

Toil Documentation

Toil is an open-source pure-Python workflow engine that lets people write better pipelines.

Check out our website [http://toil.ucsc-cgl.org/] for a comprehensive list of Toil’s features and read our paper [http://biorxiv.org/content/early/2016/07/07/062497] to learn what Toil can do
in the real world. Please subscribe to our low-volume announce [https://groups.google.com/forum/#!forum/toil-announce] mailing list and feel free to also join us on GitHub [https://github.com/BD2KGenomics/toil] and Gitter [https://gitter.im/bd2k-genomics-toil/Lobby].

If using Toil for your research, please cite

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., … Paten, B. (2017).
Toil enables reproducible, open source, big biomedical data analyses. Nature Biotechnology, 35(4), 314–316.
http://doi.org/10.1038/nbt.3772

Getting Started

	Installation
	Preparing Your Python Runtime Environment

	Basic Installation

	Installing Toil with Extra Features

	Building from Source

	Quickstart Examples
	Running a basic workflow

	Running a basic CWL workflow

	Running a basic WDL workflow

	A (more) real-world example
	Running the example

	Describing the source code

	Logging

	Error Handling and Resuming Pipelines

	Collecting Statistics

	Launching a Toil Workflow in AWS

	Running a CWL Workflow on AWS

	Running a Workflow with Autoscaling - Cactus

Running Toil

	Introduction
	Job Store
	File Job Store

	Cloud Job Stores

	Batch System

	Provisioner

	Commandline Options
	The Job Store

	Commandline Options

	Restart Option

	Running Workflows with Services

	Setting Options directly with the Toil Script

	Toil Debugging
	Introspecting the Jobstore

	Stats and Status

	Using a Python debugger

	Running in the Cloud
	Managing a Cluster of Virtual Machines (Provisioning)

	Storage (Toil jobStore)

	Cloud Platforms
	Running on Kubernetes
	Preparing your Kubernetes environment

	AWS Job Store for Kubernetes

	Configuring Toil for your Kubernetes environment

	Running workflows
	Option 1: Running the Leader Inside Kubernetes
	Monitoring and Debugging Kubernetes Jobs and Pods

	When Things Go Wrong

	Option 2: Running the Leader Outside Kubernetes
	Running CWL Workflows

	AppArmor and Singularity

	Running in AWS
	Preparing your AWS environment

	AWS Job Store

	Toil Provisioner

	Details about Launching a Cluster in AWS
	Static Provisioning

	Uploading Workflows

	Running a Workflow with Autoscaling

	Preemptibility

	Provisioning with a Kubernetes cluster

	Using MinIO and S3-Compatible object stores

	Dashboard

	Running in Google Compute Engine (GCE)
	Preparing your Google environment

	Google Job Store

	Running a Workflow with Autoscaling

	Cluster Utilities

	Stats Command

	Status Command

	Clean Command

	Launch-Cluster Command

	Ssh-Cluster Command

	Rsync-Cluster Command

	Destroy-Cluster Command

	Kill Command

	HPC Environments
	Standard Output/Error from Batch System Jobs

	CWL in Toil
	Running CWL Locally
	Note for macOS + Docker + Toil

	Detailed Usage Instructions

	Running CWL in the Cloud

	Running CWL within Toil Scripts

	Running CWL workflows with InplaceUpdateRequirement

	Toil & CWL Tips

	WDL in Toil
	Running WDL with Toil

	Toil WDL Runner Options

	WDL Specifications

	Using the Old WDL Compiler
	Toil WDL Compiler Options

	Compiler Example: ENCODE Example from ENCODE-DCC

	Compiler Example: GATK Examples from the Broad

	Workflow Execution Service (WES)
	Preparing your WES environment

	Starting a WES server

	Running the Server with docker-compose

	Running on a Toil cluster

	WES API Endpoints

	Submitting a Workflow
	Upload multiple files

	Specify Toil options

	Monitoring a Workflow
	Checking the state

	Getting the full logs

	Canceling a run

Developing Toil Workflows

	Developing a Workflow
	Scripting Quick Start

	Job Basics

	Invoking a Workflow

	Specifying Commandline Arguments

	Resuming a Workflow

	Functions and Job Functions

	Workflows with Multiple Jobs

	Dynamic Job Creation

	Promises

	Promised Requirements

	FileID

	Managing files within a workflow
	Staging of Files into the Job Store

	Using Docker Containers in Toil

	Services

	Checkpoints

	Encapsulation

	Depending on Toil

	Best Practices for Dockerizing Toil Workflows

	Toil Class API

	Job Store API

	Toil Job API
	FunctionWrappingJob

	JobFunctionWrappingJob

	EncapsulatedJob

	Promise

	Job Methods API
	JobDescription

	Job.Runner API

	job.fileStore API

	Batch System API
	Batch System Enivronmental Variables

	Batch System API

	Job.Service API

	Exceptions API

Contributing to Toil

	Running Tests
	Running Tests with pytest

	Running Integration Tests

	Test Environment Variables

	Using Docker with Quay

	Running Mesos Tests

	Developing with Docker
	Making Your Own Toil Docker Image

	Running a Cluster Locally

	Maintainer’s Guidelines
	Naming Conventions

	Pull Requests

	Publishing a Release

	Using Git Hooks

	Adding Retries to a Function

	Pull Request Checklists
	Reviewing Pull Requests

	Merging Pull Requests

Appendices

	Toil Architecture
	Jobs and JobDescriptions

	Optimizations
	Read-only leader

	Job chaining

	Preemptable node support

	Caching

	Toil support for Common Workflow Language

	Minimum AWS IAM permissions

	Auto-Deployment
	Auto Deployment with Sibling Modules

	Auto-Deploying a Package Hierarchy

	Relying on Shared Filesystems
	Toil Appliance

	Environment Variables

	API Reference
	toil
	Subpackages
	toil.batchSystems
	Subpackages
	toil.batchSystems.mesos
	Subpackages
	toil.batchSystems.mesos.test
	Package Contents
	Classes

	Functions

	Attributes
	retry()

	ExceptionalThread
	ExceptionalThread.exc_info

	ExceptionalThread.run()

	ExceptionalThread.tryRun()

	ExceptionalThread.join()

	cpu_count()

	log

	MesosTestSupport
	MesosTestSupport.MesosThread
	MesosTestSupport.MesosThread.lock

	MesosTestSupport.MesosThread.mesosCommand()

	MesosTestSupport.MesosThread.tryRun()

	MesosTestSupport.MesosThread.findMesosBinary()

	MesosTestSupport.MesosMasterThread
	MesosTestSupport.MesosMasterThread.mesosCommand()

	MesosTestSupport.MesosAgentThread
	MesosTestSupport.MesosAgentThread.mesosCommand()

	MesosTestSupport.wait_for_master()

	Submodules
	toil.batchSystems.mesos.batchSystem
	Module Contents
	Classes

	Attributes
	log

	MesosBatchSystem
	MesosBatchSystem.ExecutorInfo

	MesosBatchSystem.userScript

	MesosBatchSystem.supportsAutoDeployment()

	MesosBatchSystem.supportsWorkerCleanup()

	MesosBatchSystem.setUserScript()

	MesosBatchSystem.ignoreNode()

	MesosBatchSystem.unignoreNode()

	MesosBatchSystem.issueBatchJob()

	MesosBatchSystem.killBatchJobs()

	MesosBatchSystem.getIssuedBatchJobIDs()

	MesosBatchSystem.getRunningBatchJobIDs()

	MesosBatchSystem.getUpdatedBatchJob()

	MesosBatchSystem.nodeInUse()

	MesosBatchSystem.getWaitDuration()

	MesosBatchSystem.shutdown()

	MesosBatchSystem.registered()

	MesosBatchSystem.resourceOffers()

	MesosBatchSystem.statusUpdate()

	MesosBatchSystem.frameworkMessage()

	MesosBatchSystem.getNodes()

	MesosBatchSystem.reregistered()

	MesosBatchSystem.executorLost()

	MesosBatchSystem.get_default_mesos_endpoint()

	MesosBatchSystem.add_options()

	MesosBatchSystem.setOptions()

	toil.batchSystems.mesos.conftest
	Module Contents
	collect_ignore

	toil.batchSystems.mesos.executor
	Module Contents
	Classes

	Functions

	Attributes
	log

	MesosExecutor
	MesosExecutor.registered()

	MesosExecutor.reregistered()

	MesosExecutor.disconnected()

	MesosExecutor.killTask()

	MesosExecutor.shutdown()

	MesosExecutor.error()

	MesosExecutor.launchTask()

	MesosExecutor.frameworkMessage()

	main()

	Package Contents
	Classes

	Attributes
	Shape
	Shape.__eq__()

	Shape.greater_than()

	Shape.__gt__()

	Shape.__repr__()

	Shape.__str__()

	Shape.__hash__()

	TaskData

	JobQueue
	JobQueue.insertJob()

	JobQueue.jobIDs()

	JobQueue.nextJobOfType()

	JobQueue.typeEmpty()

	MesosShape
	MesosShape.__gt__()

	ToilJob

	Submodules
	toil.batchSystems.abstractBatchSystem
	Module Contents
	Classes

	Attributes
	logger

	EXIT_STATUS_UNAVAILABLE_VALUE

	BatchJobExitReason
	BatchJobExitReason.FINISHED

	BatchJobExitReason.FAILED

	BatchJobExitReason.LOST

	BatchJobExitReason.KILLED

	BatchJobExitReason.ERROR

	BatchJobExitReason.MEMLIMIT

	UpdatedBatchJobInfo
	UpdatedBatchJobInfo.jobID

	UpdatedBatchJobInfo.exitStatus

	UpdatedBatchJobInfo.exitReason

	UpdatedBatchJobInfo.wallTime

	WorkerCleanupInfo
	WorkerCleanupInfo.work_dir

	WorkerCleanupInfo.coordination_dir

	WorkerCleanupInfo.workflow_id

	WorkerCleanupInfo.clean_work_dir

	AbstractBatchSystem
	AbstractBatchSystem.supportsAutoDeployment()

	AbstractBatchSystem.supportsWorkerCleanup()

	AbstractBatchSystem.setUserScript()

	AbstractBatchSystem.set_message_bus()

	AbstractBatchSystem.issueBatchJob()

	AbstractBatchSystem.killBatchJobs()

	AbstractBatchSystem.getIssuedBatchJobIDs()

	AbstractBatchSystem.getRunningBatchJobIDs()

	AbstractBatchSystem.getUpdatedBatchJob()

	AbstractBatchSystem.getSchedulingStatusMessage()

	AbstractBatchSystem.shutdown()

	AbstractBatchSystem.setEnv()

	AbstractBatchSystem.add_options()

	AbstractBatchSystem.setOptions()

	AbstractBatchSystem.getWorkerContexts()

	BatchSystemSupport
	BatchSystemSupport.check_resource_request()

	BatchSystemSupport.setEnv()

	BatchSystemSupport.set_message_bus()

	BatchSystemSupport.get_batch_logs_dir()

	BatchSystemSupport.format_std_out_err_path()

	BatchSystemSupport.format_std_out_err_glob()

	BatchSystemSupport.workerCleanup()

	NodeInfo

	AbstractScalableBatchSystem
	AbstractScalableBatchSystem.getNodes()

	AbstractScalableBatchSystem.nodeInUse()

	AbstractScalableBatchSystem.ignoreNode()

	AbstractScalableBatchSystem.unignoreNode()

	InsufficientSystemResources
	InsufficientSystemResources.__str__()

	AcquisitionTimeoutException

	ResourcePool
	ResourcePool.acquireNow()

	ResourcePool.acquire()

	ResourcePool.release()

	ResourcePool.__str__()

	ResourcePool.__repr__()

	ResourcePool.acquisitionOf()

	ResourceSet
	ResourceSet.acquireNow()

	ResourceSet.acquire()

	ResourceSet.release()

	ResourceSet.get_free_snapshot()

	ResourceSet.__str__()

	ResourceSet.__repr__()

	ResourceSet.acquisitionOf()

	toil.batchSystems.abstractGridEngineBatchSystem
	Module Contents
	Classes

	Attributes
	logger

	JobTuple

	AbstractGridEngineBatchSystem
	AbstractGridEngineBatchSystem.Worker
	AbstractGridEngineBatchSystem.Worker.getBatchSystemID()

	AbstractGridEngineBatchSystem.Worker.forgetJob()

	AbstractGridEngineBatchSystem.Worker.createJobs()

	AbstractGridEngineBatchSystem.Worker.killJobs()

	AbstractGridEngineBatchSystem.Worker.checkOnJobs()

	AbstractGridEngineBatchSystem.Worker.run()

	AbstractGridEngineBatchSystem.Worker.coalesce_job_exit_codes()

	AbstractGridEngineBatchSystem.Worker.prepareSubmission()

	AbstractGridEngineBatchSystem.Worker.submitJob()

	AbstractGridEngineBatchSystem.Worker.getRunningJobIDs()

	AbstractGridEngineBatchSystem.Worker.killJob()

	AbstractGridEngineBatchSystem.Worker.getJobExitCode()

	AbstractGridEngineBatchSystem.supportsWorkerCleanup()

	AbstractGridEngineBatchSystem.supportsAutoDeployment()

	AbstractGridEngineBatchSystem.issueBatchJob()

	AbstractGridEngineBatchSystem.killBatchJobs()

	AbstractGridEngineBatchSystem.getIssuedBatchJobIDs()

	AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

	AbstractGridEngineBatchSystem.getUpdatedBatchJob()

	AbstractGridEngineBatchSystem.shutdown()

	AbstractGridEngineBatchSystem.setEnv()

	AbstractGridEngineBatchSystem.getWaitDuration()

	AbstractGridEngineBatchSystem.sleepSeconds()

	AbstractGridEngineBatchSystem.with_retries()

	toil.batchSystems.awsBatch
	Module Contents
	Classes

	Attributes
	logger

	STATE_TO_EXIT_REASON

	MAX_POLL_COUNT

	MIN_REQUESTABLE_MIB

	MIN_REQUESTABLE_CORES

	AWSBatchBatchSystem
	AWSBatchBatchSystem.supportsAutoDeployment()

	AWSBatchBatchSystem.setUserScript()

	AWSBatchBatchSystem.issueBatchJob()

	AWSBatchBatchSystem.getUpdatedBatchJob()

	AWSBatchBatchSystem.shutdown()

	AWSBatchBatchSystem.getIssuedBatchJobIDs()

	AWSBatchBatchSystem.getRunningBatchJobIDs()

	AWSBatchBatchSystem.killBatchJobs()

	AWSBatchBatchSystem.add_options()

	AWSBatchBatchSystem.setOptions()

	toil.batchSystems.cleanup_support
	Module Contents
	Classes

	Attributes
	logger

	BatchSystemCleanupSupport
	BatchSystemCleanupSupport.supportsWorkerCleanup()

	BatchSystemCleanupSupport.getWorkerContexts()

	WorkerCleanupContext
	WorkerCleanupContext.__enter__()

	WorkerCleanupContext.__exit__()

	toil.batchSystems.contained_executor
	Module Contents
	Functions

	Attributes
	logger

	pack_job()

	executor()

	toil.batchSystems.gridengine
	Module Contents
	Classes

	Attributes
	logger

	GridEngineBatchSystem
	GridEngineBatchSystem.Worker
	GridEngineBatchSystem.Worker.getRunningJobIDs()

	GridEngineBatchSystem.Worker.killJob()

	GridEngineBatchSystem.Worker.prepareSubmission()

	GridEngineBatchSystem.Worker.submitJob()

	GridEngineBatchSystem.Worker.getJobExitCode()

	GridEngineBatchSystem.Worker.prepareQsub()

	GridEngineBatchSystem.getWaitDuration()

	toil.batchSystems.htcondor
	Module Contents
	Classes

	Attributes
	logger

	JobTuple

	schedd_lock

	HTCondorBatchSystem
	HTCondorBatchSystem.Worker
	HTCondorBatchSystem.Worker.createJobs()

	HTCondorBatchSystem.Worker.prepareSubmission()

	HTCondorBatchSystem.Worker.submitJob()

	HTCondorBatchSystem.Worker.getRunningJobIDs()

	HTCondorBatchSystem.Worker.killJob()

	HTCondorBatchSystem.Worker.getJobExitCode()

	HTCondorBatchSystem.Worker.connectSchedd()

	HTCondorBatchSystem.Worker.duplicate_quotes()

	HTCondorBatchSystem.Worker.getEnvString()

	HTCondorBatchSystem.issueBatchJob()

	toil.batchSystems.kubernetes
	Module Contents
	Classes

	Functions

	Attributes
	logger

	retryable_kubernetes_errors

	is_retryable_kubernetes_error()

	KeyValuesList

	KubernetesBatchSystem
	KubernetesBatchSystem.DecoratorWrapper
	KubernetesBatchSystem.DecoratorWrapper.P

	KubernetesBatchSystem.DecoratorWrapper.__getattr__()

	KubernetesBatchSystem.Placement
	KubernetesBatchSystem.Placement.required_labels

	KubernetesBatchSystem.Placement.desired_labels

	KubernetesBatchSystem.Placement.prohibited_labels

	KubernetesBatchSystem.Placement.tolerated_taints

	KubernetesBatchSystem.Placement.set_preemptible()

	KubernetesBatchSystem.Placement.apply()

	KubernetesBatchSystem.KubernetesConfig
	KubernetesBatchSystem.KubernetesConfig.kubernetes_host_path

	KubernetesBatchSystem.KubernetesConfig.kubernetes_owner

	KubernetesBatchSystem.KubernetesConfig.kubernetes_service_account

	KubernetesBatchSystem.KubernetesConfig.kubernetes_pod_timeout

	KubernetesBatchSystem.ItemT

	KubernetesBatchSystem.CovItemT

	KubernetesBatchSystem.P

	KubernetesBatchSystem.R

	KubernetesBatchSystem.OptionType

	KubernetesBatchSystem.supportsAutoDeployment()

	KubernetesBatchSystem.setUserScript()

	KubernetesBatchSystem.issueBatchJob()

	KubernetesBatchSystem.getUpdatedBatchJob()

	KubernetesBatchSystem.shutdown()

	KubernetesBatchSystem.getIssuedBatchJobIDs()

	KubernetesBatchSystem.getRunningBatchJobIDs()

	KubernetesBatchSystem.killBatchJobs()

	KubernetesBatchSystem.get_default_kubernetes_owner()

	KubernetesBatchSystem.add_options()

	KubernetesBatchSystem.setOptions()

	toil.batchSystems.local_support
	Module Contents
	Classes

	Attributes
	logger

	BatchSystemLocalSupport
	BatchSystemLocalSupport.handleLocalJob()

	BatchSystemLocalSupport.killLocalJobs()

	BatchSystemLocalSupport.getIssuedLocalJobIDs()

	BatchSystemLocalSupport.getRunningLocalJobIDs()

	BatchSystemLocalSupport.getUpdatedLocalJob()

	BatchSystemLocalSupport.getNextJobID()

	BatchSystemLocalSupport.shutdownLocal()

	toil.batchSystems.lsf
	Module Contents
	Classes

	Attributes
	logger

	LSFBatchSystem
	LSFBatchSystem.Worker
	LSFBatchSystem.Worker.getRunningJobIDs()

	LSFBatchSystem.Worker.fallbackRunningJobIDs()

	LSFBatchSystem.Worker.killJob()

	LSFBatchSystem.Worker.prepareSubmission()

	LSFBatchSystem.Worker.submitJob()

	LSFBatchSystem.Worker.coalesce_job_exit_codes()

	LSFBatchSystem.Worker.getJobExitCode()

	LSFBatchSystem.Worker.parse_bjobs_record()

	LSFBatchSystem.Worker.getJobExitCodeBACCT()

	LSFBatchSystem.Worker.fallbackGetJobExitCode()

	LSFBatchSystem.Worker.prepareBsub()

	LSFBatchSystem.Worker.parseBjobs()

	LSFBatchSystem.Worker.parseMaxMem()

	LSFBatchSystem.getWaitDuration()

	toil.batchSystems.lsfHelper
	Module Contents
	Functions

	Attributes
	LSB_PARAMS_FILENAME

	LSF_CONF_FILENAME

	LSF_CONF_ENV

	DEFAULT_LSF_UNITS

	DEFAULT_RESOURCE_UNITS

	LSF_JSON_OUTPUT_MIN_VERSION

	logger

	find()

	find_first_match()

	get_conf_file()

	apply_conf_file()

	per_core_reserve_from_stream()

	get_lsf_units_from_stream()

	tokenize_conf_stream()

	apply_bparams()

	apply_lsadmin()

	get_lsf_units()

	parse_mem_and_cmd_from_output()

	get_lsf_version()

	check_lsf_json_output_supported()

	parse_memory()

	per_core_reservation()

	toil.batchSystems.options
	Module Contents
	Classes

	Functions

	Attributes
	logger

	OptionSetter
	OptionSetter.OptionType

	OptionSetter.__call__()

	set_batchsystem_options()

	add_all_batchsystem_options()

	set_batchsystem_config_defaults()

	toil.batchSystems.parasol
	Module Contents
	Classes

	Attributes
	logger

	ParasolBatchSystem
	ParasolBatchSystem.parasolOutputPattern

	ParasolBatchSystem.runningPattern

	ParasolBatchSystem.supportsWorkerCleanup()

	ParasolBatchSystem.supportsAutoDeployment()

	ParasolBatchSystem.issueBatchJob()

	ParasolBatchSystem.setEnv()

	ParasolBatchSystem.killBatchJobs()

	ParasolBatchSystem.getJobIDsForResultsFile()

	ParasolBatchSystem.getIssuedBatchJobIDs()

	ParasolBatchSystem.getRunningBatchJobIDs()

	ParasolBatchSystem.getUpdatedBatchJob()

	ParasolBatchSystem.updatedJobWorker()

	ParasolBatchSystem.shutdown()

	ParasolBatchSystem.add_options()

	ParasolBatchSystem.setOptions()

	toil.batchSystems.registry
	Module Contents
	Functions

	Attributes
	logger

	aws_batch_batch_system_factory()

	gridengine_batch_system_factory()

	parasol_batch_system_factory()

	lsf_batch_system_factory()

	single_machine_batch_system_factory()

	mesos_batch_system_factory()

	slurm_batch_system_factory()

	tes_batch_system_factory()

	torque_batch_system_factory()

	htcondor_batch_system_factory()

	kubernetes_batch_system_factory()

	BATCH_SYSTEM_FACTORY_REGISTRY

	BATCH_SYSTEMS

	DEFAULT_BATCH_SYSTEM

	addBatchSystemFactory()

	save_batch_system_plugin_state()

	restore_batch_system_plugin_state()

	toil.batchSystems.singleMachine
	Module Contents
	Classes

	Attributes
	logger

	SingleMachineBatchSystem
	SingleMachineBatchSystem.numCores

	SingleMachineBatchSystem.minCores

	SingleMachineBatchSystem.physicalMemory

	SingleMachineBatchSystem.supportsAutoDeployment()

	SingleMachineBatchSystem.supportsWorkerCleanup()

	SingleMachineBatchSystem.daddy()

	SingleMachineBatchSystem.getSchedulingStatusMessage()

	SingleMachineBatchSystem.check_resource_request()

	SingleMachineBatchSystem.issueBatchJob()

	SingleMachineBatchSystem.killBatchJobs()

	SingleMachineBatchSystem.getIssuedBatchJobIDs()

	SingleMachineBatchSystem.getRunningBatchJobIDs()

	SingleMachineBatchSystem.shutdown()

	SingleMachineBatchSystem.getUpdatedBatchJob()

	SingleMachineBatchSystem.add_options()

	SingleMachineBatchSystem.setOptions()

	Info

	toil.batchSystems.slurm
	Module Contents
	Classes

	Attributes
	logger

	SlurmBatchSystem
	SlurmBatchSystem.Worker
	SlurmBatchSystem.Worker.getRunningJobIDs()

	SlurmBatchSystem.Worker.killJob()

	SlurmBatchSystem.Worker.prepareSubmission()

	SlurmBatchSystem.Worker.submitJob()

	SlurmBatchSystem.Worker.coalesce_job_exit_codes()

	SlurmBatchSystem.Worker.getJobExitCode()

	SlurmBatchSystem.Worker.prepareSbatch()

	SlurmBatchSystem.Worker.parse_elapsed()

	SlurmBatchSystem.OptionType

	SlurmBatchSystem.add_options()

	SlurmBatchSystem.setOptions()

	toil.batchSystems.tes
	Module Contents
	Classes

	Attributes
	logger

	STATE_TO_EXIT_REASON

	TESBatchSystem
	TESBatchSystem.supportsAutoDeployment()

	TESBatchSystem.get_default_tes_endpoint()

	TESBatchSystem.setUserScript()

	TESBatchSystem.issueBatchJob()

	TESBatchSystem.getUpdatedBatchJob()

	TESBatchSystem.shutdown()

	TESBatchSystem.getIssuedBatchJobIDs()

	TESBatchSystem.getRunningBatchJobIDs()

	TESBatchSystem.killBatchJobs()

	TESBatchSystem.add_options()

	TESBatchSystem.setOptions()

	toil.batchSystems.torque
	Module Contents
	Classes

	Attributes
	logger

	TorqueBatchSystem
	TorqueBatchSystem.Worker
	TorqueBatchSystem.Worker.getRunningJobIDs()

	TorqueBatchSystem.Worker.getUpdatedBatchJob()

	TorqueBatchSystem.Worker.killJob()

	TorqueBatchSystem.Worker.prepareSubmission()

	TorqueBatchSystem.Worker.submitJob()

	TorqueBatchSystem.Worker.getJobExitCode()

	TorqueBatchSystem.Worker.prepareQsub()

	TorqueBatchSystem.Worker.generateTorqueWrapper()

	Package Contents
	DeadlockException
	DeadlockException.__str__()

	toil.cwl
	Submodules
	toil.cwl.conftest
	Module Contents
	collect_ignore

	toil.cwl.cwltoil
	Module Contents
	Classes

	Functions

	Attributes
	logger

	DEFAULT_TMPDIR

	DEFAULT_TMPDIR_PREFIX

	cwltoil_was_removed()

	UnresolvedDict

	SkipNull

	filter_skip_null()

	ensure_no_collisions()

	Conditional
	Conditional.is_false()

	Conditional.skipped_outputs()

	ResolveSource
	ResolveSource.promise_tuples

	ResolveSource.__repr__()

	ResolveSource.resolve()

	ResolveSource.link_merge()

	ResolveSource.pick_value()

	StepValueFrom
	StepValueFrom.eval_prep()

	StepValueFrom.resolve()

	StepValueFrom.do_eval()

	DefaultWithSource
	DefaultWithSource.resolve()

	JustAValue
	JustAValue.resolve()

	resolve_dict_w_promises()

	simplify_list()

	ToilPathMapper
	ToilPathMapper.visit()

	ToilSingleJobExecutor
	ToilSingleJobExecutor.run_jobs()

	ToilTool
	ToilTool.make_path_mapper()

	ToilTool.__str__()

	ToilCommandLineTool

	ToilExpressionTool

	toil_make_tool()

	DirectoryContents

	check_directory_dict_invariants()

	decode_directory()

	encode_directory()

	ToilFsAccess
	ToilFsAccess.glob()

	ToilFsAccess.open()

	ToilFsAccess.exists()

	ToilFsAccess.size()

	ToilFsAccess.isfile()

	ToilFsAccess.isdir()

	ToilFsAccess.listdir()

	ToilFsAccess.join()

	ToilFsAccess.realpath()

	toil_get_file()

	write_file()

	path_to_loc()

	import_files()

	upload_directory()

	upload_file()

	writeGlobalFileWrapper()

	remove_empty_listings()

	CWLNamedJob

	ResolveIndirect
	ResolveIndirect.run()

	toilStageFiles()

	CWLJobWrapper
	CWLJobWrapper.run()

	CWLJob
	CWLJob.required_env_vars()

	CWLJob.populate_env_vars()

	CWLJob.run()

	get_container_engine()

	makeJob()

	CWLScatter
	CWLScatter.flat_crossproduct_scatter()

	CWLScatter.nested_crossproduct_scatter()

	CWLScatter.run()

	CWLGather
	CWLGather.extract()

	CWLGather.run()

	SelfJob
	SelfJob.rv()

	SelfJob.addChild()

	SelfJob.hasChild()

	ProcessType

	remove_pickle_problems()

	CWLWorkflow
	CWLWorkflow.run()

	visitSteps()

	rm_unprocessed_secondary_files()

	filtered_secondary_files()

	scan_for_unsupported_requirements()

	determine_load_listing()

	NoAvailableJobStoreException

	generate_default_job_store()

	usage_message

	main()

	find_default_container()

	toil.cwl.utils
	Module Contents
	Functions

	Attributes
	logger

	CWL_UNSUPPORTED_REQUIREMENT_EXIT_CODE

	CWLUnsupportedException

	CWL_UNSUPPORTED_REQUIREMENT_EXCEPTION

	visit_top_cwl_class()

	DownReturnType

	UpReturnType

	visit_cwl_class_and_reduce()

	DirectoryStructure

	download_structure()

	Package Contents
	Functions

	Attributes
	InvalidVersion

	cwltool_version

	logger

	check_cwltool_version()

	toil.fileStores
	Submodules
	toil.fileStores.abstractFileStore
	Module Contents
	Classes

	Attributes
	logger

	AbstractFileStore
	AbstractFileStore.createFileStore()

	AbstractFileStore.shutdownFileStore()

	AbstractFileStore.open()

	AbstractFileStore.getLocalTempDir()

	AbstractFileStore.getLocalTempFile()

	AbstractFileStore.getLocalTempFileName()

	AbstractFileStore.writeGlobalFile()

	AbstractFileStore.writeGlobalFileStream()

	AbstractFileStore.logAccess()

	AbstractFileStore.readGlobalFile()

	AbstractFileStore.readGlobalFileStream()

	AbstractFileStore.getGlobalFileSize()

	AbstractFileStore.deleteLocalFile()

	AbstractFileStore.deleteGlobalFile()

	AbstractFileStore.importFile()

	AbstractFileStore.import_file()

	AbstractFileStore.exportFile()

	AbstractFileStore.export_file()

	AbstractFileStore.logToMaster()

	AbstractFileStore.startCommit()

	AbstractFileStore.waitForCommit()

	AbstractFileStore.shutdown()

	toil.fileStores.cachingFileStore
	Module Contents
	Classes

	Attributes
	logger

	SQLITE_TIMEOUT_SECS

	CacheError

	CacheUnbalancedError
	CacheUnbalancedError.message

	IllegalDeletionCacheError

	InvalidSourceCacheError

	CachingFileStore
	CachingFileStore.getCacheLimit()

	CachingFileStore.getCacheUsed()

	CachingFileStore.getCacheExtraJobSpace()

	CachingFileStore.getCacheAvailable()

	CachingFileStore.getSpaceUsableForJobs()

	CachingFileStore.getCacheUnusedJobRequirement()

	CachingFileStore.adjustCacheLimit()

	CachingFileStore.fileIsCached()

	CachingFileStore.getFileReaderCount()

	CachingFileStore.cachingIsFree()

	CachingFileStore.open()

	CachingFileStore.writeGlobalFile()

	CachingFileStore.readGlobalFile()

	CachingFileStore.readGlobalFileStream()

	CachingFileStore.deleteLocalFile()

	CachingFileStore.deleteGlobalFile()

	CachingFileStore.exportFile()

	CachingFileStore.export_file()

	CachingFileStore.waitForCommit()

	CachingFileStore.startCommit()

	CachingFileStore.startCommitThread()

	CachingFileStore.shutdown()

	CachingFileStore.__del__()

	toil.fileStores.nonCachingFileStore
	Module Contents
	Classes

	Attributes
	logger

	NonCachingFileStore
	NonCachingFileStore.check_for_coordination_corruption()

	NonCachingFileStore.check_for_state_corruption()

	NonCachingFileStore.open()

	NonCachingFileStore.writeGlobalFile()

	NonCachingFileStore.readGlobalFile()

	NonCachingFileStore.readGlobalFileStream()

	NonCachingFileStore.exportFile()

	NonCachingFileStore.export_file()

	NonCachingFileStore.deleteLocalFile()

	NonCachingFileStore.deleteGlobalFile()

	NonCachingFileStore.waitForCommit()

	NonCachingFileStore.startCommit()

	NonCachingFileStore.__del__()

	NonCachingFileStore.shutdown()

	Package Contents
	Classes
	FileID
	FileID.pack()

	FileID.forPath()

	FileID.unpack()

	toil.jobStores
	Subpackages
	toil.jobStores.aws
	Submodules
	toil.jobStores.aws.jobStore
	Module Contents
	Classes

	Attributes
	boto3_session

	s3_boto3_resource

	s3_boto3_client

	logger

	CONSISTENCY_TICKS

	CONSISTENCY_TIME

	ChecksumError

	AWSJobStore
	AWSJobStore.FileInfo
	AWSJobStore.FileInfo.fileID

	AWSJobStore.FileInfo.ownerID

	AWSJobStore.FileInfo.version

	AWSJobStore.FileInfo.previousVersion

	AWSJobStore.FileInfo.content

	AWSJobStore.FileInfo.checksum

	AWSJobStore.FileInfo.outer

	AWSJobStore.FileInfo.create()

	AWSJobStore.FileInfo.presenceIndicator()

	AWSJobStore.FileInfo.exists()

	AWSJobStore.FileInfo.load()

	AWSJobStore.FileInfo.loadOrCreate()

	AWSJobStore.FileInfo.loadOrFail()

	AWSJobStore.FileInfo.fromItem()

	AWSJobStore.FileInfo.toItem()

	AWSJobStore.FileInfo.maxInlinedSize()

	AWSJobStore.FileInfo.save()

	AWSJobStore.FileInfo.upload()

	AWSJobStore.FileInfo.uploadStream()

	AWSJobStore.FileInfo.copyFrom()

	AWSJobStore.FileInfo.copyTo()

	AWSJobStore.FileInfo.download()

	AWSJobStore.FileInfo.downloadStream()

	AWSJobStore.FileInfo.delete()

	AWSJobStore.FileInfo.getSize()

	AWSJobStore.FileInfo.__repr__()

	AWSJobStore.sseKeyPath

	AWSJobStore.bucketNameRe

	AWSJobStore.minBucketNameLen

	AWSJobStore.maxBucketNameLen

	AWSJobStore.maxNameLen

	AWSJobStore.nameSeparator

	AWSJobStore.jobsPerBatchInsert

	AWSJobStore.itemsPerBatchDelete

	AWSJobStore.sharedFileOwnerID

	AWSJobStore.statsFileOwnerID

	AWSJobStore.readStatsFileOwnerID

	AWSJobStore.versionings

	AWSJobStore.initialize()

	AWSJobStore.resume()

	AWSJobStore.batch()

	AWSJobStore.assign_job_id()

	AWSJobStore.create_job()

	AWSJobStore.job_exists()

	AWSJobStore.jobs()

	AWSJobStore.load_job()

	AWSJobStore.update_job()

	AWSJobStore.delete_job()

	AWSJobStore.get_empty_file_store_id()

	AWSJobStore.get_size()

	AWSJobStore.write_file()

	AWSJobStore.write_file_stream()

	AWSJobStore.write_shared_file_stream()

	AWSJobStore.update_file()

	AWSJobStore.update_file_stream()

	AWSJobStore.file_exists()

	AWSJobStore.get_file_size()

	AWSJobStore.read_file()

	AWSJobStore.read_file_stream()

	AWSJobStore.read_shared_file_stream()

	AWSJobStore.delete_file()

	AWSJobStore.write_logs()

	AWSJobStore.read_logs()

	AWSJobStore.get_public_url()

	AWSJobStore.get_shared_public_url()

	AWSJobStore.destroy()

	aRepr

	custom_repr

	BucketLocationConflictException

	toil.jobStores.aws.utils
	Module Contents
	Classes

	Functions

	Attributes
	logger

	DIAL_SPECIFIC_REGION_CONFIG

	SDBHelper
	SDBHelper.maxAttributesPerItem

	SDBHelper.maxValueSize

	SDBHelper.maxRawValueSize

	SDBHelper.maxBinarySize()

	SDBHelper.binaryToAttributes()

	SDBHelper.presenceIndicator()

	SDBHelper.attributesToBinary()

	fileSizeAndTime()

	uploadFromPath()

	uploadFile()

	ServerSideCopyProhibitedError

	copyKeyMultipart()

	monkeyPatchSdbConnection()

	sdb_unavailable()

	no_such_sdb_domain()

	retryable_ssl_error()

	retryable_sdb_errors()

	retry_sdb()

	Submodules
	toil.jobStores.abstractJobStore
	Module Contents
	Classes

	Attributes
	logger

	ProxyConnectionError

	InvalidImportExportUrlException

	NoSuchJobException

	ConcurrentFileModificationException

	NoSuchFileException

	NoSuchJobStoreException

	JobStoreExistsException

	AbstractJobStore
	AbstractJobStore.config

	AbstractJobStore.locator

	AbstractJobStore.rootJobStoreIDFileName

	AbstractJobStore.publicUrlExpiration

	AbstractJobStore.sharedFileNameRegex

	AbstractJobStore.initialize()

	AbstractJobStore.writeConfig()

	AbstractJobStore.write_config()

	AbstractJobStore.resume()

	AbstractJobStore.setRootJob()

	AbstractJobStore.set_root_job()

	AbstractJobStore.loadRootJob()

	AbstractJobStore.load_root_job()

	AbstractJobStore.createRootJob()

	AbstractJobStore.create_root_job()

	AbstractJobStore.getRootJobReturnValue()

	AbstractJobStore.get_root_job_return_value()

	AbstractJobStore.importFile()

	AbstractJobStore.import_file()

	AbstractJobStore.exportFile()

	AbstractJobStore.export_file()

	AbstractJobStore.list_url()

	AbstractJobStore.get_is_directory()

	AbstractJobStore.read_from_url()

	AbstractJobStore.getSize()

	AbstractJobStore.get_size()

	AbstractJobStore.destroy()

	AbstractJobStore.getEnv()

	AbstractJobStore.get_env()

	AbstractJobStore.clean()

	AbstractJobStore.assignID()

	AbstractJobStore.assign_job_id()

	AbstractJobStore.batch()

	AbstractJobStore.create()

	AbstractJobStore.create_job()

	AbstractJobStore.exists()

	AbstractJobStore.job_exists()

	AbstractJobStore.getPublicUrl()

	AbstractJobStore.get_public_url()

	AbstractJobStore.getSharedPublicUrl()

	AbstractJobStore.get_shared_public_url()

	AbstractJobStore.load()

	AbstractJobStore.load_job()

	AbstractJobStore.update()

	AbstractJobStore.update_job()

	AbstractJobStore.delete()

	AbstractJobStore.delete_job()

	AbstractJobStore.jobs()

	AbstractJobStore.writeFile()

	AbstractJobStore.write_file()

	AbstractJobStore.writeFileStream()

	AbstractJobStore.write_file_stream()

	AbstractJobStore.getEmptyFileStoreID()

	AbstractJobStore.get_empty_file_store_id()

	AbstractJobStore.readFile()

	AbstractJobStore.read_file()

	AbstractJobStore.readFileStream()

	AbstractJobStore.read_file_stream()

	AbstractJobStore.deleteFile()

	AbstractJobStore.delete_file()

	AbstractJobStore.fileExists()

	AbstractJobStore.file_exists()

	AbstractJobStore.getFileSize()

	AbstractJobStore.get_file_size()

	AbstractJobStore.updateFile()

	AbstractJobStore.update_file()

	AbstractJobStore.updateFileStream()

	AbstractJobStore.update_file_stream()

	AbstractJobStore.writeSharedFileStream()

	AbstractJobStore.write_shared_file_stream()

	AbstractJobStore.readSharedFileStream()

	AbstractJobStore.read_shared_file_stream()

	AbstractJobStore.writeStatsAndLogging()

	AbstractJobStore.write_logs()

	AbstractJobStore.readStatsAndLogging()

	AbstractJobStore.read_logs()

	AbstractJobStore.write_leader_pid()

	AbstractJobStore.read_leader_pid()

	AbstractJobStore.write_leader_node_id()

	AbstractJobStore.read_leader_node_id()

	AbstractJobStore.write_kill_flag()

	AbstractJobStore.read_kill_flag()

	AbstractJobStore.default_caching()

	JobStoreSupport
	JobStoreSupport.get_size()

	toil.jobStores.conftest
	Module Contents
	collect_ignore

	toil.jobStores.fileJobStore
	Module Contents
	Classes

	Attributes
	logger

	FileJobStore
	FileJobStore.validDirs

	FileJobStore.validDirsSet

	FileJobStore.JOB_DIR_PREFIX

	FileJobStore.JOB_NAME_DIR_PREFIX

	FileJobStore.BUFFER_SIZE

	FileJobStore.default_caching()

	FileJobStore.__repr__()

	FileJobStore.initialize()

	FileJobStore.resume()

	FileJobStore.destroy()

	FileJobStore.assign_job_id()

	FileJobStore.create_job()

	FileJobStore.batch()

	FileJobStore.job_exists()

	FileJobStore.get_public_url()

	FileJobStore.get_shared_public_url()

	FileJobStore.load_job()

	FileJobStore.update_job()

	FileJobStore.delete_job()

	FileJobStore.jobs()

	FileJobStore.optional_hard_copy()

	FileJobStore.get_size()

	FileJobStore.write_file()

	FileJobStore.write_file_stream()

	FileJobStore.get_empty_file_store_id()

	FileJobStore.update_file()

	FileJobStore.read_file()

	FileJobStore.delete_file()

	FileJobStore.file_exists()

	FileJobStore.get_file_size()

	FileJobStore.update_file_stream()

	FileJobStore.read_file_stream()

	FileJobStore.write_shared_file_stream()

	FileJobStore.read_shared_file_stream()

	FileJobStore.write_logs()

	FileJobStore.read_logs()

	toil.jobStores.googleJobStore
	Module Contents
	Classes

	Functions

	Attributes
	log

	GOOGLE_STORAGE

	MAX_BATCH_SIZE

	google_retry_predicate()

	google_retry()

	GoogleJobStore
	GoogleJobStore.nodeServiceAccountJson

	GoogleJobStore.initialize()

	GoogleJobStore.resume()

	GoogleJobStore.destroy()

	GoogleJobStore.assign_job_id()

	GoogleJobStore.batch()

	GoogleJobStore.create_job()

	GoogleJobStore.job_exists()

	GoogleJobStore.get_public_url()

	GoogleJobStore.get_shared_public_url()

	GoogleJobStore.load_job()

	GoogleJobStore.update_job()

	GoogleJobStore.delete_job()

	GoogleJobStore.get_env()

	GoogleJobStore.jobs()

	GoogleJobStore.write_file()

	GoogleJobStore.write_file_stream()

	GoogleJobStore.get_empty_file_store_id()

	GoogleJobStore.read_file()

	GoogleJobStore.read_file_stream()

	GoogleJobStore.delete_file()

	GoogleJobStore.file_exists()

	GoogleJobStore.get_file_size()

	GoogleJobStore.update_file()

	GoogleJobStore.update_file_stream()

	GoogleJobStore.write_shared_file_stream()

	GoogleJobStore.read_shared_file_stream()

	GoogleJobStore.get_size()

	GoogleJobStore.write_logs()

	GoogleJobStore.read_logs()

	toil.jobStores.utils
	Module Contents
	Classes

	Functions

	Attributes
	log

	WritablePipe
	WritablePipe.readFrom()

	WritablePipe.__enter__()

	WritablePipe.__exit__()

	ReadablePipe
	ReadablePipe.writeTo()

	ReadablePipe.__enter__()

	ReadablePipe.__exit__()

	ReadableTransformingPipe
	ReadableTransformingPipe.transform()

	ReadableTransformingPipe.writeTo()

	JobStoreUnavailableException

	generate_locator()

	toil.lib
	Subpackages
	toil.lib.aws
	Submodules
	toil.lib.aws.ami
	Module Contents
	Functions

	Attributes
	logger

	get_flatcar_ami()

	flatcar_release_feed_amis()

	feed_flatcar_ami_release()

	aws_marketplace_flatcar_ami_search()

	toil.lib.aws.iam
	Module Contents
	Functions

	Attributes
	logger

	CLUSTER_LAUNCHING_PERMISSIONS

	AllowedActionCollection

	init_action_collection()

	add_to_action_collection()

	policy_permissions_allow()

	permission_matches_any()

	get_actions_from_policy_document()

	allowed_actions_attached()

	allowed_actions_roles()

	allowed_actions_users()

	get_policy_permissions()

	get_aws_account_num()

	toil.lib.aws.session
	Module Contents
	Classes

	Functions

	Attributes
	logger

	AWSConnectionManager
	AWSConnectionManager.session()

	AWSConnectionManager.resource()

	AWSConnectionManager.client()

	AWSConnectionManager.boto2()

	establish_boto3_session()

	client()

	resource()

	toil.lib.aws.utils
	Module Contents
	Functions

	Attributes
	BotoServerError

	logger

	THROTTLED_ERROR_CODES

	delete_iam_role()

	delete_iam_instance_profile()

	delete_sdb_domain()

	connection_reset()

	retryable_s3_errors()

	retry_s3()

	delete_s3_bucket()

	create_s3_bucket()

	enable_public_objects()

	get_bucket_region()

	region_to_bucket_location()

	bucket_location_to_region()

	get_object_for_url()

	list_objects_for_url()

	flatten_tags()

	Package Contents
	Functions

	Attributes
	logger

	get_current_aws_region()

	get_aws_zone_from_environment()

	get_aws_zone_from_metadata()

	get_aws_zone_from_boto()

	get_aws_zone_from_environment_region()

	get_current_aws_zone()

	zone_to_region()

	running_on_ec2()

	running_on_ecs()

	build_tag_dict_from_env()

	toil.lib.encryption
	Submodules
	toil.lib.encryption.conftest
	Module Contents
	collect_ignore

	Submodules
	toil.lib.accelerators
	Module Contents
	Functions
	have_working_nvidia_smi()

	have_working_nvidia_docker_runtime()

	count_nvidia_gpus()

	get_individual_local_accelerators()

	get_restrictive_environment_for_local_accelerators()

	toil.lib.bioio
	Module Contents
	Functions
	system()

	getLogLevelString()

	setLoggingFromOptions()

	getTempFile()

	toil.lib.compatibility
	Module Contents
	Functions
	deprecated()

	compat_bytes()

	compat_bytes_recursive()

	toil.lib.conversions
	Module Contents
	Functions

	Attributes
	BINARY_PREFIXES

	DECIMAL_PREFIXES

	VALID_PREFIXES

	bytes_in_unit()

	convert_units()

	parse_memory_string()

	human2bytes()

	bytes2human()

	b_to_mib()

	mib_to_b()

	hms_duration_to_seconds()

	toil.lib.docker
	Module Contents
	Functions

	Attributes
	logger

	FORGO

	STOP

	RM

	dockerCheckOutput()

	dockerCall()

	subprocessDockerCall()

	apiDockerCall()

	dockerKill()

	dockerStop()

	containerIsRunning()

	getContainerName()

	toil.lib.ec2
	Module Contents
	Functions

	Attributes
	a_short_time

	a_long_time

	logger

	UserError

	not_found()

	inconsistencies_detected()

	INCONSISTENCY_ERRORS

	retry_ec2()

	UnexpectedResourceState

	wait_transition()

	wait_instances_running()

	wait_spot_requests_active()

	create_spot_instances()

	create_ondemand_instances()

	prune()

	iam_client

	wait_until_instance_profile_arn_exists()

	create_instances()

	create_launch_template()

	create_auto_scaling_group()

	toil.lib.ec2nodes
	Module Contents
	Classes

	Functions

	Attributes
	logger

	dirname

	EC2Regions

	InstanceType
	InstanceType.__slots__

	InstanceType.__str__()

	InstanceType.__eq__()

	isNumber()

	parseStorage()

	parseMemory()

	fetchEC2Index()

	fetchEC2InstanceDict()

	updateStaticEC2Instances()

	toil.lib.exceptions
	Module Contents
	Classes

	Functions
	panic
	panic.__enter__()

	panic.__exit__()

	raise_()

	toil.lib.expando
	Module Contents
	Classes
	Expando
	Expando.copy()

	MagicExpando
	MagicExpando.__getattribute__()

	toil.lib.generatedEC2Lists
	Module Contents
	E2Instances

	regionDict

	ec2InstancesByRegion

	toil.lib.humanize
	Module Contents
	Functions

	Attributes
	logger

	bytes2human()

	human2bytes()

	toil.lib.io
	Module Contents
	Classes

	Functions

	Attributes
	logger

	robust_rmtree()

	atomic_tmp_file()

	atomic_install()

	AtomicFileCreate()

	atomic_copy()

	atomic_copyobj()

	make_public_dir()

	try_path()

	WriteWatchingStream
	WriteWatchingStream.onWrite()

	WriteWatchingStream.write()

	WriteWatchingStream.writelines()

	WriteWatchingStream.flush()

	WriteWatchingStream.close()

	toil.lib.iterables
	Module Contents
	Classes

	Functions

	Attributes
	IT

	flatten()

	concat
	concat.__iter__()

	toil.lib.memoize
	Module Contents
	Functions

	Attributes
	memoize

	MAT

	MRT

	sync_memoize()

	parse_iso_utc()

	strict_bool()

	toil.lib.misc
	Module Contents
	Functions

	Attributes
	logger

	get_public_ip()

	get_user_name()

	utc_now()

	unix_now_ms()

	slow_down()

	printq()

	truncExpBackoff()

	CalledProcessErrorStderr
	CalledProcessErrorStderr.__str__()

	call_command()

	toil.lib.objects
	Module Contents
	Classes
	InnerClass
	InnerClass.__get__()

	InnerClass.__call__()

	toil.lib.resources
	Module Contents
	Functions
	get_total_cpu_time_and_memory_usage()

	get_total_cpu_time()

	glob()

	toil.lib.retry
	Module Contents
	Classes

	Functions

	Attributes
	SUPPORTED_HTTP_ERRORS

	kubernetes

	botocore

	logger

	ErrorCondition

	retry()

	return_status_code()

	get_error_code()

	get_error_message()

	get_error_status()

	get_error_body()

	meets_error_message_condition()

	meets_error_code_condition()

	meets_boto_error_code_condition()

	error_meets_conditions()

	DEFAULT_DELAYS

	DEFAULT_TIMEOUT

	old_retry()

	retry_flaky_test

	toil.lib.threading
	Module Contents
	Classes

	Functions

	Attributes
	logger

	ExceptionalThread
	ExceptionalThread.exc_info

	ExceptionalThread.run()

	ExceptionalThread.tryRun()

	ExceptionalThread.join()

	cpu_count()

	current_process_name_lock

	current_process_name_for

	collect_process_name_garbage()

	destroy_all_process_names()

	get_process_name()

	process_name_exists()

	global_mutex()

	LastProcessStandingArena
	LastProcessStandingArena.enter()

	LastProcessStandingArena.leave()

	toil.lib.throttle
	Module Contents
	Classes
	LocalThrottle
	LocalThrottle.throttle()

	LocalThrottle.__call__()

	throttle
	throttle.__enter__()

	throttle.__exit__()

	throttle.__call__()

	toil.provisioners
	Subpackages
	toil.provisioners.aws
	Submodules
	toil.provisioners.aws.awsProvisioner
	Module Contents
	Classes

	Functions

	Attributes
	logger

	awsRetryPredicate()

	expectedShutdownErrors()

	awsRetry()

	awsFilterImpairedNodes()

	InvalidClusterStateException

	AWSProvisioner
	AWSProvisioner.supportedClusterTypes()

	AWSProvisioner.createClusterSettings()

	AWSProvisioner.readClusterSettings()

	AWSProvisioner.launchCluster()

	AWSProvisioner.toil_service_env_options()

	AWSProvisioner.getKubernetesAutoscalerSetupCommands()

	AWSProvisioner.getKubernetesCloudProvider()

	AWSProvisioner.getNodeShape()

	AWSProvisioner.retryPredicate()

	AWSProvisioner.destroyCluster()

	AWSProvisioner.terminateNodes()

	AWSProvisioner.addNodes()

	AWSProvisioner.addManagedNodes()

	AWSProvisioner.getProvisionedWorkers()

	AWSProvisioner.getLeader()

	AWSProvisioner.full_policy()

	AWSProvisioner.kubernetes_policy()

	Package Contents
	Functions

	Attributes
	get_aws_zone_from_boto()

	get_aws_zone_from_environment()

	get_aws_zone_from_environment_region()

	get_aws_zone_from_metadata()

	running_on_ec2()

	zone_to_region()

	logger

	ZoneTuple

	get_aws_zone_from_spot_market()

	get_best_aws_zone()

	choose_spot_zone()

	optimize_spot_bid()

	Submodules
	toil.provisioners.abstractProvisioner
	Module Contents
	Classes

	Attributes
	a_short_time

	logger

	ManagedNodesNotSupportedException

	Shape
	Shape.__eq__()

	Shape.greater_than()

	Shape.__gt__()

	Shape.__repr__()

	Shape.__str__()

	Shape.__hash__()

	AbstractProvisioner
	AbstractProvisioner.InstanceConfiguration
	AbstractProvisioner.InstanceConfiguration.addFile()

	AbstractProvisioner.InstanceConfiguration.addUnit()

	AbstractProvisioner.InstanceConfiguration.addSSHRSAKey()

	AbstractProvisioner.InstanceConfiguration.toIgnitionConfig()

	AbstractProvisioner.LEADER_HOME_DIR

	AbstractProvisioner.cloud

	AbstractProvisioner.supportedClusterTypes()

	AbstractProvisioner.createClusterSettings()

	AbstractProvisioner.readClusterSettings()

	AbstractProvisioner.setAutoscaledNodeTypes()

	AbstractProvisioner.hasAutoscaledNodeTypes()

	AbstractProvisioner.getAutoscaledInstanceShapes()

	AbstractProvisioner.retryPredicate()

	AbstractProvisioner.launchCluster()

	AbstractProvisioner.addNodes()

	AbstractProvisioner.addManagedNodes()

	AbstractProvisioner.terminateNodes()

	AbstractProvisioner.getLeader()

	AbstractProvisioner.getProvisionedWorkers()

	AbstractProvisioner.getNodeShape()

	AbstractProvisioner.destroyCluster()

	AbstractProvisioner.getBaseInstanceConfiguration()

	AbstractProvisioner.addVolumesService()

	AbstractProvisioner.addNodeExporterService()

	AbstractProvisioner.toil_service_env_options()

	AbstractProvisioner.add_toil_service()

	AbstractProvisioner.getKubernetesValues()

	AbstractProvisioner.addKubernetesServices()

	AbstractProvisioner.getKubernetesAutoscalerSetupCommands()

	AbstractProvisioner.getKubernetesCloudProvider()

	AbstractProvisioner.addKubernetesLeader()

	AbstractProvisioner.addKubernetesWorker()

	toil.provisioners.clusterScaler
	Module Contents
	Classes

	Functions

	Attributes
	logger

	EVICTION_THRESHOLD

	RESERVE_SMALL_LIMIT

	RESERVE_SMALL_AMOUNT

	RESERVE_BREAKPOINTS

	RESERVE_FRACTIONS

	OS_SIZE

	FailedConstraint

	BinPackedFit
	BinPackedFit.nodeReservations

	BinPackedFit.binPack()

	BinPackedFit.addJobShape()

	BinPackedFit.getRequiredNodes()

	NodeReservation
	NodeReservation.__str__()

	NodeReservation.get_failed_constraints()

	NodeReservation.fits()

	NodeReservation.shapes()

	NodeReservation.subtract()

	NodeReservation.attemptToAddJob()

	adjustEndingReservationForJob()

	split()

	binPacking()

	ClusterScaler
	ClusterScaler.getAverageRuntime()

	ClusterScaler.addCompletedJob()

	ClusterScaler.setStaticNodes()

	ClusterScaler.getStaticNodes()

	ClusterScaler.smoothEstimate()

	ClusterScaler.getEstimatedNodeCounts()

	ClusterScaler.updateClusterSize()

	ClusterScaler.setNodeCount()

	ClusterScaler.filter_out_static_nodes()

	ClusterScaler.getNodes()

	ClusterScaler.shutDown()

	JobTooBigError
	JobTooBigError.__str__()

	ScalerThread
	ScalerThread.check()

	ScalerThread.shutdown()

	ScalerThread.addCompletedJob()

	ScalerThread.tryRun()

	ClusterStats
	ClusterStats.shutDownStats()

	ClusterStats.startStats()

	ClusterStats.checkStats()

	toil.provisioners.gceProvisioner
	Module Contents
	Classes

	Attributes
	logger

	GCEProvisioner
	GCEProvisioner.NODE_BOTO_PATH

	GCEProvisioner.SOURCE_IMAGE

	GCEProvisioner.DEFAULT_TASK_COMPLETION_TIMEOUT

	GCEProvisioner.supportedClusterTypes()

	GCEProvisioner.createClusterSettings()

	GCEProvisioner.readClusterSettings()

	GCEProvisioner.launchCluster()

	GCEProvisioner.getNodeShape()

	GCEProvisioner.retryPredicate()

	GCEProvisioner.destroyCluster()

	GCEProvisioner.terminateNodes()

	GCEProvisioner.addNodes()

	GCEProvisioner.getProvisionedWorkers()

	GCEProvisioner.getLeader()

	GCEProvisioner.ex_create_multiple_nodes()

	toil.provisioners.node
	Module Contents
	Classes

	Attributes
	a_short_time

	logger

	Node
	Node.maxWaitTime

	Node.__str__()

	Node.__repr__()

	Node.__hash__()

	Node.remainingBillingInterval()

	Node.waitForNode()

	Node.copySshKeys()

	Node.injectFile()

	Node.extractFile()

	Node.sshAppliance()

	Node.sshInstance()

	Node.coreSSH()

	Node.coreRsync()

	Package Contents
	Functions

	Attributes
	logger

	cluster_factory()

	add_provisioner_options()

	parse_node_types()

	check_valid_node_types()

	NoSuchClusterException

	ClusterTypeNotSupportedException

	ClusterCombinationNotSupportedException

	toil.server
	Subpackages
	toil.server.api_spec

	toil.server.cli
	Submodules
	toil.server.cli.wes_cwl_runner
	Module Contents
	Classes

	Functions

	Attributes
	logger

	generate_attachment_path_names()

	WESClientWithWorkflowEngineParameters
	WESClientWithWorkflowEngineParameters.get_version()

	WESClientWithWorkflowEngineParameters.parse_params()

	WESClientWithWorkflowEngineParameters.modify_param_paths()

	WESClientWithWorkflowEngineParameters.build_wes_request()

	WESClientWithWorkflowEngineParameters.run_with_engine_options()

	get_deps_from_cwltool()

	submit_run()

	poll_run()

	print_logs_and_exit()

	main()

	toil.server.wes
	Submodules
	toil.server.wes.abstract_backend
	Module Contents
	Classes

	Functions

	Attributes
	logger

	TaskLog

	VersionNotImplementedException

	MalformedRequestException

	WorkflowNotFoundException

	WorkflowConflictException

	OperationForbidden

	WorkflowExecutionException

	handle_errors()

	WESBackend
	WESBackend.resolve_operation_id()

	WESBackend.get_service_info()

	WESBackend.list_runs()

	WESBackend.run_workflow()

	WESBackend.get_run_log()

	WESBackend.cancel_run()

	WESBackend.get_run_status()

	WESBackend.log_for_run()

	WESBackend.secure_path()

	WESBackend.collect_attachments()

	toil.server.wes.amazon_wes_utils
	Module Contents
	Classes

	Functions

	Attributes
	logger

	NOTICE

	WorkflowPlan
	WorkflowPlan.data

	WorkflowPlan.files

	DataDict
	DataDict.workflowUrl

	FilesDict
	FilesDict.workflowSource

	FilesDict.workflowInputFiles

	FilesDict.workflowOptions

	FilesDict.workflowDependencies

	parse_workflow_zip_file()

	parse_workflow_manifest_file()

	workflow_manifest_url_to_path()

	task_filter()

	toil.server.wes.tasks
	Module Contents
	Classes

	Functions

	Attributes
	logger

	WAIT_FOR_DEATH_TIMEOUT

	ToilWorkflowRunner
	ToilWorkflowRunner.write_scratch_file()

	ToilWorkflowRunner.get_state()

	ToilWorkflowRunner.write_workflow()

	ToilWorkflowRunner.sort_options()

	ToilWorkflowRunner.initialize_run()

	ToilWorkflowRunner.call_cmd()

	ToilWorkflowRunner.run()

	ToilWorkflowRunner.write_output_files()

	run_wes_task()

	run_wes

	cancel_run()

	TaskRunner
	TaskRunner.run()

	TaskRunner.cancel()

	TaskRunner.is_ok()

	MultiprocessingTaskRunner
	MultiprocessingTaskRunner.set_up_and_run_task()

	MultiprocessingTaskRunner.run()

	MultiprocessingTaskRunner.cancel()

	MultiprocessingTaskRunner.is_ok()

	toil.server.wes.toil_backend
	Module Contents
	Classes

	Attributes
	logger

	ToilWorkflow
	ToilWorkflow.fetch_state()

	ToilWorkflow.fetch_scratch()

	ToilWorkflow.exists()

	ToilWorkflow.get_state()

	ToilWorkflow.check_on_run()

	ToilWorkflow.set_up_run()

	ToilWorkflow.clean_up()

	ToilWorkflow.queue_run()

	ToilWorkflow.get_output_files()

	ToilWorkflow.get_stdout_path()

	ToilWorkflow.get_stderr_path()

	ToilWorkflow.get_messages_path()

	ToilWorkflow.get_task_logs()

	ToilBackend
	ToilBackend.get_runs()

	ToilBackend.get_state()

	ToilBackend.get_service_info()

	ToilBackend.list_runs()

	ToilBackend.run_workflow()

	ToilBackend.get_run_log()

	ToilBackend.cancel_run()

	ToilBackend.get_run_status()

	ToilBackend.get_stdout()

	ToilBackend.get_stderr()

	ToilBackend.get_health()

	ToilBackend.get_homepage()

	Submodules
	toil.server.app
	Module Contents
	Functions

	Attributes
	logger

	parser_with_server_options()

	create_app()

	start_server()

	toil.server.celery_app
	Module Contents
	Functions

	Attributes
	create_celery_app()

	celery

	toil.server.utils
	Module Contents
	Classes

	Functions

	Attributes
	HAVE_S3

	logger

	get_iso_time()

	link_file()

	download_file_from_internet()

	download_file_from_s3()

	get_file_class()

	safe_read_file()

	safe_write_file()

	MemoryStateCache
	MemoryStateCache.get()

	MemoryStateCache.set()

	AbstractStateStore
	AbstractStateStore.get()

	AbstractStateStore.set()

	AbstractStateStore.read_cache()

	AbstractStateStore.write_cache()

	MemoryStateStore

	FileStateStore
	FileStateStore.get()

	FileStateStore.set()

	S3StateStore
	S3StateStore.get()

	S3StateStore.set()

	state_store_cache

	connect_to_state_store()

	WorkflowStateStore
	WorkflowStateStore.get()

	WorkflowStateStore.set()

	WorkflowStateStore.read_cache()

	WorkflowStateStore.write_cache()

	connect_to_workflow_state_store()

	TERMINAL_STATES

	MAX_CANCELING_SECONDS

	WorkflowStateMachine
	WorkflowStateMachine.send_enqueue()

	WorkflowStateMachine.send_initialize()

	WorkflowStateMachine.send_run()

	WorkflowStateMachine.send_cancel()

	WorkflowStateMachine.send_canceled()

	WorkflowStateMachine.send_complete()

	WorkflowStateMachine.send_executor_error()

	WorkflowStateMachine.send_system_error()

	WorkflowStateMachine.get_current_state()

	toil.server.wsgi_app
	Module Contents
	Classes

	Functions
	GunicornApplication
	GunicornApplication.init()

	GunicornApplication.load_config()

	GunicornApplication.load()

	run_app()

	toil.test
	Subpackages
	toil.test.batchSystems
	Submodules
	toil.test.batchSystems.batchSystemTest
	Module Contents
	Classes

	Functions

	Attributes
	logger

	numCores

	preemptible

	defaultRequirements

	BatchSystemPluginTest
	BatchSystemPluginTest.setUp()

	BatchSystemPluginTest.tearDown()

	BatchSystemPluginTest.testAddBatchSystemFactory()

	hidden
	hidden.AbstractBatchSystemTest
	hidden.AbstractBatchSystemTest.createBatchSystem()

	hidden.AbstractBatchSystemTest.supportsWallTime()

	hidden.AbstractBatchSystemTest.createConfig()

	hidden.AbstractBatchSystemTest.setUpClass()

	hidden.AbstractBatchSystemTest.setUp()

	hidden.AbstractBatchSystemTest.tearDown()

	hidden.AbstractBatchSystemTest.get_max_startup_seconds()

	hidden.AbstractBatchSystemTest.test_available_cores()

	hidden.AbstractBatchSystemTest.test_run_jobs()

	hidden.AbstractBatchSystemTest.test_set_env()

	hidden.AbstractBatchSystemTest.test_set_job_env()

	hidden.AbstractBatchSystemTest.testCheckResourceRequest()

	hidden.AbstractBatchSystemTest.testScalableBatchSystem()

	hidden.AbstractBatchSystemJobTest
	hidden.AbstractBatchSystemJobTest.cpuCount

	hidden.AbstractBatchSystemJobTest.allocatedCores

	hidden.AbstractBatchSystemJobTest.sleepTime

	hidden.AbstractBatchSystemJobTest.getBatchSystemName()

	hidden.AbstractBatchSystemJobTest.getOptions()

	hidden.AbstractBatchSystemJobTest.setUp()

	hidden.AbstractBatchSystemJobTest.tearDown()

	hidden.AbstractBatchSystemJobTest.testJobConcurrency()

	hidden.AbstractBatchSystemJobTest.test_omp_threads()

	hidden.AbstractGridEngineBatchSystemTest

	KubernetesBatchSystemTest
	KubernetesBatchSystemTest.supportsWallTime()

	KubernetesBatchSystemTest.createBatchSystem()

	KubernetesBatchSystemBenchTest
	KubernetesBatchSystemBenchTest.test_preemptability_constraints()

	KubernetesBatchSystemBenchTest.test_label_constraints()

	TESBatchSystemTest
	TESBatchSystemTest.supportsWallTime()

	TESBatchSystemTest.createBatchSystem()

	AWSBatchBatchSystemTest
	AWSBatchBatchSystemTest.supportsWallTime()

	AWSBatchBatchSystemTest.createBatchSystem()

	AWSBatchBatchSystemTest.get_max_startup_seconds()

	MesosBatchSystemTest
	MesosBatchSystemTest.createConfig()

	MesosBatchSystemTest.supportsWallTime()

	MesosBatchSystemTest.createBatchSystem()

	MesosBatchSystemTest.tearDown()

	MesosBatchSystemTest.testIgnoreNode()

	write_temp_file()

	SingleMachineBatchSystemTest
	SingleMachineBatchSystemTest.supportsWallTime()

	SingleMachineBatchSystemTest.createBatchSystem()

	SingleMachineBatchSystemTest.testProcessEscape()

	SingleMachineBatchSystemTest.testHidingProcessEscape()

	MaxCoresSingleMachineBatchSystemTest
	MaxCoresSingleMachineBatchSystemTest.setUpClass()

	MaxCoresSingleMachineBatchSystemTest.setUp()

	MaxCoresSingleMachineBatchSystemTest.tearDown()

	MaxCoresSingleMachineBatchSystemTest.scriptCommand()

	MaxCoresSingleMachineBatchSystemTest.test()

	MaxCoresSingleMachineBatchSystemTest.testServices()

	parentJob()

	childJob()

	grandChildJob()

	greatGrandChild()

	Service
	Service.start()

	Service.check()

	Service.stop()

	ParasolBatchSystemTest
	ParasolBatchSystemTest.supportsWallTime()

	ParasolBatchSystemTest.createBatchSystem()

	ParasolBatchSystemTest.tearDown()

	ParasolBatchSystemTest.testBatchResourceLimits()

	GridEngineBatchSystemTest
	GridEngineBatchSystemTest.createBatchSystem()

	GridEngineBatchSystemTest.tearDown()

	SlurmBatchSystemTest
	SlurmBatchSystemTest.createBatchSystem()

	SlurmBatchSystemTest.tearDown()

	LSFBatchSystemTest
	LSFBatchSystemTest.createBatchSystem()

	TorqueBatchSystemTest
	TorqueBatchSystemTest.createBatchSystem()

	TorqueBatchSystemTest.tearDown()

	HTCondorBatchSystemTest
	HTCondorBatchSystemTest.createBatchSystem()

	HTCondorBatchSystemTest.tearDown()

	SingleMachineBatchSystemJobTest
	SingleMachineBatchSystemJobTest.getBatchSystemName()

	SingleMachineBatchSystemJobTest.testConcurrencyWithDisk()

	SingleMachineBatchSystemJobTest.testNestedResourcesDoNotBlock()

	MesosBatchSystemJobTest
	MesosBatchSystemJobTest.getOptions()

	MesosBatchSystemJobTest.getBatchSystemName()

	MesosBatchSystemJobTest.tearDown()

	measureConcurrency()

	count()

	getCounters()

	resetCounters()

	get_omp_threads()

	toil.test.batchSystems.parasolTestSupport
	Module Contents
	Classes

	Attributes
	log

	ParasolTestSupport
	ParasolTestSupport.ParasolThread
	ParasolTestSupport.ParasolThread.lock

	ParasolTestSupport.ParasolThread.parasolCommand()

	ParasolTestSupport.ParasolThread.run()

	ParasolTestSupport.ParasolLeaderThread
	ParasolTestSupport.ParasolLeaderThread.run()

	ParasolTestSupport.ParasolLeaderThread.parasolCommand()

	ParasolTestSupport.ParasolWorkerThread
	ParasolTestSupport.ParasolWorkerThread.parasolCommand()

	toil.test.batchSystems.test_lsf_helper
	Module Contents
	Classes
	LSFHelperTest
	LSFHelperTest.test_parse_mem_and_cmd_from_output()

	toil.test.batchSystems.test_slurm
	Module Contents
	Classes

	Functions
	call_sacct()

	call_scontrol()

	call_sacct_raises()

	FakeBatchSystem
	FakeBatchSystem.getWaitDuration()

	SlurmTest
	SlurmTest.setUp()

	SlurmTest.test_getJobDetailsFromSacct_one_exists()

	SlurmTest.test_getJobDetailsFromSacct_one_not_exists()

	SlurmTest.test_getJobDetailsFromSacct_many_all_exist()

	SlurmTest.test_getJobDetailsFromSacct_many_some_exist()

	SlurmTest.test_getJobDetailsFromSacct_many_none_exist()

	SlurmTest.test_getJobDetailsFromScontrol_one_exists()

	SlurmTest.test_getJobDetailsFromScontrol_one_not_exists()

	SlurmTest.test_getJobDetailsFromScontrol_many_all_exist()

	SlurmTest.test_getJobDetailsFromScontrol_many_some_exist()

	SlurmTest.test_getJobDetailsFromScontrol_many_none_exist()

	SlurmTest.test_getJobExitCode_job_exists()

	SlurmTest.test_getJobExitCode_job_not_exists()

	SlurmTest.test_getJobExitCode_sacct_raises_job_exists()

	SlurmTest.test_getJobExitCode_sacct_raises_job_not_exists()

	SlurmTest.test_coalesce_job_exit_codes_one_exists()

	SlurmTest.test_coalesce_job_exit_codes_one_not_exists()

	SlurmTest.test_coalesce_job_exit_codes_many_all_exist()

	SlurmTest.test_coalesce_job_exit_codes_some_exists()

	SlurmTest.test_coalesce_job_exit_codes_sacct_raises_job_exists()

	SlurmTest.test_coalesce_job_exit_codes_sacct_raises_job_not_exists()

	toil.test.cwl
	Submodules
	toil.test.cwl.conftest
	Module Contents
	collect_ignore

	toil.test.cwl.cwlTest
	Module Contents
	Classes

	Functions

	Attributes
	pkg_root

	log

	CONFORMANCE_TEST_TIMEOUT

	run_conformance_tests()

	CWLWorkflowTest
	CWLWorkflowTest.setUp()

	CWLWorkflowTest.tearDown()

	CWLWorkflowTest.revsort()

	CWLWorkflowTest.revsort_no_checksum()

	CWLWorkflowTest.download()

	CWLWorkflowTest.load_contents()

	CWLWorkflowTest.download_directory()

	CWLWorkflowTest.download_subdirectory()

	CWLWorkflowTest.test_mpi()

	CWLWorkflowTest.test_s3_as_secondary_file()

	CWLWorkflowTest.test_run_revsort()

	CWLWorkflowTest.test_run_revsort_nochecksum()

	CWLWorkflowTest.test_run_revsort2()

	CWLWorkflowTest.test_run_revsort_debug_worker()

	CWLWorkflowTest.test_run_colon_output()

	CWLWorkflowTest.test_download_s3()

	CWLWorkflowTest.test_download_http()

	CWLWorkflowTest.test_download_https()

	CWLWorkflowTest.test_download_file()

	CWLWorkflowTest.test_download_directory_s3()

	CWLWorkflowTest.test_download_directory_file()

	CWLWorkflowTest.test_download_subdirectory_s3()

	CWLWorkflowTest.test_download_subdirectory_file()

	CWLWorkflowTest.test_load_contents_s3()

	CWLWorkflowTest.test_load_contents_http()

	CWLWorkflowTest.test_load_contents_https()

	CWLWorkflowTest.test_load_contents_file()

	CWLWorkflowTest.test_bioconda()

	CWLWorkflowTest.test_biocontainers()

	CWLWorkflowTest.test_cuda()

	CWLWorkflowTest.test_restart()

	CWLWorkflowTest.test_streamable()

	CWLv10Test
	CWLv10Test.setUp()

	CWLv10Test.tearDown()

	CWLv10Test.test_run_conformance_with_caching()

	CWLv10Test.test_run_conformance()

	CWLv10Test.test_lsf_cwl_conformance()

	CWLv10Test.test_slurm_cwl_conformance()

	CWLv10Test.test_torque_cwl_conformance()

	CWLv10Test.test_gridengine_cwl_conformance()

	CWLv10Test.test_mesos_cwl_conformance()

	CWLv10Test.test_parasol_cwl_conformance()

	CWLv10Test.test_kubernetes_cwl_conformance()

	CWLv10Test.test_lsf_cwl_conformance_with_caching()

	CWLv10Test.test_slurm_cwl_conformance_with_caching()

	CWLv10Test.test_torque_cwl_conformance_with_caching()

	CWLv10Test.test_gridengine_cwl_conformance_with_caching()

	CWLv10Test.test_mesos_cwl_conformance_with_caching()

	CWLv10Test.test_parasol_cwl_conformance_with_caching()

	CWLv10Test.test_kubernetes_cwl_conformance_with_caching()

	CWLv11Test
	CWLv11Test.setUpClass()

	CWLv11Test.tearDown()

	CWLv11Test.test_run_conformance()

	CWLv11Test.test_run_conformance_with_caching()

	CWLv11Test.test_kubernetes_cwl_conformance()

	CWLv11Test.test_kubernetes_cwl_conformance_with_caching()

	CWLv12Test
	CWLv12Test.setUpClass()

	CWLv12Test.tearDown()

	CWLv12Test.test_run_conformance()

	CWLv12Test.test_run_conformance_with_caching()

	CWLv12Test.test_run_conformance_with_in_place_update()

	CWLv12Test.test_kubernetes_cwl_conformance()

	CWLv12Test.test_kubernetes_cwl_conformance_with_caching()

	CWLv12Test.test_wes_server_cwl_conformance()

	CWLOnARMTest
	CWLOnARMTest.setUp()

	CWLOnARMTest.test_cwl_on_arm()

	test_workflow_echo_string_scatter_stderr_log_dir()

	test_log_dir_echo_no_output()

	test_log_dir_echo_stderr()

	test_filename_conflict_resolution()

	test_filename_conflict_detection()

	test_filename_conflict_detection_at_root()

	test_pick_value_with_one_null_value()

	test_usage_message()

	test_workflow_echo_string()

	test_workflow_echo_string_scatter_capture_stdout()

	test_visit_top_cwl_class()

	test_visit_cwl_class_and_reduce()

	test_download_structure()

	toil.test.docs
	Submodules
	toil.test.docs.scriptsTest
	Module Contents
	Classes

	Attributes
	pkg_root

	ToilDocumentationTest
	ToilDocumentationTest.setUpClass()

	ToilDocumentationTest.tearDown()

	ToilDocumentationTest.checkExitCode()

	ToilDocumentationTest.checkExpectedOut()

	ToilDocumentationTest.checkExpectedPattern()

	ToilDocumentationTest.testCwlexample()

	ToilDocumentationTest.testDiscoverfiles()

	ToilDocumentationTest.testDynamic()

	ToilDocumentationTest.testEncapsulation()

	ToilDocumentationTest.testEncapsulation2()

	ToilDocumentationTest.testHelloworld()

	ToilDocumentationTest.testInvokeworkflow()

	ToilDocumentationTest.testInvokeworkflow2()

	ToilDocumentationTest.testJobFunctions()

	ToilDocumentationTest.testManaging()

	ToilDocumentationTest.testManaging2()

	ToilDocumentationTest.testMultiplejobs()

	ToilDocumentationTest.testMultiplejobs2()

	ToilDocumentationTest.testMultiplejobs3()

	ToilDocumentationTest.testPromises2()

	ToilDocumentationTest.testQuickstart()

	ToilDocumentationTest.testRequirements()

	ToilDocumentationTest.testArguments()

	ToilDocumentationTest.testDocker()

	ToilDocumentationTest.testPromises()

	ToilDocumentationTest.testServices()

	ToilDocumentationTest.testStaging()

	toil.test.jobStores
	Submodules
	toil.test.jobStores.jobStoreTest
	Module Contents
	Classes

	Functions

	Attributes
	google_retry()

	logger

	tearDownModule()

	AbstractJobStoreTest
	AbstractJobStoreTest.Test
	AbstractJobStoreTest.Test.externalStoreCache

	AbstractJobStoreTest.Test.mpTestPartSize

	AbstractJobStoreTest.Test.setUpClass()

	AbstractJobStoreTest.Test.setUp()

	AbstractJobStoreTest.Test.tearDown()

	AbstractJobStoreTest.Test.testInitialState()

	AbstractJobStoreTest.Test.testJobCreation()

	AbstractJobStoreTest.Test.testConfigEquality()

	AbstractJobStoreTest.Test.testJobLoadEquality()

	AbstractJobStoreTest.Test.testChildLoadingEquality()

	AbstractJobStoreTest.Test.testPersistantFilesToDelete()

	AbstractJobStoreTest.Test.testUpdateBehavior()

	AbstractJobStoreTest.Test.testJobDeletions()

	AbstractJobStoreTest.Test.testSharedFiles()

	AbstractJobStoreTest.Test.testReadWriteSharedFilesTextMode()

	AbstractJobStoreTest.Test.testReadWriteFileStreamTextMode()

	AbstractJobStoreTest.Test.testPerJobFiles()

	AbstractJobStoreTest.Test.testStatsAndLogging()

	AbstractJobStoreTest.Test.testWriteLogFiles()

	AbstractJobStoreTest.Test.testBatchCreate()

	AbstractJobStoreTest.Test.testGrowingAndShrinkingJob()

	AbstractJobStoreTest.Test.cleanUpExternalStores()

	AbstractJobStoreTest.Test.makeImportExportTests()

	AbstractJobStoreTest.Test.testImportHttpFile()

	AbstractJobStoreTest.Test.testImportFtpFile()

	AbstractJobStoreTest.Test.testFileDeletion()

	AbstractJobStoreTest.Test.testMultipartUploads()

	AbstractJobStoreTest.Test.testZeroLengthFiles()

	AbstractJobStoreTest.Test.testLargeFile()

	AbstractJobStoreTest.Test.fetch_url()

	AbstractJobStoreTest.Test.assertUrl()

	AbstractJobStoreTest.Test.testCleanCache()

	AbstractJobStoreTest.Test.testPartialReadFromStream()

	AbstractJobStoreTest.Test.testDestructionOfCorruptedJobStore()

	AbstractJobStoreTest.Test.testDestructionIdempotence()

	AbstractJobStoreTest.Test.testEmptyFileStoreIDIsReadable()

	AbstractEncryptedJobStoreTest
	AbstractEncryptedJobStoreTest.Test
	AbstractEncryptedJobStoreTest.Test.setUp()

	AbstractEncryptedJobStoreTest.Test.tearDown()

	AbstractEncryptedJobStoreTest.Test.testEncrypted()

	FileJobStoreTest
	FileJobStoreTest.testPreserveFileName()

	FileJobStoreTest.test_jobstore_init_preserves_symlink_path()

	FileJobStoreTest.test_jobstore_does_not_leak_symlinks()

	GoogleJobStoreTest
	GoogleJobStoreTest.projectID

	GoogleJobStoreTest.headers

	AWSJobStoreTest
	AWSJobStoreTest.testSDBDomainsDeletedOnFailedJobstoreBucketCreation()

	AWSJobStoreTest.testInlinedFiles()

	AWSJobStoreTest.testOverlargeJob()

	AWSJobStoreTest.testMultiThreadImportFile()

	InvalidAWSJobStoreTest
	InvalidAWSJobStoreTest.testInvalidJobStoreName()

	EncryptedAWSJobStoreTest

	StubHttpRequestHandler
	StubHttpRequestHandler.fileContents

	StubHttpRequestHandler.do_GET()

	toil.test.lib
	Subpackages
	toil.test.lib.aws
	Submodules
	toil.test.lib.aws.test_iam
	Module Contents
	Classes

	Attributes
	logger

	IAMTest
	IAMTest.test_permissions_iam()

	IAMTest.test_negative_permissions_iam()

	IAMTest.test_wildcard_handling()

	toil.test.lib.aws.test_s3
	Module Contents
	Classes

	Attributes
	logger

	S3Test
	S3Test.s3_resource

	S3Test.bucket

	S3Test.setUpClass()

	S3Test.test_create_bucket()

	S3Test.test_get_bucket_location_public_bucket()

	S3Test.tearDownClass()

	toil.test.lib.aws.test_utils
	Module Contents
	Classes

	Attributes
	logger

	TagGenerationTest
	TagGenerationTest.test_build_tag()

	TagGenerationTest.test_empty_aws_tags()

	TagGenerationTest.test_incorrect_json_object()

	TagGenerationTest.test_incorrect_json_emoji()

	TagGenerationTest.test_build_tag_with_tags()

	Submodules
	toil.test.lib.dockerTest
	Module Contents
	Classes

	Attributes
	logger

	DockerTest
	DockerTest.setUp()

	DockerTest.testDockerClean()

	DockerTest.testDockerClean_CRx_FORGO()

	DockerTest.testDockerClean_CRx_STOP()

	DockerTest.testDockerClean_CRx_RM()

	DockerTest.testDockerClean_CRx_None()

	DockerTest.testDockerClean_CxD_FORGO()

	DockerTest.testDockerClean_CxD_STOP()

	DockerTest.testDockerClean_CxD_RM()

	DockerTest.testDockerClean_CxD_None()

	DockerTest.testDockerClean_Cxx_FORGO()

	DockerTest.testDockerClean_Cxx_STOP()

	DockerTest.testDockerClean_Cxx_RM()

	DockerTest.testDockerClean_Cxx_None()

	DockerTest.testDockerClean_xRx_FORGO()

	DockerTest.testDockerClean_xRx_STOP()

	DockerTest.testDockerClean_xRx_RM()

	DockerTest.testDockerClean_xRx_None()

	DockerTest.testDockerClean_xxD_FORGO()

	DockerTest.testDockerClean_xxD_STOP()

	DockerTest.testDockerClean_xxD_RM()

	DockerTest.testDockerClean_xxD_None()

	DockerTest.testDockerClean_xxx_FORGO()

	DockerTest.testDockerClean_xxx_STOP()

	DockerTest.testDockerClean_xxx_RM()

	DockerTest.testDockerClean_xxx_None()

	DockerTest.testDockerPipeChain()

	DockerTest.testDockerPipeChainErrorDetection()

	DockerTest.testNonCachingDockerChain()

	DockerTest.testNonCachingDockerChainErrorDetection()

	DockerTest.testDockerLogs()

	DockerTest.testDockerLogs_Stream()

	DockerTest.testDockerLogs_Demux()

	DockerTest.testDockerLogs_Demux_Stream()

	toil.test.lib.test_conversions
	Module Contents
	Classes

	Attributes
	logger

	ConversionTest
	ConversionTest.test_convert()

	ConversionTest.test_human2bytes()

	ConversionTest.test_hms_duration_to_seconds()

	toil.test.lib.test_ec2
	Module Contents
	Classes

	Attributes
	logger

	FlatcarFeedTest
	FlatcarFeedTest.test_parse_archive_feed()

	FlatcarFeedTest.test_parse_beta_feed()

	FlatcarFeedTest.test_parse_stable_feed()

	FlatcarFeedTest.test_bypass_stable_feed()

	AMITest
	AMITest.setUpClass()

	AMITest.test_fetch_flatcar()

	AMITest.test_fetch_arm_flatcar()

	toil.test.lib.test_misc
	Module Contents
	Classes

	Attributes
	logger

	UserNameAvailableTest
	UserNameAvailableTest.test_get_user_name()

	UserNameUnvailableTest
	UserNameUnvailableTest.setUp()

	UserNameUnvailableTest.tearDown()

	UserNameUnvailableTest.test_get_user_name()

	UserNameVeryBrokenTest
	UserNameVeryBrokenTest.setUp()

	UserNameVeryBrokenTest.tearDown()

	UserNameVeryBrokenTest.test_get_user_name()

	toil.test.mesos
	Submodules
	toil.test.mesos.MesosDataStructuresTest
	Module Contents
	Classes
	DataStructuresTest
	DataStructuresTest.testJobQueue()

	toil.test.mesos.helloWorld
	Module Contents
	Functions

	Attributes
	childMessage

	parentMessage

	hello_world()

	hello_world_child()

	main()

	toil.test.mesos.stress
	Module Contents
	Classes

	Functions
	touchFile()

	LongTestJob
	LongTestJob.run()

	LongTestFollowOn
	LongTestFollowOn.run()

	HelloWorldJob
	HelloWorldJob.run()

	HelloWorldFollowOn
	HelloWorldFollowOn.run()

	main()

	toil.test.provisioners
	Subpackages
	toil.test.provisioners.aws
	Submodules
	toil.test.provisioners.aws.awsProvisionerTest
	Module Contents
	Classes

	Attributes
	log

	AWSProvisionerBenchTest
	AWSProvisionerBenchTest.test_AMI_finding()

	AWSProvisionerBenchTest.test_read_write_global_files()

	AbstractAWSAutoscaleTest
	AbstractAWSAutoscaleTest.script()

	AbstractAWSAutoscaleTest.data()

	AbstractAWSAutoscaleTest.rsyncUtil()

	AbstractAWSAutoscaleTest.getRootVolID()

	AbstractAWSAutoscaleTest.putScript()

	AWSAutoscaleTest
	AWSAutoscaleTest.setUp()

	AWSAutoscaleTest.launchCluster()

	AWSAutoscaleTest.getRootVolID()

	AWSAutoscaleTest.testAutoScale()

	AWSAutoscaleTest.testSpotAutoScale()

	AWSAutoscaleTest.testSpotAutoScaleBalancingTypes()

	AWSStaticAutoscaleTest
	AWSStaticAutoscaleTest.launchCluster()

	AWSManagedAutoscaleTest
	AWSManagedAutoscaleTest.launchCluster()

	AWSAutoscaleTestMultipleNodeTypes
	AWSAutoscaleTestMultipleNodeTypes.setUp()

	AWSAutoscaleTestMultipleNodeTypes.testAutoScale()

	AWSRestartTest
	AWSRestartTest.setUp()

	AWSRestartTest.testAutoScaledCluster()

	PreemptibleDeficitCompensationTest
	PreemptibleDeficitCompensationTest.setUp()

	PreemptibleDeficitCompensationTest.test()

	Submodules
	toil.test.provisioners.clusterScalerTest
	Module Contents
	Classes

	Attributes
	logger

	c4_8xlarge_preemptible

	c4_8xlarge

	r3_8xlarge

	r5_2xlarge

	r5_4xlarge

	t2_micro

	BinPackingTest
	BinPackingTest.setUp()

	BinPackingTest.testPackingOneShape()

	BinPackingTest.testSorting()

	BinPackingTest.testAddingInitialNode()

	BinPackingTest.testLowTargetTime()

	BinPackingTest.testHighTargetTime()

	BinPackingTest.testZeroResourceJobs()

	BinPackingTest.testLongRunningJobs()

	BinPackingTest.run1000JobsOnMicros()

	BinPackingTest.testPathologicalCase()

	BinPackingTest.testJobTooLargeForAllNodes()

	ClusterScalerTest
	ClusterScalerTest.setUp()

	ClusterScalerTest.testRounding()

	ClusterScalerTest.testMaxNodes()

	ClusterScalerTest.testMinNodes()

	ClusterScalerTest.testPreemptibleDeficitResponse()

	ClusterScalerTest.testPreemptibleDeficitIsSet()

	ClusterScalerTest.testNoLaunchingIfDeltaAlreadyMet()

	ClusterScalerTest.testBetaInertia()

	ClusterScalerTest.test_overhead_accounting_large()

	ClusterScalerTest.test_overhead_accounting_small()

	ClusterScalerTest.test_overhead_accounting_observed()

	ScalerThreadTest
	ScalerThreadTest.testClusterScaling()

	ScalerThreadTest.testClusterScalingMultipleNodeTypes()

	ScalerThreadTest.testClusterScalingWithPreemptibleJobs()

	MockBatchSystemAndProvisioner
	MockBatchSystemAndProvisioner.start()

	MockBatchSystemAndProvisioner.shutDown()

	MockBatchSystemAndProvisioner.nodeInUse()

	MockBatchSystemAndProvisioner.ignoreNode()

	MockBatchSystemAndProvisioner.unignoreNode()

	MockBatchSystemAndProvisioner.supportedClusterTypes()

	MockBatchSystemAndProvisioner.createClusterSettings()

	MockBatchSystemAndProvisioner.readClusterSettings()

	MockBatchSystemAndProvisioner.setAutoscaledNodeTypes()

	MockBatchSystemAndProvisioner.getProvisionedWorkers()

	MockBatchSystemAndProvisioner.terminateNodes()

	MockBatchSystemAndProvisioner.remainingBillingInterval()

	MockBatchSystemAndProvisioner.addJob()

	MockBatchSystemAndProvisioner.getNumberOfJobsIssued()

	MockBatchSystemAndProvisioner.getJobs()

	MockBatchSystemAndProvisioner.getNodes()

	MockBatchSystemAndProvisioner.addNodes()

	MockBatchSystemAndProvisioner.getNodeShape()

	MockBatchSystemAndProvisioner.getWorkersInCluster()

	MockBatchSystemAndProvisioner.launchCluster()

	MockBatchSystemAndProvisioner.destroyCluster()

	MockBatchSystemAndProvisioner.getLeader()

	MockBatchSystemAndProvisioner.getNumberOfNodes()

	toil.test.provisioners.clusterTest
	Module Contents
	Classes

	Attributes
	log

	AbstractClusterTest
	AbstractClusterTest.python()

	AbstractClusterTest.pip()

	AbstractClusterTest.destroyCluster()

	AbstractClusterTest.setUp()

	AbstractClusterTest.tearDown()

	AbstractClusterTest.sshUtil()

	AbstractClusterTest.createClusterUtil()

	AbstractClusterTest.launchCluster()

	toil.test.provisioners.gceProvisionerTest
	Module Contents
	Classes

	Attributes
	log

	AbstractGCEAutoscaleTest
	AbstractGCEAutoscaleTest.projectID

	AbstractGCEAutoscaleTest.sshUtil()

	AbstractGCEAutoscaleTest.rsyncUtil()

	AbstractGCEAutoscaleTest.destroyClusterUtil()

	AbstractGCEAutoscaleTest.createClusterUtil()

	AbstractGCEAutoscaleTest.cleanJobStoreUtil()

	AbstractGCEAutoscaleTest.setUp()

	AbstractGCEAutoscaleTest.tearDown()

	AbstractGCEAutoscaleTest.launchCluster()

	GCEAutoscaleTest
	GCEAutoscaleTest.setUp()

	GCEAutoscaleTest.launchCluster()

	GCEAutoscaleTest.testAutoScale()

	GCEAutoscaleTest.testSpotAutoScale()

	GCEStaticAutoscaleTest
	GCEStaticAutoscaleTest.launchCluster()

	GCEAutoscaleTestMultipleNodeTypes
	GCEAutoscaleTestMultipleNodeTypes.setUp()

	GCEAutoscaleTestMultipleNodeTypes.testAutoScale()

	GCERestartTest
	GCERestartTest.setUp()

	GCERestartTest.testAutoScaledCluster()

	toil.test.provisioners.provisionerTest
	Module Contents
	Classes

	Attributes
	log

	ProvisionerTest
	ProvisionerTest.test_node_type_parsing()

	toil.test.provisioners.restartScript
	Module Contents
	Functions

	Attributes
	f0()

	parser

	toil.test.server
	Submodules
	toil.test.server.serverTest
	Module Contents
	Classes

	Attributes
	logger

	ToilServerUtilsTest
	ToilServerUtilsTest.test_workflow_canceling_recovery()

	hidden
	hidden.AbstractStateStoreTest
	hidden.AbstractStateStoreTest.get_state_store()

	hidden.AbstractStateStoreTest.test_state_store()

	FileStateStoreTest
	FileStateStoreTest.setUp()

	FileStateStoreTest.get_state_store()

	FileStateStoreURLTest
	FileStateStoreURLTest.setUp()

	FileStateStoreURLTest.get_state_store()

	BucketUsingTest
	BucketUsingTest.region

	BucketUsingTest.s3_resource

	BucketUsingTest.bucket

	BucketUsingTest.bucket_name

	BucketUsingTest.setUpClass()

	BucketUsingTest.tearDownClass()

	AWSStateStoreTest
	AWSStateStoreTest.bucket_path

	AWSStateStoreTest.get_state_store()

	AWSStateStoreTest.test_state_store_paths()

	AbstractToilWESServerTest
	AbstractToilWESServerTest.setUp()

	AbstractToilWESServerTest.tearDown()

	ToilWESServerBenchTest
	ToilWESServerBenchTest.test_home()

	ToilWESServerBenchTest.test_health()

	ToilWESServerBenchTest.test_get_service_info()

	ToilWESServerWorkflowTest
	ToilWESServerWorkflowTest.run_zip_workflow()

	ToilWESServerWorkflowTest.test_run_workflow_relative_url_no_attachments_fails()

	ToilWESServerWorkflowTest.test_run_workflow_relative_url()

	ToilWESServerWorkflowTest.test_run_workflow_https_url()

	ToilWESServerWorkflowTest.test_run_workflow_single_file_zip()

	ToilWESServerWorkflowTest.test_run_workflow_multi_file_zip()

	ToilWESServerWorkflowTest.test_run_workflow_manifest_zip()

	ToilWESServerWorkflowTest.test_run_workflow_inputs_zip()

	ToilWESServerWorkflowTest.test_run_workflow_manifest_and_inputs_zip()

	ToilWESServerWorkflowTest.test_run_workflow_no_params_zip()

	ToilWESServerWorkflowTest.test_run_and_cancel_workflows()

	ToilWESServerCeleryWorkflowTest

	ToilWESServerCeleryS3StateWorkflowTest
	ToilWESServerCeleryS3StateWorkflowTest.setUp()

	toil.test.sort
	Submodules
	toil.test.sort.restart_sort
	Module Contents
	Functions

	Attributes
	defaultLines

	defaultLineLen

	sortMemory

	setup()

	down()

	up()

	sort()

	merge()

	copySubRangeOfFile()

	getMidPoint()

	makeFileToSort()

	main()

	toil.test.sort.sort
	Module Contents
	Functions

	Attributes
	defaultLines

	defaultLineLen

	sortMemory

	setup()

	down()

	up()

	sort()

	merge()

	copySubRangeOfFile()

	getMidPoint()

	makeFileToSort()

	main()

	toil.test.sort.sortTest
	Module Contents
	Classes

	Functions

	Attributes
	logger

	defaultLineLen

	defaultLines

	defaultN

	runMain()

	SortTest
	SortTest.testNo

	SortTest.setUp()

	SortTest.tearDown()

	SortTest.testAwsSingle()

	SortTest.testAwsMesos()

	SortTest.testFileMesos()

	SortTest.testGoogleSingle()

	SortTest.testGoogleMesos()

	SortTest.testFileSingle()

	SortTest.testFileSingleNonCaching()

	SortTest.testFileSingleCheckpoints()

	SortTest.testFileSingle10000()

	SortTest.testFileGridEngine()

	SortTest.testFileTorqueEngine()

	SortTest.testFileParasol()

	SortTest.testSort()

	SortTest.testMerge()

	SortTest.testCopySubRangeOfFile()

	SortTest.testGetMidPoint()

	toil.test.src
	Submodules
	toil.test.src.autoDeploymentTest
	Module Contents
	Classes

	Attributes
	logger

	AutoDeploymentTest
	AutoDeploymentTest.sitePackages

	AutoDeploymentTest.setUp()

	AutoDeploymentTest.testRestart()

	AutoDeploymentTest.testSplitRootPackages()

	AutoDeploymentTest.testUserTypesInJobFunctionArgs()

	AutoDeploymentTest.testDeferralWithConcurrentEncapsulation()

	AutoDeploymentTest.testDeferralWithFailureAndEncapsulation()

	toil.test.src.busTest
	Module Contents
	Classes

	Functions

	Attributes
	logger

	MessageBusTest
	MessageBusTest.test_enum_ints_in_file()

	MessageBusTest.test_cross_thread_messaging()

	MessageBusTest.test_restart_without_bus_path()

	failing_job_fn()

	toil.test.src.checkpointTest
	Module Contents
	Classes
	CheckpointTest
	CheckpointTest.testCheckpointNotRetried()

	CheckpointTest.testCheckpointRetriedOnce()

	CheckpointTest.testCheckpointedRestartSucceeds()

	CheckRetryCount
	CheckRetryCount.getNumRetries()

	CheckRetryCount.run()

	AlwaysFail
	AlwaysFail.run()

	CheckpointFailsFirstTime
	CheckpointFailsFirstTime.run()

	FailOnce
	FailOnce.run()

	toil.test.src.deferredFunctionTest
	Module Contents
	Classes

	Attributes
	logger

	DeferredFunctionTest
	DeferredFunctionTest.jobStoreType

	DeferredFunctionTest.setUp()

	DeferredFunctionTest.testDeferredFunctionRunsWithMethod()

	DeferredFunctionTest.testDeferredFunctionRunsWithClassMethod()

	DeferredFunctionTest.testDeferredFunctionRunsWithLambda()

	DeferredFunctionTest.testDeferredFunctionRunsWithFailures()

	DeferredFunctionTest.testNewJobsCanHandleOtherJobDeaths()

	DeferredFunctionTest.testBatchSystemCleanupCanHandleWorkerDeaths()

	toil.test.src.dockerCheckTest
	Module Contents
	Classes
	DockerCheckTest
	DockerCheckTest.testOfficialUbuntuRepo()

	DockerCheckTest.testBroadDockerRepo()

	DockerCheckTest.testBroadDockerRepoBadTag()

	DockerCheckTest.testNonexistentRepo()

	DockerCheckTest.testToilQuayRepo()

	DockerCheckTest.testBadQuayRepoNTag()

	DockerCheckTest.testBadQuayRepo()

	DockerCheckTest.testBadQuayTag()

	DockerCheckTest.testGoogleRepo()

	DockerCheckTest.testBadGoogleRepo()

	DockerCheckTest.testApplianceParser()

	toil.test.src.fileStoreTest
	Module Contents
	Classes

	Attributes
	testingIsAutomatic

	logger

	hidden
	hidden.AbstractFileStoreTest
	hidden.AbstractFileStoreTest.jobStoreType

	hidden.AbstractFileStoreTest.setUp()

	hidden.AbstractFileStoreTest.create_file()

	hidden.AbstractFileStoreTest.testToilIsNotBroken()

	hidden.AbstractFileStoreTest.testFileStoreLogging()

	hidden.AbstractFileStoreTest.testFileStoreOperations()

	hidden.AbstractFileStoreTest.testWriteReadGlobalFilePermissions()

	hidden.AbstractFileStoreTest.testWriteExportFileCompatibility()

	hidden.AbstractFileStoreTest.testImportReadFileCompatibility()

	hidden.AbstractFileStoreTest.testReadWriteFileStreamTextMode()

	hidden.AbstractNonCachingFileStoreTest
	hidden.AbstractNonCachingFileStoreTest.setUp()

	hidden.AbstractCachingFileStoreTest
	hidden.AbstractCachingFileStoreTest.setUp()

	hidden.AbstractCachingFileStoreTest.testExtremeCacheSetup()

	hidden.AbstractCachingFileStoreTest.testCacheEvictionPartialEvict()

	hidden.AbstractCachingFileStoreTest.testCacheEvictionTotalEvict()

	hidden.AbstractCachingFileStoreTest.testCacheEvictionFailCase()

	hidden.AbstractCachingFileStoreTest.testAsyncWriteWithCaching()

	hidden.AbstractCachingFileStoreTest.testWriteNonLocalFileToJobStore()

	hidden.AbstractCachingFileStoreTest.testWriteLocalFileToJobStore()

	hidden.AbstractCachingFileStoreTest.testReadCacheMissFileFromJobStoreWithoutCachingReadFile()

	hidden.AbstractCachingFileStoreTest.testReadCacheMissFileFromJobStoreWithCachingReadFile()

	hidden.AbstractCachingFileStoreTest.testReadCachHitFileFromJobStore()

	hidden.AbstractCachingFileStoreTest.testMultipleJobsReadSameCacheHitGlobalFile()

	hidden.AbstractCachingFileStoreTest.testMultipleJobsReadSameCacheMissGlobalFile()

	hidden.AbstractCachingFileStoreTest.testFileStoreExportFile()

	hidden.AbstractCachingFileStoreTest.testReturnFileSizes()

	hidden.AbstractCachingFileStoreTest.testReturnFileSizesWithBadWorker()

	hidden.AbstractCachingFileStoreTest.testControlledFailedWorkerRetry()

	hidden.AbstractCachingFileStoreTest.testRemoveLocalMutablyReadFile()

	hidden.AbstractCachingFileStoreTest.testRemoveLocalImmutablyReadFile()

	hidden.AbstractCachingFileStoreTest.testDeleteLocalFile()

	hidden.AbstractCachingFileStoreTest.testSimultaneousReadsUncachedStream()

	NonCachingFileStoreTestWithFileJobStore
	NonCachingFileStoreTestWithFileJobStore.jobStoreType

	CachingFileStoreTestWithFileJobStore
	CachingFileStoreTestWithFileJobStore.jobStoreType

	NonCachingFileStoreTestWithAwsJobStore
	NonCachingFileStoreTestWithAwsJobStore.jobStoreType

	CachingFileStoreTestWithAwsJobStore
	CachingFileStoreTestWithAwsJobStore.jobStoreType

	NonCachingFileStoreTestWithGoogleJobStore
	NonCachingFileStoreTestWithGoogleJobStore.jobStoreType

	CachingFileStoreTestWithGoogleJobStore
	CachingFileStoreTestWithGoogleJobStore.jobStoreType

	toil.test.src.helloWorldTest
	Module Contents
	Classes

	Functions
	HelloWorldTest
	HelloWorldTest.testHelloWorld()

	HelloWorld
	HelloWorld.run()

	childFn()

	FollowOn
	FollowOn.run()

	toil.test.src.importExportFileTest
	Module Contents
	Classes
	ImportExportFileTest
	ImportExportFileTest.setUp()

	ImportExportFileTest.create_file()

	ImportExportFileTest.test_import_export_restart_true()

	ImportExportFileTest.test_import_export_restart_false()

	ImportExportFileTest.test_basic_import_export()

	RestartingJob
	RestartingJob.run()

	toil.test.src.jobDescriptionTest
	Module Contents
	Classes
	JobDescriptionTest
	JobDescriptionTest.setUp()

	JobDescriptionTest.tearDown()

	JobDescriptionTest.testJobDescription()

	JobDescriptionTest.testJobDescriptionSequencing()

	toil.test.src.jobEncapsulationTest
	Module Contents
	Classes

	Functions
	JobEncapsulationTest
	JobEncapsulationTest.testEncapsulation()

	JobEncapsulationTest.testAddChildEncapsulate()

	noOp()

	encapsulatedJobFn()

	toil.test.src.jobFileStoreTest
	Module Contents
	Classes

	Functions

	Attributes
	logger

	PREFIX_LENGTH

	JobFileStoreTest
	JobFileStoreTest.testCachingFileStore()

	JobFileStoreTest.testNonCachingFileStore()

	JobFileStoreTest.testJobFileStore()

	JobFileStoreTest.testJobFileStoreWithBadWorker()

	fileTestJob()

	fileStoreString

	streamingFileStoreString

	simpleFileStoreJob()

	fileStoreChild()

	toil.test.src.jobServiceTest
	Module Contents
	Classes

	Functions

	Attributes
	logger

	JobServiceTest
	JobServiceTest.testServiceSerialization()

	JobServiceTest.testService()

	JobServiceTest.testServiceDeadlock()

	JobServiceTest.testServiceWithCheckpoints()

	JobServiceTest.testServiceRecursive()

	JobServiceTest.testServiceParallelRecursive()

	JobServiceTest.runToil()

	PerfectServiceTest
	PerfectServiceTest.runToil()

	serviceTest()

	serviceTestRecursive()

	serviceTestParallelRecursive()

	ToyService
	ToyService.start()

	ToyService.stop()

	ToyService.check()

	ToyService.serviceWorker()

	serviceAccessor()

	ToySerializableService
	ToySerializableService.start()

	ToySerializableService.stop()

	ToySerializableService.check()

	fnTest()

	toil.test.src.jobTest
	Module Contents
	Classes

	Functions

	Attributes
	logger

	JobTest
	JobTest.setUpClass()

	JobTest.testStatic()

	JobTest.testStatic2()

	JobTest.testTrivialDAGConsistency()

	JobTest.testDAGConsistency()

	JobTest.testSiblingDAGConsistency()

	JobTest.testDeadlockDetection()

	JobTest.testNewCheckpointIsLeafVertexNonRootCase()

	JobTest.testNewCheckpointIsLeafVertexRootCase()

	JobTest.runNewCheckpointIsLeafVertexTest()

	JobTest.runCheckpointVertexTest()

	JobTest.testEvaluatingRandomDAG()

	JobTest.getRandomEdge()

	JobTest.makeRandomDAG()

	JobTest.getAdjacencyList()

	JobTest.reachable()

	JobTest.addRandomFollowOnEdges()

	JobTest.makeJobGraph()

	JobTest.isAcyclic()

	simpleJobFn()

	fn1Test()

	fn2Test()

	trivialParent()

	parent()

	diamond()

	child()

	errorChild()

	TrivialService
	TrivialService.start()

	TrivialService.stop()

	TrivialService.check()

	toil.test.src.miscTests
	Module Contents
	Classes

	Attributes
	log

	MiscTests
	MiscTests.setUp()

	MiscTests.testIDStability()

	MiscTests.testGetSizeOfDirectoryWorks()

	MiscTests.test_atomic_install()

	MiscTests.test_atomic_install_dev()

	MiscTests.test_atomic_context_ok()

	MiscTests.test_atomic_context_error()

	MiscTests.test_call_command_ok()

	MiscTests.test_call_command_err()

	TestPanic
	TestPanic.test_panic_by_hand()

	TestPanic.test_panic()

	TestPanic.test_panic_with_secondary()

	TestPanic.test_nested_panic()

	TestPanic.try_and_panic_by_hand()

	TestPanic.try_and_panic()

	TestPanic.try_and_panic_with_secondary()

	TestPanic.try_and_nested_panic_with_secondary()

	toil.test.src.promisedRequirementTest
	Module Contents
	Classes

	Functions

	Attributes
	log

	hidden
	hidden.AbstractPromisedRequirementsTest
	hidden.AbstractPromisedRequirementsTest.testConcurrencyDynamic()

	hidden.AbstractPromisedRequirementsTest.testConcurrencyStatic()

	hidden.AbstractPromisedRequirementsTest.getOptions()

	hidden.AbstractPromisedRequirementsTest.getCounterPath()

	hidden.AbstractPromisedRequirementsTest.testPromisesWithJobStoreFileObjects()

	hidden.AbstractPromisedRequirementsTest.testPromisesWithNonCachingFileStore()

	hidden.AbstractPromisedRequirementsTest.testPromiseRequirementRaceStatic()

	maxConcurrency()

	getOne()

	getThirtyTwoMb()

	logDiskUsage()

	SingleMachinePromisedRequirementsTest
	SingleMachinePromisedRequirementsTest.getBatchSystemName()

	SingleMachinePromisedRequirementsTest.tearDown()

	MesosPromisedRequirementsTest
	MesosPromisedRequirementsTest.getOptions()

	MesosPromisedRequirementsTest.getBatchSystemName()

	MesosPromisedRequirementsTest.tearDown()

	toil.test.src.promisesTest
	Module Contents
	Classes

	Functions
	CachedUnpicklingJobStoreTest
	CachedUnpicklingJobStoreTest.test()

	parent()

	child()

	ChainedIndexedPromisesTest
	ChainedIndexedPromisesTest.test()

	a()

	b()

	c()

	PathIndexingPromiseTest
	PathIndexingPromiseTest.test()

	d()

	e()

	toil.test.src.realtimeLoggerTest
	Module Contents
	Classes
	RealtimeLoggerTest
	RealtimeLoggerTest.testRealtimeLogger()

	MessageDetector
	MessageDetector.emit()

	LogTest
	LogTest.run()

	toil.test.src.regularLogTest
	Module Contents
	Classes

	Attributes
	logger

	RegularLogTest
	RegularLogTest.setUp()

	RegularLogTest.testLogToMaster()

	RegularLogTest.testWriteLogs()

	RegularLogTest.testWriteGzipLogs()

	RegularLogTest.testMultipleLogToMaster()

	RegularLogTest.testRegularLog()

	toil.test.src.resourceTest
	Module Contents
	Classes

	Functions
	tempFileContaining()

	ResourceTest
	ResourceTest.testStandAlone()

	ResourceTest.testPackage()

	ResourceTest.testVirtualEnv()

	ResourceTest.testStandAloneInPackage()

	ResourceTest.testBuiltIn()

	ResourceTest.testNonPyStandAlone()

	toil.test.src.restartDAGTest
	Module Contents
	Classes

	Functions

	Attributes
	logger

	RestartDAGTest
	RestartDAGTest.setUp()

	RestartDAGTest.tearDown()

	RestartDAGTest.testRestartedWorkflowSchedulesCorrectJobsOnFailedParent()

	RestartDAGTest.testRestartedWorkflowSchedulesCorrectJobsOnKilledParent()

	passingFn()

	failingFn()

	toil.test.src.resumabilityTest
	Module Contents
	Classes

	Functions
	ResumabilityTest
	ResumabilityTest.test()

	parent()

	goodChild()

	badChild()

	toil.test.src.retainTempDirTest
	Module Contents
	Classes

	Functions
	CleanWorkDirTest
	CleanWorkDirTest.setUp()

	CleanWorkDirTest.tearDown()

	CleanWorkDirTest.testNever()

	CleanWorkDirTest.testAlways()

	CleanWorkDirTest.testOnErrorWithError()

	CleanWorkDirTest.testOnErrorWithNoError()

	CleanWorkDirTest.testOnSuccessWithError()

	CleanWorkDirTest.testOnSuccessWithSuccess()

	tempFileTestJob()

	tempFileTestErrorJob()

	toil.test.src.systemTest
	Module Contents
	Classes
	SystemTest
	SystemTest.testAtomicityOfNonEmptyDirectoryRenames()

	toil.test.src.threadingTest
	Module Contents
	Classes

	Attributes
	log

	ThreadingTest
	ThreadingTest.testGlobalMutexOrdering()

	ThreadingTest.testLastProcessStanding()

	toil.test.src.toilContextManagerTest
	Module Contents
	Classes

	Functions
	ToilContextManagerTest
	ToilContextManagerTest.setUp()

	ToilContextManagerTest.tearDown()

	ToilContextManagerTest.testContextManger()

	ToilContextManagerTest.testNoContextManger()

	ToilContextManagerTest.testExportAfterFailedExport()

	HelloWorld
	HelloWorld.run()

	childFn()

	FollowOn
	FollowOn.run()

	toil.test.src.userDefinedJobArgTypeTest
	Module Contents
	Classes

	Functions
	UserDefinedJobArgTypeTest
	UserDefinedJobArgTypeTest.setUp()

	UserDefinedJobArgTypeTest.testJobFunction()

	UserDefinedJobArgTypeTest.testJobClass()

	UserDefinedJobArgTypeTest.testJobFunctionFromMain()

	UserDefinedJobArgTypeTest.testJobClassFromMain()

	JobClass
	JobClass.run()

	jobFunction()

	Foo
	Foo.assertIsCopy()

	main()

	toil.test.src.workerTest
	Module Contents
	Classes
	WorkerTests
	WorkerTests.setUp()

	WorkerTests.testNextChainable()

	toil.test.utils
	Submodules
	toil.test.utils.toilDebugTest
	Module Contents
	Functions

	Attributes
	logger

	workflow_debug_jobstore()

	testJobStoreContents()

	fetchFiles()

	testFetchJobStoreFiles()

	testFetchJobStoreFilesWSymlinks()

	toil.test.utils.toilKillTest
	Module Contents
	Classes

	Attributes
	logger

	pkg_root

	ToilKillTest
	ToilKillTest.setUp()

	ToilKillTest.tearDown()

	ToilKillTest.test_cwl_toil_kill()

	ToilKillTestWithAWSJobStore

	toil.test.utils.utilsTest
	Module Contents
	Classes

	Functions

	Attributes
	pkg_root

	logger

	UtilsTest
	UtilsTest.toilMain

	UtilsTest.cleanCommand

	UtilsTest.statsCommand

	UtilsTest.setUp()

	UtilsTest.tearDown()

	UtilsTest.statusCommand()

	UtilsTest.testAWSProvisionerUtils()

	UtilsTest.testUtilsSort()

	UtilsTest.testUtilsStatsSort()

	UtilsTest.testUnicodeSupport()

	UtilsTest.testMultipleJobsPerWorkerStats()

	UtilsTest.check_status()

	UtilsTest.testGetPIDStatus()

	UtilsTest.testGetStatusFailedToilWF()

	UtilsTest.testGetStatusFailedCWLWF()

	UtilsTest.testGetStatusSuccessfulCWLWF()

	UtilsTest.testPrintJobLog()

	UtilsTest.testRestartAttribute()

	printUnicodeCharacter()

	RunTwoJobsPerWorker
	RunTwoJobsPerWorker.run()

	toil.test.wdl
	Submodules
	toil.test.wdl.builtinTest
	Module Contents
	Classes
	WdlStandardLibraryFunctionsTest
	WdlStandardLibraryFunctionsTest.setUp()

	WdlStandardLibraryFunctionsTest.setUpClass()

	WdlStandardLibraryFunctionsTest.tearDown()

	WdlStandardLibraryFunctionsTest.testFn_Sub()

	WdlStandardLibraryFunctionsTest.testFn_Ceil()

	WdlStandardLibraryFunctionsTest.testFn_Floor()

	WdlStandardLibraryFunctionsTest.testFn_ReadLines()

	WdlStandardLibraryFunctionsTest.testFn_ReadTsv()

	WdlStandardLibraryFunctionsTest.testFn_ReadJson()

	WdlStandardLibraryFunctionsTest.testFn_ReadMap()

	WdlStandardLibraryFunctionsTest.testFn_ReadInt()

	WdlStandardLibraryFunctionsTest.testFn_ReadString()

	WdlStandardLibraryFunctionsTest.testFn_ReadFloat()

	WdlStandardLibraryFunctionsTest.testFn_ReadBoolean()

	WdlStandardLibraryFunctionsTest.testFn_WriteLines()

	WdlStandardLibraryFunctionsTest.testFn_WriteTsv()

	WdlStandardLibraryFunctionsTest.testFn_WriteJson()

	WdlStandardLibraryFunctionsTest.testFn_WriteMap()

	WdlStandardLibraryFunctionsTest.testFn_Transpose()

	WdlStandardLibraryFunctionsTest.testFn_Length()

	WdlStandardLibraryFunctionsTest.testFn_Zip()

	WdlStandardLibraryFunctionsTest.testFn_Cross()

	WdlWorkflowsTest
	WdlWorkflowsTest.setUpClass()

	WdlWorkflowsTest.check_function()

	WdlLanguageSpecWorkflowsTest
	WdlLanguageSpecWorkflowsTest.setUpClass()

	WdlLanguageSpecWorkflowsTest.test_type_pair()

	WdlLanguageSpecWorkflowsTest.test_v1_declaration()

	WdlStandardLibraryWorkflowsTest
	WdlStandardLibraryWorkflowsTest.setUpClass()

	WdlStandardLibraryWorkflowsTest.test_sub()

	WdlStandardLibraryWorkflowsTest.test_size()

	WdlStandardLibraryWorkflowsTest.test_ceil()

	WdlStandardLibraryWorkflowsTest.test_floor()

	WdlStandardLibraryWorkflowsTest.test_round()

	WdlStandardLibraryWorkflowsTest.test_stdout()

	WdlStandardLibraryWorkflowsTest.test_read()

	WdlStandardLibraryWorkflowsTest.test_write()

	WdlStandardLibraryWorkflowsTest.test_range()

	WdlStandardLibraryWorkflowsTest.test_transpose()

	WdlStandardLibraryWorkflowsTest.test_length()

	WdlStandardLibraryWorkflowsTest.test_zip()

	WdlStandardLibraryWorkflowsTest.test_cross()

	WdlStandardLibraryWorkflowsTest.test_as_pairs()

	WdlStandardLibraryWorkflowsTest.test_as_map()

	WdlStandardLibraryWorkflowsTest.test_keys()

	WdlStandardLibraryWorkflowsTest.test_collect_by_key()

	WdlStandardLibraryWorkflowsTest.test_flatten()

	toil.test.wdl.conftest
	Module Contents
	collect_ignore

	toil.test.wdl.toilwdlTest
	Module Contents
	Classes

	Functions
	BaseToilWdlTest
	BaseToilWdlTest.setUp()

	BaseToilWdlTest.tearDown()

	BaseToilWdlTest.setUpClass()

	ToilWdlTest
	ToilWdlTest.testMD5sum()

	ToilWDLLibraryTest
	ToilWDLLibraryTest.testFn_SelectFirst()

	ToilWDLLibraryTest.testFn_Size()

	ToilWDLLibraryTest.testFn_Basename()

	ToilWDLLibraryTest.testFn_Glob()

	ToilWDLLibraryTest.testFn_ParseMemory()

	ToilWDLLibraryTest.testFn_ParseCores()

	ToilWDLLibraryTest.testFn_ParseDisk()

	ToilWDLLibraryTest.testPrimitives()

	ToilWDLLibraryTest.testCSV()

	ToilWDLLibraryTest.testTSV()

	ToilWdlIntegrationTest
	ToilWdlIntegrationTest.gatk_data

	ToilWdlIntegrationTest.gatk_data_dir

	ToilWdlIntegrationTest.encode_data

	ToilWdlIntegrationTest.encode_data_dir

	ToilWdlIntegrationTest.wdl_data

	ToilWdlIntegrationTest.wdl_data_dir

	ToilWdlIntegrationTest.setUpClass()

	ToilWdlIntegrationTest.tearDownClass()

	ToilWdlIntegrationTest.testTut01()

	ToilWdlIntegrationTest.testTut02()

	ToilWdlIntegrationTest.testTut03()

	ToilWdlIntegrationTest.testTut04()

	ToilWdlIntegrationTest.testENCODE()

	ToilWdlIntegrationTest.testPipe()

	ToilWdlIntegrationTest.testJSON()

	ToilWdlIntegrationTest.test_size_large()

	ToilWdlIntegrationTest.fetch_and_unzip_from_s3()

	compare_runs()

	compare_vcf_files()

	toil.test.wdl.wdltoil_test
	Module Contents
	Classes
	WdlToilTest
	WdlToilTest.setUpClass()

	WdlToilTest.testMD5sum()

	WdlToilTest.test_miniwdl_self_test()

	WdlToilTest.test_giraffe_deepvariant()

	WdlToilTest.test_giraffe()

	Package Contents
	Classes

	Functions

	Attributes
	ApplianceImageNotFound

	applianceSelf()

	toilPackageDirPath()

	have_working_nvidia_docker_runtime()

	have_working_nvidia_smi()

	running_on_ec2()

	concat
	concat.__iter__()

	memoize

	ExceptionalThread
	ExceptionalThread.exc_info

	ExceptionalThread.run()

	ExceptionalThread.tryRun()

	ExceptionalThread.join()

	cpu_count()

	distVersion

	logger

	ToilTest
	ToilTest.setup_method()

	ToilTest.setUpClass()

	ToilTest.tearDownClass()

	ToilTest.setUp()

	ToilTest.tearDown()

	ToilTest.awsRegion()

	MT

	get_temp_file()

	needs_env_var()

	needs_rsync3()

	needs_aws_s3()

	needs_aws_ec2()

	needs_aws_batch()

	needs_google()

	needs_gridengine()

	needs_torque()

	needs_tes()

	needs_kubernetes_installed()

	needs_kubernetes()

	needs_mesos()

	needs_parasol()

	needs_slurm()

	needs_htcondor()

	needs_lsf()

	needs_java()

	needs_docker()

	needs_singularity()

	needs_local_cuda()

	needs_docker_cuda()

	needs_encryption()

	needs_cwl()

	needs_server()

	needs_celery_broker()

	needs_wes_server()

	needs_local_appliance()

	needs_fetchable_appliance()

	integrative()

	slow()

	methodNamePartRegex

	timeLimit()

	make_tests()

	ApplianceTestSupport
	ApplianceTestSupport.Appliance
	ApplianceTestSupport.Appliance.lock

	ApplianceTestSupport.Appliance.__enter__()

	ApplianceTestSupport.Appliance.__exit__()

	ApplianceTestSupport.Appliance.tryRun()

	ApplianceTestSupport.Appliance.runOnAppliance()

	ApplianceTestSupport.Appliance.writeToAppliance()

	ApplianceTestSupport.Appliance.deployScript()

	ApplianceTestSupport.LeaderThread

	ApplianceTestSupport.WorkerThread

	toil.utils
	Submodules
	toil.utils.toilClean
	Module Contents
	Functions

	Attributes
	logger

	main()

	toil.utils.toilDebugFile
	Module Contents
	Functions

	Attributes
	logger

	fetchJobStoreFiles()

	printContentsOfJobStore()

	main()

	toil.utils.toilDebugJob
	Module Contents
	Functions

	Attributes
	logger

	main()

	toil.utils.toilDestroyCluster
	Module Contents
	Functions

	Attributes
	logger

	main()

	toil.utils.toilKill
	Module Contents
	Functions

	Attributes
	logger

	main()

	toil.utils.toilLaunchCluster
	Module Contents
	Functions

	Attributes
	logger

	create_tags_dict()

	main()

	toil.utils.toilMain
	Module Contents
	Functions
	main()

	get_or_die()

	loadModules()

	printHelp()

	printVersion()

	toil.utils.toilRsyncCluster
	Module Contents
	Functions

	Attributes
	logger

	main()

	toil.utils.toilServer
	Module Contents
	Functions

	Attributes
	logger

	main()

	toil.utils.toilSshCluster
	Module Contents
	Functions

	Attributes
	logger

	main()

	toil.utils.toilStats
	Module Contents
	Classes

	Functions

	Attributes
	logger

	ColumnWidths
	ColumnWidths.title()

	ColumnWidths.getWidth()

	ColumnWidths.setWidth()

	ColumnWidths.report()

	padStr()

	prettyMemory()

	prettyTime()

	reportTime()

	reportMemory()

	reportNumber()

	sprintTag()

	decorateTitle()

	decorateSubHeader()

	get()

	sortJobs()

	reportPrettyData()

	computeColumnWidths()

	updateColumnWidths()

	buildElement()

	createSummary()

	getStats()

	processData()

	reportData()

	category_choices

	sort_category_choices

	sort_field_choices

	add_stats_options()

	main()

	toil.utils.toilStatus
	Module Contents
	Classes

	Functions

	Attributes
	logger

	ToilStatus
	ToilStatus.print_dot_chart()

	ToilStatus.printJobLog()

	ToilStatus.printJobChildren()

	ToilStatus.printAggregateJobStats()

	ToilStatus.report_on_jobs()

	ToilStatus.getPIDStatus()

	ToilStatus.getStatus()

	ToilStatus.print_bus_messages()

	ToilStatus.fetchRootJob()

	ToilStatus.fetchUserJobs()

	ToilStatus.traverseJobGraph()

	main()

	toil.utils.toilUpdateEC2Instances
	Module Contents
	Functions

	Attributes
	logger

	internet_connection()

	main()

	toil.wdl
	Subpackages
	toil.wdl.versions
	Submodules
	toil.wdl.versions.dev
	Module Contents
	Classes

	Attributes
	logger

	AnalyzeDevelopmentWDL
	AnalyzeDevelopmentWDL.version

	AnalyzeDevelopmentWDL.analyze()

	AnalyzeDevelopmentWDL.visit_document()

	AnalyzeDevelopmentWDL.visit_document_element()

	AnalyzeDevelopmentWDL.visit_call()

	AnalyzeDevelopmentWDL.visit_string_expr_part()

	AnalyzeDevelopmentWDL.visit_wdl_type()

	AnalyzeDevelopmentWDL.visit_expr_core()

	toil.wdl.versions.draft2
	Module Contents
	Classes

	Attributes
	logger

	AnalyzeDraft2WDL
	AnalyzeDraft2WDL.version

	AnalyzeDraft2WDL.analyze()

	AnalyzeDraft2WDL.write_AST()

	AnalyzeDraft2WDL.find_asts()

	AnalyzeDraft2WDL.create_tasks_dict()

	AnalyzeDraft2WDL.parse_task()

	AnalyzeDraft2WDL.parse_task_rawcommand_attributes()

	AnalyzeDraft2WDL.parse_task_rawcommand()

	AnalyzeDraft2WDL.modify_cmd_expr_w_attributes()

	AnalyzeDraft2WDL.parse_task_runtime_key()

	AnalyzeDraft2WDL.parse_task_runtime()

	AnalyzeDraft2WDL.parse_task_outputs()

	AnalyzeDraft2WDL.translate_wdl_string_to_python_string()

	AnalyzeDraft2WDL.create_workflows_dict()

	AnalyzeDraft2WDL.parse_workflow()

	AnalyzeDraft2WDL.parse_workflow_body()

	AnalyzeDraft2WDL.parse_workflow_if()

	AnalyzeDraft2WDL.parse_workflow_if_expression()

	AnalyzeDraft2WDL.parse_workflow_scatter()

	AnalyzeDraft2WDL.parse_workflow_scatter_item()

	AnalyzeDraft2WDL.parse_workflow_scatter_collection()

	AnalyzeDraft2WDL.parse_declaration()

	AnalyzeDraft2WDL.parse_declaration_name()

	AnalyzeDraft2WDL.parse_declaration_type()

	AnalyzeDraft2WDL.parse_declaration_expressn()

	AnalyzeDraft2WDL.parse_declaration_expressn_logicalnot()

	AnalyzeDraft2WDL.parse_declaration_expressn_arraymaplookup()

	AnalyzeDraft2WDL.parse_declaration_expressn_memberaccess()

	AnalyzeDraft2WDL.parse_declaration_expressn_ternaryif()

	AnalyzeDraft2WDL.parse_declaration_expressn_tupleliteral()

	AnalyzeDraft2WDL.parse_declaration_expressn_arrayliteral()

	AnalyzeDraft2WDL.parse_declaration_expressn_operator()

	AnalyzeDraft2WDL.parse_declaration_expressn_fncall()

	AnalyzeDraft2WDL.parse_declaration_expressn_fncall_normalparams()

	AnalyzeDraft2WDL.parse_workflow_call_taskname()

	AnalyzeDraft2WDL.parse_workflow_call_taskalias()

	AnalyzeDraft2WDL.parse_workflow_call_body_declarations()

	AnalyzeDraft2WDL.parse_workflow_call_body_io()

	AnalyzeDraft2WDL.parse_workflow_call_body_io_map()

	AnalyzeDraft2WDL.parse_workflow_call_body()

	AnalyzeDraft2WDL.parse_workflow_call()

	toil.wdl.versions.v1
	Module Contents
	Classes

	Functions

	Attributes
	logger

	is_context()

	AnalyzeV1WDL
	AnalyzeV1WDL.version

	AnalyzeV1WDL.analyze()

	AnalyzeV1WDL.visit_document()

	AnalyzeV1WDL.visit_document_element()

	AnalyzeV1WDL.visit_workflow()

	AnalyzeV1WDL.visit_workflow_input()

	AnalyzeV1WDL.visit_workflow_output()

	AnalyzeV1WDL.visit_inner_workflow_element()

	AnalyzeV1WDL.visit_call()

	AnalyzeV1WDL.visit_scatter()

	AnalyzeV1WDL.visit_conditional()

	AnalyzeV1WDL.visit_task()

	AnalyzeV1WDL.visit_task_input()

	AnalyzeV1WDL.visit_task_output()

	AnalyzeV1WDL.visit_task_command()

	AnalyzeV1WDL.visit_task_command_string_part()

	AnalyzeV1WDL.visit_task_command_expr_with_string()

	AnalyzeV1WDL.visit_task_command_expr_part()

	AnalyzeV1WDL.visit_task_runtime()

	AnalyzeV1WDL.visit_any_decls()

	AnalyzeV1WDL.visit_unbound_decls()

	AnalyzeV1WDL.visit_bound_decls()

	AnalyzeV1WDL.visit_wdl_type()

	AnalyzeV1WDL.visit_primitive_literal()

	AnalyzeV1WDL.visit_number()

	AnalyzeV1WDL.visit_string()

	AnalyzeV1WDL.visit_string_expr_with_string_part()

