraps fn.

Return type toil.job.JobFunctionWrappingJob

addService(service, parentService=None)
Add a service.

The toil.job.Job.Service.start() method of the service will be called after the run method
has completed but before any successors are run. The service’s toil.job.Job.Service.stop()
method will be called once the successors of the job have been run.

Services allow things like databases and servers to be started and accessed by jobs in a workflow.

Raises toil.job.JobException – If service has already been made the child of a job or
another service.

Parameters

38 Chapter 7. Toil API

Toil Documentation, Release 3.2.2a1

• service (toil.job.Job.Service) – Service to add.

• parentService (toil.job.Job.Service) – Service that will be started before
‘service’ is started. Allows trees of services to be established. parentService must be a
service of this job.

Returns a promise that will be replaced with the return value from
toil.job.Job.Service.start() of service in any successor of the job.

:rtype:toil.job.Promise

allocatePromiseFile(index)

checkJobGraphAcylic()

Raises toil.job.JobGraphDeadlockException – if the connected component of jobs
containing this job contains any cycles of child/followOn dependencies in the augmented job
graph (see below). Such cycles are not allowed in valid job graphs.

A follow-on edge (A, B) between two jobs A and B is equivalent to adding a child edge to B from (1) A,
(2) from each child of A, and (3) from the successors of each child of A. We call each such edge an edge
an “implied” edge. The augmented job graph is a job graph including all the implied edges.

For a job graph G = (V, E) the algorithm is O(|V|^2). It is O(|V| + |E|) for a graph with no
follow-ons. The former follow-on case could be improved!

checkJobGraphConnected()

Raises toil.job.JobGraphDeadlockException – if
toil.job.Job.getRootJobs() does not contain exactly one root job.

As execution always starts from one root job, having multiple root jobs will cause a deadlock to occur.

checkJobGraphForDeadlocks()

Raises toil.job.JobGraphDeadlockException – if the job graph is cyclic, contains
multiple roots or contains checkpoint jobs that are

not leaf vertices when defined (see toil.job.Job.checkNewCheckpointsAreLeaves()).

See toil.job.Job.checkJobGraphConnected(), toil.job.Job.checkJobGraphAcyclic()
and toil.job.Job.checkNewCheckpointsAreLeafVertices() for more info.

checkNewCheckpointsAreLeafVertices()
A checkpoint job is a job that is restarted if either it fails, or if any of its successors completely fails,
exhausting their retries.

A job is a leaf it is has no successors.

A checkpoint job must be a leaf when initially added to the job graph. When its run method is invoked it
can then create direct successors. This restriction is made to simplify implementation.

Raises toil.job.JobGraphDeadlockException – if there exists a job being added to
the graph for which checkpoint=True and which is not a leaf.

effectiveRequirements(config)
Determine and validate the effective requirements for this job, substituting a missing explict requirement
with a default from the configuration.

Return type Expando

Returns a dictionary/object hybrid with one entry/attribute for each requirement

7.1. Job methods 39

Toil Documentation, Release 3.2.2a1

encapsulate()
Encapsulates the job, see toil.job.EncapsulatedJob. Convenience function for constructor of
toil.job.EncapsulatedJob.

Returns an encapsulated version of this job.

Return type toil.job.EncapsulatedJob.

getRootJobs()

Returns The roots of the connected component of jobs that contains this job. A root is a job
with no predecessors.

:rtype : set of toil.job.Job instances

getTopologicalOrderingOfJobs()

Returns a list of jobs such that for all pairs of indices i, j for which i < j, the job at index i can
be run before the job at index j.

Return type list

getUserScript()

hasChild(childJob)
Check if childJob is already a child of this job.

Parameters childJob (toil.job.Job) –

Returns True if childJob is a child of the job, else False.

Return type Boolean

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters fileStore (toil.job.Job.FileStore) – Used to create local and glob-
ally sharable temporary files and to send log messages to the leader process.

Returns The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

rv(index=None)
Creates a promise (toil.job.Promise) representing a return value of the job’s run method, or, in case
of a function-wrapping job, the wrapped function’s return value.

Parameters index (int|None) – If None the complete return value will be used, otherwise
an index to select an individual item from the return value in which case the return value
must be of a type that implements the __getitem__ magic method, e.g. dict, list or tuple.

Returns A promise representing the return value of this jobs toil.job.Job.run()method.

Return type toil.job.Promise

static wrapFn(fn, *args, **kwargs)
Makes a Job out of a function. Convenience function for constructor of
toil.job.FunctionWrappingJob.

Parameters fn – Function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource
requirements.

Returns The new function that wraps fn.

Return type toil.job.FunctionWrappingJob

40 Chapter 7. Toil API

Toil Documentation, Release 3.2.2a1

static wrapJobFn(fn, *args, **kwargs)
Makes a Job out of a job function. Convenience function for constructor of
toil.job.JobFunctionWrappingJob.

Parameters fn – Job function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource
requirements.

Returns The new job function that wraps fn.

Return type toil.job.JobFunctionWrappingJob

7.2 Job.FileStore

The FileStore is an abstraction of a Toil run’s shared storage.

class Job.FileStore(jobStore, jobWrapper, localTempDir, inputBlockFn)
Class used to manage temporary files, read and write files from the job store and log messages, passed as
argument to the toil.job.Job.run() method.

This constructor should not be called by the user, FileStore instances are only provided as arguments to the run
function.

Parameters

• jobStore (toil.jobStores.abstractJobStore.JobStore) – The job store
for the workflow.

• jobWrapper (toil.jobWrapper.JobWrapper) – The jobWrapper for the job.

• localTempDir (string) – A temporary directory in which local temporary files will
be placed.

• inputBlockFn (method) – A function which blocks and which is called before the
fileStore completes atomically updating the jobs files in the job store.

asyncWrite()

deleteGlobalFile(fileStoreID)
Deletes a global file with the given job store ID.

To ensure that the job can be restarted if necessary, the delete will not happen until after the job’s run
method has completed.

Parameters fileStoreID – the job store ID of the file to be deleted.

exportFile(jobStoreFileID, dstUrl)

getLocalTempDir()
Get a new local temporary directory in which to write files that persist for the duration of the job.

Returns The absolute path to a new local temporary directory. This directory will exist for the
duration of the job only, and is guaranteed to be deleted once the job terminates, removing
all files it contains recursively.

Return type string

getLocalTempFile()
Get a new local temporary file that will persist for the duration of the job.

Returns The absolute path to a local temporary file. This file will exist for the duration of the
job only, and is guaranteed to be deleted once the job terminates.

7.2. Job.FileStore 41

Toil Documentation, Release 3.2.2a1

Return type string

getLocalTempFileName()
Get a valid name for a new local file. Do it in a really stupid way by creating and then deleting a temp file
(haha). :return: Path to valid file

importFile(srcUrl, sharedFileName=None)

logToMaster(text, level=20)
Send a logging message to the leader. The message will also be logged by the worker at the same level.

Parameters

• text – The string to log.

• level (int) – The logging level.

open(*args, **kwds)
This is a dummy context manager that has a true purpose in Job.CachedFileStore where the __enter__ and
__exit__ methods carry out cache eviction, and cache cleanup operations. :param job: :return:

readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=None)
Get a copy of a file in the job store.

Parameters

• userPath (string) – a path to the name of file to which the global file will be copied
or hard-linked (see below).

• cache (boolean) – If True will use caching (see below). Caching will attempt to keep
copies of files between sequences of jobs run on the same worker.

• mutable (boolean) – If True, the file path returned points to a file that is

modifiable by the user. The value defaults to the False unless backwards compatibility was requested.

If cache=True and userPath is either: (1) a file path contained within a directory or, recursively, a subdi-
rectory of a temporary directory returned by Job.FileStore.getLocalTempDir(), or (2) a file path returned
by Job.FileStore.getLocalTempFile() then the file will be cached and returned file will be read only (have
permissions 444).

If userPath is specified and the file is already cached, the userPath file will be a hard link to the actual
location, else it will be an actual copy of the file.

If the cache=False or userPath is not either of the above the file will not be cached and will have default
permissions. Note, if the file is already cached this will result in two copies of the file on the system.

Returns an absolute path to a local, temporary copy of the file keyed by fileStoreID.

:rtype : string

readGlobalFileStream(fileStoreID)
Similar to readGlobalFile, but allows a stream to be read from the job store.

Returns a context manager yielding a file handle which can be read from. The yielded file
handle does not need to and should not be closed explicitly.

writeGlobalFile(localFileName, cleanup=False)
Takes a file (as a path) and uploads it to the job store.

If the local file is a file returned by toil.job.Job.FileStore.getLocalTempFile()
or is in a directory, or, recursively, a subdirectory, returned by
toil.job.Job.FileStore.getLocalTempDir() then the write is asynchronous, so fur-
ther modifications during execution to the file pointed by localFileName will result in undetermined
behavior. Otherwise, the method will block until the file is written to the file store.

42 Chapter 7. Toil API

Toil Documentation, Release 3.2.2a1

Parameters

• localFileName (string) – The path to the local file to upload.

• cleanup (Boolean) – if True then the copy of the global file will be deleted once the
job and all its successors have completed running. If not the global file must be deleted
manually.

Returns an ID that can be used to retrieve the file.

writeGlobalFileStream(cleanup=False)
Similar to writeGlobalFile, but allows the writing of a stream to the job store.

Parameters cleanup (Boolean) – is as in toil.job.Job.FileStore.writeGlobalFile().

Returns a context manager yielding a tuple of 1) a file handle which can be written to and 2) the
ID of the resulting file in the job store. The yielded file handle does not need to and should
not be closed explicitly.

7.3 Job.Runner

The Runner contains the methods needed to configure and start a Toil run.

class Job.Runner
Used to setup and run Toil workflow.

static addToilOptions(parser)
Adds the default toil options to an optparse or argparse parser object.

Parameters parser (optparse.OptionParser or argparse.ArgumentParser)
– Options object to add toil options to.

static getDefaultArgumentParser()
Get argument parser with added toil workflow options.

Returns The argument parser used by a toil workflow with added Toil options.

Return type argparse.ArgumentParser

static getDefaultOptions(jobStore)
Get default options for a toil workflow.

Parameters jobStore (string) – A string describing the jobStore for the workflow.

Returns The options used by a toil workflow.

Return type argparse.ArgumentParser values object

static startToil(job, options)
Deprecated by toil.common.Toil.run. Runs the toil workflow using the given options (see
Job.Runner.getDefaultOptions and Job.Runner.addToilOptions) starting with this job. :param toil.job.Job
job: root job of the workflow :raises: toil.leader.FailedJobsException if at the end of function their remain
failed jobs. :return: The return value of the root job’s run function. :rtype: Any

7.4 Toil

The Toil class provides for a more general way to configure and start a Toil run.

7.3. Job.Runner 43

Toil Documentation, Release 3.2.2a1

class toil.common.Toil(options)
A context manager that represents a Toil workflow, specifically the batch system, job store, and its configuration.

Initialize a Toil object from the given options. Note that this is very light-weight and that the bulk of the work
is done when the context is entered.

Parameters options (argparse.Namespace) – command line options specified by the user

static createBatchSystem(config, jobStore=None, userScript=None)
Creates an instance of the batch system specified in the given config. If a job store and a user script are
given then the user script can be hot deployed into the workflow.

Parameters

• config (toil.common.Config) – the current configuration

• jobStore (jobStores.abstractJobStore.AbstractJobStore) – an in-
stance of a jobStore

• userScript (ModuleDescriptor) – a user supplied script to use for hot develop-
ment

Returns an instance of a concrete subclass of AbstractBatchSystem

Return type batchSystems.abstractBatchSystem.AbstractBatchSystem

exportFile(jobStoreFileID, dstUrl)

static getWorkflowDir(workflowID, configWorkDir=None)
Returns a path to the directory where worker directories and the cache will be located for this workflow.

Parameters

• workflowID (str) – Unique identifier for the workflow

• configWorkDir (str) – Value passed to the program using the –workDir flag

Returns Path to the workflow directory

Return type str

importFile(srcUrl, sharedFileName=None)

static loadOrCreateJobStore(jobStoreString, config=None)
Loads an existing jobStore if it already exists. Otherwise a new instance of a jobStore is created and
returned.

Parameters

• jobStoreString (str) – see exception message below

• config (toil.common.Config) – see AbstractJobStore.__init__

Returns an instance of a concrete subclass of AbstractJobStore

Return type toil.jobStores.abstractJobStore.AbstractJobStore

restart()
Restarts a workflow that has been interrupted. This method should be called if and only if a workflow has
previously been started and has not finished.

Returns The root job’s return value

start(rootJob)
Invoke a Toil workflow with the given job as the root for an initial run. This method must be called in
the body of a with Toil(...) as toil: statement. This method should not be called more than
once for a workflow that has not finished.

44 Chapter 7. Toil API

Toil Documentation, Release 3.2.2a1

Parameters rootJob (toil.job.Job) – The root job of the workflow

Returns The root job’s return value

7.5 Job.Service

The Service class allows databases and servers to be spawned within a Toil workflow.

class Job.Service(memory=None, cores=None, disk=None, preemptable=None)
Abstract class used to define the interface to a service.

Memory, core and disk requirements are specified identically to as in toil.job.Job.__init__().

check()
Checks the service is still running.

Raises RuntimeError – If the service failed, this will cause the service job to be labeled
failed.

Returns True if the service is still running, else False. If False then the service job will be
terminated,

and considered a success. Important point: if the service job exits due to a failure, it should raise a
RuntimeError, not return False!

start(fileStore)
Start the service.

Parameters fileStore (toil.job.Job.FileStore) – A fileStore object to create tem-
porary files with.

Returns An object describing how to access the service. The object must be pickleable and will
be used by jobs to access the service (see toil.job.Job.addService()).

stop(fileStore)
Stops the service.

Parameters fileStore (toil.job.Job.FileStore) – A fileStore object to create tem-
porary files with.

Function can block until complete.

7.6 FunctionWrappingJob

The subclass of Job for wrapping user functions.

class toil.job.FunctionWrappingJob(userFunction, *args, **kwargs)
Job used to wrap a function. In its run method the wrapped function is called.

Parameters userFunction – The function to wrap. The userFunction will be called with the
*args and **kwargs as arguments.

The keywords “memory”, “cores”, “disk”, “cache” are reserved keyword arguments that if specified will be used
to determine the resources for the job, as toil.job.Job.__init__(). If they are keyword arguments to
the function they will be extracted from the function definition, but may be overridden by the user (as you would
expect).

getUserScript()

run(fileStore)

7.5. Job.Service 45

Toil Documentation, Release 3.2.2a1

7.7 JobFunctionWrappingJob

The subclass of FunctionWrappingJob for wrapping user job functions.

class toil.job.JobFunctionWrappingJob(userFunction, *args, **kwargs)
A job function is a function whose first argument is a job.Job instance that is the wrapping job for the
function. This can be used to add successor jobs for the function and perform all the functions the job.Job
class provides.

To enable the job function to get access to the toil.job.Job.FileStore instance (see
toil.job.Job.Run()), it is made a variable of the wrapping job called fileStore.

Parameters userFunction – The function to wrap. The userFunction will be called with the
*args and **kwargs as arguments.

The keywords “memory”, “cores”, “disk”, “cache” are reserved keyword arguments that if specified will be used
to determine the resources for the job, as toil.job.Job.__init__(). If they are keyword arguments to
the function they will be extracted from the function definition, but may be overridden by the user (as you would
expect).

run(fileStore)

7.8 EncapsulatedJob

The subclass of Job for encapsulating a job, allowing a subgraph of jobs to be treated as a single job.

class toil.job.EncapsulatedJob(job)
A convenience Job class used to make a job subgraph appear to be a single job.

Let A be the root job of a job subgraph and B be another job we’d like to run after A and all its successors have
completed, for this use encapsulate:

A, B = A(), B() #Job A and subgraph, Job B
A' = A.encapsulate()
A'.addChild(B) #B will run after A and all its successors have
completed, A and its subgraph of successors in effect appear
to be just one job.

The return value of an encapsulatd job (as accessed by the toil.job.Job.rv() function) is the return value
of the root job, e.g. A().encapsulate().rv() and A().rv() will resolve to the same value after A or A.encapsulate()
has been run.

Parameters job (toil.job.Job) – the job to encapsulate.

addChild(childJob)

addFollowOn(followOnJob)

addService(service)

rv(index=None)

7.9 Promise

The class used to reference return values of jobs/services not yet run/started.

46 Chapter 7. Toil API

Toil Documentation, Release 3.2.2a1

class toil.job.Promise(job, index)
References a return value from a toil.job.Job.run() or toil.job.Job.Service.start()
method as a promise before the method itself is run.

Let T be a job. Instances of Promise (termed a promise) are returned by T.rv(), which is used to reference the
return value of T’s run function. When the promise is passed to the constructor (or as an argument to a wrapped
function) of a different, successor job the promise will be replaced by the actual referenced return value. This
mechanism allows a return values from one job’s run method to be input argument to job before the former job’s
run function has been executed.

Parameters job (Job) – the job whose return value this promise references

filesToDelete = set([])
A set of IDs of files containing promised values when we know we won’t need them anymore

class toil.job.PromisedRequirement(valueOrCallable, *args)
Class for dynamically allocating job function resource requirements involving toil.job.Promise in-
stances.

Use when resource requirements depend on the return value of a parent function. PromisedRequirements can be
modified by passing a function that takes the Promise as input.

For example, let f, g, and h be functions. Then a Toil workflow can be defined as follows:

A = Job.wrapFn(f)
B = A.addChildFn(g, cores=PromisedRequirement(A.rv())
C = B.addChildFn(h, cores=PromisedRequirement(lambda x: 2*x, B.rv()))

Parameters

• valueOrCallable – A single Promise instance or a function that takes *args as input
parameters.

• *args (int|Promise) – variable length argument list

static convertPromises(kwargs)
Returns True if reserved resource keyword is a Promise or PromisedRequirement instance. Converts
Promise instance to PromisedRequirement.

Parameters kwargs – function keyword arguments

Returns bool

getValue()
Returns PromisedRequirement value

7.10 Exceptions

Toil specific exceptions.

class toil.job.JobException(message)
General job exception.

class toil.job.JobGraphDeadlockException(string)
An exception raised in the event that a workflow contains an unresolvable dependency, such as a cycle. See
toil.job.Job.checkJobGraphForDeadlocks().

7.10. Exceptions 47

Toil Documentation, Release 3.2.2a1

48 Chapter 7. Toil API

CHAPTER 8

Toil architecture

The following diagram layouts out the software architecture of Toil.

Fig. 8.1: Figure 1: The basic components of the toil architecture. Note the node provisioning is coming soon.

These components are described below:

49

Toil Documentation, Release 3.2.2a1

• the leader: The leader is responsible for deciding which jobs should be run. To do this it traverses the job
graph. Currently this is a single threaded process, but we make aggressive steps to prevent it becoming
a bottleneck (see Read-only Leader described below).

• the job-store: Handles all files shared between the components. Files in the job-store are the means by
which the state of the workflow is maintained. Each job is backed by a file in the job store, and atomic
updates to this state are used to ensure the workflow can always be resumed upon failure. The job-
store can also store all user files, allowing them to be shared between jobs. The job-store is defined
by the abstract class toil.jobStores.AbstractJobStore. Multiple implementations of this
class allow Toil to support different back-end file stores, e.g.: S3, network file systems, Azure file
store, etc.

• workers: The workers are temporary processes responsible for running jobs, one at a time per worker.
Each worker process is invoked with a job argument that it is responsible for running. The worker
monitors this job and reports back success or failure to the leader by editing the job’s state in the
file-store. If the job defines successor jobs the worker may choose to immediately run them (see Job
Chaining below).

• the batch-system: Responsible for scheduling the jobs given to it by the leader, creating a
worker command for each job. The batch-system is defined by the abstract class class
toil.batchSystems.AbstractBatchSystem. Toil uses multiple existing batch systems to
schedule jobs, including Apache Mesos, GridEngine and a multi-process single node implementation
that allows workflows to be run without any of these frameworks. Toil can therefore fairly easily be
made to run a workflow using an existing cluster.

• the node provisioner: Creates worker nodes in which the batch system schedules work-
ers. This is currently being developed. It is defined by the abstract class
toil.provisioners.AbstractProvisioner.

• the statistics and logging monitor: Monitors logging and statistics produced by the workers and reports
them. Uses the job-store to gather this information.

8.1 Optimizations

Toil implements lots of optimizations designed for scalability. Here we detail some of the key optimizations.

8.1.1 Read-only leader

The leader process is currently implemented as a single thread. Most of the leader’s tasks revolve around processing
the state of jobs, each stored as a file within the job-store. To minimise the load on this thread, each worker does as
much work as possible to manage the state of the job it is running. As a result, with a couple of minor exceptions,
the leader process never needs to write or update the state of a job within the job-store. For example, when a job is
complete and has no further successors the responsible worker deletes the job from the job-store, marking it complete.
The leader then only has to check for the existence of the file when it receives a signal from the batch-system to know
that the job is complete. This off-loading of state management is orthogonal to future parallelization of the leader.

8.1.2 Job chaining

The scheduling of successor jobs is partially managed by the worker, reducing the number of individual jobs the leader
needs to process. Currently this is very simple: if the there is a single next successor job to run and it’s resources fit
within the resources of the current job and closely match the resources of the current job then the job is run immediately
on the worker without returning to the leader. Further extensions of this strategy are possible, but for many workflows

50 Chapter 8. Toil architecture

Toil Documentation, Release 3.2.2a1

which define a series of serial successors (e.g. map sequencing reads, post-process mapped reads, etc.) this pattern is
very effective at reducing leader workload.