	AnalyzeV1WDL.visit_string_expr_part()

	AnalyzeV1WDL.visit_string_part()

	AnalyzeV1WDL.visit_expression_placeholder_option()

	AnalyzeV1WDL.visit_expr()

	AnalyzeV1WDL.visit_infix0()

	AnalyzeV1WDL.visit_lor()

	AnalyzeV1WDL.visit_infix1()

	AnalyzeV1WDL.visit_land()

	AnalyzeV1WDL.visit_infix2()

	AnalyzeV1WDL.visit_infix3()

	AnalyzeV1WDL.visit_infix4()

	AnalyzeV1WDL.visit_infix5()

	AnalyzeV1WDL.visit_expr_core()

	AnalyzeV1WDL.visit_apply()

	AnalyzeV1WDL.visit_array_literal()

	AnalyzeV1WDL.visit_pair_literal()

	AnalyzeV1WDL.visit_ifthenelse()

	AnalyzeV1WDL.visit_expression_group()

	AnalyzeV1WDL.visit_at()

	AnalyzeV1WDL.visit_get_name()

	AnalyzeV1WDL.visit_negate()

	AnalyzeV1WDL.visit_unarysigned()

	AnalyzeV1WDL.visit_primitives()

	Submodules
	toil.wdl.toilwdl
	Module Contents
	Functions

	Attributes
	logger

	main()

	toil.wdl.utils
	Module Contents
	Functions
	get_version()

	get_analyzer()

	dict_from_JSON()

	write_mappings()

	toil.wdl.wdl_analysis
	Module Contents
	Classes

	Attributes
	logger

	AnalyzeWDL
	AnalyzeWDL.version

	AnalyzeWDL.primitive_types

	AnalyzeWDL.compound_types

	AnalyzeWDL.analyze()

	AnalyzeWDL.write_AST()

	AnalyzeWDL.create_wdl_primitive_type()

	AnalyzeWDL.create_wdl_compound_type()

	toil.wdl.wdl_functions
	Module Contents
	Classes

	Functions

	Attributes
	logger

	WDLRuntimeError

	WDLJSONEncoder
	WDLJSONEncoder.default()

	generate_docker_bashscript_file()

	process_single_infile()

	process_infile()

	sub()

	defined()

	process_single_outfile()

	process_outfile()

	abspath_single_file()

	abspath_file()

	read_single_file()

	read_file()

	process_and_read_file()

	generate_stdout_file()

	parse_memory()

	parse_cores()

	parse_disk()

	is_number()

	size()

	select_first()

	combine_dicts()

	basename()

	heredoc_wdl()

	floor()

	ceil()

	read_lines()

	read_tsv()

	read_csv()

	read_json()

	read_map()

	read_int()

	read_string()

	read_float()

	read_boolean()

	write_lines()

	write_tsv()

	write_json()

	write_map()

	wdl_range()

	transpose()

	length()

	wdl_zip()

	cross()

	as_pairs()

	as_map()

	keys()

	collect_by_key()

	flatten()

	toil.wdl.wdl_synthesis
	Module Contents
	Classes

	Attributes
	logger

	SynthesizeWDL
	SynthesizeWDL.write_modules()

	SynthesizeWDL.write_main()

	SynthesizeWDL.write_main_header()

	SynthesizeWDL.write_main_jobwrappers()

	SynthesizeWDL.write_main_jobwrappers_declaration()

	SynthesizeWDL.write_main_destbucket()

	SynthesizeWDL.fetch_ignoredifs()

	SynthesizeWDL.fetch_ignoredifs_chain()

	SynthesizeWDL.write_main_jobwrappers_if()

	SynthesizeWDL.write_main_jobwrappers_scatter()

	SynthesizeWDL.fetch_scatter_outputs()

	SynthesizeWDL.fetch_scatter_inputs()

	SynthesizeWDL.fetch_scatter_inputs_chain()

	SynthesizeWDL.write_main_jobwrappers_call()

	SynthesizeWDL.fetch_call_outputs()

	SynthesizeWDL.write_functions()

	SynthesizeWDL.write_scatterfunctions_within_if()

	SynthesizeWDL.write_scatterfunction()

	SynthesizeWDL.write_scatterfunction_header()

	SynthesizeWDL.write_scatterfunction_outputreturn()

	SynthesizeWDL.write_scatterfunction_lists()

	SynthesizeWDL.write_scatterfunction_loop()

	SynthesizeWDL.write_scatter_callwrapper()

	SynthesizeWDL.write_function()

	SynthesizeWDL.write_function_header()

	SynthesizeWDL.json_var()

	SynthesizeWDL.needs_file_import()

	SynthesizeWDL.write_declaration_type()

	SynthesizeWDL.write_function_bashscriptline()

	SynthesizeWDL.write_function_dockercall()

	SynthesizeWDL.write_function_cmdline()

	SynthesizeWDL.write_function_subprocesspopen()

	SynthesizeWDL.write_function_outputreturn()

	SynthesizeWDL.indent()

	SynthesizeWDL.needsdocker()

	SynthesizeWDL.write_python_file()

	toil.wdl.wdl_types
	Module Contents
	Classes
	WDLRuntimeError

	WDLType
	WDLType.name

	WDLType.default_value

	WDLType.create()

	WDLType.__eq__()

	WDLType.__str__()

	WDLType.__repr__()

	WDLCompoundType

	WDLStringType
	WDLStringType.name

	WDLStringType.default_value

	WDLIntType
	WDLIntType.name

	WDLFloatType
	WDLFloatType.name

	WDLBooleanType
	WDLBooleanType.name

	WDLFileType
	WDLFileType.name

	WDLFileType.default_value

	WDLArrayType
	WDLArrayType.name

	WDLPairType
	WDLPairType.name

	WDLMapType
	WDLMapType.name

	WDLFile

	WDLPair
	WDLPair.to_dict()

	WDLPair.__eq__()

	WDLPair.__repr__()

	toil.wdl.wdltoil
	Module Contents
	Classes

	Functions

	Attributes
	logger

	potential_absolute_uris()

	toil_read_source()

	WDLBindings

	combine_bindings()

	log_bindings()

	get_supertype()

	for_each_node()

	recursive_dependencies()

	TOIL_URI_SCHEME

	pack_toil_uri()

	unpack_toil_uri()

	NonDownloadingSize

	ToilWDLStdLibBase

	ToilWDLStdLibTaskOutputs

	evaluate_named_expression()

	evaluate_decl()

	evaluate_call_inputs()

	evaluate_defaultable_decl()

	devirtualize_files()

	virtualize_files()

	import_files()

	drop_missing_files()

	get_file_paths_in_bindings()

	map_over_typed_files_in_bindings()

	map_over_files_in_bindings()

	map_over_typed_files_in_binding()

	map_over_typed_files_in_value()

	WDLBaseJob
	WDLBaseJob.run()

	WDLTaskJob
	WDLTaskJob.can_fake_root()

	WDLTaskJob.run()

	WDLWorkflowNodeJob
	WDLWorkflowNodeJob.run()

	WDLCombineBindingsJob
	WDLCombineBindingsJob.run()

	WDLNamespaceBindingsJob
	WDLNamespaceBindingsJob.run()

	WDLSectionJob
	WDLSectionJob.create_subgraph()

	WDLSectionJob.make_gather_bindings()

	WDLScatterJob
	WDLScatterJob.run()

	WDLArrayBindingsJob
	WDLArrayBindingsJob.run()

	WDLConditionalJob
	WDLConditionalJob.run()

	WDLWorkflowJob
	WDLWorkflowJob.run()

	WDLOutputsJob
	WDLOutputsJob.run()

	WDLRootJob
	WDLRootJob.run()

	main()

	Submodules
	toil.bus
	Module Contents
	Classes

	Functions

	Attributes
	logger

	JobIssuedMessage
	JobIssuedMessage.job_type

	JobIssuedMessage.job_id

	JobIssuedMessage.toil_batch_id

	JobUpdatedMessage
	JobUpdatedMessage.job_id

	JobUpdatedMessage.result_status

	JobCompletedMessage
	JobCompletedMessage.job_type

	JobCompletedMessage.job_id

	JobCompletedMessage.exit_code

	JobFailedMessage
	JobFailedMessage.job_type

	JobFailedMessage.job_id

	JobMissingMessage
	JobMissingMessage.job_id

	JobAnnotationMessage
	JobAnnotationMessage.job_id

	JobAnnotationMessage.annotation_name

	JobAnnotationMessage.annotation_value

	ExternalBatchIdMessage
	ExternalBatchIdMessage.toil_batch_id

	ExternalBatchIdMessage.external_batch_id

	ExternalBatchIdMessage.batch_system

	QueueSizeMessage
	QueueSizeMessage.queue_size

	ClusterSizeMessage
	ClusterSizeMessage.instance_type

	ClusterSizeMessage.current_size

	ClusterDesiredSizeMessage
	ClusterDesiredSizeMessage.instance_type

	ClusterDesiredSizeMessage.desired_size

	message_to_bytes()

	MessageType

	bytes_to_message()

	MessageBus
	MessageBus.MessageType

	MessageBus.publish()

	MessageBus.check()

	MessageBus.subscribe()

	MessageBus.connect()

	MessageBus.outbox()

	MessageBus.connect_output_file()

	MessageBus.scan_bus_messages()

	MessageBusClient

	MessageInbox
	MessageInbox.MessageType

	MessageInbox.count()

	MessageInbox.empty()

	MessageInbox.for_each()

	MessageOutbox
	MessageOutbox.publish()

	MessageBusConnection

	JobStatus
	JobStatus.job_store_id

	JobStatus.name

	JobStatus.exit_code

	JobStatus.annotations

	JobStatus.toil_batch_id

	JobStatus.external_batch_id

	JobStatus.batch_system

	JobStatus.__repr__()

	replay_message_bus()

	gen_message_bus_path()

	toil.common
	Module Contents
	Classes

	Functions

	Attributes
	defaultTargetTime

	SYS_MAX_SIZE

	UUID_LENGTH

	logger

	Config
	Config.logFile

	Config.logRotating

	Config.cleanWorkDir

	Config.max_jobs

	Config.max_local_jobs

	Config.run_local_jobs_on_workers

	Config.tes_endpoint

	Config.tes_user

	Config.tes_password

	Config.tes_bearer_token

	Config.jobStore

	Config.batchSystem

	Config.batch_logs_dir

	Config.workflowAttemptNumber

	Config.disableAutoDeployment

	Config.workflowID

	Config.prepare_start()

	Config.prepare_restart()

	Config.setOptions()

	Config.__eq__()

	Config.__hash__()

	JOBSTORE_HELP

	parser_with_common_options()

	addOptions()

	parseBool()

	getNodeID()

	Toil
	Toil.config

	Toil.__enter__()

	Toil.__exit__()

	Toil.start()

	Toil.restart()

	Toil.getJobStore()

	Toil.parseLocator()

	Toil.buildLocator()

	Toil.resumeJobStore()

	Toil.createBatchSystem()

	Toil.importFile()

	Toil.import_file()

	Toil.exportFile()

	Toil.export_file()

	Toil.normalize_uri()

	Toil.getToilWorkDir()

	Toil.get_toil_coordination_dir()

	Toil.getLocalWorkflowDir()

	Toil.get_local_workflow_coordination_dir()

	ToilRestartException

	ToilContextManagerException

	ToilMetrics
	ToilMetrics.startDashboard()

	ToilMetrics.add_prometheus_data_source()

	ToilMetrics.log()

	ToilMetrics.logClusterSize()

	ToilMetrics.logClusterDesiredSize()

	ToilMetrics.logQueueSize()

	ToilMetrics.logMissingJob()

	ToilMetrics.logIssuedJob()

	ToilMetrics.logFailedJob()

	ToilMetrics.logCompletedJob()

	ToilMetrics.shutdown()

	parseSetEnv()

	iC()

	fC()

	parse_accelerator_list()

	cacheDirName()

	getDirSizeRecursively()

	getFileSystemSize()

	safeUnpickleFromStream()

	toil.deferred
	Module Contents
	Classes

	Attributes
	logger

	DeferredFunction
	DeferredFunction.__repr__

	DeferredFunction.create()

	DeferredFunction.invoke()

	DeferredFunction.__str__()

	DeferredFunctionManager
	DeferredFunctionManager.STATE_DIR_STEM

	DeferredFunctionManager.PREFIX

	DeferredFunctionManager.WIP_SUFFIX

	DeferredFunctionManager.__del__()

	DeferredFunctionManager.open()

	DeferredFunctionManager.cleanupWorker()

	toil.exceptions
	Module Contents
	logger

	FailedJobsException
	FailedJobsException.__str__()

	toil.job
	Module Contents
	Classes

	Functions

	Attributes
	logger

	JobPromiseConstraintError

	ConflictingPredecessorError

	TemporaryID
	TemporaryID.__str__()

	TemporaryID.__repr__()

	TemporaryID.__hash__()

	TemporaryID.__eq__()

	TemporaryID.__ne__()

	AcceleratorRequirement
	AcceleratorRequirement.count

	AcceleratorRequirement.kind

	AcceleratorRequirement.model

	AcceleratorRequirement.brand

	AcceleratorRequirement.api

	parse_accelerator()

	accelerator_satisfies()

	accelerators_fully_satisfy()

	RequirementsDict
	RequirementsDict.cores

	RequirementsDict.memory

	RequirementsDict.disk

	RequirementsDict.accelerators

	RequirementsDict.preemptible

	REQUIREMENT_NAMES

	ParsedRequirement

	ParseableIndivisibleResource

	ParseableDivisibleResource

	ParseableFlag

	ParseableAcceleratorRequirement

	ParseableRequirement

	Requirer
	Requirer.requirements

	Requirer.disk

	Requirer.memory

	Requirer.cores

	Requirer.preemptible

	Requirer.accelerators

	Requirer.assignConfig()

	Requirer.__getstate__()

	Requirer.__copy__()

	Requirer.__deepcopy__()

	Requirer.preemptable()

	Requirer.scale()

	Requirer.requirements_string()

	JobDescription
	JobDescription.services

	JobDescription.remainingTryCount

	JobDescription.serviceHostIDsInBatches()

	JobDescription.successorsAndServiceHosts()

	JobDescription.allSuccessors()

	JobDescription.successors_by_phase()

	JobDescription.nextSuccessors()

	JobDescription.filterSuccessors()

	JobDescription.filterServiceHosts()

	JobDescription.clear_nonexistent_dependents()

	JobDescription.clear_dependents()

	JobDescription.is_subtree_done()

	JobDescription.replace()

	JobDescription.addChild()

	JobDescription.addFollowOn()

	JobDescription.addServiceHostJob()

	JobDescription.hasChild()

	JobDescription.hasFollowOn()

	JobDescription.hasServiceHostJob()

	JobDescription.renameReferences()

	JobDescription.addPredecessor()

	JobDescription.onRegistration()

	JobDescription.setupJobAfterFailure()

	JobDescription.getLogFileHandle()

	JobDescription.clearRemainingTryCount()

	JobDescription.__str__()

	JobDescription.__repr__()

	JobDescription.pre_update_hook()

	JobDescription.get_job_kind()

	ServiceJobDescription
	ServiceJobDescription.onRegistration()

	CheckpointJobDescription
	CheckpointJobDescription.restartCheckpoint()

	Job
	Job.Runner
	Job.Runner.getDefaultArgumentParser()

	Job.Runner.getDefaultOptions()

	Job.Runner.addToilOptions()

	Job.Runner.startToil()

	Job.Service
	Job.Service.start()

	Job.Service.stop()

	Job.Service.check()

	Job.jobStoreID

	Job.description

	Job.disk

	Job.memory

	Job.cores

	Job.accelerators

	Job.preemptible

	Job.checkpoint

	Job.tempDir

	Job.__str__()

	Job.preemptable()

	Job.assignConfig()

	Job.run()

	Job.addChild()

	Job.hasChild()

	Job.addFollowOn()

	Job.hasPredecessor()

	Job.hasFollowOn()

	Job.addService()

	Job.hasService()

	Job.addChildFn()

	Job.addFollowOnFn()

	Job.addChildJobFn()

	Job.addFollowOnJobFn()

	Job.log()

	Job.wrapFn()

	Job.wrapJobFn()

	Job.encapsulate()

	Job.rv()

	Job.registerPromise()

	Job.prepareForPromiseRegistration()

	Job.checkJobGraphForDeadlocks()

	Job.getRootJobs()

	Job.checkJobGraphConnected()

	Job.checkJobGraphAcylic()

	Job.checkNewCheckpointsAreLeafVertices()

	Job.defer()

	Job.getUserScript()

	Job.getTopologicalOrderingOfJobs()

	Job.saveBody()

	Job.saveAsRootJob()

	Job.loadJob()

	JobException

	JobGraphDeadlockException

	FunctionWrappingJob
	FunctionWrappingJob.run()

	FunctionWrappingJob.getUserScript()

	JobFunctionWrappingJob
	JobFunctionWrappingJob.fileStore

	JobFunctionWrappingJob.run()

	PromisedRequirementFunctionWrappingJob
	PromisedRequirementFunctionWrappingJob.create()

	PromisedRequirementFunctionWrappingJob.run()

	PromisedRequirementFunctionWrappingJob.evaluatePromisedRequirements()

	PromisedRequirementJobFunctionWrappingJob
	PromisedRequirementJobFunctionWrappingJob.run()

	EncapsulatedJob
	EncapsulatedJob.addChild()

	EncapsulatedJob.addService()

	EncapsulatedJob.addFollowOn()

	EncapsulatedJob.rv()

	EncapsulatedJob.prepareForPromiseRegistration()

	EncapsulatedJob.__reduce__()

	EncapsulatedJob.getUserScript()

	ServiceHostJob
	ServiceHostJob.fileStore

	ServiceHostJob.addChild()

	ServiceHostJob.addFollowOn()

	ServiceHostJob.addService()

	ServiceHostJob.saveBody()

	ServiceHostJob.run()

	ServiceHostJob.getUserScript()

	Promise
	Promise.filesToDelete

	Promise.__reduce__()

	T

	Promised

	unwrap()

	unwrap_all()

	PromisedRequirement
	PromisedRequirement.getValue()

	PromisedRequirement.convertPromises()

	UnfulfilledPromiseSentinel
	UnfulfilledPromiseSentinel.__setstate__()

	toil.leader
	Module Contents
	Classes

	Attributes
	logger

	Leader
	Leader.run()

	Leader.create_status_sentinel_file()

	Leader.innerLoop()

	Leader.checkForDeadlocks()

	Leader.feed_deadlock_watchdog()

	Leader.issueJob()

	Leader.issueJobs()

	Leader.issueServiceJob()

	Leader.issueQueingServiceJobs()

	Leader.getNumberOfJobsIssued()

	Leader.removeJob()

	Leader.getJobs()

	Leader.killJobs()

	Leader.reissueOverLongJobs()

	Leader.reissueMissingJobs()

	Leader.processRemovedJob()

	Leader.process_finished_job()

	Leader.process_finished_job_description()

	Leader.getSuccessors()

	Leader.processTotallyFailedJob()

	toil.realtimeLogger
	Module Contents
	Classes

	Attributes
	logger

	LoggingDatagramHandler
	LoggingDatagramHandler.handle()

	JSONDatagramHandler
	JSONDatagramHandler.makePickle()

	RealtimeLoggerMetaclass
	RealtimeLoggerMetaclass.__getattr__()

	RealtimeLogger
	RealtimeLogger.envPrefix

	RealtimeLogger.defaultLevel

	RealtimeLogger.lock

	RealtimeLogger.loggingServer

	RealtimeLogger.serverThread

	RealtimeLogger.initialized

	RealtimeLogger.logger

	RealtimeLogger.getLogger()

	RealtimeLogger.__enter__()

	RealtimeLogger.__exit__()

	toil.resource
	Module Contents
	Classes

	Attributes
	logger

	Resource
	Resource.localPath

	Resource.localDirPath

	Resource.resourceEnvNamePrefix

	Resource.rootDirPathEnvName

	Resource.create()

	Resource.refresh()

	Resource.prepareSystem()

	Resource.cleanSystem()

	Resource.register()

	Resource.lookup()

	Resource.download()

	Resource.pickle()

	Resource.unpickle()

	FileResource
	FileResource.localPath

	DirectoryResource
	DirectoryResource.localPath

	VirtualEnvResource

	ModuleDescriptor
	ModuleDescriptor.belongsToToil

	ModuleDescriptor.dirPath

	ModuleDescriptor.name

	ModuleDescriptor.forModule()

	ModuleDescriptor.saveAsResourceTo()

	ModuleDescriptor.localize()

	ModuleDescriptor.globalize()

	ModuleDescriptor.toCommand()

	ModuleDescriptor.fromCommand()

	ModuleDescriptor.makeLoadable()

	ModuleDescriptor.load()

	ResourceException

	toil.serviceManager
	Module Contents
	Classes

	Attributes
	logger

	ServiceManager
	ServiceManager.services_are_starting()

	ServiceManager.get_job_count()

	ServiceManager.start()

	ServiceManager.put_client()

	ServiceManager.get_ready_client()

	ServiceManager.get_unservable_client()

	ServiceManager.get_startable_service()

	ServiceManager.kill_services()

	ServiceManager.is_active()

	ServiceManager.is_running()

	ServiceManager.check()

	ServiceManager.shutdown()

	toil.statsAndLogging
	Module Contents
	Classes

	Functions

	Attributes
	logger

	root_logger

	toil_logger

	DEFAULT_LOGLEVEL

	StatsAndLogging
	StatsAndLogging.start()

	StatsAndLogging.formatLogStream()

	StatsAndLogging.logWithFormatting()

	StatsAndLogging.writeLogFiles()

	StatsAndLogging.statsAndLoggingAggregator()

	StatsAndLogging.check()

	StatsAndLogging.shutdown()

	set_log_level()

	add_logging_options()

	configure_root_logger()

	log_to_file()

	set_logging_from_options()

	suppress_exotic_logging()

	toil.toilState
	Module Contents
	Classes

	Attributes
	logger

	ToilState
	ToilState.load_workflow()

	ToilState.job_exists()

	ToilState.get_job()

	ToilState.commit_job()

	ToilState.delete_job()

	ToilState.reset_job()

	ToilState.successors_pending()

	ToilState.successor_returned()

	ToilState.count_pending_successors()

	toil.version
	Module Contents
	baseVersion

	cgcloudVersion

	version

	distVersion

	exactPython

	python

	dockerTag

	currentCommit

	dockerRegistry

	dockerName

	dirty

	cwltool_version

	toil.worker
	Module Contents
	Classes

	Functions

	Attributes
	logger

	StatsDict
	StatsDict.jobs

	nextChainable()

	workerScript()

	parse_args()

	in_contexts()

	main()

	Package Contents
	Functions

	Attributes
	memoize

	retry()

	currentCommit

	log

	which()

	toilPackageDirPath()

	inVirtualEnv()

	resolveEntryPoint()

	physicalMemory()

	physicalDisk()

	applianceSelf()

	customDockerInitCmd()

	customInitCmd()

	lookupEnvVar()

	checkDockerImageExists()

	parseDockerAppliance()

	checkDockerSchema()

	ApplianceImageNotFound

	KNOWN_EXTANT_IMAGES

	requestCheckRegularDocker()

	requestCheckDockerIo()

	logProcessContext()

	cache_path

	tutorial_docker
	Module Contents
	align

	jobstore

	tutorial_managing2
	Module Contents
	Functions

	Attributes
	globalFileStoreJobFn()

	jobstore

	tutorial_helloworld
	Module Contents
	Functions

	Attributes
	helloWorld()

	parser

	tutorial_discoverfiles
	Module Contents
	Classes

	Functions
	discoverFiles
	discoverFiles.run()

	main()

	tutorial_multiplejobs2
	Module Contents
	Functions

	Attributes
	helloWorld()

	parser

	tutorial_dynamic
	Module Contents
	Functions

	Attributes
	binaryStringFn()

	jobstore

	tutorial_invokeworkflow2
	Module Contents
	Classes

	Attributes
	HelloWorld
	HelloWorld.run()

	jobstore

	tutorial_jobfunctions
	Module Contents
	Functions

	Attributes
	helloWorld()

	jobstore

	tutorial_managing
	Module Contents
	Classes

	Attributes
	LocalFileStoreJob
	LocalFileStoreJob.run()

	jobstore

	example_alwaysfail
	Module Contents
	Functions
	main()

	explode()

	example_cachingbenchmark
	Module Contents
	Functions
	main()

	root()

	poll()

	report()

	tutorial_quickstart
	Module Contents
	Functions

	Attributes
	helloWorld()

	jobstore

	tutorial_encapsulation2
	Module Contents
	A

	tutorial_multiplejobs3
	Module Contents
	Functions

	Attributes
	helloWorld()

	parser

	tutorial_cwlexample
	Module Contents
	Functions

	Attributes
	initialize_jobs()

	runQC()

	jobstore

	tutorial_encapsulation
	Module Contents
	A

	tutorial_invokeworkflow
	Module Contents
	Classes

	Attributes
	HelloWorld
	HelloWorld.run()

	jobstore

	tutorial_requirements
	Module Contents
	Functions

	Attributes
	parentJob()

	stageFn()

	analysisJob()

	jobstore

	tutorial_staging
	Module Contents
	Classes

	Attributes
	HelloWorld
	HelloWorld.run()

	jobstore

	tutorial_promises
	Module Contents
	Functions

	Attributes
	fn()

	jobstore

	tutorial_services
	Module Contents
	Classes

	Functions

	Attributes
	DemoService
	DemoService.start()

	DemoService.check()

	DemoService.stop()

	j

	s

	loginCredentialsPromise

	dbFn()

	jobstore

	tutorial_promises2
	Module Contents
	Functions

	Attributes
	binaryStrings()

	merge()

	jobstore

	tutorial_multiplejobs
	Module Contents
	Functions

	Attributes
	helloWorld()

	parser

	tutorial_arguments
	Module Contents
	Classes

	Attributes
	HelloWorld
	HelloWorld.run()

	parser

	mkFile
	Module Contents
	Functions
	main()

	debugWorkflow
	Module Contents
	Functions

	Attributes
	logger

	initialize_jobs()

	writeA()

	writeB()

	writeC()

	writeABC()

	finalize_jobs()

	broken_job()

	jobStorePath

	fake_mpi_run
	Module Contents
	Classes

	Functions

	Attributes
	make_parser()

	Runner
	Runner.run_once()

	Runner.run_many()

	args

	Index

	Search Page

Installation

This document describes how to prepare for and install Toil. Note that Toil requires that the user run all commands
inside of a Python virtualenv [https://virtualenv.pypa.io/en/stable/]. Instructions for installing and creating a Python virtual environment are provided
below.

Preparing Your Python Runtime Environment

Toil currently supports Python 3.7, 3.8, 3.9, and 3.10, and requires a virtualenv to be active to install.

If not already present, please install the latest Python virtualenv using pip [https://pip.readthedocs.io/en/latest/installing/]:

$ sudo pip install virtualenv

And create a virtual environment called venv in your home directory:

$ virtualenv ~/venv

If the user does not have root privileges, there are a few more steps, but one can download a specific virtualenv
package directly, untar the file, create, and source the virtualenv (version 15.1.0 as an example) using

$ curl -O https://pypi.python.org/packages/d4/0c/9840c08189e030873387a73b90ada981885010dd9aea134d6de30cd24cb8/virtualenv-15.1.0.tar.gz
$ tar xvfz virtualenv-15.1.0.tar.gz
$ cd virtualenv-15.1.0
$ python virtualenv.py ~/venv

Now that you’ve created your virtualenv, activate your virtual environment:

$ source ~/venv/bin/activate

Basic Installation

If you need only the basic version of Toil, it can be easily installed using pip:

$ pip install toil

Now you’re ready to run your first Toil workflow!

(If you need any of the extra features don’t do this yet and instead skip to the next section.)

Installing Toil with Extra Features

Python headers and static libraries

Needed for the mesos, aws, google, and encryption extras.

On Ubuntu:

$ sudo apt-get install build-essential python-dev

On macOS:

$ xcode-select --install

Encryption specific headers and library

Needed for the encryption extra.

On Ubuntu:

$ sudo apt-get install libssl-dev libffi-dev

On macOS:

$ brew install libssl libffi

Or see Cryptography [https://cryptography.io/en/latest/installation/] for other systems.

Some optional features, called extras, are not included in the basic
installation of Toil. To install Toil with all its bells and whistles, first
install any necessary headers and libraries (python-dev, libffi-dev). Then run

$ pip install toil[aws,google,mesos,encryption,cwl,wdl,kubernetes,server]

or

$ pip install toil[all]

Here’s what each extra provides:

	Extra

	Description

	all

	Installs all extras (though htcondor is linux-only and
will be skipped if not on a linux computer).

	aws

	Provides support for managing a cluster on Amazon Web
Service (AWS [https://aws.amazon.com/]) using Toil’s built in Cluster Utilities.
Clusters can scale up and down automatically.
It also supports storing workflow state.

	google

	Experimental. Stores workflow state in Google Cloud
Storage [https://cloud.google.com/storage/].

	mesos

	Provides support for running Toil on an Apache Mesos [https://mesos.apache.org/gettingstarted/]
cluster. Note that running Toil on other batch systems
does not require an extra. The mesos extra requires
the following native dependencies:

	Apache Mesos [https://mesos.apache.org/gettingstarted/] (Tested with Mesos v1.0.0)

	Python headers and static libraries

Important

If launching toil remotely on a mesos instance,
to install Toil with the mesos extra in a
virtualenv, be sure to create that virtualenv with the
--system-site-packages flag (only use remotely!):

$ virtualenv ~/venv --system-site-packages

Otherwise, you’ll see something like this:

ImportError: No module named mesos.native

	htcondor

	Support for the htcondor batch system. This currently is
a linux only extra.

	encryption

	Provides client-side encryption for files stored in the
AWS job store. This extra requires the
following native dependencies:

	Python headers and static libraries

	libffi headers and library

	cwl

	Provides support for running workflows written using the
Common Workflow Language [http://www.commonwl.org/].

	wdl

	Provides support for running workflows written using the
Workflow Description Language [https://software.broadinstitute.org/wdl/]. This extra has no native
dependencies.

	kubernetes

	Provides support for running workflows written using a
Kubernetes [https://kubernetes.io/docs/concepts/overview/] cluster.

	server

	Provides support for Toil server mode, including support
for the GA4GH Workflow Execution Service [https://ga4gh.github.io/workflow-execution-service-schemas/docs/] API.

Building from Source

If developing with Toil, you will need to build from source. This allows changes you
make to Toil to be reflected immediately in your runtime environment.

First, clone the source:

$ git clone https://github.com/DataBiosphere/toil.git
$ cd toil

Then, create and activate a virtualenv:

$ virtualenv venv
$. venv/bin/activate

From there, you can list all available Make targets by running make.
First and foremost, we want to install Toil’s build requirements (these are
additional packages that Toil needs to be tested and built but not to be run):

$ make prepare

Now, we can install Toil in development mode (such that changes to the
source code will immediately affect the virtualenv):

$ make develop

Or, to install with support for all optional Installing Toil with Extra Features:

$ make develop extras=[aws,mesos,google,encryption,cwl]

Or:

$ make develop extras=[all]

To build the docs, run make develop with all extras followed by

$ make docs

To run a quick batch of tests (this should take less than 30 minutes)
run

$ export TOIL_TEST_QUICK=True; make test

For more information on testing see Running Tests.

Quickstart Examples

Running a basic workflow

A Toil workflow can be run with just three steps:

	Install Toil (see Installation)

	Copy and paste the following code block into a new file called helloWorld.py:

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="1G", cores=1, disk="1G"):
 return f"Hello, world!, here's a message: {message}"

if __name__ == "__main__":
 parser = Job.Runner.getDefaultArgumentParser()
 options = parser.parse_args()
 options.clean = "always"
 with Toil(options) as toil:
 output = toil.start(Job.wrapFn(helloWorld, "You did it!"))
 print(output)

	Specify the name of the job store and run the workflow:

(venv) $ python helloWorld.py file:my-job-store

Note

Don’t actually type (venv) $ in at the beginning of each command. This is intended only to remind the user that
they should have their virtual environment running.

Congratulations! You’ve run your first Toil workflow using the default Batch System, singleMachine,
using the file job store.

Toil uses batch systems to manage the jobs it creates.

The singleMachine batch system is primarily used to prepare and debug workflows on a
local machine. Once validated, try running them on a full-fledged batch system (see Batch System API).
Toil supports many different batch systems such as Apache Mesos [https://mesos.apache.org/getting-started/] and Grid Engine; its versatility makes it
easy to run your workflow in all kinds of places.

Toil is totally customizable! Run python helloWorld.py --help to see a complete list of available options.

For something beyond a “Hello, world!” example, refer to A (more) real-world example.

Running a basic CWL workflow

The Common Workflow Language [http://www.commonwl.org/] (CWL) is an emerging standard for writing
workflows that are portable across multiple workflow engines and platforms.
Running CWL workflows using Toil is easy.

	First ensure that Toil is installed with the
cwl extra (see Installing Toil with Extra Features):

(venv) $ pip install 'toil[cwl]'

This installs the toil-cwl-runner executable.

	Copy and paste the following code block into example.cwl:

cwlVersion: v1.0
class: CommandLineTool
baseCommand: echo
stdout: output.txt
inputs:
 message:
 type: string
 inputBinding:
 position: 1
outputs:
 output:
 type: stdout

and this code into example-job.yaml:

message: Hello world!

	To run the workflow simply enter

(venv) $ toil-cwl-runner example.cwl example-job.yaml

Your output will be in output.txt:

(venv) $ cat output.txt
Hello world!

To learn more about CWL, see the CWL User Guide [https://www.commonwl.org/user_guide/] (from where this example was
shamelessly borrowed).

To run this workflow on an AWS cluster have a look at Running a CWL Workflow on AWS.

For information on using CWL with Toil see the section CWL in Toil

Running a basic WDL workflow

The Workflow Description Language [https://software.broadinstitute.org/wdl/] (WDL) is another emerging language for writing workflows that are portable across multiple workflow engines and platforms.
Running WDL workflows using Toil is still in alpha, and currently experimental. Toil currently supports basic workflow syntax (see WDL in Toil for more details and examples). Here we go over running a basic WDL helloworld workflow.

	First ensure that Toil is installed with the
wdl extra (see Installing Toil with Extra Features):

(venv) $ pip install 'toil[wdl]'

This installs the toil-wdl-runner executable.

	Copy and paste the following code block into wdl-helloworld.wdl:

 workflow write_simple_file {
 call write_file
 }
 task write_file {
 String message
 command { echo ${message} > wdl-helloworld-output.txt }
 output { File test = "wdl-helloworld-output.txt" }
 }

and this code into ``wdl-helloworld.json``::

 {
 "write_simple_file.write_file.message": "Hello world!"
 }

	To run the workflow simply enter

(venv) $ toil-wdl-runner wdl-helloworld.wdl wdl-helloworld.json

Your output will be in wdl-helloworld-output.txt:

(venv) $ cat wdl-helloworld-output.txt
Hello world!

To learn more about WDL, see the main WDL website [https://software.broadinstitute.org/wdl/] .

A (more) real-world example

For a more detailed example and explanation, we’ve developed a sample pipeline
that merge-sorts a temporary file. This is not supposed to be an efficient
sorting program, rather a more fully worked example of what Toil is capable of.

Running the example

	Download the example code

	Run it with the default settings:

(venv) $ python sort.py file:jobStore

The workflow created a file called sortedFile.txt in your current directory.
Have a look at it and notice that it contains a whole lot of sorted lines!

This workflow does a smart merge sort on a file it generates, fileToSort.txt. The sort is smart
because each step of the process—splitting the file into separate chunks, sorting these chunks, and merging them
back together—is compartmentalized into a job. Each job can specify its own resource requirements and will
only be run after the jobs it depends upon have run. Jobs without dependencies will be run in parallel.

Note

Delete fileToSort.txt before moving on to #3. This example introduces options that specify dimensions for
fileToSort.txt, if it does not already exist. If it exists, this workflow will use the existing file and
the results will be the same as #2.

	Run with custom options:

(venv) $ python sort.py file:jobStore \
 --numLines=5000 \
 --lineLength=10 \
 --overwriteOutput=True \
 --workDir=/tmp/

Here we see that we can add our own options to a Toil script. As noted above, the first two
options, --numLines and --lineLength, determine the number of lines and how many characters are in each line.
--overwriteOutput causes the current contents of sortedFile.txt to be overwritten, if it already exists.
The last option, --workDir, is an option built into Toil to specify where temporary files unique to a job are kept.

Describing the source code

To understand the details of what’s going on inside.
Let’s start with the main() function. It looks like a lot of code, but don’t worry—we’ll break it down piece by
piece.

def main(options=None):
 if not options:
 # deal with command line arguments
 parser = ArgumentParser()
 Job.Runner.addToilOptions(parser)
 parser.add_argument('--numLines', default=defaultLines, help='Number of lines in file to sort.', type=int)
 parser.add_argument('--lineLength', default=defaultLineLen, help='Length of lines in file to sort.', type=int)
 parser.add_argument("--fileToSort", help="The file you wish to sort")
 parser.add_argument("--outputFile", help="Where the sorted output will go")
 parser.add_argument("--overwriteOutput", help="Write over the output file if it already exists.", default=True)
 parser.add_argument("--N", dest="N",
 help="The threshold below which a serial sort function is used to sort file. "
 "All lines must of length less than or equal to N or program will fail",
 default=10000)
 parser.add_argument('--downCheckpoints', action='store_true',
 help='If this option is set, the workflow will make checkpoints on its way through'
 'the recursive "down" part of the sort')
 parser.add_argument("--sortMemory", dest="sortMemory",
 help="Memory for jobs that sort chunks of the file.",
 default=None)

 parser.add_argument("--mergeMemory", dest="mergeMemory",
 help="Memory for jobs that collate results.",
 default=None)

 options = parser.parse_args()
 if not hasattr(options, "sortMemory") or not options.sortMemory:
 options.sortMemory = sortMemory
 if not hasattr(options, "mergeMemory") or not options.mergeMemory:
 options.mergeMemory = sortMemory

 # do some input verification
 sortedFileName = options.outputFile or "sortedFile.txt"
 if not options.overwriteOutput and os.path.exists(sortedFileName):
 print(f'Output file {sortedFileName} already exists. '
 f'Delete it to run the sort example again or use --overwriteOutput=True')
 exit()

 fileName = options.fileToSort
 if options.fileToSort is None:
 # make the file ourselves
 fileName = 'fileToSort.txt'
 if os.path.exists(fileName):
 print(f'Sorting existing file: {fileName}')
 else:
 print(f'No sort file specified. Generating one automatically called: {fileName}.')
 makeFileToSort(fileName=fileName, lines=options.numLines, lineLen=options.lineLength)
 else:
 if not os.path.exists(options.fileToSort):
 raise RuntimeError("File to sort does not exist: %s" % options.fileToSort)

 if int(options.N) <= 0:
 raise RuntimeError("Invalid value of N: %s" % options.N)

 # Now we are ready to run
 with Toil(options) as workflow:
 sortedFileURL = 'file://' + os.path.abspath(sortedFileName)
 if not workflow.options.restart:
 sortFileURL = 'file://' + os.path.abspath(fileName)
 sortFileID = workflow.importFile(sortFileURL)
 sortedFileID = workflow.start(Job.wrapJobFn(setup,
 sortFileID,
 int(options.N),
 options.downCheckpoints,
 options=options,
 memory=sortMemory))
 else:
 sortedFileID = workflow.restart()
 workflow.exportFile(sortedFileID, sortedFileURL)

First we make a parser to process command line arguments using the argparse [https://docs.python.org/2.7/library/argparse.html] module. It’s important that we add the
call to Job.Runner.addToilOptions() to initialize our parser with all of Toil’s default options. Then we add
the command line arguments unique to this workflow, and parse the input. The help message listed with the arguments
should give you a pretty good idea of what they can do.

Next we do a little bit of verification of the input arguments. The option --fileToSort allows you to specify a file
that needs to be sorted. If this option isn’t given, it’s here that we make our own file with the call to
makeFileToSort().

Finally we come to the context manager that initializes the workflow. We create a path to the input file prepended with
'file://' as per the documentation for toil.common.Toil() when staging a file that is stored locally. Notice
that we have to check whether or not the workflow is restarting so that we don’t import the file more than once.
Finally we can kick off the workflow by calling toil.common.Toil.start() on the job setup. When the workflow
ends we capture its output (the sorted file’s fileID) and use that in toil.common.Toil.exportFile() to move the
sorted file from the job store back into “userland”.

Next let’s look at the job that begins the actual workflow, setup.

def setup(job, inputFile, N, downCheckpoints, options):
 """
 Sets up the sort.
 Returns the FileID of the sorted file
 """
 RealtimeLogger.info("Starting the merge sort")
 return job.addChildJobFn(down,
 inputFile, N, 'root',
 downCheckpoints,
 options = options,
 preemptible=True,
 memory=sortMemory).rv()

setup really only does two things. First it writes to the logs using Job.log() and then
calls addChildJobFn(). Child jobs run directly after the current job. This function turns the ‘job function’
down into an actual job and passes in the inputs including an optional resource requirement, memory. The job
doesn’t actually get run until the call to Job.rv(). Once the job down finishes, its output is returned here.

Now we can look at what down does.

def down(job, inputFileStoreID, N, path, downCheckpoints, options, memory=sortMemory):
 """
 Input is a file, a subdivision size N, and a path in the hierarchy of jobs.
 If the range is larger than a threshold N the range is divided recursively and
 a follow on job is then created which merges back the results else
 the file is sorted and placed in the output.
 """

 RealtimeLogger.info("Down job starting: %s" % path)

 # Read the file
 inputFile = job.fileStore.readGlobalFile(inputFileStoreID, cache=False)
 length = os.path.getsize(inputFile)
 if length > N:
 # We will subdivide the file
 RealtimeLogger.critical("Splitting file: %s of size: %s"
 % (inputFileStoreID, length))
 # Split the file into two copies
 midPoint = getMidPoint(inputFile, 0, length)
 t1 = job.fileStore.getLocalTempFile()
 with open(t1, 'w') as fH:
 fH.write(copySubRangeOfFile(inputFile, 0, midPoint+1))
 t2 = job.fileStore.getLocalTempFile()
 with open(t2, 'w') as fH:
 fH.write(copySubRangeOfFile(inputFile, midPoint+1, length))
 # Call down recursively. By giving the rv() of the two jobs as inputs to the follow-on job, up,
 # we communicate the dependency without hindering concurrency.
 result = job.addFollowOnJobFn(up,
 job.addChildJobFn(down, job.fileStore.writeGlobalFile(t1), N, path + '/0',
 downCheckpoints, checkpoint=downCheckpoints, options=options,
 preemptible=True, memory=options.sortMemory).rv(),
 job.addChildJobFn(down, job.fileStore.writeGlobalFile(t2), N, path + '/1',
 downCheckpoints, checkpoint=downCheckpoints, options=options,
 preemptible=True, memory=options.mergeMemory).rv(),
 path + '/up', preemptible=True, options=options, memory=options.sortMemory).rv()
 else:
 # We can sort this bit of the file
 RealtimeLogger.critical("Sorting file: %s of size: %s"
 % (inputFileStoreID, length))
 # Sort the copy and write back to the fileStore
 shutil.copyfile(inputFile, inputFile + '.sort')
 sort(inputFile + '.sort')
 result = job.fileStore.writeGlobalFile(inputFile + '.sort')

 RealtimeLogger.info("Down job finished: %s" % path)
 return result

Down is the recursive part of the workflow. First we read the file into the local filestore by calling
job.fileStore.readGlobalFile(). This puts a copy of the file in the temp directory for this particular job. This
storage will disappear once this job ends. For a detailed explanation of the filestore, job store, and their interfaces
have a look at Managing files within a workflow.

Next down checks the base case of the recursion: is the length of the input file less than N (remember N
was an option we added to the workflow in main)? In the base case, we just sort the file, and return the file ID
of this new sorted file.

If the base case fails, then the file is split into two new tempFiles using job.fileStore.getLocalTempFile() and
the helper function copySubRangeOfFile. Finally we add a follow on Job up with job.addFollowOnJobFn().
We’ve already seen child jobs. A follow-on Job is a job that runs after the current job and all of its children (and their children and follow-ons) have
completed. Using a follow-on makes sense because up is responsible for merging the files together and we don’t want
to merge the files together until we know they are sorted. Again, the return value of the follow-on job is requested
using Job.rv().

Looking at up

def up(job, inputFileID1, inputFileID2, path, options, memory=sortMemory):
 """
 Merges the two files and places them in the output.
 """

 RealtimeLogger.info("Up job starting: %s" % path)

 with job.fileStore.writeGlobalFileStream() as (fileHandle, outputFileStoreID):
 fileHandle = codecs.getwriter('utf-8')(fileHandle)
 with job.fileStore.readGlobalFileStream(inputFileID1) as inputFileHandle1:
 inputFileHandle1 = codecs.getreader('utf-8')(inputFileHandle1)
 with job.fileStore.readGlobalFileStream(inputFileID2) as inputFileHandle2:
 inputFileHandle2 = codecs.getreader('utf-8')(inputFileHandle2)
 RealtimeLogger.info("Merging %s and %s to %s"
 % (inputFileID1, inputFileID2, outputFileStoreID))
 merge(inputFileHandle1, inputFileHandle2, fileHandle)
 # Cleanup up the input files - these deletes will occur after the completion is successful.
 job.fileStore.deleteGlobalFile(inputFileID1)
 job.fileStore.deleteGlobalFile(inputFileID2)

 RealtimeLogger.info("Up job finished: %s" % path)

 return outputFileStoreID

we see that the two input files are merged together and the output is written to a new file using
job.fileStore.writeGlobalFileStream(). After a little cleanup, the output file is returned.

Once the final up finishes and all of the rv() promises are fulfilled, main receives the sorted file’s ID
which it uses in exportFile to send it to the user.

There are other things in this example that we didn’t go over such as Checkpoints and the details of much of
the Toil Class API.

At the end of the script the lines

if __name__ == '__main__'
 main()

are included to ensure that the main function is only run once in the ‘__main__’ process
invoked by you, the user.
In Toil terms, by invoking the script you created the leader process
in which the main()
function is run. A worker process is a separate process whose sole purpose
is to host the execution of one or more jobs defined in that script. In any Toil
workflow there is always one leader process, and potentially many worker processes.

When using the single-machine batch system (the default), the worker processes will be running
on the same machine as the leader process. With full-fledged batch systems like
Mesos the worker processes will typically be started on separate machines. The
boilerplate ensures that the pipeline is only started once—on the leader—but
not when its job functions are imported and executed on the individual workers.

Typing python sort.py --help will show the complete list of
arguments for the workflow which includes both Toil’s and ones defined inside
sort.py. A complete explanation of Toil’s arguments can be
found in Commandline Options.

Logging

By default, Toil logs a lot of information related to the current environment
in addition to messages from the batch system and jobs. This can be configured
with the --logLevel flag. For example, to only log CRITICAL level
messages to the screen:

(venv) $ python sort.py file:jobStore \
 --logLevel=critical \
 --overwriteOutput=True

This hides most of the information we get from the Toil run. For more detail,
we can run the pipeline with --logLevel=debug to see a comprehensive
output. For more information, see Commandline Options.

Error Handling and Resuming Pipelines

With Toil, you can recover gracefully from a bug in your pipeline without losing
any progress from successfully completed jobs. To demonstrate this, let’s add
a bug to our example code to see how Toil handles a failure and how we can
resume a pipeline after that happens. Add a bad assertion at line 52 of the
example (the first line of down()):

def down(job, inputFileStoreID, N, downCheckpoints, memory=sortMemory):
 ...
 assert 1 == 2, "Test error!"

When we run the pipeline, Toil will show a detailed failure log with a traceback:

(venv) $ python sort.py file:jobStore
...
---TOIL WORKER OUTPUT LOG---
...
m/j/jobonrSMP Traceback (most recent call last):
m/j/jobonrSMP File "toil/src/toil/worker.py", line 340, in main
m/j/jobonrSMP job._runner(jobGraph=jobGraph, jobStore=jobStore, fileStore=fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1270, in _runner
m/j/jobonrSMP returnValues = self._run(jobGraph, fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1217, in _run
m/j/jobonrSMP return self.run(fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1383, in run
m/j/jobonrSMP rValue = userFunction(*((self,) + tuple(self._args)), **self._kwargs)
m/j/jobonrSMP File "toil/example.py", line 30, in down
m/j/jobonrSMP assert 1 == 2, "Test error!"
m/j/jobonrSMP AssertionError: Test error!

If we try and run the pipeline again, Toil will give us an error message saying
that a job store of the same name already exists. By default, in the event of a
failure, the job store is preserved so that the workflow can be restarted,
starting from the previously failed jobs. We can restart the pipeline by running

(venv) $ python sort.py file:jobStore \
 --restart \
 --overwriteOutput=True

We can also change the number of times Toil will attempt to retry a failed job:

(venv) $ python sort.py file:jobStore \
 --retryCount 2 \
 --restart \
 --overwriteOutput=True

You’ll now see Toil attempt to rerun the failed job until it runs out of tries.
--retryCount is useful for non-systemic errors, like downloading a file that
may experience a sporadic interruption, or some other non-deterministic failure.

To successfully restart our pipeline, we can edit our script to comment out
line 30, or remove it, and then run

(venv) $ python sort.py file:jobStore \
 --restart \
 --overwriteOutput=True

The pipeline will run successfully, and the job store will be removed on the
pipeline’s completion.

Collecting Statistics

Please see the Stats Command section for more on gathering runtime and resource info on jobs.

Launching a Toil Workflow in AWS

After having installed the aws extra for Toil during the Installation and set up AWS
(see Preparing your AWS environment), the user can run the basic helloWorld.py script (Running a basic workflow)
on a VM in AWS just by modifying the run command.

Note that when running in AWS, users can either run the workflow on a single instance or run it on a
cluster (which is running across multiple containers on multiple AWS instances). For more information
on running Toil workflows on a cluster, see Running in AWS.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise things may not be cleaned up properly.

	Launch a cluster in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
 --keyPairName <AWS-key-pair-name> \
 --leaderNodeType t2.medium \
 --zone us-west-2a

The arguments keyPairName, leaderNodeType, and zone are required to launch a cluster.

	Copy helloWorld.py to the /tmp directory on the leader node using the Rsync-Cluster Command command:

(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> helloWorld.py :/tmp

Note that the command requires defining the file to copy as well as the target location on the cluster leader node.

	Login to the cluster leader node using the Ssh-Cluster Command command:

(venv) $ toil ssh-cluster --zone us-west-2a <cluster-name>

Note that this command will log you in as the root user.

	Run the Toil script in the cluster:

$ python /tmp/helloWorld.py aws:us-west-2:my-S3-bucket

In this particular case, we create an S3 bucket called my-S3-bucket in
the us-west-2 availability zone to store intermediate job results.

Along with some other INFO log messages, you should get the following output in your terminal window:
Hello, world!, here's a message: You did it!.

	Exit from the SSH connection.

$ exit

	Use the Destroy-Cluster Command command to destroy the cluster:

(venv) $ toil destroy-cluster --zone us-west-2a <cluster-name>

Note that this command will destroy the cluster leader
node and any resources created to run the job, including the S3 bucket.

Running a CWL Workflow on AWS

After having installed the aws and cwl extras for Toil during the Installation and set up AWS
(see Preparing your AWS environment), the user can run a CWL workflow with Toil on AWS.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise things may not be cleaned up properly.

	First launch a node in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
 --keyPairName <AWS-key-pair-name> \
 --leaderNodeType t2.medium \
 --zone us-west-2a

	Copy example.cwl and example-job.yaml from the CWL example to the node using
the Rsync-Cluster Command command:

(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> example.cwl :/tmp
(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> example-job.yaml :/tmp

	SSH into the cluster’s leader node using the Ssh-Cluster Command utility:

(venv) $ toil ssh-cluster --zone us-west-2a <cluster-name>

	Once on the leader node, it’s a good idea to update and install the following:

sudo apt-get update
sudo apt-get -y upgrade
sudo apt-get -y dist-upgrade
sudo apt-get -y install git
sudo pip install mesos.cli

	Now create a new virtualenv with the --system-site-packages option and activate:

virtualenv --system-site-packages venv
source venv/bin/activate

	Now run the CWL workflow:

(venv) $ toil-cwl-runner \
 --provisioner aws \
 --jobStore aws:us-west-2a:any-name \
 /tmp/example.cwl /tmp/example-job.yaml

Tip

When running a CWL workflow on AWS, input files can be provided either on the
local file system or in S3 buckets using s3:// URI references. Final output
files will be copied to the local file system of the leader node.

	Finally, log out of the leader node and from your local computer, destroy the cluster:

(venv) $ toil destroy-cluster --zone us-west-2a <cluster-name>

Running a Workflow with Autoscaling - Cactus

Cactus [https://github.com/ComparativeGenomicsToolkit/cactus] is a reference-free, whole-genome multiple alignment
program that can be run on any of the cloud platforms Toil supports.

Note

Cloud Independence:

This example provides a “cloud agnostic” view of running Cactus with Toil. Most options will not change between cloud providers.
However, each provisioner has unique inputs for --leaderNodeType, --nodeType and --zone.
We recommend the following:

	Option

	Used in

	AWS

	Google

	--leaderNodeType

	launch-cluster

	t2.medium

	n1-standard-1

	--zone

	launch-cluster

	us-west-2a

	us-west1-a

	--zone

	cactus

	us-west-2

	--nodeType

	cactus

	c3.4xlarge

	n1-standard-8

When executing toil launch-cluster with gce specified for --provisioner, the option --boto must
be specified and given a path to your .boto file. See Running in Google Compute Engine (GCE) for more information about the --boto option.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise things may not be cleaned up properly.

	Download pestis.tar.gz

	Launch a leader node using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
 --provisioner <aws, gce> \
 --keyPairName <key-pair-name> \
 --leaderNodeType <type> \
 --zone <zone>

Note

A Helpful Tip

When using AWS, setting the environment variable eliminates having to specify the --zone option
for each command. This will be supported for GCE in the future.

(venv) $ export TOIL_AWS_ZONE=us-west-2c

	Create appropriate directory for uploading files:

(venv) $ toil ssh-cluster --provisioner <aws, gce> <cluster-name>
$ mkdir /root/cact_ex
$ exit

	Copy the required files, i.e., seqFile.txt (a text file containing the locations of the input sequences as
well as their phylogenetic tree, see
here [https://github.com/ComparativeGenomicsToolkit/cactus#seqfile-the-input-file]), organisms’ genome sequence
files in FASTA format, and configuration files (e.g. blockTrim1.xml, if desired), up to the leader node:

(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> pestis-short-aws-seqFile.txt :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000169655.1_ASM16965v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000006645.1_ASM664v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000182485.1_ASM18248v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000013805.1_ASM1380v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> setup_leaderNode.sh :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> blockTrim1.xml :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> blockTrim3.xml :/root/cact_ex

	Log in to the leader node:

(venv) $ toil ssh-cluster --provisioner <aws, gce> <cluster-name>

	Set up the environment of the leader node to run Cactus:

$ bash /root/cact_ex/setup_leaderNode.sh
$ source cact_venv/bin/activate
(cact_venv) $ cd cactus
(cact_venv) $ pip install --upgrade .

	Run Cactus [https://github.com/ComparativeGenomicsToolkit/cactus] as an autoscaling workflow:

(cact_venv) $ TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:3.14.0 cactus \
 --provisioner <aws, gce> \
 --nodeType <type> \
 --maxNodes 2 \
 --minNodes 0 \
 --retry 10 \
 --batchSystem mesos \
 --logDebug \
 --logFile /logFile_pestis3 \
 --configFile \
 /root/cact_ex/blockTrim3.xml <aws, google>:<zone>:cactus-pestis \
 /root/cact_ex/pestis-short-aws-seqFile.txt \
 /root/cact_ex/pestis_output3.hal

Note

Pieces of the Puzzle:

TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:3.14.0 — specifies the version of Toil being used, 3.14.0;
if the latest one is desired, please eliminate.

--nodeType — determines the instance type used for worker nodes. The instance type specified here must be on
the same cloud provider as the one specified with --leaderNodeType

--maxNodes 2 — creates up to two instances of the type specified with --nodeType and
launches Mesos worker containers inside them.

--logDebug — equivalent to --logLevel DEBUG.

--logFile /logFile_pestis3 — writes logs in a file named logFile_pestis3 under / folder.

--configFile — this is not required depending on whether a specific configuration file is intended to run
the alignment.

<aws, google>:<zone>:cactus-pestis — creates a bucket, named cactus-pestis, with the specified cloud provider to store intermediate job files and metadata.
NOTE: If you want to use a GCE-based jobstore, specify google here, not gce.

The result file, named pestis_output3.hal, is stored under /root/cact_ex folder of the leader node.

Use cactus --help to see all the Cactus and Toil flags available.

	Log out of the leader node:

(cact_venv) $ exit

	Download the resulted output to local machine:

(venv) $ toil rsync-cluster \
 --provisioner <aws, gce> <cluster-name> \
 :/root/cact_ex/pestis_output3.hal \
 <path-of-folder-on-local-machine>

	Destroy the cluster:

(venv) $ toil destroy-cluster --provisioner <aws, gce> <cluster-name>

Introduction

Toil runs in various environments, including locally and in the cloud
(Amazon Web Services and Google Compute Engine). Toil also supports two DSLs: CWL and
(Amazon Web Services and Google Compute Engine). Toil also supports two DSLs: CWL and
WDL (experimental).

Toil is built in a modular way so that it can be used on lots of different systems, and with different configurations.
The three configurable pieces are the

	Job Store API: A filepath or url that can host and centralize all files for a workflow (e.g. a local folder, or an AWS s3 bucket url).

	Batch System API: Specifies either a local single-machine or a currently supported HPC environment (lsf, parasol, mesos, slurm, torque, htcondor, kubernetes, or grid_engine). Mesos is a special case, and is launched for cloud environments.

	Provisioner: For running in the cloud only. This specifies which cloud provider provides instances to do the “work” of your workflow.

Job Store

The job store is a storage abstraction which contains all of the information used in a Toil run. This centralizes all
of the files used by jobs in the workflow and also the details of the progress of the run. If a workflow crashes
or fails, the job store contains all of the information necessary to resume with minimal repetition of work.

Several different job stores are supported, including the file job store and cloud job stores.

File Job Store

The file job store is for use locally, and keeps the workflow information in a directory on the machine where the
workflow is launched. This is the simplest and most convenient job store for testing or for small runs.

For an example that uses the file job store, see Running a basic workflow.

Cloud Job Stores

Toil currently supports the following cloud storage systems as job stores:

	AWS Job Store: An AWS S3 bucket formatted as “aws:<zone>:<bucketname>” where only numbers, letters, and dashes are allowed in the bucket name. Example: aws:us-west-2:my-aws-jobstore-name.

	Google Job Store: A Google Cloud Storage bucket formatted as “gce:<zone>:<bucketname>” where only numbers, letters, and dashes are allowed in the bucket name. Example: gce:us-west2-a:my-google-jobstore-name.

These use cloud buckets to house all of the files. This is useful if there are several different
worker machines all running jobs that need to access the job store.

Batch System

A Toil batch system is either a local single-machine (one computer) or a currently supported
HPC cluster of computers (lsf, parasol, mesos, slurm, torque, htcondor, or grid_engine). Mesos
is a special case, and is launched for cloud environments. These environments manage individual
worker nodes under a leader node to process the work required in a workflow. The leader and its
workers all coordinate their tasks and files through a centralized job store location.

See Batch System API for a more detailed description of different batch systems.

Provisioner

The Toil provisioner provides a tool set for running a Toil workflow on a particular cloud platform.

The Cluster Utilities are command line tools used to provision nodes in your desired cloud platform.
They allows you to launch nodes, ssh to the leader, and rsync files back and forth.

For detailed instructions for using the provisioner see Running in AWS or Running in Google Compute Engine (GCE).

Commandline Options

A quick way to see all of Toil’s commandline options is by executing the following on a toil script:

$ toil example.py --help

For a basic toil workflow, Toil has one mandatory argument, the job store. All other arguments are optional.

The Job Store

Running toil scripts requires a filepath or url to a centralizing location for all of the files of the workflow.
This is Toil’s one required positional argument: the job store. To use the quickstart example,
if you’re on a node that has a large /scratch volume, you can specify that the jobstore be created there by
executing: python HelloWorld.py /scratch/my-job-store, or more explicitly,
python HelloWorld.py file:/scratch/my-job-store.

Syntax for specifying different job stores:

Local: file:job-store-name

AWS: aws:region-here:job-store-name

Google: google:projectID-here:job-store-name

Different types of job store options can be found below.

Commandline Options

Core Toil Options
Options to specify the location of the Toil workflow and turn on stats collation
about the performance of jobs.

	--workDir WORKDIR

	Absolute path to directory where temporary files
generated during the Toil run should be placed. Standard
output and error from batch system jobs (unless –noStdOutErr)
will be placed in this directory. A cache directory
may be placed in this directory. Temp files and folders
will be placed in a toil-<workflowID> within workDir.
The workflowID is generated by Toil and will be reported
in the workflow logs. Default is determined by the variables
(TMPDIR, TEMP, TMP) via mkdtemp. This directory needs to
exist on all machines running jobs; if capturing standard
output and error from batch system jobs is desired, it will
generally need to be on a shared file system. When
sharing a cache between containers on a host, this
directory must be shared between the containers.

	--coordinationDir COORDINATION_DIR

	Absolute path to directory where Toil will keep state
and lock files. When sharing a cache between containers
on a host, this directory must be shared between the
containers.

	--noStdOutErr

	Do not capture standard output and error from batch system jobs.

	--stats

	Records statistics about the toil workflow to be used
by ‘toil stats’.

	--clean=STATE

	Determines the deletion of the jobStore upon
completion of the program. Choices: ‘always’,
‘onError’,’never’, or ‘onSuccess’. The -\-stats option
requires information from the jobStore upon completion
so the jobStore will never be deleted with that flag.
If you wish to be able to restart the run, choose
‘never’ or ‘onSuccess’. Default is ‘never’ if stats is
enabled, and ‘onSuccess’ otherwise

	--cleanWorkDir STATE

	Determines deletion of temporary worker directory upon
completion of a job. Choices: ‘always’, ‘onError’, ‘never’,
or ‘onSuccess’. Default = always. WARNING: This option
should be changed for debugging only. Running a full
pipeline with this option could fill your disk with
intermediate data.

	--clusterStats FILEPATH

	If enabled, writes out JSON resource usage statistics
to a file. The default location for this file is the
current working directory, but an absolute path can
also be passed to specify where this file should be
written. This option only applies when using scalable
batch systems.

	--restart

	If -\-restart is specified then will attempt to restart
existing workflow at the location pointed to by the
-\-jobStore option. Will raise an exception if the
workflow does not exist.

Logging Options
Toil hides stdout and stderr by default except in case of job failure. Log
levels in toil are based on priority from the logging module:

	--logOff

	Only CRITICAL log levels are shown.
Equivalent to --logLevel=OFF or --logLevel=CRITICAL.

	--logCritical

	Only CRITICAL log levels are shown.
Equivalent to --logLevel=OFF or --logLevel=CRITICAL.

	--logError

	Only ERROR, and CRITICAL log levels are shown.
Equivalent to --logLevel=ERROR.

	--logWarning

	Only WARN, ERROR, and CRITICAL log levels are shown.
Equivalent to --logLevel=WARNING.

	--logInfo

	All log statements are shown, except DEBUG.
Equivalent to --logLevel=INFO.

	--logDebug

	All log statements are shown.
Equivalent to --logLevel=DEBUG.

	--logLevel=LOGLEVEL

	May be set to: OFF (or CRITICAL),
ERROR, WARN (or WARNING), INFO, or DEBUG.

	--logFile FILEPATH

	Specifies a file path to write the logging output to.

	--rotatingLogging

	Turn on rotating logging, which prevents log files from
getting too big (set using --maxLogFileSize BYTESIZE).

	--maxLogFileSize BYTESIZE

	The maximum size of a job log file to keep (in bytes),
log files larger than this will be truncated to the last
X bytes. Setting this option to zero will prevent any
truncation. Setting this option to a negative value will
truncate from the beginning. Default=62.5KiB
Sets the maximum log file size in bytes (--rotatingLogging must be active).

	--log-dir DIRPATH

	For CWL and local file system only. Log stdout and stderr (if tool requests stdout/stderr) to the DIRPATH.

Batch System Options

	--batchSystem BATCHSYSTEM

	The type of batch system to run the job(s) with,
currently can be one of aws_batch, parasol, single_machine,
grid_engine, lsf, mesos, slurm, tes, torque,
htcondor, kubernetes. (default: single_machine)

	--disableAutoDeployment

	Should auto-deployment of the user script be deactivated?
If True, the user script/package should be present at
the same location on all workers. Default = False.

	--maxJobs MAXJOBS

	Specifies the maximum number of jobs to submit to the
backing scheduler at once. Not supported on Mesos or
AWS Batch. Use 0 for unlimited. Defaults to unlimited.

	--maxLocalJobs MAXLOCALJOBS

	Specifies the maximum number of housekeeping jobs to
run simultaneously on the local system. Use 0 for
unlimited. Defaults to the number of local cores.

	--manualMemArgs

	Do not add the default arguments: ‘hv=MEMORY’ &
‘h_vmem=MEMORY’ to the qsub call, and instead rely on
TOIL_GRIDGENGINE_ARGS to supply alternative arguments.
Requires that TOIL_GRIDGENGINE_ARGS be set.

	--runCwlInternalJobsOnWorkers

	Whether to run CWL internal jobs (e.g. CWLScatter) on
the worker nodes instead of the primary node. If false
(default), then all such jobs are run on the primary node.
Setting this to true can speed up the pipeline for very
large workflows with many sub-workflows and/or scatters,
provided that the worker pool is large enough.

	--statePollingWait STATEPOLLINGWAIT

	Time, in seconds, to wait before doing a scheduler
query for job state. Return cached results if within
the waiting period. Only works for grid engine batch
systems such as gridengine, htcondor, torque, slurm,
and lsf.

	--batchLogsDir BATCHLOGSDIR

	Directory to tell the backing batch system to log into.
Should be available on both the leader and the workers,
if the backing batch system writes logs to the worker
machines’ filesystems, as many HPC schedulers do. If
unset, the Toil work directory will be used. Only
works for grid engine batch systems such as gridengine,
htcondor, torque, slurm, and lsf.

	--parasolCommand PARASOLCOMMAND

	The name or path of the parasol program. Will be
looked up on PATH unless it starts with a
slash. (default: parasol)

	--parasolMaxBatches PARASOLMAXBATCHES

	Maximum number of job batches the Parasol batch is
allowed to create. One batch is created for jobs with
a unique set of resource requirements. (default: 1000)

	--mesosEndpoint MESOSENDPOINT

	The host and port of the Mesos server separated by a
colon. (default: <leader IP>:5050)

	--mesosFrameworkId MESOSFRAMEWORKID

	Use a specific Mesos framework ID.

	--mesosRole MESOSROLE

	Use a Mesos role.

	--mesosName MESOSNAME

	The Mesos name to use. (default: toil)

	--kubernetesHostPath KUBERNETES_HOST_PATH

	Path on Kubernetes hosts to use as shared inter-pod temp
directory.

	--kubernetesOwner KUBERNETES_OWNER

	Username to mark Kubernetes jobs with.

	--kubernetesServiceAccount KUBERNETES_SERVICE_ACCOUNT

	Service account to run jobs as.

	--kubernetesPodTimeout KUBERNETES_POD_TIMEOUT

	Seconds to wait for a scheduled Kubernetes pod to
start running. (default: 120s)

	--tesEndpoint TES_ENDPOINT

	The http(s) URL of the TES server.
(default: http://<leader IP>:8000)

	--tesUser TES_USER

	User name to use for basic authentication to TES server.

	--tesPassword TES_PASSWORD

	Password to use for basic authentication to TES server.

	--tesBearerToken TES_BEARER_TOKEN

	Bearer token to use for authentication to TES server.

	--awsBatchRegion AWS_BATCH_REGION

	The AWS region containing the AWS Batch queue to submit
to.

	--awsBatchQueue AWS_BATCH_QUEUE

	The name or ARN of the AWS Batch queue to submit to.

	--awsBatchJobRoleArn AWS_BATCH_JOB_ROLE_ARN

	The ARN of an IAM role to run AWS Batch jobs as, so they
can e.g. access a job store. Must be assumable by
ecs-tasks.amazonaws.com

	--scale SCALE

	A scaling factor to change the value of all submitted
tasks’ submitted cores. Used in single_machine batch
system. Useful for running workflows on smaller
machines than they were designed for, by setting a
value less than 1. (default: 1)

Data Storage Options
Allows configuring Toil’s data storage.

	--linkImports

	When using a filesystem based job store, CWL input files
are by default symlinked in. Specifying this option
instead copies the files into the job store, which may
protect them from being modified externally. When not
specified and as long as caching is enabled, Toil will
protect the file automatically by changing the permissions
to read-only.

	--moveExports

	When using a filesystem based job store, output files
are by default moved to the output directory, and a
symlink to the moved exported file is created at the
initial location. Specifying this option instead copies
the files into the output directory. Applies to
filesystem-based job stores only.

	--disableCaching

	Disables caching in the file store. This flag must be
set to use a batch system that does not support
cleanup, such as Parasol.

	--caching BOOL

	Set caching options. This must be set to “false”
to use a batch system that does not support
cleanup, such as Parasol. Set to “true” if caching
is desired.

Autoscaling Options
Allows the specification of the minimum and maximum number of nodes in an
autoscaled cluster, as well as parameters to control the level of provisioning.

	--provisioner CLOUDPROVIDER

	The provisioner for cluster auto-scaling. This is the
main Toil -\-provisioner option, and defaults to None
for running on single_machine and non-auto-scaling batch
systems. The currently supported choices are ‘aws’ or
‘gce’.

	--nodeTypes NODETYPES

	Specifies a list of comma-separated node types, each of which is
composed of slash-separated instance types, and an optional spot
bid set off by a colon, making the node type preemptible. Instance
types may appear in multiple node types, and the same node type
may appear as both preemptible and non-preemptible.

	Valid argument specifying two node types:
	c5.4xlarge/c5a.4xlarge:0.42,t2.large

	Node types:
	c5.4xlarge/c5a.4xlarge:0.42 and t2.large

	Instance types:
	c5.4xlarge, c5a.4xlarge, and t2.large

	Semantics:
	Bid $0.42/hour for either c5.4xlarge or c5a.4xlarge instances,
treated interchangeably, while they are available at that price,
and buy t2.large instances at full price

	--minNodes MINNODES

	Minimum number of nodes of each type in the cluster,
if using auto-scaling. This should be provided as a
comma-separated list of the same length as the list of
node types. default=0

	--maxNodes MAXNODES

	Maximum number of nodes of each type in the cluster,
if using autoscaling, provided as a comma-separated
list. The first value is used as a default if the list
length is less than the number of nodeTypes.
default=10

	--targetTime TARGETTIME

	Sets how rapidly you aim to complete jobs in seconds.
Shorter times mean more aggressive parallelization.
The autoscaler attempts to scale up/down so that it
expects all queued jobs will complete within targetTime
seconds. (Default: 1800)

	--betaInertia BETAINERTIA

	A smoothing parameter to prevent unnecessary
oscillations in the number of provisioned nodes. This
controls an exponentially weighted moving average of the
estimated number of nodes. A value of 0.0 disables any
smoothing, and a value of 0.9 will smooth so much that
few changes will ever be made. Must be between 0.0 and
0.9. (Default: 0.1)

	--scaleInterval SCALEINTERVAL

	The interval (seconds) between assessing if the scale of
the cluster needs to change. (Default: 60)

	--preemptibleCompensation PREEMPTIBLECOMPENSATION

	The preference of the autoscaler to replace
preemptible nodes with non-preemptible nodes, when
preemptible nodes cannot be started for some reason.
Defaults to 0.0. This value must be between 0.0 and
1.0, inclusive. A value of 0.0 disables such
compensation, a value of 0.5 compensates two missing
preemptible nodes with a non-preemptible one. A value
of 1.0 replaces every missing pre-emptable node with a
non-preemptible one.

	--nodeStorage NODESTORAGE

	Specify the size of the root volume of worker nodes
when they are launched in gigabytes. You may want to
set this if your jobs require a lot of disk space. The
default value is 50.

	--nodeStorageOverrides NODESTORAGEOVERRIDES

	Comma-separated list of nodeType:nodeStorage that are used
to override the default value from -\-nodeStorage for the
specified nodeType(s). This is useful for heterogeneous
jobs where some tasks require much more disk than others.

	--metrics

	Enable the prometheus/grafana dashboard for monitoring
CPU/RAM usage, queue size, and issued jobs.

	--assumeZeroOverhead

	Ignore scheduler and OS overhead and assume jobs can use every
last byte of memory and disk on a node when autoscaling.

Service Options
Allows the specification of the maximum number of service jobs in a cluster. By
keeping this limited we can avoid nodes occupied with services causing deadlocks.
(Not for CWL).

	--maxServiceJobs MAXSERVICEJOBS

	The maximum number of service jobs that can be run
concurrently, excluding service jobs running on
preemptible nodes. default=9223372036854775807

	--maxPreemptibleServiceJobs MAXPREEMPTIBLESERVICEJOBS

	The maximum number of service jobs that can run
concurrently on preemptible nodes.
default=9223372036854775807

	--deadlockWait DEADLOCKWAIT

	Time, in seconds, to tolerate the workflow running only
the same service jobs, with no jobs to use them, before
declaring the workflow to be deadlocked and stopping.
default=60

	--deadlockCheckInterval DEADLOCKCHECKINTERVAL

	Time, in seconds, to wait between checks to see if the
workflow is stuck running only service jobs, with no
jobs to use them. Should be shorter than
-\-deadlockWait. May need to be increased if the batch
system cannot enumerate running jobs quickly enough, or
if polling for running jobs is placing an unacceptable
load on a shared cluster. default=30

Resource Options
The options to specify default cores/memory requirements (if not specified by
the jobs themselves), and to limit the total amount of memory/cores requested
from the batch system.

	--defaultMemory INT

	The default amount of memory to request for a job.
Only applicable to jobs that do not specify an
explicit value for this requirement. Standard suffixes
like K, Ki, M, Mi, G or Gi are supported. Default is
2.0G

	--defaultCores FLOAT

	The default number of CPU cores to dedicate a job.
Only applicable to jobs that do not specify an
explicit value for this requirement. Fractions of a
core (for example 0.1) are supported on some batch
systems, namely Mesos and singleMachine. Default is
1.0

	--defaultDisk INT

	The default amount of disk space to dedicate a job.
Only applicable to jobs that do not specify an
explicit value for this requirement. Standard suffixes
like K, Ki, M, Mi, G or Gi are supported. Default is
2.0G

	--defaultAccelerators ACCELERATOR

	The default amount of accelerators to request for a
job. Only applicable to jobs that do not specify an
explicit value for this requirement. Each accelerator
specification can have a type (gpu [default], nvidia,
amd, cuda, rocm, opencl, or a specific model like
nvidia-tesla-k80), and a count [default: 1]. If both a
type and a count are used, they must be separated by a
colon. If multiple types of accelerators are used, the
specifications are separated by commas. Default is [].

	--defaultPreemptible BOOL

	Make all jobs able to run on preemptible (spot) nodes
by default.

	--maxCores INT

	The maximum number of CPU cores to request from the
batch system at any one time. Standard suffixes like
K, Ki, M, Mi, G or Gi are supported.

	--maxMemory INT

	The maximum amount of memory to request from the batch
system at any one time. Standard suffixes like K, Ki,
M, Mi, G or Gi are supported.

	--maxDisk INT

	The maximum amount of disk space to request from the
batch system at any one time. Standard suffixes like
K, Ki, M, Mi, G or Gi are supported.

Options for rescuing/killing/restarting jobs.
The options for jobs that either run too long/fail or get lost (some batch
systems have issues!).

	--retryCount RETRYCOUNT

	Number of times to retry a failing job before giving
up and labeling job failed. default=1

	--enableUnlimitedPreemptibleRetries

	If set, preemptible failures (or any failure due to an
instance getting unexpectedly terminated) will not count
towards job failures and -\-retryCount.

	--doubleMem

	If set, batch jobs which die due to reaching memory
limit on batch schedulers will have their memory
doubled and they will be retried. The remaining
retry count will be reduced by 1. Currently only
supported by LSF. default=False.

	--maxJobDuration MAXJOBDURATION

	Maximum runtime of a job (in seconds) before we kill
it (this is a lower bound, and the actual time before
killing the job may be longer).

	--rescueJobsFrequency RESCUEJOBSFREQUENCY

	Period of time to wait (in seconds) between checking
for missing/overlong jobs, that is jobs which get lost
by the batch system. Expert parameter.

Log Management Options

	--maxLogFileSize MAXLOGFILESIZE

	The maximum size of a job log file to keep (in bytes),
log files larger than this will be truncated to the
last X bytes. Setting this option to zero will prevent
any truncation. Setting this option to a negative
value will truncate from the beginning. Default=62.5 K

	--writeLogs FILEPATH

	Write worker logs received by the leader into their
own files at the specified path. Any non-empty standard
output and error from failed batch system jobs will also
be written into files at this path. The current working
directory will be used if a path is not specified
explicitly. Note: By default only the logs of failed
jobs are returned to leader. Set log level to ‘debug’ or
enable -\-writeLogsFromAllJobs to get logs back from
successful jobs, and adjust -\-maxLogFileSize to
control the truncation limit for worker logs.

	--writeLogsGzip FILEPATH

	Identical to -\-writeLogs except the logs files are
gzipped on the leader.

	--writeMessages FILEPATH

	File to send messages from the leader’s message bus to.

	--realTimeLogging

	Enable real-time logging from workers to leader.

Miscellaneous Options

	--disableChaining

	Disables chaining of jobs (chaining uses one job’s
resource allocation for its successor job if
possible).

	--disableJobStoreChecksumVerification

	Disables checksum verification for files transferred
to/from the job store. Checksum verification is a safety
check to ensure the data is not corrupted during transfer.
Currently only supported for non-streaming AWS files

	--sseKey SSEKEY

	Path to file containing 32 character key to be used
for server-side encryption on awsJobStore or
googleJobStore. SSE will not be used if this flag is
not passed.

	--setEnv NAME, -e NAME

	NAME=VALUE or NAME, -e NAME=VALUE or NAME are also valid.
Set an environment variable early on in the worker. If
VALUE is omitted, it will be looked up in the current
environment. Independently of this option, the worker
will try to emulate the leader’s environment before
running a job, except for some variables known to vary
across systems. Using this option, a variable can be
injected into the worker process itself before it is
started.

	--servicePollingInterval SERVICEPOLLINGINTERVAL

	Interval of time service jobs wait between polling for
the existence of the keep-alive flag (default=60)

	--forceDockerAppliance

	Disables sanity checking the existence of the docker
image specified by TOIL_APPLIANCE_SELF, which Toil uses
to provision mesos for autoscaling.

	--statusWait INT

	Seconds to wait between reports of running jobs.
(default=3600)

	--disableProgress

	Disables the progress bar shown when standard error is
a terminal.

Debug Options
Debug options for finding problems or helping with testing.

	--debugWorker

	Experimental no forking mode for local debugging.
Specifically, workers are not forked and stderr/stdout
are not redirected to the log. (default=False)

	--disableWorkerOutputCapture

	Let worker output go to worker’s standard out/error
instead of per-job logs.

	--badWorker BADWORKER

	For testing purposes randomly kill -\-badWorker
proportion of jobs using SIGKILL. (Default: 0.0)

	--badWorkerFailInterval BADWORKERFAILINTERVAL

	When killing the job pick uniformly within the interval
from 0.0 to -\-badWorkerFailInterval seconds after the
worker starts. (Default: 0.01)

	--kill_polling_interval KILL_POLLING_INTERVAL

	Interval of time (in seconds) the leader waits between
polling for the kill flag inside the job store set by
the “toil kill” command. (default=5)

Restart Option

In the event of failure, Toil can resume the pipeline by adding the argument
--restart and rerunning the python script. Toil pipelines (but not CWL
pipelines) can even be edited and resumed which is useful for development or
troubleshooting.

Running Workflows with Services

Toil supports jobs, or clusters of jobs, that run as services to other
accessor jobs. Example services include server databases or Apache Spark
Clusters. As service jobs exist to provide services to accessor jobs their
runtime is dependent on the concurrent running of their accessor jobs. The dependencies
between services and their accessor jobs can create potential deadlock scenarios,
where the running of the workflow hangs because only service jobs are being
run and their accessor jobs can not be scheduled because of too limited resources
to run both simultaneously. To cope with this situation Toil attempts to
schedule services and accessors intelligently, however to avoid a deadlock
with workflows running service jobs it is advisable to use the following parameters:

	--maxServiceJobs: The maximum number of service jobs that can be run concurrently, excluding service jobs running on preemptible nodes.

	--maxPreemptibleServiceJobs: The maximum number of service jobs that can run concurrently on preemptible nodes.

Specifying these parameters so that at a maximum cluster size there will be
sufficient resources to run accessors in addition to services will ensure that
such a deadlock can not occur.

If too low a limit is specified then a deadlock can occur in which toil can
not schedule sufficient service jobs concurrently to complete the workflow.
Toil will detect this situation if it occurs and throw a
toil.DeadlockException exception. Increasing the cluster size
and these limits will resolve the issue.

Setting Options directly with the Toil Script

It’s good to remember that commandline options can be overridden in the Toil script itself. For example,
toil.job.Job.Runner.getDefaultOptions() can be used to run toil with all default options, and in this example,
it will override commandline args to run the default options and always run with the “./toilWorkflow” directory
specified as the jobstore:

options = Job.Runner.getDefaultOptions("./toilWorkflow") # Get the options object

with Toil(options) as toil:
 toil.start(Job()) # Run the script

However, each option can be explicitly set within the script by supplying arguments (in this example, we are setting
logLevel = "DEBUG" (all log statements are shown) and clean="ALWAYS" (always delete the jobstore) like so:

options = Job.Runner.getDefaultOptions("./toilWorkflow") # Get the options object
options.logLevel = "DEBUG" # Set the log level to the debug level.
options.clean = "ALWAYS" # Always delete the jobStore after a run

with Toil(options) as toil:
 toil.start(Job()) # Run the script

However, the usual incantation is to accept commandline args from the user with the following:

parser = Job.Runner.getDefaultArgumentParser() # Get the parser
options = parser.parse_args() # Parse user args to create the options object

with Toil(options) as toil:
 toil.start(Job()) # Run the script

Which can also, of course, then accept script supplied arguments as before (which will overwrite any user supplied args):

parser = Job.Runner.getDefaultArgumentParser() # Get the parser
options = parser.parse_args() # Parse user args to create the options object
options.logLevel = "DEBUG" # Set the log level to the debug level.
options.clean = "ALWAYS" # Always delete the jobStore after a run

with Toil(options) as toil:
 toil.start(Job()) # Run the script

Toil Debugging

Toil has a number of tools to assist in debugging. Here we provide help in working through potential problems that a user might encounter in attempting to run a workflow.

Introspecting the Jobstore

Note: Currently these features are only implemented for use locally (single machine) with the fileJobStore.

To view what files currently reside in the jobstore, run the following command:

$ toil debug-file file:path-to-jobstore-directory \
 --listFilesInJobStore

When run from the commandline, this should generate a file containing the contents of the job store (in addition to
displaying a series of log messages to the terminal). This file is named “jobstore_files.txt” by default and will be
generated in the current working directory.

If one wishes to copy any of these files to a local directory, one can run for example:

$ toil debug-file file:path-to-jobstore \
 --fetch overview.txt *.bam *.fastq \
 --localFilePath=/home/user/localpath

To fetch overview.txt, and all .bam and .fastq files. This can be used to recover previously used input and output
files for debugging or reuse in other workflows, or use in general debugging to ensure that certain outputs were imported
into the jobStore.

Stats and Status

See Stats Command for more about gathering statistics about job success, runtime, and resource usage from workflows.

Using a Python debugger

If you execute a workflow using the --debugWorker flag, Toil will not fork in order to run jobs, which means
you can either use pdb [https://docs.python.org/3/library/pdb.html], or an IDE that supports debugging Python [https://wiki.python.org/moin/PythonDebuggingTools#IDEs_with_Debug_Capabilities] as you would normally. Note that the --debugWorker flag will
only work with the singleMachine batch system (the default), and not any of the custom job schedulers.

Running in the Cloud

Toil supports Amazon Web Services (AWS) and Google Compute Engine (GCE) in the cloud and has autoscaling capabilities
that can adapt to the size of your workflow, whether your workflow requires 10 instances or 20,000.

Toil does this by creating a virtual cluster with Apache Mesos [https://mesos.apache.org/gettingstarted/]. Apache Mesos [https://mesos.apache.org/gettingstarted/] requires a leader node to coordinate
the workflow, and worker nodes to execute the various tasks within the workflow. As the workflow runs, Toil will
“autoscale”, creating and terminating workers as needed to meet the demands of the workflow.

Once a user is familiar with the basics of running toil locally (specifying a jobStore, and
how to write a toil script), they can move on to the guides below to learn how to translate these workflows into cloud
ready workflows.

Managing a Cluster of Virtual Machines (Provisioning)

Toil can launch and manage a cluster of virtual machines to run using the provisioner to run a workflow
distributed over several nodes. The provisioner also has the ability to automatically scale up or down the size of
the cluster to handle dynamic changes in computational demand (autoscaling). Currently we have working provisioners
with AWS and GCE (Azure support has been deprecated).

Toil uses Apache Mesos [https://mesos.apache.org/gettingstarted/] as the Batch System.

See here for instructions for Running in AWS.

See here for instructions for Running in Google Compute Engine (GCE).

Storage (Toil jobStore)

Toil can make use of cloud storage such as AWS or Google buckets to take care of storage needs.

This is useful when running Toil in single machine mode on any cloud platform since it allows you to
make use of their integrated storage systems.

For an overview of the job store see Job Store.

For instructions configuring a particular job store see:

	AWS Job Store

	Google Job Store

Cloud Platforms

	Running on Kubernetes
	Preparing your Kubernetes environment

	AWS Job Store for Kubernetes

	Configuring Toil for your Kubernetes environment

	Running workflows
	Option 1: Running the Leader Inside Kubernetes
	Monitoring and Debugging Kubernetes Jobs and Pods

	When Things Go Wrong

	Option 2: Running the Leader Outside Kubernetes
	Running CWL Workflows

	AppArmor and Singularity

	Running in AWS
	Preparing your AWS environment

	AWS Job Store

	Toil Provisioner

	Details about Launching a Cluster in AWS
	Static Provisioning

	Uploading Workflows

	Running a Workflow with Autoscaling

	Preemptibility

	Provisioning with a Kubernetes cluster

	Using MinIO and S3-Compatible object stores

	Dashboard

	Running in Google Compute Engine (GCE)
	Preparing your Google environment

	Google Job Store

	Running a Workflow with Autoscaling

	Cluster Utilities

	Stats Command

	Status Command

	Clean Command

	Launch-Cluster Command

	Ssh-Cluster Command

	Rsync-Cluster Command

	Destroy-Cluster Command

	Kill Command

Running on Kubernetes

Kubernetes [https://kubernetes.io/] is a very popular container orchestration tool that has become a de facto cross-cloud-provider API for accessing cloud resources. Major cloud providers like Amazon [https://aws.amazon.com/kubernetes/], Microsoft [https://azure.microsoft.com/en-us/overview/kubernetes-getting-started/], Kubernetes owner Google [https://cloud.google.com/kubernetes-engine/], and DigitalOcean [https://www.digitalocean.com/products/kubernetes/] have invested heavily in making Kubernetes work well on their platforms, by writing their own deployment documentation and developing provider-managed Kubernetes-based products. Using minikube [https://github.com/kubernetes/minikube], Kubernetes can even be run on a single machine.

Toil supports running Toil workflows against a Kubernetes cluster, either in the cloud or deployed on user-owned hardware.

Preparing your Kubernetes environment

	Get a Kubernetes cluster

To run Toil workflows on Kubernetes, you need to have a Kubernetes cluster set up. This will not be covered here, but there are many options available, and which one you choose will depend on which cloud ecosystem if any you use already, and on pricing. If you are just following along with the documentation, use minikube on your local machine.

Alternatively, Toil can set up a Kubernetes cluster for you with the Toil provisioner. Follow this guide to get started with a Toil-managed Kubernetes cluster on AWS.

Note that currently the only way to run a Toil workflow on Kubernetes is to use the AWS Job Store, so your Kubernetes workflow will currently have to store its data in Amazon’s cloud regardless of where you run it. This can result in significant egress charges from Amazon if you run it outside of Amazon.

Kubernetes Cluster Providers:

	Your own institution

	Amazon EKS [https://aws.amazon.com/eks/]

	Microsoft Azure AKS [https://docs.microsoft.com/en-us/azure/aks/]

	Google GKE [https://cloud.google.com/kubernetes-engine/]

	DigitalOcean Kubernetes [https://www.digitalocean.com/docs/kubernetes/]

	minikube [https://kubernetes.io/docs/tasks/tools/install-minikube/]

	Get a Kubernetes context on your local machine

There are two main ways to run Toil workflows on Kubernetes. You can either run the Toil leader on a machine outside the cluster, with jobs submitted to and run on the cluster, or you can submit the Toil leader itself as a job and have it run inside the cluster. Either way, you will need to configure your own machine to be able to submit jobs to the Kubernetes cluster. Generally, this involves creating and populating a file named .kube/config in your user’s home directory, and specifying the cluster to connect to, the certificate and token information needed for mutual authentication, and the Kubernetes namespace within which to work. However, Kubernetes configuration can also be picked up from other files in the .kube directory, environment variables, and the enclosing host when running inside a Kubernetes-managed container.

You will have to do different things here depending on where you got your Kubernetes cluster:

	Configuring for Amazon EKS [https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html]

	Configuring for Microsoft Azure AKS [https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az-aks-get-credentials]

	Configuring for Google GKE [https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl]

	Configuring for DigitalOcean Kubernetes Clusters [https://www.digitalocean.com/docs/kubernetes/how-to/connect-to-cluster/]

	Configuring for minikube [https://kubernetes.io/docs/setup/learning-environment/minikube/#kubectl]

Toil’s internal Kubernetes configuration logic mirrors that of the kubectl command. Toil workflows will use the current kubectl context to launch their Kubernetes jobs.

	If running the Toil leader in the cluster, get a service account

If you are going to run your workflow’s leader within the Kubernetes cluster (see Option 1: Running the Leader Inside Kubernetes), you will need a service account in your chosen Kubernetes namespace. Most namespaces should have a service account named default which should work fine. If your cluster requires you to use a different service account, you will need to obtain its name and use it when launching the Kubernetes job containing the Toil leader.

	Set up appropriate permissions

Your local Kubernetes context and/or the service account you are using to run the leader in the cluster will need to have certain permissions in order to run the workflow. Toil needs to be able to interact with jobs and pods in the cluster, and to retrieve pod logs. You as a user may need permission to set up an AWS credentials secret, if one is not already available. Additionally, it is very useful for you as a user to have permission to interact with nodes, and to shell into pods.

The appropriate permissions may already be available to you and your service account by default, especially in managed or ease-of-use-optimized setups such as EKS or minikube.

However, if the appropriate permissions are not already available, you or your cluster administrator will have to grant them manually. The following Role (toil-user) and ClusterRole (node-reader), to be applied with kubectl apply -f filename.yaml, should grant sufficient permissions to run Toil workflows when bound to your account and the service account used by Toil workflows. Be sure to replace YOUR_NAMESPACE_HERE with the namespace you are running your workflows in

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: YOUR_NAMESPACE_HERE
 name: toil-user
rules:
- apiGroups: ["*"]
 resources: ["*"]
 verbs: ["explain", "get", "watch", "list", "describe", "logs", "attach", "exec", "port-forward", "proxy", "cp", "auth"]
- apiGroups: ["batch"]
 resources: ["*"]
 verbs: ["get", "watch", "list", "create", "run", "set", "delete"]
- apiGroups: [""]
 resources: ["secrets", "pods", "pods/attach", "podtemplates", "configmaps", "events", "services"]
 verbs: ["patch", "get", "update", "watch", "list", "create", "run", "set", "delete", "exec"]
- apiGroups: [""]
 resources: ["pods", "pods/log"]
 verbs: ["get", "list"]
- apiGroups: [""]
 resources: ["pods/exec"]
 verbs: ["create"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: node-reader
rules:
- apiGroups: [""]
 resources: ["nodes"]
 verbs: ["get", "list", "describe"]
- apiGroups: [""]
 resources: ["namespaces"]
 verbs: ["get", "list", "describe"]
- apiGroups: ["metrics.k8s.io"]
 resources: ["*"]
 verbs: ["*"]

To bind a user or service account to the Role or ClusterRole and actually grant the permissions, you will need a RoleBinding and a ClusterRoleBinding, respectively. Make sure to fill in the namespace, username, and service account name, and add more user stanzas if your cluster is to support multiple Toil users.

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: toil-developer-member
 namespace: toil
subjects:
- kind: User
 name: YOUR_KUBERNETES_USERNAME_HERE
 apiGroup: rbac.authorization.k8s.io
- kind: ServiceAccount
 name: YOUR_SERVICE_ACCOUNT_NAME_HERE
 namespace: YOUR_NAMESPACE_HERE
roleRef:
 kind: Role
 name: toil-user
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: read-nodes
subjects:
- kind: User
 name: YOUR_KUBERNETES_USERNAME_HERE
 apiGroup: rbac.authorization.k8s.io
- kind: ServiceAccount
 name: YOUR_SERVICE_ACCOUNT_NAME_HERE
 namespace: YOUR_NAMESPACE_HERE
roleRef:
 kind: ClusterRole
 name: node-reader
 apiGroup: rbac.authorization.k8s.io

AWS Job Store for Kubernetes

Currently, the only job store, which is what Toil uses to exchange data between jobs, that works with jobs running on Kubernetes is the AWS Job Store. This requires that the Toil leader and Kubernetes jobs be able to connect to and use Amazon S3 and Amazon SimpleDB. It also requires that you have an Amazon Web Services account.

	Get access to AWS S3 and SimpleDB

In your AWS account, you need to create an AWS access key. First go to the IAM dashboard; for “us-west1”, the link would be:

https://console.aws.amazon.com/iam/home?region=us-west-1#/home

Then create an access key, and save the Access Key ID and the Secret Key. As documented in the AWS documentation [https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html]:

	On the IAM Dashboard page, choose your account name in the navigation bar, and then choose My Security Credentials.

	Expand the Access keys (access key ID and secret access key) section.

	Choose Create New Access Key. Then choose Download Key File to save the access key ID and secret access key to a file on your computer. After you close the dialog box, you can’t retrieve this secret access key again.

Make sure that, if your AWS infrastructure requires your user to authenticate with a multi-factor authentication (MFA) token, you obtain a second secret key and access key that don’t have this requirement. The secret key and access key used to populate the Kubernetes secret that allows the jobs to contact the job store need to be usable without human intervention.

	Configure AWS access from the local machine

This only really needs to happen if you run the leader on the local machine. But we need the files in place to fill in the secret in the next step. Run:

$ aws configure

Then when prompted, enter your secret key and access key. This should create a file ~/.aws/credentials that looks like this:

[default]
aws_access_key_id = BLAH
aws_secret_access_key = blahblahblah

	Create a Kubernetes secret to give jobs access to AWS

Go into the directory where the credentials file is:

$ cd ~/.aws

Then, create a Kubernetes secret that contains it. We’ll call it aws-credentials:

$ kubectl create secret generic aws-credentials --from-file credentials

Configuring Toil for your Kubernetes environment

To configure your workflow to run on Kubernetes, you will have to configure several environment variables, in addition to passing the --batchSystem kubernetes option. Doing the research to figure out what values to give these variables may require talking to your cluster provider.

	TOIL_AWS_SECRET_NAME is the most important, and must be set to the secret that contains your AWS credentials file, if your cluster nodes don’t otherwise have access to S3 and SimpleDB (such as through IAM roles). This is required for the AWS job store to work, which is currently the only job store that can be used on Kubernetes. In this example we are using aws-credentials.

	TOIL_KUBERNETES_HOST_PATH can be set to allow Toil jobs on the same physical host to share a cache. It should be set to a path on the host where the shared cache should be stored. It will be mounted as /var/lib/toil, or at TOIL_WORKDIR if specified, inside the container. This path must already exist on the host, and must have as much free space as your Kubernetes node offers to jobs. In this example, we are using /data/scratch. To actually make use of caching, make sure not to use --disableCaching.

	TOIL_KUBERNETES_OWNER should be set to the username of the user running the Toil workflow. The jobs that Toil creates will include this username, so they can be more easily recognized, and cleaned up by the user if anything happens to the Toil leader. In this example we are using demo-user.

Note that Docker containers cannot be run inside of unprivileged Kubernetes pods (which are themselves containers). The Docker daemon does not (yet) support this. Other tools, such as Singularity in its user-namespace mode, are able to run containers from within containers. If using Singularity to run containerized tools, and you want downloaded container images to persist between Toil jobs, you will also want to set TOIL_KUBERNETES_HOST_PATH and make sure that Singularity is downloading its containers under the Toil work directory (/var/lib/toil buy default) by setting SINGULARITY_CACHEDIR. However, you will need to make sure that no two jobs try to download the same container at the same time; Singularity has no synchronization or locking around its cache, but the cache is also not safe for simultaneous access by multiple Singularity invocations. Some Toil workflows use their own custom workaround logic for this problem; this work is likely to be made part of Toil in a future release.

Running workflows

To run the workflow, you will need to run the Toil leader process somewhere. It can either be run inside Kubernetes as a Kubernetes job, or outside Kubernetes as a normal command.

Option 1: Running the Leader Inside Kubernetes

Once you have determined a set of environment variable values for your workflow run, write a YAML file that defines a Kubernetes job to run your workflow with that configuration. Some configuration items (such as your username, and the name of your AWS credentials secret) need to be written into the YAML so that they can be used from the leader as well.

Note that the leader pod will need your workflow script, its other dependencies, and Toil all installed. An easy way to get Toil installed is to start with the Toil appliance image for the version of Toil you want to use. In this example, we use quay.io/ucsc_cgl/toil:5.5.0.

Here’s an example YAML file to run a test workflow:

apiVersion: batch/v1
kind: Job
metadata:
 # It is good practice to include your username in your job name.
 # Also specify it in TOIL_KUBERNETES_OWNER
 name: demo-user-toil-test
Do not try and rerun the leader job if it fails

spec:
 backoffLimit: 0
 template:
 spec:
 # Do not restart the pod when the job fails, but keep it around so the
 # log can be retrieved
 restartPolicy: Never
 volumes:
 - name: aws-credentials-vol
 secret:
 # Make sure the AWS credentials are available as a volume.
 # This should match TOIL_AWS_SECRET_NAME
 secretName: aws-credentials
 # You may need to replace this with a different service account name as
 # appropriate for your cluster.
 serviceAccountName: default
 containers:
 - name: main
 image: quay.io/ucsc_cgl/toil:5.5.0
 env:
 # Specify your username for inclusion in job names
 - name: TOIL_KUBERNETES_OWNER
 value: demo-user
 # Specify where to find the AWS credentials to access the job store with
 - name: TOIL_AWS_SECRET_NAME
 value: aws-credentials
 # Specify where per-host caches should be stored, on the Kubernetes hosts.
 # Needs to be set for Toil's caching to be efficient.
 - name: TOIL_KUBERNETES_HOST_PATH
 value: /data/scratch
 volumeMounts:
 # Mount the AWS credentials volume
 - mountPath: /root/.aws
 name: aws-credentials-vol
 resources:
 # Make sure to set these resource limits to values large enough
 # to accommodate the work your workflow does in the leader
 # process, but small enough to fit on your cluster.
 #
 # Since no request values are specified, the limits are also used
 # for the requests.
 limits:
 cpu: 2
 memory: "4Gi"
 ephemeral-storage: "10Gi"
 command:
 - /bin/bash
 - -c
 - |
 # This Bash script will set up Toil and the workflow to run, and run them.
 set -e
 # We make sure to create a work directory; Toil can't hot-deploy a
 # script from the root of the filesystem, which is where we start.
 mkdir /tmp/work
 cd /tmp/work
 # We make a virtual environment to allow workflow dependencies to be
 # hot-deployed.
 #
 # We don't really make use of it in this example, but for workflows
 # that depend on PyPI packages we will need this.
 #
 # We use --system-site-packages so that the Toil installed in the
 # appliance image is still available.
 virtualenv --python python3 --system-site-packages venv
 . venv/bin/activate
 # Now we install the workflow. Here we're using a demo workflow
 # script from Toil itself.
 wget https://raw.githubusercontent.com/DataBiosphere/toil/releases/4.1.0/src/toil/test/docs/scripts/tutorial_helloworld.py
 # Now we run the workflow. We make sure to use the Kubernetes batch
 # system and an AWS job store, and we set some generally useful
 # logging options. We also make sure to enable caching.
 python3 tutorial_helloworld.py \
 aws:us-west-2:demouser-toil-test-jobstore \
 --batchSystem kubernetes \
 --realTimeLogging \
 --logInfo

You can save this YAML as leader.yaml, and then run it on your Kubernetes installation with:

$ kubectl apply -f leader.yaml

To monitor the progress of the leader job, you will want to read its logs. If you are using a Kubernetes dashboard such as k9s [https://github.com/derailed/k9s], you can simply find the pod created for the job in the dashboard, and view its logs there. If not, you will need to locate the pod by hand.

Monitoring and Debugging Kubernetes Jobs and Pods

The following techniques are most useful for looking at the pod which holds the Toil leader, but they can also be applied to individual Toil jobs on Kubernetes, even when the leader is outside the cluster.

Kubernetes names pods for jobs by appending a short random string to the name of the job. You can find the name of the pod for your job by doing:

$ kubectl get pods | grep demo-user-toil-test
demo-user-toil-test-g5496 1/1 Running 0 2m

Assuming you have set TOIL_KUBERNETES_OWNER correctly, you should be able to find all of your workflow’s pods by searching for your username:

$ kubectl get pods | grep demo-user

If the status of a pod is anything other than Pending, you will be able to view its logs with:

$ kubectl logs demo-user-toil-test-g5496

This will dump the pod’s logs from the beginning to now and terminate. To follow along with the logs from a running pod, add the -f option:

$ kubectl logs -f demo-user-toil-test-g5496

A status of ImagePullBackoff suggests that you have requested to use an image that is not available. Check the image section of your YAML if you are looking at a leader, or the value of TOIL_APPLIANCE_SELF if you are delaying with a worker job. You also might want to check your Kubernetes node’s Internet connectivity and DNS function; in Kubernetes, DNS depends on system-level pods which can be terminated or evicted in cases of resource oversubscription, just like user workloads.

If your pod seems to be stuck Pending, ContainerCreating, you can get information on what is wrong with it by using kubectl describe pod:

$ kubectl describe pod demo-user-toil-test-g5496

Pay particular attention to the Events: section at the end of the output. An indication that a job is too big for the available nodes on your cluster, or that your cluster is too busy for your jobs, is FailedScheduling events:

Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 13s (x79 over 100m) default-scheduler 0/4 nodes are available: 1 Insufficient cpu, 1 Insufficient ephemeral-storage, 4 Insufficient memory.

If a pod is running but seems to be behaving erratically, or seems stuck, you can shell into it and look around:

$ kubectl exec -ti demo-user-toil-test-g5496 /bin/bash

One common cause of stuck pods is attempting to use more memory than allowed by Kubernetes (or by the Toil job’s memory resource requirement), but in a way that does not trigger the Linux OOM killer to terminate the pod’s processes. In these cases, the pod can remain stuck at nearly 100% memory usage more or less indefinitely, and attempting to shell into the pod (which needs to start a process within the pod, using some of its memory) will fail. In these cases, the recommended solution is to kill the offending pod and increase its (or its Toil job’s) memory requirement, or reduce its memory needs by adapting user code.

When Things Go Wrong

The Toil Kubernetes batch system includes cleanup code to terminate worker jobs when the leader shuts down. However, if the leader pod is removed by Kubernetes, is forcibly killed or otherwise suffers a sudden existence failure, it can go away while its worker jobs live on. It is not recommended to restart a workflow in this state, as jobs from the previous invocation will remain running and will be trying to modify the job store concurrently with jobs from the new invocation.

To clean up dangling jobs, you can use the following snippet:

$ kubectl get jobs | grep demo-user | cut -f1 -d' ' | xargs -n10 kubectl delete job

This will delete all jobs with demo-user’s username in their names, in batches of 10. You can also use the UUID that Toil assigns to a particular workflow invocation in the filter, to clean up only the jobs pertaining to that workflow invocation.

Option 2: Running the Leader Outside Kubernetes

If you don’t want to run your Toil leader inside Kubernetes, you can run it locally instead. This can be useful when developing a workflow; files can be hot-deployed from your local machine directly to Kubernetes. However, your local machine will have to have (ideally role-assumption- and MFA-free) access to AWS, and access to Kubernetes. Real time logging will not work unless your local machine is able to listen for incoming UDP packets on arbitrary ports on the address it uses to contact the IPv4 Internet; Toil does no NAT traversal or detection.

Note that if you set TOIL_WORKDIR when running your workflow like this, it will need to be a directory that exists both on the host and in the Toil appliance.

Here is an example of running our test workflow leader locally, outside of Kubernetes:

$ export TOIL_KUBERNETES_OWNER=demo-user # This defaults to your local username if not set
$ export TOIL_AWS_SECRET_NAME=aws-credentials
$ export TOIL_KUBERNETES_HOST_PATH=/data/scratch
$ virtualenv --python python3 --system-site-packages venv
$. venv/bin/activate
$ wget https://raw.githubusercontent.com/DataBiosphere/toil/releases/4.1.0/src/toil/test/docs/scripts/tutorial_helloworld.py
$ python3 tutorial_helloworld.py \
 aws:us-west-2:demouser-toil-test-jobstore \
 --batchSystem kubernetes \
 --realTimeLogging \
 --logInfo

Running CWL Workflows

Running CWL workflows on Kubernetes can be challenging, because executing CWL can require toil-cwl-runner to orchestrate containers of its own, within a Kubernetes job running in the Toil appliance container.

Normally, running a CWL workflow should Just Work, as long as the workflow’s Docker containers are able to be executed with Singularity, your Kubernetes cluster does not impose extra capability-based confinement (i.e. SELinux, AppArmor) that interferes with Singularity’s use of user-mode namespaces, and you make sure to configure Toil so that its workers know where to store their data within the Kubernetes pods (which would be done for you if using a Toil-managed cluster). For example, you should be able to run a CWL workflow like this:

$ export TOIL_KUBERNETES_OWNER=demo-user # This defaults to your local username if not set
$ export TOIL_AWS_SECRET_NAME=aws-credentials
$ export TOIL_KUBERNETES_HOST_PATH=/data/scratch
$ virtualenv --python python3 --system-site-packages venv
$. venv/bin/activate
$ pip install toil[kubernetes,cwl]==5.8.0
$ toil-cwl-runner \
 --jobStore aws:us-west-2:demouser-toil-test-jobstore \
 --batchSystem kubernetes \
 --realTimeLogging \
 --logInfo \
 --disableCaching \
 path/to/cwl/workflow \
 path/to/cwl/input/object

Additional cwltool options that your workflow might require, such as --no-match-user, can be passed to toil-cwl-runner, which inherits most cwltool options.

AppArmor and Singularity

Kubernetes clusters based on Ubuntu hosts often will have AppArmor enabled on the host. AppArmor is a capability-based security enhancement system that integrates with the Linux kernel to enforce lists of things which programs may or may not do, called profiles. For example, an AppArmor profile could be applied to a web server process to stop it from using the mount() system call to manipulate the filesystem, because it has no business doing that under normal circumstances but might attempt to do it if compromised by hackers.

Kubernetes clusters also often use Docker as the backing container runtime, to run pod containers. When AppArmor is enabled, Docker will load an AppArmor profile and apply it to all of its containers by default, with the ability for the profile to be overridden on a per-container basis. This profile unfortunately prevents some of the mount() system calls that Singularity uses to set up user-mode containers from working inside the pod, even though these calls would be allowed for an unprivileged user under normal circumstances.

On the UCSC Kubernetes cluster, we configure our Ubuntu hosts with an alternative default AppArmor profile for Docker containers [https://github.com/adamnovak/gi-kubernetes-autoscaling-config/blob/e1350ac9ad17d94b5073b20db3c75620957926e3/kubenode.ubuntu.cloud-config.yaml#L27-L67] which allows these calls. Other solutions include turning off AppArmor on the host, configuring Kubernetes with a container runtime other than Docker, or using Kubernetes’s AppArmor integration [https://kubernetes.io/docs/tutorials/security/apparmor/] to apply a more permissive profile or the unconfined profile to pods that Toil launches.

Toil does not yet have a way to apply a container.apparmor.security.beta.kubernetes.io/runner-container: unconfined annotation to its pods, as described in the Kubernetes AppArmor documentation [https://kubernetes.io/docs/tutorials/security/apparmor/#securing-a-pod]. This feature is tracked in issue #4331 [https://github.com/DataBiosphere/toil/issues/4331].

Running in AWS

Toil jobs can be run on a variety of cloud platforms. Of these, Amazon Web
Services (AWS) is currently the best-supported solution. Toil provides the
Cluster Utilities to conveniently create AWS clusters, connect to the leader
of the cluster, and then launch a workflow. The leader handles distributing
the jobs over the worker nodes and autoscaling to optimize costs.

The Running a Workflow with Autoscaling section details how to create a cluster and run a workflow
that will dynamically scale depending on the workflow’s needs.

The Static Provisioning section explains how a static cluster (one that
won’t automatically change in size) can be created and provisioned (grown, shrunk, destroyed, etc.).

Preparing your AWS environment

To use Amazon Web Services (AWS) to run Toil or to just use S3 to host the files
during the computation of a workflow, first set up and configure an account with AWS:

	If necessary, create and activate an AWS account [https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/]

	Next, generate a key pair for AWS with the command (do NOT generate your key pair with the Amazon browser):

$ ssh-keygen -t rsa

	This should prompt you to save your key. Please save it in

~/.ssh/id_rsa

	Now move this to where your OS can see it as an authorized key:

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

	Next, you’ll need to add your key to the ssh-agent:

$ eval `ssh-agent -s`
$ ssh-add

If your key has a passphrase, you will be prompted to enter it here once.

	You’ll also need to chmod your private key (good practice but also enforced by AWS):

$ chmod 400 id_rsa

	Now you’ll need to add the key to AWS via the browser. For example, on us-west1, this address would accessible at:

https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1#KeyPairs:sort=keyName

	Now click on the “Import Key Pair” button to add your key:

[image: Adding an Amazon Key Pair]
 [https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1#KeyPairs:sort=keyName]

	Next, you need to create an AWS access key. First go to the IAM dashboard, again; for “us-west1”, the example link would be here:

https://console.aws.amazon.com/iam/home?region=us-west-1#/home

	The directions (transcribed from: https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html) are now:

	On the IAM Dashboard page, choose your account name in the navigation bar, and then choose My Security Credentials.

	Expand the Access keys (access key ID and secret access key) section.

	Choose Create New Access Key. Then choose Download Key File to save the access key ID and secret access key to a file on your computer. After you close the dialog box, you can’t retrieve this secret access key again.

	Now you should have a newly generated “AWS Access Key ID” and “AWS Secret Access Key”. We can now install the AWS CLI and make sure that it has the proper credentials:

$ pip install awscli --upgrade --user

	Now configure your AWS credentials with:

$ aws configure

	Add your “AWS Access Key ID” and “AWS Secret Access Key” from earlier and your region and output format:

" AWS Access Key ID [****************Q65Q]: "
" AWS Secret Access Key [****************G0ys]: "
" Default region name [us-west-1]: "
" Default output format [json]: "

This will create the files ~/.aws/config and ~/.aws/credentials.

	If not done already, install toil (example uses version 5.3.0, but we recommend the latest release):

$ virtualenv venv
$ source venv/bin/activate
$ pip install toil[all]==5.3.0

	Now that toil is installed and you are running a virtualenv, an example of launching a toil leader node would be the following
(again, note that we set TOIL_APPLIANCE_SELF to toil version 5.3.0 in this example, but please set the version to
the installed version that you are using if you’re using a different version):

$ TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:5.3.0 \
 toil launch-cluster clustername \
 --leaderNodeType t2.medium \
 --zone us-west-1a \
 --keyPairName id_rsa

To further break down each of these commands:

TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:latest — This is optional. It specifies a mesos docker image that we maintain with the latest version of toil installed on it. If you want to use a different version of toil, please specify the image tag you need from https://quay.io/repository/ucsc_cgl/toil?tag=latest&tab=tags.

toil launch-cluster — Base command in toil to launch a cluster.

clustername — Just choose a name for your cluster.

–leaderNodeType t2.medium — Specify the leader node type. Make a t2.medium (2CPU; 4Gb RAM; $0.0464/Hour). List of available AWS instances: https://aws.amazon.com/ec2/pricing/on-demand/

–zone us-west-1a — Specify the AWS zone you want to launch the instance in. Must have the same prefix as the zone in your awscli credentials (which, in the example of this tutorial is: “us-west-1”).

–keyPairName id_rsa — The name of your key pair, which should be “id_rsa” if you’ve followed this tutorial.

Note

You can set the TOIL_AWS_TAGS environment variable to a JSON object to specify arbitrary tags for AWS resources.
For example, if you export TOIL_AWS_TAGS='{"project-name": "variant-calling"}' in your shell before using Toil,
AWS resources created by Toil will be tagged with a project-name tag with the value variant-calling.

AWS Job Store

Using the AWS job store is straightforward after you’ve finished Preparing your AWS environment;
all you need to do is specify the prefix for the job store name.

To run the sort example sort example with the AWS job store you would type

$ python sort.py aws:us-west-2:my-aws-sort-jobstore

Toil Provisioner

The Toil provisioner is included in Toil alongside the [aws] extra and
allows us to spin up a cluster.

Getting started with the provisioner is simple:

	Make sure you have Toil installed with the AWS extras. For detailed instructions see Installing Toil with Extra Features.

	You will need an AWS account and you will need to save your AWS credentials on your local
machine. For help setting up an AWS account see
here [http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html]. For
setting up your AWS credentials follow instructions
here [http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files].

The Toil provisioner is built around the Toil Appliance, a Docker image that bundles
Toil and all its requirements (e.g. Mesos). This makes deployment simple across
platforms, and you can even simulate a cluster locally (see Developing with Docker for details).

Choosing Toil Appliance Image

When using the Toil provisioner, the appliance image will be automatically chosen
based on the pip-installed version of Toil on your system. That choice can be
overridden by setting the environment variables TOIL_DOCKER_REGISTRY and TOIL_DOCKER_NAME or
TOIL_APPLIANCE_SELF. See Environment Variables for more information on these variables. If
you are developing with autoscaling and want to test and build your own
appliance have a look at Developing with Docker.

For information on using the Toil Provisioner have a look at Running a Workflow with Autoscaling.

Details about Launching a Cluster in AWS

Using the provisioner to launch a Toil leader instance is simple using the launch-cluster command. For example,
to launch a cluster named “my-cluster” with a t2.medium leader in the us-west-2a zone, run

(venv) $ toil launch-cluster my-cluster \
 --leaderNodeType t2.medium \
 --zone us-west-2a \
 --keyPairName <your-AWS-key-pair-name>

The cluster name is used to uniquely identify your cluster and will be used to
populate the instance’s Name tag. Also, the Toil provisioner will
automatically tag your cluster with an Owner tag that corresponds to your
keypair name to facilitate cost tracking. In addition, the ToilNodeType tag
can be used to filter “leader” vs. “worker” nodes in your cluster.

The leaderNodeType is an EC2 instance type [https://aws.amazon.com/ec2/instance-types/]. This only affects the leader node.

The --zone parameter specifies which EC2 availability zone to launch the cluster in.
Alternatively, you can specify this option via the TOIL_AWS_ZONE environment variable.
Note: the zone is different from an EC2 region. A region corresponds to a geographical area
like us-west-2 (Oregon), and availability zones are partitions of this area like
us-west-2a.

By default, Toil creates an IAM role for each cluster with sufficient permissions
to perform cluster operations (e.g. full S3, EC2, and SDB access). If the default permissions
are not sufficient for your use case (e.g. if you need access to ECR), you may create a
custom IAM role with all necessary permissions and set the --awsEc2ProfileArn parameter
when launching the cluster. Note that your custom role must at least have
these permissions in order for the Toil cluster to function properly.

In addition, Toil creates a new security group with the same name as the cluster name with
default rules (e.g. opens port 22 for SSH access). If you require additional security groups,
you may use the --awsEc2ExtraSecurityGroupId parameter when launching the cluster.
Note: Do not use the same name as the cluster name for the extra security groups as
any security group matching the cluster name will be deleted once the cluster is destroyed.

For more information on options try:

(venv) $ toil launch-cluster --help

Static Provisioning

Toil can be used to manage a cluster in the cloud by using the Cluster Utilities.
The cluster utilities also make it easy to run a toil workflow directly on this
cluster. We call this static provisioning because the size of the cluster does not
change. This is in contrast with Running a Workflow with Autoscaling.

To launch worker nodes alongside the leader we use the -w option:

(venv) $ toil launch-cluster my-cluster \
 --leaderNodeType t2.small -z us-west-2a \
 --keyPairName your-AWS-key-pair-name \
 --nodeTypes m3.large,t2.micro -w 1,4

This will spin up a leader node of type t2.small with five additional workers — one m3.large instance and four t2.micro.

Currently static provisioning is only possible during the cluster’s creation.
The ability to add new nodes and remove existing nodes via the native provisioner is
in development. Of course the cluster can always be deleted with the
Destroy-Cluster Command utility.

Uploading Workflows

Now that our cluster is launched, we use the Rsync-Cluster Command utility to copy
the workflow to the leader. For a simple workflow in a single file this might
look like

(venv) $ toil rsync-cluster -z us-west-2a my-cluster toil-workflow.py :/

Note

If your toil workflow has dependencies have a look at the Auto-Deployment
section for a detailed explanation on how to include them.

Running a Workflow with Autoscaling

Autoscaling is a feature of running Toil in a cloud whereby additional cloud instances are launched to run the workflow.
Autoscaling leverages Mesos containers to provide an execution environment for these workflows.

Note

Make sure you’ve done the AWS setup in Preparing your AWS environment.

	Download sort.py

	Launch the leader node in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
 --keyPairName <AWS-key-pair-name> \
 --leaderNodeType t2.medium \
 --zone us-west-2a

	Copy the sort.py script up to the leader node:

(venv) $ toil rsync-cluster -z us-west-2a <cluster-name> sort.py :/root

	Login to the leader node:

(venv) $ toil ssh-cluster -z us-west-2a <cluster-name>

	Run the script as an autoscaling workflow:

$ python /root/sort.py aws:us-west-2:<my-jobstore-name> \
 --provisioner aws \
 --nodeTypes c3.large \
 --maxNodes 2 \
 --batchSystem mesos

Note

In this example, the autoscaling Toil code creates up to two instances of type c3.large and launches Mesos
slave containers inside them. The containers are then available to run jobs defined by the sort.py script.
Toil also creates a bucket in S3 called aws:us-west-2:autoscaling-sort-jobstore to store intermediate job
results. The Toil autoscaler can also provision multiple different node types, which is useful for workflows
that have jobs with varying resource requirements. For example, one could execute the script with
--nodeTypes c3.large,r3.xlarge --maxNodes 5,1, which would allow the provisioner to create up to five
c3.large nodes and one r3.xlarge node for memory-intensive jobs. In this situation, the autoscaler would avoid
creating the more expensive r3.xlarge node until needed, running most jobs on the c3.large nodes.

	View the generated file to sort:

$ head fileToSort.txt

	View the sorted file:

$ head sortedFile.txt

For more information on other autoscaling (and other) options have a look at Commandline Options and/or run

$ python my-toil-script.py --help

Important

Some important caveats about starting a toil run through an ssh session are
explained in the Ssh-Cluster Command section.

Preemptibility

Toil can run on a heterogeneous cluster of both preemptible and non-preemptible nodes. Being a preemptible node simply
means that the node may be shut down at any time, while jobs are running. These jobs can then be restarted later
somewhere else.

A node type can be specified as preemptible by adding a spot bid [https://aws.amazon.com/ec2/spot/pricing/] to its entry in the list of node types provided with
the --nodeTypes flag. If spot instance prices rise above your bid, the preemptible node whill be shut down.

Individual jobs can explicitly specify whether they should be run on preemptible nodes via the boolean preemptible
resource requirement, if this is not specified, the job will not run on preemptible nodes even if preemptible nodes
are available unless specified with the --defaultPreemptible flag. The --defaultPreemptible flag will allow
jobs without a preemptible requirement to run on preemptible machines. For example:

$ python /root/sort.py aws:us-west-2:<my-jobstore-name> \
 --provisioner aws \
 --nodeTypes c3.4xlarge:2.00 \
 --maxNodes 2 \
 --batchSystem mesos \
 --defaultPreemptible

Specify Preemptibility Carefully

Ensure that your choices for --nodeTypes and --maxNodes <> make
sense for your workflow and won’t cause it to hang. You should make sure the
provisioner is able to create nodes large enough to run the largest job
in the workflow, and that non-preemptible node types are allowed if there are
non-preemptible jobs in the workflow.

Finally, the --preemptibleCompensation flag can be used to handle cases where preemptible nodes may not be
available but are required for your workflow. With this flag enabled, the autoscaler will attempt to compensate
for a shortage of preemptible nodes of a certain type by creating non-preemptible nodes of that type, if
non-preemptible nodes of that type were specified in --nodeTypes.

Provisioning with a Kubernetes cluster

If you don’t have an existing Kubernetes cluster but still want to use
Kubernetes to orchestrate jobs, Toil can create a Kubernetes cluster for you
using the AWS provisioner.

By default, the toil launch-cluster command uses a Mesos cluster as the
jobs scheduler. Toil can also create a Kubernetes cluster to schedule Toil
jobs. To set up a Kubernetes cluster, simply add the --clusterType=kubernetes
command line option to toil launch-cluster.

For example, to launch a Toil cluster with a Kubernetes scheduler, run:

(venv) $ toil launch-cluster <cluster-name> \
 --provisioner=aws \
 --clusterType kubernetes \
 --zone us-west-2a \
 --keyPairName wlgao@ucsc.edu \
 --leaderNodeType t2.medium \
 --leaderStorage 50 \
 --nodeTypes t2.medium -w 1-4 \
 --nodeStorage 20 \
 --logDebug

Behind the scenes, Toil installs kubeadm and configures kubelet on the Toil
leader and all worker nodes. This Toil cluster can then schedule jobs using
Kubernetes.

Note

You should set at least one worker node, otherwise Kubernetes would not be
able to schedule any jobs. It is also normal for this step to take a while.

Below is a tutorial on how to launch a Toil job on this newly created cluster.
As a demostration, we will use sort.py
again, but run it on a Toil cluster with Kubernetes. First, download this file
and put it to the current working directory.

We then need to copy over the workflow file and SSH into the cluster:

(venv) $ toil rsync-cluster -z us-west-2a <cluster-name> sort.py :/root
(venv) $ toil ssh-cluster -z us-west-2a <cluster-name>

Remember to replace <cluster-name> with your actual cluster name, and feel
free to use your own cluster configuration and/or workflow files. For more
information on this step, see the corresponding section of the
Static Provisioning tutorial.

Now that we are inside the cluster, a Kubernetes environment should already be
configured and running. To verify this, simply run:

$ kubectl get nodes

You should see a leader node with the Ready status. Depending on the number
of worker nodes you set to create upfront, you should also see them displayed
here.

Additionally, you can also verify that the metrics server is running:

$ kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes"

If there is a JSON response (similar to the output below), and you are not
seeing any errors, that means the metrics server is set up and running, and you
are good to start running workflows.

{"kind":"NodeMetricsList","apiVersion":"metrics.k8s.io/v1beta1", ...}

Note

It’ll take a while for all nodes to get set up and running, so you might
not be able to see all nodes running at first. You can start running
workflows already, but Toil might complain until the necessary resources
are set up and running.

Now we can run the workflow:

$ python sort.py \
 --provisioner aws
 --batchSystem kubernetes \
 aws:<region>:<job-store-name>

Make sure to replace <region> and <job-store-name>. It is required
to use a cloud-accessible job store like AWS or Google when using the Kubernetes
batch system.

The sort workflow should start running on the Kubernetes cluster set up by Toil.
This workflow would take a while to execute, so you could put the job in the
background and monitor the Kubernetes cluster using kubectl. For example,
you can check out the pods that are running:

$ kubectl get pods

You should see an output like:

NAME READY STATUS RESTARTS AGE
root-toil-a864e1b0-2e1f-48db-953c-038e5ad293c7-11-4cwdl 0/1 ContainerCreating 0 85s
root-toil-a864e1b0-2e1f-48db-953c-038e5ad293c7-14-5dqtk 0/1 Completed 0 18s
root-toil-a864e1b0-2e1f-48db-953c-038e5ad293c7-7-gkwc9 0/1 ContainerCreating 0 107s
root-toil-a864e1b0-2e1f-48db-953c-038e5ad293c7-9-t7vsb 1/1 Running 0 96s

If a pod failed for whatever reason or if you want to make sure a pod isn’t
stuck, you can use kubectl describe pod <pod-name> or
kubectl logs <pod-name> to inspect the pod.

If everything is successful, you should be able to see an output file from the sort workflow:

$ head sortedFile.txt

You can now run your own workflows!

Using MinIO and S3-Compatible object stores

Toil can be configured to access files stored in an S3-compatible object store [https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services] such as MinIO [https://min.io/]. The following environment variables can be used to configure the S3 connection used:

	TOIL_S3_HOST: the IP address or hostname to use for connecting to S3

	TOIL_S3_PORT: the port number to use for connecting to S3, if needed

	TOIL_S3_USE_SSL: enable or disable the usage of SSL for connecting to S3 (True by default)

Examples:

TOIL_S3_HOST=127.0.0.1
TOIL_S3_PORT=9010
TOIL_S3_USE_SSL=False

Dashboard

Toil provides a dashboard for viewing the RAM and CPU usage of each node, the number of
issued jobs of each type, the number of failed jobs, and the size of the jobs queue. To launch this dashboard
for a toil workflow, include the --metrics flag in the toil script command. The dashboard can then be viewed
in your browser at localhost:3000 while connected to the leader node through toil ssh-cluster:

To change the default port number, you can use the --grafana_port argument:

(venv) $ toil ssh-cluster -z us-west-2a --grafana_port 8000 <cluster-name>

On AWS, the dashboard keeps track of every node in the cluster to monitor CPU and RAM usage, but it
can also be used while running a workflow on a single machine. The dashboard uses Grafana as the
front end for displaying real-time plots, and Prometheus for tracking metrics exported by toil:

[image: ../../_images/dashboard_screenshot.png]
In order to use the dashboard for a non-released toil version, you will have to build the containers locally with
make docker, since the prometheus, grafana, and mtail containers used in the dashboard are tied to a specific toil
version.

Running in Google Compute Engine (GCE)

Toil supports a provisioner with Google, and a Google Job Store. To get started, follow instructions
for Preparing your Google environment.

Preparing your Google environment

Toil supports using the Google Cloud Platform [https://cloud.google.com/storage/]. Setting this up is easy!

	Make sure that the google extra (Installing Toil with Extra Features) is installed

	Follow Google’s Instructions [https://cloud.google.com/docs/authentication/getting-started] to download credentials and set the
GOOGLE_APPLICATION_CREDENTIALS environment variable

	Create a new ssh key with the proper format. To create a new ssh key run the command

$ ssh-keygen -t rsa -f ~/.ssh/id_rsa -C [USERNAME]

where [USERNAME] is something like jane@example.com. Make sure to leave your password blank.

Warning

This command could overwrite an old ssh key you may be using. If you have an existing ssh key
you would like to use, it will need to be called id_rsa and it needs to have no password set.

Make sure only you can read the SSH keys:

$ chmod 400 ~/.ssh/id_rsa ~/.ssh/id_rsa.pub

	Add your newly formatted public key to Google. To do this, log into your Google Cloud account
and go to metadata [https://console.cloud.google.com/compute/metadata] section under the Compute tab.

[image: ../../_images/googleScreenShot.png]
Near the top of the screen click on ‘SSH Keys’, then edit, add item, and paste the key. Then save:

[image: ../../_images/googleScreenShot2.png]

For more details look at Google’s instructions for adding SSH keys [https://cloud.google.com/compute/docs/instances/adding-removing-ssh-keys].

Google Job Store

To use the Google Job Store you will need to set the
GOOGLE_APPLICATION_CREDENTIALS environment variable by following Google’s instructions [https://cloud.google.com/docs/authentication/getting-started].

Then to run the sort example with the Google job store you would type

$ python sort.py google:my-project-id:my-google-sort-jobstore

Running a Workflow with Autoscaling

Warning

Google Autoscaling is in beta!

The steps to run a GCE workflow are similar to those of AWS (Running a Workflow with Autoscaling), except you will
need to explicitly specify the --provisioner gce option which otherwise defaults to aws.

	Download sort.py

	Launch the leader node in GCE using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <CLUSTER-NAME> \
 --provisioner gce \
 --leaderNodeType n1-standard-1 \
 --keyPairName <SSH-KEYNAME> \
 --zone us-west1-a

Where <SSH-KEYNAME> is the first part of [USERNAME] used when setting up your ssh key.
For example if [USERNAME] was jane@example.com, <SSH-KEYNAME> should be jane.

The --keyPairName option is for an SSH key that was added to the Google account. If your ssh
key [USERNAME] was jane@example.com, then your key pair name will be just jane.

	Upload the sort example and ssh into the leader:

(venv) $ toil rsync-cluster --provisioner gce <CLUSTER-NAME> sort.py :/root
(venv) $ toil ssh-cluster --provisioner gce <CLUSTER-NAME>

	Run the workflow:

$ python /root/sort.py google:<PROJECT-ID>:<JOBSTORE-NAME> \
 --provisioner gce \
 --batchSystem mesos \
 --nodeTypes n1-standard-2 \
 --maxNodes 2

	Clean up:

$ exit # this exits the ssh from the leader node
(venv) $ toil destroy-cluster --provisioner gce <CLUSTER-NAME>

Cluster Utilities

There are several utilities used for starting and managing a Toil cluster using the AWS provisioner. They are installed
via the [aws] or [google] extra. For installation details see Toil Provisioner. The cluster utilities
are used for Running in AWS and are comprised of toil launch-cluster, toil rsync-cluster,
toil ssh-cluster, and toil destroy-cluster entry points.

Cluster commands specific to toil are:

status — Reports runtime and resource usage for all jobs in a specified jobstore (workflow must have originally been run using the -\-stats option).

stats — Inspects a job store to see which jobs have failed, run successfully, etc.

destroy-cluster — For autoscaling. Terminates the specified cluster and associated resources.

launch-cluster — For autoscaling. This is used to launch a toil leader instance with the specified provisioner.

rsync-cluster — For autoscaling. Used to transfer files to a cluster launched with toil launch-cluster.

ssh-cluster — SSHs into the toil appliance container running on the leader of the cluster.

clean — Delete the job store used by a previous Toil workflow invocation.

kill — Kills any running jobs in a rogue toil.

For information on a specific utility run:

toil launch-cluster --help

for a full list of its options and functionality.

The cluster utilities can be used for Running in Google Compute Engine (GCE) and Running in AWS.

Tip

By default, all of the cluster utilities expect to be running on AWS. To run with Google
you will need to specify the --provisioner gce option for each utility.

Note

Boto must be configured [http://boto3.readthedocs.io/en/latest/guide/quickstart.html#configuration] with AWS credentials before using cluster utilities.

Running in Google Compute Engine (GCE) contains instructions for

Stats Command

To use the stats command, a workflow must first be run using the --stats option. Using this command makes certain
that toil does not delete the job store, no matter what other options are specified (i.e. normally the option
--clean=always would delete the job, but --stats will override this).

An example of this would be running the following:

python discoverfiles.py file:my-jobstore --stats

Where discoverfiles.py is the following:

import os
import subprocess

from toil.common import Toil
from toil.job import Job

class discoverFiles(Job):
 """Views files at a specified path using ls."""

 def __init__(self, path, *args, **kwargs):
 self.path = path
 super().__init__(*args, **kwargs)

 def run(self, fileStore):
 if os.path.exists(self.path):
 subprocess.check_call(["ls", self.path])

def main():
 options = Job.Runner.getDefaultArgumentParser().parse_args()
 options.clean = "always"

 job1 = discoverFiles(path="/sys/", displayName='sysFiles')
 job2 = discoverFiles(path=os.path.expanduser("~"), displayName='userFiles')
 job3 = discoverFiles(path="/tmp/")

 job1.addChild(job2)
 job2.addChild(job3)

 with Toil(options) as toil:
 if not toil.options.restart:
 toil.start(job1)
 else:
 toil.restart()

if __name__ == '__main__':
 main()

Notice the displayName key, which can rename a job, giving it an alias when it is finally displayed in stats.
Running this workflow file should record three job names: sysFiles (job1), userFiles (job2), and discoverFiles (job3).
To see the runtime and resources used for each job when it was run, type

toil stats file:my-jobstore

This should output the following:

Batch System: singleMachine
Default Cores: 1 Default Memory: 2097152K
Max Cores: 9.22337e+18
Total Clock: 0.56 Total Runtime: 1.01
Worker
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1 | 0.14 0.14 0.14 0.14 0.14 | 0.13 0.13 0.13 0.13 0.13 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K 76K 76K
Job
 Worker Jobs | min med ave max
 | 3 3 3 3
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 3 | 0.01 0.06 0.05 0.07 0.14 | 0.00 0.06 0.04 0.07 0.12 | 0.00 0.01 0.00 0.01 0.01 | 76K 76K 76K 76K 229K
 sysFiles
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1 | 0.01 0.01 0.01 0.01 0.01 | 0.00 0.00 0.00 0.00 0.00 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K 76K 76K
 userFiles
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1 | 0.06 0.06 0.06 0.06 0.06 | 0.06 0.06 0.06 0.06 0.06 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K 76K 76K
 discoverFiles
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1 | 0.07 0.07 0.07 0.07 0.07 | 0.07 0.07 0.07 0.07 0.07 | 0.00 0.00 0.00 0.00 0.00 | 76K 76K 76K 76K 76K

Once we’re done, we can clean up the job store by running

toil clean file:my-jobstore

Status Command

Continuing the example from the stats section above, if we ran our workflow with the command

python discoverfiles.py file:my-jobstore --stats

We could interrogate our jobstore with the status command, for example:

toil status file:my-jobstore

If the run was successful, this would not return much valuable information, something like

2018-01-11 19:31:29,739 - toil.lib.bioio - INFO - Root logger is at level 'INFO', 'toil' logger at level 'INFO'.
2018-01-11 19:31:29,740 - toil.utils.toilStatus - INFO - Parsed arguments
2018-01-11 19:31:29,740 - toil.utils.toilStatus - INFO - Checking if we have files for Toil
The root job of the job store is absent, the workflow completed successfully.

Otherwise, the status command should return the following:

There are x unfinished jobs, y parent jobs with children, z jobs with services, a services, and b totally failed jobs currently in c.

Clean Command

If a Toil pipeline didn’t finish successfully, or was run using --clean=always or --stats, the job store will exist
until it is deleted. toil clean <jobStore> ensures that all artifacts associated with a job store are removed.
This is particularly useful for deleting AWS job stores, which reserves an SDB domain as well as an S3 bucket.

The deletion of the job store can be modified by the --clean argument, and may be set to always, onError,
never, or onSuccess (default).

Temporary directories where jobs are running can also be saved from deletion using the --cleanWorkDir, which has
the same options as --clean. This option should only be run when debugging, as intermediate jobs will fill up
disk space.

Launch-Cluster Command

Running toil launch-cluster starts up a leader for a cluster. Workers can be
added to the initial cluster by specifying the -w option. An example would be

$ toil launch-cluster my-cluster \
 --leaderNodeType t2.small -z us-west-2a \
 --keyPairName your-AWS-key-pair-name \
 --nodeTypes m3.large,t2.micro -w 1,4

Options are listed below. These can also be displayed by running

$ toil launch-cluster --help

launch-cluster’s main positional argument is the clusterName. This is simply the name of your cluster. If it does not
exist yet, Toil will create it for you.

Launch-Cluster Options

	--help

	-h also accepted. Displays this help menu.

	--tempDirRoot TEMPDIRROOT

	Path to the temporary directory where all temp
files are created, by default uses the current working
directory as the base.

	--version

	Display version.

	--provisioner CLOUDPROVIDER

	-p CLOUDPROVIDER also accepted. The provisioner for
cluster auto-scaling. Both AWS and GCE are
currently supported.

	--zone ZONE

	-z ZONE also accepted. The availability zone of the leader. This
parameter can also be set via the TOIL_AWS_ZONE or TOIL_GCE_ZONE
environment variables, or by the ec2_region_name
parameter in your .boto file if using AWS, or derived from the
instance metadata if using this utility on an existing
EC2 instance.

	--leaderNodeType LEADERNODETYPE

	Non-preemptable node type to use for the cluster
leader.

	--keyPairName KEYPAIRNAME

	The name of the AWS or ssh key pair to include on the
instance.

	--owner OWNER

	The owner tag for all instances. If not given, the value in
TOIL_OWNER_TAG will be used, or else the value of
–keyPairName.

	--boto BOTOPATH

	The path to the boto credentials directory. This is
transferred to all nodes in order to access the AWS
jobStore from non-AWS instances.

	--tag KEYVALUE

	KEYVALUE is specified as KEY=VALUE. -t KEY=VALUE also
accepted. Tags are added to the AWS cluster for this
node and all of its children.
Tags are of the form: -t key1=value1 –tag key2=value2.
Multiple tags are allowed and each tag needs its own
flag. By default the cluster is tagged with:
{ “Name”: clusterName, “Owner”: IAM username }.

	--vpcSubnet VPCSUBNET

	VPC subnet ID to launch cluster leader in. Uses default
subnet if not specified. This subnet needs to have auto
assign IPs turned on.

	--nodeTypes NODETYPES

	Comma-separated list of node types to create while
launching the leader. The syntax for each node type
depends on the provisioner used. For the AWS
provisioner this is the name of an EC2 instance type
followed by a colon and the price in dollars to bid for
a spot instance, for example ‘c3.8xlarge:0.42’. Must
also provide the –workers argument to specify how
many workers of each node type to create.

	--workers WORKERS

	-w WORKERS also accepted. Comma-separated list of the
number of workers of each node type to launch alongside
the leader when the cluster is created. This can be
useful if running toil without auto-scaling but with
need of more hardware support.

	--leaderStorage LEADERSTORAGE

	Specify the size (in gigabytes) of the root volume for
the leader instance. This is an EBS volume.

	--nodeStorage NODESTORAGE

	Specify the size (in gigabytes) of the root volume for
any worker instances created when using the -w flag.
This is an EBS volume.

	--nodeStorageOverrides NODESTORAGEOVERRIDES

	Comma-separated list of nodeType:nodeStorage that are used
to override the default value from –nodeStorage for the
specified nodeType(s). This is useful for heterogeneous jobs
where some tasks require much more disk than others.

Logging Options

	--logOff

	Same as -\-logCritical.

	--logCritical

	Turn on logging at level CRITICAL and above. (default
is INFO)

	--logError

	Turn on logging at level ERROR and above. (default is
INFO)

	--logWarning

	Turn on logging at level WARNING and above. (default
is INFO)

	--logInfo

	Turn on logging at level INFO and above. (default is
INFO)

	--logDebug

	Turn on logging at level DEBUG and above. (default is
INFO)

	--logLevel LOGLEVEL

	Log at given level (may be either OFF (or CRITICAL),
ERROR, WARN (or WARNING), INFO or DEBUG). (default is
INFO)

	--logFile LOGFILE

	File to log in.

	--rotatingLogging

	Turn on rotating logging, which prevents log files
getting too big.

Ssh-Cluster Command

Toil provides the ability to ssh into the leader of the cluster. This
can be done as follows:

$ toil ssh-cluster CLUSTER-NAME-HERE

This will open a shell on the Toil leader and is used to start an
Running a Workflow with Autoscaling run. Issues with docker prevent using screen and tmux
when sshing the cluster (The shell doesn’t know that it is a TTY which prevents
it from allocating a new screen session). This can be worked around via

$ script
$ screen

Simply running screen within script will get things working properly again.

Finally, you can execute remote commands with the following syntax:

$ toil ssh-cluster CLUSTER-NAME-HERE remoteCommand

It is not advised that you run your Toil workflow using remote execution like this
unless a tool like nohup [https://linux.die.net/man/1/nohup] is used to ensure the
process does not die if the SSH connection is interrupted.

For an example usage, see Running a Workflow with Autoscaling.

Rsync-Cluster Command

The most frequent use case for the rsync-cluster utility is deploying your
Toil script to the Toil leader. Note that the syntax is the same as traditional
rsync [https://linux.die.net/man/1/rsync] with the exception of the hostname before
the colon. This is not needed in toil rsync-cluster since the hostname is automatically
determined by Toil.

Here is an example of its usage:

$ toil rsync-cluster CLUSTER-NAME-HERE \
 ~/localFile :/remoteDestination

Destroy-Cluster Command

The destroy-cluster command is the advised way to get rid of any Toil cluster
launched using the Launch-Cluster Command command. It ensures that all attached nodes, volumes,
security groups, etc. are deleted. If a node or cluster is shut down using Amazon’s online portal
residual resources may still be in use in the background. To delete a cluster run

$ toil destroy-cluster CLUSTER-NAME-HERE

Kill Command

To kill all currently running jobs for a given jobstore, use the command

toil kill file:my-jobstore

HPC Environments

Toil is a flexible framework that can be leveraged in a variety of environments, including high-performance computing (HPC) environments.
Toil provides support for a number of batch systems, including Grid Engine [http://www.univa.com/oracle], Slurm [https://www.schedmd.com/], Torque [http://www.adaptivecomputing.com/products/open-source/torque/] and LSF [https://en.wikipedia.org/wiki/Platform_LSF], which are popular schedulers used in these environments.
Toil also supports HTCondor [https://research.cs.wisc.edu/htcondor/], which is a popular scheduler for high-throughput computing (HTC).
To use one of these batch systems specify the “-\-batchSystem” argument to the toil script.

Due to the cost and complexity of maintaining support for these schedulers we currently consider them to be “community supported”, that is the core development team does not regularly test or develop support for these systems. However, there are members of the Toil community currently deploying Toil in HPC environments and we welcome external contributions.

Developing the support of a new or existing batch system involves extending the abstract batch system class toil.batchSystems.abstractBatchSystem.AbstractBatchSystem.

Standard Output/Error from Batch System Jobs

Standard output and error from batch system jobs (except for the Parasol and Mesos batch systems) are redirected to files in the toil-<workflowID> directory created within the temporary directory specified by the --workDir option; see Commandline Options.
Each file is named as follows: toil_job_<Toil job ID>_batch_<name of batch system>_<job ID from batch system>_<file description>.log, where <file description> is std_output for standard output, and std_error for standard error.
HTCondor will also write job event log files with <file description> = job_events.

If capturing standard output and error is desired, --workDir will generally need to be on a shared file system; otherwise if these are written to local temporary directories on each node (e.g. /tmp) Toil will not be able to retrieve them.
Alternatively, the --noStdOutErr option forces Toil to discard all standard output and error from batch system jobs.

CWL in Toil

The Common Workflow Language (CWL) is an emerging standard for writing workflows
that are portable across multiple workflow engines and platforms.
Toil has full support for the CWL v1.0, v1.1, and v1.2 standards.

Running CWL Locally

The toil-cwl-runner command provides cwl-parsing functionality using cwltool, and leverages the job-scheduling and
batch system support of Toil.

To run in local batch mode, provide the CWL file and the input object file:

$ toil-cwl-runner example.cwl example-job.yml

For a simple example of CWL with Toil see Running a basic CWL workflow.

Note for macOS + Docker + Toil

When invoking CWL documents that make use of Docker containers if you see errors that
look like

docker: Error response from daemon: Mounts denied:
The paths /var/...tmp are not shared from OS X and are not known to Docker.

you may need to add

export TMPDIR=/tmp/docker_tmp

either in your startup file (.bashrc) or add it manually in your shell before invoking
toil.

Detailed Usage Instructions

Help information can be found by using this toil command:

$ toil-cwl-runner -h

A more detailed example shows how we can specify both Toil and cwltool arguments for our workflow:

$ toil-cwl-runner \
 --singularity \
 --jobStore my_jobStore \
 --batchSystem lsf \
 --workDir `pwd` \
 --outdir `pwd` \
 --logFile cwltoil.log \
 --writeLogs `pwd` \
 --logLevel DEBUG \
 --retryCount 2 \
 --maxLogFileSize 20000000000 \
 --stats \
 standard_bam_processing.cwl \
 inputs.yaml

In this example, we set the following options, which are all passed to Toil:

--singularity: Specifies that all jobs with Docker format containers
specified should be run using the Singularity container engine instead of the
Docker container engine.

--jobStore: Path to a folder which doesn’t exist yet, which will contain the
Toil jobstore and all related job-tracking information.

--batchSystem: Use the specified HPC or Cloud-based cluster platform.

--workDir: The directory where all temporary files will be created for the
workflow. A subdirectory of this will be set as the $TMPDIR environment
variable and this subdirectory can be referenced using the CWL parameter
reference $(runtime.tmpdir) in CWL tools and workflows.

--outdir: Directory where final File and Directory outputs will be
written. References to these and other output types will be in the JSON object
printed to the stdout stream after workflow execution.

--logFile: Path to the main logfile with logs from all jobs.

--writeLogs: Directory where all job logs will be stored.

--retryCount: How many times to retry each Toil job.

--maxLogFileSize: Logs that get larger than this value will be truncated.

--stats: Save resources usages in json files that can be collected with the
toil stats command after the workflow is done.

--disable-streaming: Does not allow streaming of input files. This is enabled
by default for files marked with streamable flag True and only for remote files
when the jobStore is not on local machine.

Running CWL in the Cloud

To run in cloud and HPC configurations, you may need to provide additional
command line parameters to select and configure the batch system to use.

To run a CWL workflow in AWS with toil see Running a CWL Workflow on AWS.

Running CWL within Toil Scripts

A CWL workflow can be run indirectly in a native Toil script. However, this is not the standard way to run
CWL workflows with Toil and doing so comes at the cost of job efficiency. For some use cases, such as running one process on
multiple files, it may be useful. For example, if you want to run a CWL workflow with 3 YML files specifying different
samples inputs, it could look something like:

import os
import subprocess
import tempfile

from toil.common import Toil
from toil.job import Job

def initialize_jobs(job):
 job.fileStore.logToMaster('initialize_jobs')

def runQC(job, cwl_file, cwl_filename, yml_file, yml_filename, outputs_dir, output_num):
 job.fileStore.logToMaster("runQC")
 tempDir = job.fileStore.getLocalTempDir()

 cwl = job.fileStore.readGlobalFile(cwl_file, userPath=os.path.join(tempDir, cwl_filename))
 yml = job.fileStore.readGlobalFile(yml_file, userPath=os.path.join(tempDir, yml_filename))

 subprocess.check_call(["toil-cwl-runner", cwl, yml])

 output_filename = "output.txt"
 output_file = job.fileStore.writeGlobalFile(output_filename)
 job.fileStore.readGlobalFile(output_file, userPath=os.path.join(outputs_dir, "sample_" + output_num + "_" + output_filename))
 return output_file

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_cwlexample")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"
 with Toil(options) as toil:

 # specify the folder where the cwl and yml files live
 inputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "cwlExampleFiles")
 # specify where you wish the outputs to be written
 outputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "cwlExampleFiles")

 job0 = Job.wrapJobFn(initialize_jobs)

 cwl_filename = "hello.cwl"
 cwl_file = toil.importFile("file://" + os.path.abspath(os.path.join(inputs_dir, cwl_filename)))

 # add list of yml config inputs here or import and construct from file
 yml_files = ["hello1.yml", "hello2.yml", "hello3.yml"]
 i = 0
 for yml in yml_files:
 i = i + 1
 yml_file = toil.importFile("file://" + os.path.abspath(os.path.join(inputs_dir, yml)))
 yml_filename = yml
 job = Job.wrapJobFn(runQC, cwl_file, cwl_filename, yml_file, yml_filename, outputs_dir, output_num=str(i))
 job0.addChild(job)

 toil.start(job0)

Running CWL workflows with InplaceUpdateRequirement

Some CWL workflows use the InplaceUpdateRequirement feature, which requires
that operations on files have visible side effects that Toil’s file store
cannot support. If you need to run a workflow like this, you can make sure that
all of your worker nodes have a shared filesystem, and use the
--bypass-file-store option to toil-cwl-runner. This will make it leave
all CWL intermediate files on disk and share them between jobs using file
paths, instead of storing them in the file store and downloading them when jobs
need them.

Toil & CWL Tips

See logs for just one job by using the full log file

This requires knowing the job’s toil-generated ID, which can be found in the log files.

cat cwltoil.log | grep jobVM1fIs

Grep for full tool commands from toil logs

This gives you a more concise view of the commands being run (note that this information is only available from
Toil when running with –logDebug).

pcregrep -M "\[job .*\.cwl.*$\n(.* .*$\n)*" cwltoil.log
^allows for multiline matching

Find Bams that have been generated for specific step while pipeline is running:

find . | grep -P '^./out_tmpdir.*_MD\.bam$'

See what jobs have been run

cat log/cwltoil.log | grep -oP "\[job .*.cwl\]" | sort | uniq

or:

cat log/cwltoil.log | grep -i "issued job"

Get status of a workflow

$ toil status /home/johnsoni/TEST_RUNS_3/TEST_run/tmp/jobstore-09ae0acc-c800-11e8-9d09-70106fb1697e
<hostname> 2018-10-04 15:01:44,184 MainThread INFO toil.lib.bioio: Root logger is at level 'INFO', 'toil' logger at level 'INFO'.
<hostname> 2018-10-04 15:01:44,185 MainThread INFO toil.utils.toilStatus: Parsed arguments
<hostname> 2018-10-04 15:01:47,081 MainThread INFO toil.utils.toilStatus: Traversing the job graph gathering jobs. This may take a couple of minutes.

Of the 286 jobs considered, there are 179 jobs with children, 107 jobs ready to run, 0 zombie jobs, 0 jobs with services, 0 services, and 0 jobs with log files currently in file:/home/user/jobstore-09ae0acc-c800-11e8-9d09-70106fb1697e.

Toil Stats

You can get run statistics broken down by CWL file. This only works once the workflow is finished:

$ toil stats /path/to/jobstore

The output will contain CPU, memory, and walltime information for all CWL job types:

<hostname> 2018-10-15 12:06:19,003 MainThread INFO toil.lib.bioio: Root logger is at level 'INFO', 'toil' logger at level 'INFO'.
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Parsed arguments
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Checking if we have files for toil
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Checked arguments
Batch System: lsf
Default Cores: 1 Default Memory: 10485760K
Max Cores: 9.22337e+18
Total Clock: 106608.01 Total Runtime: 86634.11
Worker
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1659 | 0.00 0.80 264.87 12595.59 439424.40 | 0.00 0.46 449.05 42240.74 744968.80 | -35336.69 0.16 -184.17 4230.65 -305544.39 | 48K 223K 1020K 40235K 1692300K
Job
 Worker Jobs | min med ave max
 | 1077 1077 1077 1077
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1077 | 0.04 1.18 407.06 12593.43 438404.73 | 0.01 0.28 691.17 42240.35 744394.14 | -35336.83 0.27 -284.11 4230.49 -305989.41 | 135K 268K 1633K 40235K 1759734K
 ResolveIndirect
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 205 | 0.04 0.07 0.16 2.29 31.95 | 0.01 0.02 0.02 0.14 3.60 | 0.02 0.05 0.14 2.28 28.35 | 190K 266K 256K 314K 52487K
 CWLGather
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 40 | 0.05 0.17 0.29 1.90 11.62 | 0.01 0.02 0.02 0.05 0.80 | 0.03 0.14 0.27 1.88 10.82 | 188K 265K 250K 316K 10039K
 CWLWorkflow
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 205 | 0.09 0.40 0.98 13.70 200.82 | 0.04 0.15 0.16 1.08 31.78 | 0.04 0.26 0.82 12.62 169.04 | 190K 270K 257K 316K 52826K
 file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/group_waltz_files.cwl
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 99 | 0.29 0.49 0.59 2.50 58.11 | 0.14 0.26 0.29 1.04 28.95 | 0.14 0.22 0.29 1.48 29.16 | 135K 135K 135K 136K 13459K
 file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/make_sample_output_dirs.cwl
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 11 | 0.34 0.52 0.74 2.63 8.18 | 0.20 0.30 0.41 1.17 4.54 | 0.14 0.20 0.33 1.45 3.65 | 136K 136K 136K 136K 1496K
 file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/consolidate_files.cwl
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 8 | 0.31 0.59 0.71 1.80 5.69 | 0.18 0.35 0.37 0.63 2.94 | 0.13 0.27 0.34 1.17 2.75 | 136K 136K 136K 136K 1091K
 file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/bwa-mem/bwa-mem.cwl
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 22 | 895.76 3098.13 3587.34 12593.43 78921.51 | 2127.02 7910.31 8123.06 16959.13 178707.34 | -11049.84 -3827.96 -4535.72 19.49 -99785.83 | 5659K 5950K 5854K 6128K 128807K

Understanding toil log files

There is a worker_log.txt file for each job, this file is written to while the job is running, and deleted after the job finishes. The contents are printed to the main log file and transferred to a log file in the –logDir folder once the job is completed successfully.

The new log file will be named something like:

file:<path to cwl tool>.cwl_<job ID>.log

file:---home-johnsoni-pipeline_1.1.14-ACCESS--Pipeline-cwl_tools-marianas-ProcessLoopUMIFastq.cwl_I-O-jobfGsQQw000.log

This is the toil job command with spaces replaced by dashes.

WDL in Toil

Toil has beta support for running WDL workflows, using the toil-wdl-runner
command.

Running WDL with Toil

You can run WDL workflows with toil-wdl-runner. Currently,
toil-wdl-runner works by using MiniWDL [https://github.com/chanzuckerberg/miniwdl/#miniwdl] to parse and interpret the WDL
workflow, and has support for workflows in WDL 1.0 or later (which are required
to declare a version and to use inputs and outputs sections).

You can write workflows like this by following the official WDL tutorials [https://wdl-docs.readthedocs.io/en/stable/].

When you reach the point of executing your workflow [https://wdl-docs.readthedocs.io/en/stable/WDL/execute/], instead of running with
Cromwell:

java -jar Cromwell.jar run myWorkflow.wdl --inputs myWorkflow_inputs.json

you can instead run with toil-wdl-runner:

toil-wdl-runner myWorkflow.wdl --inputs myWorkflow_inputs.json

This will default to executing on the current machine, with a job store in an
automatically determined temporary location, but you can add a few Toil options
to use other Toil-supported batch systems, such as Kubernetes:

toil-wdl-runner --jobStore aws:us-west-2:wdl-job-store --batchSystem kubernetes myWorkflow.wdl --inputs myWorkflow_inputs.json

For Toil, the --inputs is optional, and inputs can be passed as a positional
argument:

toil-wdl-runner myWorkflow.wdl myWorkflow_inputs.json

You can also run workflows from URLs. For example, to run the MiniWDL self test
workflow, you can do:

toil-wdl-runner https://raw.githubusercontent.com/DataBiosphere/toil/36b54c45e8554ded5093bcdd03edb2f6b0d93887/src/toil/test/wdl/miniwdl_self_test/self_test.wdl https://raw.githubusercontent.com/DataBiosphere/toil/36b54c45e8554ded5093bcdd03edb2f6b0d93887/src/toil/test/wdl/miniwdl_self_test/inputs.json

Toil WDL Runner Options

‘-\-jobStore’: Specifies where to keep the Toil state information while
running the workflow. Must be accessible from all machines.

‘-o’ or ‘-\-outputDirectory’: Specifies the output folder to save
workflow output files in. Defaults to a new directory in the current directory.

‘-m’ or ‘-\-outputFile’: Specifies a JSON file to save workflow output
values to. Defaults to standard output.

‘-i’ or ‘-\-input’: Alternative to the positional argument for the
input JSON file, for compatibility with other WDL runners.

‘-\-outputDialect’: Specifies an output format dialect. Can be
cromwell to just return the workflow’s output values as JSON or miniwdl
to nest that under an outputs key and includes a dir key.

Any number of other Toil options may also be specified. For defined Toil options,
see the documentation:
http://toil.readthedocs.io/en/latest/running/cliOptions.html

WDL Specifications

WDL language specifications can be found here: https://github.com/broadinstitute/wdl/blob/develop/SPEC.md

Toil is not yet fully conformant with the WDL specification, but it inherits most of the functionality of MiniWDL [https://github.com/chanzuckerberg/miniwdl/#miniwdl].

Using the Old WDL Compiler

Up through Toil 5.9.2, toil-wdl-runner worked by compiling the WDL code to
a Toil Python workflow, and executing that. The old compiler is
still available as toil-wdl-runner-old.

	The compiler implements:
	
	Scatter

	Many Built-In Functions

	Docker Calls

	Handles Priority, and Output File Wrangling

	Currently Handles Primitives and Arrays

	The compiler DOES NOT implement:
	
	Robust cloud autoscaling

	WDL files that import other WDL files (including URI handling for ‘http://’ and ‘https://’)

Recommended best practice when running wdl files with toil-wdl-runner-old is to first use the Broad’s wdltool for syntax validation and generating
the needed json input file. Full documentation can be found in the repository [https://github.com/broadinstitute/wdltool], and a precompiled jar binary can be
downloaded here: wdltool [https://github.com/broadinstitute/wdltool/releases] (this requires java7 [http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html]).

That means two steps. First, make sure your wdl file is valid and devoid of syntax errors by running

java -jar wdltool.jar validate example_wdlfile.wdl

Second, generate a complementary json file if your wdl file needs one. This json will contain keys for every necessary
input that your wdl file needs to run:

java -jar wdltool.jar inputs example_wdlfile.wdl

When this json template is generated, open the file, and fill in values as necessary by hand. WDL files all require
json files to accompany them. If no variable inputs are needed, a json file containing only ‘{}’ may be required.

Once a wdl file is validated and has an appropriate json file, workflows can be compiled and run using:

toil-wdl-runner-old example_wdlfile.wdl example_jsonfile.json

Toil WDL Compiler Options

‘-o’ or ‘-\-outdir’: Specifies the output folder, and defaults to the current working directory if
not specified by the user.

‘-\-dev_mode’: Creates “AST.out”, which holds a printed AST of the wdl file and “mappings.out”, which holds the
printed task, workflow, csv, and tsv dictionaries generated by the parser. Also saves the compiled toil python workflow
file for debugging.

Any number of arbitrary options may also be specified. These options will not be parsed immediately, but passed down
as toil options once the wdl/json files are processed. For valid toil options, see the documentation:
http://toil.readthedocs.io/en/latest/running/cliOptions.html

Compiler Example: ENCODE Example from ENCODE-DCC

For this example, we will run a WDL draft-2 workflow. This version is too old
to be supported by toil-wdl-runner, so we will need to use
toil-wdl-runner-old.

To follow this example, you will need docker installed. The original workflow can be found here:
https://github.com/ENCODE-DCC/pipeline-container

We’ve included the wdl file and data files in the toil repository needed to run this example. First, download
the example code [https://toil-datasets.s3.amazonaws.com/wdl_templates.zip] and unzip. The file needed is “testENCODE/encode_mapping_workflow.wdl”.

Next, use wdltool [https://github.com/broadinstitute/wdltool/releases] (this requires java7 [http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html]) to validate this file:

java -jar wdltool.jar validate encode_mapping_workflow.wdl

Next, use wdltool to generate a json file for this wdl file:

java -jar wdltool.jar inputs encode_mapping_workflow.wdl

This json file once opened should look like this:

{
"encode_mapping_workflow.fastqs": "Array[File]",
"encode_mapping_workflow.trimming_parameter": "String",
"encode_mapping_workflow.reference": "File"
}

You will need to edit this file to replace the types (like Array[File]) with values of those types.

The trimming_parameter should be set to ‘native’.

For the file parameters, download the example data [https://toil-datasets.s3.amazonaws.com/ENCODE_data.zip] and unzip. Inside are two data files required for the run

ENCODE_data/reference/GRCh38_chr21_bwa.tar.gz
ENCODE_data/ENCFF000VOL_chr21.fq.gz

Editing the json to include these as inputs, the json should now look something like this:

{
"encode_mapping_workflow.fastqs": ["/path/to/unzipped/ENCODE_data/ENCFF000VOL_chr21.fq.gz"],
"encode_mapping_workflow.trimming_parameter": "native",
"encode_mapping_workflow.reference": "/path/to/unzipped/ENCODE_data/reference/GRCh38_chr21_bwa.tar.gz"
}

The wdl and json files can now be run using the command:

toil-wdl-runner-old encode_mapping_workflow.wdl encode_mapping_workflow.json

This should deposit the output files in the user’s current working directory (to change this, specify a new directory
with the ‘-o’ option).

Compiler Example: GATK Examples from the Broad

Terra hosts some example documentation for using early, pre-1.0 versions of WDL, originally authored by the Broad:
https://support.terra.bio/hc/en-us/sections/360007347652?name=wdl-tutorials

One can follow along with these tutorials, write their own old-style WDL files following the directions and run them using either
Cromwell or Toil’s old WDL compiler. For example, in tutorial 1, if you’ve followed along and named your wdl file ‘helloHaplotypeCall.wdl’,
then once you’ve validated your wdl file using wdltool [https://github.com/broadinstitute/wdltool/releases] (this requires java7 [http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html]) using

java -jar wdltool.jar validate helloHaplotypeCaller.wdl

and generated a json file (and subsequently typed in appropriate file paths and variables) using

java -jar wdltool.jar inputs helloHaplotypeCaller.wdl

Note

Absolute filepath inputs are recommended for local testing with the Toil WDL compiler.

then the WDL script can be compiled and run using

toil-wdl-runner-old helloHaplotypeCaller.wdl helloHaplotypeCaller_inputs.json

Workflow Execution Service (WES)

The GA4GH Workflow Execution Service (WES) is a standardized API for submitting and monitoring workflows.
Toil has experimental support for setting up a WES server and executing CWL, WDL, and Toil workflows using the WES API.
More information about the WES API specification can be found here [https://ga4gh.github.io/workflow-execution-service-schemas/docs/].

To get started with the Toil WES server, make sure that the server extra (Installing Toil with Extra Features) is installed.

Preparing your WES environment

The WES server requires Celery [https://docs.celeryproject.org/en/stable/getting-started/introduction.html] to distribute and execute workflows. To set up Celery:

	Start RabbitMQ, which is the broker between the WES server and Celery workers:

docker run -d --name wes-rabbitmq -p 5672:5672 rabbitmq:3.9.5

	Start Celery workers:

celery -A toil.server.celery_app worker --loglevel=INFO

Starting a WES server

To start a WES server on the default port 8080, run the Toil command:

$ toil server

The WES API will be hosted on the following URL:

http://localhost:8080/ga4gh/wes/v1

To use another port, e.g.: 3000, you can specify the --port argument:

$ toil server --port 3000

There are many other command line options. Help information can be found by using this command:

$ toil server --help

Below is a detailed summary of all server-specific options:

	--debug

	Enable debug mode.

	--bypass_celery

	Skip sending workflows to Celery and just run them under the server.
For testing.

	--host HOST

	The host interface that the Toil server binds on. (default:
“127.0.0.1”).

	--port PORT

	The port that the Toil server listens on. (default: 8080).

	--swagger_ui

	If True, the swagger UI will be enabled and hosted on the
{api_base_path}/ui endpoint. (default: False)

	--cors

	Enable Cross Origin Resource Sharing (CORS). This should only be
turned on if the server is intended to be used by a website or
domain. (default: False).

	--cors_origins CORS_ORIGIN

	Ignored if -//-cors is False. This sets the allowed origins for
CORS. For details about CORS and its security risks, see the
GA4GH docs on CORS [https://w3id.org/ga4gh/product-approval-support/cors]. (default: “*”).

	--workers WORKERS, -w WORKERS

	Ignored if -\-debug is True. The number of worker processes
launched by the WSGI server. (default: 2).

	--work_dir WORK_DIR

	The directory where workflows should be stored. This directory
should be empty or only contain previous workflows. (default:
‘./workflows’).

	--state_store STATE_STORE

	The local path or S3 URL where workflow state metadata should be
stored. (default: in -\-work_dir)

	--opt OPT, -o OPT

	Specify the default parameters to be sent to the workflow engine for
each run. Options taking arguments must use = syntax. Accepts
multiple values. Example: -\-opt=-\-logLevel=CRITICAL -\-opt=-\-workDir=/tmp.

	--dest_bucket_base DEST_BUCKET_BASE

	Direct CWL workflows to save output files to dynamically generated
unique paths under the given URL. Supports AWS S3.

	--wes_dialect DIALECT

	Restrict WES responses to a dialect compatible with clients that do
not fully implement the WES standard. (default: ‘standard’)

Running the Server with docker-compose

Instead of manually setting up the server components (toil server, RabbitMQ, and Celery), you can use the following
docker-compose.yml file to orchestrate and link them together.

Make sure to change the credentials for basic authentication by updating the
traefik.http.middlewares.auth.basicauth.users label. The passwords can be generated with tools like htpasswd
like this [https://doc.traefik.io/traefik/v2.0/middlewares/basicauth/#configuration-examples]. (Note that single $ signs need to be replaced with $$ in the yaml file).

When running on a different host other than localhost, make sure to change the Host to your
tartget host in the traefik.http.routers.wes.rule and traefik.http.routers.wespublic.rule labels.

You can also change /tmp/toil-workflows if you want Toil workflows to live somewhere else, and create the directory
before starting the server.

In order to run workflows that require Docker, the docker.sock socket must be mounted as volume for Celery.
Additionally, the TOIL_WORKDIR directory (defaults to: /var/lib/toil) and /var/lib/cwl (if running CWL
workflows with DockerRequirement) should exist on the host and also be mounted as volumes.

Also make sure to run it behind a firewall; it opens up the Toil server on port 8080 to anyone who connects.

docker-compose.yml
version: "3.8"

services:
 rabbitmq:
 image: rabbitmq:3.9.5
 hostname: rabbitmq
 celery:
 image: ${TOIL_APPLIANCE_SELF}
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 - /var/lib/docker:/var/lib/docker
 - /var/lib/toil:/var/lib/toil
 - /var/lib/cwl:/var/lib/cwl
 - /tmp/toil-workflows:/tmp/toil-workflows
 command: celery --broker=amqp://guest:guest@rabbitmq:5672// -A toil.server.celery_app worker --loglevel=INFO
 depends_on:
 - rabbitmq
 wes-server:
 image: ${TOIL_APPLIANCE_SELF}
 volumes:
 - /tmp/toil-workflows:/tmp/toil-workflows
 environment:
 - TOIL_WES_BROKER_URL=amqp://guest:guest@rabbitmq:5672//
 command: toil server --host 0.0.0.0 --port 8000 --work_dir /tmp/toil-workflows
 expose:
 - 8000
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.wes.rule=Host(`localhost`)"
 - "traefik.http.routers.wes.entrypoints=web"
 - "traefik.http.routers.wes.middlewares=auth"
 - "traefik.http.middlewares.auth.basicauth.users=test:$$2y$$12$$ci.4U63YX83CwkyUrjqxAucnmi2xXOIlEF6T/KdP9824f1Rf1iyNG"
 - "traefik.http.routers.wespublic.rule=Host(`localhost`) && Path(`/ga4gh/wes/v1/service-info`)"
 depends_on:
 - rabbitmq
 - celery
 traefik:
 image: traefik:v2.2
 command:
 - "--providers.docker"
 - "--providers.docker.exposedbydefault=false"
 - "--entrypoints.web.address=:8080"
 ports:
 - "8080:8080"
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock

Further customization can also be made as needed. For example, if you have a domain, you can
set up HTTPS with Let’s Encrypt [https://doc.traefik.io/traefik/user-guides/docker-compose/acme-http/].

Once everything is configured, simply run docker-compose up to start the containers. Run docker-compose down to
stop and remove all containers.

Note

docker-compose is not installed on the Toil appliance by default. See the following section to set up the WES
server on a Toil cluster.

Running on a Toil cluster

To run the server on a Toil leader instance on EC2:

	Launch a Toil cluster with the toil launch-cluster command with the AWS provisioner

	SSH into your cluster with the --sshOption=-L8080:localhost:8080 option to forward port 8080

	Install Docker Compose by running the following commands from the Docker docs [https://docs.docker.com/compose/install/#install-compose]:

curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose

check installation
docker-compose --version

or, install a different version of Docker Compose by changing "1.29.2" to another version.

	Copy the docker-compose.yml file from (Running the Server with docker-compose) to an empty directory, and modify the
configuration as needed.

	Now, run docker-compose up -d to start the WES server in detach mode on the Toil appliance.

	To stop the server, run docker-compose down.

WES API Endpoints

As defined by the GA4GH WES API specification, the following endpoints with base path ga4gh/wes/v1/ are supported
by Toil:

	GET /service-info

	Get information about the Workflow Execution Service.

	GET /runs

	List the workflow runs.

	POST /runs

	Run a workflow. This endpoint creates a new workflow
run and returns a run_id to monitor its progress.

	GET /runs/{run_id}

	Get detailed info about a workflow run.

	POST /runs/{run_id}/cancel

	Cancel a running workflow.

	GET /runs/{run_id}/status

	Get the status (overall state) of a workflow run.

When running the WES server with the docker-compose setup above, most endpoints (except GET /service-info) will
be protected with basic authentication. Make sure to set the Authorization header with the correct credentials when
submitting or retrieving a workflow.

Submitting a Workflow

Now that the WES API is up and running, we can submit and monitor workflows remotely using the WES API endpoints. A
workflow can be submitted for execution using the POST /runs endpoint.

As a quick example, we can submit the example CWL workflow from Running a basic CWL workflow to our WES API:

example.cwl
cwlVersion: v1.0
class: CommandLineTool
baseCommand: echo
stdout: output.txt
inputs:
 message:
 type: string
 inputBinding:
 position: 1
outputs:
 output:
 type: stdout

using cURL:

$ curl --location --request POST 'http://localhost:8080/ga4gh/wes/v1/runs' \
 --user test:test \
 --form 'workflow_url="example.cwl"' \
 --form 'workflow_type="cwl"' \
 --form 'workflow_type_version="v1.0"' \
 --form 'workflow_params="{\"message\": \"Hello world!\"}"' \
 --form 'workflow_attachment=@"./toil_test_files/example.cwl"'
{
 "run_id": "4deb8beb24894e9eb7c74b0f010305d1"
}

Note that the --user argument is used to attach the basic authentication credentials along with the request. Make
sure to change test:test to the username and password you configured for your WES server. Alternatively, you can
also set the Authorization header manually as "Authorization: Basic base64_encoded_auth".

If the workflow is submitted successfully, a JSON object containing a run_id will be returned. The run_id is a
unique identifier of your requested workflow, which can be used to monitor or cancel the run.

There are a few required parameters that have to be set for all workflow submissions, which are the following:

	workflow_url

	The URL of the workflow to run. This can refer to a file
from workflow_attachment.

	workflow_type

	The type of workflow language. Toil currently supports one
of the following: "CWL", "WDL", or "py". To run
a Toil native python script, set this to "py".

	workflow_type_version

	The version of the workflow language. Supported versions
can be found by accessing the GET /service-info
endpoint of your WES server.

	workflow_params

	A JSON object that specifies the inputs of the workflow.

Additionally, the following optional parameters are also available:

	workflow_attachment

	A list of files associated with the workflow run.

	workflow_engine_parameters

	A JSON key-value map of workflow engine parameters
to send to the runner.

Example:
{"--logLevel": "INFO", "--workDir": "/tmp/"}

	tags

	A JSON key-value map of metadata associated with the
workflow.

For more details about these parameters, refer to the Run Workflow section [https://ga4gh.github.io/workflow-execution-service-schemas/docs/#operation/RunWorkflow] in the WES API spec.

Upload multiple files

Looking at the body of the request of the previous example, note that the workflow_url is a relative URL that refers
to the example.cwl file uploaded from the local path ./toil_test_files/example.cwl.

To specify the file name (or subdirectory) of the remote destination file, set the filename field in the
Content-Disposition header. You could also upload more than one file by providing the workflow_attachment
parameter multiple times with different files.

This can be shown by the following example:

$ curl --location --request POST 'http://localhost:8080/ga4gh/wes/v1/runs' \
 --user test:test \
 --form 'workflow_url="example.cwl"' \
 --form 'workflow_type="cwl"' \
 --form 'workflow_type_version="v1.0"' \
 --form 'workflow_params="{\"message\": \"Hello world!\"}"' \
 --form 'workflow_attachment=@"./toil_test_files/example.cwl"' \
 --form 'workflow_attachment=@"./toil_test_files/2.fasta";filename=inputs/test.fasta' \
 --form 'workflow_attachment=@"./toil_test_files/2.fastq";filename=inputs/test.fastq'

On the server, the execution directory would have the following structure from the above request:

execution/
├── example.cwl
├── inputs
│ ├── test.fasta
| └── test.fastq
└── wes_inputs.json

Specify Toil options

To pass Toil-specific parameters to the workflow, you can include the workflow_engine_parameters parameter along
with your request.

For example, to set the logging level to INFO, and change the working directory of the workflow, simply include the
following as workflow_engine_parameters:

{"--logLevel": "INFO", "--workDir": "/tmp/"}

These options would be appended at the end of existing parameters during command construction, which would override the
default parameters if provided. (Default parameters that can be passed multiple times would not be overridden).

Monitoring a Workflow

With the run_id returned when submitting the workflow, we can check the status or get the full logs of the workflow
run.

Checking the state

The GET /runs/{run_id}/status endpoint can be used to get a simple result with the overall state of your run:

$ curl --user test:test http://localhost:8080/ga4gh/wes/v1/runs/4deb8beb24894e9eb7c74b0f010305d1/status
{
 "run_id": "4deb8beb24894e9eb7c74b0f010305d1",
 "state": "RUNNING"
}

The possible states here are: QUEUED, INITIALIZING, RUNNING, COMPLETE, EXECUTOR_ERROR,
SYSTEM_ERROR, CANCELING, and CANCELED.

Getting the full logs

To get the detailed information about a workflow run, use the GET /runs/{run_id} endpoint:

$ curl --user test:test http://localhost:8080/ga4gh/wes/v1/runs/4deb8beb24894e9eb7c74b0f010305d1
{
 "run_id": "4deb8beb24894e9eb7c74b0f010305d1",
 "request": {
 "workflow_attachment": [
 "example.cwl"
],
 "workflow_url": "example.cwl",
 "workflow_type": "cwl",
 "workflow_type_version": "v1.0",
 "workflow_params": {
 "message": "Hello world!"
 }
 },
 "state": "RUNNING",
 "run_log": {
 "cmd": [
 "toil-cwl-runner --outdir=/home/toil/workflows/4deb8beb24894e9eb7c74b0f010305d1/outputs --jobStore=file:/home/toil/workflows/4deb8beb24894e9eb7c74b0f010305d1/toil_job_store /home/toil/workflows/4deb8beb24894e9eb7c74b0f010305d1/execution/example.cwl /home/workflows/4deb8beb24894e9eb7c74b0f010305d1/execution/wes_inputs.json"
],
 "start_time": "2021-08-30T17:35:50Z",
 "end_time": null,
 "stdout": null,
 "stderr": null,
 "exit_code": null
 },
 "task_logs": [],
 "outputs": {}
}

Canceling a run

To cancel a workflow run, use the POST /runs/{run_id}/cancel endpoint:

$ curl --location --request POST 'http://localhost:8080/ga4gh/wes/v1/runs/4deb8beb24894e9eb7c74b0f010305d1/cancel' \
 --user test:test
{
 "run_id": "4deb8beb24894e9eb7c74b0f010305d1"
}

Developing a Workflow

This tutorial walks through the features of Toil necessary for developing a
workflow using the Toil Python API.

Note

“script” and “workflow” will be used interchangeably

Scripting Quick Start

To begin, consider this short toil script which illustrates defining a
workflow:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
 return f"Hello, world!, here's a message: {message}"

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_quickstart")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "OFF"
 options.clean = "always"

 hello_job = Job.wrapFn(helloWorld, "Woot")

 with Toil(options) as toil:
 print(toil.start(hello_job)) # prints "Hello, world!, ..."

The workflow consists of a single job. The resource requirements for that job
are (optionally) specified by keyword arguments (memory, cores, disk). The
script is run using toil.job.Job.Runner.getDefaultOptions(). Below we
explain the components of this code in detail.

Job Basics

The atomic unit of work in a Toil workflow is a Job.
User scripts inherit from this base class to define units of work. For example,
here is a more long-winded class-based version of the job in the quick start
example:

from toil.job import Job

class HelloWorld(Job):
 def __init__(self, message):
 Job.__init__(self, memory="2G", cores=2, disk="3G")
 self.message = message

 def run(self, fileStore):
 return f"Hello, world! Here's a message: {self.message}"

In the example a class, HelloWorld, is defined. The constructor requests 2
gigabytes of memory, 2 cores and 3 gigabytes of local disk to complete the work.

The toil.job.Job.run() method is the function the user overrides to get
work done. Here it just returns a message.

It is also possible to log a message using toil.job.Job.log(), which will
be registered in the log output of the leader process of the workflow:

...
 def run(self, fileStore):
 self.log(f"Hello, world! Here's a message: {self.message}")

Invoking a Workflow

We can add to the previous example to turn it into a complete workflow by
adding the necessary function calls to create an instance of HelloWorld and to
run this as a workflow containing a single job. For example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
 def __init__(self, message):
 Job.__init__(self, memory="2G", cores=2, disk="3G")
 self.message = message

 def run(self, fileStore):
 return f"Hello, world!, here's a message: {self.message}"

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_invokeworkflow")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "OFF"
 options.clean = "always"

 hello_job = HelloWorld("Woot")

 with Toil(options) as toil:
 print(toil.start(hello_job))

Note

Do not include a . in the name of your python script (besides .py at the end).
This is to allow toil to import the types and functions defined in your file while starting a new process.

This uses the toil.common.Toil class, which is used to run and resume
Toil workflows. It is used as a context manager and allows for preliminary
setup, such as staging of files into the job store on the leader node. An
instance of the class is initialized by specifying an options object.
The actual workflow is then invoked by calling the
toil.common.Toil.start() method, passing the root job of the workflow,
or, if a workflow is being restarted, toil.common.Toil.restart() should
be used. Note that the context manager should have explicit if else branches
addressing restart and non restart cases. The boolean value for these if else
blocks is toil.options.restart.

For example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
 def __init__(self, message):
 Job.__init__(self, memory="2G", cores=2, disk="3G")
 self.message = message

 def run(self, fileStore):
 return f"Hello, world!, I have a message: {self.message}"

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_invokeworkflow2")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 if not toil.options.restart:
 job = HelloWorld("Woot!")
 output = toil.start(job)
 else:
 output = toil.restart()
 print(output)

The call to toil.job.Job.Runner.getDefaultOptions() creates a set of
default options for the workflow. The only argument is a description of how to
store the workflow’s state in what we call a job-store. Here the job-store is
contained in a directory within the current working directory called
“toilWorkflowRun”. Alternatively this string can encode other ways to store the
necessary state, e.g. an S3 bucket object store location. By default
the job-store is deleted if the workflow completes successfully.

The workflow is executed in the final line, which creates an instance of
HelloWorld and runs it as a workflow. Note all Toil workflows start from a
single starting job, referred to as the root job. The return value of the
root job is returned as the result of the completed workflow (see promises
below to see how this is a useful feature!).

Specifying Commandline Arguments

To allow command line control of the options we can use the
toil.job.Job.Runner.getDefaultArgumentParser()
method to create a argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] object which can be used to
parse command line options for a Toil script. For example:

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
 def __init__(self, message):
 Job.__init__(self, memory="2G", cores=2, disk="3G")
 self.message = message

 def run(self, fileStore):
 return "Hello, world!, here's a message: %s" % self.message

if __name__ == "__main__":
 parser = Job.Runner.getDefaultArgumentParser()
 options = parser.parse_args()
 options.logLevel = "OFF"
 options.clean = "always"

 hello_job = HelloWorld("Woot")

 with Toil(options) as toil:
 print(toil.start(hello_job))

Creates a fully fledged script with all the options Toil exposed as command
line arguments. Running this script with “–help” will print the full list of
options.

Alternatively an existing argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] or
optparse.OptionParser [https://docs.python.org/3/library/optparse.html#optparse.OptionParser] object can have Toil script command line options
added to it with the toil.job.Job.Runner.addToilOptions() method.

Resuming a Workflow

In the event that a workflow fails, either because of programmatic error within
the jobs being run, or because of node failure, the workflow can be resumed.
Workflows can only not be reliably resumed if the job-store itself becomes
corrupt.

Critical to resumption is that jobs can be rerun, even if they have apparently
completed successfully. Put succinctly, a user defined job should not corrupt
its input arguments. That way, regardless of node, network or leader failure
the job can be restarted and the workflow resumed.

To resume a workflow specify the “restart” option in the options object passed
to toil.common.Toil.start(). If node failures are expected it can
also be useful to use the integer “retryCount” option, which will attempt to
rerun a job retryCount number of times before marking it fully failed.

In the common scenario that a small subset of jobs fail (including retry
attempts) within a workflow Toil will continue to run other jobs until it can
do no more, at which point toil.common.Toil.start() will raise a
toil.exceptions.FailedJobsException exception. Typically at this point
the user can decide to fix the script and resume the workflow or delete the
job-store manually and rerun the complete workflow.

Functions and Job Functions

Defining jobs by creating class definitions generally involves the boilerplate
of creating a constructor. To avoid this the classes
toil.job.FunctionWrappingJob and
toil.job.JobFunctionWrappingTarget allow functions to be directly
converted to jobs. For example, the quick start example (repeated here):

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
 return f"Hello, world!, here's a message: {message}"

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_quickstart")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "OFF"
 options.clean = "always"

 hello_job = Job.wrapFn(helloWorld, "Woot")

 with Toil(options) as toil:
 print(toil.start(hello_job)) # prints "Hello, world!, ..."

Is equivalent to the previous example, but using a function to define the job.

The function call:

Job.wrapFn(helloWorld, "Woot")

Creates the instance of the toil.job.FunctionWrappingTarget that wraps
the function.

The keyword arguments memory, cores and disk allow resource requirements
to be specified as before. Even if they are not included as keyword arguments
within a function header they can be passed as arguments when wrapping a
function as a job and will be used to specify resource requirements.

We can also use the function wrapping syntax to a job function, a function
whose first argument is a reference to the wrapping job. Just like a self
argument in a class, this allows access to the methods of the wrapping job, see
toil.job.JobFunctionWrappingTarget. For example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message):
 job.log(f"Hello world, I have a message: {message}")

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_jobfunctions")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 hello_job = Job.wrapJobFn(helloWorld, "Woot!")

 with Toil(options) as toil:
 toil.start(hello_job)

Here helloWorld() is a job function. It uses the toil.job.Job.log()
to log a message that will
be printed to the output console. Here the only subtle difference to note is
the line:

hello_job = Job.wrapJobFn(helloWorld, "Woot")

Which uses the function toil.job.Job.wrapJobFn() to wrap the job function
instead of toil.job.Job.wrapFn() which wraps a vanilla function.

Workflows with Multiple Jobs

A parent job can have child jobs and follow-on jobs. These relationships
are specified by methods of the job class, e.g. toil.job.Job.addChild()
and toil.job.Job.addFollowOn().

Considering a set of jobs the nodes in a job graph and the child and follow-on
relationships the directed edges of the graph, we say that a job B that is on a
directed path of child/follow-on edges from a job A in the job graph is a
successor of A, similarly A is a predecessor of B.

A parent job’s child jobs are run directly after the parent job has completed,
and in parallel. The follow-on jobs of a job are run after its child jobs and
their successors have completed. They are also run in parallel. Follow-ons
allow the easy specification of cleanup tasks that happen after a set of
parallel child tasks. The following shows a simple example that uses the
earlier helloWorld() job function:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
 job.log(f"Hello world, I have a message: {message}")

if __name__ == "__main__":
 parser = Job.Runner.getDefaultArgumentParser()
 options = parser.parse_args()
 options.logLevel = "INFO"
 options.clean = "always"

 j1 = Job.wrapJobFn(helloWorld, "first")
 j2 = Job.wrapJobFn(helloWorld, "second or third")
 j3 = Job.wrapJobFn(helloWorld, "second or third")
 j4 = Job.wrapJobFn(helloWorld, "last")

 j1.addChild(j2)
 j1.addChild(j3)
 j1.addFollowOn(j4)

 with Toil(options) as toil:
 toil.start(j1)

In the example four jobs are created, first j1 is run, then j2 and
j3 are run in parallel as children of j1, finally j4 is run as a
follow-on of j1.

There are multiple short hand functions to achieve the same workflow, for
example:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
 job.log(f"Hello world, I have a message: {message}")

if __name__ == "__main__":
 parser = Job.Runner.getDefaultArgumentParser()
 options = parser.parse_args()
 options.logLevel = "INFO"
 options.clean = "always"

 j1 = Job.wrapJobFn(helloWorld, "first")
 j2 = j1.addChildJobFn(helloWorld, "second or third")
 j3 = j1.addChildJobFn(helloWorld, "second or third")
 j4 = j1.addFollowOnJobFn(helloWorld, "last")

 with Toil(options) as toil:
 toil.start(j1)

Equivalently defines the workflow, where the functions
toil.job.Job.addChildJobFn() and toil.job.Job.addFollowOnJobFn()
are used to create job functions as children or follow-ons of an earlier job.

Jobs graphs are not limited to trees, and can express arbitrary directed acyclic
graphs. For a precise definition of legal graphs see
toil.job.Job.checkJobGraphForDeadlocks(). The previous example could be
specified as a DAG as follows:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
 job.log(f"Hello world, I have a message: {message}")

if __name__ == "__main__":
 parser = Job.Runner.getDefaultArgumentParser()
 options = parser.parse_args()
 options.logLevel = "INFO"
 options.clean = "always"

 j1 = Job.wrapJobFn(helloWorld, "first")
 j2 = j1.addChildJobFn(helloWorld, "second or third")
 j3 = j1.addChildJobFn(helloWorld, "second or third")
 j4 = j2.addChildJobFn(helloWorld, "last")
 j3.addChild(j4)

 with Toil(options) as toil:
 toil.start(j1)

Note the use of an extra child edge to make j4 a child of both j2 and
j3.

Dynamic Job Creation

The previous examples show a workflow being defined outside of a job. However,
Toil also allows jobs to be created dynamically within jobs. For example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def binaryStringFn(job, depth, message=""):
 if depth > 0:
 job.addChildJobFn(binaryStringFn, depth-1, message + "0")
 job.addChildJobFn(binaryStringFn, depth-1, message + "1")
 else:
 job.log(f"Binary string: {message}")

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_dynamic")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 toil.start(Job.wrapJobFn(binaryStringFn, depth=5))

The job function binaryStringFn logs all possible binary strings of length
n (here n=5), creating a total of 2^(n+2) - 1 jobs dynamically and
recursively. Static and dynamic creation of jobs can be mixed in a Toil
workflow, with jobs defined within a job or job function being created at
run time.

Promises

The previous example of dynamic job creation shows variables from a parent job
being passed to a child job. Such forward variable passing is naturally
specified by recursive invocation of successor jobs within parent jobs. This
can also be achieved statically by passing around references to the return
variables of jobs. In Toil this is achieved with promises, as illustrated in
the following example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def fn(job, i):
 job.log("i is: %s" % i, level=100)
 return i + 1

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_promises")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 j1 = Job.wrapJobFn(fn, 1)
 j2 = j1.addChildJobFn(fn, j1.rv())
 j3 = j1.addFollowOnJobFn(fn, j2.rv())

 with Toil(options) as toil:
 toil.start(j1)

Running this workflow results in three log messages from the jobs: i is 1
from j1, i is 2 from j2 and i is 3 from j3.

The return value from the first job is promised to the second job by the call
to toil.job.Job.rv() in the following line:

j2 = j1.addChildFn(fn, j1.rv())

The value of j1.rv() is a promise, rather than the actual return value of
the function, because j1 for the given input has at that point not been
evaluated. A promise (toil.job.Promise) is essentially a pointer to
for the return value that is replaced by the actual return value once it has
been evaluated. Therefore, when j2 is run the promise becomes 2.

Promises also support indexing of return values:

def parent(job):
 indexable = Job.wrapJobFn(fn)
 job.addChild(indexable)
 job.addFollowOnFn(raiseWrap, indexable.rv(2))

def raiseWrap(arg):
 raise RuntimeError(arg) # raises "2"

def fn(job):
 return (0, 1, 2, 3)

Promises can be quite useful. For example, we can combine dynamic job creation
with promises to achieve a job creation process that mimics the functional
patterns possible in many programming languages:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def binaryStrings(job, depth, message=""):
 if depth > 0:
 s = [job.addChildJobFn(binaryStrings, depth - 1, message + "0").rv(),
 job.addChildJobFn(binaryStrings, depth - 1, message + "1").rv()]
 return job.addFollowOnFn(merge, s).rv()
 return [message]

def merge(strings):
 return strings[0] + strings[1]

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_promises2")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.loglevel = "OFF"
 options.clean = "always"

 with Toil(options) as toil:
 print(toil.start(Job.wrapJobFn(binaryStrings, depth=5)))

The return value l of the workflow is a list of all binary strings of
length 10, computed recursively. Although a toy example, it demonstrates how
closely Toil workflows can mimic typical programming patterns.

Promised Requirements

Promised requirements are a special case of Promises that allow a job’s
return value to be used as another job’s resource requirements.

This is useful when, for example, a job’s storage requirement is determined by a
file staged to the job store by an earlier job:

import os
import tempfile

from toil.common import Toil
from toil.job import Job, PromisedRequirement

def parentJob(job):
 downloadJob = Job.wrapJobFn(stageFn, "file://" + os.path.realpath(__file__), cores=0.1, memory='32M', disk='1M')
 job.addChild(downloadJob)

 analysis = Job.wrapJobFn(analysisJob,
 fileStoreID=downloadJob.rv(0),
 disk=PromisedRequirement(downloadJob.rv(1)))
 job.addFollowOn(analysis)

def stageFn(job, url, cores=1):
 importedFile = job.fileStore.import_file(url)
 return importedFile, importedFile.size

def analysisJob(job, fileStoreID, cores=2):
 # now do some analysis on the file
 pass

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_requirements")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 toil.start(Job.wrapJobFn(parentJob))

Note that this also makes use of the size attribute of the FileID object.
This promised requirements mechanism can also be used in combination with an aggregator for
multiple jobs’ output values:

def parentJob(job):
 aggregator = []
 for fileNum in range(0, 10):
 downloadJob = Job.wrapJobFn(stageFn, "file://" + os.path.realpath(__file__), cores=0.1, memory='32M', disk='1M')
 job.addChild(downloadJob)
 aggregator.append(downloadJob)

 analysis = Job.wrapJobFn(analysisJob,
 fileStoreID=downloadJob.rv(0),
 disk=PromisedRequirement(lambda xs: sum(xs), [j.rv(1) for j in aggregator]))
 job.addFollowOn(analysis)

Limitations

Just like regular promises, the return value must be determined prior to
scheduling any job that depends on the return value. In our example above, notice
how the dependent jobs were follow ons to the parent while promising jobs are
children of the parent. This ordering ensures that all promises are
properly fulfilled.

FileID

The toil.fileStore.FileID class is a small wrapper around Python’s builtin string class. It is used to
represent a file’s ID in the file store, and has a size attribute that is the
file’s size in bytes. This object is returned by importFile and writeGlobalFile.

Managing files within a workflow

It is frequently the case that a workflow will want to create files, both
persistent and temporary, during its run. The
toil.fileStores.abstractFileStore.AbstractFileStore class is used by
jobs to manage these files in a manner that guarantees cleanup and resumption
on failure.

The toil.job.Job.run() method has a file store instance as an argument.
The following example shows how this can be used to create temporary files that
persist for the length of the job, be placed in a specified local disk of the
node and that will be cleaned up, regardless of failure, when the job finishes:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

class LocalFileStoreJob(Job):
 def run(self, fileStore):
 # self.tempDir will always contain the name of a directory within the allocated disk space reserved for the job
 scratchDir = self.tempDir

 # Similarly create a temporary file.
 scratchFile = fileStore.getLocalTempFile()

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_managing")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 # Create an instance of FooJob which will have at least 2 gigabytes of storage space.
 j = LocalFileStoreJob(disk="2G")

 # Run the workflow
 with Toil(options) as toil:
 toil.start(j)

Job functions can also access the file store for the job. The equivalent of the
LocalFileStoreJob class is

def localFileStoreJobFn(job):
 scratchDir = job.tempDir
 scratchFile = job.fileStore.getLocalTempFile()

Note that the fileStore attribute is accessed as an attribute of the
job argument.

In addition to temporary files that exist for the duration of a job, the file
store allows the creation of files in a global store, which persists during
the workflow and are globally accessible (hence the name) between jobs. For
example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def globalFileStoreJobFn(job):
 job.log("The following example exercises all the methods provided "
 "by the toil.fileStores.abstractFileStore.AbstractFileStore class")

 # Create a local temporary file.
 scratchFile = job.fileStore.getLocalTempFile()

 # Write something in the scratch file.
 with open(scratchFile, 'w') as fH:
 fH.write("What a tangled web we weave")

 # Write a copy of the file into the file-store; fileID is the key that can be used to retrieve the file.
 # This write is asynchronous by default
 fileID = job.fileStore.writeGlobalFile(scratchFile)

 # Write another file using a stream; fileID2 is the
 # key for this second file.
 with job.fileStore.writeGlobalFileStream(cleanup=True) as (fH, fileID2):
 fH.write(b"Out brief candle")

 # Now read the first file; scratchFile2 is a local copy of the file that is read-only by default.
 scratchFile2 = job.fileStore.readGlobalFile(fileID)

 # Read the second file to a desired location: scratchFile3.
 scratchFile3 = os.path.join(job.tempDir, "foo.txt")
 job.fileStore.readGlobalFile(fileID2, userPath=scratchFile3)

 # Read the second file again using a stream.
 with job.fileStore.readGlobalFileStream(fileID2) as fH:
 print(fH.read()) # This prints "Out brief candle"

 # Delete the first file from the global file-store.
 job.fileStore.deleteGlobalFile(fileID)

 # It is unnecessary to delete the file keyed by fileID2 because we used the cleanup flag,
 # which removes the file after this job and all its successors have run (if the file still exists)

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_managing2")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 toil.start(Job.wrapJobFn(globalFileStoreJobFn))

The example demonstrates the global read, write and delete functionality of the
file-store, using both local copies of the files and streams to read and write
the files. It covers all the methods provided by the file store interface.

What is obvious is that the file-store provides no functionality to update an
existing “global” file, meaning that files are, barring deletion, immutable.
Also worth noting is that there is no file system hierarchy for files in the
global file store. These limitations allow us to fairly easily support
different object stores and to use caching to limit the amount of network file
transfer between jobs.

Staging of Files into the Job Store

External files can be imported into or exported out of the job store prior to
running a workflow when the toil.common.Toil context manager is used
on the leader. The context manager provides methods
toil.common.Toil.importFile(), and toil.common.Toil.exportFile()
for this purpose. The destination and source locations of such files are
described with URLs passed to the two methods. Local files can be imported and
exported as relative paths, and should be relative to the directory where the
toil workflow is initially run from.

Using absolute paths and appropriate schema where possible (prefixing with
“file://” or “s3:/” for example), make imports and exports less ambiguous
and is recommended.

A list of the currently supported URLs can be found at
toil.jobStores.abstractJobStore.AbstractJobStore.importFile(). To import
an external file into the job store as a shared file, pass the optional
sharedFileName parameter to that method.

If a workflow fails for any reason an imported file acts as any other file in
the job store. If the workflow was configured such that it not be cleaned up on
a failed run, the file will persist in the job store and needs not be staged
again when the workflow is resumed.

Example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
 def __init__(self, id):
 Job.__init__(self, memory="2G", cores=2, disk="3G")
 self.inputFileID = id

 def run(self, fileStore):
 with fileStore.readGlobalFileStream(self.inputFileID, encoding='utf-8') as fi:
 with fileStore.writeGlobalFileStream(encoding='utf-8') as (fo, outputFileID):
 fo.write(fi.read() + 'World!')
 return outputFileID

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_staging")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 if not toil.options.restart:
 ioFileDirectory = os.path.join(os.path.dirname(os.path.abspath(__file__)), "stagingExampleFiles")
 inputFileID = toil.importFile("file://" + os.path.abspath(os.path.join(ioFileDirectory, "in.txt")))
 outputFileID = toil.start(HelloWorld(inputFileID))
 else:
 outputFileID = toil.restart()

 toil.exportFile(outputFileID, "file://" + os.path.abspath(os.path.join(ioFileDirectory, "out.txt")))

Using Docker Containers in Toil

Docker containers are commonly used with Toil. The combination of Toil and Docker
allows for pipelines to be fully portable between any platform that has both Toil
and Docker installed. Docker eliminates the need for the user to do any other tool
installation or environment setup.

In order to use Docker containers with Toil, Docker must be installed on all
workers of the cluster. Instructions for installing Docker can be found on the
Docker [https://docs.docker.com/engine/getstarted/step_one/] website.

When using Toil-based autoscaling, Docker will be automatically set up
on the cluster’s worker nodes, so no additional installation steps are necessary.
Further information on using Toil-based autoscaling can be found in the Running a Workflow with Autoscaling
documentation.

In order to use docker containers in a Toil workflow, the container can be built
locally or downloaded in real time from an online docker repository like Quay. If
the container is not in a repository, the container’s layers must be accessible on
each node of the cluster.

When invoking docker containers from within a Toil workflow, it is strongly
recommended that you use dockerCall(), a toil job function provided in
toil.lib.docker. dockerCall leverages docker’s own python API,
and provides container cleanup on job failure. When docker containers are
run without this feature, failed jobs can result in resource leaks. Docker’s
API can be found at docker-py [https://docker-py.readthedocs.io/en/stable/].

In order to use dockerCall, your installation of Docker must be set up to run
without sudo. Instructions for setting this up can be found here [https://docs.docker.com/engine/installation/linux/ubuntulinux/#/create-a-docker-group].

An example of a basic dockerCall is below:

dockerCall(job=job,
 tool='quay.io/ucsc_cgl/bwa',
 workDir=job.tempDir,
 parameters=['index', '/data/reference.fa'])

Note the assumption that reference.fa file is located in /data. This is Toil’s
standard convention as a mount location to reduce boilerplate when calling dockerCall.
Users can choose their own mount locations by supplying a volumes kwarg to dockerCall,
such as: volumes={working_dir: {‘bind’: ‘/data’, ‘mode’: ‘rw’}}, where working_dir
is an absolute path on the user’s filesystem.

dockerCall can also be added to workflows like any other job function:

import os
import tempfile

from toil.common import Toil
from toil.job import Job
from toil.lib.docker import apiDockerCall

align = Job.wrapJobFn(apiDockerCall,
 image='ubuntu',
 working_dir=os.getcwd(),
 parameters=['ls', '-lha'])

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_docker")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 toil.start(align)

cgl-docker-lib [https://github.com/BD2KGenomics/cgl-docker-lib/blob/master/README.md] contains dockerCall-compatible Dockerized tools that are
commonly used in bioinformatics analysis.

The documentation provides guidelines for developing your own Docker containers
that can be used with Toil and dockerCall. In order for a container to be
compatible with dockerCall, it must have an ENTRYPOINT set to a wrapper
script, as described in cgl-docker-lib containerization standards. This can be
set by passing in the optional keyword argument, ‘entrypoint’. Example:

entrypoint=[“/bin/bash”,”-c”]

dockerCall supports currently the 75 keyword arguments found in the python
Docker API [https://docker-py.readthedocs.io/en/stable/containers.html], under the ‘run’ command.

Services

It is sometimes desirable to run services, such as a database or server,
concurrently with a workflow. The toil.job.Job.Service class provides
a simple mechanism for spawning such a service within a Toil workflow, allowing
precise specification of the start and end time of the service, and providing
start and end methods to use for initialization and cleanup. The following
simple, conceptual example illustrates how services work:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

class DemoService(Job.Service):
 def start(self, fileStore):
 # Start up a database/service here
 # Return a value that enables another process to connect to the database
 return "loginCredentials"

 def check(self):
 # A function that if it returns False causes the service to quit
 # If it raises an exception the service is killed and an error is reported
 return True

 def stop(self, fileStore):
 # Cleanup the database here
 pass

j = Job()
s = DemoService()
loginCredentialsPromise = j.addService(s)

def dbFn(loginCredentials):
 # Use the login credentials returned from the service's start method to connect to the service
 pass

j.addChildFn(dbFn, loginCredentialsPromise)

if __name__ == "__main__":
 jobstore: str = tempfile.mkdtemp("tutorial_services")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 toil.start(j)

In this example the DemoService starts a database in the start method,
returning an object from the start method indicating how a client job would
access the database. The service’s stop method cleans up the database, while
the service’s check method is polled periodically to check the service is alive.

A DemoService instance is added as a service of the root job j, with
resource requirements specified. The return value from
toil.job.Job.addService() is a promise to the return value of the
service’s start method. When the promised is fulfilled it will represent how to
connect to the database. The promise is passed to a child job of j, which
uses it to make a database connection. The services of a job are started before
any of its successors have been run and stopped after all the successors of the
job have completed successfully.

Multiple services can be created per job, all run in parallel. Additionally,
services can define sub-services using toil.job.Job.Service.addChild().
This allows complex networks of services to be created, e.g. Apache Spark
clusters, within a workflow.

Checkpoints

Services complicate resuming a workflow after failure, because they can create
complex dependencies between jobs. For example, consider a service that
provides a database that multiple jobs update. If the database service fails
and loses state, it is not clear that just restarting the service will allow
the workflow to be resumed, because jobs that created that state may have
already finished. To get around this problem Toil supports checkpoint jobs,
specified as the boolean keyword argument checkpoint to a job or wrapped
function, e.g.:

j = Job(checkpoint=True)

A checkpoint job is rerun if one or more of its successors fails its retry
attempts, until it itself has exhausted its retry attempts. Upon restarting a
checkpoint job all its existing successors are first deleted, and then the job
is rerun to define new successors. By checkpointing a job that defines a
service, upon failure of the service the database and the jobs that access the
service can be redefined and rerun.

To make the implementation of checkpoint jobs simple, a job can only be a
checkpoint if when first defined it has no successors, i.e. it can only define
successors within its run method.

Encapsulation

Let A be a root job potentially with children and follow-ons. Without an
encapsulated job the simplest way to specify a job B which runs after A
and all its successors is to create a parent of A, call it Ap, and then
make B a follow-on of Ap. e.g.:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

if __name__ == "__main__":
 # A is a job with children and follow-ons, for example:
 A = Job()
 A.addChild(Job())
 A.addFollowOn(Job())

 # B is a job which needs to run after A and its successors
 B = Job()

 # The way to do this without encapsulation is to make a parent of A, Ap, and make B a follow-on of Ap.
 Ap = Job()
 Ap.addChild(A)
 Ap.addFollowOn(B)

 jobstore: str = tempfile.mkdtemp("tutorial_encapsulations")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 print(toil.start(Ap))

An encapsulated job E(A) of A saves making Ap, instead we can
write:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

if __name__ == "__main__":
 # A
 A = Job()
 A.addChild(Job())
 A.addFollowOn(Job())

 # Encapsulate A
 A = A.encapsulate()

 # B is a job which needs to run after A and its successors
 B = Job()

 # With encapsulation A and its successor subgraph appear to be a single job, hence:
 A.addChild(B)

 jobstore: str = tempfile.mkdtemp("tutorial_encapsulations2")
 os.rmdir(jobstore)
 options = Job.Runner.getDefaultOptions(jobstore)
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 print(toil.start(A))

Note the call to toil.job.Job.encapsulate() creates the
toil.job.Job.EncapsulatedJob.

Depending on Toil

If you are packing your workflow(s) as a pip-installable distribution on PyPI,
you might be tempted to declare Toil as a dependency in your setup.py, via
the install_requires keyword argument to setup(). Unfortunately, this
does not work, for two reasons: For one, Toil uses Setuptools’ extra
mechanism to manage its own optional dependencies. If you explicitly declared a
dependency on Toil, you would have to hard-code a particular combination of
extras (or no extras at all), robbing the user of the choice what Toil extras
to install. Secondly, and more importantly, declaring a dependency on Toil
would only lead to Toil being installed on the leader node of a cluster, but
not the worker nodes. Auto-deployment does not work here because Toil cannot
auto-deploy itself, the classic “Which came first, chicken or egg?” problem.

In other words, you shouldn’t explicitly depend on Toil. Document the
dependency instead (as in “This workflow needs Toil version X.Y.Z to be
installed”) and optionally add a version check to your setup.py. Refer to
the check_version() function in the toil-lib project’s setup.py [https://github.com/BD2KGenomics/toil-lib/blob/master/setup.py] for
an example. Alternatively, you can also just depend on toil-lib and you’ll
get that check for free.

If your workflow depends on a dependency of Toil,
consider not making that dependency explicit either. If you do, you risk a
version conflict between your project and Toil. The pip utility may
silently ignore that conflict, breaking either Toil or your workflow. It is
safest to simply assume that Toil installs that dependency for you. The only
downside is that you are locked into the exact version of that dependency that
Toil declares. But such is life with Python, which, unlike Java, has no means
of dependencies belonging to different software components within the same
process, and whose favored software distribution utility is incapable [https://github.com/pypa/pip/issues/988] of
properly resolving overlapping dependencies and detecting conflicts.

Best Practices for Dockerizing Toil Workflows

Computational Genomics Lab [https://cgl.genomics.ucsc.edu/]’s Dockstore [https://dockstore.org/docs] based production system provides workflow authors a
way to run Dockerized versions of their pipeline in an automated, scalable fashion. To be compatible
with this system of a workflow should meet the following requirements. In addition
to the Docker container, a common workflow language descriptor file [https://dockstore.org/docs/getting-started-with-cwl] is needed. For inputs:

	Only command line arguments should be used for configuring the workflow. If
the workflow relies on a configuration file, like Toil-RNAseq [https://github.com/BD2KGenomics/toil-rnaseq] or ProTECT [https://github.com/BD2KGenomics/protect], a
wrapper script inside the Docker container can be used to parse the CLI and
generate the necessary configuration file.

	All inputs to the pipeline should be explicitly enumerated rather than implicit.
For example, don’t rely on one FASTQ read’s path to discover the location of its
pair. This is necessary since all inputs are mapped to their own isolated directories
when the Docker is called via Dockstore.

	All inputs must be documented in the CWL descriptor file. Examples of this file can be seen in
both Toil-RNAseq [https://github.com/BD2KGenomics/toil-rnaseq] and ProTECT [https://github.com/BD2KGenomics/protect].

For outputs:

	All outputs should be written to a local path rather than S3.

	Take care to package outputs in a local and user-friendly way. For example,
don’t tar up all output if there are specific files that will care to see individually.

	All output file names should be deterministic and predictable. For example,
don’t prepend the name of an output file with PASS/FAIL depending on the outcome
of the pipeline.

	All outputs must be documented in the CWL descriptor file. Examples of this file can be seen in
both Toil-RNAseq [https://github.com/BD2KGenomics/toil-rnaseq] and ProTECT [https://github.com/BD2KGenomics/protect].

Toil Class API

The Toil class configures and starts a Toil run.

	
class toil.common.Toil(options)

	A context manager that represents a Toil workflow.

Specifically the batch system, job store, and its configuration.

	Parameters

	options (Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	
__init__(options)

	Initialize a Toil object from the given options.

Note that this is very light-weight and that the bulk of the work is
done when the context is entered.

	Parameters

	options (Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – command line options specified by the user

	Return type

	None

	
start(rootJob)

	Invoke a Toil workflow with the given job as the root for an initial run.

This method must be called in the body of a with Toil(...) as toil:
statement. This method should not be called more than once for a workflow
that has not finished.

	Parameters

	rootJob (Job) – The root job of the workflow

	Return type

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Returns

	The root job’s return value

	
restart()

	Restarts a workflow that has been interrupted.

	Return type

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Returns

	The root job’s return value

	
classmethod getJobStore(locator)

	Create an instance of the concrete job store implementation that matches the given locator.

	Parameters

	
	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) – The location of the job store to be represent by the instance

	locator –

	Return type

	AbstractJobStore

	Returns

	an instance of a concrete subclass of AbstractJobStore

	
static createBatchSystem(config)

	Create an instance of the batch system specified in the given config.

	Parameters

	config (Config) – the current configuration

	Return type

	AbstractBatchSystem

	Returns

	an instance of a concrete subclass of AbstractBatchSystem

	
import_file(src_uri, shared_file_name=None, symlink=False)

	Import the file at the given URL into the job store.

See toil.jobStores.abstractJobStore.AbstractJobStore.importFile() for a
full description

	Parameters

	
	src_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	shared_file_name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][FileID]

	
export_file(file_id, dst_uri)

	Export file to destination pointed at by the destination URL.

See toil.jobStores.abstractJobStore.AbstractJobStore.exportFile() for a
full description

	Parameters

	
	file_id (FileID) –

	dst_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
static normalize_uri(uri, check_existence=False)

	Given a URI, if it has no scheme, prepend “file:”.

	Parameters

	
	check_existence (bool [https://docs.python.org/3/library/functions.html#bool]) – If set, raise an error if a URI points to
a local file that does not exist.

	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
static getToilWorkDir(configWorkDir=None)

	Return a path to a writable directory under which per-workflow directories exist.

This directory is always required to exist on a machine, even if the Toil
worker has not run yet. If your workers and leader have different temp
directories, you may need to set TOIL_WORKDIR.

	Parameters

	configWorkDir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value passed to the program using the –workDir flag

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	Path to the Toil work directory, constant across all machines

	
classmethod get_toil_coordination_dir(config_work_dir, config_coordination_dir)

	Return a path to a writable directory, which will be in memory if
convenient. Ought to be used for file locking and coordination.

	Parameters

	
	config_work_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value passed to the program using the
–workDir flag

	config_coordination_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value passed to the program using the
–coordinationDir flag

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	Path to the Toil coordination directory. Ought to be on a
POSIX filesystem that allows directories containing open files to be
deleted.

	
classmethod getLocalWorkflowDir(workflowID, configWorkDir=None)

	Return the directory where worker directories and the cache will be located for this workflow on this machine.

	Parameters

	
	configWorkDir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value passed to the program using the –workDir flag

	workflowID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	Path to the local workflow directory on this machine

	
classmethod get_local_workflow_coordination_dir(workflow_id, config_work_dir, config_coordination_dir)

	Return the directory where coordination files should be located for
this workflow on this machine. These include internal Toil databases
and lock files for the machine.

If an in-memory filesystem is available, it is used. Otherwise, the
local workflow directory, which may be on a shared network filesystem,
is used.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique ID of the current workflow.

	config_work_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value used for the work directory in the
current Toil Config.

	config_coordination_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value used for the coordination
directory in the current Toil Config.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	Path to the local workflow coordination directory on this
machine.

Job Store API

The job store interface is an abstraction layer that that hides the specific details of file storage,
for example standard file systems, S3, etc. The AbstractJobStore
API is implemented to support a give file store, e.g. S3. Implement this API to support a new file store.

	
class toil.jobStores.abstractJobStore.AbstractJobStore(locator)

	Represents the physical storage for the jobs and files in a Toil workflow.

JobStores are responsible for storing toil.job.JobDescription
(which relate jobs to each other) and files.

Actual toil.job.Job objects are stored in files, referenced by
JobDescriptions. All the non-file CRUD methods the JobStore provides deal
in JobDescriptions and not full, executable Jobs.

To actually get ahold of a toil.job.Job, use
toil.job.Job.loadJob() with a JobStore and the relevant JobDescription.

	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
__init__(locator)

	Create an instance of the job store.

The instance will not be fully functional until either initialize()
or resume() is invoked. Note that the destroy() method may
be invoked on the object with or without prior invocation of either of
these two methods.

Takes and stores the locator string for the job store, which will be
accessible via self.locator.

	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
initialize(config)

	Initialize this job store.

Create the physical storage for this job store, allocate a workflow ID
and persist the given Toil configuration to the store.

	Parameters

	config (Config) – the Toil configuration to initialize this job store with.
The given configuration will be updated with the newly
allocated workflow ID.

	Raises

	JobStoreExistsException – if the physical storage for this job store
already exists

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
write_config()

	Persists the value of the AbstractJobStore.config attribute to the
job store, so that it can be retrieved later by other instances of this class.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
resume()

	Connect this instance to the physical storage it represents and load the Toil configuration
into the AbstractJobStore.config attribute.

	Raises

	NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
property config: Config

	Return the Toil configuration associated with this job store.

	Return type

	toil.common.Config

	
property locator: str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the locator that defines the job store, which can be used to
connect to it.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
setRootJob(rootJobStoreID)

	Set the root job of the workflow backed by this job store.

	Parameters

	rootJobStoreID (FileID) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
set_root_job(job_id)

	Set the root job of the workflow backed by this job store.

	Parameters

	job_id (FileID) – The ID of the job to set as root

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
load_root_job()

	Loads the JobDescription for the root job in the current job store.

	Raises

	toil.job.JobException – If no root job is set or if the root job doesn’t exist in
this job store

	Return type

	JobDescription

	Returns

	The root job.

	
create_root_job(job_description)

	Create the given JobDescription and set it as the root job in this job store.

	Parameters

	job_description (JobDescription) – JobDescription to save and make the root job.

	Return type

	JobDescription

	
get_root_job_return_value()

	Parse the return value from the root job.

Raises an exception if the root job hasn’t fulfilled its promise yet.

	Return type

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	
import_file(src_uri, shared_file_name=None, hardlink=False, symlink=False)

	Imports the file at the given URL into job store. The ID of the newly imported file is
returned. If the name of a shared file name is provided, the file will be imported as
such and None is returned. If an executable file on the local filesystem is uploaded, its
executability will be preserved when it is downloaded.

Currently supported schemes are:

	
	‘s3’ for objects in Amazon S3
	e.g. s3://bucket/key

	
	‘file’ for local files
	e.g. file:///local/file/path

	
	‘http’
	e.g. http://someurl.com/path

	
	‘gs’
	e.g. gs://bucket/file

	Parameters

	
	src_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL that points to a file or object in the storage mechanism of a
supported URL scheme e.g. a blob in an AWS s3 bucket.

	shared_file_name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optional name to assign to the imported file within the job store

	src_uri –

	shared_file_name –

	hardlink (bool [https://docs.python.org/3/library/functions.html#bool]) –

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Returns

	The jobStoreFileID of the imported file or None if shared_file_name was given

	Return type

	toil.fileStores.FileID or None

	
export_file(file_id, dst_uri)

	Exports file to destination pointed at by the destination URL. The exported file will be
executable if and only if it was originally uploaded from an executable file on the
local filesystem.

Refer to AbstractJobStore.import_file() documentation for currently supported URL schemes.

Note that the helper method _exportFile is used to read from the source and write to
destination. To implement any optimizations that circumvent this, the _exportFile method
should be overridden by subclasses of AbstractJobStore.

	Parameters

	
	file_id (FileID) – The id of the file in the job store that should be exported.

	dst_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL that points to a file or object in the storage mechanism of a
supported URL scheme e.g. a blob in an AWS s3 bucket.

	file_id –

	dst_uri –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
classmethod list_url(src_uri)

	List the directory at the given URL. Returned path components can be
joined with ‘/’ onto the passed URL to form new URLs. Those that end in
‘/’ correspond to directories. The provided URL may or may not end with
‘/’.

Currently supported schemes are:

	
	‘s3’ for objects in Amazon S3
	e.g. s3://bucket/prefix/

	
	‘file’ for local files
	e.g. file:///local/dir/path/

	Parameters

	
	src_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL that points to a directory or prefix in the storage mechanism of a
supported URL scheme e.g. a prefix in an AWS s3 bucket.

	src_uri –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	A list of URL components in the given directory, already URL-encoded.

	
classmethod get_is_directory(src_uri)

	Return True if the thing at the given URL is a directory, and False if
it is a file. The URL may or may not end in ‘/’.

	Parameters

	src_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
classmethod read_from_url(src_uri, writable)

	Read the given URL and write its content into the given writable stream.

	Returns

	The size of the file in bytes and whether the executable permission bit is set

	Return type

	Tuple[int [https://docs.python.org/3/library/functions.html#int], bool [https://docs.python.org/3/library/functions.html#bool]]

	Parameters

	
	src_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	writable (IO [https://docs.python.org/3/library/typing.html#typing.IO][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]) –

	
abstract classmethod get_size(src_uri)

	Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

	Parameters

	src_uri (ParseResult [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult]) – URL that points to a file or object in the storage
mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract destroy()

	The inverse of initialize(), this method deletes the physical storage represented
by this instance. While not being atomic, this method is at least idempotent,
as a means to counteract potential issues with eventual consistency exhibited by the
underlying storage mechanisms. This means that if the method fails (raises an exception),
it may (and should be) invoked again. If the underlying storage mechanism is eventually
consistent, even a successful invocation is not an ironclad guarantee that the physical
storage vanished completely and immediately. A successful invocation only guarantees that
the deletion will eventually happen. It is therefore recommended to not immediately reuse
the same job store location for a new Toil workflow.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
get_env()

	Returns a dictionary of environment variables that this job store requires to be set in
order to function properly on a worker.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str],str [https://docs.python.org/3/library/stdtypes.html#str]]

	
clean(jobCache=None)

	Function to cleanup the state of a job store after a restart.

Fixes jobs that might have been partially updated. Resets the try counts
and removes jobs that are not successors of the current root job.

	Parameters

	jobCache (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], TemporaryID], JobDescription]]) – if a value it must be a dict
from job ID keys to JobDescription object values. Jobs will be loaded
from the cache (which can be downloaded from the job store in a batch)
instead of piecemeal when recursed into.

	Return type

	JobDescription

	
abstract assign_job_id(job_description)

	Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created or updated.

	Parameters

	
	job_description (JobDescription) – The JobDescription to give an ID to

	job_description –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
batch()

	If supported by the batch system, calls to create() with this context
manager active will be performed in a batch after the context manager
is released.

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][None [https://docs.python.org/3/library/constants.html#None]]

	
abstract create_job(job_description)

	Writes the given JobDescription to the job store. The job must have an ID assigned already.

Must call jobDescription.pre_update_hook()

	Returns

	The JobDescription passed.

	Return type

	toil.job.JobDescription

	Parameters

	job_description (JobDescription) –

	
abstract job_exists(job_id)

	Indicates whether a description of the job with the specified jobStoreID exists in the job store

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
abstract get_public_url(file_name)

	Returns a publicly accessible URL to the given file in the job store. The returned URL may
expire as early as 1h after its been returned. Throw an exception if the file does not
exist.

	Parameters

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the jobStoreFileID of the file to generate a URL for

	file_name –

	Raises

	NoSuchFileException – if the specified file does not exist in this job store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract get_shared_public_url(shared_file_name)

	Differs from getPublicUrl() in that this method is for generating URLs for shared
files written by writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL
starts with ‘http:’, ‘https:’ or ‘file:’. The returned URL may expire as early as 1h
after its been returned. Throw an exception if the file does not exist.

	Parameters

	
	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the shared file to generate a publically accessible url for.

	shared_file_name –

	Raises

	NoSuchFileException – raised if the specified file does not exist in the store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract load_job(job_id)

	Loads the description of the job referenced by the given ID, assigns it
the job store’s config, and returns it.

May declare the job to have failed (see
toil.job.JobDescription.setupJobAfterFailure()) if there is
evidence of a failed update attempt.

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the job to load

	Raises

	NoSuchJobException – if there is no job with the given ID

	Return type

	JobDescription

	
abstract update_job(job_description)

	Persists changes to the state of the given JobDescription in this store atomically.

Must call jobDescription.pre_update_hook()

	Parameters

	
	job (toil.job.JobDescription) – the job to write to this job store

	job_description (JobDescription) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract delete_job(job_id)

	Removes the JobDescription from the store atomically. You may not then
subsequently call load(), write(), update(), etc. with the same
jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job
will succeed silently.

	Parameters

	
	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the job to delete from this job store

	job_id –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
jobs()

	Best effort attempt to return iterator on JobDescriptions for all jobs
in the store. The iterator may not return all jobs and may also contain
orphaned jobs that have already finished successfully and should not be
rerun. To guarantee you get any and all jobs that can be run instead
construct a more expensive ToilState object

	Returns

	Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may contain
invalid jobs

	Return type

	Iterator[toil.job.jobDescription]

	
abstract write_file(local_path, job_id=None, cleanup=False)

	Takes a file (as a path) and places it in this job store. Returns an ID that can be used
to retrieve the file at a later time. The file is written in a atomic manner. It will
not appear in the jobStore until the write has successfully completed.

	Parameters

	
	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the path to the local file that will be uploaded to the job store.
The last path component (basename of the file) will remain
associated with the file in the file store, if supported, so
that the file can be searched for by name or name glob.

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

FIXME: some implementations may not raise this

	Returns

	an ID referencing the newly created file and can be used to read the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Parameters

	
	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	job_id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
abstract write_file_stream(job_id=None, cleanup=False, basename=None, encoding=None, errors=None)

	Similar to writeFile, but returns a context manager yielding a tuple of
1) a file handle which can be written to and 2) the ID of the resulting
file in the job store. The yielded file handle does not need to and
should not be closed explicitly. The file is written in a atomic manner.
It will not appear in the jobStore until the write has successfully
completed.

	Parameters

	
	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][IO [https://docs.python.org/3/library/typing.html#typing.IO][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], str [https://docs.python.org/3/library/stdtypes.html#str]]]

FIXME: some implementations may not raise this

	Returns

	a context manager yielding a file handle which can be written to and an ID that references
the newly created file and can be used to read the file in the future.

	Return type

	Iterator[Tuple[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Parameters

	
	job_id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) –

	basename (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	encoding (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
abstract get_empty_file_store_id(job_id=None, cleanup=False, basename=None)

	Creates an empty file in the job store and returns its ID.
Call to fileExists(getEmptyFileStoreID(jobStoreID)) will return True.

	Parameters

	
	job_id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	job_id –

	cleanup –

	basename –

	Returns

	a jobStoreFileID that references the newly created file and can be used to reference the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract read_file(file_id, local_path, symlink=False)

	Copies or hard links the file referenced by jobStoreFileID to the given
local file path. The version will be consistent with the last copy of
the file written/updated. If the file in the job store is later
modified via updateFile or updateFileStream, it is
implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not
appear in the local file system until the copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to be copied

	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the local path indicating where to place the contents of the
given file in the job store

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the reader can tolerate a symlink. If set to true, the job
store may create a symlink instead of a full copy of the file or a hard link.

	file_id –

	local_path –

	symlink –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract read_file_stream(file_id, encoding=None, errors=None)

	Similar to readFile, but returns a context manager yielding a file handle which can be
read from. The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	file_id (Union [https://docs.python.org/3/library/typing.html#typing.Union][FileID, str [https://docs.python.org/3/library/stdtypes.html#str]]) – ID of the file to get a readable file handle for

	encoding (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – the name of the encoding used to decode the file. Encodings are the same as
for decode(). Defaults to None which represents binary mode.

	errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	file_id –

	encoding –

	errors –

	Returns

	a context manager yielding a file handle which can be read from

	Return type

	Iterator[Union[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	
abstract delete_file(file_id)

	Deletes the file with the given ID from this job store. This operation is idempotent, i.e.
deleting a file twice or deleting a non-existent file will succeed silently.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to delete

	file_id –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
fileExists(jobStoreFileID)

	Determine whether a file exists in this job store.

	Parameters

	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract file_exists(file_id)

	Determine whether a file exists in this job store.

	Parameters

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – an ID referencing the file to be checked

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
getFileSize(jobStoreFileID)

	Get the size of the given file in bytes.

	Parameters

	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
abstract get_file_size(file_id)

	Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of
file sizes, since the encrypted file may have been padded to the
nearest block, augmented with an initialization vector, etc.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – an ID referencing the file to be checked

	file_id –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
updateFile(jobStoreFileID, localFilePath)

	Replaces the existing version of a file in the job store.

	Parameters

	
	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	localFilePath (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract update_file(file_id, local_path)

	Replaces the existing version of a file in the job store.

Throws an exception if the file does not exist.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the file in the job store to be updated

	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the local path to a file that will overwrite the current
version in the job store

	Raises

	
	ConcurrentFileModificationException – if the file was modified
concurrently during an invocation of this method

	NoSuchFileException – if the specified file does not exist

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract update_file_stream(file_id, encoding=None, errors=None)

	Replaces the existing version of a file in the job store. Similar to writeFile, but
returns a context manager yielding a file handle which can be written to. The
yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the file in the job store to be updated

	encoding (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	file_id –

	encoding –

	errors –

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchFileException – if the specified file does not exist

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][IO [https://docs.python.org/3/library/typing.html#typing.IO][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	
abstract write_shared_file_stream(shared_file_name, encrypted=None, encoding=None, errors=None)

	Returns a context manager yielding a writable file handle to the global file referenced
by the given name. File will be created in an atomic manner.

	Parameters

	
	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	encrypted (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – True if the file must be encrypted, None if it may be encrypted or
False if it must be stored in the clear.

	encoding (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	shared_file_name –

	encrypted –

	encoding –

	errors –

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	a context manager yielding a writable file handle

	Return type

	Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
abstract read_shared_file_stream(shared_file_name, encoding=None, errors=None)

	Returns a context manager yielding a readable file handle to the global file referenced
by the given name.

	Parameters

	
	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	encoding (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – the name of the encoding used to decode the file. Encodings are the same
as for decode(). Defaults to None which represents binary mode.

	errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	shared_file_name –

	encoding –

	errors –

	Returns

	a context manager yielding a readable file handle

	Return type

	Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
abstract write_logs(msg)

	Stores a message as a log in the jobstore.

	Parameters

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – the string to be written

	msg –

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract read_logs(callback, read_all=False)

	Reads logs accumulated by the write_logs() method. For each log this method calls the
given callback function with the message as an argument (rather than returning logs directly,
this method must be supplied with a callback which will process log messages).

Only unread logs will be read unless the read_all parameter is set.

	Parameters

	
	callback (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][... [https://docs.python.org/3/library/constants.html#Ellipsis], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – a function to be applied to each of the stats file handles found

	read_all (bool [https://docs.python.org/3/library/functions.html#bool]) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

	callback –

	read_all –

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	the number of stats files processed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
write_leader_pid()

	Write the pid of this process to a file in the job store.

Overwriting the current contents of pid.log is a feature, not a bug of
this method. Other methods will rely on always having the most current
pid available. So far there is no reason to store any old pids.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
read_leader_pid()

	Read the pid of the leader process to a file in the job store.

	Raises

	NoSuchFileException – If the PID file doesn’t exist.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
write_leader_node_id()

	Write the leader node id to the job store. This should only be called
by the leader.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
read_leader_node_id()

	Read the leader node id stored in the job store.

	Raises

	NoSuchFileException – If the node ID file doesn’t exist.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
write_kill_flag(kill=False)

	Write a file inside the job store that serves as a kill flag.

The initialized file contains the characters “NO”. This should only be
changed when the user runs the “toil kill” command.

Changing this file to a “YES” triggers a kill of the leader process. The
workers are expected to be cleaned up by the leader.

	Parameters

	kill (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
read_kill_flag()

	Read the kill flag from the job store, and return True if the leader
has been killed. False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
default_caching()

	Jobstore’s preference as to whether it likes caching or doesn’t care about it.
Some jobstores benefit from caching, however on some local configurations it can be flaky.

see https://github.com/DataBiosphere/toil/issues/4218

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Toil Job API

Functions to wrap jobs and return values (promises).

FunctionWrappingJob

The subclass of Job for wrapping user functions.

	
class toil.job.FunctionWrappingJob(userFunction, *args, **kwargs)

	Job used to wrap a function. In its run method the wrapped function is called.

	
__init__(userFunction, *args, **kwargs)

	
	Parameters

	userFunction (callable) – The function to wrap. It will be called with *args and
**kwargs as arguments.

The keywords memory, cores, disk, accelerators`,
``preemptible and checkpoint are reserved keyword arguments that
if specified will be used to determine the resources required for the
job, as toil.job.Job.__init__(). If they are keyword arguments to
the function they will be extracted from the function definition, but
may be overridden by the user (as you would expect).

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

JobFunctionWrappingJob

The subclass of FunctionWrappingJob for wrapping user job functions.

	
class toil.job.JobFunctionWrappingJob(userFunction, *args, **kwargs)

	A job function is a function whose first argument is a Job
instance that is the wrapping job for the function. This can be used to
add successor jobs for the function and perform all the functions the
Job class provides.

To enable the job function to get access to the
toil.fileStores.abstractFileStore.AbstractFileStore instance (see
toil.job.Job.run()), it is made a variable of the wrapping job called
fileStore.

To specify a job’s resource requirements the following default keyword arguments
can be specified:

	memory

	disk

	cores

	accelerators

	preemptible

For example to wrap a function into a job we would call:

Job.wrapJobFn(myJob, memory='100k', disk='1M', cores=0.1)

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

EncapsulatedJob

The subclass of Job for encapsulating a job, allowing a subgraph of jobs to be treated as a single job.

	
class toil.job.EncapsulatedJob(job, unitName=None)

	A convenience Job class used to make a job subgraph appear to be a single job.

Let A be the root job of a job subgraph and B be another job we’d like to run after A
and all its successors have completed, for this use encapsulate:

Job A and subgraph, Job B
A, B = A(), B()
Aprime = A.encapsulate()
Aprime.addChild(B)
B will run after A and all its successors have completed, A and its subgraph of
successors in effect appear to be just one job.

If the job being encapsulated has predecessors (e.g. is not the root job), then the encapsulated
job will inherit these predecessors. If predecessors are added to the job being encapsulated
after the encapsulated job is created then the encapsulating job will NOT inherit these
predecessors automatically. Care should be exercised to ensure the encapsulated job has the
proper set of predecessors.

The return value of an encapsulated job (as accessed by the toil.job.Job.rv() function)
is the return value of the root job, e.g. A().encapsulate().rv() and A().rv() will resolve to
the same value after A or A.encapsulate() has been run.

	
__init__(job, unitName=None)

	
	Parameters

	
	job (toil.job.Job) – the job to encapsulate.

	unitName (str [https://docs.python.org/3/library/stdtypes.html#str]) – human-readable name to identify this job instance.

	
addChild(childJob)

	Add a childJob to be run as child of this job.

Child jobs will be run directly after this job’s
toil.job.Job.run() method has completed.

	Returns

	childJob: for call chaining

	
addService(service, parentService=None)

	Add a service.

The toil.job.Job.Service.start() method of the service will be called
after the run method has completed but before any successors are run.
The service’s toil.job.Job.Service.stop() method will be called once
the successors of the job have been run.

Services allow things like databases and servers to be started and accessed
by jobs in a workflow.

	Raises

	toil.job.JobException – If service has already been made the child
of a job or another service.

	Parameters

	
	service – Service to add.

	parentService – Service that will be started before ‘service’ is
started. Allows trees of services to be established. parentService must be a service
of this job.

	Returns

	a promise that will be replaced with the return value from
toil.job.Job.Service.start() of service in any successor of the job.

	
addFollowOn(followOnJob)

	Add a follow-on job.

Follow-on jobs will be run after the child jobs and their successors have been run.

	Returns

	followOnJob for call chaining

	
rv(*path)

	Create a promise (toil.job.Promise).

The “promise” representing a return value of the job’s run method, or,
in case of a function-wrapping job, the wrapped function’s return value.

	Parameters

	path ((Any)) – Optional path for selecting a component of the promised return value.
If absent or empty, the entire return value will be used. Otherwise, the first
element of the path is used to select an individual item of the return value. For
that to work, the return value must be a list, dictionary or of any other type
implementing the __getitem__() magic method. If the selected item is yet another
composite value, the second element of the path can be used to select an item from
it, and so on. For example, if the return value is [6,{‘a’:42}], .rv(0) would
select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3. To
select a slice from a return value that is slicable, e.g. tuple or list, the path
element should be a slice object. For example, assuming that the return value is
[6, 7, 8, 9] then .rv(slice(1, 3)) would select [7, 8]. Note that slicing
really only makes sense at the end of path.

	Return type

	Promise

	Returns

	A promise representing the return value of this jobs toil.job.Job.run()
method.

	
prepareForPromiseRegistration(jobStore)

	Set up to allow this job’s promises to register themselves.

Prepare this job (the promisor) so that its promises can register
themselves with it, when the jobs they are promised to (promisees) are
serialized.

The promissee holds the reference to the promise (usually as part of the
job arguments) and when it is being pickled, so will the promises it refers
to. Pickling a promise triggers it to be registered with the promissor.

Promise

The class used to reference return values of jobs/services not yet run/started.

	
class toil.job.Promise(job, path)

	References a return value from a method as a promise before the method itself is run.

References a return value from a toil.job.Job.run() or
toil.job.Job.Service.start() method as a promise before the method itself is run.

Let T be a job. Instances of Promise (termed a promise) are returned by T.rv(),
which is used to reference the return value of T’s run function. When the promise is passed
to the constructor (or as an argument to a wrapped function) of a different, successor job
the promise will be replaced by the actual referenced return value. This mechanism allows a
return values from one job’s run method to be input argument to job before the former job’s
run function has been executed.

	Parameters

	
	job (Job) –

	path (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	Return type

	Promise

	
filesToDelete = {}

	A set of IDs of files containing promised values when we know we won’t need them anymore

	
__init__(job, path)

	Initialize this promise.

	Parameters

	
	job (Job) – the job whose return value this promise references

	path (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – see Job.rv()

	job –

	
class toil.job.PromisedRequirement(valueOrCallable, *args)

	Class for dynamically allocating job function resource requirements.

(involving toil.job.Promise instances.)

Use when resource requirements depend on the return value of a parent function.
PromisedRequirements can be modified by passing a function that takes the
Promise as input.

For example, let f, g, and h be functions. Then a Toil workflow can be
defined as follows::
A = Job.wrapFn(f)
B = A.addChildFn(g, cores=PromisedRequirement(A.rv())
C = B.addChildFn(h, cores=PromisedRequirement(lambda x: 2*x, B.rv()))

	
__init__(valueOrCallable, *args)

	Initialize this Promised Requirement.

	Parameters

	
	valueOrCallable – A single Promise instance or a function that
takes args as input parameters.

	args (int [https://docs.python.org/3/library/functions.html#int] or .Promise) – variable length argument list

	
getValue()

	Return PromisedRequirement value.

	
static convertPromises(kwargs)

	Return True if reserved resource keyword is a Promise or PromisedRequirement instance.

Converts Promise instance to PromisedRequirement.

	Parameters

	kwargs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – function keyword arguments

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Job Methods API

Jobs are the units of work in Toil which are composed into workflows.

	
class toil.job.Job(memory=None, cores=None, disk=None, accelerators=None, preemptible=None, preemptable=None, unitName='', checkpoint=False, displayName='', descriptionClass=None, local=None)

	Class represents a unit of work in toil.

	Parameters

	
	memory (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]]) –

	cores (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None]]) –

	disk (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]]) –

	accelerators (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], AcceleratorRequirement, Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], AcceleratorRequirement]], None [https://docs.python.org/3/library/constants.html#None]]) –

	preemptible (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], bool [https://docs.python.org/3/library/functions.html#bool], None [https://docs.python.org/3/library/constants.html#None]]) –

	preemptable (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], bool [https://docs.python.org/3/library/functions.html#bool], None [https://docs.python.org/3/library/constants.html#None]]) –

	unitName (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	checkpoint (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	displayName (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	descriptionClass (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][type [https://docs.python.org/3/library/functions.html#type]]) –

	local (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	
__init__(memory=None, cores=None, disk=None, accelerators=None, preemptible=None, preemptable=None, unitName='', checkpoint=False, displayName='', descriptionClass=None, local=None)

	Job initializer.

This method must be called by any overriding constructor.

	Parameters

	
	memory (int [https://docs.python.org/3/library/functions.html#int] or string convertible by toil.lib.conversions.human2bytes to an int) – the maximum number of bytes of memory the job will require to run.

	cores (float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], or string convertible by toil.lib.conversions.human2bytes to an int) – the number of CPU cores required.

	disk (int [https://docs.python.org/3/library/functions.html#int] or string convertible by toil.lib.conversions.human2bytes to an int) – the amount of local disk space required by the job, expressed in bytes.

	accelerators (int [https://docs.python.org/3/library/functions.html#int], string, dict [https://docs.python.org/3/library/stdtypes.html#dict], or list [https://docs.python.org/3/library/stdtypes.html#list] of those. Strings and dicts must be parseable by parse_accelerator.) – the computational accelerators required by the job. If a string, can be a string of a number, or a string specifying a model, brand, or API (with optional colon-delimited count).

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool], int in {0, 1}, or string in {'false', 'true'} in any case) – if the job can be run on a preemptible node.

	preemptable (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], bool [https://docs.python.org/3/library/functions.html#bool], None [https://docs.python.org/3/library/constants.html#None]]) – legacy preemptible parameter, for backwards compatibility with workflows not using the preemptible keyword

	unitName (str [https://docs.python.org/3/library/stdtypes.html#str]) – Human-readable name for this instance of the job.

	checkpoint (bool [https://docs.python.org/3/library/functions.html#bool]) – if any of this job’s successor jobs completely fails,
exhausting all their retries, remove any successor jobs and rerun this job to restart the
subtree. Job must be a leaf vertex in the job graph when initially defined, see
toil.job.Job.checkNewCheckpointsAreCutVertices().

	displayName (str [https://docs.python.org/3/library/stdtypes.html#str]) – Human-readable job type display name.

	descriptionClass (class) – Override for the JobDescription class used to describe the job.

	local (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – if the job can be run on the leader.

	Return type

	None

	
property jobStoreID: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], TemporaryID]

	Get the ID of this Job.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], TemporaryID]

	
property description: JobDescription

	Expose the JobDescription that describes this job.

	Return type

	JobDescription

	
property disk: int [https://docs.python.org/3/library/functions.html#int]

	The maximum number of bytes of disk the job will require to run.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property memory

	The maximum number of bytes of memory the job will require to run.

	
property cores: Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	The number of CPU cores required.

	Return type

	Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	
property accelerators: List [https://docs.python.org/3/library/typing.html#typing.List][AcceleratorRequirement]

	Any accelerators, such as GPUs, that are needed.

	Return type

	List[AcceleratorRequirement]

	
property preemptible: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the job can be run on a preemptible node.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property checkpoint: bool [https://docs.python.org/3/library/functions.html#bool]

	Determine if the job is a checkpoint job or not.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
assignConfig(config)

	Assign the given config object.

It will be used by various actions implemented inside the Job class.

	Parameters

	config (Config) – Config object to query

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore (AbstractFileStore) – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Return type

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
addChild(childJob)

	Add a childJob to be run as child of this job.

Child jobs will be run directly after this job’s
toil.job.Job.run() method has completed.

	Return type

	Job

	Returns

	childJob: for call chaining

	Parameters

	childJob (Job) –

	
hasChild(childJob)

	Check if childJob is already a child of this job.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if childJob is a child of the job, else False.

	Parameters

	childJob (Job) –

	
addFollowOn(followOnJob)

	Add a follow-on job.

Follow-on jobs will be run after the child jobs and their successors have been run.

	Return type

	Job

	Returns

	followOnJob for call chaining

	Parameters

	followOnJob (Job) –

	
hasPredecessor(job)

	Check if a given job is already a predecessor of this job.

	Parameters

	job (Job) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hasFollowOn(followOnJob)

	Check if given job is already a follow-on of this job.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if the followOnJob is a follow-on of this job, else False.

	Parameters

	followOnJob (Job) –

	
addService(service, parentService=None)

	Add a service.

The toil.job.Job.Service.start() method of the service will be called
after the run method has completed but before any successors are run.
The service’s toil.job.Job.Service.stop() method will be called once
the successors of the job have been run.

Services allow things like databases and servers to be started and accessed
by jobs in a workflow.

	Raises

	toil.job.JobException – If service has already been made the child
of a job or another service.

	Parameters

	
	service (Service) – Service to add.

	parentService (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Service]) – Service that will be started before ‘service’ is
started. Allows trees of services to be established. parentService must be a service
of this job.

	Return type

	Promise

	Returns

	a promise that will be replaced with the return value from
toil.job.Job.Service.start() of service in any successor of the job.

	
hasService(service)

	Return True if the given Service is a service of this job, and False otherwise.

	Parameters

	service (Service) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
addChildFn(fn, *args, **kwargs)

	Add a function as a child job.

	Parameters

	fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Function to be run as a child job with *args and **kwargs as arguments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Return type

	FunctionWrappingJob

	Returns

	The new child job that wraps fn.

	
addFollowOnFn(fn, *args, **kwargs)

	Add a function as a follow-on job.

	Parameters

	fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Function to be run as a follow-on job with *args and **kwargs as arguments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Return type

	FunctionWrappingJob

	Returns

	The new follow-on job that wraps fn.

	
addChildJobFn(fn, *args, **kwargs)

	Add a job function as a child job.

See toil.job.JobFunctionWrappingJob for a definition of a job function.

	Parameters

	fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Job function to be run as a child job with *args and **kwargs as arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Return type

	FunctionWrappingJob

	Returns

	The new child job that wraps fn.

	
addFollowOnJobFn(fn, *args, **kwargs)

	Add a follow-on job function.

See toil.job.JobFunctionWrappingJob for a definition of a job function.

	Parameters

	fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Job function to be run as a follow-on job with *args and **kwargs as arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Return type

	FunctionWrappingJob

	Returns

	The new follow-on job that wraps fn.

	
property tempDir: str [https://docs.python.org/3/library/stdtypes.html#str]

	Shortcut to calling job.fileStore.getLocalTempDir().

Temp dir is created on first call and will be returned for first and future calls
:return: Path to tempDir. See job.fileStore.getLocalTempDir

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
log(text, level=20)

	Log using fileStore.logToMaster().

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
static wrapFn(fn, *args, **kwargs)

	Makes a Job out of a function.

Convenience function for constructor of toil.job.FunctionWrappingJob.

	Parameters

	fn – Function to be run with *args and **kwargs as arguments. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Return type

	FunctionWrappingJob

	Returns

	The new function that wraps fn.

	
static wrapJobFn(fn, *args, **kwargs)

	Makes a Job out of a job function.

Convenience function for constructor of toil.job.JobFunctionWrappingJob.

	Parameters

	fn – Job function to be run with *args and **kwargs as arguments. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Return type

	JobFunctionWrappingJob

	Returns

	The new job function that wraps fn.

	
encapsulate(name=None)

	Encapsulates the job, see toil.job.EncapsulatedJob.
Convenience function for constructor of toil.job.EncapsulatedJob.

	Parameters

	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Human-readable name for the encapsulated job.

	Return type

	EncapsulatedJob

	Returns

	an encapsulated version of this job.

	
rv(*path)

	Create a promise (toil.job.Promise).

The “promise” representing a return value of the job’s run method, or,
in case of a function-wrapping job, the wrapped function’s return value.

	Parameters

	path ((Any)) – Optional path for selecting a component of the promised return value.
If absent or empty, the entire return value will be used. Otherwise, the first
element of the path is used to select an individual item of the return value. For
that to work, the return value must be a list, dictionary or of any other type
implementing the __getitem__() magic method. If the selected item is yet another
composite value, the second element of the path can be used to select an item from
it, and so on. For example, if the return value is [6,{‘a’:42}], .rv(0) would
select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3. To
select a slice from a return value that is slicable, e.g. tuple or list, the path
element should be a slice object. For example, assuming that the return value is
[6, 7, 8, 9] then .rv(slice(1, 3)) would select [7, 8]. Note that slicing
really only makes sense at the end of path.

	Return type

	Promise

	Returns

	A promise representing the return value of this jobs toil.job.Job.run()
method.

	
prepareForPromiseRegistration(jobStore)

	Set up to allow this job’s promises to register themselves.

Prepare this job (the promisor) so that its promises can register
themselves with it, when the jobs they are promised to (promisees) are
serialized.

The promissee holds the reference to the promise (usually as part of the
job arguments) and when it is being pickled, so will the promises it refers
to. Pickling a promise triggers it to be registered with the promissor.

	Parameters

	jobStore (AbstractJobStore) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
checkJobGraphForDeadlocks()

	Ensures that a graph of Jobs (that hasn’t yet been saved to the
JobStore) doesn’t contain any pathological relationships between jobs
that would result in deadlocks if we tried to run the jobs.

See toil.job.Job.checkJobGraphConnected(),
toil.job.Job.checkJobGraphAcyclic() and
toil.job.Job.checkNewCheckpointsAreLeafVertices() for more info.

	Raises

	toil.job.JobGraphDeadlockException – if the job graph
is cyclic, contains multiple roots or contains checkpoint jobs that are
not leaf vertices when defined (see toil.job.Job.checkNewCheckpointsAreLeaves()).

	
getRootJobs()

	Return the set of root job objects that contain this job.

A root job is a job with no predecessors (i.e. which are not children, follow-ons, or services).

Only deals with jobs created here, rather than loaded from the job store.

	Return type

	Set [https://docs.python.org/3/library/typing.html#typing.Set][Job]

	
checkJobGraphConnected()

	
	Raises

	toil.job.JobGraphDeadlockException – if toil.job.Job.getRootJobs() does not contain exactly one root job.

As execution always starts from one root job, having multiple root jobs will cause a deadlock to occur.

Only deals with jobs created here, rather than loaded from the job store.

	
checkJobGraphAcylic()

	
	Raises

	toil.job.JobGraphDeadlockException – if the connected component of jobs containing this job contains any cycles of child/followOn dependencies in the augmented job graph (see below). Such cycles are not allowed in valid job graphs.

A follow-on edge (A, B) between two jobs A and B is equivalent to adding a child edge to B from (1) A, (2) from each child of A, and (3) from the successors of each child of A. We call each such edge an edge an “implied” edge. The augmented job graph is a job graph including all the implied edges.

For a job graph G = (V, E) the algorithm is O(|V|^2). It is O(|V| + |E|) for a graph with no follow-ons. The former follow-on case could be improved!

Only deals with jobs created here, rather than loaded from the job store.

	
checkNewCheckpointsAreLeafVertices()

	A checkpoint job is a job that is restarted if either it fails, or if any of its successors completely fails, exhausting their retries.

A job is a leaf it is has no successors.

A checkpoint job must be a leaf when initially added to the job graph. When its run method is invoked it can then create direct successors. This restriction is made
to simplify implementation.

Only works on connected components of jobs not yet added to the JobStore.

	Raises

	toil.job.JobGraphDeadlockException – if there exists a job being added to the graph for which checkpoint=True and which is not a leaf.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
defer(function, *args, **kwargs)

	Register a deferred function, i.e. a callable that will be invoked after the current
attempt at running this job concludes. A job attempt is said to conclude when the job
function (or the toil.job.Job.run() method for class-based jobs) returns, raises an
exception or after the process running it terminates abnormally. A deferred function will
be called on the node that attempted to run the job, even if a subsequent attempt is made
on another node. A deferred function should be idempotent because it may be called
multiple times on the same node or even in the same process. More than one deferred
function may be registered per job attempt by calling this method repeatedly with
different arguments. If the same function is registered twice with the same or different
arguments, it will be called twice per job attempt.

Examples for deferred functions are ones that handle cleanup of resources external to
Toil, like Docker containers, files outside the work directory, etc.

	Parameters

	
	function (callable) – The function to be called after this job concludes.

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – The arguments to the function

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The keyword arguments to the function

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
getTopologicalOrderingOfJobs()

	
	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Job]

	Returns

	a list of jobs such that for all pairs of indices i, j for which i < j, the job at index i can be run before the job at index j.

Only considers jobs in this job’s subgraph that are newly added, not loaded from the job store.

Ignores service jobs.

	
saveBody(jobStore)

	Save the execution data for just this job to the JobStore, and fill in
the JobDescription with the information needed to retrieve it.

The Job’s JobDescription must have already had a real jobStoreID assigned to it.

Does not save the JobDescription.

	Parameters

	jobStore (AbstractJobStore) – The job store to save the job body into.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
saveAsRootJob(jobStore)

	Save this job to the given jobStore as the root job of the workflow.

	Return type

	JobDescription

	Returns

	the JobDescription describing this job.

	Parameters

	jobStore (AbstractJobStore) –

	
classmethod loadJob(jobStore, jobDescription)

	Retrieves a toil.job.Job instance from a JobStore

	Parameters

	
	jobStore (AbstractJobStore) – The job store.

	jobDescription (JobDescription) – the JobDescription of the job to retrieve.

	Return type

	Job

	Returns

	The job referenced by the JobDescription.

JobDescription

The class used to store all the information that the Toil Leader ever needs to
know about a Job.

	
class toil.job.JobDescription(requirements, jobName, unitName='', displayName='', command=None, local=None)

	Stores all the information that the Toil Leader ever needs to know about a Job.

(requirements information, dependency information, commands to issue,
etc.)

Can be obtained from an actual (i.e. executable) Job object, and can be
used to obtain the Job object from the JobStore.

Never contains other Jobs or JobDescriptions: all reference is by ID.

Subclassed into variants for checkpoint jobs and service jobs that have
their specific parameters.

	Parameters

	
	requirements (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]]]) –

	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	unitName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	displayName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	command (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	local (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	
__init__(requirements, jobName, unitName='', displayName='', command=None, local=None)

	Create a new JobDescription.

	Parameters

	
	requirements (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]]]) – Dict from string to number, string, or bool
describing the resource requirements of the job. ‘cores’, ‘memory’,
‘disk’, and ‘preemptible’ fields, if set, are parsed and broken out
into properties. If unset, the relevant property will be
unspecified, and will be pulled from the assigned Config object if
queried (see toil.job.Requirer.assignConfig()).

	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the kind of job this is. May be used in job
store IDs and logging. Also used to let the cluster scaler learn a
model for how long the job will take. Ought to be the job class’s
name if no real user-defined name is available.

	unitName (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of this instance of this kind of job. May
appear with jobName in logging.

	displayName (str [https://docs.python.org/3/library/stdtypes.html#str]) – A human-readable name to identify this
particular job instance. Ought to be the job class’s name
if no real user-defined name is available.

	local (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – If True, the job is meant to use minimal resources but is
sensitive to execution latency, and so should be executed by the
leader.

	command (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
serviceHostIDsInBatches()

	Find all batches of service host job IDs that can be started at the same time.

(in the order they need to start in)

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
successorsAndServiceHosts()

	Get an iterator over all child, follow-on, and service job IDs.

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
allSuccessors()

	Get an iterator over all child, follow-on, and chained, inherited successor job IDs.

Follow-ons will come before children.

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
successors_by_phase()

	Get an iterator over all child/follow-on/chained inherited successor job IDs, along with their phase numbere on the stack.

Phases ececute higher numbers to lower numbers.

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
property services

	Get a collection of the IDs of service host jobs for this job, in arbitrary order.

Will be empty if the job has no unfinished services.

	
nextSuccessors()

	Return the collection of job IDs for the successors of this job that are ready to run.

If those jobs have multiple predecessor relationships, they may still
be blocked on other jobs.

Returns None when at the final phase (all successors done), and an
empty collection if there are more phases but they can’t be entered yet
(e.g. because we are waiting for the job itself to run).

	Return type

	Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
filterSuccessors(predicate)

	Keep only successor jobs for which the given predicate function approves.

The predicate function is called with the job’s ID.

Treats all other successors as complete and forgets them.

	Parameters

	predicate (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str]], bool [https://docs.python.org/3/library/functions.html#bool]]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
filterServiceHosts(predicate)

	Keep only services for which the given predicate approves.

The predicate function is called with the service host job’s ID.

Treats all other services as complete and forgets them.

	Parameters

	predicate (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str]], bool [https://docs.python.org/3/library/functions.html#bool]]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
clear_nonexistent_dependents(job_store)

	Remove all references to child, follow-on, and associated service jobs that do not exist.

That is to say, all those that have been completed and removed.

	Parameters

	job_store (AbstractJobStore) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
clear_dependents()

	Remove all references to successor and service jobs.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
is_subtree_done()

	Check if the subtree is done.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if the job appears to be done, and all related child,
follow-on, and service jobs appear to be finished and removed.

	
replace(other)

	Take on the ID of another JobDescription, retaining our own state and type.

When updated in the JobStore, we will save over the other JobDescription.

Useful for chaining jobs: the chained-to job can replace the parent job.

Merges cleanup state and successors other than this job from the job
being replaced into this one.

	Parameters

	other (JobDescription) – Job description to replace.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
addChild(childID)

	Make the job with the given ID a child of the described job.

	Parameters

	childID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
addFollowOn(followOnID)

	Make the job with the given ID a follow-on of the described job.

	Parameters

	followOnID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
addServiceHostJob(serviceID, parentServiceID=None)

	Make the ServiceHostJob with the given ID a service of the described job.

If a parent ServiceHostJob ID is given, that parent service will be started
first, and must have already been added.

	
hasChild(childID)

	Return True if the job with the given ID is a child of the described job.

	Parameters

	childID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hasFollowOn(followOnID)

	Test if the job with the given ID is a follow-on of the described job.

	Parameters

	followOnID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hasServiceHostJob(serviceID)

	Test if the ServiceHostJob is a service of the described job.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
renameReferences(renames)

	Apply the given dict of ID renames to all references to jobs.

Does not modify our own ID or those of finished predecessors.
IDs not present in the renames dict are left as-is.

	Parameters

	renames (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][TemporaryID, str [https://docs.python.org/3/library/stdtypes.html#str]]) – Rename operations to apply.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
addPredecessor()

	Notify the JobDescription that a predecessor has been added to its Job.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
onRegistration(jobStore)

	Perform setup work that requires the JobStore.

Called by the Job saving logic when this JobDescription meets the JobStore and has its ID assigned.

Overridden to perform setup work (like hooking up flag files for service
jobs) that requires the JobStore.

	Parameters

	jobStore (AbstractJobStore) – The job store we are being placed into

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
setupJobAfterFailure(exit_status=None, exit_reason=None)

	Configure job after a failure.

Reduce the remainingTryCount if greater than zero and set the memory
to be at least as big as the default memory (in case of exhaustion of memory,
which is common).

Requires a configuration to have been assigned (see toil.job.Requirer.assignConfig()).

	Parameters

	
	exit_status (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – The exit code from the job.

	exit_reason (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BatchJobExitReason]) – The reason the job stopped, if available from the batch system.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
getLogFileHandle(jobStore)

	Create a context manager that yields a file handle to the log file.

Assumes logJobStoreFileID is set.

	
property remainingTryCount

	Get the number of tries remaining.

The try count set on the JobDescription, or the default based on the
retry count from the config if none is set.

	
clearRemainingTryCount()

	Clear remainingTryCount and set it back to its default value.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if a modification to the JobDescription was made, and
False otherwise.

	
pre_update_hook()

	Run before pickling and saving a created or updated version of this job.

Called by the job store.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
get_job_kind()

	Return an identifier of the job for use with the message bus.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns: Either the unit name, job name, or display name, which identifies
	the kind of job it is to toil.
Otherwise “Unknown Job” in case no identifier is available

Job.Runner API

The Runner contains the methods needed to configure and start a Toil run.

	
class Job.Runner

	Used to setup and run Toil workflow.

	
static getDefaultArgumentParser()

	Get argument parser with added toil workflow options.

	Return type

	ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	Returns

	The argument parser used by a toil workflow with added Toil options.

	
static getDefaultOptions(jobStore)

	Get default options for a toil workflow.

	Parameters

	jobStore (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string describing the jobStore for the workflow.

	Return type

	Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

	Returns

	The options used by a toil workflow.

	
static addToilOptions(parser)

	Adds the default toil options to an optparse [https://docs.python.org/3/library/optparse.html#module-optparse] or argparse [https://docs.python.org/3/library/argparse.html#module-argparse]
parser object.

	Parameters

	parser (Union [https://docs.python.org/3/library/typing.html#typing.Union][OptionParser [https://docs.python.org/3/library/optparse.html#optparse.OptionParser], ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]]) – Options object to add toil options to.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
static startToil(job, options)

	Run the toil workflow using the given options.

Deprecated by toil.common.Toil.start.

(see Job.Runner.getDefaultOptions and Job.Runner.addToilOptions) starting with this
job.
:type job: Job
:param job: root job of the workflow
:raises: toil.exceptions.FailedJobsException if at the end of function there remain failed jobs.
:rtype: Any [https://docs.python.org/3/library/typing.html#typing.Any]
:return: The return value of the root job’s run function.

	Parameters

	job (Job) –

	Return type

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

job.fileStore API

The AbstractFileStore is an abstraction of a Toil run’s shared storage.

	
class toil.fileStores.abstractFileStore.AbstractFileStore(jobStore, jobDesc, file_store_dir, waitForPreviousCommit)

	Interface used to allow user code run by Toil to read and write files.

Also provides the interface to other Toil facilities used by user code,
including:

	normal (non-real-time) logging

	finding the correct temporary directory for scratch work

	importing and exporting files into and out of the workflow

Stores user files in the jobStore, but keeps them separate from actual
jobs.

May implement caching.

Passed as argument to the toil.job.Job.run() method.

Access to files is only permitted inside the context manager provided by
toil.fileStores.abstractFileStore.AbstractFileStore.open().

Also responsible for committing completed jobs back to the job store with
an update operation, and allowing that commit operation to be waited for.

	Parameters

	
	jobStore (AbstractJobStore) –

	jobDesc (JobDescription) –

	file_store_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	waitForPreviousCommit (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) –

	
__init__(jobStore, jobDesc, file_store_dir, waitForPreviousCommit)

	Create a new file store object.

	Parameters

	
	jobStore (AbstractJobStore) – the job store in use for the current Toil run.

	jobDesc (JobDescription) – the JobDescription object for the currently
running job.

	file_store_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – the per-worker local temporary directory where
the file store should store local files. Per-job directories will be
created under here by the file store.

	waitForPreviousCommit (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – the waitForCommit method of the previous job’s
file store, when jobs are running in sequence on the same worker. Used to
prevent this file store’s startCommit and the previous job’s
startCommit methods from running at the same time and racing. If
they did race, it might be possible for the later job to be fully
marked as completed in the job store before the eralier job was.

	Return type

	None

	
static createFileStore(jobStore, jobDesc, file_store_dir, waitForPreviousCommit, caching)

	Create a concreate FileStore.

	Parameters

	
	jobStore (AbstractJobStore) –

	jobDesc (JobDescription) –

	file_store_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	waitForPreviousCommit (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) –

	caching (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][NonCachingFileStore, CachingFileStore]

	
static shutdownFileStore(workflowID, config_work_dir, config_coordination_dir)

	Carry out any necessary filestore-specific cleanup.

This is a destructive operation and it is important to ensure that there
are no other running processes on the system that are modifying or using
the file store for this workflow.

This is the intended to be the last call to the file store in a Toil run,
called by the batch system cleanup function upon batch system shutdown.

	Parameters

	
	workflowID (str [https://docs.python.org/3/library/stdtypes.html#str]) – The workflow ID for this invocation of the workflow

	config_work_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The path to the work directory in the Toil Config.

	config_coordination_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The path to the coordination directory in the Toil Config.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
open(job)

	Create the context manager around tasks prior and after a job has been run.

File operations are only permitted inside the context manager.

Implementations must only yield from within with super().open(job):.

	Parameters

	job (Job) – The job instance of the toil job to run.

	Return type

	Generator [https://docs.python.org/3/library/typing.html#typing.Generator][None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	
getLocalTempDir()

	Get a new local temporary directory in which to write files.

The directory will only persist for the duration of the job.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	The absolute path to a new local temporary directory. This directory
will exist for the duration of the job only, and is guaranteed
to be deleted once the job terminates, removing all files it
contains recursively.

	
getLocalTempFile(suffix=None, prefix=None)

	Get a new local temporary file that will persist for the duration of the job.