8.1.3 Preemptable node support

Critical to running at large-scale is dealing with intermittent node failures. Toil is therefore designed to always be
resumable providing the job-store does not become corrupt. This robustness allows Toil to run on preemptible nodes,
which are only available when others are not willing to pay more to use them. Designing workflows that divide
into many short individual jobs that can use preemptable nodes allows for workflows to be efficiently scheduled and
executed.

8.1.4 Caching

Running bioinformatic pipelines often require the passing of large datasets between jobs. Toil caches the results from
jobs such that child jobs running on the same node can directly use the same file objects, thereby eliminating the need
for an intermediary transfer to the job store. Caching also reduces the burden on the local disks, because multiple jobs
can share a single file. The resulting drop in I/O allows pipelines to run faster, and, by the sharing of files, allows users
to run more jobs in parallel by reducing overall disk requirements.

To demonstrate the efficiency of caching, we ran an experimental internal pipeline on 3 samples from the TCGA
Lung Squamous Carcinoma (LUSC) dataset. The pipeline takes the tumor and normal exome fastqs, and the tu-
mor rna fastq and input, and predicts MHC presented neoepitopes in the patient that are potential targets for T-cell
based immunotherapies. The pipeline was run individually on the samples on c3.8xlarge machines on AWS (60GB
RAM,600GB SSD storage, 32 cores). The pipeline aligns the data to hg19-based references, predicts MHC haplotypes
using PHLAT, calls mutations using 2 callers (MuTect and RADIA) and annotates them using SnpEff, then predicts
MHC:peptide binding using the IEDB suite of tools before running an in-house rank boosting algorithm on the final
calls.

To optimize time taken, The pipeline is written such that mutations are called on a per-chromosome basis from the
whole-exome bams and are merged into a complete vcf. Running mutect in parallel on whole exome bams requires
each mutect job to download the complete Tumor and Normal Bams to their working directories – An operation that
quickly fills the disk and limits the parallelizability of jobs. The script was run in Toil, with and without caching, and
Figure 2 shows that the workflow finishes faster in the cached case while using less disk on average than the uncached
run. We believe that benefits of caching arising from file transfers will be much higher on magnetic disk-based storage
systems as compared to the SSD systems we tested this on.

8.1. Optimizations 51

Toil Documentation, Release 3.2.2a1

Fig. 8.2: Figure 2: Efficiency gain from caching. The lower half of each plot describes the disk used by the pipeline
recorded every 10 minutes over the duration of the pipeline, and the upper half shows the corresponding stage of the
pipeline that is being processed. Since jobs requesting the same file shared the same inode, the effective load on the
disk is considerably lower than in the uncached case where every job downloads a personal copy of every file it needs.
We see that in all cases, the uncached run uses almost 300-400GB more that the uncached run in the resource heavy
mutation calling step. We also see a benefit in terms of wall time for each stage since we eliminate the time taken for
file transfers.

52 Chapter 8. Toil architecture

CHAPTER 9

The batch system interface

The batch system interface is used by Toil to abstract over different ways of run-
ning batches of jobs, for example GridEngine, Mesos, Parasol and a single node. The
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem API is implemented to run
jobs using a given job management system, e.g. Mesos.

class toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
An abstract (as far as Python currently allows) base class to represent the interface the batch system must provide
to Toil.

getIssuedBatchJobIDs()
Gets all currently issued jobs

Returns A list of jobs (as jobIDs) currently issued (may be running, or may be waiting to be
run). Despite the result being a list, the ordering should not be depended upon.

Return type list[str]

classmethod getRescueBatchJobFrequency()
Gets the period of time to wait (floating point, in seconds) between checking for missing/overlong jobs.

getRunningBatchJobIDs()
Gets a map of jobs as jobIDs that are currently running (not just waiting) and how long they have been
running, in seconds.

Returns dictionary with currently running jobID keys and how many seconds they have been
running as the value

Return type dict[str,float]

getUpdatedBatchJob(maxWait)
Returns a job that has updated its status.

Parameters maxWait (float) – the number of seconds to block, waiting for a result

Return type (str, int)|None

Returns If a result is available, returns a tuple (jobID, exitValue, wallTime). Otherwise it returns
None. wallTime is the number of seconds (a float) in wall-clock time the job ran for or None
if this batch system does not support tracking wall time. Returns None for jobs that were
killed.

issueBatchJob(command, memory, cores, disk, preemptable)
Issues a job with the specified command to the batch system and returns a unique jobID.

Parameters

• command (str) – the string to run as a command,

53

Toil Documentation, Release 3.2.2a1

• memory (int) – int giving the number of bytes of memory the job needs to run

• cores (float) – the number of cores needed for the job

• disk (int) – int giving the number of bytes of disk space the job needs to run

• preemptable (booleam) – True if the job can be run on a preemptable node

Returns a unique jobID that can be used to reference the newly issued job

Return type int

killBatchJobs(jobIDs)
Kills the given job IDs.

Parameters jobIDs (list[int]) – list of IDs of jobs to kill

setEnv(name, value=None)
Set an environment variable for the worker process before it is launched. The worker process will typically
inherit the environment of the machine it is running on but this method makes it possible to override specific
variables in that inherited environment before the worker is launched. Note that this mechanism is different
to the one used by the worker internally to set up the environment of a job. A call to this method affects all
jobs issued after this method returns. Note to implementors: This means that you would typically need to
copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

shutdown()
Called at the completion of a toil invocation. Should cleanly terminate all worker threads.

classmethod supportsHotDeployment()
Whether this batch system supports hot deployment of the user script and toil itself. If it does, the __init__
method will have to accept two optional parameters in addition to the declared ones: userScript and toilD-
istribution. Both will be instances of toil.common.HotDeployedResource that represent the user script and
a source tarball (sdist) of toil respectively.

Return type bool

classmethod supportsWorkerCleanup()
Indicates whether this batch system invokes workerCleanup() after the last job for a particular work-
flow invocation finishes. Note that the term worker refers to an entire node, not just a worker process.
A worker process may run more than one job sequentially, and more than one concurrent worker process
may exist on a worker node, for the same workflow. The batch system is said to shut down after the last
worker process terminates.

Return type bool

54 Chapter 9. The batch system interface

CHAPTER 10

The job store interface

The job store interface is an abstraction layer that that hides the specific details of file storage, for example standard file
systems, S3, etc. The toil.jobStores.abstractJobStore.AbstractJobStore API is implemented to
support a give file store, e.g. S3. Implement this API to support a new file store.

class toil.jobStores.abstractJobStore.AbstractJobStore(config=None)
Represents the physical storage for the jobs and associated files in a toil.

Parameters config (toil.common.Config) – If config is not None then the given configu-
ration object will be written to the shared file “config.pickle” which can later be retrieved using
the readSharedFileStream. See writeConfigToStore. If this file already exists it will be overwrit-
ten. If config is None, the shared file “config.pickle” is assumed to exist and is retrieved. See
loadConfigFromStore.

clean(jobCache=None)
Function to cleanup the state of a job store after a restart. Fixes jobs that might have been partially updated.
Resets the try counts and removes jobs that are not successors of the current root job.

Parameters jobCache (dict[str,toil.jobWrapper.JobWrapper]) – if a value it
must be a dict from job ID keys to JobWrapper object values. Jobs will be loaded from the
cache (which can be downloaded from the job store in a batch) instead of piecemeal when
recursed into.

config
The Toil configuration associated with this job store.

Return type toil.common.Config

create(command, memory, cores, disk, preemptable, predecessorNumber=0)
Creates a jobWrapper with specified resources and command, adds it to the job store and returns it.

Parameters

• command (str) – the shell command that will be executed when the job is being run

• memory (int) – the amount of RAM in bytes needed to run the job

• cores (float) – the number of cores needed to run the job

• disk (int) – the amount of disk in bytes needed to run the job

• preemptable (bool) – whether the job can be run on a preemptable node

• predecessorNumber (int) – argument to the job constructor. Specifies the number
of other jobWrappers that specify this job in their stack

Returns the newly created jobWrapper object

55

Toil Documentation, Release 3.2.2a1

Return type toil.jobWrapper.JobWrapper

createRootJob(*args, **kwargs)
Create a new job and set it as the root job in this job store

:rtype : toil.jobWrapper.JobWrapper

delete(jobStoreID)
Removes from store atomically, can not then subsequently call load(), write(), update(), etc. with the job.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job will succeed silently.

Parameters jobStoreID (str) – the ID of the job to delete from this job store

deleteFile(jobStoreFileID)
Deletes the file with the given ID from this job store. This operation is idempotent, i.e. deleting a file twice
or deleting a non-existent file will succeed silently.

Parameters jobStoreFileID (str) – ID of the file to delete

deleteJobStore()
Removes the job store from the disk/store. Careful!

exists(jobStoreID)
Indicates whether the job with the specified jobStoreID exists in the job store

Return type bool

exportFile(jobStoreFileID, dstUrl)
Exports file to destination pointed at by the destination URL.

Refer to AbstractJobStore.importFile documentation for currently supported URL schemes.

Note that the helper method _exportFile is used to read from the source and write to destination. To imple-
ment any optimizations that circumvent this, the _exportFile method should be overridden by subclasses
of AbstractJobStore.

Parameters

• jobStoreFileID (str) – The id of the file in the job store that should be exported.

• dstUrl (str) – URL that points to a file or object in the storage mechanism of a sup-
ported URL scheme e.g. a blob in an Azure Blob Storage container.

fileExists(jobStoreFileID)
Determine whether a file exists in this job store.

Parameters jobStoreFileID (str) – an ID referencing the file to be checked

Return type bool

getEmptyFileStoreID(jobStoreID=None)
Creates an empty file in the job store and returns its ID. Call to fileEx-
ists(getEmptyFileStoreID(jobStoreID)) will return True.

Parameters jobStoreID (str) – the id of a job, or None. If specified, the file will be asso-
ciated with that job and when jobStore.delete(job) is called a best effort attempt is made to
delete all files written with the given job.jobStoreID

Returns a jobStoreFileID that references the newly created file and can be used to reference the
file in the future.

Return type str

56 Chapter 10. The job store interface

Toil Documentation, Release 3.2.2a1

getEnv()
Returns a dictionary of environment variables that this job store requires to be set in order to function
properly on a worker.

Return type dict[str,str]

getPublicUrl(fileName)
Returns a publicly accessible URL to the given file in the job store. The returned URL may expire as early
as 1h after its been returned. Throw an exception if the file does not exist.