	Parameters

	
	suffix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – If not None, the file name will end with this string.
Otherwise, default value “.tmp” will be used

	prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – If not None, the file name will start with this string.
Otherwise, default value “tmp” will be used

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	The absolute path to a local temporary file. This file will exist
for the duration of the job only, and is guaranteed to be deleted
once the job terminates.

	
getLocalTempFileName(suffix=None, prefix=None)

	Get a valid name for a new local file. Don’t actually create a file at the path.

	Parameters

	
	suffix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – If not None, the file name will end with this string.
Otherwise, default value “.tmp” will be used

	prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – If not None, the file name will start with this string.
Otherwise, default value “tmp” will be used

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	Path to valid file

	
abstract writeGlobalFile(localFileName, cleanup=False)

	Upload a file (as a path) to the job store.

If the file is in a FileStore-managed temporary directory (i.e. from
toil.fileStores.abstractFileStore.AbstractFileStore.getLocalTempDir()),
it will become a local copy of the file, eligible for deletion by
toil.fileStores.abstractFileStore.AbstractFileStore.deleteLocalFile().

If an executable file on the local filesystem is uploaded, its executability
will be preserved when it is downloaded again.

	Parameters

	
	localFileName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the local file to upload. The
last path component (basename of the file) will remain
associated with the file in the file store, if supported by the
backing JobStore, so that the file can be searched for by name
or name glob.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – if True then the copy of the global file will be deleted once
the job and all its successors have completed running. If not the global
file must be deleted manually.

	Return type

	FileID

	Returns

	an ID that can be used to retrieve the file.

	
writeGlobalFileStream(cleanup=False, basename=None, encoding=None, errors=None)

	Similar to writeGlobalFile, but allows the writing of a stream to the job store.
The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	encoding (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The name of the encoding used to decode the file. Encodings
are the same as for decode(). Defaults to None which represents binary mode.

	errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Specifies how encoding errors are to be handled. Errors are the
same as for open(). Defaults to ‘strict’ when an encoding is specified.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – is as in
toil.fileStores.abstractFileStore.AbstractFileStore.writeGlobalFile().

	basename (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – If supported by the backing JobStore, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][WriteWatchingStream, FileID]]

	Returns

	A context manager yielding a tuple of
1) a file handle which can be written to and
2) the toil.fileStores.FileID of the resulting file in the job store.

	
logAccess(fileStoreID, destination=None)

	Record that the given file was read by the job.

(to be announced if the job fails)

If destination is not None, it gives the path that the file
was downloaded to. Otherwise, assumes that the file was streamed.

Must be called by readGlobalFile() and readGlobalFileStream()
implementations.

	Parameters

	
	fileStoreID (Union [https://docs.python.org/3/library/typing.html#typing.Union][FileID, str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	destination (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=False, symlink=False)

	Make the file associated with fileStoreID available locally.

If mutable is True, then a copy of the file will be created locally so
that the original is not modified and does not change the file for other
jobs. If mutable is False, then a link can be created to the file, saving
disk resources. The file that is downloaded will be executable if and only
if it was originally uploaded from an executable file on the local filesystem.

If a user path is specified, it is used as the destination. If a user path isn’t
specified, the file is stored in the local temp directory with an encoded name.

The destination file must not be deleted by the user; it can only be
deleted through deleteLocalFile.

Implementations must call logAccess() to report the download.

	Parameters

	
	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – job store id for the file

	userPath (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – a path to the name of file to which the global file will
be copied or hard-linked (see below).

	cache (bool [https://docs.python.org/3/library/functions.html#bool]) – Described in
toil.fileStores.CachingFileStore.readGlobalFile()

	mutable (bool [https://docs.python.org/3/library/functions.html#bool]) – Described in
toil.fileStores.CachingFileStore.readGlobalFile()

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	An absolute path to a local, temporary copy of the file keyed
by fileStoreID.

	
abstract readGlobalFileStream(fileStoreID, encoding=None, errors=None)

	Read a stream from the job store; similar to readGlobalFile.

The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	encoding (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – the name of the encoding used to decode the file. Encodings
are the same as for decode(). Defaults to None which represents binary mode.

	errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – an optional string that specifies how encoding errors are
to be handled. Errors are the same as for open(). Defaults to ‘strict’
when an encoding is specified.

	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	AbstractContextManager[Union [https://docs.python.org/3/library/typing.html#typing.Union][IO [https://docs.python.org/3/library/typing.html#typing.IO][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], IO [https://docs.python.org/3/library/typing.html#typing.IO][str [https://docs.python.org/3/library/stdtypes.html#str]]]]

Implementations must call logAccess() to report the download.

	Return type

	AbstractContextManager[Union [https://docs.python.org/3/library/typing.html#typing.Union][IO [https://docs.python.org/3/library/typing.html#typing.IO][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], IO [https://docs.python.org/3/library/typing.html#typing.IO][str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	Returns

	a context manager yielding a file handle which can be read from.

	Parameters

	
	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	encoding (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
getGlobalFileSize(fileStoreID)

	Get the size of the file pointed to by the given ID, in bytes.

If a FileID or something else with a non-None ‘size’ field, gets that.

Otherwise, asks the job store to poll the file’s size.

Note that the job store may overestimate the file’s size, for example
if it is encrypted and had to be augmented with an IV or other
encryption framing.

	Parameters

	fileStoreID (Union [https://docs.python.org/3/library/typing.html#typing.Union][FileID, str [https://docs.python.org/3/library/stdtypes.html#str]]) – File ID for the file

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	File’s size in bytes, as stored in the job store

	
abstract deleteLocalFile(fileStoreID)

	Delete local copies of files associated with the provided job store ID.

Raises an OSError with an errno of errno.ENOENT if no such local copies
exist. Thus, cannot be called multiple times in succession.

The files deleted are all those previously read from this file ID via
readGlobalFile by the current job into the job’s file-store-provided
temp directory, plus the file that was written to create the given file
ID, if it was written by the current job from the job’s
file-store-provided temp directory.

	Parameters

	fileStoreID (Union [https://docs.python.org/3/library/typing.html#typing.Union][FileID, str [https://docs.python.org/3/library/stdtypes.html#str]]) – File Store ID of the file to be deleted.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract deleteGlobalFile(fileStoreID)

	Delete local files and then permanently deletes them from the job store.

To ensure that the job can be restarted if necessary, the delete will not
happen until after the job’s run method has completed.

	Parameters

	fileStoreID (Union [https://docs.python.org/3/library/typing.html#typing.Union][FileID, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the File Store ID of the file to be deleted.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
logToMaster(text, level=20)

	Send a logging message to the leader. The message will also be logged by the worker at the same level.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to log.

	level (int [https://docs.python.org/3/library/functions.html#int]) – The logging level.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract startCommit(jobState=False)

	Update the status of the job on the disk.

May start an asynchronous process. Call waitForCommit() to wait on that process.

	Parameters

	jobState (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, commit the state of the FileStore’s job,
and file deletes. Otherwise, commit only file creates/updates.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract waitForCommit()

	Blocks while startCommit is running.

This function is called by this job’s successor to ensure that it does
not begin modifying the job store until after this job has finished doing so.

Might be called when startCommit is never called on a particular
instance, in which case it does not block.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	Always returns True

	
abstract classmethod shutdown(shutdown_info)

	Shutdown the filestore on this node.

This is intended to be called on batch system shutdown.

	Parameters

	shutdown_info (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – The implementation-specific shutdown information,
for shutting down the file store and removing all its state and all job
local temp directories from the node.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
class toil.fileStores.FileID(fileStoreID, size, executable=False)

	A small wrapper around Python’s builtin string class.

It is used to represent a file’s ID in the file store, and has a size attribute
that is the file’s size in bytes. This object is returned by importFile and
writeGlobalFile.

Calls into the file store can use bare strings; size will be queried from
the job store if unavailable in the ID.

	Parameters

	
	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	size (int [https://docs.python.org/3/library/functions.html#int]) –

	executable (bool [https://docs.python.org/3/library/functions.html#bool]) –

	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	Return type

	FileID

	
__init__(fileStoreID, size, executable=False)

	
	Parameters

	
	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	size (int [https://docs.python.org/3/library/functions.html#int]) –

	executable (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
pack()

	Pack the FileID into a string so it can be passed through external code.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod unpack(packedFileStoreID)

	Unpack the result of pack() into a FileID object.

	Parameters

	packedFileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	FileID

Batch System API

The batch system interface is used by Toil to abstract over different ways of running
batches of jobs, for example Slurm, GridEngine, Mesos, Parasol and a single node. The
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem API is implemented to
run jobs using a given job management system, e.g. Mesos.

Batch System Enivronmental Variables

Environmental variables allow passing of scheduler specific parameters.

For SLURM there are two environment variables - the first applies to all jobs,
while the second defined the partition to use for parallel jobs:

export TOIL_SLURM_ARGS="-t 1:00:00 -q fatq"
export TOIL_SLURM_PE='multicore'

For TORQUE there are two environment variables - one for everything but the resource
requirements, and another - for resources requirements (without the -l prefix):

export TOIL_TORQUE_ARGS="-q fatq"
export TOIL_TORQUE_REQS="walltime=1:00:00"

For GridEngine (SGE, UGE), there is an additional environmental variable to define the
parallel environment [http://www.softpanorama.org/HPC/Grid_engine/parallel_environment.shtml#Important_details]
for running multicore jobs:

export TOIL_GRIDENGINE_PE='smp'
export TOIL_GRIDENGINE_ARGS='-q batch.q'

For HTCondor, additional parameters can be included in the submit file passed to condor_submit:

export TOIL_HTCONDOR_PARAMS='requirements = TARGET.has_sse4_2 == true; accounting_group = test'

The environment variable is parsed as a semicolon-separated string of parameter = value pairs.

Batch System API

	
class toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

	An abstract base class to represent the interface the batch system must provide to Toil.

	
abstract classmethod supportsAutoDeployment()

	Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource
object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract classmethod supportsWorkerCleanup()

	Indicates whether this batch system invokes
BatchSystemSupport.workerCleanup() after the last job for a
particular workflow invocation finishes. Note that the term worker
refers to an entire node, not just a worker process. A worker process
may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The
batch system is said to shut down after the last worker process
terminates.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
setUserScript(userScript)

	Set the user script for this workflow. This method must be called before the first job is
issued to this batch system, and only if supportsAutoDeployment() returns True,
otherwise it will raise an exception.

	Parameters

	userScript (Resource) – the resource object representing the user script
or module and the modules it depends on.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
set_message_bus(message_bus)

	Give the batch system an opportunity to connect directly to the message
bus, so that it can send informational messages about the jobs it is
running to other Toil components.

	Parameters

	message_bus (MessageBus) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract issueBatchJob(jobDesc, job_environment=None)

	Issues a job with the specified command to the batch system and returns
a unique jobID.

	Parameters

	
	jobDesc (JobDescription) – a toil.job.JobDescription

	job_environment (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – a collection of job-specific environment
variables to be set on the worker.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	a unique jobID that can be used to reference the newly issued
job

	
abstract killBatchJobs(jobIDs)

	Kills the given job IDs. After returning, the killed jobs will not
appear in the results of getRunningBatchJobIDs. The killed job will not
be returned from getUpdatedBatchJob.

	Parameters

	jobIDs (List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]) – list of IDs of jobs to kill

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract getIssuedBatchJobIDs()

	Gets all currently issued jobs

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]

	Returns

	A list of jobs (as jobIDs) currently issued (may be running, or may be
waiting to be run). Despite the result being a list, the ordering should not
be depended upon.

	
abstract getRunningBatchJobIDs()

	Gets a map of jobs as jobIDs that are currently running (not just waiting)
and how long they have been running, in seconds.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	Returns

	dictionary with currently running jobID keys and how many seconds they have
been running as the value

	
abstract getUpdatedBatchJob(maxWait)

	Returns information about job that has updated its status (i.e. ceased
running, either successfully or with an error). Each such job will be
returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they
may cause None to be returned earlier than maxWait.

	Parameters

	maxWait (int [https://docs.python.org/3/library/functions.html#int]) – the number of seconds to block, waiting for a result

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][UpdatedBatchJobInfo]

	Returns

	If a result is available, returns UpdatedBatchJobInfo.
Otherwise it returns None. wallTime is the number of seconds (a strictly
positive float) in wall-clock time the job ran for, or None if this
batch system does not support tracking wall time.

	
getSchedulingStatusMessage()

	Get a log message fragment for the user about anything that might be
going wrong in the batch system, if available.

If no useful message is available, return None.

This can be used to report what resource is the limiting factor when
scheduling jobs, for example. If the leader thinks the workflow is
stuck, the message can be displayed to the user to help them diagnose
why it might be stuck.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	User-directed message about scheduling state.

	
abstract shutdown()

	Called at the completion of a toil invocation.
Should cleanly terminate all worker threads.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
setEnv(name, value=None)

	Set an environment variable for the worker process before it is launched.

The worker process will typically inherit the environment of the machine
it is running on but this method makes it possible to override specific
variables in that inherited environment before the worker is launched.
Note that this mechanism is different to the one used by the worker
internally to set up the environment of a job. A call to this method affects
all jobs issued after this method returns. Note to implementors: This
means that you would typically need to copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
classmethod add_options(parser)

	If this batch system provides any command line options, add them to the given parser.

	Parameters

	parser (Union [https://docs.python.org/3/library/typing.html#typing.Union][ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], _ArgumentGroup]) –

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
classmethod setOptions(setOption)

	Process command line or configuration options relevant to this batch system.

	Parameters

	setOption (OptionSetter) – A function with signature
setOption(option_name, parsing_function=None, check_function=None, default=None, env=None)
returning nothing, used to update run configuration as a side effect.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
getWorkerContexts()

	Get a list of picklable context manager objects to wrap worker work in,
in order.

Can be used to ask the Toil worker to do things in-process (such as
configuring environment variables, hot-deploying user scripts, or
cleaning up a node) that would otherwise require a wrapping “executor”
process.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][AbstractContextManager[Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

Job.Service API

The Service class allows databases and servers to be spawned within a Toil workflow.

	
class Job.Service(memory=None, cores=None, disk=None, accelerators=None, preemptible=None, unitName=None)

	Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

	
__init__(memory=None, cores=None, disk=None, accelerators=None, preemptible=None, unitName=None)

	Memory, core and disk requirements are specified identically to as in toil.job.Job.__init__().

	
abstract start(job)

	Start the service.

	Parameters

	job (Job) – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	Return type

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Returns

	An object describing how to access the service. The object must be pickleable
and will be used by jobs to access the service (see toil.job.Job.addService()).

	
abstract stop(job)

	Stops the service. Function can block until complete.

	Parameters

	job (Job) – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
check()

	Checks the service is still running.

	Raises

	exceptions.RuntimeError – If the service failed, this will cause the service job to be labeled failed.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should raise a
RuntimeError, not return False!

Exceptions API

Toil specific exceptions.

	
exception toil.job.JobException(message)

	General job exception.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
__init__(message)

	
	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
exception toil.job.JobGraphDeadlockException(string)

	An exception raised in the event that a workflow contains an unresolvable dependency, such as a cycle. See toil.job.Job.checkJobGraphForDeadlocks().

	
__init__(string)

	

	
exception toil.jobStores.abstractJobStore.ConcurrentFileModificationException(jobStoreFileID)

	Indicates that the file was attempted to be modified by multiple processes at once.

	Parameters

	jobStoreFileID (FileID) –

	
__init__(jobStoreFileID)

	
	Parameters

	jobStoreFileID (FileID) – the ID of the file that was modified by multiple workers
or processes concurrently

	
exception toil.jobStores.abstractJobStore.JobStoreExistsException(locator)

	Indicates that the specified job store already exists.

	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
__init__(locator)

	
	Parameters

	
	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) – The location of the job store

	locator –

	
exception toil.jobStores.abstractJobStore.NoSuchFileException(jobStoreFileID, customName=None, *extra)

	Indicates that the specified file does not exist.

	Parameters

	
	jobStoreFileID (FileID) –

	customName (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	extra (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	
__init__(jobStoreFileID, customName=None, *extra)

	
	Parameters

	
	jobStoreFileID (FileID) – the ID of the file that was mistakenly assumed to exist

	customName (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – optionally, an alternate name for the nonexistent file

	extra (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – optional extra information to add to the error message

	extra –

	
exception toil.jobStores.abstractJobStore.NoSuchJobException(jobStoreID)

	Indicates that the specified job does not exist.

	Parameters

	jobStoreID (FileID) –

	
__init__(jobStoreID)

	
	Parameters

	
	jobStoreID (FileID) – the jobStoreID that was mistakenly assumed to exist

	jobStoreID –

	
exception toil.jobStores.abstractJobStore.NoSuchJobStoreException(locator)

	Indicates that the specified job store does not exist.

	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
__init__(locator)

	
	Parameters

	
	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) – The location of the job store

	locator –

Running Tests

Test make targets, invoked as $ make <target>, subject to which
environment variables are set (see Running Integration Tests).

	TARGET

	DESCRIPTION

	test

	Invokes all tests.

	integration_test

	Invokes only the integration tests.

	test_offline

	Skips building the Docker appliance and only
invokes tests that have no docker dependencies.

	integration_test_local

	Makes integration tests easier to debug locally
by running the integration tests serially and
doesn’t redirect output. This makes it appears on
the terminal as expected.

Before running tests for the first time, initialize your virtual environment
following the steps in Building from Source.

Run all tests (including slow tests):

$ make test

Run only quick tests (as of Jul 25, 2018, this was ~ 20 minutes):

$ export TOIL_TEST_QUICK=True; make test

Run an individual test with:

$ make test tests=src/toil/test/sort/sortTest.py::SortTest::testSort

The default value for tests is "src" which includes all tests in the
src/ subdirectory of the project root. Tests that require a particular
feature will be skipped implicitly. If you want to explicitly skip tests that
depend on a currently installed feature, use

$ make test tests="-m 'not aws' src"

This will run only the tests that don’t depend on the aws extra, even if
that extra is currently installed. Note the distinction between the terms
feature and extra. Every extra is a feature but there are features that are
not extras, such as the gridengine and parasol features. To skip tests
involving both the parasol feature and the aws extra, use the following:

$ make test tests="-m 'not aws and not parasol' src"

Running Tests with pytest

Often it is simpler to use pytest directly, instead of calling the make wrapper.
This usually works as expected, but some tests need some manual preparation. To run a specific test with pytest,
use the following:

python -m pytest src/toil/test/sort/sortTest.py::SortTest::testSort

For more information, see the pytest documentation [https://docs.pytest.org/en/latest/].

Running Integration Tests

These tests are generally only run using in our CI workflow due to their resource requirements and cost. However, they
can be made available for local testing:

	Running tests that make use of Docker (e.g. autoscaling tests and Docker tests) require an appliance image to be
hosted. First, make sure you have gone through the set up found in Using Docker with Quay.
Then to build and host the appliance image run the make target push_docker.

$ make push_docker

	Running integration tests require activation via an environment variable as well as exporting information relevant to
the desired tests. Enable the integration tests:

$ export TOIL_TEST_INTEGRATIVE=True

	Finally, set the environment variables for keyname and desired zone:

$ export TOIL_X_KEYNAME=[Your Keyname]
$ export TOIL_X_ZONE=[Desired Zone]

Where X is one of our currently supported cloud providers (GCE, AWS).

	See the above sections for guidance on running tests.

Test Environment Variables

	TOIL_TEST_TEMP

	An absolute path to a directory where Toil tests
will write their temporary files. Defaults to the
system’s standard temporary directory [https://docs.python.org/2/library/tempfile.html#tempfile.gettempdir].

	TOIL_TEST_INTEGRATIVE

	If True, this allows the integration tests to
run. Only valid when running the tests from the
source directory via make test or
make test_parallel.

	TOIL_AWS_KEYNAME

	An AWS keyname (see Preparing your AWS environment), which
is required to run the AWS tests.

	TOIL_GOOGLE_PROJECTID

	A Google Cloud account projectID
(see Running in Google Compute Engine (GCE)), which is required to
to run the Google Cloud tests.

	TOIL_TEST_QUICK

	If True, long running tests are skipped.

Partial install and failing tests

Some tests may fail with an ImportError if the required extras are not installed.
Install Toil with all of the extras
do prevent such errors.

Using Docker with Quay

Docker [https://www.docker.com/products/docker] is needed for some of the tests. Follow the appropriate
installation instructions for your system on their website to get started.

When running make test you might still get the following error:

$ make test
Please set TOIL_DOCKER_REGISTRY, e.g. to quay.io/USER.

To solve, make an account with Quay [https://quay.io/] and specify it like so:

$ TOIL_DOCKER_REGISTRY=quay.io/USER make test

where USER is your Quay username.

For convenience you may want to add this variable to your bashrc by running

$ echo 'export TOIL_DOCKER_REGISTRY=quay.io/USER' >> $HOME/.bashrc

Running Mesos Tests

If you’re running Toil’s Mesos tests, be sure to create the virtualenv with
--system-site-packages to include the Mesos Python bindings. Verify this by
activating the virtualenv and running pip list | grep mesos. On macOS,
this may come up empty. To fix it, run the following:

for i in /usr/local/lib/python2.7/site-packages/*mesos*; do ln -snf $i venv/lib/python2.7/site-packages/; done

Developing with Docker

To develop on features reliant on the Toil Appliance (the docker image toil uses for AWS autoscaling), you
should consider setting up a personal registry on Quay [https://quay.io/] or Docker Hub [https://hub.docker.com/]. Because
the Toil Appliance images are tagged with the Git commit they are based on and
because only commits on our master branch trigger an appliance build on Quay,
as soon as a developer makes a commit or dirties the working copy they will no
longer be able to rely on Toil to automatically detect the proper Toil Appliance
image. Instead, developers wishing to test any appliance changes in autoscaling
should build and push their own appliance image to a personal Docker registry.
This is described in the next section.

Making Your Own Toil Docker Image

Note! Toil checks if the docker image specified by TOIL_APPLIANCE_SELF
exists prior to launching by using the docker v2 schema. This should be
valid for any major docker repository, but there is an option to override
this if desired using the option: -\-forceDockerAppliance.

Here is a general workflow (similar instructions apply when using Docker Hub):

	Make some changes to the provisioner of your local version of Toil

	Go to the location where you installed the Toil source code and run

$ make docker

to automatically build a docker image that can now be uploaded to
your personal Quay [https://quay.io/] account. If you have not installed Toil source
code yet see Building from Source.

	If it’s not already you will need Docker installed and need
to log into Quay [https://docs.quay.io/solution/getting-started.html]. Also you will want to make sure that your Quay
account is public.

	Set the environment variable TOIL_DOCKER_REGISTRY to your Quay
account. If you find yourself doing this often you may want to add

export TOIL_DOCKER_REGISTRY=quay.io/<MY_QUAY_USERNAME>

to your .bashrc or equivalent.

	Now you can run

$ make push_docker

which will upload the docker image to your Quay account. Take note of
the image’s tag for the next step.

	Finally you will need to tell Toil from where to pull the Appliance
image you’ve created (it uses the Toil release you have installed by
default). To do this set the environment variable
TOIL_APPLIANCE_SELF to the url of your image. For more info see
Environment Variables.

	Now you can launch your cluster! For more information see
Running a Workflow with Autoscaling.

Running a Cluster Locally

The Toil Appliance container can also be useful as a test environment since it
can simulate a Toil cluster locally. An important caveat for this is autoscaling,
since autoscaling will only work on an EC2 instance and cannot (at this time) be
run on a local machine.

To spin up a local cluster, start by using the following Docker run command to launch
a Toil leader container:

docker run \
 --entrypoint=mesos-master \
 --net=host \
 -d \
 --name=leader \
 --volume=/home/jobStoreParentDir:/jobStoreParentDir \
 quay.io/ucsc_cgl/toil:3.6.0 \
 --registry=in_memory \
 --ip=127.0.0.1 \
 --port=5050 \
 --allocation_interval=500ms

A couple notes on this command: the -d flag tells Docker to run in daemon mode so
the container will run in the background. To verify that the container is running you
can run docker ps to see all containers. If you want to run your own container
rather than the official UCSC container you can simply replace the
quay.io/ucsc_cgl/toil:3.6.0 parameter with your own container name.

Also note that we are not mounting the job store directory itself, but rather the location
where the job store will be written. Due to complications with running Docker on MacOS, I
recommend only mounting directories within your home directory. The next command will
launch the Toil worker container with similar parameters:

docker run \
 --entrypoint=mesos-slave \
 --net=host \
 -d \
 --name=worker \
 --volume=/home/jobStoreParentDir:/jobStoreParentDir \
 quay.io/ucsc_cgl/toil:3.6.0 \
 --work_dir=/var/lib/mesos \
 --master=127.0.0.1:5050 \
 --ip=127.0.0.1 \
 —-attributes=preemptable:False \
 --resources=cpus:2

Note here that we are specifying 2 CPUs and a non-preemptable worker. We can
easily change either or both of these in a logical way. To change the number
of cores we can change the 2 to whatever number you like, and to
change the worker to be preemptable we change preemptable:False to
preemptable:True. Also note that the same volume is mounted into the
worker. This is needed since both the leader and worker write and read
from the job store. Now that your cluster is running, you can run

docker exec -it leader bash

to get a shell in your leader ‘node’. You can also replace the leader parameter
with worker to get shell access in your worker.

Docker-in-Docker issues

If you want to run Docker inside this Docker cluster (Dockerized tools, perhaps),
you should also mount in the Docker socket via -v /var/run/docker.sock:/var/run/docker.sock.
This will give the Docker client inside the Toil Appliance access to the Docker engine
on the host. Client/engine version mismatches have been known to cause issues, so we
recommend using Docker version 1.12.3 on the host to be compatible with the Docker
client installed in the Appliance. Finally, be careful where you write files inside
the Toil Appliance - ‘child’ Docker containers launched in the Appliance will actually
be siblings to the Appliance since the Docker engine is located on the host. This
means that the ‘child’ container can only mount in files from the Appliance if
the files are located in a directory that was originally mounted into the Appliance
from the host - that way the files are accessible to the sibling container. Note:
if Docker can’t find the file/directory on the host it will silently fail and mount
in an empty directory.

Maintainer’s Guidelines

In general, as developers and maintainers of the code, we adhere to the following guidelines:

	We strive to never break the build on master. All development should be done
on branches, in either the main Toil repository or in developers’ forks.

	Pull requests should be used for any and all changes (except truly trivial
ones).

	Pull requests should be in response to issues. If you find yourself making a
pull request without an issue, you should create the issue first.

Naming Conventions

	Commit messages should be great [https://chris.beams.io/posts/git-commit/#seven-rules]. Most importantly, they must:

	Have a short subject line. If in need of more space, drop down two lines
and write a body to explain what is changing and why it has to change.

	Write the subject line as a command: Destroy all humans,
not All humans destroyed.

	Reference the issue being fixed in a Github-parseable format, such as
(resolves #1234) at the end of the subject line, or This will fix #1234.
somewhere in the body. If no single commit on its own fixes the issue, the
cross-reference must appear in the pull request title or body instead.

	Branches in the main Toil repository must start with issues/,
followed by the issue number (or numbers, separated by a dash), followed by a
short, lowercase, hyphenated description of the change. (There can be many open
pull requests with their associated branches at any given point in time and
this convention ensures that we can easily identify branches.)

Say there is an issue numbered #123 titled Foo does not work. The branch name
would be issues/123-fix-foo and the title of the commit would be
Fix foo in case of bar (resolves #123).

Pull Requests

	All pull requests must be reviewed by a person other than the request’s
author. Review the PR by following the Reviewing Pull Requests checklist.

	Modified pull requests must be re-reviewed before merging. Note that Github
does not enforce this!

	Merge pull requests by following the Merging Pull Requests checklist.

	When merging a pull request, make sure to update the Draft Changelog [https://github.com/DataBiosphere/toil/wiki/Draft-Changelog] on
the Github wiki, which we will use to produce the changelog for the next
release. The PR template tells you to do this, so don’t forget. New entries
should go at the bottom.

	Pull requests will not be merged unless CI tests pass.
Gitlab tests are only run on code in the main Toil repository on some branch,
so it is the responsibility of the approving reviewer to make sure that pull
requests from outside repositories are copied to branches in the main
repository. This can be accomplished with (from a Toil clone):

./contrib/admin/test-pr theirusername their-branch issues/123-fix-description-here

This must be repeated every time the PR submitter updates their PR, after
checking to see that the update is not malicious.

If there is no issue corresponding to the PR, after which the branch can be
named, the reviewer of the PR should first create the issue.

Developers who have push access to the main Toil repository are encouraged to
make their pull requests from within the repository, to avoid this step.

	Prefer using “Squash and marge” when merging pull requests to master especially
when the PR contains a “single unit” of work (i.e. if one were to rewrite the
PR from scratch with all the fixes included, they would have one commit for
the entire PR). This makes the commit history on master more readable
and easier to debug in case of a breakage.

When squashing a PR from multiple authors, please add
Co-authored-by [https://github.blog/2018-01-29-commit-together-with-co-authors/] to give credit to all contributing authors.

See Issue #2816 [https://github.com/DataBiosphere/toil/issues/2816] for more details.

Publishing a Release

These are the steps to take to publish a Toil release:

	Determine the release version X.Y.Z. This should follow
semantic versioning [https://semver.org/]; if user-workflow-breaking changes are made, X
should be incremented, and Y and Z should be zero. If non-breaking
changes are made but new functionality is added, X should remain the same
as the last release, Y should be incremented, and Z should be zero.
If only patches are released, X and Y should be the same as the last
release and Z should be incremented.

	If it does not exist already, create a release branch in the Toil repo
named X.Y.x, where x is a literal lower-case “x”. For patch releases,
find the existing branch and make sure it is up to date with the patch
commits that are to be released. They may be cherry-picked over [https://trunkbaseddevelopment.com/branch-for-release/] from
master.

	On the release branch, edit version_template.py in the root of the
repository. Find the line that looks like this (slightly different for patch
releases):

baseVersion = 'X.Y.0a1'

Make it look like this instead:

baseVersion = 'X.Y.Z'

Commit your change to the branch.

	Tag the current state of the release branch as releases/X.Y.Z.

	Make the Github release here [https://github.com/DataBiosphere/toil/releases/new], referencing that tag. For a non-patch
release, fill in the description with the changelog from the wiki page [https://github.com/DataBiosphere/toil/wiki/Draft-Changelog],
which you should clear. For a patch release, just describe the patch.

	For a non-patch release, set up the main branch so that development
builds will declare themselves to be alpha versions of what the next release
will probably be. Edit version_template.py in the root of the repository
on the main branch to set baseVersion like this:

baseVersion = 'X.Y+1.0a1'

Make sure to replace X and Y+1 with actual numbers.

Using Git Hooks

In the contrib/hooks directory, there are two scripts, mypy-after-commit.py and
mypy-before-push.py, that can be set up as Git hooks to make sure you don’t accidentally
push commits that would immediately fail type-checking. These are supposed to eliminate the
need to run make mypy constantly. You can install them into your Git working copy like
this

ln -rs ./contrib/hooks/mypy-after-commit.py .git/hooks/post-commit
ln -rs ./contrib/hooks/mypy-before-push.py .git/hooks/pre-push

After you make a commit, the post-commit script will start type-checking it, and if it takes
too long re-launch the process in the background. When you push, the pre-push script will see
if the commit you are pushing type-checked successfully, and if it hasn’t been type-checked
but is currently checked out, it will be type-checked. If type-checking fails, the push will
be aborted.

Type-checking will only be performed if you are in a Toil development virtual environment. If
you aren’t, the scripts won’t do anything.

To bypass or override pre-push hook, if it is wrong or if you need to push something that
doesn’t typecheck, you can git push --no-verify. If the scripts get confused about whether
a commit actually typechecks, you can clear out the type-checking result cache, which is in
/var/run/user/<your UID>/.mypy_toil_result_cache on Linux and in .mypy_toil_result_cache
in the Toil repo on Mac.

To uninstall the scripts, delete .git/hooks/post-commit and .git/hooks/pre-push.

Adding Retries to a Function

See toil.lib.retry [https://github.com/DataBiosphere/toil/blob/master/src/toil/lib/retry.py] .

retry() can be used to decorate any function based on the list of errors one wishes to retry on.

This list of errors can contain normal Exception objects, and/or RetryCondition objects wrapping Exceptions to
include additional conditions.

For example, retrying on a one Exception (HTTPError):

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError])
def update_my_wallpaper():
 return get('https://www.deviantart.com/')

Or:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError, ValueError])
def update_my_wallpaper():
 return get('https://www.deviantart.com/')

The examples above will retry for the default interval on any errors specified the “errors=” arg list.

To retry on specifically 500/502/503/504 errors, you could specify an ErrorCondition object instead, for example:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
 ErrorCondition(
 error=HTTPError,
 error_codes=[500, 502, 503, 504]
)])
def update_my_wallpaper():
 return requests.get('https://www.deviantart.com/')

To retry on specifically errors containing the phrase “NotFound”:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
 ErrorCondition(
 error=HTTPError,
 error_message_must_include="NotFound"
)])
def update_my_wallpaper():
 return requests.get('https://www.deviantart.com/')

To retry on all HTTPError errors EXCEPT an HTTPError containing the phrase “NotFound”:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
 HTTPError,
 ErrorCondition(
 error=HTTPError,
 error_message_must_include="NotFound",
 retry_on_this_condition=False
)])
def update_my_wallpaper():
 return requests.get('https://www.deviantart.com/')

To retry on boto3’s specific status errors, an example of the implementation is:

import boto3
from botocore.exceptions import ClientError

@retry(errors=[
 ErrorCondition(
 error=ClientError,
 boto_error_codes=["BucketNotFound"]
)])
def boto_bucket(bucket_name):
 boto_session = boto3.session.Session()
 s3_resource = boto_session.resource('s3')
 return s3_resource.Bucket(bucket_name)

Any combination of these will also work, provided the codes are matched to the correct exceptions. A ValueError will
not return a 404, for example.

The retry function as a decorator should make retrying functions easier and clearer. It also encourages
smaller independent functions, as opposed to lumping many different things that may need to be retried on
different conditions in the same function.

The ErrorCondition object tries to take some of the heavy lifting of writing specific retry conditions
and boil it down to an API that covers all common use-cases without the user having to write
any new bespoke functions.

Use-cases covered currently:

	Retrying on a normal error, like a KeyError.

	Retrying on HTTP error codes (use ErrorCondition).

	Retrying on boto’s specific status errors, like “BucketNotFound” (use ErrorCondition).

	Retrying when an error message contains a certain phrase (use ErrorCondition).

	Explicitly NOT retrying on a condition (use ErrorCondition).

If new functionality is needed, it’s currently best practice in Toil to add
functionality to the ErrorCondition itself rather than making a new custom retry method.

Pull Request Checklists

This document contains checklists for dealing with PRs. More general PR information is available at Pull Requests.

Reviewing Pull Requests

This checklist is to be kept in sync with the checklist in the pull request template.

When reviewing a PR, do the following:

	
	 Make sure it is coming from issues/XXXX-fix-the-thing in the Toil repo, or from an external repo.

 Toil Architecture

Toil Architecture

The following diagram layouts out the software architecture of Toil.

[image: Toil's architecture is composed of the leader, the job store, the worker processes, the batch system, the node provisioner, and the stats and logging monitor.]

Figure 1: The basic components of Toil’s architecture.

	These components are described below:
	
	
	the leader:
	The leader is responsible for deciding which jobs should be run. To do this
it traverses the job graph. Currently this is a single threaded process,
but we make aggressive steps to prevent it becoming a bottleneck
(see Read-only Leader described below).

	
	the job-store:
	Handles all files shared between the components. Files in the job-store
are the means by which the state of the workflow is maintained. Each job
is backed by a file in the job store, and atomic updates to this state
are used to ensure the workflow can always be resumed upon failure. The
job-store can also store all user files, allowing them to be shared
between jobs. The job-store is defined by the
AbstractJobStore class.
Multiple implementations of this class allow Toil to support different
back-end file stores, e.g.: S3, network file systems, Google file store, etc.

	
	workers:
	The workers are temporary processes responsible for running jobs,
one at a time per worker. Each worker process is invoked with a job argument
that it is responsible for running. The worker monitors this job and reports
back success or failure to the leader by editing the job’s state in the file-store.
If the job defines successor jobs the worker may choose to immediately run them
(see Job Chaining below).

	
	the batch-system:
	Responsible for scheduling the jobs given to it by the leader, creating
a worker command for each job. The batch-system is defined by the
AbstractBatchSystem class.
Toil uses multiple existing batch systems to schedule jobs, including
Apache Mesos, GridEngine and a multi-process single node implementation
that allows workflows to be run without any of these frameworks. Toil
can therefore fairly easily be made to run a workflow using an existing
cluster.

	
	the node provisioner:
	Creates worker nodes in which the batch system schedules workers.
It is defined by the AbstractProvisioner
class.

	
	the statistics and logging monitor:
	Monitors logging and statistics produced by the workers and reports them. Uses the
job-store to gather this information.

Jobs and JobDescriptions

As noted in Job Basics, a job is the atomic unit of work in a Toil workflow.
User scripts inherit from the Job class to define units of work.
These jobs are pickled and stored in the job-store by the leader, and are retrieved
and un-pickled by the worker when they are scheduled to run.

During scheduling, Toil does not work with the actual Job objects. Instead,
JobDescription objects are used to store all the information
that the Toil Leader ever needs to know about the Job. This includes requirements
information, dependency information, commands to issue, etc.

Internally, the JobDescription object is referenced by its jobStoreID, which is
often not human readable. However, the Job and JobDescription objects contain
several human-readable names that are useful for logging and identification:

	jobName

	Name of the kind of job this is. This may be used in job store IDs
and logging. Also used to let the cluster scaler learn a model for
how long the job will take. Defaults to the job class’s name if no
real user-defined name is available.

For a FunctionWrappingJob, the jobName is
replaced by the wrapped function’s name.

For a CWL workflow, the jobName is the class name of the internal
job that is running the CWL workflow, such as "CWLJob".

	unitName

	Name of this instance of this kind of job. If set by the user,
it will appear with the jobName in logging.

For a CWL workflow, the unitName is set to a descriptive name that
includes the CWL file name and the ID in the file if set.

	displayName

	A human-readable name to identify this particular job instance.
Used as an identifier of the job class in the stats report.
Defaults to the job class’s name if no real user-defined name is
available.

For a CWL workflow, the displayName is the absolute workflow URI.

Optimizations

Toil implements lots of optimizations designed for scalability.
Here we detail some of the key optimizations.

Read-only leader

The leader process is currently implemented as a single thread. Most of the leader’s
tasks revolve around processing the state of jobs, each stored as a file within the job-store.
To minimise the load on this thread, each worker does as much work as possible
to manage the state of the job it is running. As a result, with a couple of minor exceptions,
the leader process never needs to write or update the state of a job within the job-store.
For example, when a job is complete and has no further successors the responsible
worker deletes the job from the job-store, marking it complete. The leader then
only has to check for the existence of the file when it receives a signal from the batch-system
to know that the job is complete. This off-loading of state management is orthogonal to
future parallelization of the leader.

Job chaining

The scheduling of successor jobs is partially managed by the worker, reducing the
number of individual jobs the leader needs to process. Currently this is very
simple: if the there is a single next successor job to run and its resources fit within the
resources of the current job and closely match the resources of the current job then
the job is run immediately on the worker without returning to the leader. Further extensions
of this strategy are possible, but for many workflows which define a series of serial successors
(e.g. map sequencing reads, post-process mapped reads, etc.) this pattern is very effective
at reducing leader workload.

Preemptable node support

Critical to running at large-scale is dealing with intermittent node failures. Toil is
therefore designed to always be resumable providing the job-store does not become corrupt.
This robustness allows Toil to run on preemptible nodes, which are only available when others are not
willing to pay more to use them. Designing workflows that divide into many short individual jobs
that can use preemptable nodes allows for workflows to be efficiently scheduled and executed.

Caching

Running bioinformatic pipelines often require the passing of large datasets between jobs. Toil
caches the results from jobs such that child jobs running on the same node can directly use the same
file objects, thereby eliminating the need for an intermediary transfer to the job store. Caching
also reduces the burden on the local disks, because multiple jobs can share a single file.
The resulting drop in I/O allows pipelines to run faster, and, by the sharing of files,
allows users to run more jobs in parallel by reducing overall disk requirements.

To demonstrate the efficiency of caching, we ran an experimental internal pipeline on 3 samples from
the TCGA Lung Squamous Carcinoma (LUSC) dataset. The pipeline takes the tumor and normal exome
fastqs, and the tumor rna fastq and input, and predicts MHC presented neoepitopes in the patient
that are potential targets for T-cell based immunotherapies. The pipeline was run individually on
the samples on c3.8xlarge machines on AWS (60GB RAM,600GB SSD storage, 32 cores). The pipeline
aligns the data to hg19-based references, predicts MHC haplotypes using PHLAT, calls mutations using
2 callers (MuTect and RADIA) and annotates them using SnpEff, then predicts MHC:peptide binding
using the IEDB suite of tools before running an in-house rank boosting algorithm on the final calls.

To optimize time taken, The pipeline is written such that mutations are called on a per-chromosome
basis from the whole-exome bams and are merged into a complete vcf. Running mutect in parallel on
whole exome bams requires each mutect job to download the complete Tumor and Normal Bams to their
working directories – An operation that quickly fills the disk and limits the parallelizability of
jobs. The script was run in Toil, with and without caching, and Figure 2 shows that the workflow
finishes faster in the cached case while using less disk on average than the uncached run. We
believe that benefits of caching arising from file transfers will be much higher on magnetic
disk-based storage systems as compared to the SSD systems we tested this on.

[image: Graph outlining the efficiency gain from caching.]

Figure 2: Efficiency gain from caching. The lower half of each plot describes the disk used by
the pipeline recorded every 10 minutes over the duration of the pipeline, and the upper half
shows the corresponding stage of the pipeline that is being processed. Since jobs requesting the
same file shared the same inode, the effective load on the disk is considerably lower than in
the uncached case where every job downloads a personal copy of every file it needs. We see that
in all cases, the uncached run uses almost 300-400GB more that the cached run in the resource
heavy mutation calling step. We also see a benefit in terms of wall time for each stage since we
eliminate the time taken for file transfers.

Toil support for Common Workflow Language

The CWL document and input document are loaded using the ‘cwltool.load_tool’
module. This performs normalization and URI expansion (for example, relative
file references are turned into absolute file URIs), validates the document
against the CWL schema, initializes Python objects corresponding to major
document elements (command line tools, workflows, workflow steps), and performs
static type checking that sources and sinks have compatible types.

Input files referenced by the CWL document and input document are imported into
the Toil file store. CWL documents may use any URI scheme supported by Toil
file store, including local files and object storage.

The ‘location’ field of File references are updated to reflect the import token
returned by the Toil file store.

For directory inputs, the directory listing is stored in Directory object.
Each individual files is imported into Toil file store.

An initial workflow Job is created from the toplevel CWL document. Then,
control passes to the Toil engine which schedules the initial workflow job to
run.

When the toplevel workflow job runs, it traverses the CWL workflow and creates
a toil job for each step. The dependency graph is expressed by making
downstream jobs children of upstream jobs, and initializing the child jobs with
an input object containing the promises of output from upstream jobs.

Because Toil jobs have a single output, but CWL permits steps to have multiple
output parameters that may feed into multiple other steps, the input to a
CWLJob is expressed with an “indirect dictionary”. This is a dictionary of
input parameters, where each entry value is a tuple of a promise and a promise
key. When the job runs, the indirect dictionary is turned into a concrete
input object by resolving each promise into its actual value (which is always a
dict), and then looking up the promise key to get the actual value for the the
input parameter.

If a workflow step specifies a scatter, then a scatter job is created and
connected into the workflow graph as described above. When the scatter step
runs, it creates child jobs for each parameterizations of the scatter. A
gather job is added as a follow-on to gather the outputs into arrays.

When running a command line tool, it first creates output and temporary
directories under the Toil local temp dir. It runs the command line tool using
the single_job_executor from CWLTool, providing a Toil-specific constructor for
filesystem access, and overriding the default PathMapper to use ToilPathMapper.

The ToilPathMapper keeps track of a file’s symbolic identifier (the Toil
FileID), its local path on the host (the value returned by readGlobalFile) and
the the location of the file inside the Docker container.

After executing single_job_executor from CWLTool, it gets back the output
object and status. If the underlying job failed, raise an exception. Files
from the output object are added to the file store using writeGlobalFile and
the ‘location’ field of File references are updated to reflect the token
returned by the Toil file store.

When the workflow completes, it returns an indirect dictionary linking to the
outputs of the job steps that contribute to the final output. This is the
value returned by toil.start() or toil.restart(). This is resolved to get the
final output object. The files in this object are exported from the file store
to ‘outdir’ on the host file system, and the ‘location’ field of File
references are updated to reflect the final exported location of the output
files.

 Minimum AWS IAM permissions

Minimum AWS IAM permissions

Toil requires at least the following permissions in an IAM role to operate on a cluster.
These are added by default when launching a cluster. However, ensure that they are present
if creating a custom IAM role when launching a cluster
with the --awsEc2ProfileArn parameter.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:*",
 "s3:*",
 "sdb:*",
 "iam:PassRole"
],
 "Resource": "*"
 }
]
}

 Auto-Deployment

Auto-Deployment

If you want to run your workflow in a distributed environment, on multiple worker machines, either in the cloud or on a
bare-metal cluster, your script needs to be made available to those other machines. If your script imports other
modules, those modules also need to be made available on the workers. Toil can automatically do that for you, with a
little help on your part. We call this feature auto-deployment of a workflow.

Let’s first examine various scenarios of auto-deploying a workflow, which, as we’ll see shortly cannot be
auto-deployed. Lastly, we’ll deal with the issue of declaring Toil as a dependency of a
workflow that is packaged as a setuptools distribution.

Toil can be easily deployed to a remote host. First, assuming you’ve followed our Preparing your AWS environment section to install Toil
and use it to create a remote leader node on (in this example) AWS, you can now log into this into using
Ssh-Cluster Command and once on the remote host, create and activate a virtualenv (noting to make sure to use the
--system-site-packages option!):

$ virtualenv --system-site-packages venv
$. venv/bin/activate

Note the --system-site-packages option, which ensures that globally-installed packages are accessible inside the
virtualenv. Do not (re)install Toil after this! The --system-site-packages option has already transferred Toil and
the dependencies from your local installation of Toil for you.

From here, you can install a project and its dependencies:

$ tree
.
├── util
│ ├── __init__.py
│ └── sort
│ ├── __init__.py
│ └── quick.py
└── workflow
 ├── __init__.py
 └── main.py

3 directories, 5 files
$ pip install matplotlib
$ cp -R workflow util venv/lib/python2.7/site-packages

Ideally, your project would have a setup.py file (see setuptools [http://setuptools.readthedocs.io/en/latest/index.html]) which streamlines the installation process:

$ tree
.
├── util
│ ├── __init__.py
│ └── sort
│ ├── __init__.py
│ └── quick.py
├── workflow
│ ├── __init__.py
│ └── main.py
└── setup.py

3 directories, 6 files
$ pip install .

Or, if your project has been published to PyPI:

$ pip install my-project

In each case, we have created a virtualenv with the --system-site-packages flag in the venv subdirectory then
installed the matplotlib distribution from PyPI along with the two packages that our project consists of. (Again,
both Python and Toil are assumed to be present on the leader and all worker nodes.)

We can now run our workflow:

$ python main.py --batchSystem=mesos …

Important

If workflow’s external dependencies contain native code (i.e. are not pure
Python) then they must be manually installed on each worker.

Warning

Neither python setup.py develop nor pip install -e . can be used in
this process as, instead of copying the source files, they create .egg-link
files that Toil can’t auto-deploy. Similarly, python setup.py install
doesn’t work either as it installs the project as a Python .egg which is
also not currently supported by Toil (though it could be [https://github.com/BD2KGenomics/toil/issues/1367] in the future).

Also note that using the
--single-version-externally-managed flag with setup.py will
prevent the installation of your package as an .egg. It will also disable
the automatic installation of your project’s dependencies.

Auto Deployment with Sibling Modules

This scenario applies if the user script imports modules that are its siblings:

$ cd my_project
$ ls
userScript.py utilities.py
$./userScript.py --batchSystem=mesos …

Here userScript.py imports additional functionality from utilities.py.
Toil detects that userScript.py has sibling modules and copies them to the
workers, alongside the user script. Note that sibling modules will be
auto-deployed regardless of whether they are actually imported by the user
script–all .py files residing in the same directory as the user script will
automatically be auto-deployed.

Sibling modules are a suitable method of organizing the source code of
reasonably complicated workflows.

Auto-Deploying a Package Hierarchy

Recall that in Python, a package [https://docs.python.org/2/tutorial/modules.html#packages] is a directory containing one or more
.py files—one of which must be called __init__.py—and optionally other
packages. For more involved workflows that contain a significant amount of
code, this is the recommended way of organizing the source code. Because we use
a package hierarchy, we can’t really refer to the user script as such, we call
it the user module instead. It is merely one of the modules in the package
hierarchy. We need to inform Toil that we want to use a package hierarchy by
invoking Python’s -m option. That enables Toil to identify the entire set
of modules belonging to the workflow and copy all of them to each worker. Note
that while using the -m option is optional in the scenarios above, it is
mandatory in this one.

The following shell session illustrates this:

$ cd my_project
$ tree
.
├── utils
│ ├── __init__.py
│ └── sort
│ ├── __init__.py
│ └── quick.py
└── workflow
 ├── __init__.py
 └── main.py

3 directories, 5 files
$ python -m workflow.main --batchSystem=mesos …

Here the user module main.py does not reside in the current directory, but
is part of a package called util, in a subdirectory of the current
directory. Additional functionality is in a separate module called
util.sort.quick which corresponds to util/sort/quick.py. Because we
invoke the user module via python -m workflow.main, Toil can determine the
root directory of the hierarchy–my_project in this case–and copy all Python
modules underneath it to each worker. The -m option is documented here [https://docs.python.org/2/using/cmdline.html#cmdoption-m]

When -m is passed, Python adds the current working directory to
sys.path, the list of root directories to be considered when resolving a
module name like workflow.main. Without that added convenience we’d have to
run the workflow as PYTHONPATH="$PWD" python -m workflow.main. This also
means that Toil can detect the root directory of the user module’s package
hierarchy even if it isn’t the current working directory. In other words we
could do this:

$ cd my_project
$ export PYTHONPATH="$PWD"
$ cd /some/other/dir
$ python -m workflow.main --batchSystem=mesos …

Also note that the root directory itself must not be package, i.e. must not
contain an __init__.py.

Relying on Shared Filesystems

Bare-metal clusters typically mount a shared file system like NFS on each node.
If every node has that file system mounted at the same path, you can place your
project on that shared filesystem and run your user script from there.
Additionally, you can clone the Toil source tree into a directory on that
shared file system and you won’t even need to install Toil on every worker. Be
sure to add both your project directory and the Toil clone to PYTHONPATH. Toil
replicates PYTHONPATH from the leader to every worker.

Using a shared filesystem

Toil currently only supports a tempdir set to a local, non-shared directory.

Toil Appliance

The term Toil Appliance refers to the Mesos Docker image that Toil uses to simulate the machines in the virtual mesos
cluster. It’s easily deployed, only needs Docker, and allows for workflows to be run in single-machine mode and for
clusters of VMs to be provisioned. To specify a different image, see the Toil Environment Variables section. For more
information on the Toil Appliance, see the Running in AWS section.

 Environment Variables

Environment Variables

There are several environment variables that affect the way Toil runs.

	TOIL_CHECK_ENV

	A flag that determines whether Toil will try to
refer back to a Python virtual environment in
which it is installed when composing commands that
may be run on other hosts. If set to True, if
Toil is installed in the current virtual
environment, it will use absolute paths to its own
executables (and the virtual environment must thus
be available on at the same path on all nodes).
Otherwise, Toil internal commands such as
_toil_worker will be resolved according to the
PATH on the node where they are executed. This
setting can be useful in a shared HPC environment,
where users may have their own Toil installations
in virtual environments.

	TOIL_WORKDIR

	An absolute path to a directory where Toil will
write its temporary files. This directory must
exist on each worker node and may be set to a
different value on each worker. The --workDir
command line option overrides this. When using the
Toil docker container, such as on Kubernetes, this
defaults to /var/lib/toil. When using Toil
autoscaling with Mesos, this is somewhere inside
the Mesos sandbox. In all other cases, the
system’s standard temporary directory [https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir] is used.

	TOIL_WORKDIR_OVERRIDE

	An absolute path to a directory where Toil will
write its temporary files. This overrides
TOIL_WORKDIR and the --workDir command
line option.

	TOIL_COORDINATION_DIR

	An absolute path to a directory where Toil will
write its lock files. This directory must exist on
each worker node and may be set to a different
value on each worker. The --coordinationDir
command line option overrides this.

	TOIL_COORDINATION_DIR_OVERRIDE

	An absolute path to a directory where Toil will
write its lock files. This overrides
TOIL_COORDINATION_DIR and the
--coordinationDir command line option.

	TOIL_BATCH_LOGS_DIR

	A directory to save batch system logs into, where
the leader can access them. The --batchLogsDir
option overrides this. Only works for grid engine
batch systems such as gridengine, htcondor,
torque, slurm, and lsf.

	TOIL_KUBERNETES_HOST_PATH

	A path on Kubernetes hosts that will be mounted as
the Toil work directory in the workers, to allow
for shared caching. Will be created if it doesn’t
already exist.

	TOIL_KUBERNETES_OWNER

	A name prefix for easy identification of
Kubernetes jobs. If not set, Toil will use the
current user name.

	TOIL_KUBERNETES_SERVICE_ACCOUNT

	A service account name to apply when creating
Kubernetes pods.

	TOIL_KUBERNETES_POD_TIMEOUT

	Seconds to wait for a scheduled Kubernetes pod to
start running.

	KUBE_WATCH_ENABLED

	A boolean variable that allows for users
to utilize kubernetes watch stream feature
instead of polling for running jobs. Default
value is set to False.

	TOIL_TES_ENDPOINT

	URL to the TES server to run against when using
the tes batch system.

	TOIL_TES_USER

	Username to use with HTTP Basic Authentication to
log into the TES server.

	TOIL_TES_PASSWORD

	Password to use with HTTP Basic Authentication to
log into the TES server.

	TOIL_TES_BEARER_TOKEN

	Token to use to authenticate to the TES server.

	TOIL_APPLIANCE_SELF

	The fully qualified reference for the Toil
Appliance you wish to use, in the form
REPO/IMAGE:TAG.
quay.io/ucsc_cgl/toil:3.6.0 and
cket/toil:3.5.0 are both examples of valid
options. Note that since Docker defaults to
Dockerhub repos, only quay.io repos need to
specify their registry.

	TOIL_DOCKER_REGISTRY

	The URL of the registry of the Toil Appliance
image you wish to use. Docker will use Dockerhub
by default, but the quay.io registry is also
very popular and easily specifiable by setting
this option to quay.io.

	TOIL_DOCKER_NAME

	The name of the Toil Appliance image you
wish to use. Generally this is simply toil but
this option is provided to override this,
since the image can be built with arbitrary names.

	TOIL_AWS_SECRET_NAME

	For the Kubernetes batch system, the name of a
Kubernetes secret which contains a credentials
file granting access to AWS resources. Will be
mounted as ~/.aws inside Kubernetes-managed
Toil containers. Enables the AWSJobStore to be
used with the Kubernetes batch system, if the
credentials allow access to S3 and SimpleDB.

	TOIL_AWS_ZONE

	Zone to use when using AWS. Also determines region.
Overrides TOIL_AWS_REGION.

	TOIL_AWS_REGION

	Region to use when using AWS.

	TOIL_AWS_AMI

	ID of the AMI to use in node provisioning. If in
doubt, don’t set this variable.

	TOIL_AWS_NODE_DEBUG

	Determines whether to preserve nodes that have
failed health checks. If set to True, nodes
that fail EC2 health checks won’t immediately be
terminated so they can be examined and the cause
of failure determined. If any EC2 nodes are left
behind in this manner, the security group will
also be left behind by necessity as it cannot be
deleted until all associated nodes have been
terminated.

	TOIL_AWS_BATCH_QUEUE

	Name or ARN of an AWS Batch Queue to use with the
AWS Batch batch system.

	TOIL_AWS_BATCH_JOB_ROLE_ARN

	ARN of an IAM role to run AWS Batch jobs as with
the AWS Batch batch system. If the jobs are not
run with an IAM role or on machines that have
access to S3 and SimpleDB, the AWS job store will
not be usable.

	TOIL_GOOGLE_PROJECTID

	The Google project ID to use when generating
Google job store names for tests or CWL workflows.

	TOIL_SLURM_ARGS

	Arguments for sbatch for the slurm batch system.
Do not pass CPU or memory specifications here.
Instead, define resource requirements for the job.
There is no default value for this variable.
If neither --export nor --export-file is
in the argument list, --export=ALL will be
provided.

	TOIL_SLURM_PE

	Name of the slurm partition to use for parallel
jobs.
There is no default value for this variable.

	TOIL_GRIDENGINE_ARGS

	Arguments for qsub for the gridengine batch
system. Do not pass CPU or memory specifications
here. Instead, define resource requirements for
the job. There is no default value for this
variable.

	TOIL_GRIDENGINE_PE

	Parallel environment arguments for qsub and for
the gridengine batch system. There is no default
value for this variable.

	TOIL_TORQUE_ARGS

	Arguments for qsub for the Torque batch system.
Do not pass CPU or memory specifications here.
Instead, define extra parameters for the job such
as queue. Example: -q medium
Use TOIL_TORQUE_REQS to pass extra values for the
-l resource requirements parameter.
There is no default value for this variable.

	TOIL_TORQUE_REQS

	Arguments for the resource requirements for Torque
batch system. Do not pass CPU or memory
specifications here. Instead, define extra resource
requirements as a string that goes after the -l
argument to qsub. Example:
walltime=2:00:00,file=50gb
There is no default value for this variable.

	TOIL_LSF_ARGS

	Additional arguments for the LSF’s bsub command.
Instead, define extra parameters for the job such
as queue. Example: -q medium.
There is no default value for this variable.

	TOIL_HTCONDOR_PARAMS

	Additional parameters to include in the HTCondor
submit file passed to condor_submit. Do not pass
CPU or memory specifications here. Instead define
extra parameters which may be required by HTCondor.
This variable is parsed as a semicolon-separated
string of parameter = value pairs. Example:
requirements = TARGET.has_sse4_2 == true;
accounting_group = test.
There is no default value for this variable.

	TOIL_CUSTOM_DOCKER_INIT_COMMAND

	Any custom bash command to run in the Toil docker
container prior to running the Toil services.
Can be used for any custom initialization in the
worker and/or primary nodes such as private docker
docker authentication. Example for AWS ECR:
pip install awscli && eval $(aws ecr get-login
--no-include-email --region us-east-1).

	TOIL_CUSTOM_INIT_COMMAND

	Any custom bash command to run prior to starting
the Toil appliance. Can be used for any custom
initialization in the worker and/or primary nodes
such as private docker authentication for the Toil
appliance itself (i.e. from TOIL_APPLIANCE_SELF).

	TOIL_S3_HOST

	the IP address or hostname to use for connecting
to S3. Example: TOIL_S3_HOST=127.0.0.1

	TOIL_S3_PORT

	a port number to use for connecting to S3.
Example: TOIL_S3_PORT=9001

	TOIL_S3_USE_SSL

	enable or disable the usage of SSL for connecting
to S3 (True by default).
Example: TOIL_S3_USE_SSL=False

	TOIL_WES_BROKER_URL

	An optional broker URL to use to communicate
between the WES server and Celery task queue. If
unset, amqp://guest:guest@localhost:5672// is
used.

	TOIL_WES_JOB_STORE_TYPE

	Type of job store to use by default for workflows
run via the WES server. Can be file, aws,
or google.

	TOIL_OWNER_TAG

	This will tag cloud resources with a tag reading:
“Owner: $TOIL_OWNER_TAG”. This is used internally
at UCSC to stop a bot we have that terminates
untagged resources.

	TOIL_AWS_PROFILE

	The name of an AWS profile to run TOIL with.

	TOIL_AWS_TAGS

	This will tag cloud resources with any arbitrary
tags given in a JSON format. These are overwritten
in favor of CLI options when using launch cluster.
For information on valid AWS tags, see AWS Tags [https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html].

	SINGULARITY_DOCKER_HUB_MIRROR

	An http or https URL for the Singularity wrapper
in the Toil Docker container to use as a mirror
for Docker Hub.

	OMP_NUM_THREADS

	The number of cores set for OpenMP applications in
the workers. If not set, Toil will use the number
of job threads.

	GUNICORN_CMD_ARGS

	Specify additional Gunicorn configurations for the
Toil WES server. See Gunicorn settings [https://docs.gunicorn.org/en/stable/settings.html#settings].

 API Reference

API Reference

This page contains auto-generated API reference documentation 1.

	toil
	toil.batchSystems
	toil.batchSystems.mesos
	toil.batchSystems.mesos.test

	toil.batchSystems.mesos.batchSystem

	toil.batchSystems.mesos.conftest

	toil.batchSystems.mesos.executor

	toil.batchSystems.abstractBatchSystem

	toil.batchSystems.abstractGridEngineBatchSystem

	toil.batchSystems.awsBatch

	toil.batchSystems.cleanup_support

	toil.batchSystems.contained_executor

	toil.batchSystems.gridengine

	toil.batchSystems.htcondor

	toil.batchSystems.kubernetes

	toil.batchSystems.local_support

	toil.batchSystems.lsf

	toil.batchSystems.lsfHelper

	toil.batchSystems.options

	toil.batchSystems.parasol

	toil.batchSystems.registry

	toil.batchSystems.singleMachine

	toil.batchSystems.slurm

	toil.batchSystems.tes

	toil.batchSystems.torque

	toil.cwl
	toil.cwl.conftest

	toil.cwl.cwltoil

	toil.cwl.utils

	toil.fileStores
	toil.fileStores.abstractFileStore

	toil.fileStores.cachingFileStore

	toil.fileStores.nonCachingFileStore

	toil.jobStores
	toil.jobStores.aws
	toil.jobStores.aws.jobStore

	toil.jobStores.aws.utils

	toil.jobStores.abstractJobStore

	toil.jobStores.conftest

	toil.jobStores.fileJobStore

	toil.jobStores.googleJobStore

	toil.jobStores.utils

	toil.lib
	toil.lib.aws
	toil.lib.aws.ami

	toil.lib.aws.iam

	toil.lib.aws.session

	toil.lib.aws.utils

	toil.lib.encryption
	toil.lib.encryption.conftest

	toil.lib.accelerators

	toil.lib.bioio

	toil.lib.compatibility

	toil.lib.conversions

	toil.lib.docker

	toil.lib.ec2

	toil.lib.ec2nodes

	toil.lib.exceptions

	toil.lib.expando

	toil.lib.generatedEC2Lists

	toil.lib.humanize

	toil.lib.io

	toil.lib.iterables

	toil.lib.memoize

	toil.lib.misc

	toil.lib.objects

	toil.lib.resources

	toil.lib.retry

	toil.lib.threading

	toil.lib.throttle

	toil.provisioners
	toil.provisioners.aws
	toil.provisioners.aws.awsProvisioner

	toil.provisioners.abstractProvisioner

	toil.provisioners.clusterScaler

	toil.provisioners.gceProvisioner

	toil.provisioners.node

	toil.server
	toil.server.api_spec

	toil.server.cli
	toil.server.cli.wes_cwl_runner

	toil.server.wes
	toil.server.wes.abstract_backend

	toil.server.wes.amazon_wes_utils

	toil.server.wes.tasks

	toil.server.wes.toil_backend

	toil.server.app

	toil.server.celery_app

	toil.server.utils

	toil.server.wsgi_app

	toil.test
	toil.test.batchSystems
	toil.test.batchSystems.batchSystemTest

	toil.test.batchSystems.parasolTestSupport

	toil.test.batchSystems.test_lsf_helper

	toil.test.batchSystems.test_slurm

	toil.test.cwl
	toil.test.cwl.conftest

	toil.test.cwl.cwlTest

	toil.test.docs
	toil.test.docs.scriptsTest

	toil.test.jobStores
	toil.test.jobStores.jobStoreTest

	toil.test.lib
	toil.test.lib.aws
	toil.test.lib.aws.test_iam

	toil.test.lib.aws.test_s3

	toil.test.lib.aws.test_utils

	toil.test.lib.dockerTest

	toil.test.lib.test_conversions

	toil.test.lib.test_ec2

	toil.test.lib.test_misc

	toil.test.mesos
	toil.test.mesos.MesosDataStructuresTest

	toil.test.mesos.helloWorld

	toil.test.mesos.stress

	toil.test.provisioners
	toil.test.provisioners.aws
	toil.test.provisioners.aws.awsProvisionerTest

	toil.test.provisioners.clusterScalerTest

	toil.test.provisioners.clusterTest

	toil.test.provisioners.gceProvisionerTest

	toil.test.provisioners.provisionerTest

	toil.test.provisioners.restartScript

	toil.test.server
	toil.test.server.serverTest

	toil.test.sort
	toil.test.sort.restart_sort

	toil.test.sort.sort

	toil.test.sort.sortTest

	toil.test.src
	toil.test.src.autoDeploymentTest

	toil.test.src.busTest

	toil.test.src.checkpointTest

	toil.test.src.deferredFunctionTest

	toil.test.src.dockerCheckTest

	toil.test.src.fileStoreTest

	toil.test.src.helloWorldTest

	toil.test.src.importExportFileTest

	toil.test.src.jobDescriptionTest

	toil.test.src.jobEncapsulationTest

	toil.test.src.jobFileStoreTest

	toil.test.src.jobServiceTest

	toil.test.src.jobTest

	toil.test.src.miscTests

	toil.test.src.promisedRequirementTest

	toil.test.src.promisesTest

	toil.test.src.realtimeLoggerTest

	toil.test.src.regularLogTest

	toil.test.src.resourceTest

	toil.test.src.restartDAGTest

	toil.test.src.resumabilityTest

	toil.test.src.retainTempDirTest

	toil.test.src.systemTest

	toil.test.src.threadingTest

	toil.test.src.toilContextManagerTest

	toil.test.src.userDefinedJobArgTypeTest

	toil.test.src.workerTest

	toil.test.utils
	toil.test.utils.toilDebugTest

	toil.test.utils.toilKillTest

	toil.test.utils.utilsTest

	toil.test.wdl
	toil.test.wdl.builtinTest

	toil.test.wdl.conftest

	toil.test.wdl.toilwdlTest

	toil.test.wdl.wdltoil_test

	toil.utils
	toil.utils.toilClean

	toil.utils.toilDebugFile

	toil.utils.toilDebugJob

	toil.utils.toilDestroyCluster

	toil.utils.toilKill

	toil.utils.toilLaunchCluster

	toil.utils.toilMain

	toil.utils.toilRsyncCluster

	toil.utils.toilServer

	toil.utils.toilSshCluster

	toil.utils.toilStats

	toil.utils.toilStatus

	toil.utils.toilUpdateEC2Instances

	toil.wdl
	toil.wdl.versions
	toil.wdl.versions.dev

	toil.wdl.versions.draft2

	toil.wdl.versions.v1

	toil.wdl.toilwdl

	toil.wdl.utils

	toil.wdl.wdl_analysis

	toil.wdl.wdl_functions

	toil.wdl.wdl_synthesis

	toil.wdl.wdl_types

	toil.wdl.wdltoil

	toil.bus

	toil.common

	toil.deferred

	toil.exceptions

	toil.job

	toil.leader

	toil.realtimeLogger

	toil.resource

	toil.serviceManager

	toil.statsAndLogging

	toil.toilState

	toil.version

	toil.worker

	tutorial_docker

	tutorial_managing2

	tutorial_helloworld

	tutorial_discoverfiles

	tutorial_multiplejobs2

	tutorial_dynamic

	tutorial_invokeworkflow2

	tutorial_jobfunctions

	tutorial_managing

	example_alwaysfail

	example_cachingbenchmark

	tutorial_quickstart

	tutorial_encapsulation2

	tutorial_multiplejobs3

	tutorial_cwlexample

	tutorial_encapsulation

	tutorial_invokeworkflow

	tutorial_requirements

	tutorial_staging

	tutorial_promises

	tutorial_services

	tutorial_promises2

	tutorial_multiplejobs

	tutorial_arguments

	mkFile

	debugWorkflow

	fake_mpi_run

	1

	Created with sphinx-autoapi [https://github.com/readthedocs/sphinx-autoapi]

 toil

toil

Subpackages

	toil.batchSystems
	toil.batchSystems.mesos
	toil.batchSystems.mesos.test

	toil.batchSystems.mesos.batchSystem

	toil.batchSystems.mesos.conftest

	toil.batchSystems.mesos.executor

	toil.batchSystems.abstractBatchSystem

	toil.batchSystems.abstractGridEngineBatchSystem

	toil.batchSystems.awsBatch

	toil.batchSystems.cleanup_support

	toil.batchSystems.contained_executor

	toil.batchSystems.gridengine

	toil.batchSystems.htcondor

	toil.batchSystems.kubernetes

	toil.batchSystems.local_support

	toil.batchSystems.lsf

	toil.batchSystems.lsfHelper

	toil.batchSystems.options

	toil.batchSystems.parasol

	toil.batchSystems.registry

	toil.batchSystems.singleMachine

	toil.batchSystems.slurm

	toil.batchSystems.tes

	toil.batchSystems.torque

	toil.cwl
	toil.cwl.conftest

	toil.cwl.cwltoil

	toil.cwl.utils

	toil.fileStores
	toil.fileStores.abstractFileStore

	toil.fileStores.cachingFileStore

	toil.fileStores.nonCachingFileStore

	toil.jobStores
	toil.jobStores.aws
	toil.jobStores.aws.jobStore

	toil.jobStores.aws.utils

	toil.jobStores.abstractJobStore

	toil.jobStores.conftest

	toil.jobStores.fileJobStore

	toil.jobStores.googleJobStore

	toil.jobStores.utils

	toil.lib
	toil.lib.aws
	toil.lib.aws.ami

	toil.lib.aws.iam

	toil.lib.aws.session

	toil.lib.aws.utils

	toil.lib.encryption
	toil.lib.encryption.conftest

	toil.lib.accelerators

	toil.lib.bioio

	toil.lib.compatibility

	toil.lib.conversions

	toil.lib.docker

	toil.lib.ec2

	toil.lib.ec2nodes

	toil.lib.exceptions

	toil.lib.expando

	toil.lib.generatedEC2Lists

	toil.lib.humanize

	toil.lib.io

	toil.lib.iterables

	toil.lib.memoize

	toil.lib.misc

	toil.lib.objects

	toil.lib.resources

	toil.lib.retry

	toil.lib.threading

	toil.lib.throttle

	toil.provisioners
	toil.provisioners.aws
	toil.provisioners.aws.awsProvisioner

	toil.provisioners.abstractProvisioner

	toil.provisioners.clusterScaler

	toil.provisioners.gceProvisioner

	toil.provisioners.node

	toil.server
	toil.server.api_spec

	toil.server.cli
	toil.server.cli.wes_cwl_runner

	toil.server.wes
	toil.server.wes.abstract_backend

	toil.server.wes.amazon_wes_utils

	toil.server.wes.tasks

	toil.server.wes.toil_backend

	toil.server.app

	toil.server.celery_app

	toil.server.utils

	toil.server.wsgi_app

	toil.test
	toil.test.batchSystems
	toil.test.batchSystems.batchSystemTest

	toil.test.batchSystems.parasolTestSupport

	toil.test.batchSystems.test_lsf_helper

	toil.test.batchSystems.test_slurm

	toil.test.cwl
	toil.test.cwl.conftest

	toil.test.cwl.cwlTest

	toil.test.docs
	toil.test.docs.scriptsTest

	toil.test.jobStores
	toil.test.jobStores.jobStoreTest

	toil.test.lib
	toil.test.lib.aws

	toil.test.lib.dockerTest

	toil.test.lib.test_conversions

	toil.test.lib.test_ec2

	toil.test.lib.test_misc

	toil.test.mesos
	toil.test.mesos.MesosDataStructuresTest

	toil.test.mesos.helloWorld

	toil.test.mesos.stress

	toil.test.provisioners
	toil.test.provisioners.aws

	toil.test.provisioners.clusterScalerTest

	toil.test.provisioners.clusterTest

	toil.test.provisioners.gceProvisionerTest

	toil.test.provisioners.provisionerTest

	toil.test.provisioners.restartScript

	toil.test.server
	toil.test.server.serverTest

	toil.test.sort
	toil.test.sort.restart_sort

	toil.test.sort.sort

	toil.test.sort.sortTest

	toil.test.src
	toil.test.src.autoDeploymentTest

	toil.test.src.busTest

	toil.test.src.checkpointTest

	toil.test.src.deferredFunctionTest

	toil.test.src.dockerCheckTest

	toil.test.src.fileStoreTest

	toil.test.src.helloWorldTest

	toil.test.src.importExportFileTest

	toil.test.src.jobDescriptionTest

	toil.test.src.jobEncapsulationTest

	toil.test.src.jobFileStoreTest

	toil.test.src.jobServiceTest

	toil.test.src.jobTest

	toil.test.src.miscTests

	toil.test.src.promisedRequirementTest

	toil.test.src.promisesTest

	toil.test.src.realtimeLoggerTest

	toil.test.src.regularLogTest

	toil.test.src.resourceTest

	toil.test.src.restartDAGTest

	toil.test.src.resumabilityTest

	toil.test.src.retainTempDirTest

	toil.test.src.systemTest

	toil.test.src.threadingTest

	toil.test.src.toilContextManagerTest

	toil.test.src.userDefinedJobArgTypeTest

	toil.test.src.workerTest

	toil.test.utils
	toil.test.utils.toilDebugTest

	toil.test.utils.toilKillTest

	toil.test.utils.utilsTest

	toil.test.wdl
	toil.test.wdl.builtinTest

	toil.test.wdl.conftest

	toil.test.wdl.toilwdlTest

	toil.test.wdl.wdltoil_test

	toil.utils
	toil.utils.toilClean

	toil.utils.toilDebugFile

	toil.utils.toilDebugJob

	toil.utils.toilDestroyCluster

	toil.utils.toilKill

	toil.utils.toilLaunchCluster

	toil.utils.toilMain

	toil.utils.toilRsyncCluster

	toil.utils.toilServer

	toil.utils.toilSshCluster

	toil.utils.toilStats

	toil.utils.toilStatus

	toil.utils.toilUpdateEC2Instances

	toil.wdl
	toil.wdl.versions
	toil.wdl.versions.dev

	toil.wdl.versions.draft2

	toil.wdl.versions.v1

	toil.wdl.toilwdl

	toil.wdl.utils

	toil.wdl.wdl_analysis

	toil.wdl.wdl_functions

	toil.wdl.wdl_synthesis

	toil.wdl.wdl_types

	toil.wdl.wdltoil

Submodules

	toil.bus

	toil.common

	toil.deferred

	toil.exceptions

	toil.job

	toil.leader

	toil.realtimeLogger

	toil.resource

	toil.serviceManager

	toil.statsAndLogging

	toil.toilState

	toil.version

	toil.worker

Package Contents

Functions

	retry([intervals, infinite_retries, errors, ...])

	Retry a function if it fails with any Exception defined in "errors".

	which(cmd[, mode, path])

	Return the path with conforms to the given mode on the Path.

	toilPackageDirPath()

	Return the absolute path of the directory that corresponds to the top-level toil package.

	inVirtualEnv()

	Test if we are inside a virtualenv or Conda virtual environment.

	resolveEntryPoint(entryPoint)

	Find the path to the given entry point that should work on a worker.

	physicalMemory()

	Calculate the total amount of physical memory, in bytes.

	physicalDisk(directory)

	

	applianceSelf([forceDockerAppliance])

	Return the fully qualified name of the Docker image to start Toil appliance containers from.

	customDockerInitCmd()

	Return the custom command set by the TOIL_CUSTOM_DOCKER_INIT_COMMAND environment variable.

	customInitCmd()

	Return the custom command set by the TOIL_CUSTOM_INIT_COMMAND environment variable.

	lookupEnvVar(name, envName, defaultValue)

	Look up environment variables that control Toil and log the result.

	checkDockerImageExists(appliance)

	Attempt to check a url registryName for the existence of a docker image with a given tag.

	parseDockerAppliance(appliance)

	Derive parsed registry, image reference, and tag from a docker image string.

	checkDockerSchema(appliance)

	

	requestCheckRegularDocker(origAppliance, registryName, ...)

	Check if an image exists using the requests library.

	requestCheckDockerIo(origAppliance, imageName, tag)

	Check docker.io to see if an image exists using the requests library.

	logProcessContext(config)

	

Attributes

	memoize

	Memoize a function result based on its parameters using this decorator.

	currentCommit

	

	log

	

	KNOWN_EXTANT_IMAGES

	

	cache_path

	

	
toil.memoize

	Memoize a function result based on its parameters using this decorator.

For example, this can be used in place of lazy initialization. If the decorating
function is invoked by multiple threads, the decorated function may be called
more than once with the same arguments.

	
toil.retry(intervals=None, infinite_retries=False, errors=None, log_message=None, prepare=None)

	Retry a function if it fails with any Exception defined in “errors”.

Does so every x seconds, where x is defined by a list of numbers (ints or
floats) in “intervals”. Also accepts ErrorCondition events
for more detailed retry attempts.

	Parameters

	
	intervals (Optional[List]) – A list of times in seconds we keep retrying until returning failure.
Defaults to retrying with the following exponential back-off before failing:
1s, 1s, 2s, 4s, 8s, 16s

	infinite_retries (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True, reset the intervals when they run out.
Defaults to: False.

	errors (Optional[Sequence[Union[ErrorCondition, Type[Exception [https://docs.python.org/3/library/exceptions.html#Exception]]]]]) – A list of exceptions OR ErrorCondition objects to catch and retry on.
ErrorCondition objects describe more detailed error event conditions than a plain error.
An ErrorCondition specifies:
- Exception (required)
- Error codes that must match to be retried (optional; defaults to not checking)
- A string that must be in the error message to be retried (optional; defaults to not checking)
- A bool that can be set to False to always error on this condition.

If not specified, this will default to a generic Exception.

	log_message (Optional[Tuple[Callable, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional tuple of (“log/print function()”, “message string”)
that will precede each attempt.

	prepare (Optional[List[Callable]]) – Optional list of functions to call, with the function’s
arguments, between retries, to reset state.

	Returns

	The result of the wrapped function or raise.

	Return type

	Callable[[Any], Any]

	
toil.currentCommit = '21422a3440f8a6d5e9d2f1c9695c4fbc57fa5372'

	

	
toil.log

	

	
toil.which(cmd, mode=os.F_OK | os.X_OK, path=None)

	Return the path with conforms to the given mode on the Path.

[Copy-pasted in from python3.6’s shutil.which().]

mode defaults to os.F_OK | os.X_OK. path defaults to the result
of os.environ.get(“PATH”), or can be overridden with a custom search
path.

	Returns

	The path found, or None.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.toilPackageDirPath()

	Return the absolute path of the directory that corresponds to the top-level toil package.

The return value is guaranteed to end in ‘/toil’.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.inVirtualEnv()

	Test if we are inside a virtualenv or Conda virtual environment.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.resolveEntryPoint(entryPoint)

	Find the path to the given entry point that should work on a worker.

	Returns

	The path found, which may be an absolute or a relative path.

	Parameters

	entryPoint (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.physicalMemory()

	Calculate the total amount of physical memory, in bytes.

>>> n = physicalMemory()
>>> n > 0
True
>>> n == physicalMemory()
True

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.physicalDisk(directory)

	
	Parameters

	directory (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.applianceSelf(forceDockerAppliance=False)

	Return the fully qualified name of the Docker image to start Toil appliance containers from.

The result is determined by the current version of Toil and three environment variables:
TOIL_DOCKER_REGISTRY, TOIL_DOCKER_NAME and TOIL_APPLIANCE_SELF.

TOIL_DOCKER_REGISTRY specifies an account on a publicly hosted docker registry like Quay
or Docker Hub. The default is UCSC’s CGL account on Quay.io where the Toil team publishes the
official appliance images. TOIL_DOCKER_NAME specifies the base name of the image. The
default of toil will be adequate in most cases. TOIL_APPLIANCE_SELF fully qualifies the
appliance image, complete with registry, image name and version tag, overriding both
TOIL_DOCKER_NAME and TOIL_DOCKER_REGISTRY` as well as the version tag of the image.
Setting TOIL_APPLIANCE_SELF will not be necessary in most cases.

	Parameters

	forceDockerAppliance (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.customDockerInitCmd()

	Return the custom command set by the TOIL_CUSTOM_DOCKER_INIT_COMMAND environment variable.

The custom docker command is run prior to running the workers and/or the primary node’s services.

This can be useful for doing any custom initialization on instances (e.g. authenticating to
private docker registries). Any single quotes are escaped and the command cannot contain a
set of blacklisted chars (newline or tab).

	Returns

	The custom commmand, or an empty string is returned if the environment variable is not set.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.customInitCmd()

	Return the custom command set by the TOIL_CUSTOM_INIT_COMMAND environment variable.

The custom init command is run prior to running Toil appliance itself in workers and/or the
primary node (i.e. this is run one stage before TOIL_CUSTOM_DOCKER_INIT_COMMAND).

This can be useful for doing any custom initialization on instances (e.g. authenticating to
private docker registries). Any single quotes are escaped and the command cannot contain a
set of blacklisted chars (newline or tab).

returns: the custom command or n empty string is returned if the environment variable is not set.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lookupEnvVar(name, envName, defaultValue)

	Look up environment variables that control Toil and log the result.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the human readable name of the variable

	envName (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the environment variable to lookup

	defaultValue (str [https://docs.python.org/3/library/stdtypes.html#str]) – the fall-back value

	Returns

	the value of the environment variable or the default value the variable is not set

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.checkDockerImageExists(appliance)

	Attempt to check a url registryName for the existence of a docker image with a given tag.

	Parameters

	appliance (str [https://docs.python.org/3/library/stdtypes.html#str]) – The url of a docker image’s registry (with a tag) of the form:
‘quay.io/<repo_path>:<tag>’ or ‘<repo_path>:<tag>’.
Examples: ‘quay.io/ucsc_cgl/toil:latest’, ‘ubuntu:latest’, or
‘broadinstitute/genomes-in-the-cloud:2.0.0’.

	Returns

	Raises an exception if the docker image cannot be found or is invalid. Otherwise, it
will return the appliance string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.parseDockerAppliance(appliance)

	Derive parsed registry, image reference, and tag from a docker image string.

Example: “quay.io/ucsc_cgl/toil:latest”
Should return: “quay.io”, “ucsc_cgl/toil”, “latest”

If a registry is not defined, the default is: “docker.io”
If a tag is not defined, the default is: “latest”

	Parameters

	appliance (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full url of the docker image originally
specified by the user (or the default).
e.g. “quay.io/ucsc_cgl/toil:latest”

	Returns

	registryName, imageName, tag

	Return type

	Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.checkDockerSchema(appliance)

	

	
exception toil.ApplianceImageNotFound(origAppliance, url, statusCode)

	Bases: docker.errors.ImageNotFound

[image: Inheritance diagram of toil.ApplianceImageNotFound]

Error raised when using TOIL_APPLIANCE_SELF results in an HTTP error.

	Parameters

	
	origAppliance (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full url of the docker image originally
specified by the user (or the default).
e.g. “quay.io/ucsc_cgl/toil:latest”

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URL at which the image’s manifest is supposed to appear

	statusCode (int [https://docs.python.org/3/library/functions.html#int]) – the failing HTTP status code returned by the URL

	
toil.KNOWN_EXTANT_IMAGES

	

	
toil.requestCheckRegularDocker(origAppliance, registryName, imageName, tag)

	Check if an image exists using the requests library.

URL is based on the
docker v2 schema [https://docs.docker.com/registry/spec/manifest-v2-2/].

This has the following format: https://{websitehostname}.io/v2/{repo}/manifests/{tag}

Does not work with the official (docker.io) site, because they require an OAuth token, so a
separate check is done for docker.io images.

	Parameters

	
	origAppliance (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full url of the docker image originally
specified by the user (or the default).

e.g. quay.io/ucsc_cgl/toil:latest

	registryName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The url of a docker image’s registry. e.g. quay.io

	imageName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The image, including path and excluding the tag. e.g. ucsc_cgl/toil

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The tag used at that docker image’s registry. e.g. latest

	Raises

	ApplianceImageNotFound if no match is found.

	Returns

	Return True if match found.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.requestCheckDockerIo(origAppliance, imageName, tag)

	Check docker.io to see if an image exists using the requests library.

URL is based on the docker v2 schema. Requires that an access token be fetched first.

	Parameters

	
	origAppliance (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full url of the docker image originally
specified by the user (or the default). e.g. “ubuntu:latest”

	imageName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The image, including path and excluding the tag. e.g. “ubuntu”

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The tag used at that docker image’s registry. e.g. “latest”

	Raises

	ApplianceImageNotFound if no match is found.

	Returns

	Return True if match found.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.logProcessContext(config)

	
	Parameters

	config (common.Config) –

	Return type

	None

	
toil.cache_path = '~/.cache/aws/cached_temporary_credentials'

	

 toil.batchSystems

toil.batchSystems

Subpackages

	toil.batchSystems.mesos
	toil.batchSystems.mesos.test

	toil.batchSystems.mesos.batchSystem

	toil.batchSystems.mesos.conftest

	toil.batchSystems.mesos.executor

Submodules

	toil.batchSystems.abstractBatchSystem

	toil.batchSystems.abstractGridEngineBatchSystem

	toil.batchSystems.awsBatch

	toil.batchSystems.cleanup_support

	toil.batchSystems.contained_executor

	toil.batchSystems.gridengine

	toil.batchSystems.htcondor

	toil.batchSystems.kubernetes

	toil.batchSystems.local_support

	toil.batchSystems.lsf

	toil.batchSystems.lsfHelper

	toil.batchSystems.options

	toil.batchSystems.parasol

	toil.batchSystems.registry

	toil.batchSystems.singleMachine

	toil.batchSystems.slurm

	toil.batchSystems.tes

	toil.batchSystems.torque

Package Contents

	
exception toil.batchSystems.DeadlockException(msg)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.batchSystems.DeadlockException]

Exception thrown by the Leader or BatchSystem when a deadlock is encountered due to insufficient
resources to run the workflow

	
__str__()

	Stringify the exception, including the message.

 toil.batchSystems.mesos

toil.batchSystems.mesos

Subpackages

	toil.batchSystems.mesos.test

Submodules

	toil.batchSystems.mesos.batchSystem

	toil.batchSystems.mesos.conftest

	toil.batchSystems.mesos.executor

Package Contents

Classes

	Shape

	Represents a job or a node's "shape", in terms of the dimensions of memory, cores, disk and

	JobQueue

	

	MesosShape

	Represents a job or a node's "shape", in terms of the dimensions of memory, cores, disk and

Attributes

	TaskData

	

	ToilJob

	

	
class toil.batchSystems.mesos.Shape(wallTime, memory, cores, disk, preemptible)

	Represents a job or a node’s “shape”, in terms of the dimensions of memory, cores, disk and
wall-time allocation.

The wallTime attribute stores the number of seconds of a node allocation, e.g. 3600 for AWS.
FIXME: and for jobs?

The memory and disk attributes store the number of bytes required by a job (or provided by a
node) in RAM or on disk (SSD or HDD), respectively.

	Parameters

	
	wallTime (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) –

	memory (int [https://docs.python.org/3/library/functions.html#int]) –

	cores (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) –

	disk (int [https://docs.python.org/3/library/functions.html#int]) –

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
__eq__(other)

	Return self==value.

	Parameters

	other (Any) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
greater_than(other)

	
	Parameters

	other (Any) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__gt__(other)

	Return self>value.

	Parameters

	other (Any) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__repr__()

	Return repr(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__hash__()

	Return hash(self).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.batchSystems.mesos.TaskData

	

	
class toil.batchSystems.mesos.JobQueue

	
	
insertJob(job, jobType)

	

	
jobIDs()

	

	
nextJobOfType(jobType)

	

	
typeEmpty(jobType)

	

	
class toil.batchSystems.mesos.MesosShape(wallTime, memory, cores, disk, preemptible)

	Bases: toil.provisioners.abstractProvisioner.Shape

[image: Inheritance diagram of toil.batchSystems.mesos.MesosShape]

Represents a job or a node’s “shape”, in terms of the dimensions of memory, cores, disk and
wall-time allocation.

The wallTime attribute stores the number of seconds of a node allocation, e.g. 3600 for AWS.
FIXME: and for jobs?

The memory and disk attributes store the number of bytes required by a job (or provided by a
node) in RAM or on disk (SSD or HDD), respectively.

	Parameters

	
	wallTime (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) –

	memory (int [https://docs.python.org/3/library/functions.html#int]) –

	cores (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) –

	disk (int [https://docs.python.org/3/library/functions.html#int]) –

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
__gt__(other)

	Inverted. Returns True if self is less than other, else returns False.

This is because jobTypes are sorted in decreasing order,
and this was done to give expensive jobs priority.

	
toil.batchSystems.mesos.ToilJob

	

 toil.batchSystems.mesos.test

toil.batchSystems.mesos.test

Package Contents

Classes

	ExceptionalThread

	A thread whose join() method re-raises exceptions raised during run(). While join() is

	MesosTestSupport

	Mixin for test cases that need a running Mesos master and agent on the local host.

Functions

	retry([intervals, infinite_retries, errors, ...])

	Retry a function if it fails with any Exception defined in "errors".

	cpu_count()

	Get the rounded-up integer number of whole CPUs available.

Attributes

	log

	

	
toil.batchSystems.mesos.test.retry(intervals=None, infinite_retries=False, errors=None, log_message=None, prepare=None)

	Retry a function if it fails with any Exception defined in “errors”.

Does so every x seconds, where x is defined by a list of numbers (ints or
floats) in “intervals”. Also accepts ErrorCondition events
for more detailed retry attempts.

	Parameters

	
	intervals (Optional[List]) – A list of times in seconds we keep retrying until returning failure.
Defaults to retrying with the following exponential back-off before failing:
1s, 1s, 2s, 4s, 8s, 16s

	infinite_retries (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True, reset the intervals when they run out.
Defaults to: False.

	errors (Optional[Sequence[Union[ErrorCondition, Type[Exception [https://docs.python.org/3/library/exceptions.html#Exception]]]]]) – A list of exceptions OR ErrorCondition objects to catch and retry on.
ErrorCondition objects describe more detailed error event conditions than a plain error.
An ErrorCondition specifies:
- Exception (required)
- Error codes that must match to be retried (optional; defaults to not checking)
- A string that must be in the error message to be retried (optional; defaults to not checking)
- A bool that can be set to False to always error on this condition.

If not specified, this will default to a generic Exception.

	log_message (Optional[Tuple[Callable, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional tuple of (“log/print function()”, “message string”)
that will precede each attempt.

	prepare (Optional[List[Callable]]) – Optional list of functions to call, with the function’s
arguments, between retries, to reset state.

	Returns

	The result of the wrapped function or raise.

	Return type

	Callable[[Any], Any]

	
class toil.batchSystems.mesos.test.ExceptionalThread(group=None, target=None, name=None, args=(), kwargs=None, *, daemon=None)

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

[image: Inheritance diagram of toil.batchSystems.mesos.test.ExceptionalThread]

A thread whose join() method re-raises exceptions raised during run(). While join() is
idempotent, the exception is only during the first invocation of join() that successfully
joined the thread. If join() times out, no exception will be re reraised even though an
exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

	
exc_info

	

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	Return type

	None

	
tryRun()

	
	Return type

	None

	
join(*args, **kwargs)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	Parameters

	
	args (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	kwargs (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	Return type

	None

	
toil.batchSystems.mesos.test.cpu_count()

	Get the rounded-up integer number of whole CPUs available.

Counts hyperthreads as CPUs.

Uses the system’s actual CPU count, or the current v1 cgroup’s quota per
period, if the quota is set.

Ignores the cgroup’s cpu shares value, because it’s extremely difficult to
interpret. See https://github.com/kubernetes/kubernetes/issues/81021.

Caches result for efficiency.

	Returns

	Integer count of available CPUs, minimum 1.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.batchSystems.mesos.test.log

	

	
class toil.batchSystems.mesos.test.MesosTestSupport

	Mixin for test cases that need a running Mesos master and agent on the local host.

	
class MesosThread(numCores)

	Bases: toil.lib.threading.ExceptionalThread

[image: Inheritance diagram of toil.batchSystems.mesos.test.MesosTestSupport.MesosThread]

A thread whose join() method re-raises exceptions raised during run(). While join() is
idempotent, the exception is only during the first invocation of join() that successfully
joined the thread. If join() times out, no exception will be re reraised even though an
exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

	
lock

	

	
abstract mesosCommand()

	

	
tryRun()

	

	
findMesosBinary(names)

	

	
class MesosMasterThread(numCores)

	Bases: MesosTestSupport.MesosThread

[image: Inheritance diagram of toil.batchSystems.mesos.test.MesosTestSupport.MesosMasterThread]

A thread whose join() method re-raises exceptions raised during run(). While join() is
idempotent, the exception is only during the first invocation of join() that successfully
joined the thread. If join() times out, no exception will be re reraised even though an
exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

	
mesosCommand()

	

	
class MesosAgentThread(numCores)

	Bases: MesosTestSupport.MesosThread

[image: Inheritance diagram of toil.batchSystems.mesos.test.MesosTestSupport.MesosAgentThread]

A thread whose join() method re-raises exceptions raised during run(). While join() is
idempotent, the exception is only during the first invocation of join() that successfully
joined the thread. If join() times out, no exception will be re reraised even though an
exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

	
mesosCommand()

	

	
wait_for_master()

	

 toil.batchSystems.mesos.batchSystem

toil.batchSystems.mesos.batchSystem

Module Contents

Classes

	MesosBatchSystem

	A Toil batch system implementation that uses Apache Mesos to distribute toil jobs as Mesos

Attributes

	log

	

	
toil.batchSystems.mesos.batchSystem.log

	

	
class toil.batchSystems.mesos.batchSystem.MesosBatchSystem(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.local_support.BatchSystemLocalSupport, toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem, pymesos.Scheduler

[image: Inheritance diagram of toil.batchSystems.mesos.batchSystem.MesosBatchSystem]

A Toil batch system implementation that uses Apache Mesos to distribute toil jobs as Mesos
tasks over a cluster of agent nodes. A Mesos framework consists of a scheduler and an
executor. This class acts as the scheduler and is typically run on the master node that also
runs the Mesos master process with which the scheduler communicates via a driver component.
The executor is implemented in a separate class. It is run on each agent node and
communicates with the Mesos agent process via another driver object. The scheduler may also
be run on a separate node from the master, which we then call somewhat ambiguously the driver
node.

	
class ExecutorInfo(nodeAddress, agentId, nodeInfo, lastSeen)

	

	
userScript

	
	Type

	toil.resource.Resource

	
classmethod supportsAutoDeployment()

	Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource
object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

	
classmethod supportsWorkerCleanup()

	Indicates whether this batch system invokes
BatchSystemSupport.workerCleanup() after the last job for a
particular workflow invocation finishes. Note that the term worker
refers to an entire node, not just a worker process. A worker process
may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The
batch system is said to shut down after the last worker process
terminates.

	
setUserScript(userScript)

	Set the user script for this workflow. This method must be called before the first job is
issued to this batch system, and only if supportsAutoDeployment() returns True,
otherwise it will raise an exception.

	Parameters

	userScript – the resource object representing the user script
or module and the modules it depends on.

	
ignoreNode(nodeAddress)

	Stop sending jobs to this node. Used in autoscaling
when the autoscaler is ready to terminate a node, but
jobs are still running. This allows the node to be terminated
after the current jobs have finished.

	Parameters

	nodeAddress – IP address of node to ignore.

	
unignoreNode(nodeAddress)

	Stop ignoring this address, presumably after
a node with this address has been terminated. This allows for the
possibility of a new node having the same address as a terminated one.

	
issueBatchJob(jobNode, job_environment=None)

	Issues the following command returning a unique jobID. Command is the string to run, memory
is an int giving the number of bytes the job needs to run in and cores is the number of cpus
needed for the job and error-file is the path of the file to place any std-err/std-out in.

	Parameters

	
	jobNode (toil.job.JobDescription) –

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	
killBatchJobs(jobIDs)

	Kills the given job IDs. After returning, the killed jobs will not
appear in the results of getRunningBatchJobIDs. The killed job will not
be returned from getUpdatedBatchJob.

	Parameters

	jobIDs – list of IDs of jobs to kill

	
getIssuedBatchJobIDs()

	Gets all currently issued jobs

	Returns

	A list of jobs (as jobIDs) currently issued (may be running, or may be
waiting to be run). Despite the result being a list, the ordering should not
be depended upon.

	
getRunningBatchJobIDs()

	Gets a map of jobs as jobIDs that are currently running (not just waiting)
and how long they have been running, in seconds.

	Returns

	dictionary with currently running jobID keys and how many seconds they have
been running as the value

	
getUpdatedBatchJob(maxWait)

	Returns information about job that has updated its status (i.e. ceased
running, either successfully or with an error). Each such job will be
returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they
may cause None to be returned earlier than maxWait.

	Parameters

	maxWait – the number of seconds to block, waiting for a result

	Returns

	If a result is available, returns UpdatedBatchJobInfo.
Otherwise it returns None. wallTime is the number of seconds (a strictly
positive float) in wall-clock time the job ran for, or None if this
batch system does not support tracking wall time.

	
nodeInUse(nodeIP)

	Can be used to determine if a worker node is running any tasks. If the node is doesn’t
exist, this function should simply return False.

	Parameters

	nodeIP (str [https://docs.python.org/3/library/stdtypes.html#str]) – The worker nodes private IP address

	Returns

	True if the worker node has been issued any tasks, else False

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
getWaitDuration()

	Gets the period of time to wait (floating point, in seconds) between checking for
missing/overlong jobs.

	
shutdown()

	Called at the completion of a toil invocation.
Should cleanly terminate all worker threads.

	Return type

	None

	
registered(driver, frameworkId, masterInfo)

	Invoked when the scheduler successfully registers with a Mesos master

	
resourceOffers(driver, offers)

	Invoked when resources have been offered to this framework.

	
statusUpdate(driver, update)

	Invoked when the status of a task has changed (e.g., a agent is lost and so the task is
lost, a task finishes and an executor sends a status update saying so, etc). Note that
returning from this callback _acknowledges_ receipt of this status update! If for
whatever reason the scheduler aborts during this callback (or the process exits) another
status update will be delivered (note, however, that this is currently not true if the
agent sending the status update is lost/fails during that time).

	
frameworkMessage(driver, executorId, agentId, message)

	Invoked when an executor sends a message.

	
getNodes(preemptible=None, timeout=None)

	
	Return all nodes that match:
	
	preemptible status (None includes all)

	timeout period (seen within the last # seconds, or None for all)

	Parameters

	
	preemptible (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	timeout (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], toil.batchSystems.abstractBatchSystem.NodeInfo]

	
reregistered(driver, masterInfo)

	Invoked when the scheduler re-registers with a newly elected Mesos master.

	
executorLost(driver, executorId, agentId, status)

	Invoked when an executor has exited/terminated abnormally.

	
classmethod get_default_mesos_endpoint()

	Get the default IP/hostname and port that we will look for Mesos at.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod add_options(parser)

	If this batch system provides any command line options, add them to the given parser.

	Parameters

	parser (Union[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], argparse._ArgumentGroup]) –

	Return type

	None

	
classmethod setOptions(setOption)

	Process command line or configuration options relevant to this batch system.

	Parameters

	setOption (toil.batchSystems.options.OptionSetter) – A function with signature
setOption(option_name, parsing_function=None, check_function=None, default=None, env=None)
returning nothing, used to update run configuration as a side effect.

 toil.batchSystems.mesos.conftest

toil.batchSystems.mesos.conftest

Module Contents

	
toil.batchSystems.mesos.conftest.collect_ignore = []

	

 toil.batchSystems.mesos.executor

toil.batchSystems.mesos.executor

Module Contents

Classes

	MesosExecutor

	Part of Toil's Mesos framework, runs on a Mesos agent. A Toil job is passed to it via the

Functions

	main()

	

Attributes

	log

	

	
toil.batchSystems.mesos.executor.log

	

	
class toil.batchSystems.mesos.executor.MesosExecutor

	Bases: pymesos.Executor

[image: Inheritance diagram of toil.batchSystems.mesos.executor.MesosExecutor]

Part of Toil’s Mesos framework, runs on a Mesos agent. A Toil job is passed to it via the
task.data field, and launched via call(toil.command).

	
registered(driver, executorInfo, frameworkInfo, agentInfo)

	Invoked once the executor driver has been able to successfully connect with Mesos.

	
reregistered(driver, agentInfo)

	Invoked when the executor re-registers with a restarted agent.

	
disconnected(driver)

	Invoked when the executor becomes “disconnected” from the agent (e.g., the agent is being
restarted due to an upgrade).

	
killTask(driver, taskId)

	Kill parent task process and all its spawned children

	
shutdown(driver)

	

	
error(driver, message)

	Invoked when a fatal error has occurred with the executor and/or executor driver.

	
launchTask(driver, task)

	Invoked by SchedulerDriver when a Mesos task should be launched by this executor

	
frameworkMessage(driver, message)

	Invoked when a framework message has arrived for this executor.

	
toil.batchSystems.mesos.executor.main()

	

 toil.batchSystems.abstractBatchSystem

toil.batchSystems.abstractBatchSystem

Module Contents

Classes

	BatchJobExitReason

	Enum where members are also (and must be) ints

	UpdatedBatchJobInfo

	Typed version of namedtuple.

	WorkerCleanupInfo

	Typed version of namedtuple.

	AbstractBatchSystem

	An abstract base class to represent the interface the batch system must provide to Toil.

	BatchSystemSupport

	Partial implementation of AbstractBatchSystem, support methods.

	NodeInfo

	The coresUsed attribute is a floating point value between 0 (all cores idle) and 1 (all cores

	AbstractScalableBatchSystem

	A batch system that supports a variable number of worker nodes. Used by :class:`toil.

	ResourcePool

	Represents an integral amount of a resource (such as memory bytes).

	ResourceSet

	Represents a collection of distinct resources (such as accelerators).

Attributes

	logger

	

	EXIT_STATUS_UNAVAILABLE_VALUE

	

	
toil.batchSystems.abstractBatchSystem.logger

	

	
toil.batchSystems.abstractBatchSystem.EXIT_STATUS_UNAVAILABLE_VALUE = 255

	

	
class toil.batchSystems.abstractBatchSystem.BatchJobExitReason

	Bases: enum.IntEnum [https://docs.python.org/3/library/enum.html#enum.IntEnum]

[image: Inheritance diagram of toil.batchSystems.abstractBatchSystem.BatchJobExitReason]

Enum where members are also (and must be) ints

	
FINISHED: int [https://docs.python.org/3/library/functions.html#int] = 1

	Successfully finished.

	
FAILED: int [https://docs.python.org/3/library/functions.html#int] = 2

	Job finished, but failed.

	
LOST: int [https://docs.python.org/3/library/functions.html#int] = 3

	Preemptable failure (job’s executing host went away).

	
KILLED: int [https://docs.python.org/3/library/functions.html#int] = 4

	Job killed before finishing.

	
ERROR: int [https://docs.python.org/3/library/functions.html#int] = 5

	Internal error.

	
MEMLIMIT: int [https://docs.python.org/3/library/functions.html#int] = 6

	Job hit batch system imposed memory limit.

	
class toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo

	Bases: NamedTuple

[image: Inheritance diagram of toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo]

Typed version of namedtuple.

Usage in Python versions >= 3.6:

class Employee(NamedTuple):
 name: str
 id: int

This is equivalent to:

Employee = collections.namedtuple('Employee', ['name', 'id'])

The resulting class has extra __annotations__ and _field_types
attributes, giving an ordered dict mapping field names to types.
__annotations__ should be preferred, while _field_types
is kept to maintain pre PEP 526 compatibility. (The field names
are in the _fields attribute, which is part of the namedtuple
API.) Alternative equivalent keyword syntax is also accepted:

Employee = NamedTuple('Employee', name=str, id=int)

In Python versions <= 3.5 use:

Employee = NamedTuple('Employee', [('name', str), ('id', int)])

	
jobID: int [https://docs.python.org/3/library/functions.html#int]

	

	
exitStatus: int [https://docs.python.org/3/library/functions.html#int]

	The exit status (integer value) of the job. 0 implies successful.

EXIT_STATUS_UNAVAILABLE_VALUE is used when the exit status is not available (e.g. job is lost).

	
exitReason: Optional[BatchJobExitReason]

	

	
wallTime: Union[float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None]]

	

	
class toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo

	Bases: NamedTuple

[image: Inheritance diagram of toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo]

Typed version of namedtuple.

Usage in Python versions >= 3.6:

class Employee(NamedTuple):
 name: str
 id: int

This is equivalent to:

Employee = collections.namedtuple('Employee', ['name', 'id'])

The resulting class has extra __annotations__ and _field_types
attributes, giving an ordered dict mapping field names to types.
__annotations__ should be preferred, while _field_types
is kept to maintain pre PEP 526 compatibility. (The field names
are in the _fields attribute, which is part of the namedtuple
API.) Alternative equivalent keyword syntax is also accepted:

Employee = NamedTuple('Employee', name=str, id=int)

In Python versions <= 3.5 use:

Employee = NamedTuple('Employee', [('name', str), ('id', int)])

	
work_dir: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Work directory path (where the cache would go) if specified by user

	
coordination_dir: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Coordination directory path (where lock files would go) if specified by user

	
workflow_id: str [https://docs.python.org/3/library/stdtypes.html#str]

	Used to identify files specific to this workflow

	
clean_work_dir: str [https://docs.python.org/3/library/stdtypes.html#str]

	When to clean up the work and coordination directories for a job (‘always’,
‘onSuccess’, ‘onError’, ‘never’)

	
class toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

[image: Inheritance diagram of toil.batchSystems.abstractBatchSystem.AbstractBatchSystem]

An abstract base class to represent the interface the batch system must provide to Toil.

	
abstract classmethod supportsAutoDeployment()

	Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource
object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract classmethod supportsWorkerCleanup()

	Indicates whether this batch system invokes
BatchSystemSupport.workerCleanup() after the last job for a
particular workflow invocation finishes. Note that the term worker
refers to an entire node, not just a worker process. A worker process
may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The
batch system is said to shut down after the last worker process
terminates.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract setUserScript(userScript)

	Set the user script for this workflow. This method must be called before the first job is
issued to this batch system, and only if supportsAutoDeployment() returns True,
otherwise it will raise an exception.

	Parameters

	userScript (toil.resource.Resource) – the resource object representing the user script
or module and the modules it depends on.

	Return type

	None

	
set_message_bus(message_bus)

	Give the batch system an opportunity to connect directly to the message
bus, so that it can send informational messages about the jobs it is
running to other Toil components.

	Parameters

	message_bus (toil.bus.MessageBus) –

	Return type

	None

	
abstract issueBatchJob(jobDesc, job_environment=None)

	Issues a job with the specified command to the batch system and returns
a unique jobID.

	Parameters

	
	jobDesc (toil.job.JobDescription) – a toil.job.JobDescription

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – a collection of job-specific environment
variables to be set on the worker.

	Returns

	a unique jobID that can be used to reference the newly issued
job

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
abstract killBatchJobs(jobIDs)

	Kills the given job IDs. After returning, the killed jobs will not
appear in the results of getRunningBatchJobIDs. The killed job will not
be returned from getUpdatedBatchJob.

	Parameters

	jobIDs (List[int [https://docs.python.org/3/library/functions.html#int]]) – list of IDs of jobs to kill

	Return type

	None

	
abstract getIssuedBatchJobIDs()

	Gets all currently issued jobs

	Returns

	A list of jobs (as jobIDs) currently issued (may be running, or may be
waiting to be run). Despite the result being a list, the ordering should not
be depended upon.

	Return type

	List[int [https://docs.python.org/3/library/functions.html#int]]

	
abstract getRunningBatchJobIDs()

	Gets a map of jobs as jobIDs that are currently running (not just waiting)
and how long they have been running, in seconds.

	Returns

	dictionary with currently running jobID keys and how many seconds they have
been running as the value

	Return type

	Dict[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	
abstract getUpdatedBatchJob(maxWait)

	Returns information about job that has updated its status (i.e. ceased
running, either successfully or with an error). Each such job will be
returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they
may cause None to be returned earlier than maxWait.

	Parameters

	maxWait (int [https://docs.python.org/3/library/functions.html#int]) – the number of seconds to block, waiting for a result

	Returns

	If a result is available, returns UpdatedBatchJobInfo.
Otherwise it returns None. wallTime is the number of seconds (a strictly
positive float) in wall-clock time the job ran for, or None if this
batch system does not support tracking wall time.

	Return type

	Optional[UpdatedBatchJobInfo]

	
getSchedulingStatusMessage()

	Get a log message fragment for the user about anything that might be
going wrong in the batch system, if available.

If no useful message is available, return None.

This can be used to report what resource is the limiting factor when
scheduling jobs, for example. If the leader thinks the workflow is
stuck, the message can be displayed to the user to help them diagnose
why it might be stuck.

	Returns

	User-directed message about scheduling state.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
abstract shutdown()

	Called at the completion of a toil invocation.
Should cleanly terminate all worker threads.

	Return type

	None

	
abstract setEnv(name, value=None)

	Set an environment variable for the worker process before it is launched.

The worker process will typically inherit the environment of the machine
it is running on but this method makes it possible to override specific
variables in that inherited environment before the worker is launched.
Note that this mechanism is different to the one used by the worker
internally to set up the environment of a job. A call to this method affects
all jobs issued after this method returns. Note to implementors: This
means that you would typically need to copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
classmethod add_options(parser)

	If this batch system provides any command line options, add them to the given parser.

	Parameters

	parser (Union[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], argparse._ArgumentGroup]) –

	Return type

	None

	
classmethod setOptions(setOption)

	Process command line or configuration options relevant to this batch system.

	Parameters

	setOption (toil.batchSystems.options.OptionSetter) – A function with signature
setOption(option_name, parsing_function=None, check_function=None, default=None, env=None)
returning nothing, used to update run configuration as a side effect.

	Return type

	None

	
getWorkerContexts()

	Get a list of picklable context manager objects to wrap worker work in,
in order.

Can be used to ask the Toil worker to do things in-process (such as
configuring environment variables, hot-deploying user scripts, or
cleaning up a node) that would otherwise require a wrapping “executor”
process.

	Return type

	List[ContextManager[Any]]

	
class toil.batchSystems.abstractBatchSystem.BatchSystemSupport(config, maxCores, maxMemory, maxDisk)

	Bases: AbstractBatchSystem

[image: Inheritance diagram of toil.batchSystems.abstractBatchSystem.BatchSystemSupport]

Partial implementation of AbstractBatchSystem, support methods.

	Parameters

	
	config (toil.common.Config) –

	maxCores (float [https://docs.python.org/3/library/functions.html#float]) –

	maxMemory (int [https://docs.python.org/3/library/functions.html#int]) –

	maxDisk (int [https://docs.python.org/3/library/functions.html#int]) –

	
check_resource_request(requirer)

	Check resource request is not greater than that available or allowed.

	Parameters

	
	requirer (toil.job.Requirer) – Object whose requirements are being checked

	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the job being checked, for generating a useful error report.

	detail (str [https://docs.python.org/3/library/stdtypes.html#str]) – Batch-system-specific message to include in the error.

	Raises

	InsufficientSystemResources – raised when a resource is requested in an amount
greater than allowed

	Return type

	None

	
setEnv(name, value=None)

	Set an environment variable for the worker process before it is launched. The worker
process will typically inherit the environment of the machine it is running on but this
method makes it possible to override specific variables in that inherited environment
before the worker is launched. Note that this mechanism is different to the one used by
the worker internally to set up the environment of a job. A call to this method affects
all jobs issued after this method returns. Note to implementors: This means that you
would typically need to copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the environment variable to be set on the worker.

	value (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – if given, the environment variable given by name will be set to this value.

	Return type

	None

if None, the variable’s current value will be used as the value on the worker

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if value is None and the name cannot be found in the environment

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
set_message_bus(message_bus)

	Give the batch system an opportunity to connect directly to the message
bus, so that it can send informational messages about the jobs it is
running to other Toil components.

	Parameters

	message_bus (toil.bus.MessageBus) –

	Return type

	None

	
get_batch_logs_dir()

	Get the directory where the backing batch system should save its logs.

Only really makes sense if the backing batch system actually saves logs
to a filesystem; Kubernetes for example does not. Ought to be a
directory shared between the leader and the workers, if the backing
batch system writes logs onto the worker’s view of the filesystem, like
many HPC schedulers do.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
format_std_out_err_path(toil_job_id, cluster_job_id, std)

	Format path for batch system standard output/error and other files
generated by the batch system itself.

Files will be written to the batch logs directory (–batchLogsDir,
defaulting to the Toil work directory) with names containing both the
Toil and batch system job IDs, for ease of debugging job failures.

	Param

	int toil_job_id : The unique id that Toil gives a job.

	Param

	cluster_job_id : What the cluster, for example, GridEngine, uses as its internal job id.

	Param

	string std : The provenance of the stream (for example: ‘err’ for ‘stderr’ or ‘out’ for ‘stdout’)

	Return type

	string : Formatted filename; however if self.config.noStdOutErr is true,
returns ‘/dev/null’ or equivalent.

	Parameters

	
	toil_job_id (int [https://docs.python.org/3/library/functions.html#int]) –

	cluster_job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	std (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
format_std_out_err_glob(toil_job_id)

	Get a glob string that will match all file paths generated by format_std_out_err_path for a job.

	Parameters

	toil_job_id (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
static workerCleanup(info)

	Cleans up the worker node on batch system shutdown. Also see supportsWorkerCleanup().

	Parameters

	info (WorkerCleanupInfo) – A named tuple consisting of all the relevant information
for cleaning up the worker.

	Return type

	None

	
class toil.batchSystems.abstractBatchSystem.NodeInfo(coresUsed, memoryUsed, coresTotal, memoryTotal, requestedCores, requestedMemory, workers)

	The coresUsed attribute is a floating point value between 0 (all cores idle) and 1 (all cores
busy), reflecting the CPU load of the node.

The memoryUsed attribute is a floating point value between 0 (no memory used) and 1 (all memory
used), reflecting the memory pressure on the node.

The coresTotal and memoryTotal attributes are the node’s resources, not just the used resources

The requestedCores and requestedMemory attributes are all the resources that Toil Jobs have reserved on the
node, regardless of whether the resources are actually being used by the Jobs.

The workers attribute is an integer reflecting the number of workers currently active workers
on the node.

	Parameters

	
	coresUsed (float [https://docs.python.org/3/library/functions.html#float]) –

	memoryUsed (float [https://docs.python.org/3/library/functions.html#float]) –

	coresTotal (float [https://docs.python.org/3/library/functions.html#float]) –

	memoryTotal (int [https://docs.python.org/3/library/functions.html#int]) –

	requestedCores (float [https://docs.python.org/3/library/functions.html#float]) –

	requestedMemory (int [https://docs.python.org/3/library/functions.html#int]) –

	workers (int [https://docs.python.org/3/library/functions.html#int]) –

	
class toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem

	Bases: AbstractBatchSystem

[image: Inheritance diagram of toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem]

A batch system that supports a variable number of worker nodes. Used by toil.
provisioners.clusterScaler.ClusterScaler to scale the number of worker nodes in the cluster
up or down depending on overall load.

	
abstract getNodes(preemptible=None, timeout=600)

	Returns a dictionary mapping node identifiers of preemptible or non-preemptible nodes to
NodeInfo objects, one for each node.

	Parameters

	
	preemptible (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – If True (False) only (non-)preemptible nodes will be returned.
If None, all nodes will be returned.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], NodeInfo]

	
abstract nodeInUse(nodeIP)

	Can be used to determine if a worker node is running any tasks. If the node is doesn’t
exist, this function should simply return False.

	Parameters

	nodeIP (str [https://docs.python.org/3/library/stdtypes.html#str]) – The worker nodes private IP address

	Returns

	True if the worker node has been issued any tasks, else False

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract ignoreNode(nodeAddress)

	Stop sending jobs to this node. Used in autoscaling
when the autoscaler is ready to terminate a node, but
jobs are still running. This allows the node to be terminated
after the current jobs have finished.

	Parameters

	nodeAddress (str [https://docs.python.org/3/library/stdtypes.html#str]) – IP address of node to ignore.

	Return type

	None

	
abstract unignoreNode(nodeAddress)

	Stop ignoring this address, presumably after
a node with this address has been terminated. This allows for the
possibility of a new node having the same address as a terminated one.

	Parameters

	nodeAddress (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
exception toil.batchSystems.abstractBatchSystem.InsufficientSystemResources(requirer, resource, available=None, batch_system=None, source=None, details=[])

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.batchSystems.abstractBatchSystem.InsufficientSystemResources]

Common base class for all non-exit exceptions.

	Parameters

	
	requirer (toil.job.Requirer) –

	resource (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	available (Optional[toil.job.ParsedRequirement]) –

	batch_system (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	source (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	details (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
__str__()

	Explain the exception.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exception toil.batchSystems.abstractBatchSystem.AcquisitionTimeoutException(resource, requested, available)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.batchSystems.abstractBatchSystem.AcquisitionTimeoutException]

To be raised when a resource request times out.

	Parameters

	
	resource (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	requested (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], Set[int [https://docs.python.org/3/library/functions.html#int]]]) –

	available (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], Set[int [https://docs.python.org/3/library/functions.html#int]]]) –

	
class toil.batchSystems.abstractBatchSystem.ResourcePool(initial_value, resource_type, timeout=5)

	Represents an integral amount of a resource (such as memory bytes).
Amounts can be acquired immediately or with a timeout, and released.
Provides a context manager to do something with an amount of resource
acquired.

	Parameters

	
	initial_value (int [https://docs.python.org/3/library/functions.html#int]) –

	resource_type (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	timeout (float [https://docs.python.org/3/library/functions.html#float]) –

	
acquireNow(amount)

	Reserve the given amount of the given resource.
Returns True if successful and False if this is not possible immediately.

	Parameters

	amount (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
acquire(amount)

	Reserve the given amount of the given resource.
Raises AcquisitionTimeoutException if this is not possible in under
self.timeout time.

	Parameters

	amount (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	None

	
release(amount)

	
	Parameters

	amount (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	None

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__repr__()

	Return repr(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
acquisitionOf(amount)

	
	Parameters

	amount (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	Iterator[None]

	
class toil.batchSystems.abstractBatchSystem.ResourceSet(initial_value, resource_type, timeout=5)

	Represents a collection of distinct resources (such as accelerators).
Subsets can be acquired immediately or with a timeout, and released.
Provides a context manager to do something with a set of of resources
acquired.

	Parameters

	
	initial_value (Set[int [https://docs.python.org/3/library/functions.html#int]]) –

	resource_type (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	timeout (float [https://docs.python.org/3/library/functions.html#float]) –

	
acquireNow(subset)

	Reserve the given amount of the given resource.
Returns True if successful and False if this is not possible immediately.

	Parameters

	subset (Set[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
acquire(subset)

	Reserve the given amount of the given resource.
Raises AcquisitionTimeoutException if this is not possible in under
self.timeout time.

	Parameters

	subset (Set[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	None

	
release(subset)

	
	Parameters

	subset (Set[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	None

	
get_free_snapshot()

	Get a snapshot of what items are free right now.
May be stale as soon as you get it, but you will need some kind of hint
to try and do an acquire.

	Return type

	Set[int [https://docs.python.org/3/library/functions.html#int]]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__repr__()

	Return repr(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
acquisitionOf(subset)

	
	Parameters

	subset (Set[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	Iterator[None]

 toil.batchSystems.abstractGridEngineBatchSystem

toil.batchSystems.abstractGridEngineBatchSystem

Module Contents

Classes

	AbstractGridEngineBatchSystem

	A partial implementation of BatchSystemSupport for batch systems run on a

Attributes

	logger

	

	JobTuple

	

	
toil.batchSystems.abstractGridEngineBatchSystem.logger

	

	
toil.batchSystems.abstractGridEngineBatchSystem.JobTuple

	

	
class toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.cleanup_support.BatchSystemCleanupSupport

[image: Inheritance diagram of toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem]

A partial implementation of BatchSystemSupport for batch systems run on a
standard HPC cluster. By default auto-deployment is not implemented.

	
class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

[image: Inheritance diagram of toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker]

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways
to specify the activity: by passing a callable object to the constructor, or
by overriding the run() method in a subclass.

	Parameters

	
	newJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	updatedJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	killQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	killedJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	boss (AbstractGridEngineBatchSystem) –

	
getBatchSystemID(jobID)

	Get batch system-specific job ID

Note: for the moment this is the only consistent way to cleanly get
the batch system job ID

	Parameters

	jobID (int [https://docs.python.org/3/library/functions.html#int]) – Toil BatchSystem numerical job ID

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
forgetJob(jobID)

	Remove jobID passed

	Parameters

	jobID (int [https://docs.python.org/3/library/functions.html#int]) – toil job ID

	Return type

	None

	
createJobs(newJob)

	Create a new job with the given attributes.

Implementation-specific; called by AbstractGridEngineWorker.run()

	Parameters

	newJob (JobTuple) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
killJobs()

	Kill any running jobs within worker

	
checkOnJobs()

	Check and update status of all running jobs.

Respects statePollingWait and will return cached results if not within
time period to talk with the scheduler.

	
run()

	Run any new jobs

	
abstract coalesce_job_exit_codes(batch_job_id_list)

	Returns exit codes for a list of jobs.

Called by AbstractGridEngineWorker.checkOnJobs().

This is an optional part of the interface. It should raise
NotImplementedError if not actually implemented for a particular
scheduler.

	Parameters

	batch_job_id_list (string) – List of batch system job ID

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
abstract prepareSubmission(cpu, memory, jobID, command, jobName, job_environment=None, gpus=None)

	Preparation in putting together a command-line string
for submitting to batch system (via submitJob().)

	Param

	int cpu

	Param

	int memory

	Param

	int jobID: Toil job ID

	Param

	string subLine: the command line string to be called

	Param

	string jobName: the name of the Toil job, to provide metadata to batch systems if desired

	Param

	dict job_environment: the environment variables to be set on the worker

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Parameters

	
	cpu (int [https://docs.python.org/3/library/functions.html#int]) –

	memory (int [https://docs.python.org/3/library/functions.html#int]) –

	jobID (int [https://docs.python.org/3/library/functions.html#int]) –

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	gpus (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	
abstract submitJob(subLine)

	Wrapper routine for submitting the actual command-line call, then
processing the output to get the batch system job ID

	Param

	string subLine: the literal command line string to be called

	Return type

	string: batch system job ID, which will be stored internally

	
abstract getRunningJobIDs()

	Get a list of running job IDs. Implementation-specific; called by boss
AbstractGridEngineBatchSystem implementation via
AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
abstract killJob(jobID)

	Kill specific job with the Toil job ID. Implementation-specific; called
by AbstractGridEngineWorker.killJobs()

	Parameters

	jobID (string) – Toil job ID

	
abstract getJobExitCode(batchJobID)

	Returns job exit code or an instance of abstractBatchSystem.BatchJobExitReason.
if something else happened other than the job exiting.
Implementation-specific; called by AbstractGridEngineWorker.checkOnJobs()

	Parameters

	batchjobID (string) – batch system job ID

	Return type

	int [https://docs.python.org/3/library/functions.html#int]|toil.batchSystems.abstractBatchSystem.BatchJobExitReason: exit code int
or BatchJobExitReason if something else happened other than job exiting.

	
classmethod supportsWorkerCleanup()

	Indicates whether this batch system invokes
BatchSystemSupport.workerCleanup() after the last job for a
particular workflow invocation finishes. Note that the term worker
refers to an entire node, not just a worker process. A worker process
may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The
batch system is said to shut down after the last worker process
terminates.

	
classmethod supportsAutoDeployment()

	Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource
object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

	
issueBatchJob(jobDesc, job_environment=None)

	Issues a job with the specified command to the batch system and returns
a unique jobID.

	Parameters

	
	jobDesc – a toil.job.JobDescription

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – a collection of job-specific environment
variables to be set on the worker.

	Returns

	a unique jobID that can be used to reference the newly issued
job

	
killBatchJobs(jobIDs)

	Kills the given jobs, represented as Job ids, then checks they are dead by checking
they are not in the list of issued jobs.

	
getIssuedBatchJobIDs()

	Gets the list of issued jobs

	
getRunningBatchJobIDs()

	Retrieve running job IDs from local and batch scheduler.

Respects statePollingWait and will return cached results if not within
time period to talk with the scheduler.

	
getUpdatedBatchJob(maxWait)

	Returns information about job that has updated its status (i.e. ceased
running, either successfully or with an error). Each such job will be
returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they
may cause None to be returned earlier than maxWait.

	Parameters

	maxWait – the number of seconds to block, waiting for a result

	Returns

	If a result is available, returns UpdatedBatchJobInfo.
Otherwise it returns None. wallTime is the number of seconds (a strictly
positive float) in wall-clock time the job ran for, or None if this
batch system does not support tracking wall time.

	
shutdown()

	Signals worker to shutdown (via sentinel) then cleanly joins the thread

	Return type

	None

	
setEnv(name, value=None)

	Set an environment variable for the worker process before it is launched. The worker
process will typically inherit the environment of the machine it is running on but this
method makes it possible to override specific variables in that inherited environment
before the worker is launched. Note that this mechanism is different to the one used by
the worker internally to set up the environment of a job. A call to this method affects
all jobs issued after this method returns. Note to implementors: This means that you
would typically need to copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

	Parameters

	
	name – the environment variable to be set on the worker.

	value – if given, the environment variable given by name will be set to this value.

if None, the variable’s current value will be used as the value on the worker

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if value is None and the name cannot be found in the environment

	
classmethod getWaitDuration()

	

	
sleepSeconds(sleeptime=1)

	Helper function to drop on all state-querying functions to avoid over-querying.

	
with_retries(operation, *args, **kwargs)

	Call operation with args and kwargs. If one of the calls to an SGE
command fails, sleep and try again for a set number of times.

 toil.batchSystems.awsBatch

toil.batchSystems.awsBatch

Batch system for running Toil workflows on AWS Batch.

Useful with the AWS job store.

AWS Batch has no means for scheduling based on disk usage, so the backing
machines need to have “enough” disk and other constraints need to guarantee
that disk does not fill.

Assumes that an AWS Batch Queue name or ARN is already provided.

Handles creating and destroying a JobDefinition for the workflow run.

Additional containers should be launched with Singularity, not Docker.

Module Contents

Classes

	AWSBatchBatchSystem

	Adds cleanup support when the last running job leaves a node, for batch

Attributes

	logger

	

	STATE_TO_EXIT_REASON

	

	MAX_POLL_COUNT

	

	MIN_REQUESTABLE_MIB

	

	MIN_REQUESTABLE_CORES

	

	
toil.batchSystems.awsBatch.logger

	

	
toil.batchSystems.awsBatch.STATE_TO_EXIT_REASON: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], toil.batchSystems.abstractBatchSystem.BatchJobExitReason]

	

	
toil.batchSystems.awsBatch.MAX_POLL_COUNT = 100

	

	
toil.batchSystems.awsBatch.MIN_REQUESTABLE_MIB = 4

	

	
toil.batchSystems.awsBatch.MIN_REQUESTABLE_CORES = 1

	

	
class toil.batchSystems.awsBatch.AWSBatchBatchSystem(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.cleanup_support.BatchSystemCleanupSupport

[image: Inheritance diagram of toil.batchSystems.awsBatch.AWSBatchBatchSystem]

Adds cleanup support when the last running job leaves a node, for batch
systems that can’t provide it using the backing scheduler.

	Parameters

	
	config (toil.common.Config) –

	maxCores (float [https://docs.python.org/3/library/functions.html#float]) –

	maxMemory (int [https://docs.python.org/3/library/functions.html#int]) –

	maxDisk (int [https://docs.python.org/3/library/functions.html#int]) –

	
classmethod supportsAutoDeployment()

	Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource
object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
setUserScript(user_script)

	Set the user script for this workflow. This method must be called before the first job is
issued to this batch system, and only if supportsAutoDeployment() returns True,
otherwise it will raise an exception.

	Parameters

	
	userScript – the resource object representing the user script
or module and the modules it depends on.

	user_script (toil.resource.Resource) –

	Return type

	None

	
issueBatchJob(job_desc, job_environment=None)

	Issues a job with the specified command to the batch system and returns
a unique jobID.

	Parameters

	
	jobDesc – a toil.job.JobDescription

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – a collection of job-specific environment
variables to be set on the worker.

	job_desc (toil.job.JobDescription) –

	Returns

	a unique jobID that can be used to reference the newly issued
job

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
getUpdatedBatchJob(maxWait)

	Returns information about job that has updated its status (i.e. ceased
running, either successfully or with an error). Each such job will be
returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they
may cause None to be returned earlier than maxWait.

	Parameters

	maxWait (int [https://docs.python.org/3/library/functions.html#int]) – the number of seconds to block, waiting for a result

	Returns

	If a result is available, returns UpdatedBatchJobInfo.
Otherwise it returns None. wallTime is the number of seconds (a strictly
positive float) in wall-clock time the job ran for, or None if this
batch system does not support tracking wall time.

	Return type

	Optional[toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo]

	
shutdown()

	Called at the completion of a toil invocation.
Should cleanly terminate all worker threads.

	Return type

	None

	
getIssuedBatchJobIDs()

	Gets all currently issued jobs

	Returns

	A list of jobs (as jobIDs) currently issued (may be running, or may be
waiting to be run). Despite the result being a list, the ordering should not
be depended upon.

	Return type

	List[int [https://docs.python.org/3/library/functions.html#int]]

	
getRunningBatchJobIDs()

	Gets a map of jobs as jobIDs that are currently running (not just waiting)
and how long they have been running, in seconds.

	Returns

	dictionary with currently running jobID keys and how many seconds they have
been running as the value

	Return type

	Dict[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	
killBatchJobs(job_ids)

	Kills the given job IDs. After returning, the killed jobs will not
appear in the results of getRunningBatchJobIDs. The killed job will not
be returned from getUpdatedBatchJob.

	Parameters

	
	jobIDs – list of IDs of jobs to kill

	job_ids (List[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	None

	
classmethod add_options(parser)

	If this batch system provides any command line options, add them to the given parser.

	Parameters

	parser (Union[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], argparse._ArgumentGroup]) –

	Return type

	None

	
classmethod setOptions(setOption)

	Process command line or configuration options relevant to this batch system.

	Parameters

	setOption (toil.batchSystems.options.OptionSetter) – A function with signature
setOption(option_name, parsing_function=None, check_function=None, default=None, env=None)
returning nothing, used to update run configuration as a side effect.

	Return type

	None

 toil.batchSystems.cleanup_support

toil.batchSystems.cleanup_support

Module Contents

Classes

	BatchSystemCleanupSupport

	Adds cleanup support when the last running job leaves a node, for batch

	WorkerCleanupContext

	Context manager used by BatchSystemCleanupSupport to implement

Attributes

	logger

	

	
toil.batchSystems.cleanup_support.logger

	

	
class toil.batchSystems.cleanup_support.BatchSystemCleanupSupport(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.local_support.BatchSystemLocalSupport

[image: Inheritance diagram of toil.batchSystems.cleanup_support.BatchSystemCleanupSupport]

Adds cleanup support when the last running job leaves a node, for batch
systems that can’t provide it using the backing scheduler.

	Parameters

	
	config (toil.common.Config) –

	maxCores (float [https://docs.python.org/3/library/functions.html#float]) –

	maxMemory (int [https://docs.python.org/3/library/functions.html#int]) –

	maxDisk (int [https://docs.python.org/3/library/functions.html#int]) –

	
classmethod supportsWorkerCleanup()

	Indicates whether this batch system invokes
BatchSystemSupport.workerCleanup() after the last job for a
particular workflow invocation finishes. Note that the term worker
refers to an entire node, not just a worker process. A worker process
may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The
batch system is said to shut down after the last worker process
terminates.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
getWorkerContexts()

	Get a list of picklable context manager objects to wrap worker work in,
in order.

Can be used to ask the Toil worker to do things in-process (such as
configuring environment variables, hot-deploying user scripts, or
cleaning up a node) that would otherwise require a wrapping “executor”
process.

	Return type

	List[ContextManager[Any]]

	
class toil.batchSystems.cleanup_support.WorkerCleanupContext(workerCleanupInfo)

	Context manager used by BatchSystemCleanupSupport to implement
cleanup on a node after the last worker is done working.

Gets wrapped around the worker’s work.

	Parameters

	workerCleanupInfo (toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo) –

	
__enter__()

	
	Return type

	None

	
__exit__(type, value, traceback)

	
	Parameters

	
	type (Optional[Type[BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]]]) –

	value (Optional[BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]]) –

	traceback (Optional[types.TracebackType [https://docs.python.org/3/library/types.html#types.TracebackType]]) –

	Return type

	None

 toil.batchSystems.contained_executor

toil.batchSystems.contained_executor

Executor for running inside a container.

Useful for Kubernetes and TES batch systems.

Module Contents

Functions

	pack_job(job_desc[, user_script, environment])

	Create a command that, when run, will execute the given job.

	executor()

	Main function of the _toil_contained_executor entrypoint.

Attributes

	logger

	

	
toil.batchSystems.contained_executor.logger

	

	
toil.batchSystems.contained_executor.pack_job(job_desc, user_script=None, environment=None)

	Create a command that, when run, will execute the given job.

	Parameters

	
	job_desc (toil.job.JobDescription) – Job description for the job to run.

	user_script (Optional[toil.resource.Resource]) – User script that will be loaded before the job is run.

	environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Environment variable dict that will be applied before

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

the job is run.

	Returns

	Command to run the job, as an argument list that can be run

	Parameters

	
	job_desc (toil.job.JobDescription) –

	user_script (Optional[toil.resource.Resource]) –

	environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

inside the Toil appliance container.

	
toil.batchSystems.contained_executor.executor()

	Main function of the _toil_contained_executor entrypoint.

Runs inside the Toil container.

Responsible for setting up the user script and running the command for the
job (which may in turn invoke the Toil worker entrypoint).

	Return type

	None

 toil.batchSystems.gridengine

toil.batchSystems.gridengine

Module Contents

Classes

	GridEngineBatchSystem

	A partial implementation of BatchSystemSupport for batch systems run on a

Attributes

	logger

	

	
toil.batchSystems.gridengine.logger

	

	
class toil.batchSystems.gridengine.GridEngineBatchSystem(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

[image: Inheritance diagram of toil.batchSystems.gridengine.GridEngineBatchSystem]

A partial implementation of BatchSystemSupport for batch systems run on a
standard HPC cluster. By default auto-deployment is not implemented.

	
class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)

	Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker

[image: Inheritance diagram of toil.batchSystems.gridengine.GridEngineBatchSystem.Worker]

Grid Engine-specific AbstractGridEngineWorker methods

	Parameters

	
	newJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	updatedJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	killQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	killedJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	boss (AbstractGridEngineBatchSystem) –

	
getRunningJobIDs()

	Get a list of running job IDs. Implementation-specific; called by boss
AbstractGridEngineBatchSystem implementation via
AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
killJob(jobID)

	Kill specific job with the Toil job ID. Implementation-specific; called
by AbstractGridEngineWorker.killJobs()

	Parameters

	jobID (string) – Toil job ID

	
prepareSubmission(cpu, memory, jobID, command, jobName, job_environment=None, gpus=None)

	Preparation in putting together a command-line string
for submitting to batch system (via submitJob().)

	Param

	int cpu

	Param

	int memory

	Param

	int jobID: Toil job ID

	Param

	string subLine: the command line string to be called

	Param

	string jobName: the name of the Toil job, to provide metadata to batch systems if desired

	Param

	dict job_environment: the environment variables to be set on the worker

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Parameters

	
	cpu (int [https://docs.python.org/3/library/functions.html#int]) –

	memory (int [https://docs.python.org/3/library/functions.html#int]) –

	jobID (int [https://docs.python.org/3/library/functions.html#int]) –

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	gpus (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	
submitJob(subLine)

	Wrapper routine for submitting the actual command-line call, then
processing the output to get the batch system job ID

	Param

	string subLine: the literal command line string to be called

	Return type

	string: batch system job ID, which will be stored internally

	
getJobExitCode(sgeJobID)

	Get job exist code, checking both qstat and qacct. Return None if
still running. Higher level should retry on
CalledProcessErrorStderr, for the case the job has finished and
qacct result is stale.

	
prepareQsub(cpu, mem, jobID, job_environment=None)

	
	Parameters

	
	cpu (int [https://docs.python.org/3/library/functions.html#int]) –

	mem (int [https://docs.python.org/3/library/functions.html#int]) –

	jobID (int [https://docs.python.org/3/library/functions.html#int]) –

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
classmethod getWaitDuration()

	

 toil.batchSystems.htcondor

toil.batchSystems.htcondor

Module Contents

Classes

	HTCondorBatchSystem

	A partial implementation of BatchSystemSupport for batch systems run on a

Attributes

	logger

	

	JobTuple

	

	schedd_lock

	

	
toil.batchSystems.htcondor.logger

	

	
toil.batchSystems.htcondor.JobTuple

	

	
toil.batchSystems.htcondor.schedd_lock

	

	
class toil.batchSystems.htcondor.HTCondorBatchSystem(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

[image: Inheritance diagram of toil.batchSystems.htcondor.HTCondorBatchSystem]

A partial implementation of BatchSystemSupport for batch systems run on a
standard HPC cluster. By default auto-deployment is not implemented.

	
class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)

	Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker

[image: Inheritance diagram of toil.batchSystems.htcondor.HTCondorBatchSystem.Worker]

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways
to specify the activity: by passing a callable object to the constructor, or
by overriding the run() method in a subclass.

	Parameters

	
	newJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	updatedJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	killQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	killedJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	boss (AbstractGridEngineBatchSystem) –

	
createJobs(newJob)

	Create a new job with the given attributes.

Implementation-specific; called by AbstractGridEngineWorker.run()

	Parameters

	newJob (JobTuple) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
prepareSubmission(cpu, memory, disk, jobID, jobName, command, environment)

	Preparation in putting together a command-line string
for submitting to batch system (via submitJob().)

	Param

	int cpu

	Param

	int memory

	Param

	int jobID: Toil job ID

	Param

	string subLine: the command line string to be called

	Param

	string jobName: the name of the Toil job, to provide metadata to batch systems if desired

	Param

	dict job_environment: the environment variables to be set on the worker

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Parameters

	
	cpu (int [https://docs.python.org/3/library/functions.html#int]) –

	memory (int [https://docs.python.org/3/library/functions.html#int]) –

	disk (int [https://docs.python.org/3/library/functions.html#int]) –

	jobID (int [https://docs.python.org/3/library/functions.html#int]) –

	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	environment (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
submitJob(submitObj)

	Wrapper routine for submitting the actual command-line call, then
processing the output to get the batch system job ID

	Param

	string subLine: the literal command line string to be called

	Return type

	string: batch system job ID, which will be stored internally

	
getRunningJobIDs()

	Get a list of running job IDs. Implementation-specific; called by boss
AbstractGridEngineBatchSystem implementation via
AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
killJob(jobID)

	Kill specific job with the Toil job ID. Implementation-specific; called
by AbstractGridEngineWorker.killJobs()

	Parameters

	jobID (string) – Toil job ID

	
getJobExitCode(batchJobID)

	Returns job exit code or an instance of abstractBatchSystem.BatchJobExitReason.
if something else happened other than the job exiting.
Implementation-specific; called by AbstractGridEngineWorker.checkOnJobs()

	Parameters

	batchjobID (string) – batch system job ID

	Return type

	int [https://docs.python.org/3/library/functions.html#int]|toil.batchSystems.abstractBatchSystem.BatchJobExitReason: exit code int
or BatchJobExitReason if something else happened other than job exiting.

	
connectSchedd()

	Connect to HTCondor Schedd and yield a Schedd object.

You can only use it inside the context.
Handles locking to make sure that only one thread is trying to do this at a time.

	
duplicate_quotes(value)

	Escape a string by doubling up all single and double quotes.

This is used for arguments we pass to htcondor that need to be
inside both double and single quote enclosures.

	Parameters

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
getEnvString(overrides)

	Build an environment string that a HTCondor Submit object can use.

For examples of valid strings, see:
http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html#man-condor-submit-environment

	Parameters

	overrides (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
issueBatchJob(jobNode, job_environment=None)

	Issues a job with the specified command to the batch system and returns
a unique jobID.

	Parameters

	
	jobDesc – a toil.job.JobDescription

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – a collection of job-specific environment
variables to be set on the worker.

	Returns

	a unique jobID that can be used to reference the newly issued
job

 toil.batchSystems.kubernetes

toil.batchSystems.kubernetes

Batch system for running Toil workflows on Kubernetes.

Ony useful with network-based job stores, like AWSJobStore.

Within non-privileged Kubernetes containers, additional Docker containers
cannot yet be launched. That functionality will need to wait for user-mode
Docker

Module Contents

Classes

	KubernetesBatchSystem

	Adds cleanup support when the last running job leaves a node, for batch

Functions

	is_retryable_kubernetes_error(e)

	A function that determines whether or not Toil should retry or stop given

Attributes

	logger

	

	retryable_kubernetes_errors

	

	KeyValuesList

	

	
toil.batchSystems.kubernetes.logger

	

	
toil.batchSystems.kubernetes.retryable_kubernetes_errors: List[Union[Type[Exception [https://docs.python.org/3/library/exceptions.html#Exception]], toil.lib.retry.ErrorCondition]]

	

	
toil.batchSystems.kubernetes.is_retryable_kubernetes_error(e)

	A function that determines whether or not Toil should retry or stop given
exceptions thrown by Kubernetes.

	Parameters

	e (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.batchSystems.kubernetes.KeyValuesList

	

	
class toil.batchSystems.kubernetes.KubernetesBatchSystem(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.cleanup_support.BatchSystemCleanupSupport

[image: Inheritance diagram of toil.batchSystems.kubernetes.KubernetesBatchSystem]

Adds cleanup support when the last running job leaves a node, for batch
systems that can’t provide it using the backing scheduler.

	Parameters

	
	config (toil.common.Config) –

	maxCores (int [https://docs.python.org/3/library/functions.html#int]) –

	maxMemory (int [https://docs.python.org/3/library/functions.html#int]) –

	maxDisk (int [https://docs.python.org/3/library/functions.html#int]) –

	
class DecoratorWrapper(to_wrap, decorator)

	Class to wrap an object so all its methods are decorated.

	Parameters

	
	to_wrap (Any) –

	decorator (Callable[[Callable[P, Any]], Callable[P, Any]]) –

	
P

	

	
__getattr__(name)

	Get a member as if we are actually the wrapped object.
If it looks callable, we will decorate it.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Any

	
class Placement

	Internal format for pod placement constraints and preferences.

	
required_labels: KeyValuesList = []

	Labels which are required to be present (with these values).

	
desired_labels: KeyValuesList = []

	Labels which are optional, but preferred to be present (with these values).

	
prohibited_labels: KeyValuesList = []

	Labels which are not allowed to be present (with these values).

	
tolerated_taints: KeyValuesList = []

	Taints which are allowed to be present (with these values).

	
set_preemptible(preemptible)

	Add constraints for a job being preemptible or not.

Preemptible jobs will be able to run on preemptible or non-preemptible
nodes, and will prefer preemptible nodes if available.

Non-preemptible jobs will not be allowed to run on nodes that are
marked as preemptible.

Understands the labeling scheme used by EKS, and the taint scheme used
by GCE. The Toil-managed Kubernetes setup will mimic at least one of
these.

	Parameters

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
apply(pod_spec)

	Set affinity and/or tolerations fields on pod_spec, so that
it runs on the right kind of nodes for the constraints we represent.

	Parameters

	pod_spec (kubernetes.client.V1PodSpec) –

	Return type

	None

	
class KubernetesConfig

	Bases: Protocol

[image: Inheritance diagram of toil.batchSystems.kubernetes.KubernetesBatchSystem.KubernetesConfig]

Type-enforcing protocol for Toil configs that have the extra Kubernetes
batch system fields.

TODO: Until MyPY lets protocols inherit form non-protocols, we will
have to let the fact that this also has to be a Config just be manually
enforced.

	
kubernetes_host_path: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
kubernetes_owner: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
kubernetes_service_account: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
kubernetes_pod_timeout: float [https://docs.python.org/3/library/functions.html#float]

	

	
ItemT

	

	
CovItemT

	

	
P

	

	
R

	

	
OptionType

	

	
classmethod supportsAutoDeployment()

	Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource
object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
setUserScript(userScript)

	Set the user script for this workflow. This method must be called before the first job is
issued to this batch system, and only if supportsAutoDeployment() returns True,
otherwise it will raise an exception.

	Parameters

	userScript (toil.resource.Resource) – the resource object representing the user script
or module and the modules it depends on.

	Return type

	None

	
issueBatchJob(job_desc, job_environment=None)

	Issues a job with the specified command to the batch system and returns
a unique jobID.

	Parameters

	
	jobDesc – a toil.job.JobDescription

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – a collection of job-specific environment
variables to be set on the worker.

	job_desc (toil.job.JobDescription) –

	Returns

	a unique jobID that can be used to reference the newly issued
job

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
getUpdatedBatchJob(maxWait)

	Returns information about job that has updated its status (i.e. ceased
running, either successfully or with an error). Each such job will be
returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they
may cause None to be returned earlier than maxWait.

	Parameters

	maxWait (float [https://docs.python.org/3/library/functions.html#float]) – the number of seconds to block, waiting for a result

	Returns

	If a result is available, returns UpdatedBatchJobInfo.
Otherwise it returns None. wallTime is the number of seconds (a strictly
positive float) in wall-clock time the job ran for, or None if this
batch system does not support tracking wall time.

	Return type

	Optional[toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo]

	
shutdown()

	Called at the completion of a toil invocation.
Should cleanly terminate all worker threads.

	Return type

	None

	
getIssuedBatchJobIDs()

	Gets all currently issued jobs

	Returns

	A list of jobs (as jobIDs) currently issued (may be running, or may be
waiting to be run). Despite the result being a list, the ordering should not
be depended upon.

	Return type

	List[int [https://docs.python.org/3/library/functions.html#int]]

	
getRunningBatchJobIDs()

	Gets a map of jobs as jobIDs that are currently running (not just waiting)
and how long they have been running, in seconds.

	Returns

	dictionary with currently running jobID keys and how many seconds they have
been running as the value

	Return type

	Dict[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	
killBatchJobs(jobIDs)

	Kills the given job IDs. After returning, the killed jobs will not
appear in the results of getRunningBatchJobIDs. The killed job will not
be returned from getUpdatedBatchJob.

	Parameters

	jobIDs (List[int [https://docs.python.org/3/library/functions.html#int]]) – list of IDs of jobs to kill

	Return type

	None

	
classmethod get_default_kubernetes_owner()

	Get the default Kubernetes-acceptable username string to tack onto jobs.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod add_options(parser)

	If this batch system provides any command line options, add them to the given parser.

	Parameters

	parser (Union[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], argparse._ArgumentGroup]) –

	Return type

	None

	
classmethod setOptions(setOption)

	Process command line or configuration options relevant to this batch system.

	Parameters

	setOption (toil.batchSystems.options.OptionSetter) – A function with signature
setOption(option_name, parsing_function=None, check_function=None, default=None, env=None)
returning nothing, used to update run configuration as a side effect.

	Return type

	None

 toil.batchSystems.local_support

toil.batchSystems.local_support

Module Contents

Classes

	BatchSystemLocalSupport

	Adds a local queue for helper jobs, useful for CWL & others.

Attributes

	logger

	

	
toil.batchSystems.local_support.logger

	

	
class toil.batchSystems.local_support.BatchSystemLocalSupport(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.abstractBatchSystem.BatchSystemSupport

[image: Inheritance diagram of toil.batchSystems.local_support.BatchSystemLocalSupport]

Adds a local queue for helper jobs, useful for CWL & others.

	Parameters

	
	config (toil.common.Config) –

	maxCores (float [https://docs.python.org/3/library/functions.html#float]) –

	maxMemory (int [https://docs.python.org/3/library/functions.html#int]) –

	maxDisk (int [https://docs.python.org/3/library/functions.html#int]) –

	
handleLocalJob(jobDesc)

	To be called by issueBatchJobs.

Returns the jobID if the jobDesc has been submitted to the local queue,
otherwise returns None

	Parameters

	jobDesc (toil.job.JobDescription) –

	Return type

	Optional[int [https://docs.python.org/3/library/functions.html#int]]

	
killLocalJobs(jobIDs)

	Will kill all local jobs that match the provided jobIDs.

To be called by killBatchJobs.

	Parameters

	jobIDs (List[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	None

	
getIssuedLocalJobIDs()

	To be called by getIssuedBatchJobIDs.

	Return type

	List[int [https://docs.python.org/3/library/functions.html#int]]

	
getRunningLocalJobIDs()

	To be called by getRunningBatchJobIDs().

	Return type

	Dict[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	
getUpdatedLocalJob(maxWait)

	To be called by getUpdatedBatchJob().

	Parameters

	maxWait (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	Optional[toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo]

	
getNextJobID()

	Must be used to get job IDs so that the local and batch jobs do not conflict.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
shutdownLocal()

	To be called from shutdown().

	Return type

	None

 toil.batchSystems.lsf

toil.batchSystems.lsf

Module Contents

Classes

	LSFBatchSystem

	A partial implementation of BatchSystemSupport for batch systems run on a

Attributes

	logger

	

	
toil.batchSystems.lsf.logger

	

	
class toil.batchSystems.lsf.LSFBatchSystem(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

[image: Inheritance diagram of toil.batchSystems.lsf.LSFBatchSystem]

A partial implementation of BatchSystemSupport for batch systems run on a
standard HPC cluster. By default auto-deployment is not implemented.

	
class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)

	Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker

[image: Inheritance diagram of toil.batchSystems.lsf.LSFBatchSystem.Worker]

LSF specific AbstractGridEngineWorker methods.

	Parameters

	
	newJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	updatedJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	killQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	killedJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	boss (AbstractGridEngineBatchSystem) –

	
getRunningJobIDs()

	Get a list of running job IDs. Implementation-specific; called by boss
AbstractGridEngineBatchSystem implementation via
AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
fallbackRunningJobIDs(currentjobs)

	

	
killJob(jobID)

	Kill specific job with the Toil job ID. Implementation-specific; called
by AbstractGridEngineWorker.killJobs()

	Parameters

	jobID (string) – Toil job ID

	
prepareSubmission(cpu, memory, jobID, command, jobName, job_environment=None, gpus=None)

	Preparation in putting together a command-line string
for submitting to batch system (via submitJob().)

	Param

	int cpu

	Param

	int memory

	Param

	int jobID: Toil job ID

	Param

	string subLine: the command line string to be called

	Param

	string jobName: the name of the Toil job, to provide metadata to batch systems if desired

	Param

	dict job_environment: the environment variables to be set on the worker

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Parameters

	
	cpu (int [https://docs.python.org/3/library/functions.html#int]) –

	memory (int [https://docs.python.org/3/library/functions.html#int]) –

	jobID (int [https://docs.python.org/3/library/functions.html#int]) –

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	gpus (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	
submitJob(subLine)

	Wrapper routine for submitting the actual command-line call, then
processing the output to get the batch system job ID

	Param

	string subLine: the literal command line string to be called

	Return type

	string: batch system job ID, which will be stored internally

	
coalesce_job_exit_codes(batch_job_id_list)

	Returns exit codes for a list of jobs.

Called by AbstractGridEngineWorker.checkOnJobs().

This is an optional part of the interface. It should raise
NotImplementedError if not actually implemented for a particular
scheduler.

	Parameters

	batch_job_id_list (string) – List of batch system job ID

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
getJobExitCode(lsfJobID)

	Returns job exit code or an instance of abstractBatchSystem.BatchJobExitReason.
if something else happened other than the job exiting.
Implementation-specific; called by AbstractGridEngineWorker.checkOnJobs()

	Parameters

	batchjobID (string) – batch system job ID

	Return type

	int [https://docs.python.org/3/library/functions.html#int]|toil.batchSystems.abstractBatchSystem.BatchJobExitReason: exit code int
or BatchJobExitReason if something else happened other than job exiting.

	
parse_bjobs_record(bjobs_record, job)

	Helper functions for getJobExitCode and to parse the bjobs status record

	Parameters

	
	bjobs_record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	job (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	Union[int [https://docs.python.org/3/library/functions.html#int], None]

	
getJobExitCodeBACCT(job)

	

	
fallbackGetJobExitCode(job)

	

	
prepareBsub(cpu, mem, jobID)

	Make a bsub commandline to execute.

	params:
	cpu: number of cores needed
mem: number of bytes of memory needed
jobID: ID number of the job

	Parameters

	
	cpu (int [https://docs.python.org/3/library/functions.html#int]) –

	mem (int [https://docs.python.org/3/library/functions.html#int]) –

	jobID (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
parseBjobs(bjobs_output_str)

	Parse records from bjobs json type output

	Params bjobs_output_str

	stdout of bjobs json type output

	
parseMaxMem(jobID)

	Parse the maximum memory from job.

	Parameters

	jobID – ID number of the job

	
getWaitDuration()

	We give LSF a second to catch its breath (in seconds)

 toil.batchSystems.lsfHelper

toil.batchSystems.lsfHelper

Module Contents

Functions

	find(basedir, string)

	walk basedir and return all files matching string

	find_first_match(basedir, string)

	return the first file that matches string starting from basedir

	get_conf_file(filename, env)

	

	apply_conf_file(fn, conf_filename)

	

	per_core_reserve_from_stream(stream)

	

	get_lsf_units_from_stream(stream)

	

	tokenize_conf_stream(conf_handle)

	convert the key=val pairs in a LSF config stream to tuples of tokens

	apply_bparams(fn)

	apply fn to each line of bparams, returning the result

	apply_lsadmin(fn)

	apply fn to each line of lsadmin, returning the result

	get_lsf_units([resource])

	check if we can find LSF_UNITS_FOR_LIMITS in lsadmin and lsf.conf

	parse_mem_and_cmd_from_output(output)

	Use regex to find "MAX MEM" and "Command" inside of an output.

	get_lsf_version()

	Get current LSF version

	check_lsf_json_output_supported()

	Check if the current LSF system supports bjobs json output.

	parse_memory(mem)

	Parse memory parameter.

	per_core_reservation()

	returns True if the cluster is configured for reservations to be per core,

Attributes

	LSB_PARAMS_FILENAME

	

	LSF_CONF_FILENAME

	

	LSF_CONF_ENV

	

	DEFAULT_LSF_UNITS

	

	DEFAULT_RESOURCE_UNITS

	

	LSF_JSON_OUTPUT_MIN_VERSION

	

	logger

	

	
toil.batchSystems.lsfHelper.LSB_PARAMS_FILENAME = 'lsb.params'

	

	
toil.batchSystems.lsfHelper.LSF_CONF_FILENAME = 'lsf.conf'

	

	
toil.batchSystems.lsfHelper.LSF_CONF_ENV = ['LSF_CONFDIR', 'LSF_ENVDIR']

	

	
toil.batchSystems.lsfHelper.DEFAULT_LSF_UNITS = 'KB'

	

	
toil.batchSystems.lsfHelper.DEFAULT_RESOURCE_UNITS = 'MB'

	

	
toil.batchSystems.lsfHelper.LSF_JSON_OUTPUT_MIN_VERSION = '10.1.0.2'

	

	
toil.batchSystems.lsfHelper.logger

	

	
toil.batchSystems.lsfHelper.find(basedir, string)

	walk basedir and return all files matching string

	
toil.batchSystems.lsfHelper.find_first_match(basedir, string)

	return the first file that matches string starting from basedir

	
toil.batchSystems.lsfHelper.get_conf_file(filename, env)

	

	
toil.batchSystems.lsfHelper.apply_conf_file(fn, conf_filename)

	

	
toil.batchSystems.lsfHelper.per_core_reserve_from_stream(stream)

	

	
toil.batchSystems.lsfHelper.get_lsf_units_from_stream(stream)

	

	
toil.batchSystems.lsfHelper.tokenize_conf_stream(conf_handle)

	convert the key=val pairs in a LSF config stream to tuples of tokens

	
toil.batchSystems.lsfHelper.apply_bparams(fn)

	apply fn to each line of bparams, returning the result

	
toil.batchSystems.lsfHelper.apply_lsadmin(fn)

	apply fn to each line of lsadmin, returning the result

	
toil.batchSystems.lsfHelper.get_lsf_units(resource=False)

	check if we can find LSF_UNITS_FOR_LIMITS in lsadmin and lsf.conf
files, preferring the value in bparams, then lsadmin, then the lsf.conf file

	Parameters

	resource (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.batchSystems.lsfHelper.parse_mem_and_cmd_from_output(output)

	Use regex to find “MAX MEM” and “Command” inside of an output.

	Parameters

	output (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
toil.batchSystems.lsfHelper.get_lsf_version()

	Get current LSF version

	
toil.batchSystems.lsfHelper.check_lsf_json_output_supported()

	Check if the current LSF system supports bjobs json output.

	
toil.batchSystems.lsfHelper.parse_memory(mem)

	Parse memory parameter.

	Parameters

	mem (float [https://docs.python.org/3/library/functions.html#float]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.batchSystems.lsfHelper.per_core_reservation()

	returns True if the cluster is configured for reservations to be per core,
False if it is per job

 toil.batchSystems.options

toil.batchSystems.options

Module Contents

Classes

	OptionSetter

	Protocol for the setOption function we get to let us set up CLI options for

Functions

	set_batchsystem_options(batch_system, set_option)

	Call set_option for all the options for the given named batch system, or

	add_all_batchsystem_options(parser)

	

	set_batchsystem_config_defaults(config)

	Set default and environment-based options for builtin batch systems. This

Attributes

	logger

	

	
toil.batchSystems.options.logger

	

	
class toil.batchSystems.options.OptionSetter

	Bases: Protocol

[image: Inheritance diagram of toil.batchSystems.options.OptionSetter]

Protocol for the setOption function we get to let us set up CLI options for
each batch system.

Actual functionality is defined in the Config class.

	
OptionType

	

	
__call__(option_name, parsing_function=None, check_function=None, default=None, env=None, old_names=None)

	
	Parameters

	
	option_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	parsing_function (Optional[Callable[[Any], OptionType]]) –

	check_function (Optional[Callable[[OptionType], Union[None, bool [https://docs.python.org/3/library/functions.html#bool]]]]) –

	default (Optional[OptionType]) –

	env (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	old_names (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.batchSystems.options.set_batchsystem_options(batch_system, set_option)

	Call set_option for all the options for the given named batch system, or
all batch systems if no name is provided.

	Parameters

	
	batch_system (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	set_option (OptionSetter) –

	Return type

	None

	
toil.batchSystems.options.add_all_batchsystem_options(parser)

	
	Parameters

	parser (Union[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], argparse._ArgumentGroup]) –

	Return type

	None

	
toil.batchSystems.options.set_batchsystem_config_defaults(config)

	Set default and environment-based options for builtin batch systems. This
is required if a Config object is not constructed from an Options object.

	Return type

	None

 toil.batchSystems.parasol

toil.batchSystems.parasol

Module Contents

Classes

	ParasolBatchSystem

	The interface for Parasol.

Attributes

	logger

	

	
toil.batchSystems.parasol.logger

	

	
class toil.batchSystems.parasol.ParasolBatchSystem(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.abstractBatchSystem.BatchSystemSupport

[image: Inheritance diagram of toil.batchSystems.parasol.ParasolBatchSystem]

The interface for Parasol.

	
parasolOutputPattern

	

	
runningPattern

	

	
classmethod supportsWorkerCleanup()

	Indicates whether this batch system invokes
BatchSystemSupport.workerCleanup() after the last job for a
particular workflow invocation finishes. Note that the term worker
refers to an entire node, not just a worker process. A worker process
may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The
batch system is said to shut down after the last worker process
terminates.

	
classmethod supportsAutoDeployment()

	Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource
object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

	
issueBatchJob(jobDesc, job_environment=None)

	Issue parasol with job commands.

	Parameters

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	
setEnv(name, value=None)

	Set an environment variable for the worker process before it is launched. The worker
process will typically inherit the environment of the machine it is running on but this
method makes it possible to override specific variables in that inherited environment
before the worker is launched. Note that this mechanism is different to the one used by
the worker internally to set up the environment of a job. A call to this method affects
all jobs issued after this method returns. Note to implementors: This means that you
would typically need to copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

	Parameters

	
	name – the environment variable to be set on the worker.

	value – if given, the environment variable given by name will be set to this value.

if None, the variable’s current value will be used as the value on the worker

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if value is None and the name cannot be found in the environment

	
killBatchJobs(jobIDs)

	Kills the given jobs, represented as Job ids, then checks they are dead by checking
they are not in the list of issued jobs.

	
getJobIDsForResultsFile(resultsFile)

	Get all queued and running jobs for a results file.

	
getIssuedBatchJobIDs()

	Gets the list of jobs issued to parasol in all results files, but not including jobs
created by other users.

	
getRunningBatchJobIDs()

	Returns map of running jobIDs and the time they have been running.

	
getUpdatedBatchJob(maxWait)

	Returns information about job that has updated its status (i.e. ceased
running, either successfully or with an error). Each such job will be
returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they
may cause None to be returned earlier than maxWait.

	Parameters

	maxWait – the number of seconds to block, waiting for a result

	Returns

	If a result is available, returns UpdatedBatchJobInfo.
Otherwise it returns None. wallTime is the number of seconds (a strictly
positive float) in wall-clock time the job ran for, or None if this
batch system does not support tracking wall time.

	
updatedJobWorker()

	We use the parasol results to update the status of jobs, adding them
to the list of updated jobs.

Results have the following structure.. (thanks Mark D!)

	int status;

	Job status - wait() return format. 0 is good.

	char host;

	Machine job ran on.

	char jobId;

	Job queuing system job ID

	char exe;

	Job executable file (no path)

	int usrTicks;

	‘User’ CPU time in ticks.

	int sysTicks;

	‘System’ CPU time in ticks.

	unsigned submitTime;

	Job submission time in seconds since 1/1/1970

	unsigned startTime;

	Job start time in seconds since 1/1/1970

	unsigned endTime;

	Job end time in seconds since 1/1/1970

	char user;

	User who ran job

	char errFile;

	Location of stderr file on host

Plus you finally have the command name.

	
shutdown()

	Called at the completion of a toil invocation.
Should cleanly terminate all worker threads.

	Return type

	None

	
classmethod add_options(parser)

	If this batch system provides any command line options, add them to the given parser.

	Parameters

	parser (Union[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], argparse._ArgumentGroup]) –

	Return type

	None

	
classmethod setOptions(setOption)

	Process command line or configuration options relevant to this batch system.

	Parameters

	setOption (toil.batchSystems.options.OptionSetter) – A function with signature
setOption(option_name, parsing_function=None, check_function=None, default=None, env=None)
returning nothing, used to update run configuration as a side effect.

 toil.batchSystems.registry

toil.batchSystems.registry

Module Contents

Functions

	aws_batch_batch_system_factory()

	

	gridengine_batch_system_factory()

	

	parasol_batch_system_factory()

	

	lsf_batch_system_factory()

	

	single_machine_batch_system_factory()

	

	mesos_batch_system_factory()

	

	slurm_batch_system_factory()

	

	tes_batch_system_factory()

	

	torque_batch_system_factory()

	

	htcondor_batch_system_factory()

	

	kubernetes_batch_system_factory()

	

	addBatchSystemFactory(key, batchSystemFactory)

	Adds a batch system to the registry for workflow-supplied batch systems.

	save_batch_system_plugin_state()

	Return a snapshot of the plugin registry that can be restored to remove

	restore_batch_system_plugin_state(snapshot)

	Restore the batch system registry state to a snapshot from

Attributes

	logger

	

	BATCH_SYSTEM_FACTORY_REGISTRY

	

	BATCH_SYSTEMS

	

	DEFAULT_BATCH_SYSTEM

	

	
toil.batchSystems.registry.logger

	

	
toil.batchSystems.registry.aws_batch_batch_system_factory()

	

	
toil.batchSystems.registry.gridengine_batch_system_factory()

	

	
toil.batchSystems.registry.parasol_batch_system_factory()

	

	
toil.batchSystems.registry.lsf_batch_system_factory()

	

	
toil.batchSystems.registry.single_machine_batch_system_factory()

	

	
toil.batchSystems.registry.mesos_batch_system_factory()

	

	
toil.batchSystems.registry.slurm_batch_system_factory()

	

	
toil.batchSystems.registry.tes_batch_system_factory()

	

	
toil.batchSystems.registry.torque_batch_system_factory()

	

	
toil.batchSystems.registry.htcondor_batch_system_factory()

	

	
toil.batchSystems.registry.kubernetes_batch_system_factory()

	

	
toil.batchSystems.registry.BATCH_SYSTEM_FACTORY_REGISTRY: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable[[], Type[toil.batchSystems.abstractBatchSystem.AbstractBatchSystem]]]

	

	
toil.batchSystems.registry.BATCH_SYSTEMS

	

	
toil.batchSystems.registry.DEFAULT_BATCH_SYSTEM = 'single_machine'

	

	
toil.batchSystems.registry.addBatchSystemFactory(key, batchSystemFactory)

	Adds a batch system to the registry for workflow-supplied batch systems.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	batchSystemFactory (Callable[[], Type[toil.batchSystems.abstractBatchSystem.AbstractBatchSystem]]) –

	
toil.batchSystems.registry.save_batch_system_plugin_state()

	Return a snapshot of the plugin registry that can be restored to remove
added plugins. Useful for testing the plugin system in-process with other
tests.

	Return type

	Tuple[List[str [https://docs.python.org/3/library/stdtypes.html#str]], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable[[], Type[toil.batchSystems.abstractBatchSystem.AbstractBatchSystem]]]]

	
toil.batchSystems.registry.restore_batch_system_plugin_state(snapshot)

	Restore the batch system registry state to a snapshot from
save_batch_system_plugin_state().

	Parameters

	snapshot (Tuple[List[str [https://docs.python.org/3/library/stdtypes.html#str]], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable[[], Type[toil.batchSystems.abstractBatchSystem.AbstractBatchSystem]]]]) –

 toil.batchSystems.singleMachine

toil.batchSystems.singleMachine

Module Contents

Classes

	SingleMachineBatchSystem

	The interface for running jobs on a single machine, runs all the jobs you

	Info

	Record for a running job.

Attributes

	logger

	

	
toil.batchSystems.singleMachine.logger

	

	
class toil.batchSystems.singleMachine.SingleMachineBatchSystem(config, maxCores, maxMemory, maxDisk, max_jobs=None)

	Bases: toil.batchSystems.abstractBatchSystem.BatchSystemSupport

[image: Inheritance diagram of toil.batchSystems.singleMachine.SingleMachineBatchSystem]

The interface for running jobs on a single machine, runs all the jobs you
give it as they come in, but in parallel.

Uses a single “daddy” thread to manage a fleet of child processes.

Communication with the daddy thread happens via two queues: one queue of
jobs waiting to be run (the input queue), and one queue of jobs that are
finished/stopped and need to be returned by getUpdatedBatchJob (the output
queue).

When the batch system is shut down, the daddy thread is stopped.

If running in debug-worker mode, jobs are run immediately as they are sent
to the batch system, in the sending thread, and the daddy thread is not
run. But the queues are still used.

	Parameters

	
	config (toil.common.Config) –

	maxCores (float [https://docs.python.org/3/library/functions.html#float]) –

	maxMemory (int [https://docs.python.org/3/library/functions.html#int]) –

	maxDisk (int [https://docs.python.org/3/library/functions.html#int]) –

	max_jobs (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	
numCores

	

	
minCores = 0.1

	The minimal fractional CPU. Tasks with a smaller core requirement will be rounded up to this
value.

	
physicalMemory

	

	
classmethod supportsAutoDeployment()

	Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource
object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

	
classmethod supportsWorkerCleanup()

	Indicates whether this batch system invokes
BatchSystemSupport.workerCleanup() after the last job for a
particular workflow invocation finishes. Note that the term worker
refers to an entire node, not just a worker process. A worker process
may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The
batch system is said to shut down after the last worker process
terminates.

	
daddy()

	Be the “daddy” thread.

Our job is to look at jobs from the input queue.

If a job fits in the available resources, we allocate resources for it
and kick off a child process.

We also check on our children.

When a child finishes, we reap it, release its resources, and put its
information in the output queue.

	
getSchedulingStatusMessage()

	Get a log message fragment for the user about anything that might be
going wrong in the batch system, if available.

If no useful message is available, return None.

This can be used to report what resource is the limiting factor when
scheduling jobs, for example. If the leader thinks the workflow is
stuck, the message can be displayed to the user to help them diagnose
why it might be stuck.

	Returns

	User-directed message about scheduling state.

	
check_resource_request(requirer)

	Check resource request is not greater than that available or allowed.

	Parameters

	
	requirer (toil.job.Requirer) – Object whose requirements are being checked

	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the job being checked, for generating a useful error report.

	detail (str [https://docs.python.org/3/library/stdtypes.html#str]) – Batch-system-specific message to include in the error.

	Raises

	InsufficientSystemResources – raised when a resource is requested in an amount
greater than allowed

	Return type

	None

	
issueBatchJob(jobDesc, job_environment=None)

	Adds the command and resources to a queue to be run.

	Parameters

	
	jobDesc (toil.job.JobDescription) –

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
killBatchJobs(jobIDs)

	Kills jobs by ID.

	Parameters

	jobIDs (List[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	None

	
getIssuedBatchJobIDs()

	Just returns all the jobs that have been run, but not yet returned as updated.

	Return type

	List[int [https://docs.python.org/3/library/functions.html#int]]

	
getRunningBatchJobIDs()

	Gets a map of jobs as jobIDs that are currently running (not just waiting)
and how long they have been running, in seconds.

	Returns

	dictionary with currently running jobID keys and how many seconds they have
been running as the value

	Return type

	Dict[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	
shutdown()

	Terminate cleanly and join daddy thread.

	Return type

	None

	
getUpdatedBatchJob(maxWait)

	Returns a tuple of a no-longer-running job, the return value of its process, and its runtime, or None.

	Parameters

	maxWait (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	Optional[toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo]

	
classmethod add_options(parser)

	If this batch system provides any command line options, add them to the given parser.

	Parameters

	parser (Union[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], argparse._ArgumentGroup]) –

	Return type

	None

	
classmethod setOptions(setOption)

	Process command line or configuration options relevant to this batch system.

	Parameters

	setOption (toil.batchSystems.options.OptionSetter) – A function with signature
setOption(option_name, parsing_function=None, check_function=None, default=None, env=None)
returning nothing, used to update run configuration as a side effect.

	
class toil.batchSystems.singleMachine.Info(startTime, popen, resources, killIntended)

	Record for a running job.

Stores the start time of the job, the Popen object representing its child
(or None), the tuple of (coreFractions, memory, disk) it is using (or
None), and whether the job is supposed to be being killed.

 toil.batchSystems.slurm

toil.batchSystems.slurm

Module Contents

Classes

	SlurmBatchSystem

	A partial implementation of BatchSystemSupport for batch systems run on a

Attributes

	logger

	

	
toil.batchSystems.slurm.logger

	

	
class toil.batchSystems.slurm.SlurmBatchSystem(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

[image: Inheritance diagram of toil.batchSystems.slurm.SlurmBatchSystem]

A partial implementation of BatchSystemSupport for batch systems run on a
standard HPC cluster. By default auto-deployment is not implemented.

	
class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)

	Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker

[image: Inheritance diagram of toil.batchSystems.slurm.SlurmBatchSystem.Worker]

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways
to specify the activity: by passing a callable object to the constructor, or
by overriding the run() method in a subclass.

	Parameters

	
	newJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	updatedJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	killQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	killedJobsQueue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) –

	boss (AbstractGridEngineBatchSystem) –

	
getRunningJobIDs()

	Get a list of running job IDs. Implementation-specific; called by boss
AbstractGridEngineBatchSystem implementation via
AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
killJob(jobID)

	Kill specific job with the Toil job ID. Implementation-specific; called
by AbstractGridEngineWorker.killJobs()

	Parameters

	jobID (string) – Toil job ID

	
prepareSubmission(cpu, memory, jobID, command, jobName, job_environment=None, gpus=None)

	Preparation in putting together a command-line string
for submitting to batch system (via submitJob().)

	Param

	int cpu

	Param

	int memory

	Param

	int jobID: Toil job ID

	Param

	string subLine: the command line string to be called

	Param

	string jobName: the name of the Toil job, to provide metadata to batch systems if desired

	Param

	dict job_environment: the environment variables to be set on the worker

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Parameters

	
	cpu (int [https://docs.python.org/3/library/functions.html#int]) –

	memory (int [https://docs.python.org/3/library/functions.html#int]) –

	jobID (int [https://docs.python.org/3/library/functions.html#int]) –

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	gpus (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	
submitJob(subLine)

	Wrapper routine for submitting the actual command-line call, then
processing the output to get the batch system job ID

	Param

	string subLine: the literal command line string to be called

	Return type

	string: batch system job ID, which will be stored internally

	
coalesce_job_exit_codes(batch_job_id_list)

	Collect all job exit codes in a single call.
:param batch_job_id_list: list of Job ID strings, where each string has the form
“<job>[.<task>]”.
:return: list of job exit codes, associated with the list of job IDs.

	Parameters

	batch_job_id_list (list [https://docs.python.org/3/library/stdtypes.html#list]) –

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
getJobExitCode(batchJobID)

	Get job exit code for given batch job ID.
:param batchJobID: string of the form “<job>[.<task>]”.
:return: integer job exit code.

	Parameters

	batchJobID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
prepareSbatch(cpu, mem, jobID, jobName, job_environment, gpus)

	
	Parameters

	
	cpu (int [https://docs.python.org/3/library/functions.html#int]) –

	mem (int [https://docs.python.org/3/library/functions.html#int]) –

	jobID (int [https://docs.python.org/3/library/functions.html#int]) –

	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	gpus (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
parse_elapsed(elapsed)

	

	
OptionType

	

	
classmethod add_options(parser)

	If this batch system provides any command line options, add them to the given parser.

	Parameters

	parser (Union[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], argparse._ArgumentGroup]) –

	
classmethod setOptions(setOption)

	Process command line or configuration options relevant to this batch system.

	Parameters

	setOption (toil.batchSystems.options.OptionSetter) – A function with signature
setOption(option_name, parsing_function=None, check_function=None, default=None, env=None)
returning nothing, used to update run configuration as a side effect.

	Return type

	None

 toil.batchSystems.tes

toil.batchSystems.tes

Batch system for running Toil workflows on GA4GH TES.

Useful with network-based job stores when the TES server provides tasks with
credentials, and filesystem-based job stores when the TES server lets tasks
mount the job store.

Additional containers should be launched with Singularity, not Docker.

Module Contents

Classes

	TESBatchSystem

	Adds cleanup support when the last running job leaves a node, for batch

Attributes

	logger

	

	STATE_TO_EXIT_REASON

	

	
toil.batchSystems.tes.logger

	

	
toil.batchSystems.tes.STATE_TO_EXIT_REASON: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], toil.batchSystems.abstractBatchSystem.BatchJobExitReason]

	

	
class toil.batchSystems.tes.TESBatchSystem(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.cleanup_support.BatchSystemCleanupSupport

[image: Inheritance diagram of toil.batchSystems.tes.TESBatchSystem]

Adds cleanup support when the last running job leaves a node, for batch
systems that can’t provide it using the backing scheduler.

	Parameters

	
	config (toil.common.Config) –

	maxCores (float [https://docs.python.org/3/library/functions.html#float]) –

	maxMemory (int [https://docs.python.org/3/library/functions.html#int]) –

	maxDisk (int [https://docs.python.org/3/library/functions.html#int]) –

	
classmethod supportsAutoDeployment()

	Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource
object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
classmethod get_default_tes_endpoint()

	Get the default TES endpoint URL to use.

(unless overridden by an option or environment variable)

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
setUserScript(user_script)

	Set the user script for this workflow. This method must be called before the first job is
issued to this batch system, and only if supportsAutoDeployment() returns True,
otherwise it will raise an exception.

	Parameters

	
	userScript – the resource object representing the user script
or module and the modules it depends on.

	user_script (toil.resource.Resource) –

	Return type

	None

	
issueBatchJob(job_desc, job_environment=None)

	Issues a job with the specified command to the batch system and returns
a unique jobID.

	Parameters

	
	jobDesc – a toil.job.JobDescription

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – a collection of job-specific environment
variables to be set on the worker.

	job_desc (toil.job.JobDescription) –

	Returns

	a unique jobID that can be used to reference the newly issued
job

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
getUpdatedBatchJob(maxWait)

	Returns information about job that has updated its status (i.e. ceased
running, either successfully or with an error). Each such job will be
returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they
may cause None to be returned earlier than maxWait.

	Parameters

	maxWait (int [https://docs.python.org/3/library/functions.html#int]) – the number of seconds to block, waiting for a result

	Returns

	If a result is available, returns UpdatedBatchJobInfo.
Otherwise it returns None. wallTime is the number of seconds (a strictly
positive float) in wall-clock time the job ran for, or None if this
batch system does not support tracking wall time.

	Return type

	Optional[toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo]

	
shutdown()

	Called at the completion of a toil invocation.
Should cleanly terminate all worker threads.

	Return type

	None

	
getIssuedBatchJobIDs()

	Gets all currently issued jobs

	Returns

	A list of jobs (as jobIDs) currently issued (may be running, or may be
waiting to be run). Despite the result being a list, the ordering should not
be depended upon.

	Return type

	List[int [https://docs.python.org/3/library/functions.html#int]]

	
getRunningBatchJobIDs()

	Gets a map of jobs as jobIDs that are currently running (not just waiting)
and how long they have been running, in seconds.

	Returns

	dictionary with currently running jobID keys and how many seconds they have
been running as the value

	Return type

	Dict[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	
killBatchJobs(job_ids)

	Kills the given job IDs. After returning, the killed jobs will not
appear in the results of getRunningBatchJobIDs. The killed job will not
be returned from getUpdatedBatchJob.

	Parameters

	
	jobIDs – list of IDs of jobs to kill

	job_ids (List[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	None

	
classmethod add_options(parser)

	If this batch system provides any command line options, add them to the given parser.

	Parameters

	parser (Union[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], argparse._ArgumentGroup]) –

	Return type

	None

	
classmethod setOptions(setOption)

	Process command line or configuration options relevant to this batch system.

	Parameters

	setOption (toil.batchSystems.options.OptionSetter) – A function with signature
setOption(option_name, parsing_function=None, check_function=None, default=None, env=None)
returning nothing, used to update run configuration as a side effect.

	Return type

	None

 toil.batchSystems.torque

toil.batchSystems.torque

Module Contents

Classes

	TorqueBatchSystem

	A partial implementation of BatchSystemSupport for batch systems run on a

Attributes

	logger

	

	
toil.batchSystems.torque.logger

	

	
class toil.batchSystems.torque.TorqueBatchSystem(config, maxCores, maxMemory, maxDisk)

	Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

[image: Inheritance diagram of toil.batchSystems.torque.TorqueBatchSystem]

A partial implementation of BatchSystemSupport for batch systems run on a
standard HPC cluster. By default auto-deployment is not implemented.

	
class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)

	Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker

[image: Inheritance diagram of toil.batchSystems.torque.TorqueBatchSystem.Worker]

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways
to specify the activity: by passing a callable object to the constructor, or
by overriding the run() method in a subclass.

	
getRunningJobIDs()

	Get a list of running job IDs. Implementation-specific; called by boss
AbstractGridEngineBatchSystem implementation via
AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
getUpdatedBatchJob(maxWait)

	

	
killJob(jobID)

	Kill specific job with the Toil job ID. Implementation-specific; called
by AbstractGridEngineWorker.killJobs()

	Parameters

	jobID (string) – Toil job ID

	
prepareSubmission(cpu, memory, jobID, command, jobName, job_environment=None, gpus=None)

	Preparation in putting together a command-line string
for submitting to batch system (via submitJob().)

	Param

	int cpu

	Param

	int memory

	Param

	int jobID: Toil job ID

	Param

	string subLine: the command line string to be called

	Param

	string jobName: the name of the Toil job, to provide metadata to batch systems if desired

	Param

	dict job_environment: the environment variables to be set on the worker

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Parameters

	
	cpu (int [https://docs.python.org/3/library/functions.html#int]) –

	memory (int [https://docs.python.org/3/library/functions.html#int]) –

	jobID (int [https://docs.python.org/3/library/functions.html#int]) –

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	gpus (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	
submitJob(subLine)

	Wrapper routine for submitting the actual command-line call, then
processing the output to get the batch system job ID

	Param

	string subLine: the literal command line string to be called

	Return type

	string: batch system job ID, which will be stored internally

	
getJobExitCode(torqueJobID)

	Returns job exit code or an instance of abstractBatchSystem.BatchJobExitReason.
if something else happened other than the job exiting.
Implementation-specific; called by AbstractGridEngineWorker.checkOnJobs()

	Parameters

	batchjobID (string) – batch system job ID

	Return type

	int [https://docs.python.org/3/library/functions.html#int]|toil.batchSystems.abstractBatchSystem.BatchJobExitReason: exit code int
or BatchJobExitReason if something else happened other than job exiting.

	
prepareQsub(cpu, mem, jobID, job_environment)

	
	Parameters

	
	cpu (int [https://docs.python.org/3/library/functions.html#int]) –

	mem (int [https://docs.python.org/3/library/functions.html#int]) –

	jobID (int [https://docs.python.org/3/library/functions.html#int]) –

	job_environment (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
generateTorqueWrapper(command, jobID)

	A very simple script generator that just wraps the command given; for
now this goes to default tempdir

 toil.cwl

toil.cwl

Submodules

	toil.cwl.conftest

	toil.cwl.cwltoil

	toil.cwl.utils

Package Contents

Functions

	check_cwltool_version()

	Check if the installed cwltool version matches Toil's expected version. A

Attributes

	cwltool_version

	

	logger

	

	
exception toil.cwl.InvalidVersion

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Common base class for all non-exit exceptions.

	
toil.cwl.cwltool_version = '3.1.20230425144158'

	

	
toil.cwl.logger

	

	
toil.cwl.check_cwltool_version()

	Check if the installed cwltool version matches Toil’s expected version. A
warning is printed if the versions differ.

	Return type

	None

 toil.cwl.conftest

toil.cwl.conftest

Module Contents

	
toil.cwl.conftest.collect_ignore = []

	

 toil.cwl.cwltoil

toil.cwl.cwltoil

Implemented support for Common Workflow Language (CWL) for Toil.

Module Contents

Classes

	UnresolvedDict

	Tag to indicate a dict contains promises that must be resolved.

	SkipNull

	Internal sentinel object.

	Conditional

	Object holding conditional expression until we are ready to evaluate it.

	ResolveSource

	Apply linkMerge and pickValue operators to values coming into a port.

	StepValueFrom

	A workflow step input which has a valueFrom expression attached to it.

	DefaultWithSource

	A workflow step input that has both a source and a default value.

	JustAValue

	A simple value masquerading as a 'resolve'-able object.

	ToilPathMapper

	Keeps track of files in a Toil way.

	ToilSingleJobExecutor

	A SingleJobExecutor that does not assume it is at the top level of the workflow.

	ToilTool

	Mixin to hook Toil into a cwltool tool type.

	ToilCommandLineTool

	Subclass the cwltool command line tool to provide the custom ToilPathMapper.

	ToilExpressionTool

	Subclass the cwltool expression tool to provide the custom ToilPathMapper.

	ToilFsAccess

	Custom filesystem access class which handles toil filestore references.

	CWLNamedJob

	Base class for all CWL jobs that do user work, to give them useful names.

	ResolveIndirect

	Helper Job.

	CWLJobWrapper

	Wrap a CWL job that uses dynamic resources requirement.

	CWLJob

	Execute a CWL tool using cwltool.executors.SingleJobExecutor.

	CWLScatter

	Implement workflow scatter step.

	CWLGather

	Follows on to a scatter Job.

	SelfJob

	Fake job object to facilitate implementation of CWLWorkflow.run().

	CWLWorkflow

	Toil Job to convert a CWL workflow graph into a Toil job graph.

Functions

	cwltoil_was_removed()

	Complain about deprecated entrypoint.

	filter_skip_null(name, value)

	Recursively filter out SkipNull objects from 'value'.

	ensure_no_collisions(directory[, dir_description])

	Make sure no items in the given CWL Directory have the same name.

	resolve_dict_w_promises(dict_w_promises[, file_store])

	Resolve a dictionary of promises evaluate expressions to produce the actual values.

	simplify_list(maybe_list)

	Turn a length one list loaded by cwltool into a scalar.

	toil_make_tool(toolpath_object, loadingContext)

	Emit custom ToilCommandLineTools.

	check_directory_dict_invariants(contents)

	Make sure a directory structure dict makes sense. Throws an error

	decode_directory(dir_path)

	Decode a directory from a "toildir:" path to a directory (or a file in it).

	encode_directory(contents)

	Encode a directory from a "toildir:" path to a directory (or a file in it).

	toil_get_file(file_store, index, existing, file_store_id)

	Set up the given file or directory from the Toil jobstore at a file URI

	write_file(writeFunc, index, existing, file_uri)

	Write a file into the Toil jobstore.

	path_to_loc(obj)

	Make a path into a location.

	import_files(import_function, fs_access, fileindex, ...)

	Prepare all files and directories.

	upload_directory(directory_metadata, directory_contents)

	Upload a Directory object.

	upload_file(uploadfunc, fileindex, existing, file_metadata)

	Update a file object so that the location is a reference to the toil file store.

	writeGlobalFileWrapper(file_store, fileuri)

	Wrap writeGlobalFile to accept file:// URIs.

	remove_empty_listings(rec)

	

	toilStageFiles(toil, cwljob, outdir[, destBucket])

	Copy input files out of the global file store and update location and path.

	get_container_engine(runtime_context)

	

	makeJob(tool, jobobj, runtime_context, parent_name, ...)

	Create the correct Toil Job object for the CWL tool.

	remove_pickle_problems(obj)

	Doc_loader does not pickle correctly, causing Toil errors, remove from objects.

	visitSteps(cmdline_tool, op)

	Iterate over a CWL Process object, running the op on each tool description

	rm_unprocessed_secondary_files(job_params)

	

	filtered_secondary_files(unfiltered_secondary_files)

	Remove unprocessed secondary files.

	scan_for_unsupported_requirements(tool[, ...])

	Scan the given CWL tool for any unsupported optional features.

	determine_load_listing(tool)

	Determine the directory.listing feature in CWL.

	generate_default_job_store(batch_system_name, ...)

	Choose a default job store appropriate to the requested batch system and

	main([args, stdout])

	Run the main loop for toil-cwl-runner.

	find_default_container(args, builder)

	Find the default constructor by consulting a Toil.options object.

Attributes

	logger

	

	DEFAULT_TMPDIR

	

	DEFAULT_TMPDIR_PREFIX

	

	DirectoryContents

	

	ProcessType

	

	usage_message

	

	
toil.cwl.cwltoil.logger

	

	
toil.cwl.cwltoil.DEFAULT_TMPDIR

	

	
toil.cwl.cwltoil.DEFAULT_TMPDIR_PREFIX

	

	
toil.cwl.cwltoil.cwltoil_was_removed()

	Complain about deprecated entrypoint.

	Return type

	None

	
class toil.cwl.cwltoil.UnresolvedDict

	Bases: Dict[Any, Any]

[image: Inheritance diagram of toil.cwl.cwltoil.UnresolvedDict]

Tag to indicate a dict contains promises that must be resolved.

	
class toil.cwl.cwltoil.SkipNull

	Internal sentinel object.

Indicates a null value produced by each port of a skipped conditional step.
The CWL 1.2 specification calls for treating this the exactly the same as a
null value.

	
toil.cwl.cwltoil.filter_skip_null(name, value)

	Recursively filter out SkipNull objects from ‘value’.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of port producing this value.
Only used when we find an unhandled null from a conditional step
and we print out a warning. The name allows the user to better
localize which step/port was responsible for the unhandled null.

	value (Any) – port output value object

	Return type

	Any

	
toil.cwl.cwltoil.ensure_no_collisions(directory, dir_description=None)

	Make sure no items in the given CWL Directory have the same name.

If any do, raise a WorkflowException about a “File staging conflict”.

Does not recurse into subdirectories.

	Parameters

	
	directory (cwltool.utils.DirectoryType) –

	dir_description (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
class toil.cwl.cwltoil.Conditional(expression=None, outputs=None, requirements=None, container_engine='docker')

	Object holding conditional expression until we are ready to evaluate it.

Evaluation occurs at the moment the encloses step is ready to run.

	Parameters

	
	expression (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	outputs (Union[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], cwltool.utils.CWLOutputType], None]) –

	requirements (Optional[List[cwltool.utils.CWLObjectType]]) –

	container_engine (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
is_false(job)

	Determine if expression evaluates to False given completed step inputs.

	Parameters

	job (cwltool.utils.CWLObjectType) – job output object

	Returns

	bool

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
skipped_outputs()

	Generate a dict of SkipNull objects corresponding to the output structure.

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], SkipNull]

	
class toil.cwl.cwltoil.ResolveSource(name, input, source_key, promises)

	Apply linkMerge and pickValue operators to values coming into a port.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	input (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], cwltool.utils.CWLObjectType]) –

	source_key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	promises (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], toil.job.Job]) –

	
promise_tuples: Union[List[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], toil.job.Promise]], Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], toil.job.Promise]]

	

	
__repr__()

	Allow for debug printing.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
resolve()

	First apply linkMerge then pickValue if either present.

	Return type

	Any

	
link_merge(values)

	Apply linkMerge operator to values object.

	Parameters

	values (cwltool.utils.CWLObjectType) – result of step

	Return type

	Union[List[cwltool.utils.CWLOutputType], cwltool.utils.CWLOutputType]

	
pick_value(values)

	Apply pickValue operator to values object.

	Parameters

	values (Union[List[Union[str [https://docs.python.org/3/library/stdtypes.html#str], SkipNull]], Any]) – Intended to be a list, but other types will be returned
without modification.

	Returns

	

	Return type

	Any

	
class toil.cwl.cwltoil.StepValueFrom(expr, source, req, container_engine)

	A workflow step input which has a valueFrom expression attached to it.

The valueFrom expression will be evaluated to produce the actual input
object for the step.

	Parameters

	
	expr (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	source (Any) –

	req (List[cwltool.utils.CWLObjectType]) –

	container_engine (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
eval_prep(step_inputs, file_store)

	Resolve the contents of any file in a set of inputs.

The inputs must be associated with the StepValueFrom object’s self.source.

Called when loadContents is specified.

	Parameters

	
	step_inputs (cwltool.utils.CWLObjectType) – Workflow step inputs.

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) – A toil file store, needed to resolve toilfile:// paths.

	Return type

	None

	
resolve()

	Resolve the promise in the valueFrom expression’s context.

	Returns

	object that will serve as expression context

	Return type

	Any

	
do_eval(inputs)

	Evaluate the valueFrom expression with the given input object.

	Parameters

	inputs (cwltool.utils.CWLObjectType) –

	Returns

	object

	Return type

	Any

	
class toil.cwl.cwltoil.DefaultWithSource(default, source)

	A workflow step input that has both a source and a default value.

	Parameters

	
	default (Any) –

	source (Any) –

	
resolve()

	Determine the final input value when the time is right.

(when the source can be resolved)

	Returns

	dict

	Return type

	Any

	
class toil.cwl.cwltoil.JustAValue(val)

	A simple value masquerading as a ‘resolve’-able object.

	Parameters

	val (Any) –

	
resolve()

	Return the value.

	Return type

	Any

	
toil.cwl.cwltoil.resolve_dict_w_promises(dict_w_promises, file_store=None)

	Resolve a dictionary of promises evaluate expressions to produce the actual values.

	Parameters

	
	dict_w_promises (Union[UnresolvedDict, cwltool.utils.CWLObjectType, Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[str [https://docs.python.org/3/library/stdtypes.html#str], StepValueFrom]]]) – input dict for these values

	file_store (Optional[toil.fileStores.abstractFileStore.AbstractFileStore]) –

	Returns

	dictionary of actual values

	Return type

	cwltool.utils.CWLObjectType

	
toil.cwl.cwltoil.simplify_list(maybe_list)

	Turn a length one list loaded by cwltool into a scalar.

Anything else is passed as-is, by reference.

	Parameters

	maybe_list (Any) –

	Return type

	Any

	
class toil.cwl.cwltoil.ToilPathMapper(referenced_files, basedir, stagedir, separateDirs=True, get_file=None, stage_listing=False, streaming_allowed=True)

	Bases: cwltool.pathmapper.PathMapper [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/pathmapper/index.html#cwltool.pathmapper.PathMapper]

[image: Inheritance diagram of toil.cwl.cwltoil.ToilPathMapper]

Keeps track of files in a Toil way.

Maps between the symbolic identifier of a file (the Toil FileID), its local
path on the host (the value returned by readGlobalFile) and the
location of the file inside the software container.

	Parameters

	
	referenced_files (List[cwltool.utils.CWLObjectType]) –

	basedir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	stagedir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	separateDirs (bool [https://docs.python.org/3/library/functions.html#bool]) –

	get_file (Union[Any, None]) –

	stage_listing (bool [https://docs.python.org/3/library/functions.html#bool]) –

	streaming_allowed (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
visit(obj, stagedir, basedir, copy=False, staged=False)

	Iterate over a CWL object, resolving File and Directory path references.

This is called on each File or Directory CWL object. The Files and
Directories all have “location” fields. For the Files, these are from
upload_file(), and for the Directories, these are from
upload_directory(), with their children being assigned
locations based on listing the Directories using ToilFsAccess.

	Parameters

	
	obj (cwltool.utils.CWLObjectType) – The CWL File or Directory to process

	stagedir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The base path for target paths to be generated under,

	basedir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) –

	staged (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

except when a File or Directory has an overriding parent directory in
dirname

	Parameters

	
	basedir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory from which relative paths should be

	obj (cwltool.utils.CWLObjectType) –

	stagedir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) –

	staged (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

resolved; used as the base directory for the StdFsAccess that generated
the listing being processed.

	Parameters

	
	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If set, use writable types for Files and Directories.

	staged (bool [https://docs.python.org/3/library/functions.html#bool]) – Starts as True at the top of the recursion. Set to False

	obj (cwltool.utils.CWLObjectType) –

	stagedir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	basedir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

when entering a directory that we can actually download, so we don’t
stage files and subdirectories separately from the directory as a
whole. Controls the staged flag on generated mappings, and therefore
whether files and directories are actually placed at their mapped-to
target locations. If stage_listing is True, we will leave this True
throughout and stage everything.

Produces one MapperEnt for every unique location for a File or
Directory. These MapperEnt objects are instructions to cwltool’s
stage_files function:
https://github.com/common-workflow-language/cwltool/blob/a3e3a5720f7b0131fa4f9c0b3f73b62a347278a6/cwltool/process.py#L254

The MapperEnt has fields:

resolved: An absolute local path anywhere on the filesystem where the
file/directory can be found, or the contents of a file to populate it
with if type is CreateWritableFile or CreateFile. Or, a URI understood
by the StdFsAccess in use (for example, toilfile:).

target: An absolute path under stagedir that the file or directory will
then be placed at by cwltool. Except if a File or Directory has a
dirname field, giving its parent path, that is used instead.

type: One of:

File: cwltool will copy or link the file from resolved to target,
if possible.

CreateFile: cwltool will create the file at target, treating
resolved as the contents.

WritableFile: cwltool will copy the file from resolved to target,
making it writable.

CreateWritableFile: cwltool will create the file at target,
treating resolved as the contents, and make it writable.

Directory: cwltool will copy or link the directory from resolved to
target, if possible. Otherwise, cwltool will make the directory at
target if resolved starts with “_:”. Otherwise it will do nothing.

WritableDirectory: cwltool will copy the directory from resolved to
target, if possible. Otherwise, cwltool will make the directory at
target if resolved starts with “_:”. Otherwise it will do nothing.

staged: if set to False, cwltool will not make or copy anything for this entry

	
class toil.cwl.cwltoil.ToilSingleJobExecutor

	Bases: cwltool.executors.SingleJobExecutor [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/executors/index.html#cwltool.executors.SingleJobExecutor]

[image: Inheritance diagram of toil.cwl.cwltoil.ToilSingleJobExecutor]

A SingleJobExecutor that does not assume it is at the top level of the workflow.

We need this because otherwise every job thinks it is top level and tries
to discover secondary files, which may exist when they haven’t actually
been passed at the top level and thus aren’t supposed to be visible.

	
run_jobs(process, job_order_object, logger, runtime_context)

	run_jobs from SingleJobExecutor, but not in a top level runtime context.

	Parameters

	
	process (cwltool.process.Process [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process]) –

	job_order_object (cwltool.utils.CWLObjectType) –

	logger (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) –

	runtime_context (cwltool.context.RuntimeContext [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext]) –

	Return type

	None

	
class toil.cwl.cwltoil.ToilTool

	Mixin to hook Toil into a cwltool tool type.

	
make_path_mapper(reffiles, stagedir, runtimeContext, separateDirs)

	Create the appropriate PathMapper for the situation.

	Parameters

	
	reffiles (List[Any]) –

	stagedir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	runtimeContext (cwltool.context.RuntimeContext [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext]) –

	separateDirs (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	cwltool.pathmapper.PathMapper [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/pathmapper/index.html#cwltool.pathmapper.PathMapper]

	
__str__()

	Return string representation of this tool type.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.cwl.cwltoil.ToilCommandLineTool

	Bases: ToilTool, cwltool.command_line_tool.CommandLineTool [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/command_line_tool/index.html#cwltool.command_line_tool.CommandLineTool]

[image: Inheritance diagram of toil.cwl.cwltoil.ToilCommandLineTool]

Subclass the cwltool command line tool to provide the custom ToilPathMapper.

	
class toil.cwl.cwltoil.ToilExpressionTool

	Bases: ToilTool, cwltool.command_line_tool.ExpressionTool [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/command_line_tool/index.html#cwltool.command_line_tool.ExpressionTool]

[image: Inheritance diagram of toil.cwl.cwltoil.ToilExpressionTool]

Subclass the cwltool expression tool to provide the custom ToilPathMapper.

	
toil.cwl.cwltoil.toil_make_tool(toolpath_object, loadingContext)

	Emit custom ToilCommandLineTools.

This factory function is meant to be passed to cwltool.load_tool().

	Parameters

	
	toolpath_object (ruamel.yaml.comments.CommentedMap) –

	loadingContext (cwltool.context.LoadingContext [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.LoadingContext]) –

	Return type

	cwltool.process.Process [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process]

	
toil.cwl.cwltoil.DirectoryContents

	

	
toil.cwl.cwltoil.check_directory_dict_invariants(contents)

	Make sure a directory structure dict makes sense. Throws an error
otherwise.

Currently just checks to make sure no empty-string keys exist.

	Parameters

	contents (DirectoryContents) –

	Return type

	None

	
toil.cwl.cwltoil.decode_directory(dir_path)

	Decode a directory from a “toildir:” path to a directory (or a file in it).

Returns the decoded directory dict, the remaining part of the path (which may be
None), and the deduplication key string that uniquely identifies the
directory.

	Parameters

	dir_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Tuple[DirectoryContents, Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.cwl.cwltoil.encode_directory(contents)

	Encode a directory from a “toildir:” path to a directory (or a file in it).

Takes the directory dict, which is a dict from name to URI for a file or
dict for a subdirectory.

	Parameters

	contents (DirectoryContents) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.cwl.cwltoil.ToilFsAccess(basedir, file_store=None)

	Bases: cwltool.stdfsaccess.StdFsAccess [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess]

[image: Inheritance diagram of toil.cwl.cwltoil.ToilFsAccess]

Custom filesystem access class which handles toil filestore references.

Normal file paths will be resolved relative to basedir, but ‘toilfile:’ and
‘toildir:’ URIs will be fulfilled from the Toil file store.

Also supports URLs supported by Toil job store implementations.

	Parameters

	
	basedir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	file_store (Optional[toil.fileStores.abstractFileStore.AbstractFileStore]) –

	
glob(pattern)

	
	Parameters

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
open(fn, mode)

	
	Parameters

	
	fn (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	IO[Any]

	
exists(path)

	Test for file existence.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
size(path)

	
	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
isfile(fn)

	
	Parameters

	fn (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
isdir(fn)

	
	Parameters

	fn (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
listdir(fn)

	
	Parameters

	fn (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
join(path, *paths)

	
	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	paths (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
realpath(fn)

	
	Parameters

	fn (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.cwl.cwltoil.toil_get_file(file_store, index, existing, file_store_id, streamable=False, streaming_allowed=True, pipe_threads=None)

	Set up the given file or directory from the Toil jobstore at a file URI
where it can be accessed locally.

Run as part of the tool setup, inside jobs on the workers.
Also used as part of reorganizing files to get them uploaded at the end of
a tool.

	Parameters

	
	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) – The Toil file store to download from.

	index (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Maps from downloaded file path back to input Toil URI.

	existing (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Maps from file_store_id URI to downloaded file path.

	file_store_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URI for the file to download.

	streamable (bool [https://docs.python.org/3/library/functions.html#bool]) – If the file is has ‘streamable’ flag set

	streaming_allowed (bool [https://docs.python.org/3/library/functions.html#bool]) – If streaming is allowed

	pipe_threads (Optional[List[Tuple[threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread], int [https://docs.python.org/3/library/functions.html#int]]]]) – List of threads responsible for streaming the data

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

and open file descriptors corresponding to those files. Caller is responsible
to close the file descriptors (to break the pipes) and join the threads

	
toil.cwl.cwltoil.write_file(writeFunc, index, existing, file_uri)

	Write a file into the Toil jobstore.

‘existing’ is a set of files retrieved as inputs from toil_get_file. This
ensures they are mapped back as the same name if passed through.

Returns a toil uri path to the object.

	Parameters

	
	writeFunc (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], toil.fileStores.FileID]) –

	index (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	existing (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	file_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.cwl.cwltoil.path_to_loc(obj)

	Make a path into a location.

(If a CWL object has a “path” and not a “location”)

	Parameters

	obj (cwltool.utils.CWLObjectType) –

	Return type

	None

	
toil.cwl.cwltoil.import_files(import_function, fs_access, fileindex, existing, cwl_object, skip_broken=False, bypass_file_store=False)

	Prepare all files and directories.

Will be executed from the leader or worker in the context of the given
CWL tool, order, or output object to be used on the workers. Make
sure their sizes are set and import all the files.

Recurses inside directories using the fs_access to find files to upload and
subdirectory structure to encode, even if their listings are not set or not
recursive.

Preserves any listing fields.

If a file cannot be found (like if it is an optional secondary file that
doesn’t exist), fails, unless skip_broken is set, in which case it leaves
the location it was supposed to have been at.

Also does some miscelaneous normalization.

	Parameters

	
	import_function (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], toil.fileStores.FileID]) – The function used to upload a URI and get a

	fs_access (cwltool.stdfsaccess.StdFsAccess [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess]) –

	fileindex (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	existing (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cwl_object (Optional[cwltool.utils.CWLObjectType]) –

	skip_broken (bool [https://docs.python.org/3/library/functions.html#bool]) –

	bypass_file_store (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

Toil FileID for it.

	Parameters

	
	fs_access (cwltool.stdfsaccess.StdFsAccess [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess]) – the CWL FS access object we use to access the filesystem

	import_function (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], toil.fileStores.FileID]) –

	fileindex (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	existing (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cwl_object (Optional[cwltool.utils.CWLObjectType]) –

	skip_broken (bool [https://docs.python.org/3/library/functions.html#bool]) –

	bypass_file_store (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

to find files to import. Needs to support the URI schemes used.

	Parameters

	
	fileindex (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Forward map to fill in from file URI to Toil storage

	import_function (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], toil.fileStores.FileID]) –

	fs_access (cwltool.stdfsaccess.StdFsAccess [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess]) –

	existing (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cwl_object (Optional[cwltool.utils.CWLObjectType]) –

	skip_broken (bool [https://docs.python.org/3/library/functions.html#bool]) –

	bypass_file_store (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

location, used by write_file to deduplicate writes.

	Parameters

	
	existing (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Reverse map to fill in from Toil storage location to file

	import_function (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], toil.fileStores.FileID]) –

	fs_access (cwltool.stdfsaccess.StdFsAccess [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess]) –

	fileindex (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cwl_object (Optional[cwltool.utils.CWLObjectType]) –

	skip_broken (bool [https://docs.python.org/3/library/functions.html#bool]) –

	bypass_file_store (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

URI. Not read from.

	Parameters

	
	cwl_object (Optional[cwltool.utils.CWLObjectType]) – CWL tool (or workflow order) we are importing files for

	skip_broken (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, when files can’t be imported because they e.g.

	import_function (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], toil.fileStores.FileID]) –

	fs_access (cwltool.stdfsaccess.StdFsAccess [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess]) –

	fileindex (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	existing (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	bypass_file_store (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

don’t exist, leave their locations alone rather than failing with an error.

	Parameters

	
	bypass_file_store (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, leave file:// URIs in place instead of

	import_function (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], toil.fileStores.FileID]) –

	fs_access (cwltool.stdfsaccess.StdFsAccess [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess]) –

	fileindex (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	existing (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cwl_object (Optional[cwltool.utils.CWLObjectType]) –

	skip_broken (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

importing files and directories.

	
toil.cwl.cwltoil.upload_directory(directory_metadata, directory_contents, skip_broken=False)

	Upload a Directory object.

Ignores the listing (which may not be recursive and isn’t safe or efficient
to touch), and instead uses directory_contents, which is a recursive dict
structure from filename to file URI or subdirectory contents dict.

Makes sure the directory actually exists, and rewrites its location to be
something we can use on another machine.

We can’t rely on the directory’s listing as visible to the next tool as a
complete recursive description of the files we will need to present to the
tool, since some tools require it to be cleared or single-level but still
expect to see its contents in the filesystem.

	Parameters

	
	directory_metadata (cwltool.utils.CWLObjectType) –

	directory_contents (DirectoryContents) –

	skip_broken (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
toil.cwl.cwltoil.upload_file(uploadfunc, fileindex, existing, file_metadata, skip_broken=False)

	Update a file object so that the location is a reference to the toil file store.

Write the file object to the file store if necessary.

	Parameters

	
	uploadfunc (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], toil.fileStores.FileID]) –

	fileindex (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	existing (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	file_metadata (cwltool.utils.CWLObjectType) –

	skip_broken (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
toil.cwl.cwltoil.writeGlobalFileWrapper(file_store, fileuri)

	Wrap writeGlobalFile to accept file:// URIs.

	Parameters

	
	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	fileuri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	toil.fileStores.FileID

	
toil.cwl.cwltoil.remove_empty_listings(rec)

	
	Parameters

	rec (cwltool.utils.CWLObjectType) –

	Return type

	None

	
class toil.cwl.cwltoil.CWLNamedJob(cores=1, memory='1GiB', disk='1MiB', accelerators=None, tool_id=None, parent_name=None, subjob_name=None, local=None)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.cwl.cwltoil.CWLNamedJob]

Base class for all CWL jobs that do user work, to give them useful names.

	Parameters

	
	cores (Union[float [https://docs.python.org/3/library/functions.html#float], None]) –

	memory (Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], None]) –

	disk (Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], None]) –

	accelerators (Optional[List[toil.job.AcceleratorRequirement]]) –

	tool_id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	parent_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	subjob_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	local (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	
class toil.cwl.cwltoil.ResolveIndirect(cwljob, parent_name=None)

	Bases: CWLNamedJob

[image: Inheritance diagram of toil.cwl.cwltoil.ResolveIndirect]

Helper Job.

Accepts an unresolved dict (containing promises) and produces a dictionary
of actual values.

	Parameters

	
	cwljob (toil.job.Promised[cwltool.utils.CWLObjectType]) –

	parent_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
run(file_store)

	Evaluate the promises and return their values.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	cwltool.utils.CWLObjectType

	
toil.cwl.cwltoil.toilStageFiles(toil, cwljob, outdir, destBucket=None)

	Copy input files out of the global file store and update location and path.

	Parameters

	
	destBucket (Union[str [https://docs.python.org/3/library/stdtypes.html#str], None]) – If set, export to this base URL instead of to the local
filesystem.

	toil (toil.common.Toil) –

	cwljob (Union[cwltool.utils.CWLObjectType, List[cwltool.utils.CWLObjectType]]) –

	outdir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
class toil.cwl.cwltoil.CWLJobWrapper(tool, cwljob, runtime_context, parent_name, conditional=None)

	Bases: CWLNamedJob

[image: Inheritance diagram of toil.cwl.cwltoil.CWLJobWrapper]

Wrap a CWL job that uses dynamic resources requirement.

When executed, this creates a new child job which has the correct resource
requirement set.

	Parameters

	
	tool (cwltool.process.Process [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process]) –

	cwljob (cwltool.utils.CWLObjectType) –

	runtime_context (cwltool.context.RuntimeContext [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext]) –

	parent_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	conditional (Union[Conditional, None]) –

	
run(file_store)

	Create a child job with the correct resource requirements set.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	Any

	
class toil.cwl.cwltoil.CWLJob(tool, cwljob, runtime_context, parent_name=None, conditional=None)

	Bases: CWLNamedJob

[image: Inheritance diagram of toil.cwl.cwltoil.CWLJob]

Execute a CWL tool using cwltool.executors.SingleJobExecutor.

	Parameters

	
	tool (cwltool.process.Process [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process]) –

	cwljob (cwltool.utils.CWLObjectType) –

	runtime_context (cwltool.context.RuntimeContext [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext]) –

	parent_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	conditional (Union[Conditional, None]) –

	
required_env_vars(cwljob)

	Yield environment variables from EnvVarRequirement.

	Parameters

	cwljob (Any) –

	Return type

	Iterator[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
populate_env_vars(cwljob)

	Prepare environment variables necessary at runtime for the job.

Env vars specified in the CWL “requirements” section should already be
loaded in self.cwltool.requirements, however those specified with
“EnvVarRequirement” take precedence and are only populated here. Therefore,
this not only returns a dictionary with all evaluated “EnvVarRequirement”
env vars, but checks self.cwltool.requirements for any env vars with the
same name and replaces their value with that found in the
“EnvVarRequirement” env var if it exists.

	Parameters

	cwljob (cwltool.utils.CWLObjectType) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
run(file_store)

	Execute the CWL document.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	Any

	
toil.cwl.cwltoil.get_container_engine(runtime_context)

	
	Parameters

	runtime_context (cwltool.context.RuntimeContext [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.cwl.cwltoil.makeJob(tool, jobobj, runtime_context, parent_name, conditional)

	Create the correct Toil Job object for the CWL tool.

Types: workflow, job, or job wrapper for dynamic resource requirements.

	Returns

	“wfjob, followOn” if the input tool is a workflow, and “job, job” otherwise

	Parameters

	
	tool (cwltool.process.Process [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process]) –

	jobobj (cwltool.utils.CWLObjectType) –

	runtime_context (cwltool.context.RuntimeContext [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext]) –

	parent_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	conditional (Union[Conditional, None]) –

	Return type

	Union[Tuple[CWLWorkflow, ResolveIndirect], Tuple[CWLJob, CWLJob], Tuple[CWLJobWrapper, CWLJobWrapper]]

	
class toil.cwl.cwltoil.CWLScatter(step, cwljob, runtime_context, parent_name, conditional)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.cwl.cwltoil.CWLScatter]

Implement workflow scatter step.

When run, this creates a child job for each parameterization of the scatter.

	Parameters

	
	step (cwltool.workflow.WorkflowStep [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/workflow/index.html#cwltool.workflow.WorkflowStep]) –

	cwljob (cwltool.utils.CWLObjectType) –

	runtime_context (cwltool.context.RuntimeContext [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext]) –

	parent_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	conditional (Union[Conditional, None]) –

	
flat_crossproduct_scatter(joborder, scatter_keys, outputs, postScatterEval)

	Cartesian product of the inputs, then flattened.

	Parameters

	
	joborder (cwltool.utils.CWLObjectType) –

	scatter_keys (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	outputs (List[toil.job.Promised[cwltool.utils.CWLObjectType]]) –

	postScatterEval (Callable[[cwltool.utils.CWLObjectType], cwltool.utils.CWLObjectType]) –

	Return type

	None

	
nested_crossproduct_scatter(joborder, scatter_keys, postScatterEval)

	Cartesian product of the inputs.

	Parameters

	
	joborder (cwltool.utils.CWLObjectType) –

	scatter_keys (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	postScatterEval (Callable[[cwltool.utils.CWLObjectType], cwltool.utils.CWLObjectType]) –

	Return type

	List[toil.job.Promised[cwltool.utils.CWLObjectType]]

	
run(file_store)

	Generate the follow on scatter jobs.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	List[toil.job.Promised[cwltool.utils.CWLObjectType]]

	
class toil.cwl.cwltoil.CWLGather(step, outputs)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.cwl.cwltoil.CWLGather]

Follows on to a scatter Job.

This gathers the outputs of each job in the scatter into an array for each
output parameter.

	Parameters

	
	step (cwltool.workflow.WorkflowStep [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/workflow/index.html#cwltool.workflow.WorkflowStep]) –

	outputs (toil.job.Promised[Union[cwltool.utils.CWLObjectType, List[cwltool.utils.CWLObjectType]]]) –

	
static extract(obj, k)

	Extract the given key from the obj.

If the object is a list, extract it from all members of the list.

	Parameters

	
	obj (Union[cwltool.utils.CWLObjectType, List[cwltool.utils.CWLObjectType]]) –

	k (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Union[cwltool.utils.CWLOutputType, List[cwltool.utils.CWLObjectType]]

	
run(file_store)

	Gather all the outputs of the scatter.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
class toil.cwl.cwltoil.SelfJob(j, v)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.cwl.cwltoil.SelfJob]

Fake job object to facilitate implementation of CWLWorkflow.run().

	Parameters

	
	j (CWLWorkflow) –

	v (cwltool.utils.CWLObjectType) –

	
rv(*path)

	Return our properties dictionary.

	Parameters

	path (Any) –

	Return type

	Any

	
addChild(c)

	Add a child to our workflow.

	Parameters

	c (toil.job.Job) –

	Return type

	Any

	
hasChild(c)

	Check if the given child is in our workflow.

	Parameters

	c (toil.job.Job) –

	Return type

	Any

	
toil.cwl.cwltoil.ProcessType

	

	
toil.cwl.cwltoil.remove_pickle_problems(obj)

	Doc_loader does not pickle correctly, causing Toil errors, remove from objects.

	Parameters

	obj (ProcessType) –

	Return type

	ProcessType

	
class toil.cwl.cwltoil.CWLWorkflow(cwlwf, cwljob, runtime_context, parent_name=None, conditional=None)

	Bases: CWLNamedJob

[image: Inheritance diagram of toil.cwl.cwltoil.CWLWorkflow]

Toil Job to convert a CWL workflow graph into a Toil job graph.

The Toil job graph will include the appropriate dependencies.

	Parameters

	
	cwlwf (cwltool.workflow.Workflow [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/workflow/index.html#cwltool.workflow.Workflow]) –

	cwljob (cwltool.utils.CWLObjectType) –

	runtime_context (cwltool.context.RuntimeContext [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext]) –

	parent_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	conditional (Union[Conditional, None]) –

	
run(file_store)

	Convert a CWL Workflow graph into a Toil job graph.

Always runs on the leader, because the batch system knows to schedule
it as a local job.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	Union[UnresolvedDict, Dict[str [https://docs.python.org/3/library/stdtypes.html#str], SkipNull]]

	
toil.cwl.cwltoil.visitSteps(cmdline_tool, op)

	Iterate over a CWL Process object, running the op on each tool description
CWL object.

	Parameters

	
	cmdline_tool (cwltool.process.Process [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process]) –

	op (Callable[[ruamel.yaml.comments.CommentedMap], None]) –

	Return type

	None

	
toil.cwl.cwltoil.rm_unprocessed_secondary_files(job_params)

	
	Parameters

	job_params (Any) –

	Return type

	None

	
toil.cwl.cwltoil.filtered_secondary_files(unfiltered_secondary_files)

	Remove unprocessed secondary files.

Interpolated strings and optional inputs in secondary files were added to
CWL in version 1.1.

The CWL libraries we call do successfully resolve the interpolated strings,
but add the resolved fields to the list of unresolved fields so we remove
them here after the fact.

We keep secondary files using the ‘toildir:’, or ‘_:’ protocols, or using
the ‘file:’ protocol and indicating files or directories that actually
exist. The ‘required’ logic seems to be handled deeper in
cwltool.builder.Builder(), and correctly determines which files should be
imported. Therefore we remove the files here and if this file is SUPPOSED
to exist, it will still give the appropriate file does not exist error, but
just a bit further down the track.

	Parameters

	unfiltered_secondary_files (cwltool.utils.CWLObjectType) –

	Return type

	List[cwltool.utils.CWLObjectType]

	
toil.cwl.cwltoil.scan_for_unsupported_requirements(tool, bypass_file_store=False)

	Scan the given CWL tool for any unsupported optional features.

If it has them, raise an informative UnsupportedRequirement.

	Parameters

	
	tool (cwltool.process.Process [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process]) – The CWL tool to check for unsupported requirements.

	bypass_file_store (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the Toil file store is not being used to

	Return type

	None

transport files between nodes, and raw origin node file:// URIs are exposed
to tools instead.

	
toil.cwl.cwltoil.determine_load_listing(tool)

	Determine the directory.listing feature in CWL.

In CWL, any input directory can have a DIRECTORY_NAME.listing (where
DIRECTORY_NAME is any variable name) set to one of the following three
options:

	no_listing: DIRECTORY_NAME.listing will be undefined.
	e.g. inputs.DIRECTORY_NAME.listing == unspecified

	shallow_listing: DIRECTORY_NAME.listing will return a list one level
	
deep of DIRECTORY_NAME’s contents.

	e.g. inputs.DIRECTORY_NAME.listing == [items in directory]
	inputs.DIRECTORY_NAME.listing[0].listing == undefined
inputs.DIRECTORY_NAME.listing.length == # of items in directory

	deep_listing: DIRECTORY_NAME.listing will return a list of the entire
	
contents of DIRECTORY_NAME.

	e.g. inputs.DIRECTORY_NAME.listing == [items in directory]
	
	inputs.DIRECTORY_NAME.listing[0].listing == [items
	in subdirectory if it exists and is the first item listed]

inputs.DIRECTORY_NAME.listing.length == # of items in directory

	See: https://www.commonwl.org/v1.1/CommandLineTool.html#LoadListingRequirement
	https://www.commonwl.org/v1.1/CommandLineTool.html#LoadListingEnum

DIRECTORY_NAME.listing should be determined first from loadListing.
If that’s not specified, from LoadListingRequirement.
Else, default to “no_listing” if unspecified.

	Parameters

	tool (cwltool.process.Process [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process]) – ToilCommandLineTool

	Return str

	One of ‘no_listing’, ‘shallow_listing’, or ‘deep_listing’.

	Return type

	typing_extensions.Literal[no_listing, shallow_listing, deep_listing]

	
exception toil.cwl.cwltoil.NoAvailableJobStoreException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.cwl.cwltoil.NoAvailableJobStoreException]

Indicates that no job store name is available.

	
toil.cwl.cwltoil.generate_default_job_store(batch_system_name, provisioner_name, local_directory)

	Choose a default job store appropriate to the requested batch system and
provisioner, and installed modules. Raises an error if no good default is
available and the user must choose manually.

	Parameters

	
	batch_system_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Registry name of the batch system the user has
requested, if any. If no name has been requested, should be None.

	provisioner_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Name of the provisioner the user has requested,
if any. Recognized provisioners include ‘aws’ and ‘gce’. None
indicates that no provisioner is in use.

	local_directory (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to a nonexistent local directory suitable for
use as a file job store.

	Return str

	Job store specifier for a usable job store.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.cwl.cwltoil.usage_message

	

	
toil.cwl.cwltoil.main(args=None, stdout=sys.stdout)

	Run the main loop for toil-cwl-runner.

	Parameters

	
	args (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	stdout (TextIO) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.cwl.cwltoil.find_default_container(args, builder)

	Find the default constructor by consulting a Toil.options object.

	Parameters

	
	args (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	builder (cwltool.builder.Builder [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/builder/index.html#cwltool.builder.Builder]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

 toil.cwl.utils

toil.cwl.utils

Utility functions used for Toil’s CWL interpreter.

Module Contents

Functions

	visit_top_cwl_class(rec, classes, op)

	Apply the given operation to all top-level CWL objects with the given named CWL class.

	visit_cwl_class_and_reduce(rec, classes, op_down, op_up)

	Apply the given operations to all CWL objects with the given named CWL class.

	download_structure(file_store, index, existing, ...)

	Download nested dictionary from the Toil file store to a local path.

Attributes

	logger

	

	CWL_UNSUPPORTED_REQUIREMENT_EXIT_CODE

	

	CWL_UNSUPPORTED_REQUIREMENT_EXCEPTION

	

	DownReturnType

	

	UpReturnType

	

	DirectoryStructure

	

	
toil.cwl.utils.logger

	

	
toil.cwl.utils.CWL_UNSUPPORTED_REQUIREMENT_EXIT_CODE = 33

	

	
exception toil.cwl.utils.CWLUnsupportedException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.cwl.utils.CWLUnsupportedException]

Fallback exception.

	
toil.cwl.utils.CWL_UNSUPPORTED_REQUIREMENT_EXCEPTION: Union[Type[cwltool.errors.UnsupportedRequirement [https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/errors/index.html#cwltool.errors.UnsupportedRequirement]], Type[CWLUnsupportedException]]

	

	
toil.cwl.utils.visit_top_cwl_class(rec, classes, op)

	Apply the given operation to all top-level CWL objects with the given named CWL class.

Like cwltool’s visit_class but doesn’t look inside any object visited.

	Parameters

	
	rec (Any) –

	classes (Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	op (Callable[[Any], Any]) –

	Return type

	None

	
toil.cwl.utils.DownReturnType

	

	
toil.cwl.utils.UpReturnType

	

	
toil.cwl.utils.visit_cwl_class_and_reduce(rec, classes, op_down, op_up)

	Apply the given operations to all CWL objects with the given named CWL class.

Applies the down operation top-down, and the up operation bottom-up, and
passes the down operation’s result and a list of the up operation results
for all child keys (flattening across lists and collapsing nodes of
non-matching classes) to the up operation.

	Returns

	The flattened list of up operation results from all calls.

	Parameters

	
	rec (Any) –

	classes (Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	op_down (Callable[[Any], DownReturnType]) –

	op_up (Callable[[Any, DownReturnType, List[UpReturnType]], UpReturnType]) –

	Return type

	List[UpReturnType]

	
toil.cwl.utils.DirectoryStructure

	

	
toil.cwl.utils.download_structure(file_store, index, existing, dir_dict, into_dir)

	Download nested dictionary from the Toil file store to a local path.

	Parameters

	
	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) – The Toil file store to download from.

	index (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Maps from downloaded file path back to input Toil URI.

	existing (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Maps from file_store_id URI to downloaded file path.

	dir_dict (DirectoryStructure) – a dict from string to string (for files) or dict (for

	into_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

subdirectories) describing a directory structure.

	Parameters

	
	into_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory to download the top-level dict’s files

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	index (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	existing (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	dir_dict (DirectoryStructure) –

	Return type

	None

into.

 toil.fileStores

toil.fileStores

Submodules

	toil.fileStores.abstractFileStore

	toil.fileStores.cachingFileStore

	toil.fileStores.nonCachingFileStore

Package Contents

Classes

	FileID

	A small wrapper around Python's builtin string class.

	
class toil.fileStores.FileID(fileStoreID, size, executable=False)

	Bases: str [https://docs.python.org/3/library/stdtypes.html#str]

[image: Inheritance diagram of toil.fileStores.FileID]

A small wrapper around Python’s builtin string class.

It is used to represent a file’s ID in the file store, and has a size attribute
that is the file’s size in bytes. This object is returned by importFile and
writeGlobalFile.

Calls into the file store can use bare strings; size will be queried from
the job store if unavailable in the ID.

	Parameters

	
	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	size (int [https://docs.python.org/3/library/functions.html#int]) –

	executable (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
pack()

	Pack the FileID into a string so it can be passed through external code.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod forPath(fileStoreID, filePath)

	
	Parameters

	
	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	filePath (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	FileID

	
classmethod unpack(packedFileStoreID)

	Unpack the result of pack() into a FileID object.

	Parameters

	packedFileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	FileID

 toil.fileStores.abstractFileStore

toil.fileStores.abstractFileStore

Module Contents

Classes

	AbstractFileStore

	Interface used to allow user code run by Toil to read and write files.

Attributes

	logger

	

	
toil.fileStores.abstractFileStore.logger

	

	
class toil.fileStores.abstractFileStore.AbstractFileStore(jobStore, jobDesc, file_store_dir, waitForPreviousCommit)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

[image: Inheritance diagram of toil.fileStores.abstractFileStore.AbstractFileStore]

Interface used to allow user code run by Toil to read and write files.

Also provides the interface to other Toil facilities used by user code,
including:

	normal (non-real-time) logging

	finding the correct temporary directory for scratch work

	importing and exporting files into and out of the workflow

Stores user files in the jobStore, but keeps them separate from actual
jobs.

May implement caching.

Passed as argument to the toil.job.Job.run() method.

Access to files is only permitted inside the context manager provided by
toil.fileStores.abstractFileStore.AbstractFileStore.open().

Also responsible for committing completed jobs back to the job store with
an update operation, and allowing that commit operation to be waited for.

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	jobDesc (toil.job.JobDescription) –

	file_store_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	waitForPreviousCommit (Callable[[], Any]) –

	
static createFileStore(jobStore, jobDesc, file_store_dir, waitForPreviousCommit, caching)

	Create a concreate FileStore.

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	jobDesc (toil.job.JobDescription) –

	file_store_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	waitForPreviousCommit (Callable[[], Any]) –

	caching (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	Return type

	Union[toil.fileStores.nonCachingFileStore.NonCachingFileStore, toil.fileStores.cachingFileStore.CachingFileStore]

	
static shutdownFileStore(workflowID, config_work_dir, config_coordination_dir)

	Carry out any necessary filestore-specific cleanup.

This is a destructive operation and it is important to ensure that there
are no other running processes on the system that are modifying or using
the file store for this workflow.

This is the intended to be the last call to the file store in a Toil run,
called by the batch system cleanup function upon batch system shutdown.

	Parameters

	
	workflowID (str [https://docs.python.org/3/library/stdtypes.html#str]) – The workflow ID for this invocation of the workflow

	config_work_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The path to the work directory in the Toil Config.

	config_coordination_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The path to the coordination directory in the Toil Config.

	Return type

	None

	
open(job)

	Create the context manager around tasks prior and after a job has been run.

File operations are only permitted inside the context manager.

Implementations must only yield from within with super().open(job):.

	Parameters

	job (toil.job.Job) – The job instance of the toil job to run.

	Return type

	Generator[None, None, None]

	
getLocalTempDir()

	Get a new local temporary directory in which to write files.

The directory will only persist for the duration of the job.

	Returns

	The absolute path to a new local temporary directory. This directory
will exist for the duration of the job only, and is guaranteed
to be deleted once the job terminates, removing all files it
contains recursively.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
getLocalTempFile(suffix=None, prefix=None)

	Get a new local temporary file that will persist for the duration of the job.

	Parameters

	
	suffix (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If not None, the file name will end with this string.
Otherwise, default value “.tmp” will be used

	prefix (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If not None, the file name will start with this string.
Otherwise, default value “tmp” will be used

	Returns

	The absolute path to a local temporary file. This file will exist
for the duration of the job only, and is guaranteed to be deleted
once the job terminates.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
getLocalTempFileName(suffix=None, prefix=None)

	Get a valid name for a new local file. Don’t actually create a file at the path.

	Parameters

	
	suffix (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If not None, the file name will end with this string.
Otherwise, default value “.tmp” will be used

	prefix (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If not None, the file name will start with this string.
Otherwise, default value “tmp” will be used

	Returns

	Path to valid file

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract writeGlobalFile(localFileName, cleanup=False)

	Upload a file (as a path) to the job store.

If the file is in a FileStore-managed temporary directory (i.e. from
toil.fileStores.abstractFileStore.AbstractFileStore.getLocalTempDir()),
it will become a local copy of the file, eligible for deletion by
toil.fileStores.abstractFileStore.AbstractFileStore.deleteLocalFile().

If an executable file on the local filesystem is uploaded, its executability
will be preserved when it is downloaded again.

	Parameters

	
	localFileName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the local file to upload. The
last path component (basename of the file) will remain
associated with the file in the file store, if supported by the
backing JobStore, so that the file can be searched for by name
or name glob.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – if True then the copy of the global file will be deleted once
the job and all its successors have completed running. If not the global
file must be deleted manually.

	Returns

	an ID that can be used to retrieve the file.

	Return type

	toil.fileStores.FileID

	
writeGlobalFileStream(cleanup=False, basename=None, encoding=None, errors=None)

	Similar to writeGlobalFile, but allows the writing of a stream to the job store.
The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	encoding (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The name of the encoding used to decode the file. Encodings
are the same as for decode(). Defaults to None which represents binary mode.

	errors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Specifies how encoding errors are to be handled. Errors are the
same as for open(). Defaults to ‘strict’ when an encoding is specified.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – is as in
toil.fileStores.abstractFileStore.AbstractFileStore.writeGlobalFile().

	basename (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If supported by the backing JobStore, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	Returns

	A context manager yielding a tuple of
1) a file handle which can be written to and
2) the toil.fileStores.FileID of the resulting file in the job store.

	Return type

	Iterator[Tuple[toil.lib.io.WriteWatchingStream, toil.fileStores.FileID]]

	
logAccess(fileStoreID, destination=None)

	Record that the given file was read by the job.

(to be announced if the job fails)

If destination is not None, it gives the path that the file
was downloaded to. Otherwise, assumes that the file was streamed.

Must be called by readGlobalFile() and readGlobalFileStream()
implementations.

	Parameters

	
	fileStoreID (Union[toil.fileStores.FileID, str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	destination (Union[str [https://docs.python.org/3/library/stdtypes.html#str], None]) –

	Return type

	None

	
abstract readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=False, symlink=False)

	Make the file associated with fileStoreID available locally.

If mutable is True, then a copy of the file will be created locally so
that the original is not modified and does not change the file for other
jobs. If mutable is False, then a link can be created to the file, saving
disk resources. The file that is downloaded will be executable if and only
if it was originally uploaded from an executable file on the local filesystem.

If a user path is specified, it is used as the destination. If a user path isn’t
specified, the file is stored in the local temp directory with an encoded name.

The destination file must not be deleted by the user; it can only be
deleted through deleteLocalFile.

Implementations must call logAccess() to report the download.

	Parameters

	
	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – job store id for the file

	userPath (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – a path to the name of file to which the global file will
be copied or hard-linked (see below).

	cache (bool [https://docs.python.org/3/library/functions.html#bool]) – Described in
toil.fileStores.CachingFileStore.readGlobalFile()

	mutable (bool [https://docs.python.org/3/library/functions.html#bool]) – Described in
toil.fileStores.CachingFileStore.readGlobalFile()

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Returns

	An absolute path to a local, temporary copy of the file keyed
by fileStoreID.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract readGlobalFileStream(fileStoreID, encoding=None, errors=None)

	Read a stream from the job store; similar to readGlobalFile.

The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	encoding (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – the name of the encoding used to decode the file. Encodings
are the same as for decode(). Defaults to None which represents binary mode.

	errors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – an optional string that specifies how encoding errors are
to be handled. Errors are the same as for open(). Defaults to ‘strict’
when an encoding is specified.

	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	ContextManager[Union[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]]

Implementations must call logAccess() to report the download.

	Returns

	a context manager yielding a file handle which can be read from.

	Parameters

	
	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	encoding (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	errors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	ContextManager[Union[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	
getGlobalFileSize(fileStoreID)

	Get the size of the file pointed to by the given ID, in bytes.

If a FileID or something else with a non-None ‘size’ field, gets that.

Otherwise, asks the job store to poll the file’s size.

Note that the job store may overestimate the file’s size, for example
if it is encrypted and had to be augmented with an IV or other
encryption framing.

	Parameters

	fileStoreID (Union[toil.fileStores.FileID, str [https://docs.python.org/3/library/stdtypes.html#str]]) – File ID for the file

	Returns

	File’s size in bytes, as stored in the job store

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
abstract deleteLocalFile(fileStoreID)

	Delete local copies of files associated with the provided job store ID.

Raises an OSError with an errno of errno.ENOENT if no such local copies
exist. Thus, cannot be called multiple times in succession.

The files deleted are all those previously read from this file ID via
readGlobalFile by the current job into the job’s file-store-provided
temp directory, plus the file that was written to create the given file
ID, if it was written by the current job from the job’s
file-store-provided temp directory.

	Parameters

	fileStoreID (Union[toil.fileStores.FileID, str [https://docs.python.org/3/library/stdtypes.html#str]]) – File Store ID of the file to be deleted.

	Return type

	None

	
abstract deleteGlobalFile(fileStoreID)

	Delete local files and then permanently deletes them from the job store.

To ensure that the job can be restarted if necessary, the delete will not
happen until after the job’s run method has completed.

	Parameters

	fileStoreID (Union[toil.fileStores.FileID, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the File Store ID of the file to be deleted.

	Return type

	None

	
importFile(srcUrl, sharedFileName=None)

	
	Parameters

	
	srcUrl (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	sharedFileName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	Optional[toil.fileStores.FileID]

	
import_file(src_uri, shared_file_name=None)

	
	Parameters

	
	src_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	shared_file_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	Optional[toil.fileStores.FileID]

	
exportFile(jobStoreFileID, dstUrl)

	
	Parameters

	
	jobStoreFileID (toil.fileStores.FileID) –

	dstUrl (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
abstract export_file(file_id, dst_uri)

	
	Parameters

	
	file_id (toil.fileStores.FileID) –

	dst_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
logToMaster(text, level=logging.INFO)

	Send a logging message to the leader. The message will also be logged by the worker at the same level.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to log.

	level (int [https://docs.python.org/3/library/functions.html#int]) – The logging level.

	Return type

	None

	
abstract startCommit(jobState=False)

	Update the status of the job on the disk.

May start an asynchronous process. Call waitForCommit() to wait on that process.

	Parameters

	jobState (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, commit the state of the FileStore’s job,
and file deletes. Otherwise, commit only file creates/updates.

	Return type

	None

	
abstract waitForCommit()

	Blocks while startCommit is running.

This function is called by this job’s successor to ensure that it does
not begin modifying the job store until after this job has finished doing so.

Might be called when startCommit is never called on a particular
instance, in which case it does not block.

	Returns

	Always returns True

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract classmethod shutdown(shutdown_info)

	Shutdown the filestore on this node.

This is intended to be called on batch system shutdown.

	Parameters

	shutdown_info (Any) – The implementation-specific shutdown information,
for shutting down the file store and removing all its state and all job
local temp directories from the node.

	Return type

	None

 toil.fileStores.cachingFileStore

toil.fileStores.cachingFileStore

Module Contents

Classes

	CachingFileStore

	A cache-enabled file store.

Attributes

	logger

	

	SQLITE_TIMEOUT_SECS

	

	
toil.fileStores.cachingFileStore.logger

	

	
toil.fileStores.cachingFileStore.SQLITE_TIMEOUT_SECS = 60.0

	

	
exception toil.fileStores.cachingFileStore.CacheError(message)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.fileStores.cachingFileStore.CacheError]

Error Raised if the user attempts to add a non-local file to cache

	
exception toil.fileStores.cachingFileStore.CacheUnbalancedError

	Bases: CacheError

[image: Inheritance diagram of toil.fileStores.cachingFileStore.CacheUnbalancedError]

Raised if file store can’t free enough space for caching

	
message = 'Unable unable to free enough space for caching. This error frequently arises due to jobs using...'

	

	
exception toil.fileStores.cachingFileStore.IllegalDeletionCacheError(deletedFile)

	Bases: CacheError

[image: Inheritance diagram of toil.fileStores.cachingFileStore.IllegalDeletionCacheError]

Error raised if the caching code discovers a file that represents a
reference to a cached file to have gone missing.

This can be a big problem if a hard link is moved, because then the cache
will be unable to evict the file it links to.

Remember that files read with readGlobalFile may not be deleted by the user
and need to be deleted with deleteLocalFile.

	
exception toil.fileStores.cachingFileStore.InvalidSourceCacheError(message)

	Bases: CacheError

[image: Inheritance diagram of toil.fileStores.cachingFileStore.InvalidSourceCacheError]

Error raised if the user attempts to add a non-local file to cache

	
class toil.fileStores.cachingFileStore.CachingFileStore(jobStore, jobDesc, file_store_dir, waitForPreviousCommit)

	Bases: toil.fileStores.abstractFileStore.AbstractFileStore

[image: Inheritance diagram of toil.fileStores.cachingFileStore.CachingFileStore]

A cache-enabled file store.

Provides files that are read out as symlinks or hard links into a cache
directory for the node, if permitted by the workflow.

Also attempts to write files back to the backing JobStore asynchronously,
after quickly taking them into the cache. Writes are only required to
finish when the job’s actual state after running is committed back to the
job store.

Internaly, manages caching using a database. Each node has its own
database, shared between all the workers on the node. The database contains
several tables:

files contains one entry for each file in the cache. Each entry knows the
path to its data on disk. It also knows its global file ID, its state, and
its owning worker PID. If the owning worker dies, another worker will pick
it up. It also knows its size.

File states are:

	“cached”: happily stored in the cache. Reads can happen immediately.
Owner is null. May be adopted and moved to state “deleting” by anyone, if
it has no outstanding immutable references.

	“downloading”: in the process of being saved to the cache by a non-null
owner. Reads must wait for the state to become “cached”. If the worker
dies, goes to state “deleting”, because we don’t know if it was fully
downloaded or if anyone still needs it. No references can be created to a
“downloading” file except by the worker responsible for downloading it.

	“uploadable”: stored in the cache and ready to be written to the job
store by a non-null owner. Transitions to “uploading” when a (thread of)
the owning worker process picks it up and begins uploading it, to free
cache space or to commit a completed job. If the worker dies, goes to
state “cached”, because it may have outstanding immutable references from
the dead-but-not-cleaned-up job that was going to write it.

	“uploading”: stored in the cache and being written to the job store by a
non-null owner. Transitions to “cached” when successfully uploaded. If
the worker dies, goes to state “cached”, because it may have outstanding
immutable references from the dead-but-not-cleaned-up job that was
writing it.

	“deleting”: in the process of being removed from the cache by a non-null
owner. Will eventually be removed from the database.

refs contains one entry for each outstanding reference to a cached file
(hard link, symlink, or full copy). The table name is refs instead of
references because references is an SQL reserved word. It remembers what
job ID has the reference, and the path the reference is at. References have
three states:

	“immutable”: represents a hardlink or symlink to a file in the cache.
Dedicates the file’s size in bytes of the job’s disk requirement to the
cache, to be used to cache this file or to keep around other files
without references. May be upgraded to “copying” if the link can’t
actually be created.

	“copying”: records that a file in the cache is in the process of being
copied to a path. Will be upgraded to a mutable reference eventually.

	“mutable”: records that a file from the cache was copied to a certain
path. Exist only to support deleteLocalFile’s API. Only files with only
mutable references (or no references) are eligible for eviction.

jobs contains one entry for each job currently running. It keeps track of
the job’s ID, the worker that is supposed to be running the job, the job’s
disk requirement, and the job’s local temp dir path that will need to be
cleaned up. When workers check for jobs whose workers have died, they null
out the old worker, and grab ownership of and clean up jobs and their
references until the null-worker jobs are gone.

properties contains key, value pairs for tracking total space available,
and whether caching is free for this run.

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	jobDesc (toil.job.JobDescription) –

	file_store_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	waitForPreviousCommit (Callable[[], Any]) –

	
getCacheLimit()

	Return the total number of bytes to which the cache is limited.

If no limit is available, raises an error.

	
getCacheUsed()

	Return the total number of bytes used in the cache.

If no value is available, raises an error.

	
getCacheExtraJobSpace()

	Return the total number of bytes of disk space requested by jobs
running against this cache but not yet used.

We can get into a situation where the jobs on the node take up all its
space, but then they want to write to or read from the cache. So when
that happens, we need to debit space from them somehow…

If no value is available, raises an error.

	
getCacheAvailable()

	Return the total number of free bytes available for caching, or, if
negative, the total number of bytes of cached files that need to be
evicted to free up enough space for all the currently scheduled jobs.

If no value is available, raises an error.

	
getSpaceUsableForJobs()

	Return the total number of bytes that are not taken up by job requirements, ignoring files and file usage.
We can’t ever run more jobs than we actually have room for, even with caching.

If not retrievable, raises an error.

	
getCacheUnusedJobRequirement()

	Return the total number of bytes of disk space requested by the current
job and not used by files the job is using in the cache.

Mutable references don’t count, but immutable/uploading ones do.

If no value is available, raises an error.

	
adjustCacheLimit(newTotalBytes)

	Adjust the total cache size limit to the given number of bytes.

	
fileIsCached(fileID)

	Return true if the given file is currently cached, and false otherwise.

Note that this can’t really be relied upon because a file may go cached
-> deleting after you look at it. If you need to do something with the
file you need to do it in a transaction.

	
getFileReaderCount(fileID)

	Return the number of current outstanding reads of the given file.

Counts mutable references too.

	
cachingIsFree()

	Return true if files can be cached for free, without taking up space.
Return false otherwise.

This will be true when working with certain job stores in certain
configurations, most notably the FileJobStore.

	
open(job)

	This context manager decorated method allows cache-specific operations to be conducted
before and after the execution of a job in worker.py

	Parameters

	job (toil.job.Job) –

	Return type

	Generator[None, None, None]

	
writeGlobalFile(localFileName, cleanup=False, executable=False)

	Creates a file in the jobstore and returns a FileID reference.

	
readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=False, symlink=False)

	Make the file associated with fileStoreID available locally.

If mutable is True, then a copy of the file will be created locally so
that the original is not modified and does not change the file for other
jobs. If mutable is False, then a link can be created to the file, saving
disk resources. The file that is downloaded will be executable if and only
if it was originally uploaded from an executable file on the local filesystem.

If a user path is specified, it is used as the destination. If a user path isn’t
specified, the file is stored in the local temp directory with an encoded name.

The destination file must not be deleted by the user; it can only be
deleted through deleteLocalFile.

Implementations must call logAccess() to report the download.

	Parameters

	
	fileStoreID – job store id for the file

	userPath – a path to the name of file to which the global file will
be copied or hard-linked (see below).

	cache – Described in
toil.fileStores.CachingFileStore.readGlobalFile()

	mutable – Described in
toil.fileStores.CachingFileStore.readGlobalFile()

	Returns

	An absolute path to a local, temporary copy of the file keyed
by fileStoreID.

	
readGlobalFileStream(fileStoreID, encoding=None, errors=None)

	Read a stream from the job store; similar to readGlobalFile.

The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	encoding – the name of the encoding used to decode the file. Encodings
are the same as for decode(). Defaults to None which represents binary mode.

	errors – an optional string that specifies how encoding errors are
to be handled. Errors are the same as for open(). Defaults to ‘strict’
when an encoding is specified.

Implementations must call logAccess() to report the download.

	Returns

	a context manager yielding a file handle which can be read from.

	
deleteLocalFile(fileStoreID)

	Delete local copies of files associated with the provided job store ID.

Raises an OSError with an errno of errno.ENOENT if no such local copies
exist. Thus, cannot be called multiple times in succession.

The files deleted are all those previously read from this file ID via
readGlobalFile by the current job into the job’s file-store-provided
temp directory, plus the file that was written to create the given file
ID, if it was written by the current job from the job’s
file-store-provided temp directory.

	Parameters

	fileStoreID – File Store ID of the file to be deleted.

	
deleteGlobalFile(fileStoreID)

	Delete local files and then permanently deletes them from the job store.

To ensure that the job can be restarted if necessary, the delete will not
happen until after the job’s run method has completed.

	Parameters

	fileStoreID – the File Store ID of the file to be deleted.

	
exportFile(jobStoreFileID, dstUrl)

	
	Parameters

	
	jobStoreFileID (toil.fileStores.FileID) –

	dstUrl (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
export_file(file_id, dst_uri)

	
	Parameters

	
	file_id (toil.fileStores.FileID) –

	dst_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
waitForCommit()

	Blocks while startCommit is running.

This function is called by this job’s successor to ensure that it does
not begin modifying the job store until after this job has finished doing so.

Might be called when startCommit is never called on a particular
instance, in which case it does not block.

	Returns

	Always returns True

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
startCommit(jobState=False)

	Update the status of the job on the disk.

May start an asynchronous process. Call waitForCommit() to wait on that process.

	Parameters

	jobState – If True, commit the state of the FileStore’s job,
and file deletes. Otherwise, commit only file creates/updates.

	
startCommitThread(jobState)

	Run in a thread to actually commit the current job.

	
classmethod shutdown(shutdown_info)

	
	Parameters

	shutdown_info (Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Tuple of the coordination directory (where the
cache database is) and the cache directory (where the cached data is).

	Return type

	None

Job local temp directories will be removed due to their appearance in
the database.

	
__del__()

	Cleanup function that is run when destroying the class instance that ensures that all the
file writing threads exit.

 toil.fileStores.nonCachingFileStore

toil.fileStores.nonCachingFileStore

Module Contents

Classes

	NonCachingFileStore

	Interface used to allow user code run by Toil to read and write files.

Attributes

	logger

	

	
toil.fileStores.nonCachingFileStore.logger: logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]

	

	
class toil.fileStores.nonCachingFileStore.NonCachingFileStore(jobStore, jobDesc, file_store_dir, waitForPreviousCommit)

	Bases: toil.fileStores.abstractFileStore.AbstractFileStore

[image: Inheritance diagram of toil.fileStores.nonCachingFileStore.NonCachingFileStore]

Interface used to allow user code run by Toil to read and write files.

Also provides the interface to other Toil facilities used by user code,
including:

	normal (non-real-time) logging

	finding the correct temporary directory for scratch work

	importing and exporting files into and out of the workflow

Stores user files in the jobStore, but keeps them separate from actual
jobs.

May implement caching.

Passed as argument to the toil.job.Job.run() method.

Access to files is only permitted inside the context manager provided by
toil.fileStores.abstractFileStore.AbstractFileStore.open().

Also responsible for committing completed jobs back to the job store with
an update operation, and allowing that commit operation to be waited for.

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	jobDesc (toil.job.JobDescription) –

	file_store_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	waitForPreviousCommit (Callable[[], Any]) –

	
static check_for_coordination_corruption(coordination_dir)

	Make sure the coordination directory hasn’t been deleted unexpectedly.

Slurm has been known to delete XDG_RUNTIME_DIR out from under processes
it was promised to, so it is possible that in certain misconfigured
environments the coordination directory and everything in it could go
away unexpectedly. We are going to regularly make sure that the things
we think should exist actually exist, and we are going to abort if they
do not.

	Parameters

	coordination_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
check_for_state_corruption()

	Make sure state tracking information hasn’t been deleted unexpectedly.

	Return type

	None

	
open(job)

	Create the context manager around tasks prior and after a job has been run.

File operations are only permitted inside the context manager.

Implementations must only yield from within with super().open(job):.

	Parameters

	job (toil.job.Job) – The job instance of the toil job to run.

	Return type

	Generator[None, None, None]

	
writeGlobalFile(localFileName, cleanup=False)

	Upload a file (as a path) to the job store.

If the file is in a FileStore-managed temporary directory (i.e. from
toil.fileStores.abstractFileStore.AbstractFileStore.getLocalTempDir()),
it will become a local copy of the file, eligible for deletion by
toil.fileStores.abstractFileStore.AbstractFileStore.deleteLocalFile().

If an executable file on the local filesystem is uploaded, its executability
will be preserved when it is downloaded again.

	Parameters

	
	localFileName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the local file to upload. The
last path component (basename of the file) will remain
associated with the file in the file store, if supported by the
backing JobStore, so that the file can be searched for by name
or name glob.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – if True then the copy of the global file will be deleted once
the job and all its successors have completed running. If not the global
file must be deleted manually.

	Returns

	an ID that can be used to retrieve the file.

	Return type

	toil.fileStores.FileID

	
readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=False, symlink=False)

	Make the file associated with fileStoreID available locally.

If mutable is True, then a copy of the file will be created locally so
that the original is not modified and does not change the file for other
jobs. If mutable is False, then a link can be created to the file, saving
disk resources. The file that is downloaded will be executable if and only
if it was originally uploaded from an executable file on the local filesystem.

If a user path is specified, it is used as the destination. If a user path isn’t
specified, the file is stored in the local temp directory with an encoded name.

The destination file must not be deleted by the user; it can only be
deleted through deleteLocalFile.

Implementations must call logAccess() to report the download.

	Parameters

	
	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – job store id for the file

	userPath (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – a path to the name of file to which the global file will
be copied or hard-linked (see below).

	cache (bool [https://docs.python.org/3/library/functions.html#bool]) – Described in
toil.fileStores.CachingFileStore.readGlobalFile()

	mutable (bool [https://docs.python.org/3/library/functions.html#bool]) – Described in
toil.fileStores.CachingFileStore.readGlobalFile()

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Returns

	An absolute path to a local, temporary copy of the file keyed
by fileStoreID.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
readGlobalFileStream(fileStoreID, encoding=None, errors=None)

	Read a stream from the job store; similar to readGlobalFile.

The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	encoding (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – the name of the encoding used to decode the file. Encodings
are the same as for decode(). Defaults to None which represents binary mode.

	errors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – an optional string that specifies how encoding errors are
to be handled. Errors are the same as for open(). Defaults to ‘strict’
when an encoding is specified.

	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Iterator[Union[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]]

Implementations must call logAccess() to report the download.

	Returns

	a context manager yielding a file handle which can be read from.

	Parameters

	
	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	encoding (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	errors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	Iterator[Union[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	
exportFile(jobStoreFileID, dstUrl)

	
	Parameters

	
	jobStoreFileID (toil.fileStores.FileID) –

	dstUrl (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
export_file(file_id, dst_uri)

	
	Parameters

	
	file_id (toil.fileStores.FileID) –

	dst_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
deleteLocalFile(fileStoreID)

	Delete local copies of files associated with the provided job store ID.

Raises an OSError with an errno of errno.ENOENT if no such local copies
exist. Thus, cannot be called multiple times in succession.

The files deleted are all those previously read from this file ID via
readGlobalFile by the current job into the job’s file-store-provided
temp directory, plus the file that was written to create the given file
ID, if it was written by the current job from the job’s
file-store-provided temp directory.

	Parameters

	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – File Store ID of the file to be deleted.

	Return type

	None

	
deleteGlobalFile(fileStoreID)

	Delete local files and then permanently deletes them from the job store.

To ensure that the job can be restarted if necessary, the delete will not
happen until after the job’s run method has completed.

	Parameters

	fileStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the File Store ID of the file to be deleted.

	Return type

	None

	
waitForCommit()

	Blocks while startCommit is running.

This function is called by this job’s successor to ensure that it does
not begin modifying the job store until after this job has finished doing so.

Might be called when startCommit is never called on a particular
instance, in which case it does not block.

	Returns

	Always returns True

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
startCommit(jobState=False)

	Update the status of the job on the disk.

May start an asynchronous process. Call waitForCommit() to wait on that process.

	Parameters

	jobState (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, commit the state of the FileStore’s job,
and file deletes. Otherwise, commit only file creates/updates.

	Return type

	None

	
__del__()

	Cleanup function that is run when destroying the class instance. Nothing to do since there
are no async write events.

	Return type

	None

	
classmethod shutdown(shutdown_info)

	
	Parameters

	shutdown_info (str [https://docs.python.org/3/library/stdtypes.html#str]) – The coordination directory.

	Return type

	None

 toil.jobStores

toil.jobStores

Subpackages

	toil.jobStores.aws
	toil.jobStores.aws.jobStore

	toil.jobStores.aws.utils

Submodules

	toil.jobStores.abstractJobStore

	toil.jobStores.conftest

	toil.jobStores.fileJobStore

	toil.jobStores.googleJobStore

	toil.jobStores.utils

 toil.jobStores.aws

toil.jobStores.aws

Submodules

	toil.jobStores.aws.jobStore

	toil.jobStores.aws.utils

 toil.jobStores.aws.jobStore

toil.jobStores.aws.jobStore

Module Contents

Classes

	AWSJobStore

	A job store that uses Amazon's S3 for file storage and SimpleDB for storing job info and

Attributes

	boto3_session

	

	s3_boto3_resource

	

	s3_boto3_client

	

	logger

	

	CONSISTENCY_TICKS

	

	CONSISTENCY_TIME

	

	aRepr

	

	custom_repr

	

	
toil.jobStores.aws.jobStore.boto3_session

	

	
toil.jobStores.aws.jobStore.s3_boto3_resource

	

	
toil.jobStores.aws.jobStore.s3_boto3_client

	

	
toil.jobStores.aws.jobStore.logger

	

	
toil.jobStores.aws.jobStore.CONSISTENCY_TICKS = 5

	

	
toil.jobStores.aws.jobStore.CONSISTENCY_TIME = 1

	

	
exception toil.jobStores.aws.jobStore.ChecksumError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.jobStores.aws.jobStore.ChecksumError]

Raised when a download from AWS does not contain the correct data.

	
class toil.jobStores.aws.jobStore.AWSJobStore(locator, partSize=50 << 20)

	Bases: toil.jobStores.abstractJobStore.AbstractJobStore

[image: Inheritance diagram of toil.jobStores.aws.jobStore.AWSJobStore]

A job store that uses Amazon’s S3 for file storage and SimpleDB for storing job info and
enforcing strong consistency on the S3 file storage. There will be SDB domains for jobs and
files and a versioned S3 bucket for file contents. Job objects are pickled, compressed,
partitioned into chunks of 1024 bytes and each chunk is stored as a an attribute of the SDB
item representing the job. UUIDs are used to identify jobs and files.

	Parameters

	
	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	partSize (int [https://docs.python.org/3/library/functions.html#int]) –

	
class FileInfo(fileID, ownerID, encrypted, version=None, content=None, numContentChunks=0, checksum=None)

	Bases: toil.jobStores.aws.utils.SDBHelper

[image: Inheritance diagram of toil.jobStores.aws.jobStore.AWSJobStore.FileInfo]

Represents a file in this job store.

	
property fileID

	

	
property ownerID

	

	
property version

	

	
property previousVersion

	

	
property content

	

	
property checksum

	

	
outer

	
	Type

	AWSJobStore

	
classmethod create(ownerID)

	

	
classmethod presenceIndicator()

	The key that is guaranteed to be present in the return value of binaryToAttributes().
Assuming that binaryToAttributes() is used with SDB’s PutAttributes, the return value of
this method could be used to detect the presence/absence of an item in SDB.

	
classmethod exists(jobStoreFileID)

	

	
classmethod load(jobStoreFileID)

	

	
classmethod loadOrCreate(jobStoreFileID, ownerID, encrypted)

	

	
classmethod loadOrFail(jobStoreFileID, customName=None)

	
	Return type

	AWSJobStore.FileInfo

	Returns

	an instance of this class representing the file with the given ID

	Raises

	NoSuchFileException – if given file does not exist

	
classmethod fromItem(item)

	Convert an SDB item to an instance of this class.

	
toItem()

	Convert this instance to an attribute dictionary suitable for SDB put_attributes().

	Return type

	(dict [https://docs.python.org/3/library/stdtypes.html#dict],int [https://docs.python.org/3/library/functions.html#int])

	Returns

	the attributes dict and an integer specifying the the number of chunk
attributes in the dictionary that are used for storing inlined content.

	
static maxInlinedSize()

	

	
save()

	

	
upload(localFilePath, calculateChecksum=True)

	

	
uploadStream(multipart=True, allowInlining=True, encoding=None, errors=None)

	Context manager that gives out a binary or text mode upload stream to upload data.

	
copyFrom(srcObj)

	Copies contents of source key into this file.

	Parameters

	srcObj (S3.Object) – The key (object) that will be copied from

	
copyTo(dstObj)

	Copies contents of this file to the given key.

	Parameters

	dstObj (S3.Object) – The key (object) to copy this file’s content to

	
download(localFilePath, verifyChecksum=True)

	

	
downloadStream(verifyChecksum=True, encoding=None, errors=None)

	Context manager that gives out a download stream to download data.

	
delete()

	

	
getSize()

	Return the size of the referenced item in bytes.

	
__repr__()

	Return repr(self).

	
property sseKeyPath

	

	
bucketNameRe

	

	
minBucketNameLen = 3

	

	
maxBucketNameLen = 63

	

	
maxNameLen = 10

	

	
nameSeparator = '--'

	

	
jobsPerBatchInsert = 25

	

	
itemsPerBatchDelete = 25

	

	
sharedFileOwnerID

	

	
statsFileOwnerID

	

	
readStatsFileOwnerID

	

	
versionings

	

	
initialize(config)

	Initialize this job store.

Create the physical storage for this job store, allocate a workflow ID
and persist the given Toil configuration to the store.

	Parameters

	config – the Toil configuration to initialize this job store with.
The given configuration will be updated with the newly
allocated workflow ID.

	Raises

	JobStoreExistsException – if the physical storage for this job store
already exists

	
resume()

	Connect this instance to the physical storage it represents and load the Toil configuration
into the AbstractJobStore.config attribute.

	Raises

	NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

	
batch()

	If supported by the batch system, calls to create() with this context
manager active will be performed in a batch after the context manager
is released.

	
assign_job_id(job_description)

	Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created or updated.

	Parameters

	job_description (toil.job.JobDescription) – The JobDescription to give an ID to

	
create_job(job_description)

	Writes the given JobDescription to the job store. The job must have an ID assigned already.

Must call jobDescription.pre_update_hook()

	Returns

	The JobDescription passed.

	Return type

	toil.job.JobDescription

	
job_exists(job_id)

	Indicates whether a description of the job with the specified jobStoreID exists in the job store

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
jobs()

	Best effort attempt to return iterator on JobDescriptions for all jobs
in the store. The iterator may not return all jobs and may also contain
orphaned jobs that have already finished successfully and should not be
rerun. To guarantee you get any and all jobs that can be run instead
construct a more expensive ToilState object

	Returns

	Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may contain
invalid jobs

	Return type

	Iterator[toil.job.jobDescription]

	
load_job(job_id)

	Loads the description of the job referenced by the given ID, assigns it
the job store’s config, and returns it.

May declare the job to have failed (see
toil.job.JobDescription.setupJobAfterFailure()) if there is
evidence of a failed update attempt.

	Parameters

	job_id – the ID of the job to load

	Raises

	NoSuchJobException – if there is no job with the given ID

	
update_job(job_description)

	Persists changes to the state of the given JobDescription in this store atomically.

Must call jobDescription.pre_update_hook()

	Parameters

	job (toil.job.JobDescription) – the job to write to this job store

	
delete_job(job_id)

	Removes the JobDescription from the store atomically. You may not then
subsequently call load(), write(), update(), etc. with the same
jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job
will succeed silently.

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the job to delete from this job store

	
get_empty_file_store_id(jobStoreID=None, cleanup=False, basename=None)

	Creates an empty file in the job store and returns its ID.
Call to fileExists(getEmptyFileStoreID(jobStoreID)) will return True.

	Parameters

	
	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	Returns

	a jobStoreFileID that references the newly created file and can be used to reference the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod get_size(url)

	Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

	Parameters

	src_uri – URL that points to a file or object in the storage
mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.

	
write_file(local_path, job_id=None, cleanup=False)

	Takes a file (as a path) and places it in this job store. Returns an ID that can be used
to retrieve the file at a later time. The file is written in a atomic manner. It will
not appear in the jobStore until the write has successfully completed.

	Parameters

	
	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the path to the local file that will be uploaded to the job store.
The last path component (basename of the file) will remain
associated with the file in the file store, if supported, so
that the file can be searched for by name or name glob.