Parameters fileName (str) – the jobStoreFileID of the file to generate a URL for

Raises NoSuchFileException – if the specified file does not exist in this job store

Return type str

getSharedPublicUrl(sharedFileName)
Differs from getPublicUrl() in that this method is for generating URLs for shared files written by
writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL starts with ‘http:’,
‘https:’ or ‘file:’. The returned URL may expire as early as 1h after its been returned. Throw an exception
if the file does not exist.

Parameters sharedFileName (str) – The name of the shared file to generate a publically
accessible url for.

Raises NoSuchFileException – raised if the specified file does not exist in the store

Return type str

importFile(srcUrl, sharedFileName=None)
Imports the file at the given URL into job store. The jobStoreFileId of the new file is returned. If a shared
file name is given, the file will be imported as a shared file and None is returned.

Note that the helper method _importFile is used to read from the source and write to destination (which is
the current job store in this case). To implement any optimizations that circumvent this, the _importFile
method should be overridden by subclasses of AbstractJobStore.

Currently supported schemes are:

• ‘s3’ for objects in Amazon S3 e.g. s3://bucket/key

• ‘wasb’ for blobs in Azure Blob Storage e.g. wasb://container/blob

• ‘file’ for local files e.g. file:///local/file/path

• ‘http’ e.g. http://someurl.com/path

Parameters

• srcUrl (str) – URL that points to a file or object in the storage mechanism of a sup-
ported URL scheme e.g. a blob in an Azure Blob Storage container.

• sharedFileName (str) – Optional name to assign to the imported file within the job
store

:return The jobStoreFileId of the imported file or None if sharedFileName was given :rtype: str|None

jobs()
Best effort attempt to return iterator on all jobs in the store. The iterator may not return all jobs and may
also contain orphaned jobs that have already finished succesfully and should not be rerun. To guarantee
you get any and all jobs that can be run instead construct a more expensive ToilState object

57

http://someurl.com/path

Toil Documentation, Release 3.2.2a1

Returns Returns iterator on jobs in the store. The iterator may or may not contain all jobs and
may contain invalid jobs

Return type Iterator[toil.jobWrapper.JobWrapper]

load(jobStoreID)
Loads the job referenced by the given ID and returns it.

Parameters jobStoreID (str) – the ID of the job to load

Raises NoSuchJobException – if there is no job with the given ID

Return type toil.jobWrapper.JobWrapper

loadRootJob()
Loads the root job in the current job store.

Raises toil.job.JobException – If no root job is set or if the root job doesn’t exist in
this job store

Returns The root job.

Return type toil.jobWrapper.JobWrapper

publicUrlExpiration = datetime.timedelta(365)

readFile(jobStoreFileID, localFilePath)
Copies the file referenced by jobStoreFileID to the given local file path. The version will be consistent
with the last copy of the file written/updated.

The file at the given local path may not be modified after this method returns!

Parameters

• jobStoreFileID (str) – ID of the file to be copied

• localFilePath (str) – the local path indicating where to place the contents of the
given file in the job store

readFileStream(*args, **kwds)
Similar to readFile, but returns a context manager yielding a file handle which can be read from. The
yielded file handle does not need to and should not be closed explicitly.

Parameters jobStoreFileID (str) – ID of the file to get a readable file handle for

readSharedFileStream(*args, **kwds)
Returns a context manager yielding a readable file handle to the global file referenced by the given name.

Parameters sharedFileName (str) – A file name matching AbstractJob-
Store.fileNameRegex, unique within this job store

readStatsAndLogging(callback, readAll=False)
Reads stats/logging strings accumulated by the writeStatsAndLogging() method. For each stats/logging
string this method calls the given callback function with an open, readable file handle from which the stats
string can be read. Returns the number of stats/logging strings processed. Each stats/logging string is only
processed once unless the readAll parameter is set, in which case the given callback will be invoked for all
existing stats/logging strings, including the ones from a previous invocation of this method.

Parameters

• callback (Callable) – a function to be applied to each of the stats file handles found

• readAll (bool) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

58 Chapter 10. The job store interface

Toil Documentation, Release 3.2.2a1

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

Returns the number of stats files processed

Return type int

rootJobStoreIDFileName = ‘rootJobStoreID’

setRootJob(rootJobStoreID)
Set the root job of the workflow backed by this job store

Parameters rootJobStoreID (str) – The ID of the job to set as root

sharedFileNameRegex = <_sre.SRE_Pattern object>

update(job)
Persists the job in this store atomically.

Parameters job (toil.jobWrapper.JobWrapper) – the job to write to this job store

updateFile(jobStoreFileID, localFilePath)
Replaces the existing version of a file in the job store. Throws an exception if the file does not exist.

Parameters

• jobStoreFileID (str) – the ID of the file in the job store to be updated

• localFilePath (str) – the local path to a file that will overwrite the current version
in the job store

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchFileException – if the specified file does not exist

updateFileStream(jobStoreFileID)
Replaces the existing version of a file in the job store. Similar to writeFile, but returns a context manager
yielding a file handle which can be written to. The yielded file handle does not need to and should not be
closed explicitly.

Parameters jobStoreFileID (str) – the ID of the file in the job store to be updated

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchFileException – if the specified file does not exist

writeConfigToStore()
Re-writes the config attribute to the job store, so that its values can be retrieved by a seperate JobStore
instance. No value is returned from this method.

writeFile(localFilePath, jobStoreID=None)
Takes a file (as a path) and places it in this job store. Returns an ID that can be used to retrieve the file at a
later time.

Parameters

• localFilePath (str) – the path to the local file that will be uploaded to the job store.

59

Toil Documentation, Release 3.2.2a1

• jobStoreID (str|None) – If specified the file will be associated with that job and
when jobStore.delete(job) is called all files written with the given job.jobStoreID will be
removed from the job store.

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

Returns an ID referencing the newly created file and can be used to read the file in the future.

Return type str

writeFileStream(*args, **kwds)
Similar to writeFile, but returns a context manager yielding a tuple of 1) a file handle which can be written
to and 2) the ID of the resulting file in the job store. The yielded file handle does not need to and should
not be closed explicitly.

Parameters jobStoreID (str) – the id of a job, or None. If specified, the file will be as-
sociated with that job and when when jobStore.delete(job) is called all files written with the
given job.jobStoreID will be removed from the job store.

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

Returns an ID that references the newly created file and can be used to read the file in the future.

Return type str

writeSharedFileStream(*args, **kwds)
Returns a context manager yielding a writable file handle to the global file referenced by the given name.

Parameters

• sharedFileName (str) – A file name matching AbstractJobStore.fileNameRegex,
unique within this job store

• isProtected (bool) – True if the file must be encrypted, None if it may be encrypted
or False if it must be stored in the clear.

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

writeStatsAndLogging(statsAndLoggingString)
Adds the given statistics/logging string to the store of statistics info.

Parameters statsAndLoggingString (str) – the string to be written to the stats file

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

60 Chapter 10. The job store interface

CHAPTER 11

src

11.1 toil package

11.1.1 Subpackages

toil.batchSystems package

Subpackages

toil.batchSystems.mesos package

Subpackages

toil.batchSystems.mesos.test package

Module contents

Submodules

toil.batchSystems.mesos.batchSystem module

toil.batchSystems.mesos.conftest module

toil.batchSystems.mesos.executor module

Module contents

61

Toil Documentation, Release 3.2.2a1

Submodules

toil.batchSystems.abstractBatchSystem module

toil.batchSystems.gridengine module

toil.batchSystems.jobDispatcher module

toil.batchSystems.lsf module

toil.batchSystems.lsf.bsub(bsubline)

toil.batchSystems.lsf.getjobexitcode(lsfJobID)

toil.batchSystems.lsf.prepareBsub(cpu, mem)

toil.batchSystems.parasol module

toil.batchSystems.parasolTestSupport module

toil.batchSystems.singleMachine module

toil.batchSystems.slurm module

Module contents

toil.cwl package

Submodules

toil.cwl.conftest module

toil.cwl.cwltoil module

Module contents

toil.jobStores package

Subpackages

toil.jobStores.aws package

Submodules

toil.jobStores.aws.jobStore module

toil.jobStores.aws.utils module

62 Chapter 11. src

Toil Documentation, Release 3.2.2a1

Module contents

Submodules

toil.jobStores.abstractJobStore module

toil.jobStores.abstractJobStore.findJobStoreForUrl(url, export=False)
Returns the AbstractJobStore subclass that supports the given URL.

Parameters url (urlparse.ParseResult) – The given URL

Return type toil.jobStore.AbstractJobStore

toil.jobStores.abstractJobStore.getJobStoreClasses(*args)
Compiles as list of the classes of all jobStores whose dependencies are installed.

Note that job store names must be manually added.

toil.jobStores.azureJobStore module

toil.jobStores.conftest module

toil.jobStores.fileJobStore module

toil.jobStores.googleJobStore module

toil.jobStores.utils module

toil.jobStores.utils.never(exception)

toil.jobStores.utils.retry(delays=(0, 1, 1, 4, 16, 64), timeout=300, predicate=<function never>)
Retry an operation while the failure matches a given predicate and until a given timeout expires, waiting a given
amount of time in between attempts. This function is a generator that yields contextmanagers. See doctests
below for example usage.

Parameters

• delays (Iterable[float]) – an interable yielding the time in seconds to wait before
each retried attempt, the last element of the iterable will be repeated.

• timeout (float) – a overall timeout that should not be exceeded for all attempts together.
This is a best-effort mechanism only and it won’t abort an ongoing attempt, even if the
timeout expires during that attempt.

• predicate (Callable[[Exception],bool]) – a unary callable returning True if
another attempt should be made to recover from the given exception. The default value for
this parameter will prevent any retries!