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

	Returns

	an ID referencing the newly created file and can be used to read the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
write_file_stream(job_id=None, cleanup=False, basename=None, encoding=None, errors=None)

	Similar to writeFile, but returns a context manager yielding a tuple of
1) a file handle which can be written to and 2) the ID of the resulting
file in the job store. The yielded file handle does not need to and
should not be closed explicitly. The file is written in a atomic manner.
It will not appear in the jobStore until the write has successfully
completed.

	Parameters

	
	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

	Returns

	a context manager yielding a file handle which can be written to and an ID that references
the newly created file and can be used to read the file in the future.

	Return type

	Iterator[Tuple[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
write_shared_file_stream(shared_file_name, encrypted=None, encoding=None, errors=None)

	Returns a context manager yielding a writable file handle to the global file referenced
by the given name. File will be created in an atomic manner.

	Parameters

	
	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	encrypted (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the file must be encrypted, None if it may be encrypted or
False if it must be stored in the clear.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	a context manager yielding a writable file handle

	Return type

	Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
update_file(file_id, local_path)

	Replaces the existing version of a file in the job store.

Throws an exception if the file does not exist.

	Parameters

	
	file_id – the ID of the file in the job store to be updated

	local_path – the local path to a file that will overwrite the current
version in the job store

	Raises

	
	ConcurrentFileModificationException – if the file was modified
concurrently during an invocation of this method

	NoSuchFileException – if the specified file does not exist

	
update_file_stream(file_id, encoding=None, errors=None)

	Replaces the existing version of a file in the job store. Similar to writeFile, but
returns a context manager yielding a file handle which can be written to. The
yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the file in the job store to be updated

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchFileException – if the specified file does not exist

	
file_exists(file_id)

	Determine whether a file exists in this job store.

	Parameters

	file_id – an ID referencing the file to be checked

	
get_file_size(file_id)

	Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of
file sizes, since the encrypted file may have been padded to the
nearest block, augmented with an initialization vector, etc.

	Parameters

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – an ID referencing the file to be checked

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
read_file(file_id, local_path, symlink=False)

	Copies or hard links the file referenced by jobStoreFileID to the given
local file path. The version will be consistent with the last copy of
the file written/updated. If the file in the job store is later
modified via updateFile or updateFileStream, it is
implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not
appear in the local file system until the copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to be copied

	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the local path indicating where to place the contents of the
given file in the job store

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the reader can tolerate a symlink. If set to true, the job
store may create a symlink instead of a full copy of the file or a hard link.

	
read_file_stream(file_id, encoding=None, errors=None)

	Similar to readFile, but returns a context manager yielding a file handle which can be
read from. The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to get a readable file handle for

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same as
for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Returns

	a context manager yielding a file handle which can be read from

	Return type

	Iterator[Union[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	
read_shared_file_stream(shared_file_name, encoding=None, errors=None)

	Returns a context manager yielding a readable file handle to the global file referenced
by the given name.

	Parameters

	
	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same
as for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Returns

	a context manager yielding a readable file handle

	Return type

	Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
delete_file(file_id)

	Deletes the file with the given ID from this job store. This operation is idempotent, i.e.
deleting a file twice or deleting a non-existent file will succeed silently.

	Parameters

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to delete

	
write_logs(msg)

	Stores a message as a log in the jobstore.

	Parameters

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – the string to be written

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	
read_logs(callback, read_all=False)

	Reads logs accumulated by the write_logs() method. For each log this method calls the
given callback function with the message as an argument (rather than returning logs directly,
this method must be supplied with a callback which will process log messages).

Only unread logs will be read unless the read_all parameter is set.

	Parameters

	
	callback (Callable) – a function to be applied to each of the stats file handles found

	read_all (bool [https://docs.python.org/3/library/functions.html#bool]) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	the number of stats files processed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
get_public_url(jobStoreFileID)

	Returns a publicly accessible URL to the given file in the job store. The returned URL may
expire as early as 1h after its been returned. Throw an exception if the file does not
exist.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the jobStoreFileID of the file to generate a URL for

	Raises

	NoSuchFileException – if the specified file does not exist in this job store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_shared_public_url(shared_file_name)

	Differs from getPublicUrl() in that this method is for generating URLs for shared
files written by writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL
starts with ‘http:’, ‘https:’ or ‘file:’. The returned URL may expire as early as 1h
after its been returned. Throw an exception if the file does not exist.

	Parameters

	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the shared file to generate a publically accessible url for.

	Raises

	NoSuchFileException – raised if the specified file does not exist in the store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
destroy()

	The inverse of initialize(), this method deletes the physical storage represented
by this instance. While not being atomic, this method is at least idempotent,
as a means to counteract potential issues with eventual consistency exhibited by the
underlying storage mechanisms. This means that if the method fails (raises an exception),
it may (and should be) invoked again. If the underlying storage mechanism is eventually
consistent, even a successful invocation is not an ironclad guarantee that the physical
storage vanished completely and immediately. A successful invocation only guarantees that
the deletion will eventually happen. It is therefore recommended to not immediately reuse
the same job store location for a new Toil workflow.

	
toil.jobStores.aws.jobStore.aRepr

	

	
toil.jobStores.aws.jobStore.custom_repr

	

	
exception toil.jobStores.aws.jobStore.BucketLocationConflictException(bucketRegion)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.jobStores.aws.jobStore.BucketLocationConflictException]

Common base class for all non-exit exceptions.

 toil.jobStores.aws.utils

toil.jobStores.aws.utils

Module Contents

Classes

	SDBHelper

	A mixin with methods for storing limited amounts of binary data in an SDB item

Functions

	fileSizeAndTime(localFilePath)

	

	uploadFromPath(localFilePath, resource, bucketName, fileID)

	Uploads a file to s3, using multipart uploading if applicable

	uploadFile(readable, resource, bucketName, fileID[, ...])

	Upload a readable object to s3, using multipart uploading if applicable.

	copyKeyMultipart(resource, srcBucketName, srcKeyName, ...)

	Copies a key from a source key to a destination key in multiple parts. Note that if the

	monkeyPatchSdbConnection(sdb)

	
	type sdb

	SDBConnection

	sdb_unavailable(e)

	

	no_such_sdb_domain(e)

	

	retryable_ssl_error(e)

	

	retryable_sdb_errors(e)

	

	retry_sdb([delays, timeout, predicate])

	

Attributes

	logger

	

	DIAL_SPECIFIC_REGION_CONFIG

	

	
toil.jobStores.aws.utils.logger

	

	
toil.jobStores.aws.utils.DIAL_SPECIFIC_REGION_CONFIG

	

	
class toil.jobStores.aws.utils.SDBHelper

	A mixin with methods for storing limited amounts of binary data in an SDB item

>>> import os
>>> H=SDBHelper
>>> H.presenceIndicator()
u'numChunks'
>>> H.binaryToAttributes(None)['numChunks']
0
>>> H.attributesToBinary({u'numChunks': 0})
(None, 0)
>>> H.binaryToAttributes(b'')
{u'000': b'VQ==', u'numChunks': 1}
>>> H.attributesToBinary({u'numChunks': 1, u'000': b'VQ=='})
(b'', 1)

Good pseudo-random data is very likely smaller than its bzip2ed form. Subtract 1 for the type
character, i.e ‘C’ or ‘U’, with which the string is prefixed. We should get one full chunk:

>>> s = os.urandom(H.maxRawValueSize-1)
>>> d = H.binaryToAttributes(s)
>>> len(d), len(d['000'])
(2, 1024)
>>> H.attributesToBinary(d) == (s, 1)
True

One byte more and we should overflow four bytes into the second chunk, two bytes for
base64-encoding the additional character and two bytes for base64-padding to the next quartet.

>>> s += s[0:1]
>>> d = H.binaryToAttributes(s)
>>> len(d), len(d['000']), len(d['001'])
(3, 1024, 4)
>>> H.attributesToBinary(d) == (s, 2)
True

	
maxAttributesPerItem = 256

	

	
maxValueSize = 1024

	

	
maxRawValueSize

	

	
classmethod maxBinarySize(extraReservedChunks=0)

	

	
classmethod binaryToAttributes(binary)

	Turn a bytestring, or None, into SimpleDB attributes.

	
classmethod presenceIndicator()

	The key that is guaranteed to be present in the return value of binaryToAttributes().
Assuming that binaryToAttributes() is used with SDB’s PutAttributes, the return value of
this method could be used to detect the presence/absence of an item in SDB.

	
classmethod attributesToBinary(attributes)

	
	Return type

	(str [https://docs.python.org/3/library/stdtypes.html#str]|None,int [https://docs.python.org/3/library/functions.html#int])

	Returns

	the binary data and the number of chunks it was composed from

	
toil.jobStores.aws.utils.fileSizeAndTime(localFilePath)

	

	
toil.jobStores.aws.utils.uploadFromPath(localFilePath, resource, bucketName, fileID, headerArgs=None, partSize=50 << 20)

	Uploads a file to s3, using multipart uploading if applicable

	Parameters

	
	localFilePath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the file to upload to s3

	resource (S3.Resource) – boto3 resource

	bucketName (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the bucket to upload to

	fileID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the file to upload to

	headerArgs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – http headers to use when uploading - generally used for encryption purposes

	partSize (int [https://docs.python.org/3/library/functions.html#int]) – max size of each part in the multipart upload, in bytes

	Returns

	version of the newly uploaded file

	
toil.jobStores.aws.utils.uploadFile(readable, resource, bucketName, fileID, headerArgs=None, partSize=50 << 20)

	Upload a readable object to s3, using multipart uploading if applicable.
:param readable: a readable stream or a file path to upload to s3
:param S3.Resource resource: boto3 resource
:param str bucketName: name of the bucket to upload to
:param str fileID: the name of the file to upload to
:param dict headerArgs: http headers to use when uploading - generally used for encryption purposes
:param int partSize: max size of each part in the multipart upload, in bytes
:return: version of the newly uploaded file

	Parameters

	
	bucketName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	fileID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	headerArgs (Optional[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) –

	partSize (int [https://docs.python.org/3/library/functions.html#int]) –

	
exception toil.jobStores.aws.utils.ServerSideCopyProhibitedError

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

[image: Inheritance diagram of toil.jobStores.aws.utils.ServerSideCopyProhibitedError]

Raised when AWS refuses to perform a server-side copy between S3 keys, and
insists that you pay to download and upload the data yourself instead.

	
toil.jobStores.aws.utils.copyKeyMultipart(resource, srcBucketName, srcKeyName, srcKeyVersion, dstBucketName, dstKeyName, sseAlgorithm=None, sseKey=None, copySourceSseAlgorithm=None, copySourceSseKey=None)

	Copies a key from a source key to a destination key in multiple parts. Note that if the
destination key exists it will be overwritten implicitly, and if it does not exist a new
key will be created. If the destination bucket does not exist an error will be raised.

This function will always do a fast, server-side copy, at least
until/unless <https://github.com/boto/boto3/issues/3270> is fixed. In some
situations, a fast, server-side copy is not actually possible. For example,
when residing in an AWS VPC with an S3 VPC Endpoint configured, copying
from a bucket in another region to a bucket in your own region cannot be
performed server-side. This is because the VPC Endpoint S3 API servers
refuse to perform server-side copies between regions, the source region’s
API servers refuse to initiate the copy and refer you to the destination
bucket’s region’s API servers, and the VPC routing tables are configured to
redirect all access to the current region’s S3 API servers to the S3
Endpoint API servers instead.

If a fast server-side copy is not actually possible, a
ServerSideCopyProhibitedError will be raised.

	Parameters

	
	resource (mypy_boto3_s3.S3ServiceResource) – boto3 resource

	srcBucketName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the bucket to be copied from.

	srcKeyName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the key to be copied from.

	srcKeyVersion (str [https://docs.python.org/3/library/stdtypes.html#str]) – The version of the key to be copied from.

	dstBucketName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the destination bucket for the copy.

	dstKeyName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the destination key that will be created or overwritten.

	sseAlgorithm (str [https://docs.python.org/3/library/stdtypes.html#str]) – Server-side encryption algorithm for the destination.

	sseKey (str [https://docs.python.org/3/library/stdtypes.html#str]) – Server-side encryption key for the destination.

	copySourceSseAlgorithm (str [https://docs.python.org/3/library/stdtypes.html#str]) – Server-side encryption algorithm for the source.

	copySourceSseKey (str [https://docs.python.org/3/library/stdtypes.html#str]) – Server-side encryption key for the source.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	The version of the copied file (or None if versioning is not enabled for dstBucket).

	
toil.jobStores.aws.utils.monkeyPatchSdbConnection(sdb)

	

	
toil.jobStores.aws.utils.sdb_unavailable(e)

	

	
toil.jobStores.aws.utils.no_such_sdb_domain(e)

	

	
toil.jobStores.aws.utils.retryable_ssl_error(e)

	

	
toil.jobStores.aws.utils.retryable_sdb_errors(e)

	

	
toil.jobStores.aws.utils.retry_sdb(delays=DEFAULT_DELAYS, timeout=DEFAULT_TIMEOUT, predicate=retryable_sdb_errors)

	

 toil.jobStores.abstractJobStore

toil.jobStores.abstractJobStore

Module Contents

Classes

	AbstractJobStore

	Represents the physical storage for the jobs and files in a Toil workflow.

	JobStoreSupport

	A mostly fake JobStore to access URLs not really associated with real job

Attributes

	logger

	

	
toil.jobStores.abstractJobStore.logger

	

	
exception toil.jobStores.abstractJobStore.ProxyConnectionError

	Bases: BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]

Dummy class.

	
exception toil.jobStores.abstractJobStore.InvalidImportExportUrlException(url)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.jobStores.abstractJobStore.InvalidImportExportUrlException]

Common base class for all non-exit exceptions.

	Parameters

	url (urllib.parse.ParseResult [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult]) –

	
exception toil.jobStores.abstractJobStore.NoSuchJobException(jobStoreID)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.jobStores.abstractJobStore.NoSuchJobException]

Indicates that the specified job does not exist.

	Parameters

	jobStoreID (toil.fileStores.FileID) –

	
exception toil.jobStores.abstractJobStore.ConcurrentFileModificationException(jobStoreFileID)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.jobStores.abstractJobStore.ConcurrentFileModificationException]

Indicates that the file was attempted to be modified by multiple processes at once.

	Parameters

	jobStoreFileID (toil.fileStores.FileID) –

	
exception toil.jobStores.abstractJobStore.NoSuchFileException(jobStoreFileID, customName=None, *extra)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.jobStores.abstractJobStore.NoSuchFileException]

Indicates that the specified file does not exist.

	Parameters

	
	jobStoreFileID (toil.fileStores.FileID) –

	customName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	extra (Any) –

	
exception toil.jobStores.abstractJobStore.NoSuchJobStoreException(locator)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.jobStores.abstractJobStore.NoSuchJobStoreException]

Indicates that the specified job store does not exist.

	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
exception toil.jobStores.abstractJobStore.JobStoreExistsException(locator)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.jobStores.abstractJobStore.JobStoreExistsException]

Indicates that the specified job store already exists.

	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
class toil.jobStores.abstractJobStore.AbstractJobStore(locator)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

[image: Inheritance diagram of toil.jobStores.abstractJobStore.AbstractJobStore]

Represents the physical storage for the jobs and files in a Toil workflow.

JobStores are responsible for storing toil.job.JobDescription
(which relate jobs to each other) and files.

Actual toil.job.Job objects are stored in files, referenced by
JobDescriptions. All the non-file CRUD methods the JobStore provides deal
in JobDescriptions and not full, executable Jobs.

To actually get ahold of a toil.job.Job, use
toil.job.Job.loadJob() with a JobStore and the relevant JobDescription.

	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
property config: toil.common.Config

	Return the Toil configuration associated with this job store.

	Return type

	toil.common.Config

	
property locator: str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the locator that defines the job store, which can be used to
connect to it.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
rootJobStoreIDFileName = 'rootJobStoreID'

	

	
publicUrlExpiration

	

	
sharedFileNameRegex

	

	
initialize(config)

	Initialize this job store.

Create the physical storage for this job store, allocate a workflow ID
and persist the given Toil configuration to the store.

	Parameters

	config (toil.common.Config) – the Toil configuration to initialize this job store with.
The given configuration will be updated with the newly
allocated workflow ID.

	Raises

	JobStoreExistsException – if the physical storage for this job store
already exists

	Return type

	None

	
writeConfig()

	
	Return type

	None

	
write_config()

	Persists the value of the AbstractJobStore.config attribute to the
job store, so that it can be retrieved later by other instances of this class.

	Return type

	None

	
resume()

	Connect this instance to the physical storage it represents and load the Toil configuration
into the AbstractJobStore.config attribute.

	Raises

	NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

	Return type

	None

	
setRootJob(rootJobStoreID)

	Set the root job of the workflow backed by this job store.

	Parameters

	rootJobStoreID (toil.fileStores.FileID) –

	Return type

	None

	
set_root_job(job_id)

	Set the root job of the workflow backed by this job store.

	Parameters

	job_id (toil.fileStores.FileID) – The ID of the job to set as root

	Return type

	None

	
loadRootJob()

	
	Return type

	toil.job.JobDescription

	
load_root_job()

	Loads the JobDescription for the root job in the current job store.

	Raises

	toil.job.JobException – If no root job is set or if the root job doesn’t exist in
this job store

	Returns

	The root job.

	Return type

	toil.job.JobDescription

	
createRootJob(desc)

	
	Parameters

	desc (toil.job.JobDescription) –

	Return type

	toil.job.JobDescription

	
create_root_job(job_description)

	Create the given JobDescription and set it as the root job in this job store.

	Parameters

	job_description (toil.job.JobDescription) – JobDescription to save and make the root job.

	Return type

	toil.job.JobDescription

	
getRootJobReturnValue()

	
	Return type

	Any

	
get_root_job_return_value()

	Parse the return value from the root job.

Raises an exception if the root job hasn’t fulfilled its promise yet.

	Return type

	Any

	
importFile(srcUrl: str [https://docs.python.org/3/library/stdtypes.html#str], sharedFileName: str [https://docs.python.org/3/library/stdtypes.html#str], hardlink: bool [https://docs.python.org/3/library/functions.html#bool] = False, symlink: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	
importFile(srcUrl: str [https://docs.python.org/3/library/stdtypes.html#str], sharedFileName: None [https://docs.python.org/3/library/constants.html#None] = None, hardlink: bool [https://docs.python.org/3/library/functions.html#bool] = False, symlink: bool [https://docs.python.org/3/library/functions.html#bool] = False) → toil.fileStores.FileID

	

	
import_file(src_uri: str [https://docs.python.org/3/library/stdtypes.html#str], shared_file_name: str [https://docs.python.org/3/library/stdtypes.html#str], hardlink: bool [https://docs.python.org/3/library/functions.html#bool] = False, symlink: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	
import_file(src_uri: str [https://docs.python.org/3/library/stdtypes.html#str], shared_file_name: None [https://docs.python.org/3/library/constants.html#None] = None, hardlink: bool [https://docs.python.org/3/library/functions.html#bool] = False, symlink: bool [https://docs.python.org/3/library/functions.html#bool] = False) → toil.fileStores.FileID

	Imports the file at the given URL into job store. The ID of the newly imported file is
returned. If the name of a shared file name is provided, the file will be imported as
such and None is returned. If an executable file on the local filesystem is uploaded, its
executability will be preserved when it is downloaded.

Currently supported schemes are:

	
	‘s3’ for objects in Amazon S3
	e.g. s3://bucket/key

	
	‘file’ for local files
	e.g. file:///local/file/path

	
	‘http’
	e.g. http://someurl.com/path

	
	‘gs’
	e.g. gs://bucket/file

	Parameters

	
	src_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL that points to a file or object in the storage mechanism of a
supported URL scheme e.g. a blob in an AWS s3 bucket.

	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional name to assign to the imported file within the job store

	Returns

	The jobStoreFileID of the imported file or None if shared_file_name was given

	Return type

	toil.fileStores.FileID or None

	
exportFile(jobStoreFileID, dstUrl)

	
	Parameters

	
	jobStoreFileID (toil.fileStores.FileID) –

	dstUrl (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
export_file(file_id, dst_uri)

	Exports file to destination pointed at by the destination URL. The exported file will be
executable if and only if it was originally uploaded from an executable file on the
local filesystem.

Refer to AbstractJobStore.import_file() documentation for currently supported URL schemes.

Note that the helper method _exportFile is used to read from the source and write to
destination. To implement any optimizations that circumvent this, the _exportFile method
should be overridden by subclasses of AbstractJobStore.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The id of the file in the job store that should be exported.

	dst_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL that points to a file or object in the storage mechanism of a
supported URL scheme e.g. a blob in an AWS s3 bucket.

	Return type

	None

	
classmethod list_url(src_uri)

	List the directory at the given URL. Returned path components can be
joined with ‘/’ onto the passed URL to form new URLs. Those that end in
‘/’ correspond to directories. The provided URL may or may not end with
‘/’.

Currently supported schemes are:

	
	‘s3’ for objects in Amazon S3
	e.g. s3://bucket/prefix/

	
	‘file’ for local files
	e.g. file:///local/dir/path/

	Parameters

	src_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL that points to a directory or prefix in the storage mechanism of a
supported URL scheme e.g. a prefix in an AWS s3 bucket.

	Returns

	A list of URL components in the given directory, already URL-encoded.

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
classmethod get_is_directory(src_uri)

	Return True if the thing at the given URL is a directory, and False if
it is a file. The URL may or may not end in ‘/’.

	Parameters

	src_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
classmethod read_from_url(src_uri, writable)

	Read the given URL and write its content into the given writable stream.

	Returns

	The size of the file in bytes and whether the executable permission bit is set

	Return type

	Tuple[int [https://docs.python.org/3/library/functions.html#int], bool [https://docs.python.org/3/library/functions.html#bool]]

	Parameters

	
	src_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	writable (IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]) –

	
classmethod getSize(url)

	
	Parameters

	url (urllib.parse.ParseResult [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult]) –

	Return type

	None

	
abstract classmethod get_size(src_uri)

	Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

	Parameters

	src_uri (urllib.parse.ParseResult [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult]) – URL that points to a file or object in the storage
mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.

	Return type

	None

	
abstract destroy()

	The inverse of initialize(), this method deletes the physical storage represented
by this instance. While not being atomic, this method is at least idempotent,
as a means to counteract potential issues with eventual consistency exhibited by the
underlying storage mechanisms. This means that if the method fails (raises an exception),
it may (and should be) invoked again. If the underlying storage mechanism is eventually
consistent, even a successful invocation is not an ironclad guarantee that the physical
storage vanished completely and immediately. A successful invocation only guarantees that
the deletion will eventually happen. It is therefore recommended to not immediately reuse
the same job store location for a new Toil workflow.

	Return type

	None

	
getEnv()

	
	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_env()

	Returns a dictionary of environment variables that this job store requires to be set in
order to function properly on a worker.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str],str [https://docs.python.org/3/library/stdtypes.html#str]]

	
clean(jobCache=None)

	Function to cleanup the state of a job store after a restart.

Fixes jobs that might have been partially updated. Resets the try counts
and removes jobs that are not successors of the current root job.

	Parameters

	jobCache (Optional[Dict[Union[str [https://docs.python.org/3/library/stdtypes.html#str], toil.job.TemporaryID], toil.job.JobDescription]]) – if a value it must be a dict
from job ID keys to JobDescription object values. Jobs will be loaded
from the cache (which can be downloaded from the job store in a batch)
instead of piecemeal when recursed into.

	Return type

	toil.job.JobDescription

	
assignID(jobDescription)

	
	Parameters

	jobDescription (toil.job.JobDescription) –

	Return type

	None

	
abstract assign_job_id(job_description)

	Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created or updated.

	Parameters

	job_description (toil.job.JobDescription) – The JobDescription to give an ID to

	Return type

	None

	
batch()

	If supported by the batch system, calls to create() with this context
manager active will be performed in a batch after the context manager
is released.

	Return type

	Iterator[None]

	
create(jobDescription)

	
	Parameters

	jobDescription (toil.job.JobDescription) –

	Return type

	toil.job.JobDescription

	
abstract create_job(job_description)

	Writes the given JobDescription to the job store. The job must have an ID assigned already.

Must call jobDescription.pre_update_hook()

	Returns

	The JobDescription passed.

	Return type

	toil.job.JobDescription

	Parameters

	job_description (toil.job.JobDescription) –

	
exists(jobStoreID)

	
	Parameters

	jobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract job_exists(job_id)

	Indicates whether a description of the job with the specified jobStoreID exists in the job store

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
getPublicUrl(fileName)

	
	Parameters

	fileName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract get_public_url(file_name)

	Returns a publicly accessible URL to the given file in the job store. The returned URL may
expire as early as 1h after its been returned. Throw an exception if the file does not
exist.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the jobStoreFileID of the file to generate a URL for

	Raises

	NoSuchFileException – if the specified file does not exist in this job store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
getSharedPublicUrl(sharedFileName)

	
	Parameters

	sharedFileName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract get_shared_public_url(shared_file_name)

	Differs from getPublicUrl() in that this method is for generating URLs for shared
files written by writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL
starts with ‘http:’, ‘https:’ or ‘file:’. The returned URL may expire as early as 1h
after its been returned. Throw an exception if the file does not exist.

	Parameters

	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the shared file to generate a publically accessible url for.

	Raises

	NoSuchFileException – raised if the specified file does not exist in the store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
load(jobStoreID)

	
	Parameters

	jobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	toil.job.JobDescription

	
abstract load_job(job_id)

	Loads the description of the job referenced by the given ID, assigns it
the job store’s config, and returns it.

May declare the job to have failed (see
toil.job.JobDescription.setupJobAfterFailure()) if there is
evidence of a failed update attempt.

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the job to load

	Raises

	NoSuchJobException – if there is no job with the given ID

	Return type

	toil.job.JobDescription

	
update(jobDescription)

	
	Parameters

	jobDescription (toil.job.JobDescription) –

	Return type

	None

	
abstract update_job(job_description)

	Persists changes to the state of the given JobDescription in this store atomically.

Must call jobDescription.pre_update_hook()

	Parameters

	
	job (toil.job.JobDescription) – the job to write to this job store

	job_description (toil.job.JobDescription) –

	Return type

	None

	
delete(jobStoreID)

	
	Parameters

	jobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
abstract delete_job(job_id)

	Removes the JobDescription from the store atomically. You may not then
subsequently call load(), write(), update(), etc. with the same
jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job
will succeed silently.

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the job to delete from this job store

	Return type

	None

	
abstract jobs()

	Best effort attempt to return iterator on JobDescriptions for all jobs
in the store. The iterator may not return all jobs and may also contain
orphaned jobs that have already finished successfully and should not be
rerun. To guarantee you get any and all jobs that can be run instead
construct a more expensive ToilState object

	Returns

	Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may contain
invalid jobs

	Return type

	Iterator[toil.job.jobDescription]

	
writeFile(localFilePath, jobStoreID=None, cleanup=False)

	
	Parameters

	
	localFilePath (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	jobStoreID (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract write_file(local_path, job_id=None, cleanup=False)

	Takes a file (as a path) and places it in this job store. Returns an ID that can be used
to retrieve the file at a later time. The file is written in a atomic manner. It will
not appear in the jobStore until the write has successfully completed.

	Parameters

	
	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the path to the local file that will be uploaded to the job store.
The last path component (basename of the file) will remain
associated with the file in the file store, if supported, so
that the file can be searched for by name or name glob.

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

FIXME: some implementations may not raise this

	Returns

	an ID referencing the newly created file and can be used to read the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Parameters

	
	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	job_id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
writeFileStream(jobStoreID=None, cleanup=False, basename=None, encoding=None, errors=None)

	
	Parameters

	
	jobStoreID (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) –

	basename (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	encoding (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	errors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	ContextManager[Tuple[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
abstract write_file_stream(job_id=None, cleanup=False, basename=None, encoding=None, errors=None)

	Similar to writeFile, but returns a context manager yielding a tuple of
1) a file handle which can be written to and 2) the ID of the resulting
file in the job store. The yielded file handle does not need to and
should not be closed explicitly. The file is written in a atomic manner.
It will not appear in the jobStore until the write has successfully
completed.

	Parameters

	
	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

	Return type

	Iterator[Tuple[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], str [https://docs.python.org/3/library/stdtypes.html#str]]]

FIXME: some implementations may not raise this

	Returns

	a context manager yielding a file handle which can be written to and an ID that references
the newly created file and can be used to read the file in the future.

	Return type

	Iterator[Tuple[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Parameters

	
	job_id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) –

	basename (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	encoding (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	errors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
getEmptyFileStoreID(jobStoreID=None, cleanup=False, basename=None)

	
	Parameters

	
	jobStoreID (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) –

	basename (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract get_empty_file_store_id(job_id=None, cleanup=False, basename=None)

	Creates an empty file in the job store and returns its ID.
Call to fileExists(getEmptyFileStoreID(jobStoreID)) will return True.

	Parameters

	
	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	Returns

	a jobStoreFileID that references the newly created file and can be used to reference the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
readFile(jobStoreFileID, localFilePath, symlink=False)

	
	Parameters

	
	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	localFilePath (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
abstract read_file(file_id, local_path, symlink=False)

	Copies or hard links the file referenced by jobStoreFileID to the given
local file path. The version will be consistent with the last copy of
the file written/updated. If the file in the job store is later
modified via updateFile or updateFileStream, it is
implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not
appear in the local file system until the copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to be copied

	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the local path indicating where to place the contents of the
given file in the job store

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the reader can tolerate a symlink. If set to true, the job
store may create a symlink instead of a full copy of the file or a hard link.

	Return type

	None

	
readFileStream(jobStoreFileID, encoding=None, errors=None)

	
	Parameters

	
	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	encoding (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	errors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	Union[ContextManager[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], ContextManager[IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	
read_file_stream(file_id: Union[toil.fileStores.FileID, str [https://docs.python.org/3/library/stdtypes.html#str]], encoding: Literal[None] = None, errors: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → ContextManager[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
read_file_stream(file_id: Union[toil.fileStores.FileID, str [https://docs.python.org/3/library/stdtypes.html#str]], encoding: str [https://docs.python.org/3/library/stdtypes.html#str], errors: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → ContextManager[IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Similar to readFile, but returns a context manager yielding a file handle which can be
read from. The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to get a readable file handle for

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same as
for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Returns

	a context manager yielding a file handle which can be read from

	Return type

	Iterator[Union[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	
deleteFile(jobStoreFileID)

	
	Parameters

	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
abstract delete_file(file_id)

	Deletes the file with the given ID from this job store. This operation is idempotent, i.e.
deleting a file twice or deleting a non-existent file will succeed silently.

	Parameters

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to delete

	Return type

	None

	
fileExists(jobStoreFileID)

	Determine whether a file exists in this job store.

	Parameters

	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract file_exists(file_id)

	Determine whether a file exists in this job store.

	Parameters

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – an ID referencing the file to be checked

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
getFileSize(jobStoreFileID)

	Get the size of the given file in bytes.

	Parameters

	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
abstract get_file_size(file_id)

	Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of
file sizes, since the encrypted file may have been padded to the
nearest block, augmented with an initialization vector, etc.

	Parameters

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – an ID referencing the file to be checked

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
updateFile(jobStoreFileID, localFilePath)

	Replaces the existing version of a file in the job store.

	Parameters

	
	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	localFilePath (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
abstract update_file(file_id, local_path)

	Replaces the existing version of a file in the job store.

Throws an exception if the file does not exist.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the file in the job store to be updated

	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the local path to a file that will overwrite the current
version in the job store

	Raises

	
	ConcurrentFileModificationException – if the file was modified
concurrently during an invocation of this method

	NoSuchFileException – if the specified file does not exist

	Return type

	None

	
updateFileStream(jobStoreFileID, encoding=None, errors=None)

	
	Parameters

	
	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	encoding (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	errors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	ContextManager[IO[Any]]

	
abstract update_file_stream(file_id, encoding=None, errors=None)

	Replaces the existing version of a file in the job store. Similar to writeFile, but
returns a context manager yielding a file handle which can be written to. The
yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the file in the job store to be updated

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchFileException – if the specified file does not exist

	Return type

	Iterator[IO[Any]]

	
writeSharedFileStream(sharedFileName, isProtected=None, encoding=None, errors=None)

	
	Parameters

	
	sharedFileName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	isProtected (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	encoding (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	errors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	ContextManager[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
abstract write_shared_file_stream(shared_file_name, encrypted=None, encoding=None, errors=None)

	Returns a context manager yielding a writable file handle to the global file referenced
by the given name. File will be created in an atomic manner.

	Parameters

	
	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	encrypted (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the file must be encrypted, None if it may be encrypted or
False if it must be stored in the clear.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	a context manager yielding a writable file handle

	Return type

	Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
readSharedFileStream(sharedFileName, encoding=None, errors=None)

	
	Parameters

	
	sharedFileName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	encoding (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	errors (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	ContextManager[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
abstract read_shared_file_stream(shared_file_name, encoding=None, errors=None)

	Returns a context manager yielding a readable file handle to the global file referenced
by the given name.

	Parameters

	
	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same
as for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Returns

	a context manager yielding a readable file handle

	Return type

	Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
writeStatsAndLogging(statsAndLoggingString)

	
	Parameters

	statsAndLoggingString (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
abstract write_logs(msg)

	Stores a message as a log in the jobstore.

	Parameters

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – the string to be written

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Return type

	None

	
readStatsAndLogging(callback, readAll=False)

	
	Parameters

	
	callback (Callable[Ellipsis, Any]) –

	readAll (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
abstract read_logs(callback, read_all=False)

	Reads logs accumulated by the write_logs() method. For each log this method calls the
given callback function with the message as an argument (rather than returning logs directly,
this method must be supplied with a callback which will process log messages).

Only unread logs will be read unless the read_all parameter is set.

	Parameters

	
	callback (Callable) – a function to be applied to each of the stats file handles found

	read_all (bool [https://docs.python.org/3/library/functions.html#bool]) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	the number of stats files processed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
write_leader_pid()

	Write the pid of this process to a file in the job store.

Overwriting the current contents of pid.log is a feature, not a bug of
this method. Other methods will rely on always having the most current
pid available. So far there is no reason to store any old pids.

	Return type

	None

	
read_leader_pid()

	Read the pid of the leader process to a file in the job store.

	Raises

	NoSuchFileException – If the PID file doesn’t exist.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
write_leader_node_id()

	Write the leader node id to the job store. This should only be called
by the leader.

	Return type

	None

	
read_leader_node_id()

	Read the leader node id stored in the job store.

	Raises

	NoSuchFileException – If the node ID file doesn’t exist.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
write_kill_flag(kill=False)

	Write a file inside the job store that serves as a kill flag.

The initialized file contains the characters “NO”. This should only be
changed when the user runs the “toil kill” command.

Changing this file to a “YES” triggers a kill of the leader process. The
workers are expected to be cleaned up by the leader.

	Parameters

	kill (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
read_kill_flag()

	Read the kill flag from the job store, and return True if the leader
has been killed. False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
default_caching()

	Jobstore’s preference as to whether it likes caching or doesn’t care about it.
Some jobstores benefit from caching, however on some local configurations it can be flaky.

see https://github.com/DataBiosphere/toil/issues/4218

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class toil.jobStores.abstractJobStore.JobStoreSupport(locator)

	Bases: AbstractJobStore

[image: Inheritance diagram of toil.jobStores.abstractJobStore.JobStoreSupport]

A mostly fake JobStore to access URLs not really associated with real job
stores.

	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
classmethod get_size(url)

	Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

	Parameters

	
	src_uri – URL that points to a file or object in the storage
mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.

	url (urllib.parse.ParseResult [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult]) –

	Return type

	Optional[int [https://docs.python.org/3/library/functions.html#int]]

 toil.jobStores.conftest

toil.jobStores.conftest

Module Contents

	
toil.jobStores.conftest.collect_ignore = []

	

 toil.jobStores.fileJobStore

toil.jobStores.fileJobStore

Module Contents

Classes

	FileJobStore

	A job store that uses a directory on a locally attached file system. To be compatible with

Attributes

	logger

	

	
toil.jobStores.fileJobStore.logger

	

	
class toil.jobStores.fileJobStore.FileJobStore(path, fanOut=1000)

	Bases: toil.jobStores.abstractJobStore.AbstractJobStore

[image: Inheritance diagram of toil.jobStores.fileJobStore.FileJobStore]

A job store that uses a directory on a locally attached file system. To be compatible with
distributed batch systems, that file system must be shared by all worker nodes.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	fanOut (int [https://docs.python.org/3/library/functions.html#int]) –

	
validDirs = 'abcdefghijklmnopqrstuvwxyz0123456789'

	

	
validDirsSet

	

	
JOB_DIR_PREFIX = 'instance-'

	

	
JOB_NAME_DIR_PREFIX = 'kind-'

	

	
BUFFER_SIZE = 10485760

	

	
default_caching()

	Jobstore’s preference as to whether it likes caching or doesn’t care about it.
Some jobstores benefit from caching, however on some local configurations it can be flaky.

see https://github.com/DataBiosphere/toil/issues/4218

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__repr__()

	Return repr(self).

	
initialize(config)

	Initialize this job store.

Create the physical storage for this job store, allocate a workflow ID
and persist the given Toil configuration to the store.

	Parameters

	config – the Toil configuration to initialize this job store with.
The given configuration will be updated with the newly
allocated workflow ID.

	Raises

	JobStoreExistsException – if the physical storage for this job store
already exists

	
resume()

	Connect this instance to the physical storage it represents and load the Toil configuration
into the AbstractJobStore.config attribute.

	Raises

	NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

	
destroy()

	The inverse of initialize(), this method deletes the physical storage represented
by this instance. While not being atomic, this method is at least idempotent,
as a means to counteract potential issues with eventual consistency exhibited by the
underlying storage mechanisms. This means that if the method fails (raises an exception),
it may (and should be) invoked again. If the underlying storage mechanism is eventually
consistent, even a successful invocation is not an ironclad guarantee that the physical
storage vanished completely and immediately. A successful invocation only guarantees that
the deletion will eventually happen. It is therefore recommended to not immediately reuse
the same job store location for a new Toil workflow.

	
assign_job_id(job_description)

	Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created or updated.

	Parameters

	job_description (toil.job.JobDescription) – The JobDescription to give an ID to

	
create_job(job_description)

	Writes the given JobDescription to the job store. The job must have an ID assigned already.

Must call jobDescription.pre_update_hook()

	Returns

	The JobDescription passed.

	Return type

	toil.job.JobDescription

	
batch()

	If supported by the batch system, calls to create() with this context
manager active will be performed in a batch after the context manager
is released.

	
job_exists(job_id)

	Indicates whether a description of the job with the specified jobStoreID exists in the job store

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_public_url(jobStoreFileID)

	Returns a publicly accessible URL to the given file in the job store. The returned URL may
expire as early as 1h after its been returned. Throw an exception if the file does not
exist.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the jobStoreFileID of the file to generate a URL for

	Raises

	NoSuchFileException – if the specified file does not exist in this job store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_shared_public_url(sharedFileName)

	Differs from getPublicUrl() in that this method is for generating URLs for shared
files written by writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL
starts with ‘http:’, ‘https:’ or ‘file:’. The returned URL may expire as early as 1h
after its been returned. Throw an exception if the file does not exist.

	Parameters

	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the shared file to generate a publically accessible url for.

	Raises

	NoSuchFileException – raised if the specified file does not exist in the store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
load_job(job_id)

	Loads the description of the job referenced by the given ID, assigns it
the job store’s config, and returns it.

May declare the job to have failed (see
toil.job.JobDescription.setupJobAfterFailure()) if there is
evidence of a failed update attempt.

	Parameters

	job_id – the ID of the job to load

	Raises

	NoSuchJobException – if there is no job with the given ID

	
update_job(job)

	Persists changes to the state of the given JobDescription in this store atomically.

Must call jobDescription.pre_update_hook()

	Parameters

	job (toil.job.JobDescription) – the job to write to this job store

	
delete_job(job_id)

	Removes the JobDescription from the store atomically. You may not then
subsequently call load(), write(), update(), etc. with the same
jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job
will succeed silently.

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the job to delete from this job store

	
jobs()

	Best effort attempt to return iterator on JobDescriptions for all jobs
in the store. The iterator may not return all jobs and may also contain
orphaned jobs that have already finished successfully and should not be
rerun. To guarantee you get any and all jobs that can be run instead
construct a more expensive ToilState object

	Returns

	Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may contain
invalid jobs

	Return type

	Iterator[toil.job.jobDescription]

	
optional_hard_copy(hardlink)

	

	
classmethod get_size(url)

	Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

	Parameters

	src_uri – URL that points to a file or object in the storage
mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.

	
write_file(local_path, job_id=None, cleanup=False)

	Takes a file (as a path) and places it in this job store. Returns an ID that can be used
to retrieve the file at a later time. The file is written in a atomic manner. It will
not appear in the jobStore until the write has successfully completed.

	Parameters

	
	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the path to the local file that will be uploaded to the job store.
The last path component (basename of the file) will remain
associated with the file in the file store, if supported, so
that the file can be searched for by name or name glob.

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

	Returns

	an ID referencing the newly created file and can be used to read the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
write_file_stream(job_id=None, cleanup=False, basename=None, encoding=None, errors=None)

	Similar to writeFile, but returns a context manager yielding a tuple of
1) a file handle which can be written to and 2) the ID of the resulting
file in the job store. The yielded file handle does not need to and
should not be closed explicitly. The file is written in a atomic manner.
It will not appear in the jobStore until the write has successfully
completed.

	Parameters

	
	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

	Returns

	a context manager yielding a file handle which can be written to and an ID that references
the newly created file and can be used to read the file in the future.

	Return type

	Iterator[Tuple[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
get_empty_file_store_id(jobStoreID=None, cleanup=False, basename=None)

	Creates an empty file in the job store and returns its ID.
Call to fileExists(getEmptyFileStoreID(jobStoreID)) will return True.

	Parameters

	
	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	Returns

	a jobStoreFileID that references the newly created file and can be used to reference the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
update_file(file_id, local_path)

	Replaces the existing version of a file in the job store.

Throws an exception if the file does not exist.

	Parameters

	
	file_id – the ID of the file in the job store to be updated

	local_path – the local path to a file that will overwrite the current
version in the job store

	Raises

	
	ConcurrentFileModificationException – if the file was modified
concurrently during an invocation of this method

	NoSuchFileException – if the specified file does not exist

	
read_file(file_id, local_path, symlink=False)

	Copies or hard links the file referenced by jobStoreFileID to the given
local file path. The version will be consistent with the last copy of
the file written/updated. If the file in the job store is later
modified via updateFile or updateFileStream, it is
implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not
appear in the local file system until the copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to be copied

	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the local path indicating where to place the contents of the
given file in the job store

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the reader can tolerate a symlink. If set to true, the job
store may create a symlink instead of a full copy of the file or a hard link.

	
delete_file(file_id)

	Deletes the file with the given ID from this job store. This operation is idempotent, i.e.
deleting a file twice or deleting a non-existent file will succeed silently.

	Parameters

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to delete

	
file_exists(file_id)

	Determine whether a file exists in this job store.

	Parameters

	file_id – an ID referencing the file to be checked

	
get_file_size(file_id)

	Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of
file sizes, since the encrypted file may have been padded to the
nearest block, augmented with an initialization vector, etc.

	Parameters

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – an ID referencing the file to be checked

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
update_file_stream(file_id, encoding=None, errors=None)

	Replaces the existing version of a file in the job store. Similar to writeFile, but
returns a context manager yielding a file handle which can be written to. The
yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the file in the job store to be updated

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchFileException – if the specified file does not exist

	
read_file_stream(file_id: Union[str [https://docs.python.org/3/library/stdtypes.html#str], toil.fileStores.FileID], encoding: Literal[None] = None, errors: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
read_file_stream(file_id: Union[str [https://docs.python.org/3/library/stdtypes.html#str], toil.fileStores.FileID], encoding: str [https://docs.python.org/3/library/stdtypes.html#str], errors: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → Iterator[IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
read_file_stream(file_id: Union[str [https://docs.python.org/3/library/stdtypes.html#str], toil.fileStores.FileID], encoding: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, errors: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → Union[Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], Iterator[IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	Similar to readFile, but returns a context manager yielding a file handle which can be
read from. The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to get a readable file handle for

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same as
for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Returns

	a context manager yielding a file handle which can be read from

	Return type

	Iterator[Union[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	
write_shared_file_stream(shared_file_name, encrypted=None, encoding=None, errors=None)

	Returns a context manager yielding a writable file handle to the global file referenced
by the given name. File will be created in an atomic manner.

	Parameters

	
	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	encrypted (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the file must be encrypted, None if it may be encrypted or
False if it must be stored in the clear.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	a context manager yielding a writable file handle

	Return type

	Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
read_shared_file_stream(shared_file_name, encoding=None, errors=None)

	Returns a context manager yielding a readable file handle to the global file referenced
by the given name.

	Parameters

	
	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same
as for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Returns

	a context manager yielding a readable file handle

	Return type

	Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
write_logs(msg)

	Stores a message as a log in the jobstore.

	Parameters

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – the string to be written

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	
read_logs(callback, read_all=False)

	Reads logs accumulated by the write_logs() method. For each log this method calls the
given callback function with the message as an argument (rather than returning logs directly,
this method must be supplied with a callback which will process log messages).

Only unread logs will be read unless the read_all parameter is set.

	Parameters

	
	callback (Callable) – a function to be applied to each of the stats file handles found

	read_all (bool [https://docs.python.org/3/library/functions.html#bool]) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	the number of stats files processed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

 toil.jobStores.googleJobStore

toil.jobStores.googleJobStore

Module Contents

Classes

	GoogleJobStore

	Represents the physical storage for the jobs and files in a Toil workflow.

Functions

	google_retry_predicate(e)

	necessary because under heavy load google may throw

	google_retry(f)

	This decorator retries the wrapped function if google throws any angry service

Attributes

	log

	

	GOOGLE_STORAGE

	

	MAX_BATCH_SIZE

	

	
toil.jobStores.googleJobStore.log

	

	
toil.jobStores.googleJobStore.GOOGLE_STORAGE = 'gs'

	

	
toil.jobStores.googleJobStore.MAX_BATCH_SIZE = 1000

	

	
toil.jobStores.googleJobStore.google_retry_predicate(e)

	
	necessary because under heavy load google may throw
	TooManyRequests: 429
The project exceeded the rate limit for creating and deleting buckets.

or numerous other server errors which need to be retried.

	
toil.jobStores.googleJobStore.google_retry(f)

	This decorator retries the wrapped function if google throws any angry service
errors.

It should wrap any function that makes use of the Google Client API

	
class toil.jobStores.googleJobStore.GoogleJobStore(locator)

	Bases: toil.jobStores.abstractJobStore.AbstractJobStore

[image: Inheritance diagram of toil.jobStores.googleJobStore.GoogleJobStore]

Represents the physical storage for the jobs and files in a Toil workflow.

JobStores are responsible for storing toil.job.JobDescription
(which relate jobs to each other) and files.

Actual toil.job.Job objects are stored in files, referenced by
JobDescriptions. All the non-file CRUD methods the JobStore provides deal
in JobDescriptions and not full, executable Jobs.

To actually get ahold of a toil.job.Job, use
toil.job.Job.loadJob() with a JobStore and the relevant JobDescription.

	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
nodeServiceAccountJson = '/root/service_account.json'

	

	
initialize(config=None)

	Initialize this job store.

Create the physical storage for this job store, allocate a workflow ID
and persist the given Toil configuration to the store.

	Parameters

	config – the Toil configuration to initialize this job store with.
The given configuration will be updated with the newly
allocated workflow ID.

	Raises

	JobStoreExistsException – if the physical storage for this job store
already exists

	
resume()

	Connect this instance to the physical storage it represents and load the Toil configuration
into the AbstractJobStore.config attribute.

	Raises

	NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

	
destroy()

	The inverse of initialize(), this method deletes the physical storage represented
by this instance. While not being atomic, this method is at least idempotent,
as a means to counteract potential issues with eventual consistency exhibited by the
underlying storage mechanisms. This means that if the method fails (raises an exception),
it may (and should be) invoked again. If the underlying storage mechanism is eventually
consistent, even a successful invocation is not an ironclad guarantee that the physical
storage vanished completely and immediately. A successful invocation only guarantees that
the deletion will eventually happen. It is therefore recommended to not immediately reuse
the same job store location for a new Toil workflow.

	
assign_job_id(job_description)

	Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created or updated.

	Parameters

	job_description (toil.job.JobDescription) – The JobDescription to give an ID to

	
batch()

	If supported by the batch system, calls to create() with this context
manager active will be performed in a batch after the context manager
is released.

	
create_job(job_description)

	Writes the given JobDescription to the job store. The job must have an ID assigned already.

Must call jobDescription.pre_update_hook()

	Returns

	The JobDescription passed.

	Return type

	toil.job.JobDescription

	
job_exists(job_id)

	Indicates whether a description of the job with the specified jobStoreID exists in the job store

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_public_url(fileName)

	Returns a publicly accessible URL to the given file in the job store. The returned URL may
expire as early as 1h after its been returned. Throw an exception if the file does not
exist.

	Parameters

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the jobStoreFileID of the file to generate a URL for

	Raises

	NoSuchFileException – if the specified file does not exist in this job store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_shared_public_url(sharedFileName)

	Differs from getPublicUrl() in that this method is for generating URLs for shared
files written by writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL
starts with ‘http:’, ‘https:’ or ‘file:’. The returned URL may expire as early as 1h
after its been returned. Throw an exception if the file does not exist.

	Parameters

	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the shared file to generate a publically accessible url for.

	Raises

	NoSuchFileException – raised if the specified file does not exist in the store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
load_job(job_id)

	Loads the description of the job referenced by the given ID, assigns it
the job store’s config, and returns it.

May declare the job to have failed (see
toil.job.JobDescription.setupJobAfterFailure()) if there is
evidence of a failed update attempt.

	Parameters

	job_id – the ID of the job to load

	Raises

	NoSuchJobException – if there is no job with the given ID

	
update_job(job)

	Persists changes to the state of the given JobDescription in this store atomically.

Must call jobDescription.pre_update_hook()

	Parameters

	job (toil.job.JobDescription) – the job to write to this job store

	
delete_job(job_id)

	Removes the JobDescription from the store atomically. You may not then
subsequently call load(), write(), update(), etc. with the same
jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job
will succeed silently.

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the job to delete from this job store

	
get_env()

	Return a dict of environment variables to send out to the workers
so they can load the job store.

	
jobs()

	Best effort attempt to return iterator on JobDescriptions for all jobs
in the store. The iterator may not return all jobs and may also contain
orphaned jobs that have already finished successfully and should not be
rerun. To guarantee you get any and all jobs that can be run instead
construct a more expensive ToilState object

	Returns

	Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may contain
invalid jobs

	Return type

	Iterator[toil.job.jobDescription]

	
write_file(local_path, job_id=None, cleanup=False)

	Takes a file (as a path) and places it in this job store. Returns an ID that can be used
to retrieve the file at a later time. The file is written in a atomic manner. It will
not appear in the jobStore until the write has successfully completed.

	Parameters

	
	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the path to the local file that will be uploaded to the job store.
The last path component (basename of the file) will remain
associated with the file in the file store, if supported, so
that the file can be searched for by name or name glob.

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

	Returns

	an ID referencing the newly created file and can be used to read the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
write_file_stream(job_id=None, cleanup=False, basename=None, encoding=None, errors=None)

	Similar to writeFile, but returns a context manager yielding a tuple of
1) a file handle which can be written to and 2) the ID of the resulting
file in the job store. The yielded file handle does not need to and
should not be closed explicitly. The file is written in a atomic manner.
It will not appear in the jobStore until the write has successfully
completed.

	Parameters

	
	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

	Returns

	a context manager yielding a file handle which can be written to and an ID that references
the newly created file and can be used to read the file in the future.

	Return type

	Iterator[Tuple[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
get_empty_file_store_id(jobStoreID=None, cleanup=False, basename=None)

	Creates an empty file in the job store and returns its ID.
Call to fileExists(getEmptyFileStoreID(jobStoreID)) will return True.

	Parameters

	
	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	Returns

	a jobStoreFileID that references the newly created file and can be used to reference the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
read_file(file_id, local_path, symlink=False)

	Copies or hard links the file referenced by jobStoreFileID to the given
local file path. The version will be consistent with the last copy of
the file written/updated. If the file in the job store is later
modified via updateFile or updateFileStream, it is
implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not
appear in the local file system until the copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to be copied

	local_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the local path indicating where to place the contents of the
given file in the job store

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the reader can tolerate a symlink. If set to true, the job
store may create a symlink instead of a full copy of the file or a hard link.

	
read_file_stream(file_id, encoding=None, errors=None)

	Similar to readFile, but returns a context manager yielding a file handle which can be
read from. The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to get a readable file handle for

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same as
for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Returns

	a context manager yielding a file handle which can be read from

	Return type

	Iterator[Union[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], IO[str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	
delete_file(file_id)

	Deletes the file with the given ID from this job store. This operation is idempotent, i.e.
deleting a file twice or deleting a non-existent file will succeed silently.

	Parameters

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to delete

	
file_exists(file_id)

	Determine whether a file exists in this job store.

	Parameters

	file_id – an ID referencing the file to be checked

	
get_file_size(file_id)

	Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of
file sizes, since the encrypted file may have been padded to the
nearest block, augmented with an initialization vector, etc.

	Parameters

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – an ID referencing the file to be checked

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
update_file(file_id, local_path)

	Replaces the existing version of a file in the job store.

Throws an exception if the file does not exist.

	Parameters

	
	file_id – the ID of the file in the job store to be updated

	local_path – the local path to a file that will overwrite the current
version in the job store

	Raises

	
	ConcurrentFileModificationException – if the file was modified
concurrently during an invocation of this method

	NoSuchFileException – if the specified file does not exist

	
update_file_stream(file_id, encoding=None, errors=None)

	Replaces the existing version of a file in the job store. Similar to writeFile, but
returns a context manager yielding a file handle which can be written to. The
yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the file in the job store to be updated

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchFileException – if the specified file does not exist

	
write_shared_file_stream(shared_file_name, encrypted=True, encoding=None, errors=None)

	Returns a context manager yielding a writable file handle to the global file referenced
by the given name. File will be created in an atomic manner.

	Parameters

	
	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	encrypted (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the file must be encrypted, None if it may be encrypted or
False if it must be stored in the clear.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	a context manager yielding a writable file handle

	Return type

	Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
read_shared_file_stream(shared_file_name, isProtected=True, encoding=None, errors=None)

	Returns a context manager yielding a readable file handle to the global file referenced
by the given name.

	Parameters

	
	shared_file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same
as for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Returns

	a context manager yielding a readable file handle

	Return type

	Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
classmethod get_size(url)

	Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

	Parameters

	src_uri – URL that points to a file or object in the storage
mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.

	
write_logs(msg)

	Stores a message as a log in the jobstore.

	Parameters

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – the string to be written

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Return type

	None

	
read_logs(callback, read_all=False)

	Reads logs accumulated by the write_logs() method. For each log this method calls the
given callback function with the message as an argument (rather than returning logs directly,
this method must be supplied with a callback which will process log messages).

Only unread logs will be read unless the read_all parameter is set.

	Parameters

	
	callback (Callable) – a function to be applied to each of the stats file handles found

	read_all (bool [https://docs.python.org/3/library/functions.html#bool]) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	the number of stats files processed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

 toil.jobStores.utils

toil.jobStores.utils

Module Contents

Classes

	WritablePipe

	An object-oriented wrapper for os.pipe. Clients should subclass it, implement

	ReadablePipe

	An object-oriented wrapper for os.pipe. Clients should subclass it, implement

	ReadableTransformingPipe

	A pipe which is constructed around a readable stream, and which provides a

Functions

	generate_locator(job_store_type[, local_suggestion, ...])

	Generate a random locator for a job store of the given type. Raises an

Attributes

	log

	

	
toil.jobStores.utils.log

	

	
class toil.jobStores.utils.WritablePipe(encoding=None, errors=None)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

[image: Inheritance diagram of toil.jobStores.utils.WritablePipe]

An object-oriented wrapper for os.pipe. Clients should subclass it, implement
readFrom() to consume the readable end of the pipe, then instantiate the class as a
context manager to get the writable end. See the example below.

>>> import sys, shutil
>>> class MyPipe(WritablePipe):
... def readFrom(self, readable):
... shutil.copyfileobj(codecs.getreader('utf-8')(readable), sys.stdout)
>>> with MyPipe() as writable:
... _ = writable.write('Hello, world!\n'.encode('utf-8'))
Hello, world!

Each instance of this class creates a thread and invokes the readFrom method in that thread.
The thread will be join()ed upon normal exit from the context manager, i.e. the body of the
with statement. If an exception occurs, the thread will not be joined but a well-behaved
readFrom() implementation will terminate shortly thereafter due to the pipe having
been closed.

Now, exceptions in the reader thread will be reraised in the main thread:

>>> class MyPipe(WritablePipe):
... def readFrom(self, readable):
... raise RuntimeError('Hello, world!')
>>> with MyPipe() as writable:
... pass
Traceback (most recent call last):
...
RuntimeError: Hello, world!

More complicated, less illustrative tests:

Same as above, but proving that handles are closed:

>>> x = os.dup(0); os.close(x)
>>> class MyPipe(WritablePipe):
... def readFrom(self, readable):
... raise RuntimeError('Hello, world!')
>>> with MyPipe() as writable:
... pass
Traceback (most recent call last):
...
RuntimeError: Hello, world!
>>> y = os.dup(0); os.close(y); x == y
True

Exceptions in the body of the with statement aren’t masked, and handles are closed:

>>> x = os.dup(0); os.close(x)
>>> class MyPipe(WritablePipe):
... def readFrom(self, readable):
... pass
>>> with MyPipe() as writable:
... raise RuntimeError('Hello, world!')
Traceback (most recent call last):
...
RuntimeError: Hello, world!
>>> y = os.dup(0); os.close(y); x == y
True

	
abstract readFrom(readable)

	Implement this method to read data from the pipe. This method should support both
binary and text mode output.

	Parameters

	readable (file) – the file object representing the readable end of the pipe. Do not

explicitly invoke the close() method of the object, that will be done automatically.

	
__enter__()

	

	
__exit__(exc_type, exc_val, exc_tb)

	

	
class toil.jobStores.utils.ReadablePipe(encoding=None, errors=None)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

[image: Inheritance diagram of toil.jobStores.utils.ReadablePipe]

An object-oriented wrapper for os.pipe. Clients should subclass it, implement
writeTo() to place data into the writable end of the pipe, then instantiate the class
as a context manager to get the writable end. See the example below.

>>> import sys, shutil
>>> class MyPipe(ReadablePipe):
... def writeTo(self, writable):
... writable.write('Hello, world!\n'.encode('utf-8'))
>>> with MyPipe() as readable:
... shutil.copyfileobj(codecs.getreader('utf-8')(readable), sys.stdout)
Hello, world!

Each instance of this class creates a thread and invokes the writeTo() method in that
thread. The thread will be join()ed upon normal exit from the context manager, i.e. the body
of the with statement. If an exception occurs, the thread will not be joined but a
well-behaved writeTo() implementation will terminate shortly thereafter due to the
pipe having been closed.

Now, exceptions in the reader thread will be reraised in the main thread:

>>> class MyPipe(ReadablePipe):
... def writeTo(self, writable):
... raise RuntimeError('Hello, world!')
>>> with MyPipe() as readable:
... pass
Traceback (most recent call last):
...
RuntimeError: Hello, world!

More complicated, less illustrative tests:

Same as above, but proving that handles are closed:

>>> x = os.dup(0); os.close(x)
>>> class MyPipe(ReadablePipe):
... def writeTo(self, writable):
... raise RuntimeError('Hello, world!')
>>> with MyPipe() as readable:
... pass
Traceback (most recent call last):
...
RuntimeError: Hello, world!
>>> y = os.dup(0); os.close(y); x == y
True

Exceptions in the body of the with statement aren’t masked, and handles are closed:

>>> x = os.dup(0); os.close(x)
>>> class MyPipe(ReadablePipe):
... def writeTo(self, writable):
... pass
>>> with MyPipe() as readable:
... raise RuntimeError('Hello, world!')
Traceback (most recent call last):
...
RuntimeError: Hello, world!
>>> y = os.dup(0); os.close(y); x == y
True

	
abstract writeTo(writable)

	Implement this method to write data from the pipe. This method should support both
binary and text mode input.

	Parameters

	writable (file) – the file object representing the writable end of the pipe. Do not

explicitly invoke the close() method of the object, that will be done automatically.

	
__enter__()

	

	
__exit__(exc_type, exc_val, exc_tb)

	

	
class toil.jobStores.utils.ReadableTransformingPipe(source, encoding=None, errors=None)

	Bases: ReadablePipe

[image: Inheritance diagram of toil.jobStores.utils.ReadableTransformingPipe]

A pipe which is constructed around a readable stream, and which provides a
context manager that gives a readable stream.

Useful as a base class for pipes which have to transform or otherwise visit
bytes that flow through them, instead of just consuming or producing data.

Clients should subclass it and implement transform(), like so:

>>> import sys, shutil
>>> class MyPipe(ReadableTransformingPipe):
... def transform(self, readable, writable):
... writable.write(readable.read().decode('utf-8').upper().encode('utf-8'))
>>> class SourcePipe(ReadablePipe):
... def writeTo(self, writable):
... writable.write('Hello, world!\n'.encode('utf-8'))
>>> with SourcePipe() as source:
... with MyPipe(source) as transformed:
... shutil.copyfileobj(codecs.getreader('utf-8')(transformed), sys.stdout)
HELLO, WORLD!

The transform() method runs in its own thread, and should move data
chunk by chunk instead of all at once. It should finish normally if it
encounters either an EOF on the readable, or a BrokenPipeError [https://docs.python.org/3/library/exceptions.html#BrokenPipeError] on
the writable. This means that it should make sure to actually catch a
BrokenPipeError [https://docs.python.org/3/library/exceptions.html#BrokenPipeError] when writing.

See also: toil.lib.misc.WriteWatchingStream.

	
abstract transform(readable, writable)

	Implement this method to ship data through the pipe.

	Parameters

	
	readable (file) – the input stream file object to transform.

	writable (file) – the file object representing the writable end of the pipe. Do not

explicitly invoke the close() method of the object, that will be done automatically.

	
writeTo(writable)

	Implement this method to write data from the pipe. This method should support both
binary and text mode input.

	Parameters

	writable (file) – the file object representing the writable end of the pipe. Do not

explicitly invoke the close() method of the object, that will be done automatically.

	
exception toil.jobStores.utils.JobStoreUnavailableException

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

[image: Inheritance diagram of toil.jobStores.utils.JobStoreUnavailableException]

Raised when a particular type of job store is requested but can’t be used.

	
toil.jobStores.utils.generate_locator(job_store_type, local_suggestion=None, decoration=None)

	Generate a random locator for a job store of the given type. Raises an
JobStoreUnavailableException if that job store cannot be used.

	Parameters

	
	job_store_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Registry name of the job store to use.

	local_suggestion (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Path to a nonexistent local directory suitable for

	decoration (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

use as a file job store.
:param decoration: Extra string to add to the job store locator, if
convenient.

	Return str

	Job store locator for a usable job store.

	Parameters

	
	job_store_type (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	local_suggestion (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	decoration (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 toil.lib

toil.lib

Subpackages

	toil.lib.aws
	toil.lib.aws.ami

	toil.lib.aws.iam

	toil.lib.aws.session

	toil.lib.aws.utils

	toil.lib.encryption
	toil.lib.encryption.conftest

Submodules

	toil.lib.accelerators

	toil.lib.bioio

	toil.lib.compatibility

	toil.lib.conversions

	toil.lib.docker

	toil.lib.ec2

	toil.lib.ec2nodes

	toil.lib.exceptions

	toil.lib.expando

	toil.lib.generatedEC2Lists

	toil.lib.humanize

	toil.lib.io

	toil.lib.iterables

	toil.lib.memoize

	toil.lib.misc

	toil.lib.objects

	toil.lib.resources

	toil.lib.retry

	toil.lib.threading

	toil.lib.throttle

 toil.lib.aws

toil.lib.aws

Submodules

	toil.lib.aws.ami

	toil.lib.aws.iam

	toil.lib.aws.session

	toil.lib.aws.utils

Package Contents

Functions

	get_current_aws_region()

	Return the AWS region that the currently configured AWS zone (see

	get_aws_zone_from_environment()

	Get the AWS zone from TOIL_AWS_ZONE if set.

	get_aws_zone_from_metadata()

	Get the AWS zone from instance metadata, if on EC2 and the boto module is

	get_aws_zone_from_boto()

	Get the AWS zone from the Boto config file, if it is configured and the

	get_aws_zone_from_environment_region()

	Pick an AWS zone in the region defined by TOIL_AWS_REGION, if it is set.

	get_current_aws_zone()

	Get the currently configured or occupied AWS zone to use.

	zone_to_region(zone)

	Get a region (e.g. us-west-2) from a zone (e.g. us-west-1c).

	running_on_ec2()

	Return True if we are currently running on EC2, and false otherwise.

	running_on_ecs()

	Return True if we are currently running on Amazon ECS, and false otherwise.

	build_tag_dict_from_env([environment])

	

Attributes

	logger

	

	
toil.lib.aws.logger

	

	
toil.lib.aws.get_current_aws_region()

	Return the AWS region that the currently configured AWS zone (see
get_current_aws_zone()) is in.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.lib.aws.get_aws_zone_from_environment()

	Get the AWS zone from TOIL_AWS_ZONE if set.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.lib.aws.get_aws_zone_from_metadata()

	Get the AWS zone from instance metadata, if on EC2 and the boto module is
available. Otherwise, gets the AWS zone from ECS task metadata, if on ECS.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.lib.aws.get_aws_zone_from_boto()

	Get the AWS zone from the Boto config file, if it is configured and the
boto module is available.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.lib.aws.get_aws_zone_from_environment_region()

	Pick an AWS zone in the region defined by TOIL_AWS_REGION, if it is set.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.lib.aws.get_current_aws_zone()

	Get the currently configured or occupied AWS zone to use.

Reports the TOIL_AWS_ZONE environment variable if set.

Otherwise, if we have boto and are running on EC2, or if we are on ECS,
reports the zone we are running in.

Otherwise, if we have the TOIL_AWS_REGION variable set, chooses a zone in
that region.

Finally, if we have boto2, and a default region is configured in Boto 2,
chooses a zone in that region.

Returns None if no method can produce a zone to use.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.lib.aws.zone_to_region(zone)

	Get a region (e.g. us-west-2) from a zone (e.g. us-west-1c).

	Parameters

	zone (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.aws.running_on_ec2()

	Return True if we are currently running on EC2, and false otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.lib.aws.running_on_ecs()

	Return True if we are currently running on Amazon ECS, and false otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.lib.aws.build_tag_dict_from_env(environment=os.environ)

	
	Parameters

	environment (MutableMapping[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

 toil.lib.aws.ami

toil.lib.aws.ami

Module Contents

Functions

	get_flatcar_ami(ec2_client[, architecture])

	Retrieve the flatcar AMI image to use as the base for all Toil autoscaling instances.

	flatcar_release_feed_amis(region[, architecture, source])

	Yield AMI IDs for the given architecture from the Flatcar release feed.

	feed_flatcar_ami_release(ec2_client[, architecture, ...])

	Check a Flatcar release feed for the latest flatcar AMI.

	aws_marketplace_flatcar_ami_search(ec2_client[, ...])

	Query AWS for all AMI names matching 'Flatcar-stable-*' and return the most recent one.

Attributes

	logger

	

	
toil.lib.aws.ami.logger

	

	
toil.lib.aws.ami.get_flatcar_ami(ec2_client, architecture='amd64')

	Retrieve the flatcar AMI image to use as the base for all Toil autoscaling instances.

AMI must be available to the user on AWS (attempting to launch will return a 403 otherwise).

	Priority is:
	
	User specified AMI via TOIL_AWS_AMI

	Official AMI from stable.release.flatcar-linux.net

	Search the AWS Marketplace

If all of these sources fail, we raise an error to complain.

	Parameters

	
	ec2_client (botocore.client.BaseClient) – Boto3 EC2 Client

	architecture (str [https://docs.python.org/3/library/stdtypes.html#str]) – The architecture type for the new AWS machine. Can be either amd64 or arm64

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.aws.ami.flatcar_release_feed_amis(region, architecture='amd64', source='stable')

	Yield AMI IDs for the given architecture from the Flatcar release feed.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – can be set to a Flatcar release channel (‘stable’, ‘beta’,
or ‘alpha’), ‘archive’ to check the Internet Archive for a feed,
and ‘toil’ to check if the Toil project has put up a feed.

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	architecture (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Iterator[str [https://docs.python.org/3/library/stdtypes.html#str]]

Retries if the release feed cannot be fetched. If the release feed has a
permanent error, yields nothing. If some entries in the release feed are
unparseable, yields the others.

	
toil.lib.aws.ami.feed_flatcar_ami_release(ec2_client, architecture='amd64', source='stable')

	Check a Flatcar release feed for the latest flatcar AMI.

Verify it’s on AWS.

	Parameters

	
	ec2_client (botocore.client.BaseClient) – Boto3 EC2 Client

	architecture (str [https://docs.python.org/3/library/stdtypes.html#str]) – The architecture type for the new AWS machine. Can be either amd64 or arm64

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – can be set to a Flatcar release channel (‘stable’, ‘beta’,
or ‘alpha’), ‘archive’ to check the Internet Archive for a feed,
and ‘toil’ to check if the Toil project has put up a feed.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.lib.aws.ami.aws_marketplace_flatcar_ami_search(ec2_client, architecture='amd64')

	Query AWS for all AMI names matching ‘Flatcar-stable-*’ and return the most recent one.

	Parameters

	
	ec2_client (botocore.client.BaseClient) –

	architecture (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

 toil.lib.aws.iam

toil.lib.aws.iam

Module Contents

Functions

	init_action_collection()

	Initialization of an action collection, an action collection contains allowed Actions and NotActions

	add_to_action_collection(a, b)

	Combines two action collections

	policy_permissions_allow(given_permissions[, ...])

	Check whether given set of actions are a subset of another given set of actions, returns true if they are

	permission_matches_any(perm, list_perms)

	Takes a permission and checks whether it's contained within a list of given permissions

	get_actions_from_policy_document(policy_doc)

	Given a policy document, go through each statement and create an AllowedActionCollection representing the

	allowed_actions_attached(iam, attached_policies)

	Go through all attached policy documents and create an AllowedActionCollection representing granted permissions.

	allowed_actions_roles(iam, policy_names, role_name)

	Returns a dictionary containing a list of all aws actions allowed for a given role.

	allowed_actions_users(iam, policy_names, user_name)

	Gets all allowed actions for a user given by user_name, returns a dictionary, keyed by resource,

	get_policy_permissions(region)

	Returns an action collection containing lists of all permission grant patterns keyed by resource

	get_aws_account_num()

	Returns AWS account num

Attributes

	logger

	

	CLUSTER_LAUNCHING_PERMISSIONS

	

	AllowedActionCollection

	

	
toil.lib.aws.iam.logger

	

	
toil.lib.aws.iam.CLUSTER_LAUNCHING_PERMISSIONS = ['iam:CreateRole', 'iam:CreateInstanceProfile', 'iam:TagInstanceProfile', 'iam:DeleteRole',...

	

	
toil.lib.aws.iam.AllowedActionCollection

	

	
toil.lib.aws.iam.init_action_collection()

	Initialization of an action collection, an action collection contains allowed Actions and NotActions
by resource, these are patterns containing wildcards, an Action explicitly allows a matched pattern,
eg ec2:* will explicitly allow all ec2 permissions

A NotAction will explicitly allow all actions that don’t match a specific pattern
eg iam:* allows all non iam actions

	Return type

	AllowedActionCollection

	
toil.lib.aws.iam.add_to_action_collection(a, b)

	Combines two action collections

	Parameters

	
	a (AllowedActionCollection) –

	b (AllowedActionCollection) –

	Return type

	AllowedActionCollection

	
toil.lib.aws.iam.policy_permissions_allow(given_permissions, required_permissions=[])

	Check whether given set of actions are a subset of another given set of actions, returns true if they are
otherwise false and prints a warning.

	Parameters

	
	required_permissions (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Dictionary containing actions required, keyed by resource

	given_permissions (AllowedActionCollection) – Set of actions that are granted to a user or role

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.lib.aws.iam.permission_matches_any(perm, list_perms)

	Takes a permission and checks whether it’s contained within a list of given permissions
Returns True if it is otherwise False

	Parameters

	
	perm (str [https://docs.python.org/3/library/stdtypes.html#str]) – Permission to check in string form

	list_perms (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Permission list to check against

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.lib.aws.iam.get_actions_from_policy_document(policy_doc)

	Given a policy document, go through each statement and create an AllowedActionCollection representing the
permissions granted in the policy document.

	Parameters

	policy_doc (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – A policy document to examine

	Return type

	AllowedActionCollection

	
toil.lib.aws.iam.allowed_actions_attached(iam, attached_policies)

	Go through all attached policy documents and create an AllowedActionCollection representing granted permissions.

	Parameters

	
	iam (mypy_boto3_iam.IAMClient) – IAM client to use

	attached_policies (List[mypy_boto3_iam.type_defs.AttachedPolicyTypeDef]) – Attached policies

	Return type

	AllowedActionCollection

	
toil.lib.aws.iam.allowed_actions_roles(iam, policy_names, role_name)

	Returns a dictionary containing a list of all aws actions allowed for a given role.
This dictionary is keyed by resource and gives a list of policies allowed on that resource.

	Parameters

	
	iam (mypy_boto3_iam.IAMClient) – IAM client to use

	policy_names (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Name of policy document associated with a role

	role_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of role to get associated policies

	Return type

	AllowedActionCollection

	
toil.lib.aws.iam.allowed_actions_users(iam, policy_names, user_name)

	Gets all allowed actions for a user given by user_name, returns a dictionary, keyed by resource,
with a list of permissions allowed for each given resource.

	Parameters

	
	iam (mypy_boto3_iam.IAMClient) – IAM client to use

	policy_names (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Name of policy document associated with a user

	user_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of user to get associated policies

	Return type

	AllowedActionCollection

	
toil.lib.aws.iam.get_policy_permissions(region)

	Returns an action collection containing lists of all permission grant patterns keyed by resource
that they are allowed upon. Requires AWS credentials to be associated with a user or assumed role.

	Parameters

	
	zone – AWS zone to connect to

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	AllowedActionCollection

	
toil.lib.aws.iam.get_aws_account_num()

	Returns AWS account num

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

 toil.lib.aws.session

toil.lib.aws.session

Module Contents

Classes

	AWSConnectionManager

	Class that represents a connection to AWS. Caches Boto 3 and Boto 2 objects

Functions

	establish_boto3_session([region_name])

	Get a Boto 3 session usable by the current thread.

	client(service_name[, region_name, endpoint_url, config])

	Get a Boto 3 client for a particular AWS service, usable by the current thread.

	resource(service_name[, region_name, endpoint_url])

	Get a Boto 3 resource for a particular AWS service, usable by the current thread.

Attributes

	logger

	

	
toil.lib.aws.session.logger

	

	
class toil.lib.aws.session.AWSConnectionManager

	Class that represents a connection to AWS. Caches Boto 3 and Boto 2 objects
by region.

Access to any kind of item goes through the particular method for the thing
you want (session, resource, service, Boto2 Context), and then you pass the
region you want to work in, and possibly the type of thing you want, as arguments.

This class is intended to eventually enable multi-region clusters, where
connections to multiple regions may need to be managed in the same
provisioner.

We also support None for a region, in which case no region will be
passed to Boto/Boto3. The caller is responsible for implementing e.g.
TOIL_AWS_REGION support.

Since connection objects may not be thread safe (see
<https://boto3.amazonaws.com/v1/documentation/api/1.14.31/guide/session.html#multithreading-or-multiprocessing-with-sessions>),
one is created for each thread that calls the relevant lookup method.

	
session(region)

	Get the Boto3 Session to use for the given region.

	Parameters

	region (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	boto3.session.Session

	
resource(region, service_name, endpoint_url=None)

	Get the Boto3 Resource to use with the given service (like ‘ec2’) in the given region.

	Parameters

	
	endpoint_url (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – AWS endpoint URL to use for the client. If not
specified, a default is used.

	region (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	boto3.resources.base.ServiceResource

	
client(region, service_name, endpoint_url=None, config=None)

	Get the Boto3 Client to use with the given service (like ‘ec2’) in the given region.

	Parameters

	
	endpoint_url (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – AWS endpoint URL to use for the client. If not
specified, a default is used.

	config (Optional[botocore.client.Config]) – Custom configuration to use for the client.

	region (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	botocore.client.BaseClient

	
boto2(region, service_name)

	Get the connected boto2 connection for the given region and service.

	Parameters

	
	region (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	boto.connection.AWSAuthConnection

	
toil.lib.aws.session.establish_boto3_session(region_name=None)

	Get a Boto 3 session usable by the current thread.

This function may not always establish a new session; it can be memoized.

	Parameters

	region_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	boto3.Session

	
toil.lib.aws.session.client(service_name, region_name=None, endpoint_url=None, config=None)

	Get a Boto 3 client for a particular AWS service, usable by the current thread.

Global alternative to AWSConnectionManager.

	Parameters

	
	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	region_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	endpoint_url (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	config (Optional[botocore.client.Config]) –

	Return type

	botocore.client.BaseClient

	
toil.lib.aws.session.resource(service_name, region_name=None, endpoint_url=None)

	Get a Boto 3 resource for a particular AWS service, usable by the current thread.

Global alternative to AWSConnectionManager.

	Parameters

	
	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	region_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	endpoint_url (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	boto3.resources.base.ServiceResource

 toil.lib.aws.utils

toil.lib.aws.utils

Module Contents

Functions

	delete_iam_role(role_name[, region, quiet])

	

	delete_iam_instance_profile(instance_profile_name[, ...])

	

	delete_sdb_domain(sdb_domain_name[, region, quiet])

	

	connection_reset(e)

	Return true if an error is a connection reset error.

	retryable_s3_errors(e)

	Return true if this is an error from S3 that looks like we ought to retry our request.

	retry_s3([delays, timeout, predicate])

	Retry iterator of context managers specifically for S3 operations.

	delete_s3_bucket(s3_resource, bucket[, quiet])

	Delete the given S3 bucket.

	create_s3_bucket(s3_resource, bucket_name, region)

	Create an AWS S3 bucket, using the given Boto3 S3 session, with the

	enable_public_objects(bucket_name)

	Enable a bucket to contain objects which are public.

	get_bucket_region(bucket_name[, endpoint_url, ...])

	Get the AWS region name associated with the given S3 bucket.

	region_to_bucket_location(region)

	

	bucket_location_to_region(location)

	

	get_object_for_url(url[, existing])

	Extracts a key (object) from a given parsed s3:// URL.

	list_objects_for_url(url)

	Extracts a key (object) from a given parsed s3:// URL. The URL will be

	flatten_tags(tags)

	Convert tags from a key to value dict into a list of 'Key': xxx, 'Value': xxx dicts.

Attributes

	BotoServerError

	

	logger

	

	THROTTLED_ERROR_CODES

	

	
toil.lib.aws.utils.BotoServerError

	

	
toil.lib.aws.utils.logger

	

	
toil.lib.aws.utils.THROTTLED_ERROR_CODES = ['Throttling', 'ThrottlingException', 'ThrottledException', 'RequestThrottledException',...

	

	
toil.lib.aws.utils.delete_iam_role(role_name, region=None, quiet=True)

	
	Parameters

	
	role_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	region (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
toil.lib.aws.utils.delete_iam_instance_profile(instance_profile_name, region=None, quiet=True)

	
	Parameters

	
	instance_profile_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	region (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
toil.lib.aws.utils.delete_sdb_domain(sdb_domain_name, region=None, quiet=True)

	
	Parameters

	
	sdb_domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	region (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
toil.lib.aws.utils.connection_reset(e)

	Return true if an error is a connection reset error.

	Parameters

	e (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.lib.aws.utils.retryable_s3_errors(e)

	Return true if this is an error from S3 that looks like we ought to retry our request.

	Parameters

	e (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.lib.aws.utils.retry_s3(delays=DEFAULT_DELAYS, timeout=DEFAULT_TIMEOUT, predicate=retryable_s3_errors)

	Retry iterator of context managers specifically for S3 operations.

	Parameters

	
	delays (Iterable[float [https://docs.python.org/3/library/functions.html#float]]) –

	timeout (float [https://docs.python.org/3/library/functions.html#float]) –

	predicate (Callable[[Exception [https://docs.python.org/3/library/exceptions.html#Exception]], bool [https://docs.python.org/3/library/functions.html#bool]]) –

	Return type

	Iterator[ContextManager[None]]

	
toil.lib.aws.utils.delete_s3_bucket(s3_resource, bucket, quiet=True)

	Delete the given S3 bucket.

	Parameters

	
	s3_resource (mypy_boto3_s3.S3ServiceResource) –

	bucket (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
toil.lib.aws.utils.create_s3_bucket(s3_resource, bucket_name, region)

	Create an AWS S3 bucket, using the given Boto3 S3 session, with the
given name, in the given region.

Supports the us-east-1 region, where bucket creation is special.

ALL S3 bucket creation should use this function.

	Parameters

	
	s3_resource (mypy_boto3_s3.S3ServiceResource) –

	bucket_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	region (Union[mypy_boto3_s3.literals.BucketLocationConstraintType, Literal[us-east-1]]) –

	Return type

	mypy_boto3_s3.service_resource.Bucket

	
toil.lib.aws.utils.enable_public_objects(bucket_name)

	Enable a bucket to contain objects which are public.

This adjusts the bucket’s Public Access Block setting to not block all
public access, and also adjusts the bucket’s Object Ownership setting to a
setting which enables object ACLs.

Does not touch the account’s Public Access Block setting, which can
also interfere here. That is probably best left to the account
administrator.

This configuration used to be the default, and is what most of Toil’s code
is written to expect, but it was changed so that new buckets default to the
more restrictive setting
<https://aws.amazon.com/about-aws/whats-new/2022/12/amazon-s3-automatically-enable-block-public-access-disable-access-control-lists-buckets-april-2023/>,
with the expectation that people would write IAM policies for the buckets
to allow public access if needed. Toil expects to be able to make arbitrary
objects in arbitrary places public, and naming them all in an IAM policy
would be a very awkward way to do it. So we restore the old behavior.

	Parameters

	bucket_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
toil.lib.aws.utils.get_bucket_region(bucket_name, endpoint_url=None, only_strategies=None)

	Get the AWS region name associated with the given S3 bucket.

Takes an optional S3 API URL override.

	Parameters

	
	only_strategies (Optional[Set[int [https://docs.python.org/3/library/functions.html#int]]]) – For testing, use only strategies with 1-based numbers in this set.

	bucket_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	endpoint_url (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.aws.utils.region_to_bucket_location(region)

	
	Parameters

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.aws.utils.bucket_location_to_region(location)

	
	Parameters

	location (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.aws.utils.get_object_for_url(url, existing=None)

	Extracts a key (object) from a given parsed s3:// URL.

	Parameters

	
	existing (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, key is expected to exist. If False, key is expected not to
exists and it will be created. If None, the key will be created if it doesn’t exist.

	url (urllib.parse.ParseResult [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult]) –

	Return type

	mypy_boto3_s3.service_resource.Object

	
toil.lib.aws.utils.list_objects_for_url(url)

	Extracts a key (object) from a given parsed s3:// URL. The URL will be
supplemented with a trailing slash if it is missing.

	Parameters

	url (urllib.parse.ParseResult [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult]) –

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.lib.aws.utils.flatten_tags(tags)

	Convert tags from a key to value dict into a list of ‘Key’: xxx, ‘Value’: xxx dicts.

	Parameters

	tags (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	List[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]

 toil.lib.encryption

toil.lib.encryption

Submodules

	toil.lib.encryption.conftest

 toil.lib.encryption.conftest

toil.lib.encryption.conftest

Module Contents

	
toil.lib.encryption.conftest.collect_ignore = []

	

 toil.lib.accelerators

toil.lib.accelerators

Accelerator (i.e. GPU) utilities for Toil

Module Contents

Functions

	have_working_nvidia_smi()

	Return True if the nvidia-smi binary, from nvidia's CUDA userspace

	have_working_nvidia_docker_runtime()

	Return True if Docker exists and can handle an "nvidia" runtime and the "--gpus" option.

	count_nvidia_gpus()

	Return the number of nvidia GPUs seen by nvidia-smi, or 0 if it is not working.

	get_individual_local_accelerators()

	Determine all the local accelerators available. Report each with count 1,

	get_restrictive_environment_for_local_accelerators(...)

	Get environment variables which can be applied to a process to restrict it

	
toil.lib.accelerators.have_working_nvidia_smi()

	Return True if the nvidia-smi binary, from nvidia’s CUDA userspace
utilities, is installed and can be run successfully.

TODO: This isn’t quite the same as the check that cwltool uses to decide if
it can fulfill a CUDARequirement.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.lib.accelerators.have_working_nvidia_docker_runtime()

	Return True if Docker exists and can handle an “nvidia” runtime and the “–gpus” option.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.lib.accelerators.count_nvidia_gpus()

	Return the number of nvidia GPUs seen by nvidia-smi, or 0 if it is not working.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.lib.accelerators.get_individual_local_accelerators()

	Determine all the local accelerators available. Report each with count 1,
in the order of the number that can be used to assign them.

TODO: How will numbers work with multiple types of accelerator? We need an
accelerator assignment API.

	Return type

	List[toil.job.AcceleratorRequirement]

	
toil.lib.accelerators.get_restrictive_environment_for_local_accelerators(accelerator_numbers)

	Get environment variables which can be applied to a process to restrict it
to using only the given accelerator numbers.

The numbers are in the space of accelerators returned by
get_individual_local_accelerators().

	Parameters

	accelerator_numbers (Set[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

 toil.lib.bioio

toil.lib.bioio

Module Contents

Functions

	system(command)

	A convenience wrapper around subprocess.check_call that logs the command before passing it

	getLogLevelString([logger])

	

	setLoggingFromOptions(options)

	

	getTempFile([suffix, rootDir])

	

	
toil.lib.bioio.system(command)

	A convenience wrapper around subprocess.check_call that logs the command before passing it
on. The command can be either a string or a sequence of strings. If it is a string shell=True
will be passed to subprocess.check_call.
:type command: str | sequence[string]

	
toil.lib.bioio.getLogLevelString(logger=None)

	

	
toil.lib.bioio.setLoggingFromOptions(options)

	

	
toil.lib.bioio.getTempFile(suffix='', rootDir=None)

	

 toil.lib.compatibility

toil.lib.compatibility

Module Contents

Functions

	deprecated(new_function_name)

	

	compat_bytes(s)

	

	compat_bytes_recursive(data)

	Convert a tree of objects over bytes to objects over strings.

	
toil.lib.compatibility.deprecated(new_function_name)

	
	Parameters

	new_function_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Callable[Ellipsis, Any]

	
toil.lib.compatibility.compat_bytes(s)

	
	Parameters

	s (Union[bytes [https://docs.python.org/3/library/stdtypes.html#bytes], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.compatibility.compat_bytes_recursive(data)

	Convert a tree of objects over bytes to objects over strings.

	Parameters

	data (Any) –

	Return type

	Any

 toil.lib.conversions

toil.lib.conversions

Conversion utilities for mapping memory, disk, core declarations from strings to numbers and vice versa.
Also contains general conversion functions

Module Contents

Functions

	bytes_in_unit([unit])

	

	convert_units(num, src_unit[, dst_unit])

	Returns a float representing the converted input in dst_units.

	parse_memory_string(string)

	Given a string representation of some memory (i.e. '1024 Mib'), return the

	human2bytes(string)

	Given a string representation of some memory (i.e. '1024 Mib'), return the

	bytes2human(n)

	Return a binary value as a human readable string with units.

	b_to_mib(n)

	Convert a number from bytes to mibibytes.

	mib_to_b(n)

	Convert a number from mibibytes to bytes.

	hms_duration_to_seconds(hms)

	Parses a given time string in hours:minutes:seconds,

Attributes

	BINARY_PREFIXES

	

	DECIMAL_PREFIXES

	

	VALID_PREFIXES

	

	
toil.lib.conversions.BINARY_PREFIXES = ['ki', 'mi', 'gi', 'ti', 'pi', 'ei', 'kib', 'mib', 'gib', 'tib', 'pib', 'eib']

	

	
toil.lib.conversions.DECIMAL_PREFIXES = ['b', 'k', 'm', 'g', 't', 'p', 'e', 'kb', 'mb', 'gb', 'tb', 'pb', 'eb']

	

	
toil.lib.conversions.VALID_PREFIXES

	

	
toil.lib.conversions.bytes_in_unit(unit='B')

	
	Parameters

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.lib.conversions.convert_units(num, src_unit, dst_unit='B')

	Returns a float representing the converted input in dst_units.

	Parameters

	
	num (float [https://docs.python.org/3/library/functions.html#float]) –

	src_unit (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	dst_unit (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
toil.lib.conversions.parse_memory_string(string)

	Given a string representation of some memory (i.e. ‘1024 Mib’), return the
number and unit.

	Parameters

	string (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Tuple[float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.lib.conversions.human2bytes(string)

	Given a string representation of some memory (i.e. ‘1024 Mib’), return the
integer number of bytes.

	Parameters

	string (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.lib.conversions.bytes2human(n)

	Return a binary value as a human readable string with units.

	Parameters

	n (SupportsInt) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.conversions.b_to_mib(n)

	Convert a number from bytes to mibibytes.

	Parameters

	n (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
toil.lib.conversions.mib_to_b(n)

	Convert a number from mibibytes to bytes.

	Parameters

	n (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
toil.lib.conversions.hms_duration_to_seconds(hms)

	Parses a given time string in hours:minutes:seconds,
returns an equivalent total seconds value

	Parameters

	hms (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

 toil.lib.docker

toil.lib.docker

Module Contents

Functions

	dockerCheckOutput(*args, **kwargs)

	

	dockerCall(*args, **kwargs)

	

	subprocessDockerCall(*args, **kwargs)

	

	apiDockerCall(job, image[, parameters, deferParam, ...])

	A toil wrapper for the python docker API.

	dockerKill(container_name[, gentleKill, remove, timeout])

	Immediately kills a container. Equivalent to "docker kill":

	dockerStop(container_name[, remove])

	Gracefully kills a container. Equivalent to "docker stop":

	containerIsRunning(container_name[, timeout])

	Checks whether the container is running or not.

	getContainerName(job)

	Create a random string including the job name, and return it. Name will

Attributes

	logger

	

	FORGO

	

	STOP

	

	RM

	

	
toil.lib.docker.logger

	

	
toil.lib.docker.FORGO = 0

	

	
toil.lib.docker.STOP = 1

	

	
toil.lib.docker.RM = 2

	

	
toil.lib.docker.dockerCheckOutput(*args, **kwargs)

	

	
toil.lib.docker.dockerCall(*args, **kwargs)

	

	
toil.lib.docker.subprocessDockerCall(*args, **kwargs)

	

	
toil.lib.docker.apiDockerCall(job, image, parameters=None, deferParam=None, volumes=None, working_dir=None, containerName=None, entrypoint=None, detach=False, log_config=None, auto_remove=None, remove=False, user=None, environment=None, stdout=None, stderr=False, stream=False, demux=False, streamfile=None, timeout=365 * 24 * 60 * 60, **kwargs)

	A toil wrapper for the python docker API.

Docker API Docs: https://docker-py.readthedocs.io/en/stable/index.html
Docker API Code: https://github.com/docker/docker-py

This implements docker’s python API within toil so that calls are run as
jobs, with the intention that failed/orphaned docker jobs be handled
appropriately.

Example of using dockerCall in toil to index a FASTA file with SAMtools:
def toil_job(job):

working_dir = job.fileStore.getLocalTempDir()
path = job.fileStore.readGlobalFile(ref_id,

os.path.join(working_dir, ‘ref.fasta’)

parameters = [‘faidx’, path]
apiDockerCall(job,

image=’quay.io/ucgc_cgl/samtools:latest’,
working_dir=working_dir,
parameters=parameters)

Note that when run with detach=False, or with detach=True and stdout=True
or stderr=True, this is a blocking call. When run with detach=True and
without output capture, the container is started and returned without
waiting for it to finish.

	Parameters

	
	job (toil.Job.job) – The Job instance for the calling function.

	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Docker image to be used.
(e.g. ‘quay.io/ucsc_cgl/samtools:latest’)

	parameters (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of string elements. If there are
multiple elements, these will be joined with
spaces. This handling of multiple elements
provides backwards compatibility with previous
versions which called docker using
subprocess.check_call().
**If list of lists: list[list[str]], then treat
as successive commands chained with pipe.

	working_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The working directory.

	deferParam (int [https://docs.python.org/3/library/functions.html#int]) – Action to take on the container upon job completion.
FORGO (0) leaves the container untouched and running.
STOP (1) Sends SIGTERM, then SIGKILL if necessary to the container.
RM (2) Immediately send SIGKILL to the container. This is the default
behavior if deferParam is set to None.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name/ID of the container.

	entrypoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prepends commands sent to the container. See:
https://docker-py.readthedocs.io/en/stable/containers.html

	detach (bool [https://docs.python.org/3/library/functions.html#bool]) – Run the container in detached mode. (equivalent to ‘-d’)

	stdout (bool [https://docs.python.org/3/library/functions.html#bool]) – Return logs from STDOUT when detach=False (default: True).
Block and capture stdout to a file when detach=True
(default: False). Output capture defaults to output.log,
and can be specified with the “streamfile” kwarg.

	stderr (bool [https://docs.python.org/3/library/functions.html#bool]) – Return logs from STDERR when detach=False (default: False).
Block and capture stderr to a file when detach=True
(default: False). Output capture defaults to output.log,
and can be specified with the “streamfile” kwarg.

	stream (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and detach=False, return a log generator instead
of a string. Ignored if detach=True. (default: False).

	demux (bool [https://docs.python.org/3/library/functions.html#bool]) – Similar to demux in container.exec_run(). If True and
detach=False, returns a tuple of (stdout, stderr). If
stream=True, returns a log generator with tuples of
(stdout, stderr). Ignored if detach=True. (default: False).

	streamfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Collect container output to this file if detach=True and
stderr and/or stdout are True. Defaults to “output.log”.

	log_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specify the logs to return from the container. See:
https://docker-py.readthedocs.io/en/stable/containers.html

	remove (bool [https://docs.python.org/3/library/functions.html#bool]) – Remove the container on exit or not.

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – The container will be run with the privileges of
the user specified. Can be an actual name, such
as ‘root’ or ‘lifeisaboutfishtacos’, or it can be
the uid or gid of the user (‘0’ is root; ‘1000’ is
an example of a less privileged uid or gid), or a
complement of the uid:gid (RECOMMENDED), such as
‘0:0’ (root user : root group) or ‘1000:1000’
(some other user : some other user group).

	environment – Allows one to set environment variables inside of the
container, such as:

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Use the given timeout in seconds for interactions with
the Docker daemon. Note that the underlying docker module is
not always able to abort ongoing reads and writes in order
to respect the timeout. Defaults to 1 year (i.e. wait
essentially indefinitely).

	kwargs – Additional keyword arguments supplied to the docker API’s
run command. The list is 75 keywords total, for examples
and full documentation see:
https://docker-py.readthedocs.io/en/stable/containers.html

	Returns

	Returns the standard output/standard error text, as requested, when
detach=False. Returns the underlying
docker.models.containers.Container object from the Docker API when
detach=True.

	
toil.lib.docker.dockerKill(container_name, gentleKill=False, remove=False, timeout=365 * 24 * 60 * 60)

	Immediately kills a container. Equivalent to “docker kill”:
https://docs.docker.com/engine/reference/commandline/kill/

	Parameters

	
	container_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the container being killed.

	gentleKill (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, trigger a graceful shutdown.

	remove (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove the container after it exits.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Use the given timeout in seconds for interactions with
the Docker daemon. Note that the underlying docker module is
not always able to abort ongoing reads and writes in order
to respect the timeout. Defaults to 1 year (i.e. wait
essentially indefinitely).

	Return type

	None

	
toil.lib.docker.dockerStop(container_name, remove=False)

	Gracefully kills a container. Equivalent to “docker stop”:
https://docs.docker.com/engine/reference/commandline/stop/

	Parameters

	
	container_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the container being stopped.

	remove (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove the container after it exits.

	Return type

	None

	
toil.lib.docker.containerIsRunning(container_name, timeout=365 * 24 * 60 * 60)

	Checks whether the container is running or not.

	Parameters

	
	container_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the container being checked.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Use the given timeout in seconds for interactions with
the Docker daemon. Note that the underlying docker module is
not always able to abort ongoing reads and writes in order
to respect the timeout. Defaults to 1 year (i.e. wait
essentially indefinitely).

	Returns

	True if status is ‘running’, False if status is anything else,

and None if the container does not exist.

	
toil.lib.docker.getContainerName(job)

	Create a random string including the job name, and return it. Name will
match [a-zA-Z0-9][a-zA-Z0-9_.-]

 toil.lib.ec2

toil.lib.ec2

Module Contents

Functions

	not_found(e)

	

	inconsistencies_detected(e)

	

	retry_ec2([t, retry_for, retry_while])

	

	wait_transition(resource, from_states, to_state[, ...])

	Wait until the specified EC2 resource (instance, image, volume, ...) transitions from any

	wait_instances_running(ec2, instances)

	Wait until no instance in the given iterable is 'pending'. Yield every instance that

	wait_spot_requests_active(ec2, requests[, timeout, ...])

	Wait until no spot request in the given iterator is in the 'open' state or, optionally,

	create_spot_instances(ec2, price, image_id, spec[, ...])

	Create instances on the spot market.

	create_ondemand_instances(ec2, image_id, spec[, ...])

	Requests the RunInstances EC2 API call but accounts for the race between recently created

	prune(bushy)

	Prune entries in the given dict with false-y values.

	wait_until_instance_profile_arn_exists(...)

	

	create_instances(ec2_resource, image_id, key_name, ...)

	Replaces create_ondemand_instances. Uses boto3 and returns a list of Boto3 instance dicts.

	create_launch_template(ec2_client, template_name, ...)

	Creates a launch template with the given name for launching instances with the given parameters.

	create_auto_scaling_group(autoscaling_client, ...[, ...])

	Create a new Auto Scaling Group with the given name (which is also its

Attributes

	a_short_time

	

	a_long_time

	

	logger

	

	INCONSISTENCY_ERRORS

	

	iam_client

	

	
toil.lib.ec2.a_short_time = 5

	

	
toil.lib.ec2.a_long_time

	

	
toil.lib.ec2.logger

	

	
exception toil.lib.ec2.UserError(message=None, cause=None)

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

[image: Inheritance diagram of toil.lib.ec2.UserError]

Unspecified run-time error.

	
toil.lib.ec2.not_found(e)

	

	
toil.lib.ec2.inconsistencies_detected(e)

	

	
toil.lib.ec2.INCONSISTENCY_ERRORS

	

	
toil.lib.ec2.retry_ec2(t=a_short_time, retry_for=10 * a_short_time, retry_while=not_found)

	

	
exception toil.lib.ec2.UnexpectedResourceState(resource, to_state, state)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.lib.ec2.UnexpectedResourceState]

Common base class for all non-exit exceptions.

	
toil.lib.ec2.wait_transition(resource, from_states, to_state, state_getter=attrgetter('state'))

	Wait until the specified EC2 resource (instance, image, volume, …) transitions from any
of the given ‘from’ states to the specified ‘to’ state. If the instance is found in a state
other that the to state or any of the from states, an exception will be thrown.

	Parameters

	
	resource – the resource to monitor

	from_states – a set of states that the resource is expected to be in before the transition occurs

	to_state – the state of the resource when this method returns

	
toil.lib.ec2.wait_instances_running(ec2, instances)

	Wait until no instance in the given iterable is ‘pending’. Yield every instance that
entered the running state as soon as it does.

	Parameters

	
	ec2 (boto.ec2.connection.EC2Connection) – the EC2 connection to use for making requests

	instances (Iterable[Boto2Instance]) – the instances to wait on

	Return type

	Iterable[Boto2Instance]

	
toil.lib.ec2.wait_spot_requests_active(ec2, requests, timeout=None, tentative=False)

	Wait until no spot request in the given iterator is in the ‘open’ state or, optionally,
a timeout occurs. Yield spot requests as soon as they leave the ‘open’ state.

	Parameters

	
	requests (Iterable[boto.ec2.spotinstancerequest.SpotInstanceRequest]) – The requests to wait on.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Maximum time in seconds to spend waiting or None to wait forever. If a

	tentative (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	Iterable[List[boto.ec2.spotinstancerequest.SpotInstanceRequest]]

timeout occurs, the remaining open requests will be cancelled.

	Parameters

	
	tentative (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, give up on a spot request at the earliest indication of it

	requests (Iterable[boto.ec2.spotinstancerequest.SpotInstanceRequest]) –

	timeout (float [https://docs.python.org/3/library/functions.html#float]) –

	Return type

	Iterable[List[boto.ec2.spotinstancerequest.SpotInstanceRequest]]

not being fulfilled immediately

	
toil.lib.ec2.create_spot_instances(ec2, price, image_id, spec, num_instances=1, timeout=None, tentative=False, tags=None)

	Create instances on the spot market.

	Return type

	Iterable[List[boto.ec2.instance.Instance]]

	
toil.lib.ec2.create_ondemand_instances(ec2, image_id, spec, num_instances=1)

	Requests the RunInstances EC2 API call but accounts for the race between recently created
instance profiles, IAM roles and an instance creation that refers to them.

	Return type

	List[Boto2Instance]

	
toil.lib.ec2.prune(bushy)

	Prune entries in the given dict with false-y values.
Boto3 may not like None and instead wants no key.

	Parameters

	bushy (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
toil.lib.ec2.iam_client

	

	
toil.lib.ec2.wait_until_instance_profile_arn_exists(instance_profile_arn)

	
	Parameters

	instance_profile_arn (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
toil.lib.ec2.create_instances(ec2_resource, image_id, key_name, instance_type, num_instances=1, security_group_ids=None, user_data=None, block_device_map=None, instance_profile_arn=None, placement_az=None, subnet_id=None, tags=None)

	Replaces create_ondemand_instances. Uses boto3 and returns a list of Boto3 instance dicts.

	See “create_instances” (returns a list of ec2.Instance objects):
	https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.ServiceResource.create_instances

	Not to be confused with “run_instances” (same input args; returns a dictionary):
	https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.run_instances

Tags, if given, are applied to the instances, and all volumes.

	Parameters

	
	ec2_resource (boto3.resources.base.ServiceResource) –

	image_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	num_instances (int [https://docs.python.org/3/library/functions.html#int]) –

	security_group_ids (Optional[List]) –

	user_data (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]) –

	block_device_map (Optional[List[Dict]]) –

	instance_profile_arn (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	placement_az (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	subnet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	tags (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	List[dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
toil.lib.ec2.create_launch_template(ec2_client, template_name, image_id, key_name, instance_type, security_group_ids=None, user_data=None, block_device_map=None, instance_profile_arn=None, placement_az=None, subnet_id=None, tags=None)

	Creates a launch template with the given name for launching instances with the given parameters.

We only ever use the default version of any launch template.

Internally calls https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html?highlight=create_launch_template#EC2.Client.create_launch_template

	Parameters

	
	tags (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Tags, if given, are applied to the template itself, all instances, and all volumes.

	user_data (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]) – non-base64-encoded user data to pass to the instances.

	ec2_client (botocore.client.BaseClient) –

	template_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	image_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	security_group_ids (Optional[List]) –

	block_device_map (Optional[List[Dict]]) –

	instance_profile_arn (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	placement_az (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	subnet_id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Returns

	the ID of the launch template.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.ec2.create_auto_scaling_group(autoscaling_client, asg_name, launch_template_ids, vpc_subnets, min_size, max_size, instance_types=None, spot_bid=None, spot_cheapest=False, tags=None)

	Create a new Auto Scaling Group with the given name (which is also its
unique identifier).

	Parameters

	
	autoscaling_client (botocore.client.BaseClient) – Boto3 client for autoscaling.

	asg_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique name for the autoscaling group.

	launch_template_ids (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – ID of the launch template to make instances
from, for each instance type.

	vpc_subnets (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – One or more subnet IDs to place instances in the group
into. Determine the availability zone(s) instances will launch into.

	min_size (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of instances to have in the group at all
times.

	max_size (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of instances to allow in the group at any
time.

	instance_types (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Use a pool over the given instance types, instead of
the type given in the launch template. For on-demand groups, this is
a prioritized list. For spot groups, we let AWS balance according to
spot_strategy. Must be 20 types or shorter.

	spot_bid (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – If set, the ASG will be a spot market ASG. Bid is in
dollars per instance hour. All instance types in the group are bid on
equivalently.

	spot_cheapest (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, use the cheapest spot instances available out
of instance_types, instead of the spot instances that minimize
eviction probability.

	tags (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Tags to apply to the ASG only. Tags for the instances should
be added to the launch template instead.

	Return type

	None

The default version of the launch template is used.

 toil.lib.ec2nodes

toil.lib.ec2nodes

Module Contents

Classes

	InstanceType

	

Functions

	isNumber(s)

	Determines if a unicode string (that may include commas) is a number.

	parseStorage(storageData)

	Parses EC2 JSON storage param string into a number.

	parseMemory(memAttribute)

	Returns EC2 'memory' string as a float.

	fetchEC2Index(filename)

	Downloads and writes the AWS Billing JSON to a file using the AWS pricing API.

	fetchEC2InstanceDict(awsBillingJson, region)

	Takes a JSON and returns a list of InstanceType objects representing EC2 instance params.

	updateStaticEC2Instances()

	Generates a new python file of fetchable EC2 Instances by region with current prices and specs.

Attributes

	logger

	

	dirname

	

	EC2Regions

	

	
toil.lib.ec2nodes.logger

	

	
toil.lib.ec2nodes.dirname

	

	
toil.lib.ec2nodes.EC2Regions

	

	
class toil.lib.ec2nodes.InstanceType(name, cores, memory, disks, disk_capacity, architecture)

	
	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	cores (int [https://docs.python.org/3/library/functions.html#int]) –

	memory (float [https://docs.python.org/3/library/functions.html#float]) –

	disks (float [https://docs.python.org/3/library/functions.html#float]) –

	disk_capacity (float [https://docs.python.org/3/library/functions.html#float]) –

	architecture (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
__slots__ = ('name', 'cores', 'memory', 'disks', 'disk_capacity', 'architecture')

	

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__eq__(other)

	Return self==value.

	Parameters

	other (object [https://docs.python.org/3/library/functions.html#object]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.lib.ec2nodes.isNumber(s)

	Determines if a unicode string (that may include commas) is a number.

	Parameters

	s (str [https://docs.python.org/3/library/stdtypes.html#str]) – Any unicode string.

	Returns

	True if s represents a number, False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.lib.ec2nodes.parseStorage(storageData)

	Parses EC2 JSON storage param string into a number.

	Examples:
	“2 x 160 SSD”
“3 x 2000 HDD”
“EBS only”
“1 x 410”
“8 x 1.9 NVMe SSD”
“900 GB NVMe SSD”

	Parameters

	storageData (str [https://docs.python.org/3/library/stdtypes.html#str]) – EC2 JSON storage param string.

	Returns

	Two floats representing: (# of disks), and (disk_capacity in GiB of each disk).

	Return type

	Union[List[int [https://docs.python.org/3/library/functions.html#int]], Tuple[Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]], float [https://docs.python.org/3/library/functions.html#float]]]

	
toil.lib.ec2nodes.parseMemory(memAttribute)

	Returns EC2 ‘memory’ string as a float.

Format should always be ‘#’ GiB (example: ‘244 GiB’ or ‘1,952 GiB’).
Amazon loves to put commas in their numbers, so we have to accommodate that.
If the syntax ever changes, this will raise.

	Parameters

	memAttribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – EC2 JSON memory param string.

	Returns

	A float representing memory in GiB.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
toil.lib.ec2nodes.fetchEC2Index(filename)

	Downloads and writes the AWS Billing JSON to a file using the AWS pricing API.

See: https://aws.amazon.com/blogs/aws/new-aws-price-list-api/

	Returns

	A dict of InstanceType objects, where the key is the string:
aws instance name (example: ‘t2.micro’), and the value is an
InstanceType object representing that aws instance name.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
toil.lib.ec2nodes.fetchEC2InstanceDict(awsBillingJson, region)

	Takes a JSON and returns a list of InstanceType objects representing EC2 instance params.

	Parameters

	
	region (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	awsBillingJson (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) –

	Returns

	

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], InstanceType]

	
toil.lib.ec2nodes.updateStaticEC2Instances()

	Generates a new python file of fetchable EC2 Instances by region with current prices and specs.

Takes a few (~3+) minutes to run (you’ll need decent internet).

	Returns

	Nothing. Writes a new ‘generatedEC2Lists.py’ file.

	Return type

	None

 toil.lib.exceptions

toil.lib.exceptions

Module Contents

Classes

	panic

	The Python idiom for reraising a primary exception fails when the except block raises a

Functions

	raise_(exc_type, exc_value, traceback)

	

	
class toil.lib.exceptions.panic(log=None)

	The Python idiom for reraising a primary exception fails when the except block raises a
secondary exception, e.g. while trying to cleanup. In that case the original exception is
lost and the secondary exception is reraised. The solution seems to be to save the primary
exception info as returned from sys.exc_info() and then reraise that.

This is a contextmanager that should be used like this

	try:
	# do something that can fail

	except:
	
	with panic(log):
	# do cleanup that can also fail

If a logging logger is passed to panic(), any secondary Exception raised within the with
block will be logged. Otherwise those exceptions are swallowed. At the end of the with block
the primary exception will be reraised.

	
__enter__()

	

	
__exit__(*exc_info)

	

	
toil.lib.exceptions.raise_(exc_type, exc_value, traceback)

	
	Return type

	None

 toil.lib.expando

toil.lib.expando

Module Contents

Classes

	Expando

	Pass inital attributes to the constructor:

	MagicExpando

	Use MagicExpando for chained attribute access.

	
class toil.lib.expando.Expando(*args, **kwargs)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

[image: Inheritance diagram of toil.lib.expando.Expando]

Pass inital attributes to the constructor:

>>> o = Expando(foo=42)
>>> o.foo
42

Dynamically create new attributes:

>>> o.bar = 'hi'
>>> o.bar
'hi'

Expando is a dictionary:

>>> isinstance(o,dict)
True
>>> o['foo']
42

Works great with JSON:

>>> import json
>>> s='{"foo":42}'
>>> o = json.loads(s,object_hook=Expando)
>>> o.foo
42
>>> o.bar = 'hi'
>>> o.bar
'hi'

And since Expando is a dict, it serializes back to JSON just fine:

>>> json.dumps(o, sort_keys=True)
'{"bar": "hi", "foo": 42}'

Attributes can be deleted, too:

>>> o = Expando(foo=42)
>>> o.foo
42
>>> del o.foo
>>> o.foo
Traceback (most recent call last):
...
AttributeError: 'Expando' object has no attribute 'foo'
>>> o['foo']
Traceback (most recent call last):
...
KeyError: 'foo'

>>> del o.foo
Traceback (most recent call last):
...
AttributeError: foo

And copied:

>>> o = Expando(foo=42)
>>> p = o.copy()
>>> isinstance(p,Expando)
True
>>> o == p
True
>>> o is p
False

Same with MagicExpando …

>>> o = MagicExpando()
>>> o.foo.bar = 42
>>> p = o.copy()
>>> isinstance(p,MagicExpando)
True
>>> o == p
True
>>> o is p
False

… but the copy is shallow:

>>> o.foo is p.foo
True

	
copy()

	D.copy() -> a shallow copy of D

	
class toil.lib.expando.MagicExpando(*args, **kwargs)

	Bases: Expando

[image: Inheritance diagram of toil.lib.expando.MagicExpando]

Use MagicExpando for chained attribute access.

The first time a missing attribute is
accessed, it will be set to a new child MagicExpando.

>>> o=MagicExpando()
>>> o.foo = 42
>>> o
{'foo': 42}
>>> o.bar.hello = 'hi'
>>> o.bar
{'hello': 'hi'}

	
__getattribute__(name)

	Return getattr(self, name).

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

 toil.lib.generatedEC2Lists

toil.lib.generatedEC2Lists

Module Contents

	
toil.lib.generatedEC2Lists.E2Instances

	

	
toil.lib.generatedEC2Lists.regionDict

	

	
toil.lib.generatedEC2Lists.ec2InstancesByRegion

	

 toil.lib.humanize

toil.lib.humanize

Module Contents

Functions

	bytes2human(n)

	Convert n bytes into a human readable string.

	human2bytes(s)

	Attempts to guess the string format based on default symbols

Attributes

	logger

	

	
toil.lib.humanize.logger

	

	
toil.lib.humanize.bytes2human(n)

	Convert n bytes into a human readable string.

	Parameters

	n (SupportsInt) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.humanize.human2bytes(s)

	Attempts to guess the string format based on default symbols
set and return the corresponding bytes as an integer.

When unable to recognize the format ValueError is raised.

	Parameters

	s (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

 toil.lib.io

toil.lib.io

Module Contents

Classes

	WriteWatchingStream

	A stream wrapping class that calls any functions passed to onWrite() with the number of bytes written for every write.

Functions

	robust_rmtree(path)

	Robustly tries to delete paths.

	atomic_tmp_file(final_path)

	Return a tmp file name to use with atomic_install. This will be in the

	atomic_install(tmp_path, final_path)

	atomic install of tmp_path as final_path

	AtomicFileCreate(final_path[, keep])

	Context manager to create a temporary file. Entering returns path to

	atomic_copy(src_path, dest_path[, executable])

	Copy a file using posix atomic creations semantics.

	atomic_copyobj(src_fh, dest_path[, length, executable])

	Copy an open file using posix atomic creations semantics.

	make_public_dir([in_directory])

	Try to make a random directory name with length 4 that doesn't exist, with the given prefix.

	try_path(path)

	Try to use the given path. Return it if it exists or can be made,

Attributes

	logger

	

	
toil.lib.io.logger

	

	
toil.lib.io.robust_rmtree(path)

	Robustly tries to delete paths.

Continues silently if the path to be removed is already gone, or if it
goes away while this function is executing.

May raise an error if a path changes between file and directory while the
function is executing, or if a permission error is encountered.

	Parameters

	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]) –

	Return type

	None

	
toil.lib.io.atomic_tmp_file(final_path)

	Return a tmp file name to use with atomic_install. This will be in the
same directory as final_path. The temporary file will have the same extension
as finalPath. It the final path is in /dev (/dev/null, /dev/stdout), it is
returned unchanged and atomic_tmp_install will do nothing.

	Parameters

	final_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.io.atomic_install(tmp_path, final_path)

	atomic install of tmp_path as final_path

	Return type

	None

	
toil.lib.io.AtomicFileCreate(final_path, keep=False)

	Context manager to create a temporary file. Entering returns path to
the temporary file in the same directory as finalPath. If the code in
context succeeds, the file renamed to its actually name. If an error
occurs, the file is not installed and is removed unless keep is specified.

	Parameters

	
	final_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	keep (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	Iterator[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.lib.io.atomic_copy(src_path, dest_path, executable=None)

	Copy a file using posix atomic creations semantics.

	Parameters

	
	src_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	dest_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	executable (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	Return type

	None

	
toil.lib.io.atomic_copyobj(src_fh, dest_path, length=16384, executable=False)

	Copy an open file using posix atomic creations semantics.

	Parameters

	
	src_fh (io.BytesIO [https://docs.python.org/3/library/io.html#io.BytesIO]) –

	dest_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	length (int [https://docs.python.org/3/library/functions.html#int]) –

	executable (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
toil.lib.io.make_public_dir(in_directory=None)

	Try to make a random directory name with length 4 that doesn’t exist, with the given prefix.
Otherwise, try length 5, length 6, etc, up to a max of 32 (len of uuid4 with dashes replaced).
This function’s purpose is mostly to avoid having long file names when generating directories.
If somehow this fails, which should be incredibly unlikely, default to a normal uuid4, which was
our old default.

	Parameters

	in_directory (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.io.try_path(path)

	Try to use the given path. Return it if it exists or can be made,
and we can make things within it, or None otherwise.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
class toil.lib.io.WriteWatchingStream(backingStream)

	A stream wrapping class that calls any functions passed to onWrite() with the number of bytes written for every write.

Not seekable.

	Parameters

	backingStream (IO[Any]) –

	
onWrite(listener)

	Call the given listener with the number of bytes written on every write.

	Parameters

	listener (Callable[[int [https://docs.python.org/3/library/functions.html#int]], None]) –

	Return type

	None

	
write(data)

	Write the given data to the file.

	
writelines(datas)

	Write each string from the given iterable, without newlines.

	
flush()

	Flush the backing stream.

	
close()

	Close the backing stream.

 toil.lib.iterables

toil.lib.iterables

Module Contents

Classes

	concat

	A literal iterable to combine sequence literals (lists, set) with generators or list comprehensions.

Functions

	flatten(iterables)

	Flatten an iterable, except for string elements.

Attributes

	IT

	

	
toil.lib.iterables.IT

	

	
toil.lib.iterables.flatten(iterables)

	Flatten an iterable, except for string elements.

	Parameters

	iterables (Iterable[IT]) –

	Return type

	Iterator[IT]

	
class toil.lib.iterables.concat(*args)

	A literal iterable to combine sequence literals (lists, set) with generators or list comprehensions.

Instead of

>>> [-1] + [x * 2 for x in range(3)] + [-1]
[-1, 0, 2, 4, -1]

you can write

>>> list(concat(-1, (x * 2 for x in range(3)), -1))
[-1, 0, 2, 4, -1]

This is slightly shorter (not counting the list constructor) and does not involve array
construction or concatenation.

Note that concat() flattens (or chains) all iterable arguments into a single
result iterable:

>>> list(concat(1, range(2, 4), 4))
[1, 2, 3, 4]

It only does so one level deep. If you need to recursively flatten a data structure,
check out crush().

If you want to prevent that flattening for an iterable argument, wrap it in concat():

>>> list(concat(1, concat(range(2, 4)), 4))
[1, range(2, 4), 4]

Some more example.

>>> list(concat()) # empty concat
[]
>>> list(concat(1)) # non-iterable
[1]
>>> list(concat(concat())) # empty iterable
[]
>>> list(concat(concat(1))) # singleton iterable
[1]
>>> list(concat(1, concat(2), 3)) # flattened iterable
[1, 2, 3]
>>> list(concat(1, [2], 3)) # flattened iterable
[1, 2, 3]
>>> list(concat(1, concat([2]), 3)) # protecting an iterable from being flattened
[1, [2], 3]
>>> list(concat(1, concat([2], 3), 4)) # protection only works with a single argument
[1, 2, 3, 4]
>>> list(concat(1, 2, concat(3, 4), 5, 6))
[1, 2, 3, 4, 5, 6]
>>> list(concat(1, 2, concat([3, 4]), 5, 6))
[1, 2, [3, 4], 5, 6]

Note that while strings are technically iterable, concat() does not flatten them.

>>> list(concat('ab'))
['ab']
>>> list(concat(concat('ab')))
['ab']

	Parameters

	args (Any) –

	
__iter__()

	
	Return type

	Iterator[Any]

 toil.lib.memoize

toil.lib.memoize

Module Contents

Functions

	sync_memoize(f)

	Like memoize, but guarantees that decorated function is only called once, even when multiple

	parse_iso_utc(s)

	Parses an ISO time with a hard-coded Z for zulu-time (UTC) at the end. Other timezones are

	strict_bool(s)

	Variant of bool() that only accepts two possible string values.

Attributes

	memoize

	Memoize a function result based on its parameters using this decorator.

	MAT

	

	MRT

	

	
toil.lib.memoize.memoize

	Memoize a function result based on its parameters using this decorator.

For example, this can be used in place of lazy initialization. If the decorating
function is invoked by multiple threads, the decorated function may be called
more than once with the same arguments.

	
toil.lib.memoize.MAT

	

	
toil.lib.memoize.MRT

	

	
toil.lib.memoize.sync_memoize(f)

	Like memoize, but guarantees that decorated function is only called once, even when multiple
threads are calling the decorating function with multiple parameters.

	Parameters

	f (Callable[[MAT], MRT]) –

	Return type

	Callable[[MAT], MRT]

	
toil.lib.memoize.parse_iso_utc(s)

	Parses an ISO time with a hard-coded Z for zulu-time (UTC) at the end. Other timezones are
not supported. Returns a timezone-naive datetime object.

	Parameters

	s (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ISO-formatted time

	Returns

	A timezone-naive datetime object

	Return type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

>>> parse_iso_utc('2016-04-27T00:28:04.000Z')
datetime.datetime(2016, 4, 27, 0, 28, 4)
>>> parse_iso_utc('2016-04-27T00:28:04Z')
datetime.datetime(2016, 4, 27, 0, 28, 4)
>>> parse_iso_utc('2016-04-27T00:28:04X')
Traceback (most recent call last):
...
ValueError: Not a valid ISO datetime in UTC: 2016-04-27T00:28:04X

	
toil.lib.memoize.strict_bool(s)

	Variant of bool() that only accepts two possible string values.

	Parameters

	s (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

 toil.lib.misc

toil.lib.misc

Module Contents

Functions

	get_public_ip()

	Get the IP that this machine uses to contact the internet.

	get_user_name()

	Get the current user name, or a suitable substitute string if the user name

	utc_now()

	Return a datetime in the UTC timezone corresponding to right now.

	unix_now_ms()

	Return the current time in milliseconds since the Unix epoch.

	slow_down(seconds)

	Toil jobs that have completed are not allowed to have taken 0 seconds, but

	printq(msg, quiet)

	

	truncExpBackoff()

	

	call_command(cmd, *args[, input, timeout, useCLocale, env])

	Simplified calling of external commands. This always returns

Attributes

	logger

	

	
toil.lib.misc.logger

	

	
toil.lib.misc.get_public_ip()

	Get the IP that this machine uses to contact the internet.

If behind a NAT, this will still be this computer’s IP, and not the router’s.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.misc.get_user_name()

	Get the current user name, or a suitable substitute string if the user name
is not available.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.misc.utc_now()

	Return a datetime in the UTC timezone corresponding to right now.

	Return type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
toil.lib.misc.unix_now_ms()

	Return the current time in milliseconds since the Unix epoch.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
toil.lib.misc.slow_down(seconds)

	Toil jobs that have completed are not allowed to have taken 0 seconds, but
Kubernetes timestamps round things to the nearest second. It is possible in
some batch systems for a pod to have identical start and end timestamps.

This function takes a possibly 0 job length in seconds and enforces a
minimum length to satisfy Toil.

	Parameters

	seconds (float [https://docs.python.org/3/library/functions.html#float]) – Timestamp difference

	Returns

	seconds, or a small positive number if seconds is 0

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
toil.lib.misc.printq(msg, quiet)

	
	Parameters

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
toil.lib.misc.truncExpBackoff()

	
	Return type

	Iterator[float [https://docs.python.org/3/library/functions.html#float]]

	
exception toil.lib.misc.CalledProcessErrorStderr(returncode, cmd, output=None, stderr=None)

	Bases: subprocess.CalledProcessError [https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError]

[image: Inheritance diagram of toil.lib.misc.CalledProcessErrorStderr]

Version of CalledProcessError that include stderr in the error message if it is set

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.misc.call_command(cmd, *args, input=None, timeout=None, useCLocale=True, env=None)

	Simplified calling of external commands. This always returns
stdout and uses utf- encode8. If process fails, CalledProcessErrorStderr
is raised. The captured stderr is always printed, regardless of
if an expect occurs, so it can be logged. At the debug log level, the
command and captured out are always used. With useCLocale, C locale
is force to prevent failures that occurred in some batch systems
with UTF-8 locale.

	Parameters

	
	cmd (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	input (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	timeout (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	useCLocale (bool [https://docs.python.org/3/library/functions.html#bool]) –

	env (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 toil.lib.objects

toil.lib.objects

Module Contents

Classes

	InnerClass

	Note that this is EXPERIMENTAL code.

	
class toil.lib.objects.InnerClass(inner_class)

	Note that this is EXPERIMENTAL code.

A nested class (the inner class) decorated with this will have an additional attribute called
‘outer’ referencing the instance of the nesting class (the outer class) that was used to
create the inner class. The outer instance does not need to be passed to the inner class’s
constructor, it will be set magically. Shamelessly stolen from

http://stackoverflow.com/questions/2278426/inner-classes-how-can-i-get-the-outer-class-object-at-construction-time#answer-2278595.

with names made more descriptive (I hope) and added caching of the BoundInner classes.

Caveat: Within the inner class, self.__class__ will not be the inner class but a dynamically
created subclass thereof. It’s name will be the same as that of the inner class,
but its __module__ will be different. There will be one such dynamic subclass per inner class
and instance of outer class, if that outer class instance created any instances of inner the
class.

>>> class Outer(object):
... def new_inner(self):
... # self is an instance of the outer class
... inner = self.Inner()
... # the inner instance's 'outer' attribute is set to the outer instance
... assert inner.outer is self
... return inner
... @InnerClass
... class Inner(object):
... def get_outer(self):
... return self.outer
... @classmethod
... def new_inner(cls):
... return cls()
>>> o = Outer()
>>> i = o.new_inner()
>>> i
<toil.lib.objects.Inner...> bound to <toil.lib.objects.Outer object at ...>

>>> i.get_outer()
<toil.lib.objects.Outer object at ...>

Now with inheritance for both inner and outer:

>>> class DerivedOuter(Outer):
... def new_inner(self):
... return self.DerivedInner()
... @InnerClass
... class DerivedInner(Outer.Inner):
... def get_outer(self):
... assert super(DerivedOuter.DerivedInner, self).get_outer() == self.outer
... return self.outer
>>> derived_outer = DerivedOuter()
>>> derived_inner = derived_outer.new_inner()
>>> derived_inner
<toil.lib.objects...> bound to <toil.lib.objects.DerivedOuter object at ...>

>>> derived_inner.get_outer()
<toil.lib.objects.DerivedOuter object at ...>

Test a static references:
>>> Outer.Inner # doctest: +ELLIPSIS
<class ‘toil.lib.objects…Inner’>
>>> DerivedOuter.Inner # doctest: +ELLIPSIS
<class ‘toil.lib.objects…Inner’>
>>> DerivedOuter.DerivedInner #doctest: +ELLIPSIS
<class ‘toil.lib.objects…DerivedInner’>

Can’t decorate top-level classes. Unfortunately, this is detected when the instance is
created, not when the class is defined.
>>> @InnerClass
… class Foo(object):
… pass
>>> Foo()
Traceback (most recent call last):
…
RuntimeError: Inner classes must be nested in another class.

All inner instances should refer to a single outer instance:
>>> o = Outer()
>>> o.new_inner().outer == o == o.new_inner().outer
True

All inner instances should be of the same class …
>>> o.new_inner().__class__ == o.new_inner().__class__
True

… but that class isn’t the inner class …
>>> o.new_inner().__class__ != Outer.Inner
True

… but a subclass of the inner class.
>>> isinstance(o.new_inner(), Outer.Inner)
True

Static and class methods, e.g. should work, too

>>> o.Inner.new_inner().outer == o
True

	
__get__(instance, owner)

	

	
__call__(**kwargs)

	

 toil.lib.resources

toil.lib.resources

Module Contents

Functions

	get_total_cpu_time_and_memory_usage()

	Gives the total cpu time of itself and all its children, and the maximum RSS memory usage of

	get_total_cpu_time()

	Gives the total cpu time, including the children.

	glob(glob_pattern, directoryname)

	Walks through a directory and its subdirectories looking for files matching

	
toil.lib.resources.get_total_cpu_time_and_memory_usage()

	Gives the total cpu time of itself and all its children, and the maximum RSS memory usage of
itself and its single largest child.

	Return type

	Tuple[float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int]]

	
toil.lib.resources.get_total_cpu_time()

	Gives the total cpu time, including the children.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
toil.lib.resources.glob(glob_pattern, directoryname)

	Walks through a directory and its subdirectories looking for files matching
the glob_pattern and returns a list=[].

	Parameters

	
	directoryname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Any accessible folder name on the filesystem.

	glob_pattern (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string like “*.txt”, which would find all text files.

	Returns

	A list=[] of absolute filepaths matching the glob pattern.

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

 toil.lib.retry

toil.lib.retry

This file holds the retry() decorator function and RetryCondition object.

retry() can be used to decorate any function based on the list of errors one
wishes to retry on.

This list of errors can contain normal Exception objects, and/or RetryCondition
objects wrapping Exceptions to include additional conditions.

For example, retrying on a one Exception (HTTPError):

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError])
def update_my_wallpaper():
 return get('https://www.deviantart.com/')

Or:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError, ValueError])
def update_my_wallpaper():
 return get('https://www.deviantart.com/')

The examples above will retry for the default interval on any errors specified
the “errors=” arg list.

To retry on specifically 500/502/503/504 errors, you could specify an ErrorCondition
object instead, for example:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
 ErrorCondition(
 error=HTTPError,
 error_codes=[500, 502, 503, 504]
)])
def update_my_wallpaper():
 return requests.get('https://www.deviantart.com/')

To retry on specifically errors containing the phrase “NotFound”:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
 ErrorCondition(
 error=HTTPError,
 error_message_must_include="NotFound"
)])
def update_my_wallpaper():
 return requests.get('https://www.deviantart.com/')

To retry on all HTTPError errors EXCEPT an HTTPError containing the phrase “NotFound”:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
 HTTPError,
 ErrorCondition(
 error=HTTPError,
 error_message_must_include="NotFound",
 retry_on_this_condition=False
)])
def update_my_wallpaper():
 return requests.get('https://www.deviantart.com/')

To retry on boto3’s specific status errors, an example of the implementation is:

import boto3
from botocore.exceptions import ClientError

@retry(errors=[
 ErrorCondition(
 error=ClientError,
 boto_error_codes=["BucketNotFound"]
)])
def boto_bucket(bucket_name):
 boto_session = boto3.session.Session()
 s3_resource = boto_session.resource('s3')
 return s3_resource.Bucket(bucket_name)

Any combination of these will also work, provided the codes are matched to the correct
exceptions. A ValueError will not return a 404, for example.