Returns a generator yielding context managers, one per attempt

Return type Iterator

Retry for a limited amount of time:

>>> true = lambda _:True
>>> false = lambda _:False
>>> i = 0

11.1. toil package 63

Toil Documentation, Release 3.2.2a1

>>> for attempt in retry(delays=[0], timeout=.1, predicate=true):
... with attempt:
... i += 1
... raise RuntimeError('foo')
Traceback (most recent call last):
...
RuntimeError: foo
>>> i > 1
True

If timeout is 0, do exactly one attempt:

>>> i = 0
>>> for attempt in retry(timeout=0):
... with attempt:
... i += 1
... raise RuntimeError('foo')
Traceback (most recent call last):
...
RuntimeError: foo
>>> i
1

Don’t retry on success:

>>> i = 0
>>> for attempt in retry(delays=[0], timeout=.1, predicate=true):
... with attempt:
... i += 1
>>> i
1

Don’t retry on unless predicate returns True:

>>> i = 0
>>> for attempt in retry(delays=[0], timeout=.1, predicate=false):
... with attempt:
... i += 1
... raise RuntimeError('foo')
Traceback (most recent call last):
...
RuntimeError: foo
>>> i
1

toil.jobStores.utils.retry_http(delays=(0, 1, 1, 4, 16, 64), timeout=300, predicate=<function
retryable_http_error>)

>>> i = 0
>>> for attempt in retry_http(timeout=5):
... with attempt:
... i += 1
... raise urllib2.HTTPError('http://www.test.com', '408', 'some message', {}, None)
Traceback (most recent call last):
...
HTTPError: HTTP Error 408: some message
>>> i > 1
True

toil.jobStores.utils.retryable_http_error(e)

64 Chapter 11. src

Toil Documentation, Release 3.2.2a1

Module contents

toil.lib package

Subpackages

toil.lib.encryption package

Submodules

toil.lib.encryption.conftest module

Module contents

Submodules

toil.lib.bioio module

toil.lib.bioio.absSymPath(path)
like os.path.abspath except it doesn’t dereference symlinks

toil.lib.bioio.addLoggingFileHandler(fileName, rotatingLogging=False)

toil.lib.bioio.addLoggingOptions(parser)

toil.lib.bioio.getBasicOptionParser(parser=None)

toil.lib.bioio.getLogLevelString()

toil.lib.bioio.getRandomAlphaNumericString(length=10)
Returns a random alpha numeric string of the given length.

toil.lib.bioio.getTempFile(suffix=’‘, rootDir=None)
Returns a string representing a temporary file, that must be manually deleted

toil.lib.bioio.getTotalCpuTime()
Gives the total cpu time, including the children.

toil.lib.bioio.getTotalCpuTimeAndMemoryUsage()
Gives the total cpu time and memory usage of itself and its children.

toil.lib.bioio.getTotalMemoryUsage()
Gets the amount of memory used by the process and its children.

toil.lib.bioio.logFile(fileName, printFunction=<bound method Logger.info of <logging.Logger
object at 0x7f1d482445d0>>)

Writes out a formatted version of the given log file

toil.lib.bioio.logStream(fileHandle, shortName, printFunction=<bound method Logger.info of
<logging.Logger object at 0x7f1d482445d0>>)

Writes out a formatted version of the given log stream.

toil.lib.bioio.makePublicDir(dirName)
Makes a given subdirectory if it doesn’t already exist, making sure it is public.

toil.lib.bioio.parseBasicOptions(parser)
Setups the standard things from things added by getBasicOptionParser.

11.1. toil package 65

Toil Documentation, Release 3.2.2a1

toil.lib.bioio.setLogLevel(level, logger=<logging.RootLogger object>)
Sets the log level to a given string level (like “INFO”). Operates on the root logger by default, but another logger
can be specified instead.

toil.lib.bioio.setLoggingFromOptions(options)
Sets the logging from a dictionary of name/value options.

toil.lib.bioio.system(command)
A convenience wrapper around subprocess.check_call that logs the command before passing it on. The com-
mand can be either a string or a sequence of strings. If it is a string shell=True will be passed to subpro-
cess.check_call.

toil.lib.spark module

toil.lib.spark.spawn_spark_cluster(job, sudo, numWorkers, cores=None, memory=None,
disk=None, overrideLeaderIP=None)

Parameters

• sudo (boolean) – Whether this code should run docker containers with sudo.

• numWorkers (int) – The number of worker nodes to have in the cluster. Must be greater
than or equal to 1.

• cores (int) – Optional parameter to set the number of cores per node. If not provided,
we use the number of cores on the node that launches the service.

• memory (int or string convertable by bd2k.util.humanize.human2bytes
to an int) – Optional parameter to set the memory requested per node.

• disk (int or string convertable by bd2k.util.humanize.human2bytes
to an int) – Optional parameter to set the disk requested per node.

Module contents

toil.provisioners package

Subpackages

toil.provisioners.aws package

Submodules

toil.provisioners.aws.provisioner module

Module contents

66 Chapter 11. src

Toil Documentation, Release 3.2.2a1

Submodules

toil.provisioners.abstractProvisioner module

toil.provisioners.clusterScaler module

Module contents

toil.test package

Subpackages

toil.test.batchSystems package

Submodules

toil.test.batchSystems.batchSystemTest module
toil.test.batchSystems.batchSystemTest.childJob(job, cmd)
toil.test.batchSystems.batchSystemTest.count(delta, file_path)

Increments counter file and returns the max number of times the file has been modified. Counter data must be
in the form:

concurrent tasks, max concurrent tasks (counter should be initialized to 0,0)

Parameters

• delta (int) – increment value

• file_path (str) – path to shared counter file

Return int max concurrent tasks

toil.test.batchSystems.batchSystemTest.getCounters(path)

toil.test.batchSystems.batchSystemTest.grandChildJob(job, cmd)

toil.test.batchSystems.batchSystemTest.greatGrandChild(cmd)

toil.test.batchSystems.batchSystemTest.measureConcurrency(filepath, sleep_time=5)
Run in parallel to determine the number of concurrent tasks. This code was copied from
toil.batchSystemTestMaxCoresSingleMachineBatchSystemTest :param str filepath: path to counter file :param
int sleep_time: number of seconds to sleep before counting down :return int max concurrency value:

toil.test.batchSystems.batchSystemTest.parentJob(job, cmd)

toil.test.batchSystems.batchSystemTest.resetCounters(path)

toil.test.batchSystems.batchSystemTest.tempFileContaining(*args, **kwds)

Module contents

toil.test.cwl package

Submodules

11.1. toil package 67

Toil Documentation, Release 3.2.2a1

toil.test.cwl.conftest module

toil.test.cwl.cwlTest module

Module contents

toil.test.jobStores package

Submodules

toil.test.jobStores.jobStoreTest module

Module contents

toil.test.mesos package

Submodules

toil.test.mesos.helloWorld module A simple user script for Toil

toil.test.mesos.helloWorld.hello_world(job)

toil.test.mesos.helloWorld.hello_world_child(job, hw)

toil.test.mesos.helloWorld.main()

toil.test.mesos.mesosTest module

toil.test.mesos.stress module
toil.test.mesos.stress.main(numJobs)
toil.test.mesos.stress.touchFile(fileStore)

Module contents

toil.test.provisioners package

Submodules

toil.test.provisioners.clusterScalerTest module

Module contents

toil.test.sort package

68 Chapter 11. src

Toil Documentation, Release 3.2.2a1

Submodules

toil.test.sort.lib module
toil.test.sort.lib.copySubRangeOfFile(inputFile, fileStart, fileEnd, outputFileHandle)

Copies the range (in bytes) between fileStart and fileEnd to the given output file handle.
toil.test.sort.lib.getMidPoint(file, fileStart, fileEnd)

Finds the point in the file to split. Returns an int i such that fileStart <= i < fileEnd

toil.test.sort.lib.merge(fileHandle1, fileHandle2, outputFileHandle)
Merges together two files maintaining sorted order.

toil.test.sort.lib.sort(file)
Sorts the given file.

toil.test.sort.sort module A demonstration of toil. Sorts the lines of a file into ascending order by doing a parallel
merge sort.

toil.test.sort.sort.cleanup(job, tempOutputFileStoreID, outputFile, cores=1, mem-
ory=1048576000, disk=‘3G’)

Copies back the temporary file to input once we’ve successfully sorted the temporary file.

toil.test.sort.sort.down(job, inputFileStoreID, N, downCheckpoints, memory=1048576000)
Input is a file and a range into that file to sort and an output location in which to write the sorted file. If the range
is larger than a threshold N the range is divided recursively and a follow on job is then created which merges
back the results else the file is sorted and placed in the output.

toil.test.sort.sort.main()

toil.test.sort.sort.setup(job, inputFile, N, downCheckpoints)
Sets up the sort.

toil.test.sort.sort.up(job, inputFileID1, inputFileID2, memory=1048576000)
Merges the two files and places them in the output.

toil.test.sort.sortTest module
toil.test.sort.sortTest.makeFileToSort(fileName, lines=10, lineLen=10)

Module contents

toil.test.src package

Submodules

toil.test.src.helloWorldTest module
toil.test.src.helloWorldTest.childFn(job)

toil.test.src.importExportFileTest module

11.1. toil package 69

Toil Documentation, Release 3.2.2a1

toil.test.src.jobCacheEjectionTest module
toil.test.src.jobCacheEjectionTest.fileTestCache(job, file_a, file_b, file_c, logfile)

Test job exercises Job.FileStore functions
toil.test.src.jobCacheEjectionTest.fileTestJob(job, file_size)

Test job exercises Job.FileStore functions

toil.test.src.jobCacheTest module

toil.test.src.jobEncapsulationTest module
toil.test.src.jobEncapsulationTest.encapsulatedJobFn(job, string, outFile)

toil.test.src.jobFileStoreTest module
toil.test.src.jobFileStoreTest.fileTestJob(job, inputFileStoreIDs, testStrings, chain-

Length)
Test job exercises Job.FileStore functions

toil.test.src.jobServiceTest module
toil.test.src.jobServiceTest.serviceAccessor(job, communicationFiles, outFile, randInt)

Writes a random integer iinto the inJobStoreFileID file, then tries 10 times reading from outJobStoreFileID to
get a pair of integers, the first equal to i the second written into the outputFile.

toil.test.src.jobServiceTest.serviceTest(job, outFile, messageInt)
Creates one service and one accessing job, which communicate with two files to establish that both run concur-
rently.

toil.test.src.jobServiceTest.serviceTestParallelRecursive(job, outFiles, message-
Bundles)

Creates multiple chains of services and accessing jobs.

toil.test.src.jobServiceTest.serviceTestRecursive(job, outFile, messages)
Creates a chain of services and accessing jobs, each paired together.

toil.test.src.jobTest module
toil.test.src.jobTest.fn1Test(string, outputFile, promises=[])

Function appends string to output file, then returns the next ascii character of the first character in the string, e.g.
if string is “AA” returns “B”

toil.test.src.jobTest.fn2Test(pStrings, s, outputFile)
Function concatenates the strings in pStrings and s, in that order, and writes the result to the output file. Returns
s.

toil.test.src.jobWrapperTest module

toil.test.src.multipartTransferTest module

toil.test.src.promisedRequirementTest module
toil.test.src.promisedRequirementTest.getOne()
toil.test.src.promisedRequirementTest.getThirtyTwoMb()

toil.test.src.promisedRequirementTest.maxConcurrency(job, cpuCount, filename, cores-
PerJob)

Returns the max number of concurrent tasks when using a PromisedRequirement instance to allocate the number
of cores per job.