The retry function as a decorator should make retrying functions easier and clearer
It also encourages smaller independent functions, as opposed to lumping many different
things that may need to be retried on different conditions in the same function.

The ErrorCondition object tries to take some of the heavy lifting of writing specific
retry conditions and boil it down to an API that covers all common use-cases without
the user having to write any new bespoke functions.

Use-cases covered currently:

	Retrying on a normal error, like a KeyError.

	Retrying on HTTP error codes (use ErrorCondition).

	Retrying on boto 3’s specific status errors,
like “BucketNotFound” (use ErrorCondition).

	Retrying when an error message contains a certain phrase (use ErrorCondition).

	Explicitly NOT retrying on a condition (use ErrorCondition).

If new functionality is needed, it’s currently best practice in Toil to add
functionality to the ErrorCondition itself rather than making a new custom retry method.

Module Contents

Classes

	ErrorCondition

	A wrapper describing an error condition.

Functions

	retry([intervals, infinite_retries, errors, ...])

	Retry a function if it fails with any Exception defined in "errors".

	return_status_code(e)

	

	get_error_code(e)

	Get the error code name from a Boto 2 or 3 error, or compatible types.

	get_error_message(e)

	Get the error message string from a Boto 2 or 3 error, or compatible types.

	get_error_status(e)

	Get the HTTP status code from a compatible source.

	get_error_body(e)

	Get the body from a Boto 2 or 3 error, or compatible types.

	meets_error_message_condition(e, error_message)

	

	meets_error_code_condition(e, error_codes)

	These are expected to be normal HTTP error codes, like 404 or 500.

	meets_boto_error_code_condition(e, boto_error_codes)

	These are expected to be AWS's custom error aliases, like 'BucketNotFound' or 'AccessDenied'.

	error_meets_conditions(e, error_conditions)

	

	old_retry([delays, timeout, predicate])

	Deprecated.

Attributes

	SUPPORTED_HTTP_ERRORS

	

	kubernetes

	

	botocore

	

	logger

	

	DEFAULT_DELAYS

	

	DEFAULT_TIMEOUT

	

	retry_flaky_test

	

	
toil.lib.retry.SUPPORTED_HTTP_ERRORS

	

	
toil.lib.retry.kubernetes

	

	
toil.lib.retry.botocore

	

	
toil.lib.retry.logger

	

	
class toil.lib.retry.ErrorCondition(error=None, error_codes=None, boto_error_codes=None, error_message_must_include=None, retry_on_this_condition=True)

	A wrapper describing an error condition.

ErrorCondition events may be used to define errors in more detail to determine
whether to retry.

	Parameters

	
	error (Optional[Any]) –

	error_codes (List[int [https://docs.python.org/3/library/functions.html#int]]) –

	boto_error_codes (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	error_message_must_include (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	retry_on_this_condition (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
toil.lib.retry.retry(intervals=None, infinite_retries=False, errors=None, log_message=None, prepare=None)

	Retry a function if it fails with any Exception defined in “errors”.

Does so every x seconds, where x is defined by a list of numbers (ints or
floats) in “intervals”. Also accepts ErrorCondition events
for more detailed retry attempts.

	Parameters

	
	intervals (Optional[List]) – A list of times in seconds we keep retrying until returning failure.
Defaults to retrying with the following exponential back-off before failing:
1s, 1s, 2s, 4s, 8s, 16s

	infinite_retries (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True, reset the intervals when they run out.
Defaults to: False.

	errors (Optional[Sequence[Union[ErrorCondition, Type[Exception [https://docs.python.org/3/library/exceptions.html#Exception]]]]]) – A list of exceptions OR ErrorCondition objects to catch and retry on.
ErrorCondition objects describe more detailed error event conditions than a plain error.
An ErrorCondition specifies:
- Exception (required)
- Error codes that must match to be retried (optional; defaults to not checking)
- A string that must be in the error message to be retried (optional; defaults to not checking)
- A bool that can be set to False to always error on this condition.

If not specified, this will default to a generic Exception.

	log_message (Optional[Tuple[Callable, str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Optional tuple of (“log/print function()”, “message string”)
that will precede each attempt.

	prepare (Optional[List[Callable]]) – Optional list of functions to call, with the function’s
arguments, between retries, to reset state.

	Returns

	The result of the wrapped function or raise.

	Return type

	Callable[[Any], Any]

	
toil.lib.retry.return_status_code(e)

	

	
toil.lib.retry.get_error_code(e)

	Get the error code name from a Boto 2 or 3 error, or compatible types.

Returns empty string for other errors.

	Parameters

	e (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.retry.get_error_message(e)

	Get the error message string from a Boto 2 or 3 error, or compatible types.

Note that error message conditions also check more than this; this function
does not fall back to the traceback for incompatible types.

	Parameters

	e (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.retry.get_error_status(e)

	Get the HTTP status code from a compatible source.

Such as a Boto 2 or 3 error,
kubernetes.client.rest.ApiException, http.client.HTTPException,
urllib3.exceptions.HTTPError, requests.exceptions.HTTPError,
urllib.error.HTTPError, or compatible type

Returns 0 from other errors.

	Parameters

	e (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.lib.retry.get_error_body(e)

	Get the body from a Boto 2 or 3 error, or compatible types.

Returns the code and message if the error does not have a body.

	Parameters

	e (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.retry.meets_error_message_condition(e, error_message)

	
	Parameters

	
	e (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	error_message (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
toil.lib.retry.meets_error_code_condition(e, error_codes)

	These are expected to be normal HTTP error codes, like 404 or 500.

	Parameters

	
	e (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	error_codes (Optional[List[int [https://docs.python.org/3/library/functions.html#int]]]) –

	
toil.lib.retry.meets_boto_error_code_condition(e, boto_error_codes)

	These are expected to be AWS’s custom error aliases, like ‘BucketNotFound’ or ‘AccessDenied’.

	Parameters

	
	e (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	boto_error_codes (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	
toil.lib.retry.error_meets_conditions(e, error_conditions)

	

	
toil.lib.retry.DEFAULT_DELAYS = (0, 1, 1, 4, 16, 64)

	

	
toil.lib.retry.DEFAULT_TIMEOUT = 300

	

	
toil.lib.retry.old_retry(delays=DEFAULT_DELAYS, timeout=DEFAULT_TIMEOUT, predicate=lambda e: ...)

	Deprecated.

Retry an operation while the failure matches a given predicate and until a given timeout
expires, waiting a given amount of time in between attempts. This function is a generator
that yields contextmanagers. See doctests below for example usage.

	Parameters

	
	delays (Iterable[float [https://docs.python.org/3/library/functions.html#float]]) – an interable yielding the time in seconds to wait before each
retried attempt, the last element of the iterable will be repeated.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – a overall timeout that should not be exceeded for all attempts together.
This is a best-effort mechanism only and it won’t abort an ongoing attempt, even if the
timeout expires during that attempt.

	predicate (Callable[[Exception [https://docs.python.org/3/library/exceptions.html#Exception]],bool [https://docs.python.org/3/library/functions.html#bool]]) – a unary callable returning True if another
attempt should be made to recover from the given exception. The default value for this
parameter will prevent any retries!

	Returns

	a generator yielding context managers, one per attempt

	Return type

	Iterator

Retry for a limited amount of time:

>>> true = lambda _:True
>>> false = lambda _:False
>>> i = 0
>>> for attempt in old_retry(delays=[0], timeout=.1, predicate=true):
... with attempt:
... i += 1
... raise RuntimeError('foo')
Traceback (most recent call last):
...
RuntimeError: foo
>>> i > 1
True

If timeout is 0, do exactly one attempt:

>>> i = 0
>>> for attempt in old_retry(timeout=0):
... with attempt:
... i += 1
... raise RuntimeError('foo')
Traceback (most recent call last):
...
RuntimeError: foo
>>> i
1

Don’t retry on success:

>>> i = 0
>>> for attempt in old_retry(delays=[0], timeout=.1, predicate=true):
... with attempt:
... i += 1
>>> i
1

Don’t retry on unless predicate returns True:

>>> i = 0
>>> for attempt in old_retry(delays=[0], timeout=.1, predicate=false):
... with attempt:
... i += 1
... raise RuntimeError('foo')
Traceback (most recent call last):
...
RuntimeError: foo
>>> i
1

	
toil.lib.retry.retry_flaky_test

	

 toil.lib.threading

toil.lib.threading

Module Contents

Classes

	ExceptionalThread

	A thread whose join() method re-raises exceptions raised during run(). While join() is

	LastProcessStandingArena

	Class that lets a bunch of processes detect and elect a last process

Functions

	cpu_count()

	Get the rounded-up integer number of whole CPUs available.

	collect_process_name_garbage()

	Delete all the process names that point to files that don't exist anymore

	destroy_all_process_names()

	Delete all our process name files because our process is going away.

	get_process_name(base_dir)

	Return the name of the current process. Like a PID but visible between

	process_name_exists(base_dir, name)

	Return true if the process named by the given name (from process_name) exists, and false otherwise.

	global_mutex(base_dir, mutex)

	Context manager that locks a mutex. The mutex is identified by the given

Attributes

	logger

	

	current_process_name_lock

	

	current_process_name_for

	

	
toil.lib.threading.logger

	

	
class toil.lib.threading.ExceptionalThread(group=None, target=None, name=None, args=(), kwargs=None, *, daemon=None)

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

[image: Inheritance diagram of toil.lib.threading.ExceptionalThread]

A thread whose join() method re-raises exceptions raised during run(). While join() is
idempotent, the exception is only during the first invocation of join() that successfully
joined the thread. If join() times out, no exception will be re reraised even though an
exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

	
exc_info

	

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	Return type

	None

	
tryRun()

	
	Return type

	None

	
join(*args, **kwargs)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	Parameters

	
	args (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	kwargs (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	Return type

	None

	
toil.lib.threading.cpu_count()

	Get the rounded-up integer number of whole CPUs available.

Counts hyperthreads as CPUs.

Uses the system’s actual CPU count, or the current v1 cgroup’s quota per
period, if the quota is set.

Ignores the cgroup’s cpu shares value, because it’s extremely difficult to
interpret. See https://github.com/kubernetes/kubernetes/issues/81021.

Caches result for efficiency.

	Returns

	Integer count of available CPUs, minimum 1.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.lib.threading.current_process_name_lock

	

	
toil.lib.threading.current_process_name_for: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
toil.lib.threading.collect_process_name_garbage()

	Delete all the process names that point to files that don’t exist anymore
(because the work directory was temporary and got cleaned up). This is
known to happen during the tests, which get their own temp directories.

Caller must hold current_process_name_lock.

	Return type

	None

	
toil.lib.threading.destroy_all_process_names()

	Delete all our process name files because our process is going away.

We let all our FDs get closed by the process death.

We assume there is nobody else using the system during exit to race with.

	Return type

	None

	
toil.lib.threading.get_process_name(base_dir)

	Return the name of the current process. Like a PID but visible between
containers on what to Toil appears to be a node.

	Parameters

	base_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Base directory to work in. Defines the shared namespace.

	Returns

	Process’s assigned name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.lib.threading.process_name_exists(base_dir, name)

	Return true if the process named by the given name (from process_name) exists, and false otherwise.

Can see across container boundaries using the given node workflow directory.

	Parameters

	
	base_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Base directory to work in. Defines the shared namespace.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Process’s name to poll

	Returns

	True if the named process is still alive, and False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.lib.threading.global_mutex(base_dir, mutex)

	Context manager that locks a mutex. The mutex is identified by the given
name, and scoped to the given directory. Works across all containers that
have access to the given diectory. Mutexes held by dead processes are
automatically released.

Only works between processes, NOT between threads.

	Parameters

	
	base_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Base directory to work in. Defines the shared namespace.

	mutex (str [https://docs.python.org/3/library/stdtypes.html#str]) – Mutex to lock. Must be a permissible path component.

	Return type

	Iterator[None]

	
class toil.lib.threading.LastProcessStandingArena(base_dir, name)

	Class that lets a bunch of processes detect and elect a last process
standing.

Process enter and leave (sometimes due to sudden existence failure). We
guarantee that the last process to leave, if it leaves properly, will get a
chance to do some cleanup. If new processes try to enter during the
cleanup, they will be delayed until after the cleanup has happened and the
previous “last” process has finished leaving.

The user is responsible for making sure you always leave if you enter!
Consider using a try/finally; this class is not a context manager.

	Parameters

	
	base_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
enter()

	This process is entering the arena. If cleanup is in progress, blocks
until it is finished.

You may not enter the arena again before leaving it.

	Return type

	None

	
leave()

	This process is leaving the arena. If this process happens to be the
last process standing, yields something, with other processes blocked
from joining the arena until the loop body completes and the process
has finished leaving. Otherwise, does not yield anything.

Should be used in a loop:

	for _ in arena.leave():
	# If we get here, we were the last process. Do the cleanup
pass

	Return type

	Iterator[bool [https://docs.python.org/3/library/functions.html#bool]]

 toil.lib.throttle

toil.lib.throttle

Module Contents

Classes

	LocalThrottle

	A thread-safe rate limiter that throttles each thread independently. Can be used as a

	throttle

	A context manager for ensuring that the execution of its body takes at least a given amount

	
class toil.lib.throttle.LocalThrottle(min_interval)

	A thread-safe rate limiter that throttles each thread independently. Can be used as a
function or method decorator or as a simple object, via its .throttle() method.

The use as a decorator is deprecated in favor of throttle().

	Parameters

	min_interval (int [https://docs.python.org/3/library/functions.html#int]) –

	
throttle(wait=True)

	If the wait parameter is True, this method returns True after suspending the current
thread as necessary to ensure that no less than the configured minimum interval has
passed since the last invocation of this method in the current thread returned True.

If the wait parameter is False, this method immediatly returns True (if at least the
configured minimum interval has passed since the last time this method returned True in
the current thread) or False otherwise.

	Parameters

	wait (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__call__(function)

	

	
class toil.lib.throttle.throttle(min_interval)

	A context manager for ensuring that the execution of its body takes at least a given amount
of time, sleeping if necessary. It is a simpler version of LocalThrottle if used as a
decorator.

Ensures that body takes at least the given amount of time.

>>> start = time.time()
>>> with throttle(1):
... pass
>>> 1 <= time.time() - start <= 1.1
True

Ditto when used as a decorator.

>>> @throttle(1)
... def f():
... pass
>>> start = time.time()
>>> f()
>>> 1 <= time.time() - start <= 1.1
True

If the body takes longer by itself, don’t throttle.

>>> start = time.time()
>>> with throttle(1):
... time.sleep(2)
>>> 2 <= time.time() - start <= 2.1
True

Ditto when used as a decorator.

>>> @throttle(1)
... def f():
... time.sleep(2)
>>> start = time.time()
>>> f()
>>> 2 <= time.time() - start <= 2.1
True

If an exception occurs, don’t throttle.

>>> start = time.time()
>>> try:
... with throttle(1):
... raise ValueError('foo')
... except ValueError:
... end = time.time()
... raise
Traceback (most recent call last):
...
ValueError: foo
>>> 0 <= end - start <= 0.1
True

Ditto when used as a decorator.

>>> @throttle(1)
... def f():
... raise ValueError('foo')
>>> start = time.time()
>>> try:
... f()
... except ValueError:
... end = time.time()
... raise
Traceback (most recent call last):
...
ValueError: foo
>>> 0 <= end - start <= 0.1
True

	Parameters

	min_interval (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) –

	
__enter__()

	

	
__exit__(exc_type, exc_val, exc_tb)

	

	
__call__(function)

	

 toil.provisioners

toil.provisioners

Subpackages

	toil.provisioners.aws
	toil.provisioners.aws.awsProvisioner

Submodules

	toil.provisioners.abstractProvisioner

	toil.provisioners.clusterScaler

	toil.provisioners.gceProvisioner

	toil.provisioners.node

Package Contents

Functions

	cluster_factory(provisioner[, clusterName, ...])

	Find and instantiate the appropriate provisioner instance to make clusters in the given cloud.

	add_provisioner_options(parser)

	

	parse_node_types(node_type_specs)

	Parse a specification for zero or more node types.

	check_valid_node_types(provisioner, node_types)

	Raises if an invalid nodeType is specified for aws or gce.

Attributes

	logger

	

	
toil.provisioners.logger

	

	
toil.provisioners.cluster_factory(provisioner, clusterName=None, clusterType='mesos', zone=None, nodeStorage=50, nodeStorageOverrides=None, sseKey=None)

	Find and instantiate the appropriate provisioner instance to make clusters in the given cloud.

Raises ClusterTypeNotSupportedException if the given provisioner does not
implement clusters of the given type.

	Parameters

	
	provisioner (str [https://docs.python.org/3/library/stdtypes.html#str]) – The cloud type of the cluster.

	clusterName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The name of the cluster.

	clusterType (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of cluster: ‘mesos’ or ‘kubernetes’.

	zone (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The cloud zone

	nodeStorage (int [https://docs.python.org/3/library/functions.html#int]) –

	nodeStorageOverrides (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	sseKey (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Returns

	A cluster object for the the cloud type.

	Return type

	Union[aws.awsProvisioner.AWSProvisioner, gceProvisioner.GCEProvisioner]

	
toil.provisioners.add_provisioner_options(parser)

	
	Parameters

	parser (argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) –

	Return type

	None

	
toil.provisioners.parse_node_types(node_type_specs)

	Parse a specification for zero or more node types.

Takes a comma-separated list of node types. Each node type is a
slash-separated list of at least one instance type name (like ‘m5a.large’
for AWS), and an optional bid in dollars after a colon.

Raises ValueError if a node type cannot be parsed.

Inputs should look something like this:

>>> parse_node_types('c5.4xlarge/c5a.4xlarge:0.42,t2.large')
[({'c5.4xlarge', 'c5a.4xlarge'}, 0.42), ({'t2.large'}, None)]

	Parameters

	node_type_specs (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – A string defining node types

	Returns

	a list of node types, where each type is the set of
instance types, and the float bid, or None.

	Return type

	List[Tuple[Set[str [https://docs.python.org/3/library/stdtypes.html#str]], Optional[float [https://docs.python.org/3/library/functions.html#float]]]]

	
toil.provisioners.check_valid_node_types(provisioner, node_types)

	Raises if an invalid nodeType is specified for aws or gce.

	Parameters

	
	provisioner (str [https://docs.python.org/3/library/stdtypes.html#str]) – ‘aws’ or ‘gce’ to specify which cloud provisioner used.

	node_types (List[Tuple[Set[str [https://docs.python.org/3/library/stdtypes.html#str]], Optional[float [https://docs.python.org/3/library/functions.html#float]]]]) – A list of node types. Example: [({‘t2.micro’}, None), ({‘t2.medium’}, 0.5)]

	Returns

	Nothing. Raises if any instance type in the node type isn’t real.

	
exception toil.provisioners.NoSuchClusterException(cluster_name)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.provisioners.NoSuchClusterException]

Indicates that the specified cluster does not exist.

	
exception toil.provisioners.ClusterTypeNotSupportedException(provisioner_class, cluster_type)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.provisioners.ClusterTypeNotSupportedException]

Indicates that a provisioner does not support a given cluster type.

	
exception toil.provisioners.ClusterCombinationNotSupportedException(provisioner_class, cluster_type, architecture, reason=None)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.provisioners.ClusterCombinationNotSupportedException]

Indicates that a provisioner does not support making a given type of cluster with a given architecture.

	Parameters

	
	provisioner_class (Type) –

	cluster_type (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	architecture (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	reason (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

 toil.provisioners.aws

toil.provisioners.aws

Submodules

	toil.provisioners.aws.awsProvisioner

Package Contents

Functions

	get_aws_zone_from_boto()

	Get the AWS zone from the Boto config file, if it is configured and the

	get_aws_zone_from_environment()

	Get the AWS zone from TOIL_AWS_ZONE if set.

	get_aws_zone_from_environment_region()

	Pick an AWS zone in the region defined by TOIL_AWS_REGION, if it is set.

	get_aws_zone_from_metadata()

	Get the AWS zone from instance metadata, if on EC2 and the boto module is

	running_on_ec2()

	Return True if we are currently running on EC2, and false otherwise.

	zone_to_region(zone)

	Get a region (e.g. us-west-2) from a zone (e.g. us-west-1c).

	get_aws_zone_from_spot_market(spotBid, nodeType, ...)

	If a spot bid, node type, and Boto2 EC2 connection are specified, picks a

	get_best_aws_zone([spotBid, nodeType, boto2_ec2, ...])

	Get the right AWS zone to use.

	choose_spot_zone(zones, bid, spot_history)

	Returns the zone to put the spot request based on, in order of priority:

	optimize_spot_bid(boto2_ec2, instance_type, spot_bid, ...)

	Check whether the bid is in line with history and makes an effort to place

Attributes

	logger

	

	ZoneTuple

	

	
toil.provisioners.aws.get_aws_zone_from_boto()

	Get the AWS zone from the Boto config file, if it is configured and the
boto module is available.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.provisioners.aws.get_aws_zone_from_environment()

	Get the AWS zone from TOIL_AWS_ZONE if set.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.provisioners.aws.get_aws_zone_from_environment_region()

	Pick an AWS zone in the region defined by TOIL_AWS_REGION, if it is set.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.provisioners.aws.get_aws_zone_from_metadata()

	Get the AWS zone from instance metadata, if on EC2 and the boto module is
available. Otherwise, gets the AWS zone from ECS task metadata, if on ECS.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.provisioners.aws.running_on_ec2()

	Return True if we are currently running on EC2, and false otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.provisioners.aws.zone_to_region(zone)

	Get a region (e.g. us-west-2) from a zone (e.g. us-west-1c).

	Parameters

	zone (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.provisioners.aws.logger

	

	
toil.provisioners.aws.ZoneTuple

	

	
toil.provisioners.aws.get_aws_zone_from_spot_market(spotBid, nodeType, boto2_ec2, zone_options)

	If a spot bid, node type, and Boto2 EC2 connection are specified, picks a
zone where instances are easy to buy from the zones in the region of the
Boto2 connection. These parameters must always be specified together, or
not at all.

In this case, zone_options can be used to restrict to a subset of the zones
in the region.

	Parameters

	
	spotBid (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	nodeType (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	boto2_ec2 (Optional[boto.connection.AWSAuthConnection]) –

	zone_options (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.provisioners.aws.get_best_aws_zone(spotBid=None, nodeType=None, boto2_ec2=None, zone_options=None)

	Get the right AWS zone to use.

Reports the TOIL_AWS_ZONE environment variable if set.

Otherwise, if we are running on EC2 or ECS, reports the zone we are running
in.

Otherwise, if a spot bid, node type, and Boto2 EC2 connection are
specified, picks a zone where instances are easy to buy from the zones in
the region of the Boto2 connection. These parameters must always be
specified together, or not at all.

In this case, zone_options can be used to restrict to a subset of the zones
in the region.

Otherwise, if we have the TOIL_AWS_REGION variable set, chooses a zone in
that region.

Finally, if a default region is configured in Boto 2, chooses a zone in
that region.

Returns None if no method can produce a zone to use.

	Parameters

	
	spotBid (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	nodeType (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	boto2_ec2 (Optional[boto.connection.AWSAuthConnection]) –

	zone_options (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.provisioners.aws.choose_spot_zone(zones, bid, spot_history)

	Returns the zone to put the spot request based on, in order of priority:

	zones with prices currently under the bid

	zones with the most stable price

	Returns

	the name of the selected zone

	Parameters

	
	zones (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	bid (float [https://docs.python.org/3/library/functions.html#float]) –

	spot_history (List[boto.ec2.spotpricehistory.SpotPriceHistory]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

>>> from collections import namedtuple
>>> FauxHistory = namedtuple('FauxHistory', ['price', 'availability_zone'])
>>> zones = ['us-west-2a', 'us-west-2b']
>>> spot_history = [FauxHistory(0.1, 'us-west-2a'), FauxHistory(0.2, 'us-west-2a'), FauxHistory(0.3, 'us-west-2b'), FauxHistory(0.6, 'us-west-2b')]
>>> choose_spot_zone(zones, 0.15, spot_history)
'us-west-2a'

>>> spot_history=[FauxHistory(0.3, 'us-west-2a'), FauxHistory(0.2, 'us-west-2a'), FauxHistory(0.1, 'us-west-2b'), FauxHistory(0.6, 'us-west-2b')]
>>> choose_spot_zone(zones, 0.15, spot_history)
'us-west-2b'

>>> spot_history=[FauxHistory(0.1, 'us-west-2a'), FauxHistory(0.7, 'us-west-2a'), FauxHistory(0.1, 'us-west-2b'), FauxHistory(0.6, 'us-west-2b')]
>>> choose_spot_zone(zones, 0.15, spot_history)
'us-west-2b'

	
toil.provisioners.aws.optimize_spot_bid(boto2_ec2, instance_type, spot_bid, zone_options)

	Check whether the bid is in line with history and makes an effort to place
the instance in a sensible zone.

	Parameters

	zone_options (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The collection of allowed zones to consider, within

the region associated with the Boto2 connection.

 toil.provisioners.aws.awsProvisioner

toil.provisioners.aws.awsProvisioner

Module Contents

Classes

	AWSProvisioner

	Interface for provisioning worker nodes to use in a Toil cluster.

Functions

	awsRetryPredicate(e)

	

	expectedShutdownErrors(e)

	Matches errors that we expect to occur during shutdown, and which indicate

	awsRetry(f)

	This decorator retries the wrapped function if aws throws unexpected errors

	awsFilterImpairedNodes(nodes, ec2)

	

Attributes

	logger

	

	
toil.provisioners.aws.awsProvisioner.logger

	

	
toil.provisioners.aws.awsProvisioner.awsRetryPredicate(e)

	

	
toil.provisioners.aws.awsProvisioner.expectedShutdownErrors(e)

	Matches errors that we expect to occur during shutdown, and which indicate
that we need to wait or try again.

Should not match any errors which indicate that an operation is
impossible or unnecessary (such as errors resulting from a thing not
existing to be deleted).

	Parameters

	e (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.provisioners.aws.awsProvisioner.awsRetry(f)

	This decorator retries the wrapped function if aws throws unexpected errors
errors.
It should wrap any function that makes use of boto

	
toil.provisioners.aws.awsProvisioner.awsFilterImpairedNodes(nodes, ec2)

	

	
exception toil.provisioners.aws.awsProvisioner.InvalidClusterStateException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.provisioners.aws.awsProvisioner.InvalidClusterStateException]

Common base class for all non-exit exceptions.

	
class toil.provisioners.aws.awsProvisioner.AWSProvisioner(clusterName, clusterType, zone, nodeStorage, nodeStorageOverrides, sseKey)

	Bases: toil.provisioners.abstractProvisioner.AbstractProvisioner

[image: Inheritance diagram of toil.provisioners.aws.awsProvisioner.AWSProvisioner]

Interface for provisioning worker nodes to use in a Toil cluster.

	
supportedClusterTypes()

	Get all the cluster types that this provisioner implementation
supports.

	
createClusterSettings()

	Create a new set of cluster settings for a cluster to be deployed into
AWS.

	
readClusterSettings()

	Reads the cluster settings from the instance metadata, which assumes
the instance is the leader.

	
launchCluster(leaderNodeType, leaderStorage, owner, keyName, botoPath, userTags, vpcSubnet, awsEc2ProfileArn, awsEc2ExtraSecurityGroupIds, **kwargs)

	Starts a single leader node and populates this class with the leader’s metadata.

	Parameters

	
	leaderNodeType (str [https://docs.python.org/3/library/stdtypes.html#str]) – An AWS instance type, like “t2.medium”, for example.

	leaderStorage (int [https://docs.python.org/3/library/functions.html#int]) – An integer number of gigabytes to provide the leader instance with.

	owner (str [https://docs.python.org/3/library/stdtypes.html#str]) – Resources will be tagged with this owner string.

	keyName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ssh key to use to access the leader node.

	botoPath (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the boto credentials directory.

	userTags (Optional[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Optionally provided user tags to put on the cluster.

	vpcSubnet (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optionally specify the VPC subnet for the leader.

	awsEc2ProfileArn (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Optionally provide the profile ARN.

	awsEc2ExtraSecurityGroupIds (Optional[list [https://docs.python.org/3/library/stdtypes.html#list]]) – Optionally provide additional security group IDs.

	Returns

	None

	
toil_service_env_options()

	Set AWS tags in user docker container

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
getKubernetesAutoscalerSetupCommands(values)

	Get the Bash commands necessary to configure the Kubernetes Cluster Autoscaler for AWS.

	Parameters

	values (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
getKubernetesCloudProvider()

	Use the “aws” Kubernetes cloud provider when setting up Kubernetes.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
getNodeShape(instance_type, preemptible=False)

	Get the Shape for the given instance type (e.g. ‘t2.medium’).

	Parameters

	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	toil.provisioners.abstractProvisioner.Shape

	
static retryPredicate(e)

	Return true if the exception e should be retried by the cluster scaler.
For example, should return true if the exception was due to exceeding an API rate limit.
The error will be retried with exponential backoff.

	Parameters

	e – exception raised during execution of setNodeCount

	Returns

	boolean indicating whether the exception e should be retried

	
destroyCluster()

	Terminate instances and delete the profile and security group.

	Return type

	None

	
terminateNodes(nodes)

	Terminate the nodes represented by given Node objects

	Parameters

	nodes (List[toil.provisioners.node.Node]) – list of Node objects

	Return type

	None

	
addNodes(nodeTypes, numNodes, preemptible, spotBid=None)

	Used to add worker nodes to the cluster

	Parameters

	
	numNodes – The number of nodes to add

	preemptible – whether or not the nodes will be preemptible

	spotBid – The bid for preemptible nodes if applicable (this can be set in config, also).

	nodeTypes (Set[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Returns

	number of nodes successfully added

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
addManagedNodes(nodeTypes, minNodes, maxNodes, preemptible, spotBid=None)

	Add a group of managed nodes of the given type, up to the given maximum.
The nodes will automatically be launched and terminated depending on cluster load.

Raises ManagedNodesNotSupportedException if the provisioner
implementation or cluster configuration can’t have managed nodes.

	Parameters

	
	minNodes – The minimum number of nodes to scale to

	maxNodes – The maximum number of nodes to scale to

	preemptible – whether or not the nodes will be preemptible

	spotBid – The bid for preemptible nodes if applicable (this can be set in config, also).

	nodeTypes (Set[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
getProvisionedWorkers(instance_type=None, preemptible=None)

	Gets all nodes, optionally of the given instance type or
preemptability, from the provisioner. Includes both static and
autoscaled nodes.

	Parameters

	
	preemptible (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Boolean value to restrict to preemptible
nodes or non-preemptible nodes

	instance_type (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Returns

	list of Node objects

	Return type

	List[toil.provisioners.node.Node]

	
getLeader(wait=False)

	Get the leader for the cluster as a Toil Node object.

	Return type

	toil.provisioners.node.Node

	
full_policy(resource)

	Produce a dict describing the JSON form of a full-access-granting AWS
IAM policy for the service with the given name (e.g. ‘s3’).

	Parameters

	resource (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
kubernetes_policy()

	Get the Kubernetes policy grants not provided by the full grants on EC2
and IAM. See
<https://github.com/DataBiosphere/toil/wiki/Manual-Autoscaling-Kubernetes-Setup#leader-policy>
and
<https://github.com/DataBiosphere/toil/wiki/Manual-Autoscaling-Kubernetes-Setup#worker-policy>.

These are mostly needed to support Kubernetes’ AWS CloudProvider, and
some are for the Kubernetes Cluster Autoscaler’s AWS integration.

Some of these are really only needed on the leader.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

 toil.provisioners.abstractProvisioner

toil.provisioners.abstractProvisioner

Module Contents

Classes

	Shape

	Represents a job or a node's "shape", in terms of the dimensions of memory, cores, disk and

	AbstractProvisioner

	Interface for provisioning worker nodes to use in a Toil cluster.

Attributes

	a_short_time

	

	logger

	

	
toil.provisioners.abstractProvisioner.a_short_time = 5

	

	
toil.provisioners.abstractProvisioner.logger

	

	
exception toil.provisioners.abstractProvisioner.ManagedNodesNotSupportedException

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

[image: Inheritance diagram of toil.provisioners.abstractProvisioner.ManagedNodesNotSupportedException]

Raised when attempting to add managed nodes (which autoscale up and down by
themselves, without the provisioner doing the work) to a provisioner that
does not support them.

Polling with this and try/except is the Right Way to check if managed nodes
are available from a provisioner.

	
class toil.provisioners.abstractProvisioner.Shape(wallTime, memory, cores, disk, preemptible)

	Represents a job or a node’s “shape”, in terms of the dimensions of memory, cores, disk and
wall-time allocation.

The wallTime attribute stores the number of seconds of a node allocation, e.g. 3600 for AWS.
FIXME: and for jobs?

The memory and disk attributes store the number of bytes required by a job (or provided by a
node) in RAM or on disk (SSD or HDD), respectively.

	Parameters

	
	wallTime (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) –

	memory (int [https://docs.python.org/3/library/functions.html#int]) –

	cores (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) –

	disk (int [https://docs.python.org/3/library/functions.html#int]) –

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
__eq__(other)

	Return self==value.

	Parameters

	other (Any) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
greater_than(other)

	
	Parameters

	other (Any) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__gt__(other)

	Return self>value.

	Parameters

	other (Any) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__repr__()

	Return repr(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__hash__()

	Return hash(self).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
class toil.provisioners.abstractProvisioner.AbstractProvisioner(clusterName=None, clusterType='mesos', zone=None, nodeStorage=50, nodeStorageOverrides=None)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

[image: Inheritance diagram of toil.provisioners.abstractProvisioner.AbstractProvisioner]

Interface for provisioning worker nodes to use in a Toil cluster.

	Parameters

	
	clusterName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	clusterType (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	zone (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	nodeStorage (int [https://docs.python.org/3/library/functions.html#int]) –

	nodeStorageOverrides (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	
class InstanceConfiguration

	Allows defining the initial setup for an instance and then turning it
into an Ignition configuration for instance user data.

	
addFile(path, filesystem='root', mode='0755', contents='', append=False)

	Make a file on the instance with the given filesystem, mode, and contents.

See the storage.files section:
https://github.com/kinvolk/ignition/blob/flatcar-master/doc/configuration-v2_2.md

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	filesystem (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	mode (Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) –

	contents (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	append (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
addUnit(name, enabled=True, contents='')

	Make a systemd unit on the instance with the given name (including
.service), and content. Units will be enabled by default.

	Unit logs can be investigated with:
	systemctl status whatever.service

	or:
	journalctl -xe

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) –

	contents (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
addSSHRSAKey(keyData)

	Authorize the given bare, encoded RSA key (without “ssh-rsa”).

	Parameters

	keyData (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
toIgnitionConfig()

	Return an Ignition configuration describing the desired config.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
LEADER_HOME_DIR = '/root/'

	

	
cloud: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
abstract supportedClusterTypes()

	Get all the cluster types that this provisioner implementation
supports.

	Return type

	Set[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
abstract createClusterSettings()

	Initialize class for a new cluster, to be deployed, when running
outside the cloud.

	
abstract readClusterSettings()

	Initialize class from an existing cluster. This method assumes that
the instance we are running on is the leader.

Implementations must call _setLeaderWorkerAuthentication().

	
setAutoscaledNodeTypes(nodeTypes)

	Set node types, shapes and spot bids for Toil-managed autoscaling.
:param nodeTypes: A list of node types, as parsed with parse_node_types.

	Parameters

	nodeTypes (List[Tuple[Set[str [https://docs.python.org/3/library/stdtypes.html#str]], Optional[float [https://docs.python.org/3/library/functions.html#float]]]]) –

	
hasAutoscaledNodeTypes()

	Check if node types have been configured on the provisioner (via
setAutoscaledNodeTypes).

	Returns

	True if node types are configured for autoscaling, and false
otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
getAutoscaledInstanceShapes()

	Get all the node shapes and their named instance types that the Toil
autoscaler should manage.

	Return type

	Dict[Shape, str [https://docs.python.org/3/library/stdtypes.html#str]]

	
static retryPredicate(e)

	Return true if the exception e should be retried by the cluster scaler.
For example, should return true if the exception was due to exceeding an API rate limit.
The error will be retried with exponential backoff.

	Parameters

	e – exception raised during execution of setNodeCount

	Returns

	boolean indicating whether the exception e should be retried

	
abstract launchCluster(*args, **kwargs)

	Initialize a cluster and create a leader node.

Implementations must call _setLeaderWorkerAuthentication() with the
leader so that workers can be launched.

	Parameters

	
	leaderNodeType – The leader instance.

	leaderStorage – The amount of disk to allocate to the leader in gigabytes.

	owner – Tag identifying the owner of the instances.

	
abstract addNodes(nodeTypes, numNodes, preemptible, spotBid=None)

	Used to add worker nodes to the cluster

	Parameters

	
	numNodes (int [https://docs.python.org/3/library/functions.html#int]) – The number of nodes to add

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not the nodes will be preemptible

	spotBid (Optional[float [https://docs.python.org/3/library/functions.html#float]]) – The bid for preemptible nodes if applicable (this can be set in config, also).

	nodeTypes (Set[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Returns

	number of nodes successfully added

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
addManagedNodes(nodeTypes, minNodes, maxNodes, preemptible, spotBid=None)

	Add a group of managed nodes of the given type, up to the given maximum.
The nodes will automatically be launched and terminated depending on cluster load.

Raises ManagedNodesNotSupportedException if the provisioner
implementation or cluster configuration can’t have managed nodes.

	Parameters

	
	minNodes – The minimum number of nodes to scale to

	maxNodes – The maximum number of nodes to scale to

	preemptible – whether or not the nodes will be preemptible

	spotBid – The bid for preemptible nodes if applicable (this can be set in config, also).

	nodeTypes (Set[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
abstract terminateNodes(nodes)

	Terminate the nodes represented by given Node objects

	Parameters

	nodes (List[toil.provisioners.node.Node]) – list of Node objects

	Return type

	None

	
abstract getLeader()

	
	Returns

	The leader node.

	
abstract getProvisionedWorkers(instance_type=None, preemptible=None)

	Gets all nodes, optionally of the given instance type or
preemptability, from the provisioner. Includes both static and
autoscaled nodes.

	Parameters

	
	preemptible (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Boolean value to restrict to preemptible
nodes or non-preemptible nodes

	instance_type (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Returns

	list of Node objects

	Return type

	List[toil.provisioners.node.Node]

	
abstract getNodeShape(instance_type, preemptible=False)

	The shape of a preemptible or non-preemptible node managed by this provisioner. The node
shape defines key properties of a machine, such as its number of cores or the time
between billing intervals.

	Parameters

	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Instance type name to return the shape of.

	Return type

	Shape

	
abstract destroyCluster()

	Terminates all nodes in the specified cluster and cleans up all resources associated with the
cluster.
:param clusterName: identifier of the cluster to terminate.

	Return type

	None

	
getBaseInstanceConfiguration()

	Get the base configuration for both leader and worker instances for all cluster types.

	Return type

	InstanceConfiguration

	
addVolumesService(config)

	Add a service to prepare and mount local scratch volumes.

	Parameters

	config (InstanceConfiguration) –

	
addNodeExporterService(config)

	Add the node exporter service for Prometheus to an instance configuration.

	Parameters

	config (InstanceConfiguration) –

	
toil_service_env_options()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
add_toil_service(config, role, keyPath=None, preemptible=False)

	Add the Toil leader or worker service to an instance configuration.

Will run Mesos master or agent as appropriate in Mesos clusters.
For Kubernetes clusters, will just sleep to provide a place to shell
into on the leader, and shouldn’t run on the worker.

	Parameters

	
	role (str [https://docs.python.org/3/library/stdtypes.html#str]) – Should be ‘leader’ or ‘worker’. Will not work for ‘worker’ until leader credentials have been collected.

	keyPath (str [https://docs.python.org/3/library/stdtypes.html#str]) – path on the node to a server-side encryption key that will be added to the node after it starts. The service will wait until the key is present before starting.

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether a worker should identify itself as preemptible or not to the scheduler.

	config (InstanceConfiguration) –

	
getKubernetesValues(architecture='amd64')

	Returns a dict of Kubernetes component versions and paths for formatting into Kubernetes-related templates.

	Parameters

	architecture (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
addKubernetesServices(config, architecture='amd64')

	Add installing Kubernetes and Kubeadm and setting up the Kubelet to run when configured to an instance configuration.
The same process applies to leaders and workers.

	Parameters

	
	config (InstanceConfiguration) –

	architecture (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
abstract getKubernetesAutoscalerSetupCommands(values)

	Return Bash commands that set up the Kubernetes cluster autoscaler for
provisioning from the environment supported by this provisioner.

Should only be implemented if Kubernetes clusters are supported.

	Parameters

	values (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Contains definitions of cluster variables, like
AUTOSCALER_VERSION and CLUSTER_NAME.

	Returns

	Bash snippet

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
getKubernetesCloudProvider()

	Return the Kubernetes cloud provider (for example, ‘aws’), to pass to
the kubelets in a Kubernetes cluster provisioned using this provisioner.

Defaults to None if not overridden, in which case no cloud provider
integration will be used.

	Returns

	Cloud provider name, or None

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
addKubernetesLeader(config)

	Add services to configure as a Kubernetes leader, if Kubernetes is already set to be installed.

	Parameters

	config (InstanceConfiguration) –

	
addKubernetesWorker(config, authVars, preemptible=False)

	Add services to configure as a Kubernetes worker, if Kubernetes is
already set to be installed.

Authenticate back to the leader using the JOIN_TOKEN, JOIN_CERT_HASH,
and JOIN_ENDPOINT set in the given authentication data dict.

	Parameters

	
	config (InstanceConfiguration) – The configuration to add services to

	authVars (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Dict with authentication info

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the worker should be labeled as preemptible or not

 toil.provisioners.clusterScaler

toil.provisioners.clusterScaler

Module Contents

Classes

	BinPackedFit

	If jobShapes is a set of tasks with run requirements (mem/disk/cpu), and nodeShapes is a sorted

	NodeReservation

	The amount of resources that we expect to be available on a given node at each point in time.

	ClusterScaler

	

	ScalerThread

	A thread that automatically scales the number of either preemptible or non-preemptible worker

	ClusterStats

	

Functions

	adjustEndingReservationForJob(reservation, jobShape, ...)

	Add a job to an ending reservation that ends at wallTime.

	split(nodeShape, jobShape, wallTime)

	Partition a node allocation into two to fit the job.

	binPacking(nodeShapes, jobShapes, goalTime)

	Using the given node shape bins, pack the given job shapes into nodes to

Attributes

	logger

	

	EVICTION_THRESHOLD

	

	RESERVE_SMALL_LIMIT

	

	RESERVE_SMALL_AMOUNT

	

	RESERVE_BREAKPOINTS

	

	RESERVE_FRACTIONS

	

	OS_SIZE

	

	FailedConstraint

	

	
toil.provisioners.clusterScaler.logger

	

	
toil.provisioners.clusterScaler.EVICTION_THRESHOLD

	

	
toil.provisioners.clusterScaler.RESERVE_SMALL_LIMIT

	

	
toil.provisioners.clusterScaler.RESERVE_SMALL_AMOUNT

	

	
toil.provisioners.clusterScaler.RESERVE_BREAKPOINTS: List[Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]]

	

	
toil.provisioners.clusterScaler.RESERVE_FRACTIONS = [0.25, 0.2, 0.1, 0.06, 0.02]

	

	
toil.provisioners.clusterScaler.OS_SIZE

	

	
toil.provisioners.clusterScaler.FailedConstraint

	

	
class toil.provisioners.clusterScaler.BinPackedFit(nodeShapes, targetTime=defaultTargetTime)

	If jobShapes is a set of tasks with run requirements (mem/disk/cpu), and nodeShapes is a sorted
list of available computers to run these jobs on, this function attempts to return a dictionary
representing the minimum set of computerNode computers needed to run the tasks in jobShapes.

Uses a first fit decreasing (FFD) bin packing like algorithm to calculate an approximate minimum
number of nodes that will fit the given list of jobs. BinPackingFit assumes the ordered list,
nodeShapes, is ordered for “node preference” outside of BinPackingFit beforehand. So when
virtually “creating” nodes, the first node within nodeShapes that fits the job is the one
that’s added.

	Parameters

	
	nodeShapes (list [https://docs.python.org/3/library/stdtypes.html#list]) – The properties of an atomic node allocation, in terms of wall-time,
memory, cores, disk, and whether it is preemptible or not.

	targetTime (float [https://docs.python.org/3/library/functions.html#float]) – The time before which all jobs should at least be started.

	Returns

	The minimum number of minimal node allocations estimated to be required to run all
the jobs in jobShapes.

	
nodeReservations: Dict[toil.provisioners.abstractProvisioner.Shape, List[NodeReservation]]

	

	
binPack(jobShapes)

	Pack a list of jobShapes into the fewest nodes reasonable.

Can be run multiple times.

Returns any distinct Shapes that did not fit, mapping to reasons they did not fit.

	Parameters

	jobShapes (List[toil.provisioners.abstractProvisioner.Shape]) –

	Return type

	Dict[toil.provisioners.abstractProvisioner.Shape, List[FailedConstraint]]

	
addJobShape(jobShape)

	Add the job to the first node reservation in which it will fit. (This
is the bin-packing aspect).

Returns the job shape again, and a list of failed constraints, if it did not fit.

	Parameters

	jobShape (toil.provisioners.abstractProvisioner.Shape) –

	Return type

	Optional[Tuple[toil.provisioners.abstractProvisioner.Shape, List[FailedConstraint]]]

	
getRequiredNodes()

	Return a dict from node shape to number of nodes required to run the packed jobs.

	Return type

	Dict[toil.provisioners.abstractProvisioner.Shape, int [https://docs.python.org/3/library/functions.html#int]]

	
class toil.provisioners.clusterScaler.NodeReservation(shape)

	The amount of resources that we expect to be available on a given node at each point in time.

To represent the resources available in a reservation, we represent a
reservation as a linked list of NodeReservations, each giving the
resources free within a single timeslice.

	Parameters

	shape (toil.provisioners.abstractProvisioner.Shape) –

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_failed_constraints(job_shape)

	Check if a job shape’s resource requirements will fit within this allocation.

If the job does not fit, returns the failing constraints: the resources
that can’t be accomodated, and the limits that were hit.

If the job does fit, returns an empty list.

Must always agree with fits()! This codepath is slower and used for diagnosis.

	Parameters

	job_shape (toil.provisioners.abstractProvisioner.Shape) –

	Return type

	List[FailedConstraint]

	
fits(jobShape)

	Check if a job shape’s resource requirements will fit within this allocation.

	Parameters

	jobShape (toil.provisioners.abstractProvisioner.Shape) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
shapes()

	Get all time-slice shapes, in order, from this reservation on.

	Return type

	List[toil.provisioners.abstractProvisioner.Shape]

	
subtract(jobShape)

	Subtract the resources necessary to run a jobShape from the reservation.

	Parameters

	jobShape (toil.provisioners.abstractProvisioner.Shape) –

	Return type

	None

	
attemptToAddJob(jobShape, nodeShape, targetTime)

	Attempt to pack a job into this reservation timeslice and/or the reservations after it.

jobShape is the Shape of the job requirements, nodeShape is the Shape of the node this
is a reservation for, and targetTime is the maximum time to wait before starting this job.

	Parameters

	
	jobShape (toil.provisioners.abstractProvisioner.Shape) –

	nodeShape (toil.provisioners.abstractProvisioner.Shape) –

	targetTime (float [https://docs.python.org/3/library/functions.html#float]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.provisioners.clusterScaler.adjustEndingReservationForJob(reservation, jobShape, wallTime)

	Add a job to an ending reservation that ends at wallTime.

(splitting the reservation if the job doesn’t fill the entire timeslice)

	Parameters

	
	reservation (NodeReservation) –

	jobShape (toil.provisioners.abstractProvisioner.Shape) –

	wallTime (float [https://docs.python.org/3/library/functions.html#float]) –

	Return type

	None

	
toil.provisioners.clusterScaler.split(nodeShape, jobShape, wallTime)

	Partition a node allocation into two to fit the job.

Returning the modified shape of the node and a new node reservation for
the extra time that the job didn’t fill.

	Parameters

	
	nodeShape (toil.provisioners.abstractProvisioner.Shape) –

	jobShape (toil.provisioners.abstractProvisioner.Shape) –

	wallTime (float [https://docs.python.org/3/library/functions.html#float]) –

	Return type

	Tuple[toil.provisioners.abstractProvisioner.Shape, NodeReservation]

	
toil.provisioners.clusterScaler.binPacking(nodeShapes, jobShapes, goalTime)

	Using the given node shape bins, pack the given job shapes into nodes to
get them done in the given amount of time.

Returns a dict saying how many of each node will be needed, a dict from job
shapes that could not fit to reasons why.

	Parameters

	
	nodeShapes (List[toil.provisioners.abstractProvisioner.Shape]) –

	jobShapes (List[toil.provisioners.abstractProvisioner.Shape]) –

	goalTime (float [https://docs.python.org/3/library/functions.html#float]) –

	Return type

	Tuple[Dict[toil.provisioners.abstractProvisioner.Shape, int [https://docs.python.org/3/library/functions.html#int]], Dict[toil.provisioners.abstractProvisioner.Shape, List[FailedConstraint]]]

	
class toil.provisioners.clusterScaler.ClusterScaler(provisioner, leader, config)

	
	Parameters

	
	provisioner (toil.provisioners.abstractProvisioner.AbstractProvisioner) –

	leader (toil.leader.Leader) –

	config (toil.common.Config) –

	
getAverageRuntime(jobName, service=False)

	
	Parameters

	
	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	service (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
addCompletedJob(job, wallTime)

	Adds the shape of a completed job to the queue, allowing the scalar to use the last N
completed jobs in factoring how many nodes are required in the cluster.
:param toil.job.JobDescription job: The description of the completed job
:param int wallTime: The wall-time taken to complete the job in seconds.

	Parameters

	
	job (toil.job.JobDescription) –

	wallTime (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	None

	
setStaticNodes(nodes, preemptible)

	Used to track statically provisioned nodes. This method must be called
before any auto-scaled nodes are provisioned.

These nodes are treated differently than auto-scaled nodes in that they should
not be automatically terminated.

	Parameters

	
	nodes (List[toil.provisioners.node.Node]) – list of Node objects

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
getStaticNodes(preemptible)

	Returns nodes set in setStaticNodes().

	Parameters

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Returns

	Statically provisioned nodes.

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], toil.provisioners.node.Node]

	
smoothEstimate(nodeShape, estimatedNodeCount)

	Smooth out fluctuations in the estimate for this node compared to previous runs.

Returns an integer.

	Parameters

	
	nodeShape (toil.provisioners.abstractProvisioner.Shape) –

	estimatedNodeCount (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
getEstimatedNodeCounts(queuedJobShapes, currentNodeCounts)

	Given the resource requirements of queued jobs and the current size of the cluster.

Returns a dict mapping from nodeShape to the number of nodes we want in
the cluster right now, and a dict from job shapes that are too big to run
on any node to reasons why.

	Parameters

	
	queuedJobShapes (List[toil.provisioners.abstractProvisioner.Shape]) –

	currentNodeCounts (Dict[toil.provisioners.abstractProvisioner.Shape, int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	Tuple[Dict[toil.provisioners.abstractProvisioner.Shape, int [https://docs.python.org/3/library/functions.html#int]], Dict[toil.provisioners.abstractProvisioner.Shape, List[FailedConstraint]]]

	
updateClusterSize(estimatedNodeCounts)

	Given the desired and current size of the cluster, attempts to launch/remove instances to get to the desired size.

Also attempts to remove ignored nodes that were marked for graceful removal.

Returns the new size of the cluster.

	Parameters

	estimatedNodeCounts (Dict[toil.provisioners.abstractProvisioner.Shape, int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	Dict[toil.provisioners.abstractProvisioner.Shape, int [https://docs.python.org/3/library/functions.html#int]]

	
setNodeCount(instance_type, numNodes, preemptible=False, force=False)

	Attempt to grow or shrink the number of preemptible or non-preemptible worker nodes in
the cluster to the given value, or as close a value as possible, and, after performing
the necessary additions or removals of worker nodes, return the resulting number of
preemptible or non-preemptible nodes currently in the cluster.

	Parameters

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The instance type to add or remove.

	numNodes (int [https://docs.python.org/3/library/functions.html#int]) – Desired size of the cluster

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the added nodes will be preemptible, i.e. whether they
may be removed spontaneously by the underlying platform at any time.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, the provisioner is allowed to deviate from the given number
of nodes. For example, when downsizing a cluster, a provisioner might leave nodes
running if they have active jobs running on them.

	Returns

	the number of worker nodes in the cluster after making the necessary
adjustments. This value should be, but is not guaranteed to be, close or equal to
the numNodes argument. It represents the closest possible approximation of the
actual cluster size at the time this method returns.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
filter_out_static_nodes(nodes, preemptible=False)

	
	Parameters

	
	nodes (Dict[toil.provisioners.node.Node, toil.batchSystems.abstractBatchSystem.NodeInfo]) –

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	List[Tuple[toil.provisioners.node.Node, toil.batchSystems.abstractBatchSystem.NodeInfo]]

	
getNodes(preemptible=None)

	Returns a dictionary mapping node identifiers of preemptible or non-preemptible nodes to
NodeInfo objects, one for each node.

This method is the definitive source on nodes in cluster, & is responsible for consolidating
cluster state between the provisioner & batch system.

	Parameters

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (False) only (non-)preemptible nodes will be returned.
If None, all nodes will be returned.

	Return type

	Dict[toil.provisioners.node.Node, toil.batchSystems.abstractBatchSystem.NodeInfo]

	
shutDown()

	
	Return type

	None

	
exception toil.provisioners.clusterScaler.JobTooBigError(job=None, shape=None, constraints=None)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.provisioners.clusterScaler.JobTooBigError]

Raised in the scaler thread when a job cannot fit in any available node
type and is likely to lock up the workflow.

	Parameters

	
	job (Optional[toil.job.JobDescription]) –

	shape (Optional[toil.provisioners.abstractProvisioner.Shape]) –

	constraints (Optional[List[FailedConstraint]]) –

	
__str__()

	Stringify the exception, including the message.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.provisioners.clusterScaler.ScalerThread(provisioner, leader, config, stop_on_exception=False)

	Bases: toil.lib.threading.ExceptionalThread

[image: Inheritance diagram of toil.provisioners.clusterScaler.ScalerThread]

A thread that automatically scales the number of either preemptible or non-preemptible worker
nodes according to the resource requirements of the queued jobs.

The scaling calculation is essentially as follows: start with 0 estimated worker nodes. For
each queued job, check if we expect it can be scheduled into a worker node before a certain time
(currently one hour). Otherwise, attempt to add a single new node of the smallest type that
can fit that job.

At each scaling decision point a comparison between the current, C, and newly estimated
number of nodes is made. If the absolute difference is less than beta * C then no change
is made, else the size of the cluster is adapted. The beta factor is an inertia parameter
that prevents continual fluctuations in the number of nodes.

	Parameters

	
	provisioner (toil.provisioners.abstractProvisioner.AbstractProvisioner) –

	leader (toil.leader.Leader) –

	config (toil.common.Config) –

	stop_on_exception (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
check()

	Attempt to join any existing scaler threads that may have died or finished.

This insures any exceptions raised in the threads are propagated in a timely fashion.

	Return type

	None

	
shutdown()

	Shutdown the cluster.

	Return type

	None

	
addCompletedJob(job, wallTime)

	
	Parameters

	
	job (toil.job.JobDescription) –

	wallTime (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	None

	
tryRun()

	
	Return type

	None

	
class toil.provisioners.clusterScaler.ClusterStats(path, batchSystem, clusterName)

	
	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	batchSystem (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem) –

	clusterName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
shutDownStats()

	
	Return type

	None

	
startStats(preemptible)

	
	Parameters

	preemptible (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
checkStats()

	
	Return type

	None

 toil.provisioners.gceProvisioner

toil.provisioners.gceProvisioner

Module Contents

Classes

	GCEProvisioner

	Implements a Google Compute Engine Provisioner using libcloud.

Attributes

	logger

	

	
toil.provisioners.gceProvisioner.logger

	

	
class toil.provisioners.gceProvisioner.GCEProvisioner(clusterName, clusterType, zone, nodeStorage, nodeStorageOverrides, sseKey)

	Bases: toil.provisioners.abstractProvisioner.AbstractProvisioner

[image: Inheritance diagram of toil.provisioners.gceProvisioner.GCEProvisioner]

Implements a Google Compute Engine Provisioner using libcloud.

	
NODE_BOTO_PATH = '/root/.boto'

	

	
SOURCE_IMAGE = b'projects/kinvolk-public/global/images/family/flatcar-stable'

	

	
DEFAULT_TASK_COMPLETION_TIMEOUT = 180

	

	
supportedClusterTypes()

	Get all the cluster types that this provisioner implementation
supports.

	
createClusterSettings()

	Initialize class for a new cluster, to be deployed, when running
outside the cloud.

	
readClusterSettings()

	Read the cluster settings from the instance, which should be the leader.
See https://cloud.google.com/compute/docs/storing-retrieving-metadata for details about
reading the metadata.

	
launchCluster(leaderNodeType, leaderStorage, owner, **kwargs)

	In addition to the parameters inherited from the abstractProvisioner,
the Google launchCluster takes the following parameters:
keyName: The key used to communicate with instances
botoPath: Boto credentials for reading an AWS jobStore (optional).
network: a network (optional)
vpcSubnet: A subnet (optional).
use_private_ip: even though a public ip exists, ignore it (optional)

	
getNodeShape(instance_type, preemptible=False)

	The shape of a preemptible or non-preemptible node managed by this provisioner. The node
shape defines key properties of a machine, such as its number of cores or the time
between billing intervals.

	Parameters

	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Instance type name to return the shape of.

	Return type

	Shape

	
static retryPredicate(e)

	Not used by GCE

	
destroyCluster()

	Try a few times to terminate all of the instances in the group.

	Return type

	None

	
terminateNodes(nodes)

	Terminate the nodes represented by given Node objects

	Parameters

	nodes – list of Node objects

	
addNodes(nodeTypes, numNodes, preemptible, spotBid=None)

	Used to add worker nodes to the cluster

	Parameters

	
	numNodes – The number of nodes to add

	preemptible – whether or not the nodes will be preemptible

	spotBid – The bid for preemptible nodes if applicable (this can be set in config, also).

	nodeTypes (Set[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Returns

	number of nodes successfully added

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
getProvisionedWorkers(instance_type=None, preemptible=None)

	Gets all nodes, optionally of the given instance type or
preemptability, from the provisioner. Includes both static and
autoscaled nodes.

	Parameters

	
	preemptible (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – Boolean value to restrict to preemptible
nodes or non-preemptible nodes

	instance_type (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Returns

	list of Node objects

	
getLeader()

	
	Returns

	The leader node.

	
ex_create_multiple_nodes(base_name, size, image, number, location=None, ex_network='default', ex_subnetwork=None, ex_tags=None, ex_metadata=None, ignore_errors=True, use_existing_disk=True, poll_interval=2, external_ip='ephemeral', ex_disk_type='pd-standard', ex_disk_auto_delete=True, ex_service_accounts=None, timeout=DEFAULT_TASK_COMPLETION_TIMEOUT, description=None, ex_can_ip_forward=None, ex_disks_gce_struct=None, ex_nic_gce_struct=None, ex_on_host_maintenance=None, ex_automatic_restart=None, ex_image_family=None, ex_preemptible=None)

	Monkey patch to gce.py in libcloud to allow disk and images to be specified.
Also changed name to a uuid below.
The prefix ‘wp’ identifies preemptible nodes and ‘wn’ non-preemptible nodes.

 toil.provisioners.node

toil.provisioners.node

Module Contents

Classes

	Node

	

Attributes

	a_short_time

	

	logger

	

	
toil.provisioners.node.a_short_time = 5

	

	
toil.provisioners.node.logger

	

	
class toil.provisioners.node.Node(publicIP, privateIP, name, launchTime, nodeType, preemptible, tags=None, use_private_ip=None)

	
	
maxWaitTime

	

	
__str__()

	Return str(self).

	
__repr__()

	Return repr(self).

	
__hash__()

	Return hash(self).

	
remainingBillingInterval()

	If the node has a launch time, this function returns a floating point value
between 0 and 1.0 representing how far we are into the
current billing cycle for the given instance. If the return value is .25, we are one
quarter into the billing cycle, with three quarters remaining before we will be charged
again for that instance.

Assumes a billing cycle of one hour.

	Returns

	Float from 0 -> 1.0 representing percentage of pre-paid time left in cycle.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
waitForNode(role, keyName='core')

	

	
copySshKeys(keyName)

	Copy authorized_keys file to the core user from the keyName user.

	
injectFile(fromFile, toFile, role)

	rysnc a file to the container with the given role

	
extractFile(fromFile, toFile, role)

	rysnc a file from the container with the given role

	
sshAppliance(*args, **kwargs)

	
	Parameters

	
	args – arguments to execute in the appliance

	kwargs – tty=bool tells docker whether or not to create a TTY shell for
interactive SSHing. The default value is False. Input=string is passed as
input to the Popen call.

	
sshInstance(*args, **kwargs)

	Run a command on the instance.
Returns the binary output of the command.

	
coreSSH(*args, **kwargs)

	If strict=False, strict host key checking will be temporarily disabled.
This is provided as a convenience for internal/automated functions and
ought to be set to True whenever feasible, or whenever the user is directly
interacting with a resource (e.g. rsync-cluster or ssh-cluster). Assumed
to be False by default.

kwargs: input, tty, appliance, collectStdout, sshOptions, strict

	Parameters

	input (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – UTF-8 encoded input bytes to send to the command

	
coreRsync(args, applianceName='toil_leader', **kwargs)

	

 toil.server

toil.server

Subpackages

	toil.server.api_spec

	toil.server.cli
	toil.server.cli.wes_cwl_runner

	toil.server.wes
	toil.server.wes.abstract_backend

	toil.server.wes.amazon_wes_utils

	toil.server.wes.tasks

	toil.server.wes.toil_backend

Submodules

	toil.server.app

	toil.server.celery_app

	toil.server.utils

	toil.server.wsgi_app

 toil.server.api_spec

toil.server.api_spec

 toil.server.cli

toil.server.cli

Submodules

	toil.server.cli.wes_cwl_runner

 toil.server.cli.wes_cwl_runner

toil.server.cli.wes_cwl_runner

Module Contents

Classes

	WESClientWithWorkflowEngineParameters

	A modified version of the WESClient from the wes-service package that

Functions

	generate_attachment_path_names(paths)

	Take in a list of path names and return a list of names with the common path

	get_deps_from_cwltool(cwl_file[, input_file])

	Return a list of dependencies of the given workflow from cwltool.

	submit_run(client, cwl_file[, input_file, engine_options])

	Given a CWL file, its input files, and an optional list of engine options,

	poll_run(client, run_id)

	Return True if the given workflow run is in a finished state.

	print_logs_and_exit(client, run_id)

	Fetch the workflow logs from the WES server, print the results, then exit

	main()

	

Attributes

	logger

	

	
toil.server.cli.wes_cwl_runner.logger

	

	
toil.server.cli.wes_cwl_runner.generate_attachment_path_names(paths)

	Take in a list of path names and return a list of names with the common path
name stripped out, while preserving the input order. This guarantees that
there are no relative paths that traverse up.

For example, for the following CWL workflow where “hello.yaml” references
a file “message.txt”,

~/toil/workflows/hello.cwl
~/toil/input_files/hello.yaml
~/toil/input_files/message.txt

	This may be run with the command:
	toil-wes-cwl-runner hello.cwl ../input_files/hello.yaml

Where “message.txt” is resolved to “../input_files/message.txt”.

We’d send the workflow file as “workflows/hello.cwl”, and send the inputs as
“input_files/hello.yaml” and “input_files/message.txt”.

	Parameters

	paths (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of absolute or relative path names. Relative paths are
interpreted as relative to the current working directory.

	Returns

	The common path name and a list of minimal path names.

	Return type

	Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
class toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters(endpoint, auth=None)

	Bases: wes_client.util.WESClient

[image: Inheritance diagram of toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters]

A modified version of the WESClient from the wes-service package that
includes workflow_engine_parameters support.

TODO: Propose a PR in wes-service to include workflow_engine_params.

	Parameters

	
	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	auth (Optional[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	
get_version(extension, workflow_file)

	Determines the version of a .py, .wdl, or .cwl file.

	Parameters

	
	extension (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	workflow_file (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
parse_params(workflow_params_file)

	Parse the CWL input file into a dictionary to be attached to the body of
the WES run request.

	Parameters

	workflow_params_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URL or path to the CWL input file.

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
modify_param_paths(base_dir, workflow_params)

	Modify the file paths in the input workflow parameters to be relative
to base_dir.

	Parameters

	
	base_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The base directory to make the file paths relative to.
This should be the common ancestor of all attached files, which
will become the root of the execution folder.

	workflow_params (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – A dict containing the workflow parameters.

	Return type

	None

	
build_wes_request(workflow_file, workflow_params_file, attachments, workflow_engine_parameters=None)

	Build the workflow run request to submit to WES.

	Parameters

	
	workflow_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path or URL to the CWL workflow document.
Only file:// URL supported at the moment.

	workflow_params_file (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The path or URL to the CWL input file.

	attachments (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of local paths to files that will be uploaded
to the server.

	workflow_engine_parameters (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of engine parameters to set
along with this workflow run.

	Returns

	A dictionary of parameters as the body of the request, and an
iterable for the pairs of filename and file contents to upload
to the server.

	Return type

	Tuple[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], Iterable[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], io.BytesIO [https://docs.python.org/3/library/io.html#io.BytesIO]]]]]

	
run_with_engine_options(workflow_file, workflow_params_file, attachments, workflow_engine_parameters)

	Composes and sends a post request that signals the WES server to run a
workflow.

	Parameters

	
	workflow_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the CWL workflow document.

	workflow_params_file (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The path to the CWL input file.

	attachments (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of local paths to files that will be uploaded
to the server.

	workflow_engine_parameters (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of engine parameters to set
along with this workflow run.

	Returns

	The body of the post result as a dictionary.

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
toil.server.cli.wes_cwl_runner.get_deps_from_cwltool(cwl_file, input_file=None)

	Return a list of dependencies of the given workflow from cwltool.

	Parameters

	
	cwl_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The CWL file.

	input_file (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Omit to get the dependencies from the CWL file. If set,
this returns the dependencies from the input file.

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.server.cli.wes_cwl_runner.submit_run(client, cwl_file, input_file=None, engine_options=None)

	Given a CWL file, its input files, and an optional list of engine options,
submit the CWL workflow to the WES server via the WES client.

This function also attempts to find the attachments from the CWL workflow
and its input file, and attach them to the WES run request.

	Parameters

	
	client (WESClientWithWorkflowEngineParameters) – The WES client.

	cwl_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the CWL workflow document.

	input_file (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The path to the CWL input file.

	engine_options (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A list of engine parameters to set along with this
workflow run.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.server.cli.wes_cwl_runner.poll_run(client, run_id)

	Return True if the given workflow run is in a finished state.

	Parameters

	
	client (WESClientWithWorkflowEngineParameters) –

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.server.cli.wes_cwl_runner.print_logs_and_exit(client, run_id)

	Fetch the workflow logs from the WES server, print the results, then exit
the program with the same exit code as the workflow run.

	Parameters

	
	client (WESClientWithWorkflowEngineParameters) – The WES client.

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The run_id of the target workflow.

	Return type

	None

	
toil.server.cli.wes_cwl_runner.main()

	
	Return type

	None

 toil.server.wes

toil.server.wes

Submodules

	toil.server.wes.abstract_backend

	toil.server.wes.amazon_wes_utils

	toil.server.wes.tasks

	toil.server.wes.toil_backend

 toil.server.wes.abstract_backend

toil.server.wes.abstract_backend

Module Contents

Classes

	WESBackend

	A class to represent a GA4GH Workflow Execution Service (WES) API backend.

Functions

	handle_errors(func)

	This decorator catches errors from the wrapped function and returns a JSON

Attributes

	logger

	

	TaskLog

	

	
toil.server.wes.abstract_backend.logger

	

	
toil.server.wes.abstract_backend.TaskLog

	

	
exception toil.server.wes.abstract_backend.VersionNotImplementedException(wf_type, version=None, supported_versions=None)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.server.wes.abstract_backend.VersionNotImplementedException]

Raised when the requested workflow version is not implemented.

	Parameters

	
	wf_type (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	version (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	supported_versions (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	
exception toil.server.wes.abstract_backend.MalformedRequestException(message)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.server.wes.abstract_backend.MalformedRequestException]

Raised when the request is malformed.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
exception toil.server.wes.abstract_backend.WorkflowNotFoundException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.server.wes.abstract_backend.WorkflowNotFoundException]

Raised when the requested run ID is not found.

	
exception toil.server.wes.abstract_backend.WorkflowConflictException(run_id)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.server.wes.abstract_backend.WorkflowConflictException]

Raised when the requested workflow is not in the expected state.

	Parameters

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
exception toil.server.wes.abstract_backend.OperationForbidden(message)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.server.wes.abstract_backend.OperationForbidden]

Raised when the request is forbidden.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
exception toil.server.wes.abstract_backend.WorkflowExecutionException(message)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.server.wes.abstract_backend.WorkflowExecutionException]

Raised when an internal error occurred during the execution of the workflow.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
toil.server.wes.abstract_backend.handle_errors(func)

	This decorator catches errors from the wrapped function and returns a JSON
formatted error message with the appropriate status code defined by the
GA4GH WES spec.

	Parameters

	func (Callable[Ellipsis, Any]) –

	Return type

	Callable[Ellipsis, Any]

	
class toil.server.wes.abstract_backend.WESBackend(options)

	A class to represent a GA4GH Workflow Execution Service (WES) API backend.
Intended to be inherited. Subclasses should implement all abstract methods
to handle user requests when they hit different endpoints.

	Parameters

	options (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
resolve_operation_id(operation_id)

	Map an operationId defined in the OpenAPI or swagger yaml file to a
function.

	Parameters

	operation_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The operation ID defined in the specification.

	Returns

	A function that should be called when the given endpoint is
reached.

	Return type

	Any

	
abstract get_service_info()

	Get information about the Workflow Execution Service.

GET /service-info

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
abstract list_runs(page_size=None, page_token=None)

	List the workflow runs.

GET /runs

	Parameters

	
	page_size (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	page_token (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
abstract run_workflow()

	Run a workflow. This endpoint creates a new workflow run and returns
a RunId to monitor its progress.

POST /runs

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
abstract get_run_log(run_id)

	Get detailed info about a workflow run.

GET /runs/{run_id}

	Parameters

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
abstract cancel_run(run_id)

	Cancel a running workflow.

POST /runs/{run_id}/cancel

	Parameters

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
abstract get_run_status(run_id)

	Get quick status info about a workflow run, returning a simple result
with the overall state of the workflow run.

GET /runs/{run_id}/status

	Parameters

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
static log_for_run(run_id, message)

	
	Parameters

	
	run_id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
static secure_path(path)

	
	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
collect_attachments(run_id, temp_dir)

	Collect attachments from the current request by staging uploaded files
to temp_dir, and return the temp_dir and parsed body of the request.

	Parameters

	
	run_id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The run ID for logging.

	temp_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The directory where uploaded files should be staged.
If None, a temporary directory is created.

	Return type

	Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]

 toil.server.wes.amazon_wes_utils

toil.server.wes.amazon_wes_utils

Module Contents

Classes

	WorkflowPlan

	These functions pass around dicts of a certain type, with data and files keys.

	DataDict

	Under data, there can be:

	FilesDict

	Under files, there can be:

Functions

	parse_workflow_zip_file(file, workflow_type)

	Processes a workflow zip bundle

	parse_workflow_manifest_file(manifest_file)

	Reads a MANIFEST.json file for a workflow zip bundle

	workflow_manifest_url_to_path(url[, parent_dir])

	Interpret a possibly-relative parsed URL, relative to the given parent directory.

	task_filter(task, job_status)

	AGC requires task names to be annotated with an AWS Batch job ID that they

Attributes

	logger

	

	NOTICE

	

	
toil.server.wes.amazon_wes_utils.logger

	

	
toil.server.wes.amazon_wes_utils.NOTICE = Multiline-String

	
Show Value"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
"""

	
class toil.server.wes.amazon_wes_utils.WorkflowPlan

	Bases: TypedDict

[image: Inheritance diagram of toil.server.wes.amazon_wes_utils.WorkflowPlan]

These functions pass around dicts of a certain type, with data and files keys.

	
data: DataDict

	

	
files: FilesDict

	

	
class toil.server.wes.amazon_wes_utils.DataDict

	Bases: TypedDict

[image: Inheritance diagram of toil.server.wes.amazon_wes_utils.DataDict]

Under data, there can be:
* workflowUrl (required if no workflowSource): URL to main workflow code.

	
workflowUrl: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class toil.server.wes.amazon_wes_utils.FilesDict

	Bases: TypedDict

[image: Inheritance diagram of toil.server.wes.amazon_wes_utils.FilesDict]

Under files, there can be:
* workflowSource (required if no workflowUrl): Open binary-mode file for the main workflow code.
* workflowInputFiles: List of open binary-mode file for input files. Expected to be JSONs.
* workflowOptions: Open binary-mode file for a JSON of options sent along with the workflow.
* workflowDependencies: Open binary-mode file for the zip the workflow came in, if any.

	
workflowSource: IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

	

	
workflowInputFiles: List[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	

	
workflowOptions: IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

	

	
workflowDependencies: IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

	

	
toil.server.wes.amazon_wes_utils.parse_workflow_zip_file(file, workflow_type)

	Processes a workflow zip bundle

	Parameters

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – String or Path-like path to a workflow.zip file

	workflow_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – String, extension of workflow to expect (e.g. “wdl”)

	Return type

	dict of data and files

If the zip only contains a single file, that file is set as workflowSource

If the zip contains multiple files with a MANIFEST.json file, the MANIFEST is used to determine
appropriate data and file arguments. (See: parse_workflow_manifest_file())

	If the zip contains multiple files without a MANIFEST.json file:
	
	a main workflow file with an extension matching the workflow_type is expected and will be set as workflowSource

	optionally, if inputs*.json files are found in the root level of the zip, they will be set as workflowInputs(_d)* in the order they are found

	optionally, if an options.json file is found in the root level of the zip, it will be set as workflowOptions

If the zip contains multiple files, the original zip is set as workflowDependencies

	
toil.server.wes.amazon_wes_utils.parse_workflow_manifest_file(manifest_file)

	Reads a MANIFEST.json file for a workflow zip bundle

	Parameters

	manifest_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – String or Path-like path to a MANIFEST.json file

	Return type

	dict of data and files

MANIFEST.json is expected to be formatted like:
.. code-block:: json

	{
	“mainWorkflowURL”: “relpath/to/workflow”,
“inputFileURLs”: [

“relpath/to/input-file-1”,
“relpath/to/input-file-2”,
…

],
“optionsFileURL” “relpath/to/option-file

}

The mainWorkflowURL property that provides a relative file path in the zip to a workflow file, which will be set as workflowSource

The inputFileURLs property is optional and provides a list of relative file paths in the zip to input.json files. The list is assumed
to be in the order the inputs should be applied - e.g. higher list index is higher priority. If present, it will be used to set
workflowInputs(_d) arguments.

The optionsFileURL property is optional and provides a relative file path in the zip to an options.json file. If present, it will be
used to set workflowOptions.

	
toil.server.wes.amazon_wes_utils.workflow_manifest_url_to_path(url, parent_dir=None)

	Interpret a possibly-relative parsed URL, relative to the given parent directory.

	Parameters

	
	url (urllib.parse.ParseResult [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult]) –

	parent_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.server.wes.amazon_wes_utils.task_filter(task, job_status)

	AGC requires task names to be annotated with an AWS Batch job ID that they
were run under. If it encounters an un-annotated task name, it will crash.
See <https://github.com/aws/amazon-genomics-cli/issues/494>.

This encodes the AWSBatchJobID annotation, from the AmazonBatchBatchSystem,
into the task name of the given task, and returns the modified task. If no
such annotation is available, the task is censored and None is returned.

	Parameters

	
	task (toil.server.wes.abstract_backend.TaskLog) –

	job_status (toil.bus.JobStatus) –

	Return type

	Optional[toil.server.wes.abstract_backend.TaskLog]

 toil.server.wes.tasks

toil.server.wes.tasks

Module Contents

Classes

	ToilWorkflowRunner

	A class to represent a workflow runner to run the requested workflow.

	TaskRunner

	Abstraction over the Celery API. Runs our run_wes task and allows canceling it.

	MultiprocessingTaskRunner

	Version of TaskRunner that just runs tasks with Multiprocessing.

Functions

	run_wes_task(base_scratch_dir, state_store_url, ...)

	Run a requested workflow.

	cancel_run(task_id)

	Send a SIGTERM signal to the process that is running task_id.

Attributes

	logger

	

	WAIT_FOR_DEATH_TIMEOUT

	

	run_wes

	

	
toil.server.wes.tasks.logger

	

	
toil.server.wes.tasks.WAIT_FOR_DEATH_TIMEOUT = 20

	

	
class toil.server.wes.tasks.ToilWorkflowRunner(base_scratch_dir, state_store_url, workflow_id, request, engine_options)

	A class to represent a workflow runner to run the requested workflow.

Responsible for parsing the user request into a shell command, executing
that command, and collecting the outputs of the resulting workflow run.

	Parameters

	
	base_scratch_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	state_store_url (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	request (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) –

	engine_options (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
write_scratch_file(filename, contents)

	Write a file to the scratch directory.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	contents (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
get_state()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
write_workflow(src_url)

	Fetch the workflow file from its source and write it to a destination
file.

	Parameters

	src_url (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
sort_options(workflow_engine_parameters=None)

	Sort the command line arguments in the order that can be recognized by
the workflow execution engine.

	Parameters

	workflow_engine_parameters (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]]]) – User-specified parameters for this

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

particular workflow. Keys are command-line options, and values are
option arguments, or None for options that are flags.

	
initialize_run()

	Write workflow and input files and construct a list of shell commands
to be executed. Return that list of shell commands that should be
executed in order to complete this workflow run.

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
call_cmd(cmd, cwd)

	Calls a command with Popen. Writes stdout, stderr, and the command to
separate files.

	Parameters

	
	cmd (Union[List[str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

	
run()

	Construct a command to run a the requested workflow with the options,
run it, and deposit the outputs in the output directory.

	Return type

	None

	
write_output_files()

	Fetch all the files that this workflow generated and output information
about them to outputs.json.

	Return type

	None

	
toil.server.wes.tasks.run_wes_task(base_scratch_dir, state_store_url, workflow_id, request, engine_options)

	Run a requested workflow.

	Parameters

	
	base_scratch_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory where the workflow’s scratch dir will live, under the workflow’s ID.

	state_store_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL/path at which the server and Celery task communicate about workflow state.

	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the workflow run.

	request (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) –

	engine_options (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Returns

	the state of the workflow run.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.server.wes.tasks.run_wes

	

	
toil.server.wes.tasks.cancel_run(task_id)

	Send a SIGTERM signal to the process that is running task_id.

	Parameters

	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
class toil.server.wes.tasks.TaskRunner

	Abstraction over the Celery API. Runs our run_wes task and allows canceling it.

We can swap this out in the server to allow testing without Celery.

	
static run(args, task_id)

	Run the given task args with the given ID on Celery.

	Parameters

	
	args (Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
static cancel(task_id)

	Cancel the task with the given ID on Celery.

	Parameters

	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
static is_ok(task_id)

	Make sure that the task running system is working for the given task.
If the task system has detected an internal failure, return False.

	Parameters

	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class toil.server.wes.tasks.MultiprocessingTaskRunner

	Bases: TaskRunner

[image: Inheritance diagram of toil.server.wes.tasks.MultiprocessingTaskRunner]

Version of TaskRunner that just runs tasks with Multiprocessing.

Can’t use threading because there’s no way to send a cancel signal or
exception to a Python thread, if loops in the task (i.e.
ToilWorkflowRunner) don’t poll for it.

	
static set_up_and_run_task(output_path, args)

	Set up logging for the process into the given file and then call
run_wes_task with the given arguments.

If the process finishes successfully, it will clean up the log, but if
the process crashes, the caller must clean up the log.

	Parameters

	
	output_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	args (Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	None

	
classmethod run(args, task_id)

	Run the given task args with the given ID.

	Parameters

	
	args (Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
classmethod cancel(task_id)

	Cancel the task with the given ID.

	Parameters

	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
classmethod is_ok(task_id)

	Make sure that the task running system is working for the given task.
If the task system has detected an internal failure, return False.

	Parameters

	task_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

 toil.server.wes.toil_backend

toil.server.wes.toil_backend

Module Contents

Classes

	ToilWorkflow

	

	ToilBackend

	WES backend implemented for Toil to run CWL, WDL, or Toil workflows. This

Attributes

	logger

	

	
toil.server.wes.toil_backend.logger

	

	
class toil.server.wes.toil_backend.ToilWorkflow(base_work_dir, state_store_url, run_id)

	
	Parameters

	
	base_work_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	state_store_url (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
fetch_state(key: str [https://docs.python.org/3/library/stdtypes.html#str], default: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	
fetch_state(key: str [https://docs.python.org/3/library/stdtypes.html#str], default: None [https://docs.python.org/3/library/constants.html#None] = None) → Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Return the contents of the given key in the workflow’s state
store. If the key does not exist, the default value is returned.

	
fetch_scratch(filename)

	Get a context manager for either a stream for the given file from the
workflow’s scratch directory, or None if it isn’t there.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Generator[Optional[TextIO], None, None]

	
exists()

	Return True if the workflow run exists.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_state()

	Return the state of the current run.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
check_on_run(task_runner)

	Check to make sure nothing has gone wrong in the task runner for this
workflow. If something has, log, and fail the workflow with an error.

	Parameters

	task_runner (Type[toil.server.wes.tasks.TaskRunner]) –

	Return type

	None

	
set_up_run()

	Set up necessary directories for the run.

	Return type

	None

	
clean_up()

	Clean directory and files related to the run.

	Return type

	None

	
queue_run(task_runner, request, options)

	This workflow should be ready to run. Hand this to the task system.

	Parameters

	
	task_runner (Type[toil.server.wes.tasks.TaskRunner]) –

	request (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) –

	options (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
get_output_files()

	Return a collection of output files that this workflow generated.

	Return type

	Any

	
get_stdout_path()

	Return the path to the standard output log, relative to the run’s
scratch_dir, or None if it doesn’t exist.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_stderr_path()

	Return the path to the standard output log, relative to the run’s
scratch_dir, or None if it doesn’t exist.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_messages_path()

	Return the path to the bus message log, relative to the run’s
scratch_dir, or None if it doesn’t exist.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_task_logs(filter_function=None)

	Return all the task log objects for the individual tasks in the workflow.

Task names will be the job_type values from issued/completed/failed
messages, with annotations from JobAnnotationMessage messages if
available.

	Parameters

	filter_function (Optional[Callable[[toil.server.wes.abstract_backend.TaskLog, toil.bus.JobStatus], Optional[toil.server.wes.abstract_backend.TaskLog]]]) – If set, will be called with each task log and
its job annotations. Returns a modified copy of the task log to
actually report, or None if the task log should be omitted.

	Return type

	List[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], None]]]

	
class toil.server.wes.toil_backend.ToilBackend(work_dir, state_store, options, dest_bucket_base, bypass_celery=False, wes_dialect='standard')

	Bases: toil.server.wes.abstract_backend.WESBackend

[image: Inheritance diagram of toil.server.wes.toil_backend.ToilBackend]

WES backend implemented for Toil to run CWL, WDL, or Toil workflows. This
class is responsible for validating and executing submitted workflows.

	Parameters

	
	work_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	state_store (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	options (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	dest_bucket_base (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	bypass_celery (bool [https://docs.python.org/3/library/functions.html#bool]) –

	wes_dialect (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
get_runs()

	A generator of a list of run ids and their state.

	Return type

	Generator[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], None, None]

	
get_state(run_id)

	Return the state of the workflow run with the given run ID. May raise
an error if the workflow does not exist.

	Parameters

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_service_info()

	Get information about the Workflow Execution Service.

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
list_runs(page_size=None, page_token=None)

	List the workflow runs.

	Parameters

	
	page_size (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	page_token (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
run_workflow()

	Run a workflow.

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_run_log(run_id)

	Get detailed info about a workflow run.

	Parameters

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
cancel_run(run_id)

	Cancel a running workflow.

	Parameters

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_run_status(run_id)

	Get quick status info about a workflow run, returning a simple result
with the overall state of the workflow run.

	Parameters

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_stdout(run_id)

	Get the stdout of a workflow run as a static file.

	Parameters

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Any

	
get_stderr(run_id)

	Get the stderr of a workflow run as a static file.

	Parameters

	run_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Any

	
get_health()

	Return successfully if the server is healthy.

	Return type

	werkzeug.wrappers.response.Response

	
get_homepage()

	Provide a sensible result for / other than 404.

	Return type

	werkzeug.wrappers.response.Response

 toil.server.app

toil.server.app

Module Contents

Functions

	parser_with_server_options()

	

	create_app(args)

	Create a "connexion.FlaskApp" instance with Toil server configurations.

	start_server(args)

	Start a Toil server.

Attributes

	logger

	

	
toil.server.app.logger

	

	
toil.server.app.parser_with_server_options()

	
	Return type

	argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	
toil.server.app.create_app(args)

	Create a “connexion.FlaskApp” instance with Toil server configurations.

	Parameters

	args (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	Return type

	connexion.FlaskApp

	
toil.server.app.start_server(args)

	Start a Toil server.

	Parameters

	args (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	Return type

	None

 toil.server.celery_app

toil.server.celery_app

Module Contents

Functions

	create_celery_app()

	

Attributes

	celery

	

	
toil.server.celery_app.create_celery_app()

	
	Return type

	celery.Celery

	
toil.server.celery_app.celery

	

 toil.server.utils

toil.server.utils

Module Contents

Classes

	MemoryStateCache

	An in-memory place to store workflow state.

	AbstractStateStore

	A place for the WES server to keep its state: the set of workflows that

	MemoryStateStore

	An in-memory place to store workflow state, for testing.

	FileStateStore

	A place to store workflow state that uses a POSIX-compatible file system.

	S3StateStore

	A place to store workflow state that uses an S3-compatible object store.

	WorkflowStateStore

	Slice of a state store for the state of a particular workflow.

	WorkflowStateMachine

	Class for managing the WES workflow state machine.

Functions

	get_iso_time()

	Return the current time in ISO 8601 format.

	link_file(src, dest)

	Create a link to a file from src to dest.

	download_file_from_internet(src, dest[, content_type])

	Download a file from the Internet and write it to dest.

	download_file_from_s3(src, dest[, content_type])

	Download a file from Amazon S3 and write it to dest.

	get_file_class(path)

	Return the type of the file as a human readable string.

	safe_read_file(file)

	Safely read a file by acquiring a shared lock to prevent other processes

	safe_write_file(file, s)

	Safely write to a file by acquiring an exclusive lock to prevent other

	connect_to_state_store(url)

	Connect to a place to store state for workflows, defined by a URL.

	connect_to_workflow_state_store(url, workflow_id)

	Connect to a place to store state for the given workflow, in the state

Attributes

	HAVE_S3

	

	logger

	

	state_store_cache

	

	TERMINAL_STATES

	

	MAX_CANCELING_SECONDS

	

	
toil.server.utils.HAVE_S3 = True

	

	
toil.server.utils.logger

	

	
toil.server.utils.get_iso_time()

	Return the current time in ISO 8601 format.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.server.utils.link_file(src, dest)

	Create a link to a file from src to dest.

	Parameters

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	dest (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
toil.server.utils.download_file_from_internet(src, dest, content_type=None)

	Download a file from the Internet and write it to dest.

	Parameters

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	dest (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	content_type (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
toil.server.utils.download_file_from_s3(src, dest, content_type=None)

	Download a file from Amazon S3 and write it to dest.

	Parameters

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	dest (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	content_type (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
toil.server.utils.get_file_class(path)

	Return the type of the file as a human readable string.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.server.utils.safe_read_file(file)

	Safely read a file by acquiring a shared lock to prevent other processes
from writing to it while reading.

	Parameters

	file (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.server.utils.safe_write_file(file, s)

	Safely write to a file by acquiring an exclusive lock to prevent other
processes from reading and writing to it while writing.

	Parameters

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	s (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
class toil.server.utils.MemoryStateCache

	An in-memory place to store workflow state.

	
get(workflow_id, key)

	Get a key value from memory.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
set(workflow_id, key, value)

	Set or clear a key value in memory.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
class toil.server.utils.AbstractStateStore

	A place for the WES server to keep its state: the set of workflows that
exist and whether they are done or not.

This is a key-value store, with keys namespaced by workflow ID. Concurrent
access from multiple threads or processes is safe and globally consistent.

Keys and workflow IDs are restricted to [-a-zA-Z0-9_], because backends may
use them as path or URL components.

Key values are either a string, or None if the key is not set.

Workflow existence isn’t a thing; nonexistent workflows just have None for
all keys.

Note that we don’t yet have a cleanup operation: things are stored
permanently. Even clearing all the keys may leave data behind.

Also handles storage for a local cache, with a separate key namespace (not
a read/write-through cache).

TODO: Can we replace this with just using a JobStore eventually, when
AWSJobStore no longer needs SimpleDB?

	
abstract get(workflow_id, key)

	Get the value of the given key for the given workflow, or None if the
key is not set for the workflow.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
abstract set(workflow_id, key, value)

	Set the value of the given key for the given workflow. If the value is
None, clear the key.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
read_cache(workflow_id, key)

	Read a value from a local cache, without checking the actual backend.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
write_cache(workflow_id, key, value)

	Write a value to a local cache, without modifying the actual backend.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
class toil.server.utils.MemoryStateStore

	Bases: MemoryStateCache, AbstractStateStore

[image: Inheritance diagram of toil.server.utils.MemoryStateStore]

An in-memory place to store workflow state, for testing.

Inherits from MemoryStateCache first to provide implementations for
AbstractStateStore.

	
class toil.server.utils.FileStateStore(url)

	Bases: AbstractStateStore

[image: Inheritance diagram of toil.server.utils.FileStateStore]

A place to store workflow state that uses a POSIX-compatible file system.

	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
get(workflow_id, key)

	Get a key value from the filesystem.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
set(workflow_id, key, value)

	Set or clear a key value on the filesystem.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
class toil.server.utils.S3StateStore(url)

	Bases: AbstractStateStore

[image: Inheritance diagram of toil.server.utils.S3StateStore]

A place to store workflow state that uses an S3-compatible object store.

	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
get(workflow_id, key)

	Get a key value from S3.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
set(workflow_id, key, value)

	Set or clear a key value on S3.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
toil.server.utils.state_store_cache: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], AbstractStateStore]

	

	
toil.server.utils.connect_to_state_store(url)

	Connect to a place to store state for workflows, defined by a URL.

URL may be a local file path or URL or an S3 URL.

	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	AbstractStateStore

	
class toil.server.utils.WorkflowStateStore(state_store, workflow_id)

	Slice of a state store for the state of a particular workflow.

	Parameters

	
	state_store (AbstractStateStore) –

	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
get(key)

	Get the given item of workflow state.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
set(key, value)

	Set the given item of workflow state.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
read_cache(key)

	Read a value from a local cache, without checking the actual backend.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
write_cache(key, value)

	Write a value to a local cache, without modifying the actual backend.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
toil.server.utils.connect_to_workflow_state_store(url, workflow_id)

	Connect to a place to store state for the given workflow, in the state
store defined by the given URL.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URL that can be used for connect_to_state_store()

	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	WorkflowStateStore

	
toil.server.utils.TERMINAL_STATES

	

	
toil.server.utils.MAX_CANCELING_SECONDS = 30

	

	
class toil.server.utils.WorkflowStateMachine(store)

	Class for managing the WES workflow state machine.

This is the authority on the WES “state” of a workflow. You need one to
read or change the state.

Guaranteeing that only certain transitions can be observed is possible but
not worth it. Instead, we just let updates clobber each other and grab and
cache the first terminal state we see forever. If it becomes important that
clients never see e.g. CANCELED -> COMPLETE or COMPLETE -> SYSTEM_ERROR, we
can implement a real distributed state machine here.

We do handle making sure that tasks don’t get stuck in CANCELING.

State can be:

“UNKNOWN”
“QUEUED”
“INITIALIZING”
“RUNNING”
“PAUSED”
“COMPLETE”
“EXECUTOR_ERROR”
“SYSTEM_ERROR”
“CANCELED”
“CANCELING”

Uses the state store’s local cache to prevent needing to read things we’ve
seen already.

	Parameters

	store (WorkflowStateStore) –

	
send_enqueue()

	Send an enqueue message that would move from UNKNOWN to QUEUED.

	Return type

	None

	
send_initialize()

	Send an initialize message that would move from QUEUED to INITIALIZING.

	Return type

	None

	
send_run()

	Send a run message that would move from INITIALIZING to RUNNING.

	Return type

	None

	
send_cancel()

	Send a cancel message that would move to CANCELING from any
non-terminal state.

	Return type

	None

	
send_canceled()

	Send a canceled message that would move to CANCELED from CANCELLING.

	Return type

	None

	
send_complete()

	Send a complete message that would move from RUNNING to COMPLETE.

	Return type

	None

	
send_executor_error()

	Send an executor_error message that would move from QUEUED,
INITIALIZING, or RUNNING to EXECUTOR_ERROR.

	Return type

	None

	
send_system_error()

	
	Send a system_error message that would move from QUEUED, INITIALIZING,
	or RUNNING to SYSTEM_ERROR.

	Return type

	None

	
get_current_state()

	Get the current state of the workflow.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 toil.server.wsgi_app

toil.server.wsgi_app

Module Contents

Classes

	GunicornApplication

	An entry point to integrate a Gunicorn WSGI server in Python. To start a

Functions

	run_app(app[, options])

	Run a Gunicorn WSGI server.

	
class toil.server.wsgi_app.GunicornApplication(app, options=None)

	Bases: gunicorn.app.base.BaseApplication

[image: Inheritance diagram of toil.server.wsgi_app.GunicornApplication]

An entry point to integrate a Gunicorn WSGI server in Python. To start a
WSGI application with callable app, run the following code:

	WSGIApplication(app, options={
	…

}).run()

For more details, see: https://docs.gunicorn.org/en/latest/custom.html

	Parameters

	
	app (object [https://docs.python.org/3/library/functions.html#object]) –

	options (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) –

	
init(*args)

	
	Parameters

	args (Any) –

	Return type

	None

	
load_config()

	
	Return type

	None

	
load()

	
	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	
toil.server.wsgi_app.run_app(app, options=None)

	Run a Gunicorn WSGI server.

	Parameters

	
	app (object [https://docs.python.org/3/library/functions.html#object]) –

	options (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) –

	Return type

	None

 toil.test

toil.test

Base testing class for Toil.

Subpackages

	toil.test.batchSystems
	toil.test.batchSystems.batchSystemTest

	toil.test.batchSystems.parasolTestSupport

	toil.test.batchSystems.test_lsf_helper

	toil.test.batchSystems.test_slurm

	toil.test.cwl
	toil.test.cwl.conftest

	toil.test.cwl.cwlTest

	toil.test.docs
	toil.test.docs.scriptsTest

	toil.test.jobStores
	toil.test.jobStores.jobStoreTest

	toil.test.lib
	toil.test.lib.aws
	toil.test.lib.aws.test_iam

	toil.test.lib.aws.test_s3

	toil.test.lib.aws.test_utils

	toil.test.lib.dockerTest

	toil.test.lib.test_conversions

	toil.test.lib.test_ec2

	toil.test.lib.test_misc

	toil.test.mesos
	toil.test.mesos.MesosDataStructuresTest

	toil.test.mesos.helloWorld

	toil.test.mesos.stress

	toil.test.provisioners
	toil.test.provisioners.aws
	toil.test.provisioners.aws.awsProvisionerTest

	toil.test.provisioners.clusterScalerTest

	toil.test.provisioners.clusterTest

	toil.test.provisioners.gceProvisionerTest

	toil.test.provisioners.provisionerTest

	toil.test.provisioners.restartScript

	toil.test.server
	toil.test.server.serverTest

	toil.test.sort
	toil.test.sort.restart_sort

	toil.test.sort.sort

	toil.test.sort.sortTest

	toil.test.src
	toil.test.src.autoDeploymentTest

	toil.test.src.busTest

	toil.test.src.checkpointTest

	toil.test.src.deferredFunctionTest

	toil.test.src.dockerCheckTest

	toil.test.src.fileStoreTest

	toil.test.src.helloWorldTest

	toil.test.src.importExportFileTest

	toil.test.src.jobDescriptionTest

	toil.test.src.jobEncapsulationTest

	toil.test.src.jobFileStoreTest

	toil.test.src.jobServiceTest

	toil.test.src.jobTest

	toil.test.src.miscTests

	toil.test.src.promisedRequirementTest

	toil.test.src.promisesTest

	toil.test.src.realtimeLoggerTest

	toil.test.src.regularLogTest

	toil.test.src.resourceTest

	toil.test.src.restartDAGTest

	toil.test.src.resumabilityTest

	toil.test.src.retainTempDirTest

	toil.test.src.systemTest

	toil.test.src.threadingTest

	toil.test.src.toilContextManagerTest

	toil.test.src.userDefinedJobArgTypeTest

	toil.test.src.workerTest

	toil.test.utils
	toil.test.utils.toilDebugTest

	toil.test.utils.toilKillTest

	toil.test.utils.utilsTest

	toil.test.wdl
	toil.test.wdl.builtinTest

	toil.test.wdl.conftest

	toil.test.wdl.toilwdlTest

	toil.test.wdl.wdltoil_test

Package Contents

Classes

	concat

	A literal iterable to combine sequence literals (lists, set) with generators or list comprehensions.

	ExceptionalThread

	A thread whose join() method re-raises exceptions raised during run(). While join() is

	ToilTest

	A common base class for Toil tests.

	ApplianceTestSupport

	A Toil test that runs a user script on a minimal cluster of appliance containers.

Functions

	applianceSelf([forceDockerAppliance])

	Return the fully qualified name of the Docker image to start Toil appliance containers from.

	toilPackageDirPath()

	Return the absolute path of the directory that corresponds to the top-level toil package.

	have_working_nvidia_docker_runtime()

	Return True if Docker exists and can handle an "nvidia" runtime and the "--gpus" option.

	have_working_nvidia_smi()

	Return True if the nvidia-smi binary, from nvidia's CUDA userspace

	running_on_ec2()

	Return True if we are currently running on EC2, and false otherwise.

	cpu_count()

	Get the rounded-up integer number of whole CPUs available.

	get_temp_file([suffix, rootDir])

	Return a string representing a temporary file, that must be manually deleted.

	needs_env_var(var_name[, comment])

	Use as a decorator before test classes or methods to run only if the given

	needs_rsync3(test_item)

	Decorate classes or methods that depend on any features from rsync version 3.0.0+.

	needs_aws_s3(test_item)

	Use as a decorator before test classes or methods to run only if AWS S3 is usable.

	needs_aws_ec2(test_item)

	Use as a decorator before test classes or methods to run only if AWS EC2 is usable.

	needs_aws_batch(test_item)

	Use as a decorator before test classes or methods to run only if AWS Batch

	needs_google(test_item)

	Use as a decorator before test classes or methods to run only if Google

	needs_gridengine(test_item)

	Use as a decorator before test classes or methods to run only if GridEngine is installed.

	needs_torque(test_item)

	Use as a decorator before test classes or methods to run only if PBS/Torque is installed.

	needs_tes(test_item)

	Use as a decorator before test classes or methods to run only if TES is available.

	needs_kubernetes_installed(test_item)

	Use as a decorator before test classes or methods to run only if Kubernetes is installed.

	needs_kubernetes(test_item)

	Use as a decorator before test classes or methods to run only if Kubernetes is installed and configured.

	needs_mesos(test_item)

	Use as a decorator before test classes or methods to run only if Mesos is installed.

	needs_parasol(test_item)

	Use as decorator so tests are only run if Parasol is installed.

	needs_slurm(test_item)

	Use as a decorator before test classes or methods to run only if Slurm is installed.

	needs_htcondor(test_item)

	Use a decorator before test classes or methods to run only if the HTCondor is installed.

	needs_lsf(test_item)

	Use as a decorator before test classes or methods to only run them if LSF is installed.

	needs_java(test_item)

	Use as a test decorator to run only if java is installed.

	needs_docker(test_item)

	Use as a decorator before test classes or methods to only run them if

	needs_singularity(test_item)

	Use as a decorator before test classes or methods to only run them if

	needs_local_cuda(test_item)

	Use as a decorator before test classes or methods to only run them if

	needs_docker_cuda(test_item)

	Use as a decorator before test classes or methods to only run them if

	needs_encryption(test_item)

	Use as a decorator before test classes or methods to only run them if PyNaCl is installed

	needs_cwl(test_item)

	Use as a decorator before test classes or methods to only run them if CWLTool is installed

	needs_server(test_item)

	Use as a decorator before test classes or methods to only run them if Connexion is installed.

	needs_celery_broker(test_item)

	Use as a decorator before test classes or methods to run only if RabbitMQ is set up to take Celery jobs.

	needs_wes_server(test_item)

	Use as a decorator before test classes or methods to run only if a WES

	needs_local_appliance(test_item)

	Use as a decorator before test classes or methods to only run them if

	needs_fetchable_appliance(test_item)

	Use as a decorator before test classes or methods to only run them if

	integrative(test_item)

	Use this to decorate integration tests so as to skip them during regular builds.

	slow(test_item)

	Use this decorator to identify tests that are slow and not critical.

	timeLimit(seconds)

	http://stackoverflow.com/a/601168

	make_tests(generalMethod, targetClass, **kwargs)

	This method dynamically generates test methods using the generalMethod as a template. Each

Attributes

	memoize

	Memoize a function result based on its parameters using this decorator.

	distVersion

	

	logger

	

	MT

	

	methodNamePartRegex

	

	
exception toil.test.ApplianceImageNotFound(origAppliance, url, statusCode)

	Bases: docker.errors.ImageNotFound

[image: Inheritance diagram of toil.test.ApplianceImageNotFound]

Error raised when using TOIL_APPLIANCE_SELF results in an HTTP error.

	Parameters

	
	origAppliance (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full url of the docker image originally
specified by the user (or the default).
e.g. “quay.io/ucsc_cgl/toil:latest”

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URL at which the image’s manifest is supposed to appear

	statusCode (int [https://docs.python.org/3/library/functions.html#int]) – the failing HTTP status code returned by the URL

	
toil.test.applianceSelf(forceDockerAppliance=False)

	Return the fully qualified name of the Docker image to start Toil appliance containers from.

The result is determined by the current version of Toil and three environment variables:
TOIL_DOCKER_REGISTRY, TOIL_DOCKER_NAME and TOIL_APPLIANCE_SELF.

TOIL_DOCKER_REGISTRY specifies an account on a publicly hosted docker registry like Quay
or Docker Hub. The default is UCSC’s CGL account on Quay.io where the Toil team publishes the
official appliance images. TOIL_DOCKER_NAME specifies the base name of the image. The
default of toil will be adequate in most cases. TOIL_APPLIANCE_SELF fully qualifies the
appliance image, complete with registry, image name and version tag, overriding both
TOIL_DOCKER_NAME and TOIL_DOCKER_REGISTRY` as well as the version tag of the image.
Setting TOIL_APPLIANCE_SELF will not be necessary in most cases.

	Parameters

	forceDockerAppliance (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.test.toilPackageDirPath()

	Return the absolute path of the directory that corresponds to the top-level toil package.

The return value is guaranteed to end in ‘/toil’.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.test.have_working_nvidia_docker_runtime()

	Return True if Docker exists and can handle an “nvidia” runtime and the “–gpus” option.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.test.have_working_nvidia_smi()

	Return True if the nvidia-smi binary, from nvidia’s CUDA userspace
utilities, is installed and can be run successfully.

TODO: This isn’t quite the same as the check that cwltool uses to decide if
it can fulfill a CUDARequirement.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.test.running_on_ec2()

	Return True if we are currently running on EC2, and false otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class toil.test.concat(*args)

	A literal iterable to combine sequence literals (lists, set) with generators or list comprehensions.

Instead of

>>> [-1] + [x * 2 for x in range(3)] + [-1]
[-1, 0, 2, 4, -1]

you can write

>>> list(concat(-1, (x * 2 for x in range(3)), -1))
[-1, 0, 2, 4, -1]

This is slightly shorter (not counting the list constructor) and does not involve array
construction or concatenation.

Note that concat() flattens (or chains) all iterable arguments into a single
result iterable:

>>> list(concat(1, range(2, 4), 4))
[1, 2, 3, 4]

It only does so one level deep. If you need to recursively flatten a data structure,
check out crush().

If you want to prevent that flattening for an iterable argument, wrap it in concat():

>>> list(concat(1, concat(range(2, 4)), 4))
[1, range(2, 4), 4]

Some more example.

>>> list(concat()) # empty concat
[]
>>> list(concat(1)) # non-iterable
[1]
>>> list(concat(concat())) # empty iterable
[]
>>> list(concat(concat(1))) # singleton iterable
[1]
>>> list(concat(1, concat(2), 3)) # flattened iterable
[1, 2, 3]
>>> list(concat(1, [2], 3)) # flattened iterable
[1, 2, 3]
>>> list(concat(1, concat([2]), 3)) # protecting an iterable from being flattened
[1, [2], 3]
>>> list(concat(1, concat([2], 3), 4)) # protection only works with a single argument
[1, 2, 3, 4]
>>> list(concat(1, 2, concat(3, 4), 5, 6))
[1, 2, 3, 4, 5, 6]
>>> list(concat(1, 2, concat([3, 4]), 5, 6))
[1, 2, [3, 4], 5, 6]

Note that while strings are technically iterable, concat() does not flatten them.

>>> list(concat('ab'))
['ab']
>>> list(concat(concat('ab')))
['ab']

	Parameters

	args (Any) –

	
__iter__()

	
	Return type

	Iterator[Any]

	
toil.test.memoize

	Memoize a function result based on its parameters using this decorator.

For example, this can be used in place of lazy initialization. If the decorating
function is invoked by multiple threads, the decorated function may be called
more than once with the same arguments.

	
class toil.test.ExceptionalThread(group=None, target=None, name=None, args=(), kwargs=None, *, daemon=None)

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

[image: Inheritance diagram of toil.test.ExceptionalThread]

A thread whose join() method re-raises exceptions raised during run(). While join() is
idempotent, the exception is only during the first invocation of join() that successfully
joined the thread. If join() times out, no exception will be re reraised even though an
exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

	
exc_info

	

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	Return type

	None

	
tryRun()

	
	Return type

	None

	
join(*args, **kwargs)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	Parameters

	
	args (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	kwargs (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	Return type

	None

	
toil.test.cpu_count()

	Get the rounded-up integer number of whole CPUs available.

Counts hyperthreads as CPUs.

Uses the system’s actual CPU count, or the current v1 cgroup’s quota per
period, if the quota is set.

Ignores the cgroup’s cpu shares value, because it’s extremely difficult to
interpret. See https://github.com/kubernetes/kubernetes/issues/81021.

Caches result for efficiency.

	Returns

	Integer count of available CPUs, minimum 1.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.test.distVersion = '5.10.0'

	

	
toil.test.logger

	

	
class toil.test.ToilTest(methodName='runTest')

	Bases: unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase]

[image: Inheritance diagram of toil.test.ToilTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setup_method(method)

	
	Parameters

	method (Any) –

	Return type

	None

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	Return type

	None

	
classmethod tearDownClass()

	Hook method for deconstructing the class fixture after running all tests in the class.

	Return type

	None

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	Return type

	None

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	Return type

	None

	
classmethod awsRegion()

	Pick an appropriate AWS region.

Use us-west-2 unless running on EC2, in which case use the region in which
the instance is located

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.test.MT

	

	
toil.test.get_temp_file(suffix='', rootDir=None)

	Return a string representing a temporary file, that must be manually deleted.

	Parameters

	
	suffix (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	rootDir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.test.needs_env_var(var_name, comment=None)

	Use as a decorator before test classes or methods to run only if the given
environment variable is set.
Can include a comment saying what the variable should be set to.

	Parameters

	
	var_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	comment (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	Callable[[MT], MT]

	
toil.test.needs_rsync3(test_item)

	Decorate classes or methods that depend on any features from rsync version 3.0.0+.

Necessary because utilsTest.testAWSProvisionerUtils() uses option –protect-args
which is only available in rsync 3

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_aws_s3(test_item)

	Use as a decorator before test classes or methods to run only if AWS S3 is usable.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_aws_ec2(test_item)

	Use as a decorator before test classes or methods to run only if AWS EC2 is usable.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_aws_batch(test_item)

	Use as a decorator before test classes or methods to run only if AWS Batch
is usable.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_google(test_item)

	Use as a decorator before test classes or methods to run only if Google
Cloud is usable.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_gridengine(test_item)

	Use as a decorator before test classes or methods to run only if GridEngine is installed.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_torque(test_item)

	Use as a decorator before test classes or methods to run only if PBS/Torque is installed.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_tes(test_item)

	Use as a decorator before test classes or methods to run only if TES is available.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_kubernetes_installed(test_item)

	Use as a decorator before test classes or methods to run only if Kubernetes is installed.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_kubernetes(test_item)

	Use as a decorator before test classes or methods to run only if Kubernetes is installed and configured.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_mesos(test_item)

	Use as a decorator before test classes or methods to run only if Mesos is installed.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_parasol(test_item)

	Use as decorator so tests are only run if Parasol is installed.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_slurm(test_item)

	Use as a decorator before test classes or methods to run only if Slurm is installed.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_htcondor(test_item)

	Use a decorator before test classes or methods to run only if the HTCondor is installed.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_lsf(test_item)

	Use as a decorator before test classes or methods to only run them if LSF is installed.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_java(test_item)

	Use as a test decorator to run only if java is installed.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_docker(test_item)

	Use as a decorator before test classes or methods to only run them if
docker is installed and docker-based tests are enabled.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_singularity(test_item)

	Use as a decorator before test classes or methods to only run them if
singularity is installed.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_local_cuda(test_item)

	Use as a decorator before test classes or methods to only run them if
a CUDA setup legible to cwltool (i.e. providing userspace nvidia-smi) is present.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_docker_cuda(test_item)

	Use as a decorator before test classes or methods to only run them if
a CUDA setup is available through Docker.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_encryption(test_item)

	Use as a decorator before test classes or methods to only run them if PyNaCl is installed
and configured.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_cwl(test_item)

	Use as a decorator before test classes or methods to only run them if CWLTool is installed
and configured.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_server(test_item)

	Use as a decorator before test classes or methods to only run them if Connexion is installed.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_celery_broker(test_item)

	Use as a decorator before test classes or methods to run only if RabbitMQ is set up to take Celery jobs.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_wes_server(test_item)

	Use as a decorator before test classes or methods to run only if a WES
server is available to run against.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_local_appliance(test_item)

	Use as a decorator before test classes or methods to only run them if
the Toil appliance Docker image is downloaded.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.needs_fetchable_appliance(test_item)

	Use as a decorator before test classes or methods to only run them if
the Toil appliance Docker image is able to be downloaded from the Internet.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.integrative(test_item)

	Use this to decorate integration tests so as to skip them during regular builds.

We define integration tests as A) involving other, non-Toil software components
that we develop and/or B) having a higher cost (time or money). Note that brittleness
does not qualify a test for being integrative. Neither does involvement of external
services such as AWS, since that would cover most of Toil’s test.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.slow(test_item)

	Use this decorator to identify tests that are slow and not critical.
Skip if TOIL_TEST_QUICK is true.

	Parameters

	test_item (MT) –

	Return type

	MT

	
toil.test.methodNamePartRegex

	

	
toil.test.timeLimit(seconds)

	http://stackoverflow.com/a/601168
Use to limit the execution time of a function. Raises an exception if the execution of the
function takes more than the specified amount of time.

	Parameters

	seconds (int [https://docs.python.org/3/library/functions.html#int]) – maximum allowable time, in seconds

	Return type

	Generator[None, None, None]

>>> import time
>>> with timeLimit(2):
... time.sleep(1)
>>> import time
>>> with timeLimit(1):
... time.sleep(2)
Traceback (most recent call last):
 ...
RuntimeError: Timed out

	
toil.test.make_tests(generalMethod, targetClass, **kwargs)

	This method dynamically generates test methods using the generalMethod as a template. Each
generated function is the result of a unique combination of parameters applied to the
generalMethod. Each of the parameters has a corresponding string that will be used to name
the method. These generated functions are named in the scheme: test_[generalMethodName]___[
firstParamaterName]_[someValueName]__[secondParamaterName]_…

The arguments following the generalMethodName should be a series of one or more dictionaries
of the form {str : type, …} where the key represents the name of the value. The names will
be used to represent the permutation of values passed for each parameter in the generalMethod.

The generated method names will list the parameters in lexicographic order by parameter name.

	Parameters

	
	generalMethod – A method that will be parameterized with values passed as kwargs. Note
that the generalMethod must be a regular method.

	targetClass – This represents the class to which the generated test methods will be
bound. If no targetClass is specified the class of the generalMethod is assumed the
target.

	kwargs – a series of dictionaries defining values, and their respective names where
each keyword is the name of a parameter in generalMethod.

>>> class Foo:
... def has(self, num, letter):
... return num, letter
...
... def hasOne(self, num):
... return num

>>> class Bar(Foo):
... pass

>>> make_tests(Foo.has, Bar, num={'one':1, 'two':2}, letter={'a':'a', 'b':'b'})

>>> b = Bar()

Note that num comes lexicographically before letter and so appears first in
the generated method names.

>>> assert b.test_has__letter_a__num_one() == b.has(1, 'a')

>>> assert b.test_has__letter_b__num_one() == b.has(1, 'b')

>>> assert b.test_has__letter_a__num_two() == b.has(2, 'a')

>>> assert b.test_has__letter_b__num_two() == b.has(2, 'b')

>>> f = Foo()

>>> hasattr(f, 'test_has__num_one__letter_a') # should be false because Foo has no test methods
False

	
class toil.test.ApplianceTestSupport(methodName='runTest')

	Bases: ToilTest

[image: Inheritance diagram of toil.test.ApplianceTestSupport]

A Toil test that runs a user script on a minimal cluster of appliance containers.

i.e. one leader container and one worker container.

	
class Appliance(outer, mounts, cleanMounts=False)

	Bases: toil.lib.threading.ExceptionalThread

[image: Inheritance diagram of toil.test.ApplianceTestSupport.Appliance]

A thread whose join() method re-raises exceptions raised during run(). While join() is
idempotent, the exception is only during the first invocation of join() that successfully
joined the thread. If join() times out, no exception will be re reraised even though an
exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

	Parameters

	
	outer (ApplianceTestSupport) –

	mounts (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cleanMounts (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
lock

	

	
__enter__()

	
	Return type

	Appliance

	
__exit__(exc_type, exc_val, exc_tb)

	
	Parameters

	
	exc_type (Type[BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]]) –

	exc_val (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) –

	exc_tb (Any) –

	Return type

	Literal[False]

	
tryRun()

	
	Return type

	None

	
runOnAppliance(*args, **kwargs)

	
	Parameters

	
	args (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	kwargs (Any) –

	Return type

	None

	
writeToAppliance(path, contents)

	
	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	contents (Any) –

	Return type

	None

	
deployScript(path, packagePath, script)

	Deploy a Python module on the appliance.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the path (absolute or relative to the WORDIR of the appliance container)
to the root of the package hierarchy where the given module should be placed.
The given directory should be on the Python path.

	packagePath (str [https://docs.python.org/3/library/stdtypes.html#str]) – the desired fully qualified module name (dotted form) of the module

	script (str [https://docs.python.org/3/library/stdtypes.html#str]|callable) – the contents of the Python module. If a callable is given,
its source code will be extracted. This is a convenience that lets you embed
user scripts into test code as nested function.

	Return type

	None

	
class LeaderThread(outer, mounts, cleanMounts=False)

	Bases: ApplianceTestSupport.Appliance

[image: Inheritance diagram of toil.test.ApplianceTestSupport.LeaderThread]

A thread whose join() method re-raises exceptions raised during run(). While join() is
idempotent, the exception is only during the first invocation of join() that successfully
joined the thread. If join() times out, no exception will be re reraised even though an
exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

	Parameters

	
	outer (ApplianceTestSupport) –

	mounts (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	cleanMounts (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
class WorkerThread(outer, mounts, numCores)

	Bases: ApplianceTestSupport.Appliance

[image: Inheritance diagram of toil.test.ApplianceTestSupport.WorkerThread]

A thread whose join() method re-raises exceptions raised during run(). While join() is
idempotent, the exception is only during the first invocation of join() that successfully
joined the thread. If join() times out, no exception will be re reraised even though an
exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

	Parameters

	
	outer (ApplianceTestSupport) –

	mounts (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	numCores (int [https://docs.python.org/3/library/functions.html#int]) –

 toil.test.batchSystems

toil.test.batchSystems

Submodules

	toil.test.batchSystems.batchSystemTest

	toil.test.batchSystems.parasolTestSupport

	toil.test.batchSystems.test_lsf_helper

	toil.test.batchSystems.test_slurm

 toil.test.batchSystems.batchSystemTest

toil.test.batchSystems.batchSystemTest

Module Contents

Classes

	BatchSystemPluginTest

	Class for testing batch system plugin functionality.

	hidden

	Hide abstract base class from unittest's test case loader

	KubernetesBatchSystemTest

	Tests against the Kubernetes batch system

	KubernetesBatchSystemBenchTest

	Kubernetes batch system unit tests that don't need to actually talk to a cluster.

	TESBatchSystemTest

	Tests against the TES batch system

	AWSBatchBatchSystemTest

	Tests against the AWS Batch batch system

	MesosBatchSystemTest

	Tests against the Mesos batch system

	SingleMachineBatchSystemTest

	Tests against the single-machine batch system

	MaxCoresSingleMachineBatchSystemTest

	This test ensures that single machine batch system doesn't exceed the configured number

	Service

	Abstract class used to define the interface to a service.

	ParasolBatchSystemTest

	Tests the Parasol batch system

	GridEngineBatchSystemTest

	Tests against the GridEngine batch system

	SlurmBatchSystemTest

	Tests against the Slurm batch system

	LSFBatchSystemTest

	Tests against the LSF batch system

	TorqueBatchSystemTest

	Tests against the Torque batch system

	HTCondorBatchSystemTest

	Tests against the HTCondor batch system

	SingleMachineBatchSystemJobTest

	Tests Toil workflow against the SingleMachine batch system

	MesosBatchSystemJobTest

	Tests Toil workflow against the Mesos batch system

Functions

	write_temp_file(s, temp_dir)

	Dump a string into a temp file and return its path.

	parentJob(job, cmd)

	

	childJob(job, cmd)

	

	grandChildJob(job, cmd)

	

	greatGrandChild(cmd)

	

	measureConcurrency(filepath[, sleep_time])

	Run in parallel to determine the number of concurrent tasks.

	count(delta, file_path)

	Increments counter file and returns the max number of times the file

	getCounters(path)

	

	resetCounters(path)

	

	get_omp_threads()

	

Attributes

	logger

	

	numCores

	

	preemptible

	

	defaultRequirements

	

	
toil.test.batchSystems.batchSystemTest.logger

	

	
toil.test.batchSystems.batchSystemTest.numCores = 2

	

	
toil.test.batchSystems.batchSystemTest.preemptible = False

	

	
toil.test.batchSystems.batchSystemTest.defaultRequirements

	

	
class toil.test.batchSystems.batchSystemTest.BatchSystemPluginTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.BatchSystemPluginTest]

Class for testing batch system plugin functionality.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
testAddBatchSystemFactory()

	

	
class toil.test.batchSystems.batchSystemTest.hidden

	Hide abstract base class from unittest’s test case loader

http://stackoverflow.com/questions/1323455/python-unit-test-with-base-and-sub-class#answer-25695512

	
class AbstractBatchSystemTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest]

A base test case with generic tests that every batch system should pass.

Cannot assume that the batch system actually executes commands on the local machine/filesystem.

	
abstract createBatchSystem()

	
	Return type

	toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

	
supportsWallTime()

	

	
classmethod createConfig()

	Returns a dummy config for the batch system tests. We need a workflowID to be set up
since we are running tests without setting up a jobstore. This is the class version
to be used when an instance is not available.

	Return type

	toil.common.Config

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
get_max_startup_seconds()

	Get the number of seconds this test ought to wait for the first job to run.
Some batch systems may need time to scale up.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
test_available_cores()

	

	
test_run_jobs()

	

	
test_set_env()

	

	
test_set_job_env()

	Test the mechanism for setting per-job environment variables to batch system jobs.

	
testCheckResourceRequest()

	

	
testScalableBatchSystem()

	

	
class AbstractBatchSystemJobTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest]

An abstract base class for batch system tests that use a full Toil workflow rather
than using the batch system directly.

	
cpuCount

	

	
allocatedCores

	

	
sleepTime = 5

	

	
abstract getBatchSystemName()

	
	Return type

	(str [https://docs.python.org/3/library/stdtypes.html#str], AbstractBatchSystem)

	
getOptions(tempDir)

	Configures options for Toil workflow and makes job store.
:param str tempDir: path to test directory
:return: Toil options object

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
testJobConcurrency()

	Tests that the batch system is allocating core resources properly for concurrent tasks.

	
test_omp_threads()

	Test if the OMP_NUM_THREADS env var is set correctly based on jobs.cores.

	
class AbstractGridEngineBatchSystemTest(methodName='runTest')

	Bases: hidden.AbstractBatchSystemTest

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.hidden.AbstractGridEngineBatchSystemTest]

An abstract class to reduce redundancy between Grid Engine, Slurm, and other similar batch
systems

	
class toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemTest]

Tests against the Kubernetes batch system

	
supportsWallTime()

	

	
createBatchSystem()

	

	
class toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemBenchTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemBenchTest]

Kubernetes batch system unit tests that don’t need to actually talk to a cluster.

	
test_preemptability_constraints()

	Make sure we generate the right preemptability constraints.

	
test_label_constraints()

	Make sure we generate the right preemptability constraints.

	
class toil.test.batchSystems.batchSystemTest.TESBatchSystemTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.TESBatchSystemTest]

Tests against the TES batch system

	
supportsWallTime()

	

	
createBatchSystem()

	

	
class toil.test.batchSystems.batchSystemTest.AWSBatchBatchSystemTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.AWSBatchBatchSystemTest]

Tests against the AWS Batch batch system

	
supportsWallTime()

	

	
createBatchSystem()

	

	
get_max_startup_seconds()

	Get the number of seconds this test ought to wait for the first job to run.
Some batch systems may need time to scale up.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
class toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest(methodName='runTest')

	Bases: hidden, toil.batchSystems.mesos.test.MesosTestSupport

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest]

Tests against the Mesos batch system

	
classmethod createConfig()

	needs to set mesos_endpoint to localhost for testing since the default is now the
private IP address

	
supportsWallTime()

	

	
createBatchSystem()

	

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
testIgnoreNode()

	

	
toil.test.batchSystems.batchSystemTest.write_temp_file(s, temp_dir)

	Dump a string into a temp file and return its path.

	Parameters

	
	s (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	temp_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemTest]

Tests against the single-machine batch system

	
supportsWallTime()

	
	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
createBatchSystem()

	
	Return type

	toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

	
testProcessEscape(hide=False)

	Test to make sure that child processes and their descendants go away
when the Toil workflow stops.

If hide is true, will try and hide the child processes to make them
hard to stop.

	Parameters

	hide (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
testHidingProcessEscape()

	Test to make sure that child processes and their descendants go away
when the Toil workflow stops, even if the job process stops and leaves children.

	
class toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest]

This test ensures that single machine batch system doesn’t exceed the configured number
cores

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	Return type

	None

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	Return type

	None

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	Return type

	None

	
scriptCommand()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
test()

	

	
testServices()

	

	
toil.test.batchSystems.batchSystemTest.parentJob(job, cmd)

	

	
toil.test.batchSystems.batchSystemTest.childJob(job, cmd)

	

	
toil.test.batchSystems.batchSystemTest.grandChildJob(job, cmd)

	

	
toil.test.batchSystems.batchSystemTest.greatGrandChild(cmd)

	

	
class toil.test.batchSystems.batchSystemTest.Service(cmd)

	Bases: toil.job.Job.Service

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.Service]

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

	
start(fileStore)

	Start the service.

	Parameters

	job – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	Returns

	An object describing how to access the service. The object must be pickleable
and will be used by jobs to access the service (see toil.job.Job.addService()).

	
check()

	Checks the service is still running.

	Raises

	exceptions.RuntimeError – If the service failed, this will cause the service job to be labeled failed.

	Returns

	True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should raise a
RuntimeError, not return False!

	
stop(fileStore)

	Stops the service. Function can block until complete.

	Parameters

	job – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	
class toil.test.batchSystems.batchSystemTest.ParasolBatchSystemTest(methodName='runTest')

	Bases: hidden, toil.test.batchSystems.parasolTestSupport.ParasolTestSupport

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.ParasolBatchSystemTest]

Tests the Parasol batch system

	
supportsWallTime()

	

	
createBatchSystem()

	
	Return type

	toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
testBatchResourceLimits()

	

	
class toil.test.batchSystems.batchSystemTest.GridEngineBatchSystemTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.GridEngineBatchSystemTest]

Tests against the GridEngine batch system

	
createBatchSystem()

	
	Return type

	toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
class toil.test.batchSystems.batchSystemTest.SlurmBatchSystemTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.SlurmBatchSystemTest]

Tests against the Slurm batch system

	
createBatchSystem()

	
	Return type

	toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
class toil.test.batchSystems.batchSystemTest.LSFBatchSystemTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.LSFBatchSystemTest]

Tests against the LSF batch system

	
createBatchSystem()

	
	Return type

	toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

	
class toil.test.batchSystems.batchSystemTest.TorqueBatchSystemTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.TorqueBatchSystemTest]

Tests against the Torque batch system

	
createBatchSystem()

	
	Return type

	toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
class toil.test.batchSystems.batchSystemTest.HTCondorBatchSystemTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.HTCondorBatchSystemTest]

Tests against the HTCondor batch system

	
createBatchSystem()

	
	Return type

	toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
class toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemJobTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemJobTest]

Tests Toil workflow against the SingleMachine batch system

	
getBatchSystemName()

	
	Return type

	(str [https://docs.python.org/3/library/stdtypes.html#str], AbstractBatchSystem)

	
testConcurrencyWithDisk()

	Tests that the batch system is allocating disk resources properly

	
testNestedResourcesDoNotBlock()

	Resources are requested in the order Memory > Cpu > Disk.
Test that unavailability of cpus for one job that is scheduled does not block another job
that can run.

	
class toil.test.batchSystems.batchSystemTest.MesosBatchSystemJobTest(methodName='runTest')

	Bases: hidden, toil.batchSystems.mesos.test.MesosTestSupport

[image: Inheritance diagram of toil.test.batchSystems.batchSystemTest.MesosBatchSystemJobTest]

Tests Toil workflow against the Mesos batch system

	
getOptions(tempDir)

	Configures options for Toil workflow and makes job store.
:param str tempDir: path to test directory
:return: Toil options object

	
getBatchSystemName()

	
	Return type

	(str [https://docs.python.org/3/library/stdtypes.html#str], AbstractBatchSystem)

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
toil.test.batchSystems.batchSystemTest.measureConcurrency(filepath, sleep_time=10)

	Run in parallel to determine the number of concurrent tasks.
This code was copied from toil.batchSystemTestMaxCoresSingleMachineBatchSystemTest
:param str filepath: path to counter file
:param int sleep_time: number of seconds to sleep before counting down
:return int max concurrency value:

	
toil.test.batchSystems.batchSystemTest.count(delta, file_path)

	Increments counter file and returns the max number of times the file
has been modified. Counter data must be in the form:
concurrent tasks, max concurrent tasks (counter should be initialized to 0,0)

	Parameters

	
	delta (int [https://docs.python.org/3/library/functions.html#int]) – increment value

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to shared counter file

	Return int max concurrent tasks

	

	
toil.test.batchSystems.batchSystemTest.getCounters(path)

	

	
toil.test.batchSystems.batchSystemTest.resetCounters(path)

	

	
toil.test.batchSystems.batchSystemTest.get_omp_threads()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 toil.test.batchSystems.parasolTestSupport

toil.test.batchSystems.parasolTestSupport

Module Contents

Classes

	ParasolTestSupport

	For test cases that need a running Parasol leader and worker on the local host

Attributes

	log

	

	
toil.test.batchSystems.parasolTestSupport.log

	

	
class toil.test.batchSystems.parasolTestSupport.ParasolTestSupport

	For test cases that need a running Parasol leader and worker on the local host

	
class ParasolThread

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

[image: Inheritance diagram of toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolThread]

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways
to specify the activity: by passing a callable object to the constructor, or
by overriding the run() method in a subclass.

	
lock

	

	
abstract parasolCommand()

	

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
class ParasolLeaderThread

	Bases: ParasolTestSupport.ParasolThread

[image: Inheritance diagram of toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolLeaderThread]

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways
to specify the activity: by passing a callable object to the constructor, or
by overriding the run() method in a subclass.

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
parasolCommand()

	

	
class ParasolWorkerThread

	Bases: ParasolTestSupport.ParasolThread

[image: Inheritance diagram of toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolWorkerThread]

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways
to specify the activity: by passing a callable object to the constructor, or
by overriding the run() method in a subclass.

	
parasolCommand()

	

 toil.test.batchSystems.test_lsf_helper

toil.test.batchSystems.test_lsf_helper

lsfHelper.py shouldn’t need a batch system and so the unit tests here should aim to run on any system.

Module Contents

Classes

	LSFHelperTest

	A common base class for Toil tests.

	
class toil.test.batchSystems.test_lsf_helper.LSFHelperTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.batchSystems.test_lsf_helper.LSFHelperTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
test_parse_mem_and_cmd_from_output()

	

 toil.test.batchSystems.test_slurm

toil.test.batchSystems.test_slurm

Module Contents

Classes

	FakeBatchSystem

	Class that implements a minimal Batch System, needed to create a Worker (see below).