70 Chapter 11. src

Toil Documentation, Release 3.2.2a1

Parameters

• cpuCount (int) – number of available cpus

• filename (str) – path to counter file

• coresPerJob (int) – number of cores assigned to each job

Return int max concurrency value

toil.test.src.promisesTest module
toil.test.src.promisesTest.child()
toil.test.src.promisesTest.parent(job)

toil.test.src.realtimeLoggerTest module

toil.test.src.regularLogTest module

toil.test.src.resourceTest module

toil.test.src.retainTempDirTest module
toil.test.src.retainTempDirTest.tempFileTestErrorJob(job)
toil.test.src.retainTempDirTest.tempFileTestJob(job)

toil.test.src.systemTest module

toil.test.src.toilContextManagerTest module
toil.test.src.toilContextManagerTest.childFn(job)

toil.test.src.userDefinedJobArgTypeTest module
toil.test.src.userDefinedJobArgTypeTest.jobFunction(job, level, foo)
toil.test.src.userDefinedJobArgTypeTest.main()

Module contents

toil.test.utils package

Submodules

toil.test.utils.utilsTest module
toil.test.utils.utilsTest.printUnicodeCharacter()

Module contents

11.1. toil package 71

Toil Documentation, Release 3.2.2a1

Module contents

toil.test.experimental(test_item)
Use this to decorate experimental or brittle tests in order to skip them during regular builds.

toil.test.file_begins_with(path, prefix)

toil.test.make_tests(generalMethod, targetClass=None, **kwargs)
This method dynamically generates test methods using the generalMethod as a template. Each generated func-
tion is the result of a unique combination of parameters applied to the generalMethod. Each of the parameters
has a corresponding string that will be used to name the method. These generated functions are named in the
scheme:

test_[generalMethodName]___[firstParamaterName]_[someValueName]__[secondParamaterName]_...

The arguments following the generalMethodName should be a series of one or more dictionaries of the form {str
: type, ...} where the key represents the name of the value. The names will be used to represent the permutation
of values passed for each parameter in the generalMethod.

Parameters

• generalMethod – A method that will be parametrized with values passed as kwargs.
Note that the generalMethod must be a regular method.

• targetClass – This represents the class to which the generated test methods will be
bound. If no targetClass is specified the class of the generalMethod is assumed the target.

• kwargs – a series of dictionaries defining values, and their respective names where each
keyword is the name of a parameter in generalMethod.

>>> class Foo:
... def has(self, num, letter):
... return num, letter
...
... def hasOne(self, num):
... return num

>>> class Bar(Foo):
... pass

>>> make_tests(Foo.has, targetClass=Bar, num={'one':1, 'two':2}, letter={'a':'a', 'b':'b'})

>>> b = Bar()

>>> assert b.test_has__num_one__letter_a() == b.has(1, 'a')

>>> assert b.test_has__num_one__letter_b() == b.has(1, 'b')

>>> assert b.test_has__num_two__letter_a() == b.has(2, 'a')

>>> assert b.test_has__num_two__letter_b() == b.has(2, 'b')

>>> f = Foo()

>>> hasattr(f, 'test_has__num_one__letter_a') # should be false because Foo has no test methods
False

>>> make_tests(Foo.has, num={'one':1, 'two':2}, letter={'a':'a', 'b':'b'})

72 Chapter 11. src

Toil Documentation, Release 3.2.2a1

>>> hasattr(f, 'test_has__num_one__letter_a')
True

>>> assert f.test_has__num_one__letter_a() == f.has(1, 'a')

>>> assert f.test_has__num_one__letter_b() == f.has(1, 'b')

>>> assert f.test_has__num_two__letter_a() == f.has(2, 'a')

>>> assert f.test_has__num_two__letter_b() == f.has(2, 'b')

>>> make_tests(Foo.hasOne, num={'one':1, 'two':2})

>>> assert f.test_hasOne__num_one() == f.hasOne(1)

>>> assert f.test_hasOne__num_two() == f.hasOne(2)

toil.test.needs_aws(test_item)
Use as a decorator before test classes or methods to only run them if AWS usable.

toil.test.needs_azure(test_item)
Use as a decorator before test classes or methods to only run them if Azure is usable.

toil.test.needs_cwl(test_item)
Use as a decorator before test classes or methods to only run them if CWLTool is installed and configured.

toil.test.needs_encryption(test_item)
Use as a decorator before test classes or methods to only run them if PyNaCl is installed and configured.

toil.test.needs_google(test_item)
Use as a decorator before test classes or methods to only run them if Google Storage usable.

toil.test.needs_gridengine(test_item)
Use as a decorator before test classes or methods to only run them if GridEngine is installed.

toil.test.needs_mesos(test_item)
Use as a decorator before test classes or methods to only run them if the Mesos is installed and configured.

toil.test.needs_parasol(test_item)
Use as decorator so tests are only run if Parasol is installed.

toil.test.needs_slurm(test_item)
Use as a decorator before test classes or methods to only run them if Slurm is installed.

toil.test.needs_spark(test_item)
Use as a decorator before test classes or methods to only run them if Spark is usable.

toil.utils package

Submodules

toil.utils.toilClean module

Removes the JobStore from a toil run.

toil.utils.toilClean.main()
Removes the JobStore from a toil run.

11.1. toil package 73

Toil Documentation, Release 3.2.2a1

toil.utils.toilKill module

Kills any running jobs trees in a rogue toil.

toil.utils.toilKill.main()

toil.utils.toilMain module

toil.utils.toilMain.loadModules()

toil.utils.toilMain.main()

toil.utils.toilMain.printHelp(modules)

toil.utils.toilStats module

Reports data about the given toil run.

toil.utils.toilStats.buildElement(element, items, itemName)
Create an element for output.

toil.utils.toilStats.checkOptions(options, parser)
Check options, throw parser.error() if something goes wrong

toil.utils.toilStats.computeColumnWidths(job_types, worker, job, options)
Return a ColumnWidths() object with the correct max widths.

toil.utils.toilStats.createSummary(element, containingItems, containingItemName, getFn)

toil.utils.toilStats.decorateSubHeader(title, columnWidths, options)
Add a marker to the correct field if the TITLE is sorted on.

toil.utils.toilStats.decorateTitle(title, options)
Add a marker to TITLE if the TITLE is sorted on.

toil.utils.toilStats.get(tree, name)
Return a float value attribute NAME from TREE.

toil.utils.toilStats.getStats(options)
Collect and return the stats and config data.

toil.utils.toilStats.initializeOptions(parser)

toil.utils.toilStats.main()
Reports stats on the workflow, use with –stats option to toil.

toil.utils.toilStats.padStr(s, field=None)
Pad the begining of a string with spaces, if necessary.

toil.utils.toilStats.prettyMemory(k, field=None, isBytes=False)
Given input k as kilobytes, return a nicely formatted string.

toil.utils.toilStats.prettyTime(t, field=None)
Given input t as seconds, return a nicely formatted string.

toil.utils.toilStats.printJson(elem)
Return a JSON formatted string

toil.utils.toilStats.processData(config, stats, options)

74 Chapter 11. src

Toil Documentation, Release 3.2.2a1

toil.utils.toilStats.refineData(root, options)
walk down from the root and gather up the important bits.

toil.utils.toilStats.reportData(tree, options)

toil.utils.toilStats.reportMemory(k, options, field=None, isBytes=False)
Given k kilobytes, report back the correct format as string.

toil.utils.toilStats.reportNumber(n, options, field=None)
Given n an integer, report back the correct format as string.

toil.utils.toilStats.reportPrettyData(root, worker, job, job_types, options)
print the important bits out.

toil.utils.toilStats.reportTime(t, options, field=None)
Given t seconds, report back the correct format as string.

toil.utils.toilStats.sortJobs(jobTypes, options)
Return a jobTypes all sorted.

toil.utils.toilStats.sprintTag(key, tag, options, columnWidths=None)
Generate a pretty-print ready string from a JTTag().

toil.utils.toilStats.updateColumnWidths(tag, cw, options)
Update the column width attributes for this tag’s fields.

toil.utils.toilStatus module

Reports the state of a Toil workflow

toil.utils.toilStatus.main()
Reports the state of the toil.

Module contents

11.1.2 Submodules

11.1.3 toil.common module

toil.common.addOptions(parser, config=<toil.common.Config object>)
Adds toil options to a parser object, either optparse or argparse.

toil.common.cacheDirName(workflowID)

Returns Name of the cache directory.

toil.common.parseSetEnv(l)
Parses a list of strings of the form “NAME=VALUE” or just “NAME” into a dictionary. Strings of the latter
from will result in dictionary entries whose value is None.

Return type dict[str,str]

>>> parseSetEnv([])
{}
>>> parseSetEnv(['a'])
{'a': None}
>>> parseSetEnv(['a='])
{'a': ''}
>>> parseSetEnv(['a=b'])

11.1. toil package 75

Toil Documentation, Release 3.2.2a1

{'a': 'b'}
>>> parseSetEnv(['a=a', 'a=b'])
{'a': 'b'}
>>> parseSetEnv(['a=b', 'c=d'])
{'a': 'b', 'c': 'd'}
>>> parseSetEnv(['a=b=c'])
{'a': 'b=c'}
>>> parseSetEnv([''])
Traceback (most recent call last):
...
ValueError: Empty name
>>> parseSetEnv(['=1'])
Traceback (most recent call last):
...
ValueError: Empty name

11.1.4 toil.job module

11.1.5 toil.jobWrapper module

11.1.6 toil.leader module

The leader script (of the leader/worker pair) for running jobs.

toil.leader.innerLoop(jobStore, config, batchSystem, toilState, jobBatcher, serviceManager, stat-
sAndLogging)

Parameters

• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

• config (toil.common.Config) –

• batchSystem (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem)
–

• toilState (ToilState) –

• jobBatcher (JobBatcher) –

• serviceManager (ServiceManager) –

• statsAndLogging (StatsAndLogging) –

toil.leader.mainLoop(config, batchSystem, provisioner, jobStore, rootJobWrapper, jobCache=None)
This is the main loop from which jobs are issued and processed.

If jobCache is passed, it must be a dict from job ID to pre-existing JobWrapper objects. Jobs will be loaded
from the cache (which can be downloaded from the jobStore in a batch).

Raises toil.leader.FailedJobsException if at the end of function their remain failed jobs

Returns The return value of the root job’s run function.

Return type Any

11.1.7 toil.realtimeLogger module

Implements a real-time UDP-based logging system that user scripts can use for debugging.

76 Chapter 11. src

Toil Documentation, Release 3.2.2a1

11.1.8 toil.resource module

11.1.9 toil.toilState module

11.1.10 toil.version module

11.1.11 toil.worker module

toil.worker.main()

toil.worker.nextOpenDescriptor()
Gets the number of the next available file descriptor.

11.1.12 Module contents

toil.inVirtualEnv()

toil.physicalMemory(*args)

>>> n = physicalMemory()
>>> n > 0
True
>>> n == physicalMemory()
True

toil.resolveEntryPoint(entryPoint)
Returns the path to the given entry point (see setup.py) that should work on a worker. The return value may be
an absolute or a relative path.

toil.toilPackageDirPath()
Returns the absolute path of the directory that corresponds to the top-level toil package. The return value is
guaranteed to end in ‘/toil’.

11.1. toil package 77

Toil Documentation, Release 3.2.2a1

78 Chapter 11. src

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

79

Toil Documentation, Release 3.2.2a1

80 Chapter 12. Indices and tables

Python Module Index

t
toil, 77
toil.batchSystems, 62
toil.batchSystems.abstractBatchSystem,

62
toil.batchSystems.gridengine, 62
toil.batchSystems.jobDispatcher, 62
toil.batchSystems.lsf, 62
toil.batchSystems.mesos, 61
toil.batchSystems.mesos.conftest, 61
toil.batchSystems.mesos.test, 61
toil.batchSystems.parasol, 62
toil.batchSystems.parasolTestSupport,

62
toil.batchSystems.singleMachine, 62
toil.batchSystems.slurm, 62
toil.common, 75
toil.cwl, 62
toil.cwl.conftest, 62
toil.job, 76
toil.jobStores, 65
toil.jobStores.abstractJobStore, 63
toil.jobStores.aws, 63
toil.jobStores.conftest, 63
toil.jobStores.fileJobStore, 63
toil.jobStores.utils, 63
toil.jobWrapper, 76
toil.leader, 76
toil.lib, 66
toil.lib.bioio, 65
toil.lib.encryption, 65
toil.lib.encryption.conftest, 65
toil.lib.spark, 66
toil.provisioners, 67
toil.provisioners.abstractProvisioner,

67
toil.provisioners.aws, 66
toil.provisioners.clusterScaler, 67
toil.realtimeLogger, 76
toil.resource, 77

toil.test, 72
toil.test.batchSystems, 67
toil.test.batchSystems.batchSystemTest,

67
toil.test.cwl, 68
toil.test.cwl.conftest, 68
toil.test.cwl.cwlTest, 68
toil.test.jobStores, 68
toil.test.mesos, 68
toil.test.mesos.helloWorld, 68
toil.test.mesos.mesosTest, 68
toil.test.mesos.stress, 68
toil.test.provisioners, 68
toil.test.provisioners.clusterScalerTest,

68
toil.test.sort, 69
toil.test.sort.lib, 69
toil.test.sort.sort, 69
toil.test.sort.sortTest, 69
toil.test.src, 71
toil.test.src.helloWorldTest, 69
toil.test.src.importExportFileTest, 69
toil.test.src.jobCacheEjectionTest, 70
toil.test.src.jobCacheTest, 70
toil.test.src.jobEncapsulationTest, 70
toil.test.src.jobFileStoreTest, 70
toil.test.src.jobServiceTest, 70
toil.test.src.jobTest, 70
toil.test.src.jobWrapperTest, 70
toil.test.src.promisedRequirementTest,

70
toil.test.src.promisesTest, 71
toil.test.src.realtimeLoggerTest, 71
toil.test.src.regularLogTest, 71
toil.test.src.resourceTest, 71
toil.test.src.retainTempDirTest, 71
toil.test.src.systemTest, 71
toil.test.src.toilContextManagerTest,

71
toil.test.src.userDefinedJobArgTypeTest,

71

81

Toil Documentation, Release 3.2.2a1

toil.test.utils, 71
toil.test.utils.utilsTest, 71
toil.toilState, 77
toil.utils, 75
toil.utils.toilClean, 73
toil.utils.toilKill, 74
toil.utils.toilMain, 74
toil.utils.toilStats, 74
toil.utils.toilStatus, 75
toil.version, 77
toil.worker, 77

82 Python Module Index

Index

A
absSymPath() (in module toil.lib.bioio), 65
AbstractBatchSystem (class in

toil.batchSystems.abstractBatchSystem),
53

AbstractJobStore (class in
toil.jobStores.abstractJobStore), 55

addChild() (toil.job.EncapsulatedJob method), 46
addChild() (toil.job.Job method), 37
addChildFn() (toil.job.Job method), 37
addChildJobFn() (toil.job.Job method), 38
addFollowOn() (toil.job.EncapsulatedJob method), 46
addFollowOn() (toil.job.Job method), 38
addFollowOnFn() (toil.job.Job method), 38
addFollowOnJobFn() (toil.job.Job method), 38
addLoggingFileHandler() (in module toil.lib.bioio), 65
addLoggingOptions() (in module toil.lib.bioio), 65
addOptions() (in module toil.common), 75
addService() (toil.job.EncapsulatedJob method), 46
addService() (toil.job.Job method), 38
addToilOptions() (toil.job.Job.Runner static method), 43
allocatePromiseFile() (toil.job.Job method), 39
asyncWrite() (toil.job.Job.FileStore method), 41

B
bsub() (in module toil.batchSystems.lsf), 62
buildElement() (in module toil.utils.toilStats), 74

C
cacheDirName() (in module toil.common), 75
check() (toil.job.Job.Service method), 45
checkJobGraphAcylic() (toil.job.Job method), 39
checkJobGraphConnected() (toil.job.Job method), 39
checkJobGraphForDeadlocks() (toil.job.Job method), 39
checkNewCheckpointsAreLeafVertices() (toil.job.Job

method), 39
checkOptions() (in module toil.utils.toilStats), 74
child() (in module toil.test.src.promisesTest), 71
childFn() (in module toil.test.src.helloWorldTest), 69

childFn() (in module toil.test.src.toilContextManagerTest),
71

childJob() (in module
toil.test.batchSystems.batchSystemTest),
67

clean() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 55

cleanup() (in module toil.test.sort.sort), 69
computeColumnWidths() (in module toil.utils.toilStats),

74
config (toil.jobStores.abstractJobStore.AbstractJobStore

attribute), 55
convertPromises() (toil.job.PromisedRequirement static

method), 47
copySubRangeOfFile() (in module toil.test.sort.lib), 69
count() (in module toil.test.batchSystems.batchSystemTest),

67
create() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 55
createBatchSystem() (toil.common.Toil static method),

44
createRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 56
createSummary() (in module toil.utils.toilStats), 74

D
decorateSubHeader() (in module toil.utils.toilStats), 74
decorateTitle() (in module toil.utils.toilStats), 74
delete() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 56
deleteFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 56
deleteGlobalFile() (toil.job.Job.FileStore method), 41
deleteJobStore() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 56
down() (in module toil.test.sort.sort), 69

E
effectiveRequirements() (toil.job.Job method), 39
encapsulate() (toil.job.Job method), 39

83

Toil Documentation, Release 3.2.2a1

EncapsulatedJob (class in toil.job), 46
encapsulatedJobFn() (in module

toil.test.src.jobEncapsulationTest), 70
exists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 56
experimental() (in module toil.test), 72
exportFile() (toil.common.Toil method), 44
exportFile() (toil.job.Job.FileStore method), 41
exportFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 56

F
file_begins_with() (in module toil.test), 72
fileExists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 56
filesToDelete (toil.job.Promise attribute), 47
fileTestCache() (in module

toil.test.src.jobCacheEjectionTest), 70
fileTestJob() (in module

toil.test.src.jobCacheEjectionTest), 70
fileTestJob() (in module toil.test.src.jobFileStoreTest), 70
findJobStoreForUrl() (in module

toil.jobStores.abstractJobStore), 63
fn1Test() (in module toil.test.src.jobTest), 70
fn2Test() (in module toil.test.src.jobTest), 70
FunctionWrappingJob (class in toil.job), 45

G
get() (in module toil.utils.toilStats), 74
getBasicOptionParser() (in module toil.lib.bioio), 65
getCounters() (in module

toil.test.batchSystems.batchSystemTest),
67

getDefaultArgumentParser() (toil.job.Job.Runner static
method), 43

getDefaultOptions() (toil.job.Job.Runner static method),
43

getEmptyFileStoreID() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 56

getEnv() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 56

getIssuedBatchJobIDs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 53

getjobexitcode() (in module toil.batchSystems.lsf), 62
getJobStoreClasses() (in module

toil.jobStores.abstractJobStore), 63
getLocalTempDir() (toil.job.Job.FileStore method), 41
getLocalTempFile() (toil.job.Job.FileStore method), 41
getLocalTempFileName() (toil.job.Job.FileStore

method), 42
getLogLevelString() (in module toil.lib.bioio), 65
getMidPoint() (in module toil.test.sort.lib), 69
getOne() (in module toil.test.src.promisedRequirementTest),

70

getPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 57

getRandomAlphaNumericString() (in module
toil.lib.bioio), 65

getRescueBatchJobFrequency()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 53

getRootJobs() (toil.job.Job method), 40
getRunningBatchJobIDs()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 53

getSharedPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 57

getStats() (in module toil.utils.toilStats), 74
getTempFile() (in module toil.lib.bioio), 65
getThirtyTwoMb() (in module

toil.test.src.promisedRequirementTest), 70
getTopologicalOrderingOfJobs() (toil.job.Job method),

40
getTotalCpuTime() (in module toil.lib.bioio), 65
getTotalCpuTimeAndMemoryUsage() (in module

toil.lib.bioio), 65
getTotalMemoryUsage() (in module toil.lib.bioio), 65
getUpdatedBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 53
getUserScript() (toil.job.FunctionWrappingJob method),

45
getUserScript() (toil.job.Job method), 40
getValue() (toil.job.PromisedRequirement method), 47
getWorkflowDir() (toil.common.Toil static method), 44
grandChildJob() (in module

toil.test.batchSystems.batchSystemTest),
67

greatGrandChild() (in module
toil.test.batchSystems.batchSystemTest),
67

H
hasChild() (toil.job.Job method), 40
hello_world() (in module toil.test.mesos.helloWorld), 68
hello_world_child() (in module

toil.test.mesos.helloWorld), 68

I
importFile() (toil.common.Toil method), 44
importFile() (toil.job.Job.FileStore method), 42
importFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 57
initializeOptions() (in module toil.utils.toilStats), 74
innerLoop() (in module toil.leader), 76
inVirtualEnv() (in module toil), 77
issueBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 53

84 Index

Toil Documentation, Release 3.2.2a1

J
Job (class in toil.job), 37
Job.FileStore (class in toil.job), 41
Job.Runner (class in toil.job), 43
Job.Service (class in toil.job), 45
JobException (class in toil.job), 47
jobFunction() (in module

toil.test.src.userDefinedJobArgTypeTest),
71

JobFunctionWrappingJob (class in toil.job), 46
JobGraphDeadlockException (class in toil.job), 47
jobs() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 57

K
killBatchJobs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 54

L
load() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 58
loadModules() (in module toil.utils.toilMain), 74
loadOrCreateJobStore() (toil.common.Toil static

method), 44
loadRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 58
logFile() (in module toil.lib.bioio), 65
logStream() (in module toil.lib.bioio), 65
logToMaster() (toil.job.Job.FileStore method), 42

M
main() (in module toil.test.mesos.helloWorld), 68
main() (in module toil.test.mesos.stress), 68
main() (in module toil.test.sort.sort), 69
main() (in module toil.test.src.userDefinedJobArgTypeTest),

71
main() (in module toil.utils.toilClean), 73
main() (in module toil.utils.toilKill), 74
main() (in module toil.utils.toilMain), 74
main() (in module toil.utils.toilStats), 74
main() (in module toil.utils.toilStatus), 75
main() (in module toil.worker), 77
mainLoop() (in module toil.leader), 76
make_tests() (in module toil.test), 72
makeFileToSort() (in module toil.test.sort.sortTest), 69
makePublicDir() (in module toil.lib.bioio), 65
maxConcurrency() (in module

toil.test.src.promisedRequirementTest), 70
measureConcurrency() (in module

toil.test.batchSystems.batchSystemTest),
67

merge() (in module toil.test.sort.lib), 69

N
needs_aws() (in module toil.test), 73
needs_azure() (in module toil.test), 73
needs_cwl() (in module toil.test), 73
needs_encryption() (in module toil.test), 73
needs_google() (in module toil.test), 73
needs_gridengine() (in module toil.test), 73
needs_mesos() (in module toil.test), 73
needs_parasol() (in module toil.test), 73
needs_slurm() (in module toil.test), 73
needs_spark() (in module toil.test), 73
never() (in module toil.jobStores.utils), 63
nextOpenDescriptor() (in module toil.worker), 77

O
open() (toil.job.Job.FileStore method), 42

P
padStr() (in module toil.utils.toilStats), 74
parent() (in module toil.test.src.promisesTest), 71
parentJob() (in module

toil.test.batchSystems.batchSystemTest),
67

parseBasicOptions() (in module toil.lib.bioio), 65
parseSetEnv() (in module toil.common), 75
physicalMemory() (in module toil), 77
prepareBsub() (in module toil.batchSystems.lsf), 62
prettyMemory() (in module toil.utils.toilStats), 74
prettyTime() (in module toil.utils.toilStats), 74
printHelp() (in module toil.utils.toilMain), 74
printJson() (in module toil.utils.toilStats), 74
printUnicodeCharacter() (in module

toil.test.utils.utilsTest), 71
processData() (in module toil.utils.toilStats), 74
Promise (class in toil.job), 46
PromisedRequirement (class in toil.job), 47
publicUrlExpiration (toil.jobStores.abstractJobStore.AbstractJobStore

attribute), 58

R
readFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 58
readFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 58
readGlobalFile() (toil.job.Job.FileStore method), 42
readGlobalFileStream() (toil.job.Job.FileStore method),

42
readSharedFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 58
readStatsAndLogging() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 58
refineData() (in module toil.utils.toilStats), 74
reportData() (in module toil.utils.toilStats), 75

Index 85

Toil Documentation, Release 3.2.2a1

reportMemory() (in module toil.utils.toilStats), 75
reportNumber() (in module toil.utils.toilStats), 75
reportPrettyData() (in module toil.utils.toilStats), 75
reportTime() (in module toil.utils.toilStats), 75
resetCounters() (in module

toil.test.batchSystems.batchSystemTest),
67

resolveEntryPoint() (in module toil), 77
restart() (toil.common.Toil method), 44
retry() (in module toil.jobStores.utils), 63
retry_http() (in module toil.jobStores.utils), 64
retryable_http_error() (in module toil.jobStores.utils), 64
rootJobStoreIDFileName

(toil.jobStores.abstractJobStore.AbstractJobStore
attribute), 59

run() (toil.job.FunctionWrappingJob method), 45
run() (toil.job.Job method), 40
run() (toil.job.JobFunctionWrappingJob method), 46
rv() (toil.job.EncapsulatedJob method), 46
rv() (toil.job.Job method), 40

S
serviceAccessor() (in module

toil.test.src.jobServiceTest), 70
serviceTest() (in module toil.test.src.jobServiceTest), 70
serviceTestParallelRecursive() (in module

toil.test.src.jobServiceTest), 70
serviceTestRecursive() (in module

toil.test.src.jobServiceTest), 70
setEnv() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 54
setLoggingFromOptions() (in module toil.lib.bioio), 66
setLogLevel() (in module toil.lib.bioio), 65
setRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 59
setup() (in module toil.test.sort.sort), 69
sharedFileNameRegex (toil.jobStores.abstractJobStore.AbstractJobStore

attribute), 59
shutdown() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 54
sort() (in module toil.test.sort.lib), 69
sortJobs() (in module toil.utils.toilStats), 75
spawn_spark_cluster() (in module toil.lib.spark), 66
sprintTag() (in module toil.utils.toilStats), 75
start() (toil.common.Toil method), 44
start() (toil.job.Job.Service method), 45
startToil() (toil.job.Job.Runner static method), 43
stop() (toil.job.Job.Service method), 45
supportsHotDeployment()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 54

supportsWorkerCleanup()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 54

system() (in module toil.lib.bioio), 66

T
tempFileContaining() (in module

toil.test.batchSystems.batchSystemTest),
67

tempFileTestErrorJob() (in module
toil.test.src.retainTempDirTest), 71

tempFileTestJob() (in module
toil.test.src.retainTempDirTest), 71

Toil (class in toil.common), 43
toil (module), 77
toil.batchSystems (module), 62
toil.batchSystems.abstractBatchSystem (module), 62
toil.batchSystems.gridengine (module), 62
toil.batchSystems.jobDispatcher (module), 62
toil.batchSystems.lsf (module), 62
toil.batchSystems.mesos (module), 61
toil.batchSystems.mesos.conftest (module), 61
toil.batchSystems.mesos.test (module), 61
toil.batchSystems.parasol (module), 62
toil.batchSystems.parasolTestSupport (module), 62
toil.batchSystems.singleMachine (module), 62
toil.batchSystems.slurm (module), 62
toil.common (module), 75
toil.cwl (module), 62
toil.cwl.conftest (module), 62
toil.job (module), 76
toil.jobStores (module), 65
toil.jobStores.abstractJobStore (module), 63
toil.jobStores.aws (module), 63
toil.jobStores.conftest (module), 63
toil.jobStores.fileJobStore (module), 63
toil.jobStores.utils (module), 63
toil.jobWrapper (module), 76
toil.leader (module), 76
toil.lib (module), 66
toil.lib.bioio (module), 65
toil.lib.encryption (module), 65
toil.lib.encryption.conftest (module), 65
toil.lib.spark (module), 66
toil.provisioners (module), 67
toil.provisioners.abstractProvisioner (module), 67
toil.provisioners.aws (module), 66
toil.provisioners.clusterScaler (module), 67
toil.realtimeLogger (module), 76
toil.resource (module), 77
toil.test (module), 72
toil.test.batchSystems (module), 67
toil.test.batchSystems.batchSystemTest (module), 67
toil.test.cwl (module), 68
toil.test.cwl.conftest (module), 68
toil.test.cwl.cwlTest (module), 68
toil.test.jobStores (module), 68

86 Index

Toil Documentation, Release 3.2.2a1

toil.test.mesos (module), 68
toil.test.mesos.helloWorld (module), 68
toil.test.mesos.mesosTest (module), 68
toil.test.mesos.stress (module), 68
toil.test.provisioners (module), 68
toil.test.provisioners.clusterScalerTest (module), 68
toil.test.sort (module), 69
toil.test.sort.lib (module), 69
toil.test.sort.sort (module), 69
toil.test.sort.sortTest (module), 69
toil.test.src (module), 71
toil.test.src.helloWorldTest (module), 69
toil.test.src.importExportFileTest (module), 69
toil.test.src.jobCacheEjectionTest (module), 70
toil.test.src.jobCacheTest (module), 70
toil.test.src.jobEncapsulationTest (module), 70
toil.test.src.jobFileStoreTest (module), 70
toil.test.src.jobServiceTest (module), 70
toil.test.src.jobTest (module), 70
toil.test.src.jobWrapperTest (module), 70
toil.test.src.promisedRequirementTest (module), 70
toil.test.src.promisesTest (module), 71
toil.test.src.realtimeLoggerTest (module), 71
toil.test.src.regularLogTest (module), 71
toil.test.src.resourceTest (module), 71
toil.test.src.retainTempDirTest (module), 71
toil.test.src.systemTest (module), 71
toil.test.src.toilContextManagerTest (module), 71
toil.test.src.userDefinedJobArgTypeTest (module), 71
toil.test.utils (module), 71
toil.test.utils.utilsTest (module), 71
toil.toilState (module), 77
toil.utils (module), 75
toil.utils.toilClean (module), 73
toil.utils.toilKill (module), 74
toil.utils.toilMain (module), 74
toil.utils.toilStats (module), 74
toil.utils.toilStatus (module), 75
toil.version (module), 77
toil.worker (module), 77
toilPackageDirPath() (in module toil), 77
touchFile() (in module toil.test.mesos.stress), 68

U
up() (in module toil.test.sort.sort), 69
update() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 59
updateColumnWidths() (in module toil.utils.toilStats), 75
updateFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 59
updateFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 59

W
wrapFn() (toil.job.Job static method), 40
wrapJobFn() (toil.job.Job static method), 40
writeConfigToStore() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 59
writeFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 59
writeFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 60
writeGlobalFile() (toil.job.Job.FileStore method), 42
writeGlobalFileStream() (toil.job.Job.FileStore method),

43
writeSharedFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 60
writeStatsAndLogging() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 60

Index 87

	Installation
	Prerequisites
	Basic installation
	Building & testing
	Running Mesos tests

	Cloud installation
	Installation on AWS for distributed computing
	CGCloud in a nutshell

	Installation on Azure
	Installation on OpenStack
	Installation on Google Compute Engine

	Running a workflow
	Running quick start
	Running CWL workflows
	Running a Toil pipeline in detail
	Changing the log statements
	Restarting after introducing a bug
	Getting stats from our pipeline run

	Running in the cloud
	Running on AWS
	Running on Azure
	Running on Open Stack
	Running on Google Compute Engine

	Command line interface and arguments
	Logging
	Stats
	Restart
	Clean
	Batch system
	Default cores, disk, and memory
	Job store
	Miscellaneous

	Developing a workflow
	Scripting quick start
	Job basics
	Invoking a workflow
	Specifying arguments via the command line
	Resuming a workflow
	Functions and job functions
	Workflows with multiple jobs
	Dynamic job creation
	Promises
	Managing files within a workflow
	Staging of files into the job store

	Services
	Checkpoints
	Encapsulation

	Toil API
	Job methods
	Job.FileStore
	Job.Runner
	Toil
	Job.Service
	FunctionWrappingJob
	JobFunctionWrappingJob
	EncapsulatedJob
	Promise
	Exceptions

	Toil architecture
	Optimizations
	Read-only leader
	Job chaining
	Preemptable node support
	Caching

	The batch system interface
	The job store interface
	src
	toil package
	Subpackages
	Submodules
	toil.common module
	toil.job module
	toil.jobWrapper module
	toil.leader module
	toil.realtimeLogger module
	toil.resource module
	toil.toilState module
	toil.version module
	toil.worker module
	Module contents

	Indices and tables
	Python Module Index