	SlurmTest

	Class for unit-testing SlurmBatchSystem

Functions

	call_sacct(args)

	The arguments passed to call_command when executing sacct are:

	call_scontrol(args)

	The arguments passed to call_command when executing scontrol are:

	call_sacct_raises(*_)

	Fake that the sacct command fails by raising a CalledProcessErrorStderr

	
toil.test.batchSystems.test_slurm.call_sacct(args)

	The arguments passed to call_command when executing sacct are:
[‘sacct’, ‘-n’, ‘-j’, ‘<comma-separated list of job-ids>’, ‘–format’,
‘JobIDRaw,State,ExitCode’, ‘-P’, ‘-S’, ‘1970-01-01’]
The multi-line output is something like:

1234|COMPLETED|0:0
1234.batch|COMPLETED|0:0
1235|PENDING|0:0
1236|FAILED|0:2
1236.extern|COMPLETED|0:0

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.test.batchSystems.test_slurm.call_scontrol(args)

	The arguments passed to call_command when executing scontrol are:
[‘scontrol’, ‘show’, ‘job’] or [‘scontrol’, ‘show’, ‘job’, ‘<job-id>’]

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.test.batchSystems.test_slurm.call_sacct_raises(*_)

	Fake that the sacct command fails by raising a CalledProcessErrorStderr

	
class toil.test.batchSystems.test_slurm.FakeBatchSystem

	Class that implements a minimal Batch System, needed to create a Worker (see below).

	
getWaitDuration()

	

	
class toil.test.batchSystems.test_slurm.SlurmTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.batchSystems.test_slurm.SlurmTest]

Class for unit-testing SlurmBatchSystem

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
test_getJobDetailsFromSacct_one_exists()

	

	
test_getJobDetailsFromSacct_one_not_exists()

	

	
test_getJobDetailsFromSacct_many_all_exist()

	

	
test_getJobDetailsFromSacct_many_some_exist()

	

	
test_getJobDetailsFromSacct_many_none_exist()

	

	
test_getJobDetailsFromScontrol_one_exists()

	

	
test_getJobDetailsFromScontrol_one_not_exists()

	Asking for the job details of a single job that scontrol doesn’t know about should
raise an exception.

	
test_getJobDetailsFromScontrol_many_all_exist()

	

	
test_getJobDetailsFromScontrol_many_some_exist()

	

	
test_getJobDetailsFromScontrol_many_none_exist()

	

	
test_getJobExitCode_job_exists()

	

	
test_getJobExitCode_job_not_exists()

	

	
test_getJobExitCode_sacct_raises_job_exists()

	This test forces the use of scontrol to get job information, by letting sacct
raise an exception.

	
test_getJobExitCode_sacct_raises_job_not_exists()

	This test forces the use of scontrol to get job information, by letting sacct
raise an exception. Next, scontrol should also raise because it doesn’t know the job.

	
test_coalesce_job_exit_codes_one_exists()

	

	
test_coalesce_job_exit_codes_one_not_exists()

	

	
test_coalesce_job_exit_codes_many_all_exist()

	

	
test_coalesce_job_exit_codes_some_exists()

	

	
test_coalesce_job_exit_codes_sacct_raises_job_exists()

	This test forces the use of scontrol to get job information, by letting sacct
raise an exception.

	
test_coalesce_job_exit_codes_sacct_raises_job_not_exists()

	This test forces the use of scontrol to get job information, by letting sacct
raise an exception. Next, scontrol should also raise because it doesn’t know the job.

 toil.test.cwl

toil.test.cwl

Submodules

	toil.test.cwl.conftest

	toil.test.cwl.cwlTest

 toil.test.cwl.conftest

toil.test.cwl.conftest

Module Contents

	
toil.test.cwl.conftest.collect_ignore = ['spec']

	

 toil.test.cwl.cwlTest

toil.test.cwl.cwlTest

Module Contents

Classes

	CWLWorkflowTest

	CWL tests included in Toil that don't involve the whole CWL conformance

	CWLv10Test

	Run the CWL 1.0 conformance tests in various environments.

	CWLv11Test

	Run the CWL 1.1 conformance tests in various environments.

	CWLv12Test

	Run the CWL 1.2 conformance tests in various environments.

	CWLOnARMTest

	Run the CWL 1.2 conformance tests on ARM specifically.

Functions

	run_conformance_tests(workDir, yml[, runner, caching, ...])

	Run the CWL conformance tests.

	test_workflow_echo_string_scatter_stderr_log_dir(tmp_path)

	

	test_log_dir_echo_no_output(tmp_path)

	

	test_log_dir_echo_stderr(tmp_path)

	

	test_filename_conflict_resolution(tmp_path)

	

	test_filename_conflict_detection(tmp_path)

	Make sure we don't just stage files over each other when using a container.

	test_filename_conflict_detection_at_root(tmp_path)

	Make sure we don't just stage files over each other.

	test_pick_value_with_one_null_value(caplog)

	Make sure toil-cwl-runner does not false log a warning when pickValue is

	test_usage_message()

	This is purely to ensure a (more) helpful error message is printed if a user does

	test_workflow_echo_string()

	

	test_workflow_echo_string_scatter_capture_stdout()

	

	test_visit_top_cwl_class()

	

	test_visit_cwl_class_and_reduce()

	

	test_download_structure(tmp_path)

	Make sure that download_structure makes the right calls to what it thinks is the file store.

Attributes

	pkg_root

	

	log

	

	CONFORMANCE_TEST_TIMEOUT

	

	
toil.test.cwl.cwlTest.pkg_root

	

	
toil.test.cwl.cwlTest.log

	

	
toil.test.cwl.cwlTest.CONFORMANCE_TEST_TIMEOUT = 3600

	

	
toil.test.cwl.cwlTest.run_conformance_tests(workDir, yml, runner=None, caching=False, batchSystem=None, selected_tests=None, selected_tags=None, skipped_tests=None, extra_args=None, must_support_all_features=False, junit_file=None)

	Run the CWL conformance tests.

	Parameters

	
	workDir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory to run tests in.

	yml (str [https://docs.python.org/3/library/stdtypes.html#str]) – CWL test list YML to run tests from.

	runner (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – If set, use this cwl runner instead of the default toil-cwl-runner.

	caching (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, use Toil file store caching.

	batchSystem (str [https://docs.python.org/3/library/stdtypes.html#str]) – If set, use this batch system instead of the default single_machine.

	selected_tests (str [https://docs.python.org/3/library/stdtypes.html#str]) – If set, use this description of test numbers to run (comma-separated numbers or ranges)

	selected_tags (str [https://docs.python.org/3/library/stdtypes.html#str]) – As an alternative to selected_tests, run tests with the given tags.

	skipped_tests (str [https://docs.python.org/3/library/stdtypes.html#str]) – Comma-separated string labels of tests to skip.

	extra_args (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Provide these extra arguments to runner for each test.

	must_support_all_features (bool [https://docs.python.org/3/library/functions.html#bool]) – If set, fail if some CWL optional features are unsupported.

	junit_file (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – JUnit XML file to write test info to.

	
class toil.test.cwl.cwlTest.CWLWorkflowTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.cwl.cwlTest.CWLWorkflowTest]

CWL tests included in Toil that don’t involve the whole CWL conformance
test suite. Tests Toil-specific functions like URL types supported for
inputs.

	
setUp()

	Runs anew before each test to create farm fresh temp dirs.

	
tearDown()

	Clean up outputs.

	
revsort(cwl_filename, tester_fn)

	

	
revsort_no_checksum(cwl_filename, tester_fn)

	

	
download(inputs, tester_fn)

	

	
load_contents(inputs, tester_fn)

	

	
download_directory(inputs, tester_fn)

	

	
download_subdirectory(inputs, tester_fn)

	

	
test_mpi()

	

	
test_s3_as_secondary_file()

	

	
test_run_revsort()

	

	
test_run_revsort_nochecksum()

	

	
test_run_revsort2()

	

	
test_run_revsort_debug_worker()

	

	
test_run_colon_output()

	

	
test_download_s3()

	

	
test_download_http()

	

	
test_download_https()

	

	
test_download_file()

	

	
test_download_directory_s3()

	

	
test_download_directory_file()

	

	
test_download_subdirectory_s3()

	

	
test_download_subdirectory_file()

	

	
test_load_contents_s3()

	

	
test_load_contents_http()

	

	
test_load_contents_https()

	

	
test_load_contents_file()

	

	
test_bioconda()

	

	
test_biocontainers()

	

	
test_cuda()

	

	
test_restart()

	Enable restarts with toil-cwl-runner – run failing test, re-run correct test.
Only implemented for single machine.

	
test_streamable()

	Test that a file with ‘streamable’=True is a named pipe.
This is a CWL1.2 feature.

	
class toil.test.cwl.cwlTest.CWLv10Test(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.cwl.cwlTest.CWLv10Test]

Run the CWL 1.0 conformance tests in various environments.

	
setUp()

	Runs anew before each test to create farm fresh temp dirs.

	
tearDown()

	Clean up outputs.

	
test_run_conformance_with_caching()

	

	
test_run_conformance(batchSystem=None, caching=False, selected_tests=None)

	

	
test_lsf_cwl_conformance(**kwargs)

	

	
test_slurm_cwl_conformance(**kwargs)

	

	
test_torque_cwl_conformance(**kwargs)

	

	
test_gridengine_cwl_conformance(**kwargs)

	

	
test_mesos_cwl_conformance(**kwargs)

	

	
test_parasol_cwl_conformance(**kwargs)

	

	
test_kubernetes_cwl_conformance(**kwargs)

	

	
test_lsf_cwl_conformance_with_caching()

	

	
test_slurm_cwl_conformance_with_caching()

	

	
test_torque_cwl_conformance_with_caching()

	

	
test_gridengine_cwl_conformance_with_caching()

	

	
test_mesos_cwl_conformance_with_caching()

	

	
test_parasol_cwl_conformance_with_caching()

	

	
test_kubernetes_cwl_conformance_with_caching()

	

	
class toil.test.cwl.cwlTest.CWLv11Test(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.cwl.cwlTest.CWLv11Test]

Run the CWL 1.1 conformance tests in various environments.

	
classmethod setUpClass()

	Runs anew before each test.

	
tearDown()

	Clean up outputs.

	
test_run_conformance(**kwargs)

	

	
test_run_conformance_with_caching()

	

	
test_kubernetes_cwl_conformance(**kwargs)

	

	
test_kubernetes_cwl_conformance_with_caching()

	

	
class toil.test.cwl.cwlTest.CWLv12Test(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.cwl.cwlTest.CWLv12Test]

Run the CWL 1.2 conformance tests in various environments.

	
classmethod setUpClass()

	Runs anew before each test.

	
tearDown()

	Clean up outputs.

	
test_run_conformance(**kwargs)

	

	
test_run_conformance_with_caching()

	

	
test_run_conformance_with_in_place_update()

	Make sure that with –bypass-file-store we properly support in place
update on a single node, and that this doesn’t break any other
features.

	
test_kubernetes_cwl_conformance(**kwargs)

	

	
test_kubernetes_cwl_conformance_with_caching()

	

	
test_wes_server_cwl_conformance()

	Run the CWL conformance tests via WES. TOIL_WES_ENDPOINT must be
specified. If the WES server requires authentication, set TOIL_WES_USER
and TOIL_WES_PASSWORD.

To run manually:

TOIL_WES_ENDPOINT=http://localhost:8080 TOIL_WES_USER=test TOIL_WES_PASSWORD=password python -m pytest src/toil/test/cwl/cwlTest.py::CWLv12Test::test_wes_server_cwl_conformance -vv –log-level INFO –log-cli-level INFO

	
class toil.test.cwl.cwlTest.CWLOnARMTest(methodName)

	Bases: toil.test.provisioners.clusterTest.AbstractClusterTest

[image: Inheritance diagram of toil.test.cwl.cwlTest.CWLOnARMTest]

Run the CWL 1.2 conformance tests on ARM specifically.

	
setUp()

	Set up for the test.
Must be overridden to call this method and set self.jobStore.

	
test_cwl_on_arm()

	

	
toil.test.cwl.cwlTest.test_workflow_echo_string_scatter_stderr_log_dir(tmp_path)

	
	Parameters

	tmp_path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) –

	
toil.test.cwl.cwlTest.test_log_dir_echo_no_output(tmp_path)

	
	Parameters

	tmp_path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) –

	Return type

	None

	
toil.test.cwl.cwlTest.test_log_dir_echo_stderr(tmp_path)

	
	Parameters

	tmp_path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) –

	Return type

	None

	
toil.test.cwl.cwlTest.test_filename_conflict_resolution(tmp_path)

	
	Parameters

	tmp_path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) –

	
toil.test.cwl.cwlTest.test_filename_conflict_detection(tmp_path)

	Make sure we don’t just stage files over each other when using a container.

	Parameters

	tmp_path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) –

	
toil.test.cwl.cwlTest.test_filename_conflict_detection_at_root(tmp_path)

	Make sure we don’t just stage files over each other.

Specifically, when using a container and the files are at the root of the work dir.

	Parameters

	tmp_path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) –

	
toil.test.cwl.cwlTest.test_pick_value_with_one_null_value(caplog)

	Make sure toil-cwl-runner does not false log a warning when pickValue is
used but outputSource only contains one null value. See: #3991.

	
toil.test.cwl.cwlTest.test_usage_message()

	This is purely to ensure a (more) helpful error message is printed if a user does
not order their positional args correctly [cwl, cwl-job (json/yml/yaml), jobstore].

	
toil.test.cwl.cwlTest.test_workflow_echo_string()

	

	
toil.test.cwl.cwlTest.test_workflow_echo_string_scatter_capture_stdout()

	

	
toil.test.cwl.cwlTest.test_visit_top_cwl_class()

	

	
toil.test.cwl.cwlTest.test_visit_cwl_class_and_reduce()

	

	
toil.test.cwl.cwlTest.test_download_structure(tmp_path)

	Make sure that download_structure makes the right calls to what it thinks is the file store.

	Return type

	None

 toil.test.docs

toil.test.docs

Submodules

	toil.test.docs.scriptsTest

 toil.test.docs.scriptsTest

toil.test.docs.scriptsTest

Module Contents

Classes

	ToilDocumentationTest

	Tests for scripts in the toil tutorials.

Attributes

	pkg_root

	

	
toil.test.docs.scriptsTest.pkg_root

	

	
class toil.test.docs.scriptsTest.ToilDocumentationTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.docs.scriptsTest.ToilDocumentationTest]

Tests for scripts in the toil tutorials.

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	Return type

	None

	
checkExitCode(script)

	

	
checkExpectedOut(script, expectedOutput)

	

	
checkExpectedPattern(script, expectedPattern)

	

	
testCwlexample()

	

	
testDiscoverfiles()

	

	
testDynamic()

	

	
testEncapsulation()

	

	
testEncapsulation2()

	

	
testHelloworld()

	

	
testInvokeworkflow()

	

	
testInvokeworkflow2()

	

	
testJobFunctions()

	

	
testManaging()

	

	
testManaging2()

	

	
testMultiplejobs()

	

	
testMultiplejobs2()

	

	
testMultiplejobs3()

	

	
testPromises2()

	

	
testQuickstart()

	

	
testRequirements()

	

	
testArguments()

	

	
testDocker()

	

	
testPromises()

	

	
testServices()

	

	
testStaging()

	

 toil.test.jobStores

toil.test.jobStores

Submodules

	toil.test.jobStores.jobStoreTest

 toil.test.jobStores.jobStoreTest

toil.test.jobStores.jobStoreTest

Module Contents

Classes

	AbstractJobStoreTest

	Hide abstract base class from unittest's test case loader

	AbstractEncryptedJobStoreTest

	

	FileJobStoreTest

	A common base class for Toil tests.

	GoogleJobStoreTest

	A common base class for Toil tests.

	AWSJobStoreTest

	A common base class for Toil tests.

	InvalidAWSJobStoreTest

	A common base class for Toil tests.

	EncryptedAWSJobStoreTest

	A common base class for Toil tests.

	StubHttpRequestHandler

	Simple HTTP request handler with GET and HEAD commands.

Functions

	google_retry(x)

	

	tearDownModule()

	

Attributes

	logger

	

	
toil.test.jobStores.jobStoreTest.google_retry(x)

	

	
toil.test.jobStores.jobStoreTest.logger

	

	
toil.test.jobStores.jobStoreTest.tearDownModule()

	

	
class toil.test.jobStores.jobStoreTest.AbstractJobStoreTest

	Hide abstract base class from unittest’s test case loader

http://stackoverflow.com/questions/1323455/python-unit-test-with-base-and-sub-class#answer-25695512

	
class Test(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
externalStoreCache

	

	
mpTestPartSize

	

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
testInitialState()

	Ensure proper handling of nonexistant files.

	
testJobCreation()

	Test creation of a job.

Does the job exist in the jobstore it is supposed to be in?
Are its attributes what is expected?

	
testConfigEquality()

	Ensure that the command line configurations are successfully loaded and stored.

In setUp() self.jobstore1 is created and initialized. In this test, after creating newJobStore,
.resume() will look for a previously instantiated job store and load its config options. This is expected
to be equal but not the same object.

	
testJobLoadEquality()

	Tests that a job created via one JobStore instance can be loaded from another.

	
testChildLoadingEquality()

	Test that loading a child job operates as expected.

	
testPersistantFilesToDelete()

	Make sure that updating a job carries over filesToDelete.

The following demonstrates the job update pattern, where files to be deleted are referenced in
“filesToDelete” array, which is persisted to disk first. If things go wrong during the update, this list of
files to delete is used to remove the unneeded files.

	
testUpdateBehavior()

	Tests the proper behavior during updating jobs.

	
testJobDeletions()

	Tests the consequences of deleting jobs.

	
testSharedFiles()

	Tests the sharing of files.

	
testReadWriteSharedFilesTextMode()

	Checks if text mode is compatible for shared file streams.

	
testReadWriteFileStreamTextMode()

	Checks if text mode is compatible for file streams.

	
testPerJobFiles()

	Tests the behavior of files on jobs.

	
testStatsAndLogging()

	Tests behavior of reading and writting stats and logging.

	
testWriteLogFiles()

	Test writing log files.

	
testBatchCreate()

	Test creation of many jobs.

	
testGrowingAndShrinkingJob()

	Make sure jobs update correctly if they grow/shrink.

	
classmethod cleanUpExternalStores()

	

	
classmethod makeImportExportTests()

	

	
testImportHttpFile()

	Test importing a file over HTTP.

	
testImportFtpFile()

	Test importing a file over FTP

	
testFileDeletion()

	Intended to cover the batch deletion of items in the AWSJobStore, but it doesn’t hurt
running it on the other job stores.

	
testMultipartUploads()

	This test is meant to cover multi-part uploads in the AWSJobStore but it doesn’t hurt
running it against the other job stores as well.

	
testZeroLengthFiles()

	Test reading and writing of empty files.

	
testLargeFile()

	Test the reading and writing of large files.

	
fetch_url(url)

	Fetch the given URL. Throw an error if it cannot be fetched in a
reasonable number of attempts.

	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
assertUrl(url)

	

	
testCleanCache()

	

	
testPartialReadFromStream()

	Test whether readFileStream will deadlock on a partial read.

	
testDestructionOfCorruptedJobStore()

	

	
testDestructionIdempotence()

	

	
testEmptyFileStoreIDIsReadable()

	Simply creates an empty fileStoreID and attempts to read from it.

	
class toil.test.jobStores.jobStoreTest.AbstractEncryptedJobStoreTest

	
	
class Test(methodName='runTest')

	Bases: AbstractJobStoreTest

[image: Inheritance diagram of toil.test.jobStores.jobStoreTest.AbstractEncryptedJobStoreTest.Test]

A test of job stores that use encryption

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
testEncrypted()

	Create an encrypted file. Read it in encrypted mode then try with encryption off
to ensure that it fails.

	
class toil.test.jobStores.jobStoreTest.FileJobStoreTest(methodName='runTest')

	Bases: AbstractJobStoreTest

[image: Inheritance diagram of toil.test.jobStores.jobStoreTest.FileJobStoreTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
testPreserveFileName()

	Check that the fileID ends with the given file name.

	
test_jobstore_init_preserves_symlink_path()

	Test that if we provide a fileJobStore with a symlink to a directory, it doesn’t de-reference it.

	
test_jobstore_does_not_leak_symlinks()

	Test that if we link imports into the FileJobStore, we can’t get hardlinks to symlinks.

	
class toil.test.jobStores.jobStoreTest.GoogleJobStoreTest(methodName='runTest')

	Bases: AbstractJobStoreTest

[image: Inheritance diagram of toil.test.jobStores.jobStoreTest.GoogleJobStoreTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
projectID

	

	
headers

	

	
class toil.test.jobStores.jobStoreTest.AWSJobStoreTest(methodName='runTest')

	Bases: AbstractJobStoreTest

[image: Inheritance diagram of toil.test.jobStores.jobStoreTest.AWSJobStoreTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
testSDBDomainsDeletedOnFailedJobstoreBucketCreation()

	This test ensures that SDB domains bound to a jobstore are deleted if the jobstore bucket
failed to be created. We simulate a failed jobstore bucket creation by using a bucket in a
different region with the same name.

	
testInlinedFiles()

	

	
testOverlargeJob()

	

	
testMultiThreadImportFile()

	Tests that importFile is thread-safe.

	Return type

	None

	
class toil.test.jobStores.jobStoreTest.InvalidAWSJobStoreTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.jobStores.jobStoreTest.InvalidAWSJobStoreTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
testInvalidJobStoreName()

	

	
class toil.test.jobStores.jobStoreTest.EncryptedAWSJobStoreTest(methodName='runTest')

	Bases: AWSJobStoreTest, AbstractEncryptedJobStoreTest

[image: Inheritance diagram of toil.test.jobStores.jobStoreTest.EncryptedAWSJobStoreTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
class toil.test.jobStores.jobStoreTest.StubHttpRequestHandler(*args, directory=None, **kwargs)

	Bases: http.server.SimpleHTTPRequestHandler [https://docs.python.org/3/library/http.server.html#http.server.SimpleHTTPRequestHandler]

[image: Inheritance diagram of toil.test.jobStores.jobStoreTest.StubHttpRequestHandler]

Simple HTTP request handler with GET and HEAD commands.

This serves files from the current directory and any of its
subdirectories. The MIME type for files is determined by
calling the .guess_type() method.

The GET and HEAD requests are identical except that the HEAD
request omits the actual contents of the file.

	
fileContents = 'A good programmer looks both ways before crossing a one-way street'

	

	
do_GET()

	Serve a GET request.

 toil.test.lib

toil.test.lib

Subpackages

	toil.test.lib.aws
	toil.test.lib.aws.test_iam

	toil.test.lib.aws.test_s3

	toil.test.lib.aws.test_utils

Submodules

	toil.test.lib.dockerTest

	toil.test.lib.test_conversions

	toil.test.lib.test_ec2

	toil.test.lib.test_misc

 toil.test.lib.aws

toil.test.lib.aws

Submodules

	toil.test.lib.aws.test_iam

	toil.test.lib.aws.test_s3

	toil.test.lib.aws.test_utils

 toil.test.lib.dockerTest

toil.test.lib.dockerTest

Module Contents

Classes

	DockerTest

	Tests dockerCall and ensures no containers are left around.

Attributes

	logger

	

	
toil.test.lib.dockerTest.logger

	

	
class toil.test.lib.dockerTest.DockerTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.lib.dockerTest.DockerTest]

Tests dockerCall and ensures no containers are left around.
When running tests you may optionally set the TOIL_TEST_TEMP environment
variable to the path of a directory where you want temporary test files be
placed. The directory will be created if it doesn’t exist. The path may be
relative in which case it will be assumed to be relative to the project
root. If TOIL_TEST_TEMP is not defined, temporary files and directories will
be created in the system’s default location for such files and any temporary
files or directories left over from tests will be removed automatically
removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
testDockerClean(caching=False, detached=True, rm=True, deferParam=None)

	Run the test container that creates a file in the work dir, and sleeps
for 5 minutes.
Ensure that the calling job gets SIGKILLed after a minute, leaving
behind the spooky/ghost/zombie container. Ensure that the container is
killed on batch system shutdown (through the deferParam mechanism).

	
testDockerClean_CRx_FORGO()

	

	
testDockerClean_CRx_STOP()

	

	
testDockerClean_CRx_RM()

	

	
testDockerClean_CRx_None()

	

	
testDockerClean_CxD_FORGO()

	

	
testDockerClean_CxD_STOP()

	

	
testDockerClean_CxD_RM()

	

	
testDockerClean_CxD_None()

	

	
testDockerClean_Cxx_FORGO()

	

	
testDockerClean_Cxx_STOP()

	

	
testDockerClean_Cxx_RM()

	

	
testDockerClean_Cxx_None()

	

	
testDockerClean_xRx_FORGO()

	

	
testDockerClean_xRx_STOP()

	

	
testDockerClean_xRx_RM()

	

	
testDockerClean_xRx_None()

	

	
testDockerClean_xxD_FORGO()

	

	
testDockerClean_xxD_STOP()

	

	
testDockerClean_xxD_RM()

	

	
testDockerClean_xxD_None()

	

	
testDockerClean_xxx_FORGO()

	

	
testDockerClean_xxx_STOP()

	

	
testDockerClean_xxx_RM()

	

	
testDockerClean_xxx_None()

	

	
testDockerPipeChain(caching=False)

	

Test for piping API for dockerCall(). Using this API (activated when
list of argument lists is given as parameters), commands a piped
together into a chain.
ex: parameters=[[‘printf’, ‘x

y

	‘], [‘wc’, ‘-l’]] should execute:
	
printf ‘x

y

‘ | wc -l

	
testDockerPipeChainErrorDetection(caching=False)

	By default, executing cmd1 | cmd2 | … | cmdN, will only return an
error if cmdN fails. This can lead to all manor of errors being
silently missed. This tests to make sure that the piping API for
dockerCall() throws an exception if non-last commands in the chain fail.

	
testNonCachingDockerChain()

	

	
testNonCachingDockerChainErrorDetection()

	

	
testDockerLogs(stream=False, demux=False)

	Test for the different log outputs when deatch=False.

	
testDockerLogs_Stream()

	

	
testDockerLogs_Demux()

	

	
testDockerLogs_Demux_Stream()

	

 toil.test.lib.test_conversions

toil.test.lib.test_conversions

Module Contents

Classes

	ConversionTest

	A common base class for Toil tests.

Attributes

	logger

	

	
toil.test.lib.test_conversions.logger

	

	
class toil.test.lib.test_conversions.ConversionTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.lib.test_conversions.ConversionTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
test_convert()

	

	
test_human2bytes()

	

	
test_hms_duration_to_seconds()

	

 toil.test.lib.test_ec2

toil.test.lib.test_ec2

Module Contents

Classes

	FlatcarFeedTest

	Test accessing the FLatcar AMI release feed, independent of the AWS API

	AMITest

	A common base class for Toil tests.

Attributes

	logger

	

	
toil.test.lib.test_ec2.logger

	

	
class toil.test.lib.test_ec2.FlatcarFeedTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.lib.test_ec2.FlatcarFeedTest]

Test accessing the FLatcar AMI release feed, independent of the AWS API

	
test_parse_archive_feed()

	Make sure we can get a Flatcar release from the Internet Archive.

	
test_parse_beta_feed()

	Make sure we can get a Flatcar release from the beta channel.

	
test_parse_stable_feed()

	Make sure we can get a Flatcar release from the stable channel.

	
test_bypass_stable_feed()

	Make sure we can either get or safely not get a Flatcar release from the stable channel.

	
class toil.test.lib.test_ec2.AMITest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.lib.test_ec2.AMITest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
test_fetch_flatcar()

	

	
test_fetch_arm_flatcar()

	Test flatcar AMI finder architecture parameter.

 toil.test.lib.test_misc

toil.test.lib.test_misc

Module Contents

Classes

	UserNameAvailableTest

	Make sure we can get user names when they are available.

	UserNameUnvailableTest

	Make sure we can get something for a user name when user names are not

	UserNameVeryBrokenTest

	Make sure we can get something for a user name when user name fetching is

Attributes

	logger

	

	
toil.test.lib.test_misc.logger

	

	
class toil.test.lib.test_misc.UserNameAvailableTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.lib.test_misc.UserNameAvailableTest]

Make sure we can get user names when they are available.

	
test_get_user_name()

	

	
class toil.test.lib.test_misc.UserNameUnvailableTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.lib.test_misc.UserNameUnvailableTest]

Make sure we can get something for a user name when user names are not
available.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
test_get_user_name()

	

	
class toil.test.lib.test_misc.UserNameVeryBrokenTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.lib.test_misc.UserNameVeryBrokenTest]

Make sure we can get something for a user name when user name fetching is
broken in ways we did not expect.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
test_get_user_name()

	

 toil.test.mesos

toil.test.mesos

Submodules

	toil.test.mesos.MesosDataStructuresTest

	toil.test.mesos.helloWorld

	toil.test.mesos.stress

 toil.test.mesos.MesosDataStructuresTest

toil.test.mesos.MesosDataStructuresTest

Module Contents

Classes

	DataStructuresTest

	A common base class for Toil tests.

	
class toil.test.mesos.MesosDataStructuresTest.DataStructuresTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.mesos.MesosDataStructuresTest.DataStructuresTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
testJobQueue(testJobs=1000)

	The mesos JobQueue sorts MesosShape objects by requirement and
this test ensures that that sorting is what is expected:
non-preemptible jobs groups first, with priority given to large jobs.

 toil.test.mesos.helloWorld

toil.test.mesos.helloWorld

A simple user script for Toil

Module Contents

Functions

	hello_world(job)

	

	hello_world_child(job, hw)

	

	main()

	

Attributes

	childMessage

	

	parentMessage

	

	
toil.test.mesos.helloWorld.childMessage = 'The child job is now running!'

	

	
toil.test.mesos.helloWorld.parentMessage = 'The parent job is now running!'

	

	
toil.test.mesos.helloWorld.hello_world(job)

	

	
toil.test.mesos.helloWorld.hello_world_child(job, hw)

	

	
toil.test.mesos.helloWorld.main()

	

 toil.test.mesos.stress

toil.test.mesos.stress

Module Contents

Classes

	LongTestJob

	Class represents a unit of work in toil.

	LongTestFollowOn

	Class represents a unit of work in toil.

	HelloWorldJob

	Class represents a unit of work in toil.

	HelloWorldFollowOn

	Class represents a unit of work in toil.

Functions

	touchFile(fileStore)

	

	main(numJobs)

	

	
toil.test.mesos.stress.touchFile(fileStore)

	

	
class toil.test.mesos.stress.LongTestJob(numJobs)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.mesos.stress.LongTestJob]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
class toil.test.mesos.stress.LongTestFollowOn

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.mesos.stress.LongTestFollowOn]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
class toil.test.mesos.stress.HelloWorldJob(i)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.mesos.stress.HelloWorldJob]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
class toil.test.mesos.stress.HelloWorldFollowOn(i)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.mesos.stress.HelloWorldFollowOn]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
toil.test.mesos.stress.main(numJobs)

	

 toil.test.provisioners

toil.test.provisioners

Subpackages

	toil.test.provisioners.aws
	toil.test.provisioners.aws.awsProvisionerTest

Submodules

	toil.test.provisioners.clusterScalerTest

	toil.test.provisioners.clusterTest

	toil.test.provisioners.gceProvisionerTest

	toil.test.provisioners.provisionerTest

	toil.test.provisioners.restartScript

 toil.test.provisioners.aws

toil.test.provisioners.aws

Submodules

	toil.test.provisioners.aws.awsProvisionerTest

 toil.test.provisioners.clusterScalerTest

toil.test.provisioners.clusterScalerTest

Module Contents

Classes

	BinPackingTest

	A common base class for Toil tests.

	ClusterScalerTest

	A common base class for Toil tests.

	ScalerThreadTest

	A common base class for Toil tests.

	MockBatchSystemAndProvisioner

	Mimics a leader, job batcher, provisioner and scalable batch system.

Attributes

	logger

	

	c4_8xlarge_preemptible

	

	c4_8xlarge

	

	r3_8xlarge

	

	r5_2xlarge

	

	r5_4xlarge

	

	t2_micro

	

	
toil.test.provisioners.clusterScalerTest.logger

	

	
toil.test.provisioners.clusterScalerTest.c4_8xlarge_preemptible

	

	
toil.test.provisioners.clusterScalerTest.c4_8xlarge

	

	
toil.test.provisioners.clusterScalerTest.r3_8xlarge

	

	
toil.test.provisioners.clusterScalerTest.r5_2xlarge

	

	
toil.test.provisioners.clusterScalerTest.r5_4xlarge

	

	
toil.test.provisioners.clusterScalerTest.t2_micro

	

	
class toil.test.provisioners.clusterScalerTest.BinPackingTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.provisioners.clusterScalerTest.BinPackingTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
testPackingOneShape()

	Pack one shape and check that the resulting reservations look sane.

	
testSorting()

	Test that sorting is correct: preemptible, then memory, then cores, then disk,
then wallTime.

	
testAddingInitialNode()

	Pack one shape when no nodes are available and confirm that we fit one node properly.

	
testLowTargetTime()

	Test that a low targetTime (0) parallelizes jobs aggressively (1000 queued jobs require
1000 nodes).

Ideally, low targetTime means: Start quickly and maximize parallelization after the
cpu/disk/mem have been packed.

Disk/cpu/mem packing is prioritized first, so we set job resource reqs so that each
t2.micro (1 cpu/8G disk/1G RAM) can only run one job at a time with its resources.

Each job is parametrized to take 300 seconds, so (the minimum of) 1 of them should fit into
each node’s 0 second window, so we expect 1000 nodes.

	
testHighTargetTime()

	Test that a high targetTime (3600 seconds) maximizes packing within the targetTime.

Ideally, high targetTime means: Maximize packing within the targetTime after the
cpu/disk/mem have been packed.

Disk/cpu/mem packing is prioritized first, so we set job resource reqs so that each
t2.micro (1 cpu/8G disk/1G RAM) can only run one job at a time with its resources.

Each job is parametrized to take 300 seconds, so 12 of them should fit into each node’s
3600 second window. 1000/12 = 83.33, so we expect 84 nodes.

	
testZeroResourceJobs()

	Test that jobs requiring zero cpu/disk/mem pack first, regardless of targetTime.

Disk/cpu/mem packing is prioritized first, so we set job resource reqs so that each
t2.micro (1 cpu/8G disk/1G RAM) can run a seemingly infinite number of jobs with its
resources.

Since all jobs should pack cpu/disk/mem-wise on a t2.micro, we expect only one t2.micro to
be provisioned. If we raise this, as in testLowTargetTime, it will launch 1000 t2.micros.

	
testLongRunningJobs()

	Test that jobs with long run times (especially service jobs) are aggressively parallelized.

This is important, because services are one case where the degree of parallelization
really, really matters. If you have multiple services, they may all need to be running
simultaneously before any real work can be done.

Despite setting globalTargetTime=3600, this should launch 1000 t2.micros because each job’s
estimated runtime (30000 seconds) extends well beyond 3600 seconds.

	
run1000JobsOnMicros(jobCores, jobMem, jobDisk, jobTime, globalTargetTime)

	Test packing 1000 jobs on t2.micros. Depending on the targetTime and resources,
these should pack differently.

	
testPathologicalCase()

	Test a pathological case where only one node can be requested to fit months’ worth of jobs.

If the reservation is extended to fit a long job, and the
bin-packer naively searches through all the reservation slices
to find the first slice that fits, it will happily assign the
first slot that fits the job, even if that slot occurs days in
the future.

	
testJobTooLargeForAllNodes()

	If a job is too large for all node types, the scaler should print a
warning, but definitely not crash.

	
class toil.test.provisioners.clusterScalerTest.ClusterScalerTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.provisioners.clusterScalerTest.ClusterScalerTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
testRounding()

	Test to make sure the ClusterScaler’s rounding rounds properly.

	
testMaxNodes()

	Set the scaler to be very aggressive, give it a ton of jobs, and
make sure it doesn’t go over maxNodes.

	
testMinNodes()

	Without any jobs queued, the scaler should still estimate “minNodes” nodes.

	
testPreemptibleDeficitResponse()

	When a preemptible deficit was detected by a previous run of the
loop, the scaler should add non-preemptible nodes to
compensate in proportion to preemptibleCompensation.

	
testPreemptibleDeficitIsSet()

	Make sure that updateClusterSize sets the preemptible deficit if
it can’t launch preemptible nodes properly. That way, the
deficit can be communicated to the next run of
estimateNodeCount.

	
testNoLaunchingIfDeltaAlreadyMet()

	Check that the scaler doesn’t try to launch “0” more instances if
the delta was able to be met by unignoring nodes.

	
testBetaInertia()

	

	
test_overhead_accounting_large()

	If a node has a certain raw memory or disk capacity, that won’t all be
available when it actually comes up; some disk and memory will be used
by the OS, and the backing scheduler (Mesos, Kubernetes, etc.).

Make sure this overhead is accounted for for large nodes.

	
test_overhead_accounting_small()

	If a node has a certain raw memory or disk capacity, that won’t all be
available when it actually comes up; some disk and memory will be used
by the OS, and the backing scheduler (Mesos, Kubernetes, etc.).

Make sure this overhead is accounted for for small nodes.

	
test_overhead_accounting_observed()

	If a node has a certain raw memory or disk capacity, that won’t all be
available when it actually comes up; some disk and memory will be used
by the OS, and the backing scheduler (Mesos, Kubernetes, etc.).

Make sure this overhead is accounted for so that real-world observed
failures cannot happen again.

	
class toil.test.provisioners.clusterScalerTest.ScalerThreadTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.provisioners.clusterScalerTest.ScalerThreadTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
testClusterScaling()

	Test scaling for a batch of non-preemptible jobs and no preemptible jobs (makes debugging
easier).

	
testClusterScalingMultipleNodeTypes()

	

	
testClusterScalingWithPreemptibleJobs()

	Test scaling simultaneously for a batch of preemptible and non-preemptible jobs.

	
class toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner(config, secondsPerJob)

	Bases: toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem, toil.provisioners.abstractProvisioner.AbstractProvisioner

[image: Inheritance diagram of toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner]

Mimics a leader, job batcher, provisioner and scalable batch system.

	
start()

	

	
shutDown()

	

	
nodeInUse(nodeIP)

	Can be used to determine if a worker node is running any tasks. If the node is doesn’t
exist, this function should simply return False.

	Parameters

	nodeIP – The worker nodes private IP address

	Returns

	True if the worker node has been issued any tasks, else False

	
ignoreNode(nodeAddress)

	Stop sending jobs to this node. Used in autoscaling
when the autoscaler is ready to terminate a node, but
jobs are still running. This allows the node to be terminated
after the current jobs have finished.

	Parameters

	nodeAddress – IP address of node to ignore.

	
unignoreNode(nodeAddress)

	Stop ignoring this address, presumably after
a node with this address has been terminated. This allows for the
possibility of a new node having the same address as a terminated one.

	
supportedClusterTypes()

	Get all the cluster types that this provisioner implementation
supports.

	
createClusterSettings()

	Initialize class for a new cluster, to be deployed, when running
outside the cloud.

	
readClusterSettings()

	Initialize class from an existing cluster. This method assumes that
the instance we are running on is the leader.

Implementations must call _setLeaderWorkerAuthentication().

	
setAutoscaledNodeTypes(node_types)

	Set node types, shapes and spot bids for Toil-managed autoscaling.
:param nodeTypes: A list of node types, as parsed with parse_node_types.

	Parameters

	node_types (List[Tuple[Set[toil.provisioners.abstractProvisioner.Shape], Optional[float [https://docs.python.org/3/library/functions.html#float]]]]) –

	
getProvisionedWorkers(instance_type=None, preemptible=None)

	Returns a list of Node objects, each representing a worker node in the cluster

	Parameters

	preemptible – If True only return preemptible nodes else return non-preemptible nodes

	Returns

	list of Node

	
terminateNodes(nodes)

	Terminate the nodes represented by given Node objects

	Parameters

	nodes – list of Node objects

	
remainingBillingInterval(node)

	

	
addJob(jobShape, preemptible=False)

	Add a job to the job queue

	
getNumberOfJobsIssued(preemptible=None)

	

	
getJobs()

	

	
getNodes(preemptible=False, timeout=600)

	Returns a dictionary mapping node identifiers of preemptible or non-preemptible nodes to
NodeInfo objects, one for each node.

	Parameters

	
	preemptible (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – If True (False) only (non-)preemptible nodes will be returned.
If None, all nodes will be returned.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) –

	
addNodes(nodeTypes, numNodes, preemptible)

	Used to add worker nodes to the cluster

	Parameters

	
	numNodes – The number of nodes to add

	preemptible – whether or not the nodes will be preemptible

	spotBid – The bid for preemptible nodes if applicable (this can be set in config, also).

	nodeTypes (Set[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Returns

	number of nodes successfully added

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
getNodeShape(nodeType, preemptible=False)

	The shape of a preemptible or non-preemptible node managed by this provisioner. The node
shape defines key properties of a machine, such as its number of cores or the time
between billing intervals.

	Parameters

	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Instance type name to return the shape of.

	Return type

	Shape

	
getWorkersInCluster(nodeShape)

	

	
launchCluster(leaderNodeType, keyName, userTags=None, vpcSubnet=None, leaderStorage=50, nodeStorage=50, botoPath=None, **kwargs)

	Initialize a cluster and create a leader node.

Implementations must call _setLeaderWorkerAuthentication() with the
leader so that workers can be launched.

	Parameters

	
	leaderNodeType – The leader instance.

	leaderStorage – The amount of disk to allocate to the leader in gigabytes.

	owner – Tag identifying the owner of the instances.

	
destroyCluster()

	Terminates all nodes in the specified cluster and cleans up all resources associated with the
cluster.
:param clusterName: identifier of the cluster to terminate.

	Return type

	None

	
getLeader()

	
	Returns

	The leader node.

	
getNumberOfNodes(nodeType=None, preemptible=None)

	

 toil.test.provisioners.clusterTest

toil.test.provisioners.clusterTest

Module Contents

Classes

	AbstractClusterTest

	A common base class for Toil tests.

Attributes

	log

	

	
toil.test.provisioners.clusterTest.log

	

	
class toil.test.provisioners.clusterTest.AbstractClusterTest(methodName)

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.provisioners.clusterTest.AbstractClusterTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
python()

	Return the full path to the venv Python on the leader.

	
pip()

	Return the full path to the venv pip on the leader.

	
destroyCluster()

	Destroy the cluster we built, if it exists.

Succeeds if the cluster does not currently exist.

	Return type

	None

	
setUp()

	Set up for the test.
Must be overridden to call this method and set self.jobStore.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
sshUtil(command)

	Run the given command on the cluster.
Raise subprocess.CalledProcessError if it fails.

	
createClusterUtil(args=None)

	

	
launchCluster()

	

 toil.test.provisioners.gceProvisionerTest

toil.test.provisioners.gceProvisionerTest

Module Contents

Classes

	AbstractGCEAutoscaleTest

	A common base class for Toil tests.

	GCEAutoscaleTest

	A common base class for Toil tests.

	GCEStaticAutoscaleTest

	Runs the tests on a statically provisioned cluster with autoscaling enabled.

	GCEAutoscaleTestMultipleNodeTypes

	A common base class for Toil tests.

	GCERestartTest

	This test insures autoscaling works on a restarted Toil run

Attributes

	log

	

	
toil.test.provisioners.gceProvisionerTest.log

	

	
class toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest(methodName)

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
projectID

	

	
sshUtil(command)

	

	
rsyncUtil(src, dest)

	

	
destroyClusterUtil()

	

	
createClusterUtil(args=None)

	

	
cleanJobStoreUtil()

	

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
launchCluster()

	

	
class toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTest(name)

	Bases: AbstractGCEAutoscaleTest

[image: Inheritance diagram of toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
launchCluster()

	

	
testAutoScale()

	

	
testSpotAutoScale()

	

	
class toil.test.provisioners.gceProvisionerTest.GCEStaticAutoscaleTest(name)

	Bases: GCEAutoscaleTest

[image: Inheritance diagram of toil.test.provisioners.gceProvisionerTest.GCEStaticAutoscaleTest]

Runs the tests on a statically provisioned cluster with autoscaling enabled.

	
launchCluster()

	

	
class toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTestMultipleNodeTypes(name)

	Bases: AbstractGCEAutoscaleTest

[image: Inheritance diagram of toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTestMultipleNodeTypes]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
testAutoScale()

	

	
class toil.test.provisioners.gceProvisionerTest.GCERestartTest(name)

	Bases: AbstractGCEAutoscaleTest

[image: Inheritance diagram of toil.test.provisioners.gceProvisionerTest.GCERestartTest]

This test insures autoscaling works on a restarted Toil run

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
testAutoScaledCluster()

	

 toil.test.provisioners.provisionerTest

toil.test.provisioners.provisionerTest

Module Contents

Classes

	ProvisionerTest

	A common base class for Toil tests.

Attributes

	log

	

	
toil.test.provisioners.provisionerTest.log

	

	
class toil.test.provisioners.provisionerTest.ProvisionerTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.provisioners.provisionerTest.ProvisionerTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
test_node_type_parsing()

	
	Return type

	None

 toil.test.provisioners.restartScript

toil.test.provisioners.restartScript

Module Contents

Functions

	f0(job)

	

Attributes

	parser

	

	
toil.test.provisioners.restartScript.f0(job)

	

	
toil.test.provisioners.restartScript.parser

	

 toil.test.server

toil.test.server

Submodules

	toil.test.server.serverTest

 toil.test.server.serverTest

toil.test.server.serverTest

Module Contents

Classes

	ToilServerUtilsTest

	Tests for the utility functions used by the Toil server.

	hidden

	

	FileStateStoreTest

	Test file-based state storage.

	FileStateStoreURLTest

	Test file-based state storage using URLs instead of local paths.

	BucketUsingTest

	Base class for tests that need a bucket.

	AWSStateStoreTest

	Test AWS-based state storage.

	AbstractToilWESServerTest

	Class for server tests that provides a self.app in testing mode.

	ToilWESServerBenchTest

	Tests for Toil's Workflow Execution Service API that don't run workflows.

	ToilWESServerWorkflowTest

	Tests of the WES server running workflows.

	ToilWESServerCeleryWorkflowTest

	End-to-end workflow-running tests against Celery.

	ToilWESServerCeleryS3StateWorkflowTest

	Test the server with Celery and state stored in S3.

Attributes

	logger

	

	
toil.test.server.serverTest.logger

	

	
class toil.test.server.serverTest.ToilServerUtilsTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.server.serverTest.ToilServerUtilsTest]

Tests for the utility functions used by the Toil server.

	
test_workflow_canceling_recovery()

	Make sure that a workflow in CANCELING state will be recovered to a
terminal state eventually even if the workflow runner Celery task goes
away without flipping the state.

	
class toil.test.server.serverTest.hidden

	
	
class AbstractStateStoreTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.server.serverTest.hidden.AbstractStateStoreTest]

Basic tests for state stores.

	
abstract get_state_store()

	Make a state store to test, on a single fixed URL.

	Return type

	AbstractStateStore

	
test_state_store()

	Make sure that the state store under test can store and load keys.

	Return type

	None

	
class toil.test.server.serverTest.FileStateStoreTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.server.serverTest.FileStateStoreTest]

Test file-based state storage.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	Return type

	None

	
get_state_store()

	Make a state store to test, on a single fixed local path.

	Return type

	AbstractStateStore

	
class toil.test.server.serverTest.FileStateStoreURLTest(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.server.serverTest.FileStateStoreURLTest]

Test file-based state storage using URLs instead of local paths.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	Return type

	None

	
get_state_store()

	Make a state store to test, on a single fixed URL.

	Return type

	AbstractStateStore

	
class toil.test.server.serverTest.BucketUsingTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.server.serverTest.BucketUsingTest]

Base class for tests that need a bucket.

	
region: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
s3_resource: Optional[mypy_boto3_s3.S3ServiceResource]

	

	
bucket: Optional[mypy_boto3_s3.service_resource.Bucket]

	

	
bucket_name: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
classmethod setUpClass()

	Set up the class with a single pre-existing AWS bucket for all tests.

	Return type

	None

	
classmethod tearDownClass()

	Hook method for deconstructing the class fixture after running all tests in the class.

	Return type

	None

	
class toil.test.server.serverTest.AWSStateStoreTest(methodName='runTest')

	Bases: hidden, BucketUsingTest

[image: Inheritance diagram of toil.test.server.serverTest.AWSStateStoreTest]

Test AWS-based state storage.

	
bucket_path = 'prefix/of/keys'

	

	
get_state_store()

	Make a state store to test, on a single fixed URL.

	Return type

	AbstractStateStore

	
test_state_store_paths()

	Make sure that the S3 state store puts things in the right places.

We don’t really care about the exact internal structure, but we do
care about actually being under the path we are supposed to use.

	Return type

	None

	
class toil.test.server.serverTest.AbstractToilWESServerTest(*args, **kwargs)

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.server.serverTest.AbstractToilWESServerTest]

Class for server tests that provides a self.app in testing mode.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	Return type

	None

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	Return type

	None

	
class toil.test.server.serverTest.ToilWESServerBenchTest(*args, **kwargs)

	Bases: AbstractToilWESServerTest

[image: Inheritance diagram of toil.test.server.serverTest.ToilWESServerBenchTest]

Tests for Toil’s Workflow Execution Service API that don’t run workflows.

	
test_home()

	Test the homepage endpoint.

	Return type

	None

	
test_health()

	Test the health check endpoint.

	Return type

	None

	
test_get_service_info()

	Test the GET /service-info endpoint.

	Return type

	None

	
class toil.test.server.serverTest.ToilWESServerWorkflowTest(*args, **kwargs)

	Bases: AbstractToilWESServerTest

[image: Inheritance diagram of toil.test.server.serverTest.ToilWESServerWorkflowTest]

Tests of the WES server running workflows.

	
run_zip_workflow(zip_path, include_message=True, include_params=True)

	We have several zip file tests; this submits a zip file and makes sure it ran OK.

If include_message is set to False, don’t send a “message” argument in workflow_params.
If include_params is also set to False, don’t send workflow_params at all.

	Parameters

	
	zip_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	include_message (bool [https://docs.python.org/3/library/functions.html#bool]) –

	include_params (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
test_run_workflow_relative_url_no_attachments_fails()

	Test run example CWL workflow from relative workflow URL but with no attachments.

	Return type

	None

	
test_run_workflow_relative_url()

	Test run example CWL workflow from relative workflow URL.

	Return type

	None

	
test_run_workflow_https_url()

	Test run example CWL workflow from the Internet.

	Return type

	None

	
test_run_workflow_single_file_zip()

	Test run example CWL workflow from single-file ZIP.

	Return type

	None

	
test_run_workflow_multi_file_zip()

	Test run example CWL workflow from multi-file ZIP.

	Return type

	None

	
test_run_workflow_manifest_zip()

	Test run example CWL workflow from ZIP with manifest.

	Return type

	None

	
test_run_workflow_inputs_zip()

	Test run example CWL workflow from ZIP without manifest but with inputs.

	Return type

	None

	
test_run_workflow_manifest_and_inputs_zip()

	Test run example CWL workflow from ZIP with manifest and inputs.

	Return type

	None

	
test_run_workflow_no_params_zip()

	Test run example CWL workflow from ZIP without workflow_params.

	Return type

	None

	
test_run_and_cancel_workflows()

	Run two workflows, cancel one of them, and make sure they all exist.

	Return type

	None

	
class toil.test.server.serverTest.ToilWESServerCeleryWorkflowTest(*args, **kwargs)

	Bases: ToilWESServerWorkflowTest

[image: Inheritance diagram of toil.test.server.serverTest.ToilWESServerCeleryWorkflowTest]

End-to-end workflow-running tests against Celery.

	
class toil.test.server.serverTest.ToilWESServerCeleryS3StateWorkflowTest(*args, **kwargs)

	Bases: ToilWESServerWorkflowTest, BucketUsingTest

[image: Inheritance diagram of toil.test.server.serverTest.ToilWESServerCeleryS3StateWorkflowTest]

Test the server with Celery and state stored in S3.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	Return type

	None

 toil.test.sort

toil.test.sort

Submodules

	toil.test.sort.restart_sort

	toil.test.sort.sort

	toil.test.sort.sortTest

 toil.test.sort.restart_sort

toil.test.sort.restart_sort

A demonstration of toil. Sorts the lines of a file into ascending order by doing a parallel merge sort.
This is an intentionally buggy version that doesn’t include restart() for testing purposes.

Module Contents

Functions

	setup(job, inputFile, N, downCheckpoints, options)

	Sets up the sort.

	down(job, inputFileStoreID, N, path, downCheckpoints, ...)

	Input is a file, a subdivision size N, and a path in the hierarchy of jobs.

	up(job, inputFileID1, inputFileID2, path, options[, ...])

	Merges the two files and places them in the output.

	sort(file)

	Sorts the given file.

	merge(fileHandle1, fileHandle2, outputFileHandle)

	Merges together two files maintaining sorted order.

	copySubRangeOfFile(inputFile, fileStart, fileEnd)

	Copies the range (in bytes) between fileStart and fileEnd to the given

	getMidPoint(file, fileStart, fileEnd)

	Finds the point in the file to split.

	makeFileToSort(fileName[, lines, lineLen])

	

	main([options])

	

Attributes

	defaultLines

	

	defaultLineLen

	

	sortMemory

	

	
toil.test.sort.restart_sort.defaultLines = 1000

	

	
toil.test.sort.restart_sort.defaultLineLen = 50

	

	
toil.test.sort.restart_sort.sortMemory = '600M'

	

	
toil.test.sort.restart_sort.setup(job, inputFile, N, downCheckpoints, options)

	Sets up the sort.
Returns the FileID of the sorted file

	
toil.test.sort.restart_sort.down(job, inputFileStoreID, N, path, downCheckpoints, options, memory=sortMemory)

	Input is a file, a subdivision size N, and a path in the hierarchy of jobs.
If the range is larger than a threshold N the range is divided recursively and
a follow on job is then created which merges back the results else
the file is sorted and placed in the output.

	
toil.test.sort.restart_sort.up(job, inputFileID1, inputFileID2, path, options, memory=sortMemory)

	Merges the two files and places them in the output.

	
toil.test.sort.restart_sort.sort(file)

	Sorts the given file.

	
toil.test.sort.restart_sort.merge(fileHandle1, fileHandle2, outputFileHandle)

	Merges together two files maintaining sorted order.

All handles must be text-mode streams.

	
toil.test.sort.restart_sort.copySubRangeOfFile(inputFile, fileStart, fileEnd)

	Copies the range (in bytes) between fileStart and fileEnd to the given
output file handle.

	
toil.test.sort.restart_sort.getMidPoint(file, fileStart, fileEnd)

	Finds the point in the file to split.
Returns an int i such that fileStart <= i < fileEnd

	
toil.test.sort.restart_sort.makeFileToSort(fileName, lines=defaultLines, lineLen=defaultLineLen)

	

	
toil.test.sort.restart_sort.main(options=None)

	

 toil.test.sort.sort

toil.test.sort.sort

A demonstration of toil. Sorts the lines of a file into ascending order by doing a parallel merge sort.

Module Contents

Functions

	setup(job, inputFile, N, downCheckpoints, options)

	Sets up the sort.

	down(job, inputFileStoreID, N, path, downCheckpoints, ...)

	Input is a file, a subdivision size N, and a path in the hierarchy of jobs.

	up(job, inputFileID1, inputFileID2, path, options[, ...])

	Merges the two files and places them in the output.

	sort(file)

	Sorts the given file.

	merge(fileHandle1, fileHandle2, outputFileHandle)

	Merges together two files maintaining sorted order.

	copySubRangeOfFile(inputFile, fileStart, fileEnd)

	Copies the range (in bytes) between fileStart and fileEnd to the given

	getMidPoint(file, fileStart, fileEnd)

	Finds the point in the file to split.

	makeFileToSort(fileName[, lines, lineLen])

	

	main([options])

	

Attributes

	defaultLines

	

	defaultLineLen

	

	sortMemory

	

	
toil.test.sort.sort.defaultLines = 1000

	

	
toil.test.sort.sort.defaultLineLen = 50

	

	
toil.test.sort.sort.sortMemory = '600M'

	

	
toil.test.sort.sort.setup(job, inputFile, N, downCheckpoints, options)

	Sets up the sort.
Returns the FileID of the sorted file

	
toil.test.sort.sort.down(job, inputFileStoreID, N, path, downCheckpoints, options, memory=sortMemory)

	Input is a file, a subdivision size N, and a path in the hierarchy of jobs.
If the range is larger than a threshold N the range is divided recursively and
a follow on job is then created which merges back the results else
the file is sorted and placed in the output.

	
toil.test.sort.sort.up(job, inputFileID1, inputFileID2, path, options, memory=sortMemory)

	Merges the two files and places them in the output.

	
toil.test.sort.sort.sort(file)

	Sorts the given file.

	
toil.test.sort.sort.merge(fileHandle1, fileHandle2, outputFileHandle)

	Merges together two files maintaining sorted order.

All handles must be text-mode streams.

	
toil.test.sort.sort.copySubRangeOfFile(inputFile, fileStart, fileEnd)

	Copies the range (in bytes) between fileStart and fileEnd to the given
output file handle.

	
toil.test.sort.sort.getMidPoint(file, fileStart, fileEnd)

	Finds the point in the file to split.
Returns an int i such that fileStart <= i < fileEnd

	
toil.test.sort.sort.makeFileToSort(fileName, lines=defaultLines, lineLen=defaultLineLen)

	

	
toil.test.sort.sort.main(options=None)

	

 toil.test.sort.sortTest

toil.test.sort.sortTest

Module Contents

Classes

	SortTest

	Tests Toil by sorting a file in parallel on various combinations of job stores and batch

Functions

	runMain(options)

	make sure the output file is deleted every time main is run

Attributes

	logger

	

	defaultLineLen

	

	defaultLines

	

	defaultN

	

	
toil.test.sort.sortTest.logger

	

	
toil.test.sort.sortTest.defaultLineLen

	

	
toil.test.sort.sortTest.defaultLines

	

	
toil.test.sort.sortTest.defaultN

	

	
toil.test.sort.sortTest.runMain(options)

	make sure the output file is deleted every time main is run

	
class toil.test.sort.sortTest.SortTest(methodName='runTest')

	Bases: toil.test.ToilTest, toil.batchSystems.mesos.test.MesosTestSupport, toil.test.batchSystems.parasolTestSupport.ParasolTestSupport

[image: Inheritance diagram of toil.test.sort.sortTest.SortTest]

Tests Toil by sorting a file in parallel on various combinations of job stores and batch
systems.

	
testNo = 5

	

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
testAwsSingle()

	

	
testAwsMesos()

	

	
testFileMesos()

	

	
testGoogleSingle()

	

	
testGoogleMesos()

	

	
testFileSingle()

	

	
testFileSingleNonCaching()

	

	
testFileSingleCheckpoints()

	

	
testFileSingle10000()

	

	
testFileGridEngine()

	

	
testFileTorqueEngine()

	

	
testFileParasol()

	

	
testSort()

	

	
testMerge()

	

	
testCopySubRangeOfFile()

	

	
testGetMidPoint()

	

 toil.test.src

toil.test.src

Submodules

	toil.test.src.autoDeploymentTest

	toil.test.src.busTest

	toil.test.src.checkpointTest

	toil.test.src.deferredFunctionTest

	toil.test.src.dockerCheckTest

	toil.test.src.fileStoreTest

	toil.test.src.helloWorldTest

	toil.test.src.importExportFileTest

	toil.test.src.jobDescriptionTest

	toil.test.src.jobEncapsulationTest

	toil.test.src.jobFileStoreTest

	toil.test.src.jobServiceTest

	toil.test.src.jobTest

	toil.test.src.miscTests

	toil.test.src.promisedRequirementTest

	toil.test.src.promisesTest

	toil.test.src.realtimeLoggerTest

	toil.test.src.regularLogTest

	toil.test.src.resourceTest

	toil.test.src.restartDAGTest

	toil.test.src.resumabilityTest

	toil.test.src.retainTempDirTest

	toil.test.src.systemTest

	toil.test.src.threadingTest

	toil.test.src.toilContextManagerTest

	toil.test.src.userDefinedJobArgTypeTest

	toil.test.src.workerTest

 toil.test.src.autoDeploymentTest

toil.test.src.autoDeploymentTest

Module Contents

Classes

	AutoDeploymentTest

	Tests various auto-deployment scenarios. Using the appliance, i.e. a docker container,

Attributes

	logger

	

	
toil.test.src.autoDeploymentTest.logger

	

	
class toil.test.src.autoDeploymentTest.AutoDeploymentTest(methodName='runTest')

	Bases: toil.test.ApplianceTestSupport

[image: Inheritance diagram of toil.test.src.autoDeploymentTest.AutoDeploymentTest]

Tests various auto-deployment scenarios. Using the appliance, i.e. a docker container,
for these tests allows for running worker processes on the same node as the leader process
while keeping their file systems separate from each other and the leader process. Separate
file systems are crucial to prove that auto-deployment does its job.

	
sitePackages

	

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
testRestart()

	Test whether auto-deployment works on restart.

	
testSplitRootPackages()

	Test whether auto-deployment works with a virtualenv in which jobs are defined in
completely separate branches of the package hierarchy. Initially, auto-deployment did
deploy the entire virtualenv but jobs could only be defined in one branch of the package
hierarchy. We define a branch as the maximum set of fully qualified package paths that
share the same first component. IOW, a.b and a.c are in the same branch, while a.b and
d.c are not.

	
testUserTypesInJobFunctionArgs()

	Test encapsulated, function-wrapping jobs where the function arguments reference
user-defined types.

Mainly written to cover https://github.com/BD2KGenomics/toil/issues/1259 but then also
revealed https://github.com/BD2KGenomics/toil/issues/1278.

	
testDeferralWithConcurrentEncapsulation()

	Ensure that the following DAG succeeds:

┌───────────┐
│ Root (W1) │
└───────────┘

│

┌──────────┴─────────┐
▼ ▼

┌────────────────┐ ┌────────────────────┐
│ Deferring (W2) │ │ Encapsulating (W3) │═══════════════╗
└────────────────┘ └────────────────────┘ ║

│ ║
▼ ▼

┌───────────────────┐ ┌────────────────┐
│ Encapsulated (W3) │ │ Follow-on (W6) │
└───────────────────┘ └────────────────┘

│ │

┌───────┴────────┐ │
▼ ▼ ▼

┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Dummy 1 (W4) │ │ Dummy 2 (W5) │ │ Last (W6) │
└──────────────┘ └──────────────┘ └──────────────┘

The Wn numbers denote the worker processes that a particular job is run in. Deferring
adds a deferred function and then runs for a long time. The deferred function will be
present in the cache state for the duration of Deferred. Follow-on is the generic Job
instance that’s added by encapsulating a job. It runs on the same worker node but in a
separate worker process, as the first job in that worker. Because …

1) it is the first job in its worker process (the user script has not been made available
on the sys.path by a previous job in that worker) and

	it shares the cache state with the Deferring job and

	it is an instance of Job (and so does not introduce the user script to sys.path itself),

… it might cause problems with deserializing a defered function defined in the user script.

Encapsulated has two children to ensure that Follow-on is run in a separate worker.

	
testDeferralWithFailureAndEncapsulation()

	Ensure that the following DAG succeeds:

┌───────────┐
│ Root (W1) │
└───────────┘

│

┌──────────┴─────────┐
▼ ▼

┌────────────────┐ ┌────────────────────┐
│ Deferring (W2) │ │ Encapsulating (W3) │═══════════════════════╗
└────────────────┘ └────────────────────┘ ║

│ ║
▼ ▼

┌───────────────────┐ ┌────────────────┐
│ Encapsulated (W3) │════════════╗ │ Follow-on (W7) │
└───────────────────┘ ║ └────────────────┘

│ ║

┌──────┴──────┐ ║
▼ ▼ ▼

┌────────────┐┌────────────┐ ┌──────────────┐
│ Dummy (W4) ││ Dummy (W5) │ │ Trigger (W6) │
└────────────┘└────────────┘ └──────────────┘

Trigger causes Deferring to crash. Follow-on runs next, detects Deferring’s
left-overs and runs the deferred function. Follow-on is an instance of Job and the
first job in its worker process. This test ensures that despite these circumstances,
the user script is loaded before the deferred functions defined in it are being run.

Encapsulated has two children to ensure that Follow-on is run in a new worker. That’s
the only way to guarantee that the user script has not been loaded yet, which would cause
the test to succeed coincidentally. We want to test that auto-deploying and loading of the
user script are done properly before deferred functions are being run and before any
jobs have been executed by that worker.

 toil.test.src.busTest

toil.test.src.busTest

Module Contents

Classes

	MessageBusTest

	A common base class for Toil tests.

Functions

	failing_job_fn(job)

	This function is guaranteed to fail.

Attributes

	logger

	

	
toil.test.src.busTest.logger

	

	
class toil.test.src.busTest.MessageBusTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.busTest.MessageBusTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
test_enum_ints_in_file()

	Make sure writing bus messages to files works with enums.

	Return type

	None

	
test_cross_thread_messaging()

	Make sure message bus works across threads.

	Return type

	None

	
test_restart_without_bus_path()

	Test the ability to restart a workflow when the message bus path used
by the previous attempt is gone.

	Return type

	None

	
toil.test.src.busTest.failing_job_fn(job)

	This function is guaranteed to fail.

	Parameters

	job (toil.job.Job) –

	Return type

	None

 toil.test.src.checkpointTest

toil.test.src.checkpointTest

Module Contents

Classes

	CheckpointTest

	A common base class for Toil tests.

	CheckRetryCount

	Fail N times, succeed on the next try.

	AlwaysFail

	Class represents a unit of work in toil.

	CheckpointFailsFirstTime

	Class represents a unit of work in toil.

	FailOnce

	Fail the first time the workflow is run, but succeed thereafter.

	
class toil.test.src.checkpointTest.CheckpointTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.checkpointTest.CheckpointTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
testCheckpointNotRetried()

	A checkpoint job should not be retried if the workflow has a retryCount of 0.

	
testCheckpointRetriedOnce()

	A checkpoint job should be retried exactly once if the workflow has a retryCount of 1.

	
testCheckpointedRestartSucceeds()

	A checkpointed job should succeed on restart of a failed run if its child job succeeds.

	
class toil.test.src.checkpointTest.CheckRetryCount(numFailuresBeforeSuccess)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.src.checkpointTest.CheckRetryCount]

Fail N times, succeed on the next try.

	
getNumRetries(fileStore)

	Mark a retry in the fileStore, and return the number of retries so far.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
class toil.test.src.checkpointTest.AlwaysFail(memory=None, cores=None, disk=None, accelerators=None, preemptible=None, preemptable=None, unitName='', checkpoint=False, displayName='', descriptionClass=None, local=None)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.src.checkpointTest.AlwaysFail]

Class represents a unit of work in toil.

	Parameters

	
	memory (Optional[ParseableIndivisibleResource]) –

	cores (Optional[ParseableDivisibleResource]) –

	disk (Optional[ParseableIndivisibleResource]) –

	accelerators (Optional[ParseableAcceleratorRequirement]) –

	preemptible (Optional[ParseableFlag]) –

	preemptable (Optional[ParseableFlag]) –

	unitName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	checkpoint (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	displayName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	descriptionClass (Optional[type [https://docs.python.org/3/library/functions.html#type]]) –

	local (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
class toil.test.src.checkpointTest.CheckpointFailsFirstTime

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.src.checkpointTest.CheckpointFailsFirstTime]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
class toil.test.src.checkpointTest.FailOnce(memory=None, cores=None, disk=None, accelerators=None, preemptible=None, preemptable=None, unitName='', checkpoint=False, displayName='', descriptionClass=None, local=None)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.src.checkpointTest.FailOnce]

Fail the first time the workflow is run, but succeed thereafter.

	Parameters

	
	memory (Optional[ParseableIndivisibleResource]) –

	cores (Optional[ParseableDivisibleResource]) –

	disk (Optional[ParseableIndivisibleResource]) –

	accelerators (Optional[ParseableAcceleratorRequirement]) –

	preemptible (Optional[ParseableFlag]) –

	preemptable (Optional[ParseableFlag]) –

	unitName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	checkpoint (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	displayName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	descriptionClass (Optional[type [https://docs.python.org/3/library/functions.html#type]]) –

	local (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

 toil.test.src.deferredFunctionTest

toil.test.src.deferredFunctionTest

Module Contents

Classes

	DeferredFunctionTest

	Test the deferred function system.

Attributes

	logger

	

	
toil.test.src.deferredFunctionTest.logger

	

	
class toil.test.src.deferredFunctionTest.DeferredFunctionTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.deferredFunctionTest.DeferredFunctionTest]

Test the deferred function system.

	
jobStoreType = 'file'

	

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
testDeferredFunctionRunsWithMethod()

	Refer docstring in _testDeferredFunctionRuns.
Test with Method

	
testDeferredFunctionRunsWithClassMethod()

	Refer docstring in _testDeferredFunctionRuns.
Test with Class Method

	
testDeferredFunctionRunsWithLambda()

	Refer docstring in _testDeferredFunctionRuns.
Test with Lambda

	
testDeferredFunctionRunsWithFailures()

	Create 2 non local filesto use as flags. Create a job that registers a function that
deletes one non local file. If that file exists, the job SIGKILLs itself. If it doesn’t
exist, the job registers a second deferred function to delete the second non local file
and exits normally.

Initially the first file exists, so the job should SIGKILL itself and neither deferred
function will run (in fact, the second should not even be registered). On the restart,
the first deferred function should run and the first file should not exist, but the
second one should. We assert the presence of the second, then register the second
deferred function and exit normally. At the end of the test, neither file should exist.

Incidentally, this also tests for multiple registered deferred functions, and the case
where a deferred function fails (since the first file doesn’t exist on the retry).

	
testNewJobsCanHandleOtherJobDeaths()

	Create 2 non-local files and then create 2 jobs. The first job registers a deferred job
to delete the second non-local file, deletes the first non-local file and then kills
itself. The second job waits for the first file to be deleted, then sleeps for a few
seconds and then spawns a child. the child of the second does nothing. However starting
it should handle the untimely demise of the first job and run the registered deferred
function that deletes the first file. We assert the absence of the two files at the
end of the run.

	
testBatchSystemCleanupCanHandleWorkerDeaths()

	Create some non-local files. Create a job that registers a deferred
function to delete the file and then kills its worker.

Assert that the file is missing after the pipeline fails, because we’re
using a single-machine batch system and the leader’s batch system
cleanup will find and run the deferred function.

 toil.test.src.dockerCheckTest

toil.test.src.dockerCheckTest

Module Contents

Classes

	DockerCheckTest

	Tests checking whether a docker image exists or not.

	
class toil.test.src.dockerCheckTest.DockerCheckTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.dockerCheckTest.DockerCheckTest]

Tests checking whether a docker image exists or not.

	
testOfficialUbuntuRepo()

	Image exists. This should pass.

	
testBroadDockerRepo()

	Image exists. This should pass.

	
testBroadDockerRepoBadTag()

	Bad tag. This should raise.

	
testNonexistentRepo()

	Bad image. This should raise.

	
testToilQuayRepo()

	Image exists. Should pass.

	
testBadQuayRepoNTag()

	Bad repo and tag. This should raise.

	
testBadQuayRepo()

	Bad repo. This should raise.

	
testBadQuayTag()

	Bad tag. This should raise.

	
testGoogleRepo()

	Image exists. Should pass.

	
testBadGoogleRepo()

	Bad repo and tag. This should raise.

	
testApplianceParser()

	Test that a specified appliance is parsed correctly.

 toil.test.src.fileStoreTest

toil.test.src.fileStoreTest

Module Contents

Classes

	hidden

	Hiding the abstract test classes from the Unittest loader so it can be inherited in different

	NonCachingFileStoreTestWithFileJobStore

	Abstract tests for the the various functions in

	CachingFileStoreTestWithFileJobStore

	Abstract tests for the the various cache-related functions in

	NonCachingFileStoreTestWithAwsJobStore

	Abstract tests for the the various functions in

	CachingFileStoreTestWithAwsJobStore

	Abstract tests for the the various cache-related functions in

	NonCachingFileStoreTestWithGoogleJobStore

	Abstract tests for the the various functions in

	CachingFileStoreTestWithGoogleJobStore

	Abstract tests for the the various cache-related functions in

Attributes

	testingIsAutomatic

	

	logger

	

	
toil.test.src.fileStoreTest.testingIsAutomatic = True

	

	
toil.test.src.fileStoreTest.logger

	

	
class toil.test.src.fileStoreTest.hidden

	Hiding the abstract test classes from the Unittest loader so it can be inherited in different
test suites for the different job stores.

	
class AbstractFileStoreTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest]

An abstract base class for testing the various general functions described in
:class:toil.fileStores.abstractFileStore.AbstractFileStore

	
jobStoreType

	

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
create_file(content, executable=False)

	

	
testToilIsNotBroken()

	Runs a simple DAG to test if if any features other that caching were broken.

	
testFileStoreLogging()

	Write a couple of files to the jobstore. Delete a couple of them. Read back written
and locally deleted files.

	
testFileStoreOperations()

	Write a couple of files to the jobstore. Delete a couple of them. Read back written
and locally deleted files.

	
testWriteReadGlobalFilePermissions()

	Ensures that uploaded files preserve their file permissions when they
are downloaded again. This function checks that a written executable file
maintains its executability after being read.

	
testWriteExportFileCompatibility()

	Ensures that files created in a job preserve their executable permissions
when they are exported from the leader.

	
testImportReadFileCompatibility()

	Ensures that files imported to the leader preserve their executable permissions
when they are read by the fileStore.

	
testReadWriteFileStreamTextMode()

	Checks if text mode is compatible with file streams.

	
class AbstractNonCachingFileStoreTest(methodName='runTest')

	Bases: hidden.AbstractFileStoreTest

[image: Inheritance diagram of toil.test.src.fileStoreTest.hidden.AbstractNonCachingFileStoreTest]

Abstract tests for the the various functions in
:class:toil.fileStores.nonCachingFileStore.NonCachingFileStore. These
tests are general enough that they can also be used for
:class:toil.fileStores.CachingFileStore.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
class AbstractCachingFileStoreTest(methodName='runTest')

	Bases: hidden.AbstractFileStoreTest

[image: Inheritance diagram of toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest]

Abstract tests for the the various cache-related functions in
:class:toil.fileStores.cachingFileStore.CachingFileStore.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
testExtremeCacheSetup()

	Try to create the cache with bad worker active and then have 10 child jobs try to run in
the chain. This tests whether the cache is created properly even when the job crashes
randomly.

	
testCacheEvictionPartialEvict()

	Ensure the cache eviction happens as expected. Two files (20MB and 30MB) are written
sequentially into the job store in separate jobs. The cache max is force set to 50MB.
A Third Job requests 10MB of disk requiring eviction of the 1st file. Ensure that the
behavior is as expected.

	
testCacheEvictionTotalEvict()

	Ensure the cache eviction happens as expected. Two files (20MB and 30MB) are written
sequentially into the job store in separate jobs. The cache max is force set to 50MB.
A Third Job requests 10MB of disk requiring eviction of the 1st file. Ensure that the
behavior is as expected.

	
testCacheEvictionFailCase()

	Ensure the cache eviction happens as expected. Two files (20MB and 30MB) are written
sequentially into the job store in separate jobs. The cache max is force set to 50MB.
A Third Job requests 10MB of disk requiring eviction of the 1st file. Ensure that the
behavior is as expected.

	
testAsyncWriteWithCaching()

	Ensure the Async Writing of files happens as expected. The first Job forcefully
modifies the cache size to 1GB. The second asks for 1GB of disk and writes a 900MB
file into cache then rewrites it to the job store triggering an async write since the
two unique jobstore IDs point to the same local file. Also, the second write is not
cached since the first was written to cache, and there “isn’t enough space” to cache the
second. Imediately assert that the second write isn’t cached, and is being
asynchronously written to the job store.

Attempting to get the file from the jobstore should not fail.

	
testWriteNonLocalFileToJobStore()

	Write a file not in localTempDir to the job store. Such a file should not be cached.
Ensure the file is not cached.

	
testWriteLocalFileToJobStore()

	Write a file from the localTempDir to the job store. Such a file will be cached by
default. Ensure the file is cached.

	
testReadCacheMissFileFromJobStoreWithoutCachingReadFile()

	Read a file from the file store that does not have a corresponding cached copy. Do not
cache the read file. Ensure the number of links on the file are appropriate.

	
testReadCacheMissFileFromJobStoreWithCachingReadFile()

	Read a file from the file store that does not have a corresponding cached copy. Cache
the read file. Ensure the number of links on the file are appropriate.

	
testReadCachHitFileFromJobStore()

	Read a file from the file store that has a corresponding cached copy. Ensure the number
of links on the file are appropriate.

	
testMultipleJobsReadSameCacheHitGlobalFile()

	Write a local file to the job store (hence adding a copy to cache), then have 10 jobs
read it. Assert cached file size never goes up, assert unused job
required disk space is always:

(a multiple of job reqs) - (number of current file readers * filesize).

At the end, assert the cache shows unused job-required space = 0.

	
testMultipleJobsReadSameCacheMissGlobalFile()

	Write a non-local file to the job store(hence no cached copy), then have 10 jobs read
it. Assert cached file size never goes up, assert unused job
required disk space is always:

(a multiple of job reqs) - (number of current file readers * filesize).

At the end, assert the cache shows unused job-required space = 0.

	
testFileStoreExportFile()

	

	
testReturnFileSizes()

	Write a couple of files to the jobstore. Delete a couple of them.
Read back written and locally deleted files. Ensure that after
every step that the cache is in a valid state.

	
testReturnFileSizesWithBadWorker()

	Write a couple of files to the jobstore. Delete a couple of them.
Read back written and locally deleted files. Ensure that after
every step that the cache is in a valid state.

	
testControlledFailedWorkerRetry()

	Conduct a couple of job store operations. Then die. Ensure that the restarted job is
tracking values in the cache state file appropriately.

	
testRemoveLocalMutablyReadFile()

	If a mutably read file is deleted by the user, it is ok.

	
testRemoveLocalImmutablyReadFile()

	If an immutably read file is deleted by the user, it is not ok.

	
testDeleteLocalFile()

	Test the deletion capabilities of deleteLocalFile

	
testSimultaneousReadsUncachedStream()

	Test many simultaneous read attempts on a file created via a stream
directly to the job store.

	
class toil.test.src.fileStoreTest.NonCachingFileStoreTestWithFileJobStore(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.src.fileStoreTest.NonCachingFileStoreTestWithFileJobStore]

Abstract tests for the the various functions in
:class:toil.fileStores.nonCachingFileStore.NonCachingFileStore. These
tests are general enough that they can also be used for
:class:toil.fileStores.CachingFileStore.

	
jobStoreType = 'file'

	

	
class toil.test.src.fileStoreTest.CachingFileStoreTestWithFileJobStore(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.src.fileStoreTest.CachingFileStoreTestWithFileJobStore]

Abstract tests for the the various cache-related functions in
:class:toil.fileStores.cachingFileStore.CachingFileStore.

	
jobStoreType = 'file'

	

	
class toil.test.src.fileStoreTest.NonCachingFileStoreTestWithAwsJobStore(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.src.fileStoreTest.NonCachingFileStoreTestWithAwsJobStore]

Abstract tests for the the various functions in
:class:toil.fileStores.nonCachingFileStore.NonCachingFileStore. These
tests are general enough that they can also be used for
:class:toil.fileStores.CachingFileStore.

	
jobStoreType = 'aws'

	

	
class toil.test.src.fileStoreTest.CachingFileStoreTestWithAwsJobStore(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.src.fileStoreTest.CachingFileStoreTestWithAwsJobStore]

Abstract tests for the the various cache-related functions in
:class:toil.fileStores.cachingFileStore.CachingFileStore.

	
jobStoreType = 'aws'

	

	
class toil.test.src.fileStoreTest.NonCachingFileStoreTestWithGoogleJobStore(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.src.fileStoreTest.NonCachingFileStoreTestWithGoogleJobStore]

Abstract tests for the the various functions in
:class:toil.fileStores.nonCachingFileStore.NonCachingFileStore. These
tests are general enough that they can also be used for
:class:toil.fileStores.CachingFileStore.

	
jobStoreType = 'google'

	

	
class toil.test.src.fileStoreTest.CachingFileStoreTestWithGoogleJobStore(methodName='runTest')

	Bases: hidden

[image: Inheritance diagram of toil.test.src.fileStoreTest.CachingFileStoreTestWithGoogleJobStore]

Abstract tests for the the various cache-related functions in
:class:toil.fileStores.cachingFileStore.CachingFileStore.

	
jobStoreType = 'google'

	

 toil.test.src.helloWorldTest

toil.test.src.helloWorldTest

Module Contents

Classes

	HelloWorldTest

	A common base class for Toil tests.

	HelloWorld

	Class represents a unit of work in toil.

	FollowOn

	Class represents a unit of work in toil.

Functions

	childFn(job)

	

	
class toil.test.src.helloWorldTest.HelloWorldTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.helloWorldTest.HelloWorldTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
testHelloWorld()

	

	
class toil.test.src.helloWorldTest.HelloWorld

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.src.helloWorldTest.HelloWorld]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
toil.test.src.helloWorldTest.childFn(job)

	

	
class toil.test.src.helloWorldTest.FollowOn(fileId)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.src.helloWorldTest.FollowOn]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

 toil.test.src.importExportFileTest

toil.test.src.importExportFileTest

Module Contents

Classes

	ImportExportFileTest

	A common base class for Toil tests.

	RestartingJob

	Class represents a unit of work in toil.

	
class toil.test.src.importExportFileTest.ImportExportFileTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.importExportFileTest.ImportExportFileTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
create_file(content, executable=False)

	

	
test_import_export_restart_true()

	

	
test_import_export_restart_false()

	

	
test_basic_import_export()

	Ensures that uploaded files preserve their file permissions when they
are downloaded again. This function checks that an imported executable file
maintains its executability after being exported.

	
class toil.test.src.importExportFileTest.RestartingJob(msg_portion_file_id, trigger_file_id, message_portion_2)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.src.importExportFileTest.RestartingJob]

Class represents a unit of work in toil.

	
run(file_store)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

 toil.test.src.jobDescriptionTest

toil.test.src.jobDescriptionTest

Module Contents

Classes

	JobDescriptionTest

	A common base class for Toil tests.

	
class toil.test.src.jobDescriptionTest.JobDescriptionTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.jobDescriptionTest.JobDescriptionTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
testJobDescription()

	Tests the public interface of a JobDescription.

	
testJobDescriptionSequencing()

	

 toil.test.src.jobEncapsulationTest

toil.test.src.jobEncapsulationTest

Module Contents

Classes

	JobEncapsulationTest

	Tests testing the EncapsulationJob class.

Functions

	noOp()

	

	encapsulatedJobFn(job, string, outFile)

	

	
class toil.test.src.jobEncapsulationTest.JobEncapsulationTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.jobEncapsulationTest.JobEncapsulationTest]

Tests testing the EncapsulationJob class.

	
testEncapsulation()

	Tests the Job.encapsulation method, which uses the EncapsulationJob
class.

	
testAddChildEncapsulate()

	Make sure that the encapsulate child does not have two parents
with unique roots.

	
toil.test.src.jobEncapsulationTest.noOp()

	

	
toil.test.src.jobEncapsulationTest.encapsulatedJobFn(job, string, outFile)

	

 toil.test.src.jobFileStoreTest

toil.test.src.jobFileStoreTest

Module Contents

Classes

	JobFileStoreTest

	Tests testing the methods defined in :class:toil.fileStores.abstractFileStore.AbstractFileStore.

Functions

	fileTestJob(job, inputFileStoreIDs, testStrings, ...)

	Test job exercises toil.fileStores.abstractFileStore.AbstractFileStore functions

	simpleFileStoreJob(job)

	

	fileStoreChild(job, testID1, testID2)

	

Attributes

	logger

	

	PREFIX_LENGTH

	

	fileStoreString

	

	streamingFileStoreString

	

	
toil.test.src.jobFileStoreTest.logger

	

	
toil.test.src.jobFileStoreTest.PREFIX_LENGTH = 200

	

	
class toil.test.src.jobFileStoreTest.JobFileStoreTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.jobFileStoreTest.JobFileStoreTest]

Tests testing the methods defined in :class:toil.fileStores.abstractFileStore.AbstractFileStore.

	
testCachingFileStore()

	

	
testNonCachingFileStore()

	

	
testJobFileStore()

	Tests case that about half the files are cached

	
testJobFileStoreWithBadWorker()

	Tests case that about half the files are cached and the worker is randomly
failing.

	
toil.test.src.jobFileStoreTest.fileTestJob(job, inputFileStoreIDs, testStrings, chainLength)

	Test job exercises toil.fileStores.abstractFileStore.AbstractFileStore functions

	
toil.test.src.jobFileStoreTest.fileStoreString = 'Testing writeGlobalFile'

	

	
toil.test.src.jobFileStoreTest.streamingFileStoreString = 'Testing writeGlobalFileStream'

	

	
toil.test.src.jobFileStoreTest.simpleFileStoreJob(job)

	

	
toil.test.src.jobFileStoreTest.fileStoreChild(job, testID1, testID2)

	

 toil.test.src.jobServiceTest

toil.test.src.jobServiceTest

Module Contents

Classes

	JobServiceTest

	Tests testing the Job.Service class

	PerfectServiceTest

	Tests testing the Job.Service class

	ToyService

	Abstract class used to define the interface to a service.

	ToySerializableService

	Abstract class used to define the interface to a service.

Functions

	serviceTest(job, outFile, messageInt)

	Creates one service and one accessing job, which communicate with two files to establish

	serviceTestRecursive(job, outFile, messages)

	Creates a chain of services and accessing jobs, each paired together.

	serviceTestParallelRecursive(job, outFiles, messageBundles)

	Creates multiple chains of services and accessing jobs.

	serviceAccessor(job, communicationFiles, outFile, randInt)

	Writes a random integer iinto the inJobStoreFileID file, then tries 10 times reading

	fnTest(strings, outputFile)

	Function concatenates the strings together and writes them to the output file

Attributes

	logger

	

	
toil.test.src.jobServiceTest.logger

	

	
class toil.test.src.jobServiceTest.JobServiceTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.jobServiceTest.JobServiceTest]

Tests testing the Job.Service class

	
testServiceSerialization()

	Tests that a service can receive a promise without producing a serialization
error.

	
testService(checkpoint=False)

	Tests the creation of a Job.Service with random failures of the worker.

	
testServiceDeadlock()

	Creates a job with more services than maxServices, checks that deadlock is detected.

	
testServiceWithCheckpoints()

	Tests the creation of a Job.Service with random failures of the worker, making the root job use checkpointing to
restart the subtree.

	
testServiceRecursive(checkpoint=True)

	Tests the creation of a Job.Service, creating a chain of services and accessing jobs.
Randomly fails the worker.

	
testServiceParallelRecursive(checkpoint=True)

	Tests the creation of a Job.Service, creating parallel chains of services and accessing jobs.
Randomly fails the worker.

	
runToil(rootJob, retryCount=1, badWorker=0.5, badWorkedFailInterval=0.1, maxServiceJobs=sys.maxsize, deadlockWait=60)

	

	
class toil.test.src.jobServiceTest.PerfectServiceTest(methodName='runTest')

	Bases: JobServiceTest

[image: Inheritance diagram of toil.test.src.jobServiceTest.PerfectServiceTest]

Tests testing the Job.Service class

	
runToil(rootJob, retryCount=1, badWorker=0, badWorkedFailInterval=1000, maxServiceJobs=sys.maxsize, deadlockWait=60)

	Let us run all the tests in the other service test class, but without worker failures.

	
toil.test.src.jobServiceTest.serviceTest(job, outFile, messageInt)

	Creates one service and one accessing job, which communicate with two files to establish
that both run concurrently.

	
toil.test.src.jobServiceTest.serviceTestRecursive(job, outFile, messages)

	Creates a chain of services and accessing jobs, each paired together.

	
toil.test.src.jobServiceTest.serviceTestParallelRecursive(job, outFiles, messageBundles)

	Creates multiple chains of services and accessing jobs.

	
class toil.test.src.jobServiceTest.ToyService(messageInt, *args, **kwargs)

	Bases: toil.job.Job.Service

[image: Inheritance diagram of toil.test.src.jobServiceTest.ToyService]

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

	
start(job)

	Start the service.

	Parameters

	job – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	Returns

	An object describing how to access the service. The object must be pickleable
and will be used by jobs to access the service (see toil.job.Job.addService()).

	
stop(job)

	Stops the service. Function can block until complete.

	Parameters

	job – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	
check()

	Checks the service is still running.

	Raises

	exceptions.RuntimeError – If the service failed, this will cause the service job to be labeled failed.

	Returns

	True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should raise a
RuntimeError, not return False!

	
static serviceWorker(jobStore, terminate, error, inJobStoreID, outJobStoreID, messageInt)

	

	
toil.test.src.jobServiceTest.serviceAccessor(job, communicationFiles, outFile, randInt)

	Writes a random integer iinto the inJobStoreFileID file, then tries 10 times reading
from outJobStoreFileID to get a pair of integers, the first equal to i the second written into the outputFile.

	
class toil.test.src.jobServiceTest.ToySerializableService(messageInt, *args, **kwargs)

	Bases: toil.job.Job.Service

[image: Inheritance diagram of toil.test.src.jobServiceTest.ToySerializableService]

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

	
start(job)

	Start the service.

	Parameters

	job – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	Returns

	An object describing how to access the service. The object must be pickleable
and will be used by jobs to access the service (see toil.job.Job.addService()).

	
stop(job)

	Stops the service. Function can block until complete.

	Parameters

	job – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	
check()

	Checks the service is still running.

	Raises

	exceptions.RuntimeError – If the service failed, this will cause the service job to be labeled failed.

	Returns

	True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should raise a
RuntimeError, not return False!

	
toil.test.src.jobServiceTest.fnTest(strings, outputFile)

	Function concatenates the strings together and writes them to the output file

 toil.test.src.jobTest

toil.test.src.jobTest

Module Contents

Classes

	JobTest

	Tests the job class.

	TrivialService

	Abstract class used to define the interface to a service.

Functions

	simpleJobFn(job, value)

	

	fn1Test(string, outputFile)

	Function appends the next character after the last character in the given

	fn2Test(pStrings, s, outputFile)

	Function concatenates the strings in pStrings and s, in that order, and writes the result to

	trivialParent(job)

	

	parent(job)

	

	diamond(job)

	

	child(job)

	

	errorChild(job)

	

Attributes

	logger

	

	
toil.test.src.jobTest.logger

	

	
class toil.test.src.jobTest.JobTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.jobTest.JobTest]

Tests the job class.

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
testStatic()

	Create a DAG of jobs non-dynamically and run it. DAG is:

A -> F
-——
B -> D

	
	——- C -> E

Follow on is marked by ->

	
testStatic2()

	Create a DAG of jobs non-dynamically and run it. DAG is:

A -> F
-——
B -> D

	
	——- C -> E

Follow on is marked by ->

	
testTrivialDAGConsistency()

	

	
testDAGConsistency()

	

	
testSiblingDAGConsistency()

	Slightly more complex case. The stranded job’s predecessors are siblings instead of
parent/child.

	
testDeadlockDetection()

	Randomly generate job graphs with various types of cycle in them and
check they cause an exception properly. Also check that multiple roots
causes a deadlock exception.

	
testNewCheckpointIsLeafVertexNonRootCase()

	Test for issue #1465: Detection of checkpoint jobs that are not leaf vertices
identifies leaf vertices incorrectly

Test verification of new checkpoint jobs being leaf verticies,
starting with the following baseline workflow:

	Parent
	

Child # Checkpoint=True

	
testNewCheckpointIsLeafVertexRootCase()

	
	Test for issue #1466: Detection of checkpoint jobs that are not leaf vertices
	omits the workflow root job

Test verification of a new checkpoint job being leaf vertex,
starting with a baseline workflow of a single, root job:

Root # Checkpoint=True

	
runNewCheckpointIsLeafVertexTest(createWorkflowFn)

	Test verification that a checkpoint job is a leaf vertex using both
valid and invalid cases.

	Parameters

	createWorkflowFn – function to create and new workflow and return a tuple of:

	the workflow root job

	a checkpoint job to test within the workflow

	
runCheckpointVertexTest(workflowRootJob, checkpointJob, checkpointJobService=None, checkpointJobChild=None, checkpointJobFollowOn=None, expectedException=None)

	Modifies the checkpoint job according to the given parameters
then runs the workflow, checking for the expected exception, if any.

	
testEvaluatingRandomDAG()

	Randomly generate test input then check that the job graph can be
run successfully, using the existence of promises
to validate the run.

	
static getRandomEdge(nodeNumber)

	

	
static makeRandomDAG(nodeNumber)

	Makes a random dag with “nodeNumber” nodes in which all nodes are connected. Return value
is list of edges, each of form (a, b), where a and b are integers >= 0 < nodeNumber
referring to nodes and the edge is from a to b.

	
static getAdjacencyList(nodeNumber, edges)

	Make adjacency list representation of edges

	
reachable(node, adjacencyList, followOnAdjacencyList=None)

	Find the set of nodes reachable from this node (including the node). Return is a set of
integers.

	
addRandomFollowOnEdges(childAdjacencyList)

	Adds random follow on edges to the graph, represented as an adjacency list. The follow on
edges are returned as a set and their augmented edges are added to the adjacency list.

	
makeJobGraph(nodeNumber, childEdges, followOnEdges, outPath, addServices=True)

	Converts a DAG into a job graph. childEdges and followOnEdges are the lists of child and
followOn edges.

	
isAcyclic(adjacencyList)

	Returns true if there are any cycles in the graph, which is represented as an adjacency
list.

	
toil.test.src.jobTest.simpleJobFn(job, value)

	

	
toil.test.src.jobTest.fn1Test(string, outputFile)

	Function appends the next character after the last character in the given
string to the string, writes the string to a file, and returns it. For
example, if string is “AB”, we will write and return “ABC”.

	
toil.test.src.jobTest.fn2Test(pStrings, s, outputFile)

	Function concatenates the strings in pStrings and s, in that order, and writes the result to
the output file. Returns s.

	
toil.test.src.jobTest.trivialParent(job)

	

	
toil.test.src.jobTest.parent(job)

	

	
toil.test.src.jobTest.diamond(job)

	

	
toil.test.src.jobTest.child(job)

	

	
toil.test.src.jobTest.errorChild(job)

	

	
class toil.test.src.jobTest.TrivialService(message, *args, **kwargs)

	Bases: toil.job.Job.Service

[image: Inheritance diagram of toil.test.src.jobTest.TrivialService]

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

	
start(job)

	Start the service.

	Parameters

	job – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	Returns

	An object describing how to access the service. The object must be pickleable
and will be used by jobs to access the service (see toil.job.Job.addService()).

	
stop(job)

	Stops the service. Function can block until complete.

	Parameters

	job – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	
check()

	Checks the service is still running.

	Raises

	exceptions.RuntimeError – If the service failed, this will cause the service job to be labeled failed.

	Returns

	True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should raise a
RuntimeError, not return False!

 toil.test.src.miscTests

toil.test.src.miscTests

Module Contents

Classes

	MiscTests

	This class contains miscellaneous tests that don't have enough content to be their own test

	TestPanic

	A common base class for Toil tests.

Attributes

	log

	

	
toil.test.src.miscTests.log

	

	
class toil.test.src.miscTests.MiscTests(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.miscTests.MiscTests]

This class contains miscellaneous tests that don’t have enough content to be their own test
file, and that don’t logically fit in with any of the other test suites.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
testIDStability()

	

	
testGetSizeOfDirectoryWorks()

	A test to make sure toil.common.getDirSizeRecursively does not
underestimate the amount of disk space needed.

Disk space allocation varies from system to system. The computed value
should always be equal to or slightly greater than the creation value.
This test generates a number of random directories and randomly sized
files to test this using getDirSizeRecursively.

	
test_atomic_install()

	

	
test_atomic_install_dev()

	

	
test_atomic_context_ok()

	

	
test_atomic_context_error()

	

	
test_call_command_ok()

	

	
test_call_command_err()

	

	
class toil.test.src.miscTests.TestPanic(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.miscTests.TestPanic]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
test_panic_by_hand()

	

	
test_panic()

	

	
test_panic_with_secondary()

	

	
test_nested_panic()

	

	
try_and_panic_by_hand()

	

	
try_and_panic()

	

	
try_and_panic_with_secondary()

	

	
try_and_nested_panic_with_secondary()

	

 toil.test.src.promisedRequirementTest

toil.test.src.promisedRequirementTest

Module Contents

Classes

	hidden

	Hide abstract base class from unittest's test case loader.

	SingleMachinePromisedRequirementsTest

	Tests against the SingleMachine batch system

	MesosPromisedRequirementsTest

	Tests against the Mesos batch system

Functions

	maxConcurrency(job, cpuCount, filename, coresPerJob)

	Returns the max number of concurrent tasks when using a PromisedRequirement instance

	getOne()

	

	getThirtyTwoMb()

	

	logDiskUsage(job, funcName[, sleep])

	Logs the job's disk usage to master and sleeps for specified amount of time.

Attributes

	log

	

	
toil.test.src.promisedRequirementTest.log

	

	
class toil.test.src.promisedRequirementTest.hidden

	Hide abstract base class from unittest’s test case loader.

http://stackoverflow.com/questions/1323455/python-unit-test-with-base-and-sub-class#answer-25695512

	
class AbstractPromisedRequirementsTest

	Bases: toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest

[image: Inheritance diagram of toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest]

An abstract base class for testing Toil workflows with promised requirements.

	
testConcurrencyDynamic()

	Asserts that promised core resources are allocated properly using a dynamic Toil workflow

	
testConcurrencyStatic()

	Asserts that promised core resources are allocated properly using a static DAG

	
getOptions(tempDir, caching=True)

	

	
getCounterPath(tempDir)

	Returns path to a counter file
:param str tempDir: path to test directory
:return: path to counter file

	
testPromisesWithJobStoreFileObjects(caching=True)

	Check whether FileID objects are being pickled properly when used as return
values of functions. Then ensure that lambdas of promised FileID objects can be
used to describe the requirements of a subsequent job. This type of operation will be
used commonly in Toil scripts.
:return: None

	
testPromisesWithNonCachingFileStore()

	

	
testPromiseRequirementRaceStatic()

	Checks for a race condition when using promised requirements and child job functions.

	
toil.test.src.promisedRequirementTest.maxConcurrency(job, cpuCount, filename, coresPerJob)

	Returns the max number of concurrent tasks when using a PromisedRequirement instance
to allocate the number of cores per job.

	Parameters

	
	cpuCount (int [https://docs.python.org/3/library/functions.html#int]) – number of available cpus

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to counter file

	coresPerJob (int [https://docs.python.org/3/library/functions.html#int]) – number of cores assigned to each job

	Return int max concurrency value

	

	
toil.test.src.promisedRequirementTest.getOne()

	

	
toil.test.src.promisedRequirementTest.getThirtyTwoMb()

	

	
toil.test.src.promisedRequirementTest.logDiskUsage(job, funcName, sleep=0)

	Logs the job’s disk usage to master and sleeps for specified amount of time.

	Returns

	job function’s disk usage

	
class toil.test.src.promisedRequirementTest.SingleMachinePromisedRequirementsTest

	Bases: hidden

[image: Inheritance diagram of toil.test.src.promisedRequirementTest.SingleMachinePromisedRequirementsTest]

Tests against the SingleMachine batch system

	
getBatchSystemName()

	

	
tearDown()

	

	
class toil.test.src.promisedRequirementTest.MesosPromisedRequirementsTest

	Bases: hidden, toil.batchSystems.mesos.test.MesosTestSupport

[image: Inheritance diagram of toil.test.src.promisedRequirementTest.MesosPromisedRequirementsTest]

Tests against the Mesos batch system

	
getOptions(tempDir, caching=True)

	

	
getBatchSystemName()

	

	
tearDown()

	

 toil.test.src.promisesTest

toil.test.src.promisesTest

Module Contents

Classes

	CachedUnpicklingJobStoreTest

	A common base class for Toil tests.

	ChainedIndexedPromisesTest

	A common base class for Toil tests.

	PathIndexingPromiseTest

	Test support for indexing promises of arbitrarily nested data structures of lists, dicts and

Functions

	parent(job)

	

	child()

	

	a(job)

	

	b(job)

	

	c()

	

	d(job)

	

	e()

	

	
class toil.test.src.promisesTest.CachedUnpicklingJobStoreTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.promisesTest.CachedUnpicklingJobStoreTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
test()

	Runs two identical Toil workflows with different job store paths

	
toil.test.src.promisesTest.parent(job)

	

	
toil.test.src.promisesTest.child()

	

	
class toil.test.src.promisesTest.ChainedIndexedPromisesTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.promisesTest.ChainedIndexedPromisesTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
test()

	

	
toil.test.src.promisesTest.a(job)

	

	
toil.test.src.promisesTest.b(job)

	

	
toil.test.src.promisesTest.c()

	

	
class toil.test.src.promisesTest.PathIndexingPromiseTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.promisesTest.PathIndexingPromiseTest]

Test support for indexing promises of arbitrarily nested data structures of lists, dicts and
tuples, or any other object supporting the __getitem__() protocol.

	
test()

	

	
toil.test.src.promisesTest.d(job)

	

	
toil.test.src.promisesTest.e()

	

 toil.test.src.realtimeLoggerTest

toil.test.src.realtimeLoggerTest

Module Contents

Classes

	RealtimeLoggerTest

	A common base class for Toil tests.

	MessageDetector

	Detect the secret message and set a flag.

	LogTest

	Class represents a unit of work in toil.

	
class toil.test.src.realtimeLoggerTest.RealtimeLoggerTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.realtimeLoggerTest.RealtimeLoggerTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
testRealtimeLogger()

	

	
class toil.test.src.realtimeLoggerTest.MessageDetector

	Bases: logging.StreamHandler [https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler]

[image: Inheritance diagram of toil.test.src.realtimeLoggerTest.MessageDetector]

Detect the secret message and set a flag.

	
emit(record)

	Emit a record.

If a formatter is specified, it is used to format the record.
The record is then written to the stream with a trailing newline. If
exception information is present, it is formatted using
traceback.print_exception and appended to the stream. If the stream
has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

	
class toil.test.src.realtimeLoggerTest.LogTest

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.src.realtimeLoggerTest.LogTest]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

 toil.test.src.regularLogTest

toil.test.src.regularLogTest

Module Contents

Classes

	RegularLogTest

	A common base class for Toil tests.

Attributes

	logger

	

	
toil.test.src.regularLogTest.logger

	

	
class toil.test.src.regularLogTest.RegularLogTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.regularLogTest.RegularLogTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	Return type

	None

	
testLogToMaster()

	

	
testWriteLogs()

	

	
testWriteGzipLogs()

	

	
testMultipleLogToMaster()

	

	
testRegularLog()

	

 toil.test.src.resourceTest

toil.test.src.resourceTest

Module Contents

Classes

	ResourceTest

	Test module descriptors and resources derived from them.

Functions

	tempFileContaining(content[, suffix])

	Write a file with the given contents, and keep it on disk as long as the context is active.

	
toil.test.src.resourceTest.tempFileContaining(content, suffix='')

	Write a file with the given contents, and keep it on disk as long as the context is active.
:param str content: The contents of the file.
:param str suffix: The extension to use for the temporary file.

	
class toil.test.src.resourceTest.ResourceTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.resourceTest.ResourceTest]

Test module descriptors and resources derived from them.

	
testStandAlone()

	

	
testPackage()

	

	
testVirtualEnv()

	

	
testStandAloneInPackage()

	

	
testBuiltIn()

	

	
testNonPyStandAlone()

	Asserts that Toil enforces the user script to have a .py or .pyc extension because that’s
the only way auto-deployment can re-import the module on a worker. See

https://github.com/BD2KGenomics/toil/issues/631 and
https://github.com/BD2KGenomics/toil/issues/858

 toil.test.src.restartDAGTest

toil.test.src.restartDAGTest

Module Contents

Classes

	RestartDAGTest

	Tests that restarted job DAGs don't run children of jobs that failed in the first run till the

Functions

	passingFn(job[, fileName])

	This function is guaranteed to pass as it does nothing out of the ordinary. If fileName is

	failingFn(job, failType, fileName)

	This function is guaranteed to fail via a raised assertion, or an os.kill

Attributes

	logger

	

	
toil.test.src.restartDAGTest.logger

	

	
class toil.test.src.restartDAGTest.RestartDAGTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.restartDAGTest.RestartDAGTest]

Tests that restarted job DAGs don’t run children of jobs that failed in the first run till the
parent completes successfully in the restart.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
testRestartedWorkflowSchedulesCorrectJobsOnFailedParent()

	

	
testRestartedWorkflowSchedulesCorrectJobsOnKilledParent()

	

	
toil.test.src.restartDAGTest.passingFn(job, fileName=None)

	This function is guaranteed to pass as it does nothing out of the ordinary. If fileName is
provided, it will be created.

	Parameters

	fileName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a file that must be created if provided.

	
toil.test.src.restartDAGTest.failingFn(job, failType, fileName)

	This function is guaranteed to fail via a raised assertion, or an os.kill

	Parameters

	
	job – Job

	failType (str [https://docs.python.org/3/library/stdtypes.html#str]) – ‘raise’ or ‘kill

	fileName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a file that must be created.

 toil.test.src.resumabilityTest

toil.test.src.resumabilityTest

Module Contents

Classes

	ResumabilityTest

	https://github.com/BD2KGenomics/toil/issues/808

Functions

	parent(job)

	Set up a bunch of dummy child jobs, and a bad job that needs to be

	goodChild(job)

	Does nothing.

	badChild(job)

	Fails the first time it's run, succeeds the second time.

	
class toil.test.src.resumabilityTest.ResumabilityTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.resumabilityTest.ResumabilityTest]

https://github.com/BD2KGenomics/toil/issues/808

	
test()

	Tests that a toil workflow that fails once can be resumed without a NoSuchJobException.

	
toil.test.src.resumabilityTest.parent(job)

	Set up a bunch of dummy child jobs, and a bad job that needs to be
restarted as the follow on.

	
toil.test.src.resumabilityTest.goodChild(job)

	Does nothing.

	
toil.test.src.resumabilityTest.badChild(job)

	Fails the first time it’s run, succeeds the second time.

 toil.test.src.retainTempDirTest

toil.test.src.retainTempDirTest

Module Contents

Classes

	CleanWorkDirTest

	Tests testing :class:toil.fileStores.abstractFileStore.AbstractFileStore

Functions

	tempFileTestJob(job)

	

	tempFileTestErrorJob(job)

	

	
class toil.test.src.retainTempDirTest.CleanWorkDirTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.retainTempDirTest.CleanWorkDirTest]

Tests testing :class:toil.fileStores.abstractFileStore.AbstractFileStore

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
testNever()

	

	
testAlways()

	

	
testOnErrorWithError()

	

	
testOnErrorWithNoError()

	

	
testOnSuccessWithError()

	

	
testOnSuccessWithSuccess()

	

	
toil.test.src.retainTempDirTest.tempFileTestJob(job)

	

	
toil.test.src.retainTempDirTest.tempFileTestErrorJob(job)

	

 toil.test.src.systemTest

toil.test.src.systemTest

Module Contents

Classes

	SystemTest

	Test various assumptions about the operating system's behavior.

	
class toil.test.src.systemTest.SystemTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.systemTest.SystemTest]

Test various assumptions about the operating system’s behavior.

	
testAtomicityOfNonEmptyDirectoryRenames()

	

 toil.test.src.threadingTest

toil.test.src.threadingTest

Module Contents

Classes

	ThreadingTest

	Test Toil threading/synchronization tools.

Attributes

	log

	

	
toil.test.src.threadingTest.log

	

	
class toil.test.src.threadingTest.ThreadingTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.threadingTest.ThreadingTest]

Test Toil threading/synchronization tools.

	
testGlobalMutexOrdering()

	

	
testLastProcessStanding()

	

 toil.test.src.toilContextManagerTest

toil.test.src.toilContextManagerTest

Module Contents

Classes

	ToilContextManagerTest

	A common base class for Toil tests.

	HelloWorld

	Class represents a unit of work in toil.

	FollowOn

	Class represents a unit of work in toil.

Functions

	childFn(job)

	

	
class toil.test.src.toilContextManagerTest.ToilContextManagerTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.toilContextManagerTest.ToilContextManagerTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
testContextManger()

	

	
testNoContextManger()

	

	
testExportAfterFailedExport()

	

	
class toil.test.src.toilContextManagerTest.HelloWorld

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.src.toilContextManagerTest.HelloWorld]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
toil.test.src.toilContextManagerTest.childFn(job)

	

	
class toil.test.src.toilContextManagerTest.FollowOn(fileId)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.src.toilContextManagerTest.FollowOn]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

 toil.test.src.userDefinedJobArgTypeTest

toil.test.src.userDefinedJobArgTypeTest

Module Contents

Classes

	UserDefinedJobArgTypeTest

	Test for issue #423 (Toil can't unpickle classes defined in user scripts) and variants

	JobClass

	Class represents a unit of work in toil.

	Foo

	

Functions

	jobFunction(job, level, foo)

	

	main()

	

	
class toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest]

Test for issue #423 (Toil can’t unpickle classes defined in user scripts) and variants
thereof.

https://github.com/BD2KGenomics/toil/issues/423

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
testJobFunction()

	Test with first job being a function

	
testJobClass()

	Test with first job being an instance of a class

	
testJobFunctionFromMain()

	Test with first job being a function defined in __main__

	
testJobClassFromMain()

	Test with first job being an instance of a class defined in __main__

	
class toil.test.src.userDefinedJobArgTypeTest.JobClass(level, foo)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.src.userDefinedJobArgTypeTest.JobClass]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
toil.test.src.userDefinedJobArgTypeTest.jobFunction(job, level, foo)

	

	
class toil.test.src.userDefinedJobArgTypeTest.Foo

	
	
assertIsCopy()

	

	
toil.test.src.userDefinedJobArgTypeTest.main()

	

 toil.test.src.workerTest

toil.test.src.workerTest

Module Contents

Classes

	WorkerTests

	Test miscellaneous units of the worker.

	
class toil.test.src.workerTest.WorkerTests(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.src.workerTest.WorkerTests]

Test miscellaneous units of the worker.

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
testNextChainable()

	Make sure chainable/non-chainable jobs are identified correctly.

 toil.test.utils

toil.test.utils

Submodules

	toil.test.utils.toilDebugTest

	toil.test.utils.toilKillTest

	toil.test.utils.utilsTest

 toil.test.utils.toilDebugTest

toil.test.utils.toilDebugTest

A set of test cases for toilwdl.py

Module Contents

Functions

	workflow_debug_jobstore(tmp_path)

	

	testJobStoreContents(workflow_debug_jobstore)

	Test toilDebugFile.printContentsOfJobStore().

	fetchFiles(symLink, jobStoreDir, outputDir)

	Fn for testFetchJobStoreFiles() and testFetchJobStoreFilesWSymlinks().

	testFetchJobStoreFiles(tmp_path, workflow_debug_jobstore)

	Test toilDebugFile.fetchJobStoreFiles() without using symlinks.

	testFetchJobStoreFilesWSymlinks(tmp_path, ...)

	Test toilDebugFile.fetchJobStoreFiles() using symlinks.

Attributes

	logger

	

	
toil.test.utils.toilDebugTest.logger

	

	
toil.test.utils.toilDebugTest.workflow_debug_jobstore(tmp_path)

	
	Parameters

	tmp_path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.test.utils.toilDebugTest.testJobStoreContents(workflow_debug_jobstore)

	Test toilDebugFile.printContentsOfJobStore().

Runs a workflow that imports ‘B.txt’ and ‘mkFile.py’ into the
jobStore. ‘A.txt’, ‘C.txt’, ‘ABC.txt’ are then created. This checks to
make sure these contents are found in the jobStore and printed.

	Parameters

	workflow_debug_jobstore (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
toil.test.utils.toilDebugTest.fetchFiles(symLink, jobStoreDir, outputDir)

	Fn for testFetchJobStoreFiles() and testFetchJobStoreFilesWSymlinks().

Runs a workflow that imports ‘B.txt’ and ‘mkFile.py’ into the
jobStore. ‘A.txt’, ‘C.txt’, ‘ABC.txt’ are then created. This test then
attempts to get a list of these files and copy them over into our
output diectory from the jobStore, confirm that they are present, and
then delete them.

	Parameters

	jobStoreDir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
toil.test.utils.toilDebugTest.testFetchJobStoreFiles(tmp_path, workflow_debug_jobstore)

	Test toilDebugFile.fetchJobStoreFiles() without using symlinks.

	Parameters

	
	tmp_path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) –

	workflow_debug_jobstore (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
toil.test.utils.toilDebugTest.testFetchJobStoreFilesWSymlinks(tmp_path, workflow_debug_jobstore)

	Test toilDebugFile.fetchJobStoreFiles() using symlinks.

	Parameters

	
	tmp_path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) –

	workflow_debug_jobstore (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

 toil.test.utils.toilKillTest

toil.test.utils.toilKillTest

Module Contents

Classes

	ToilKillTest

	A set of test cases for "toil kill".

	ToilKillTestWithAWSJobStore

	A set of test cases for "toil kill" using the AWS job store.

Attributes

	logger

	

	pkg_root

	

	
toil.test.utils.toilKillTest.logger

	

	
toil.test.utils.toilKillTest.pkg_root

	

	
class toil.test.utils.toilKillTest.ToilKillTest(*args, **kwargs)

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.utils.toilKillTest.ToilKillTest]

A set of test cases for “toil kill”.

	
setUp()

	Shared test variables.

	
tearDown()

	Default tearDown for unittest.

	
test_cwl_toil_kill()

	Test “toil kill” on a CWL workflow with a 100 second sleep.

	
class toil.test.utils.toilKillTest.ToilKillTestWithAWSJobStore(*args, **kwargs)

	Bases: ToilKillTest

[image: Inheritance diagram of toil.test.utils.toilKillTest.ToilKillTestWithAWSJobStore]

A set of test cases for “toil kill” using the AWS job store.

 toil.test.utils.utilsTest

toil.test.utils.utilsTest

Module Contents

Classes

	UtilsTest

	Tests the utilities that toil ships with, e.g. stats and status, in conjunction with restart

	RunTwoJobsPerWorker

	Runs child job with same resources as self in an attempt to chain the jobs on the same worker

Functions

	printUnicodeCharacter()

	

Attributes

	pkg_root

	

	logger

	

	
toil.test.utils.utilsTest.pkg_root

	

	
toil.test.utils.utilsTest.logger

	

	
class toil.test.utils.utilsTest.UtilsTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.utils.utilsTest.UtilsTest]

Tests the utilities that toil ships with, e.g. stats and status, in conjunction with restart
functionality.

	
property toilMain

	

	
property cleanCommand

	

	
property statsCommand

	

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
statusCommand(failIfNotComplete=False)

	

	
testAWSProvisionerUtils()

	Runs a number of the cluster utilities in sequence.

Launches a cluster with custom tags.
Verifies the tags exist.
ssh’s into the cluster.
Does some weird string comparisons.
Makes certain that TOIL_WORKDIR is set as expected in the ssh’ed cluster.
Rsyncs a file and verifies it exists on the leader.
Destroys the cluster.

	Returns

	

	
testUtilsSort()

	Tests the status and stats commands of the toil command line utility using the
sort example with the –restart flag.

	
testUtilsStatsSort()

	Tests the stats commands on a complete run of the stats test.

	
testUnicodeSupport()

	

	
testMultipleJobsPerWorkerStats()

	Tests case where multiple jobs are run on 1 worker to ensure that all jobs report back their data

	
check_status(status, status_fn, seconds=20)

	

	
testGetPIDStatus()

	Test that ToilStatus.getPIDStatus() behaves as expected.

	
testGetStatusFailedToilWF()

	Test that ToilStatus.getStatus() behaves as expected with a failing Toil workflow.
While this workflow could be called by importing and evoking its main function, doing so would remove the
opportunity to test the ‘RUNNING’ functionality of getStatus().

	
testGetStatusFailedCWLWF()

	Test that ToilStatus.getStatus() behaves as expected with a failing CWL workflow.

	
testGetStatusSuccessfulCWLWF()

	Test that ToilStatus.getStatus() behaves as expected with a successful CWL workflow.

	
testPrintJobLog(mock_print)

	Test that ToilStatus.printJobLog() reads the log from a failed command without error.

	
testRestartAttribute()

	Test that the job store is only destroyed when we observe a succcessful workflow run.
The following simulates a failing workflow that attempts to resume without restart().
In this case, the job store should not be destroyed until restart() is called.

	
toil.test.utils.utilsTest.printUnicodeCharacter()

	

	
class toil.test.utils.utilsTest.RunTwoJobsPerWorker

	Bases: toil.job.Job

[image: Inheritance diagram of toil.test.utils.utilsTest.RunTwoJobsPerWorker]

Runs child job with same resources as self in an attempt to chain the jobs on the same worker

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

 toil.test.wdl

toil.test.wdl

Submodules

	toil.test.wdl.builtinTest

	toil.test.wdl.conftest

	toil.test.wdl.toilwdlTest

	toil.test.wdl.wdltoil_test

 toil.test.wdl.builtinTest

toil.test.wdl.builtinTest

Module Contents

Classes

	WdlStandardLibraryFunctionsTest

	A set of test cases for toil's wdl functions.

	WdlWorkflowsTest

	A set of test cases for toil's conformance with WDL.

	WdlLanguageSpecWorkflowsTest

	A set of test cases for toil's conformance with the WDL language specification:

	WdlStandardLibraryWorkflowsTest

	A set of test cases for toil's conformance with the WDL built-in standard library:

	
class toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest]

A set of test cases for toil’s wdl functions.

	
setUp()

	Runs anew before each test to create farm fresh temp dirs.

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
tearDown()

	Clean up outputs.

	
testFn_Sub()

	Test the wdl built-in functional equivalent of ‘sub()’.

	
testFn_Ceil()

	Test the wdl built-in functional equivalent of ‘ceil()’, which converts
a Float value into an Int by rounding up to the next higher integer

	
testFn_Floor()

	Test the wdl built-in functional equivalent of ‘floor()’, which converts
a Float value into an Int by rounding down to the next lower integer

	
testFn_ReadLines()

	Test the wdl built-in functional equivalent of ‘read_lines()’.

	
testFn_ReadTsv()

	Test the wdl built-in functional equivalent of ‘read_tsv()’.

	
testFn_ReadJson()

	Test the wdl built-in functional equivalent of ‘read_json()’.

	
testFn_ReadMap()

	Test the wdl built-in functional equivalent of ‘read_map()’.

	
testFn_ReadInt()

	Test the wdl built-in functional equivalent of ‘read_int()’.

	
testFn_ReadString()

	Test the wdl built-in functional equivalent of ‘read_string()’.

	
testFn_ReadFloat()

	Test the wdl built-in functional equivalent of ‘read_float()’.

	
testFn_ReadBoolean()

	Test the wdl built-in functional equivalent of ‘read_boolean()’.

	
testFn_WriteLines()

	Test the wdl built-in functional equivalent of ‘write_lines()’.

	
testFn_WriteTsv()

	Test the wdl built-in functional equivalent of ‘write_tsv()’.

	
testFn_WriteJson()

	Test the wdl built-in functional equivalent of ‘write_json()’.

	
testFn_WriteMap()

	Test the wdl built-in functional equivalent of ‘write_map()’.

	
testFn_Transpose()

	Test the wdl built-in functional equivalent of ‘transpose()’.

	
testFn_Length()

	Test the WDL ‘length()’ built-in.

	
testFn_Zip()

	Test the wdl built-in functional equivalent of ‘zip()’.

	
testFn_Cross()

	Test the wdl built-in functional equivalent of ‘cross()’.

	
class toil.test.wdl.builtinTest.WdlWorkflowsTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.wdl.builtinTest.WdlWorkflowsTest]

A set of test cases for toil’s conformance with WDL.

All tests should include a simple wdl and json file for toil to run that checks the output.

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
check_function(function_name, cases, json_file_name=None, expected_result=None, expected_exception=None)

	Run the given WDL workflow and check its output. The WDL workflow
should store its output inside a ‘output.txt’ file that can be
compared to expected_result.

If expected_exception is set, this test passes only when both the
workflow fails and that the given expected_exception string is
present in standard error.

	Parameters

	
	function_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	cases (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	json_file_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	expected_result (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	expected_exception (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
class toil.test.wdl.builtinTest.WdlLanguageSpecWorkflowsTest(methodName='runTest')

	Bases: WdlWorkflowsTest

[image: Inheritance diagram of toil.test.wdl.builtinTest.WdlLanguageSpecWorkflowsTest]

A set of test cases for toil’s conformance with the WDL language specification:

https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#language-specification

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
test_type_pair()

	

	
test_v1_declaration()

	Basic declaration example modified from the WDL 1.0 spec:

https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md#declarations

	
class toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest(methodName='runTest')

	Bases: WdlWorkflowsTest

[image: Inheritance diagram of toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest]

A set of test cases for toil’s conformance with the WDL built-in standard library:

https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#standard-library

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
test_sub()

	

	
test_size()

	

	
test_ceil()

	

	
test_floor()

	

	
test_round()

	

	
test_stdout()

	

	
test_read()

	Test the set of WDL read functions.

	
test_write()

	Test the set of WDL write functions.

	
test_range()

	

	
test_transpose()

	

	
test_length()

	

	
test_zip()

	

	
test_cross()

	

	
test_as_pairs()

	

	
test_as_map()

	

	
test_keys()

	

	
test_collect_by_key()

	

	
test_flatten()

	

 toil.test.wdl.conftest

toil.test.wdl.conftest

Module Contents

	
toil.test.wdl.conftest.collect_ignore = []

	

 toil.test.wdl.toilwdlTest

toil.test.wdl.toilwdlTest

Module Contents

Classes

	BaseToilWdlTest

	Base test class for WDL tests

	ToilWdlTest

	General tests for Toil WDL

	ToilWDLLibraryTest

	Test class for WDL standard functions.

	ToilWdlIntegrationTest

	Test class for WDL tests that need extra workflows and data downloaded

Functions

	compare_runs(output_dir, ref_dir)

	Takes two directories and compares all of the files between those two

	compare_vcf_files(filepath1, filepath2)

	Asserts that two .vcf files contain the same variant findings.

	
class toil.test.wdl.toilwdlTest.BaseToilWdlTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.wdl.toilwdlTest.BaseToilWdlTest]

Base test class for WDL tests

	
setUp()

	Runs anew before each test to create farm fresh temp dirs.

	Return type

	None

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	Return type

	None

	
classmethod setUpClass()

	Runs once for all tests.

	Return type

	None

	
class toil.test.wdl.toilwdlTest.ToilWdlTest(methodName='runTest')

	Bases: BaseToilWdlTest

[image: Inheritance diagram of toil.test.wdl.toilwdlTest.ToilWdlTest]

General tests for Toil WDL

	
testMD5sum()

	Test if toilwdl produces the same outputs as known good outputs for WDL’s
GATK tutorial #1.

	
class toil.test.wdl.toilwdlTest.ToilWDLLibraryTest(methodName='runTest')

	Bases: BaseToilWdlTest

[image: Inheritance diagram of toil.test.wdl.toilwdlTest.ToilWDLLibraryTest]

Test class for WDL standard functions.

	
testFn_SelectFirst()

	Test the wdl built-in functional equivalent of ‘select_first()’,
which returns the first value in a list that is not None.

	
testFn_Size()

	Test the wdl built-in functional equivalent of ‘size()’,
which returns a file’s size based on the path.

	Return type

	None

	
testFn_Basename()

	

	
testFn_Glob()

	Test the wdl built-in functional equivalent of ‘glob()’,
which finds all files with a pattern in a directory.

	
testFn_ParseMemory()

	Test the wdl built-in functional equivalent of ‘parse_memory()’,
which parses a specified memory input to an int output.

The input can be a string or an int or a float and may include units
such as ‘Gb’ or ‘mib’ as a separate argument.

	
testFn_ParseCores()

	Test the wdl built-in functional equivalent of ‘parse_cores()’,
which parses a specified disk input to an int output.

The input can be a string or an int.

	
testFn_ParseDisk()

	Test the wdl built-in functional equivalent of ‘parse_disk()’,
which parses a specified disk input to an int output.

The input can be a string or an int or a float and may include units
such as ‘Gb’ or ‘mib’ as a separate argument.

The minimum returned value is 2147483648 bytes.

	
testPrimitives()

	Test if toilwdl correctly interprets some basic declarations.

	
testCSV()

	

	
testTSV()

	

	
class toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest(methodName='runTest')

	Bases: BaseToilWdlTest

[image: Inheritance diagram of toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest]

Test class for WDL tests that need extra workflows and data downloaded

	
gatk_data: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
gatk_data_dir: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
encode_data: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
encode_data_dir: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
wdl_data: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
wdl_data_dir: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
classmethod setUpClass()

	Runs once for all tests.

	Return type

	None

	
classmethod tearDownClass()

	We generate a lot of cruft.

	Return type

	None

	
testTut01()

	Test if toilwdl produces the same outputs as known good outputs for WDL’s
GATK tutorial #1.

	
testTut02()

	Test if toilwdl produces the same outputs as known good outputs for WDL’s
GATK tutorial #2.

	
testTut03()

	Test if toilwdl produces the same outputs as known good outputs for WDL’s
GATK tutorial #3.

	
testTut04()

	Test if toilwdl produces the same outputs as known good outputs for WDL’s
GATK tutorial #4.

	
testENCODE()

	Test if toilwdl produces the same outputs as known good outputs for
a short ENCODE run.

	
testPipe()

	Test basic bash input functionality with a pipe.

	
testJSON()

	

	
test_size_large()

	Test the wdl built-in functional equivalent of ‘size()’,
which returns a file’s size based on the path, on a large file.

	Return type

	None

	
classmethod fetch_and_unzip_from_s3(filename, data, data_dir)

	

	
toil.test.wdl.toilwdlTest.compare_runs(output_dir, ref_dir)

	Takes two directories and compares all of the files between those two
directories, asserting that they match.

	Ignores outputs.txt, which contains a list of the outputs in the folder.

	Compares line by line, unless the file is a .vcf file.

	Ignores potentially date-stamped comments (lines starting with ‘#’).

	Ignores quality scores in .vcf files and only checks that they found
the same variants. This is due to assumed small observed rounding
differences between systems.

	Parameters

	
	ref_dir – The first directory to compare (with output_dir).

	output_dir – The second directory to compare (with ref_dir).

	
toil.test.wdl.toilwdlTest.compare_vcf_files(filepath1, filepath2)

	Asserts that two .vcf files contain the same variant findings.

	Ignores potentially date-stamped comments (lines starting with ‘#’).

	Ignores quality scores in .vcf files and only checks that they found
the same variants. This is due to assumed small observed rounding
differences between systems.

VCF File Column Contents:
1: #CHROM
2: POS
3: ID
4: REF
5: ALT
6: QUAL
7: FILTER
8: INFO

	Parameters

	
	filepath1 – First .vcf file to compare.

	filepath2 – Second .vcf file to compare.

 toil.test.wdl.wdltoil_test

toil.test.wdl.wdltoil_test

Module Contents

Classes

	WdlToilTest

	Version of the old Toil WDL tests that tests the new MiniWDL-based implementation.

	
class toil.test.wdl.wdltoil_test.WdlToilTest(methodName='runTest')

	Bases: toil.test.wdl.toilwdlTest.ToilWdlTest

[image: Inheritance diagram of toil.test.wdl.wdltoil_test.WdlToilTest]

Version of the old Toil WDL tests that tests the new MiniWDL-based implementation.

	
classmethod setUpClass()

	Runs once for all tests.

	Return type

	None

	
testMD5sum()

	Test if toilwdl produces the same outputs as known good outputs for WDL’s
GATK tutorial #1.

	
test_miniwdl_self_test()

	Test if the MiniWDL self test runs and produces the expected output.

	
test_giraffe_deepvariant()

	Test if Giraffe and CPU DeepVariant run. This could take 25 minutes.

	
test_giraffe()

	Test if Giraffe runs. This could take 12 minutes. Also we scale it down.

 toil.utils

toil.utils

Submodules

	toil.utils.toilClean

	toil.utils.toilDebugFile

	toil.utils.toilDebugJob

	toil.utils.toilDestroyCluster

	toil.utils.toilKill

	toil.utils.toilLaunchCluster

	toil.utils.toilMain

	toil.utils.toilRsyncCluster

	toil.utils.toilServer

	toil.utils.toilSshCluster

	toil.utils.toilStats

	toil.utils.toilStatus

	toil.utils.toilUpdateEC2Instances

 toil.utils.toilClean

toil.utils.toilClean

Delete a job store used by a previous Toil workflow invocation.

Module Contents

Functions

	main()

	

Attributes

	logger

	

	
toil.utils.toilClean.logger

	

	
toil.utils.toilClean.main()

	
	Return type

	None

 toil.utils.toilDebugFile

toil.utils.toilDebugFile

Debug tool for copying files contained in a toil jobStore.

Module Contents

Functions

	fetchJobStoreFiles(jobStore, options)

	Takes a list of file names as glob patterns, searches for these within a

	printContentsOfJobStore(jobStorePath[, nameOfJob])

	Fetch a list of all files contained in the jobStore directory input if

	main()

	

Attributes

	logger

	

	
toil.utils.toilDebugFile.logger

	

	
toil.utils.toilDebugFile.fetchJobStoreFiles(jobStore, options)

	Takes a list of file names as glob patterns, searches for these within a
given directory, and attempts to take all of the files found and copy them
into options.localFilePath.

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – A fileJobStore object.

	options.fetch – List of file glob patterns to search
for in the jobStore and copy into options.localFilePath.

	options.localFilePath – Local directory to copy files into.

	options.jobStore – The path to the jobStore directory.

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	Return type

	None

	
toil.utils.toilDebugFile.printContentsOfJobStore(jobStorePath, nameOfJob=None)

	Fetch a list of all files contained in the jobStore directory input if
nameOfJob is not declared, otherwise it only prints out the names of files
for that specific job for which it can find a match. Also creates a logFile
containing this same record of job files in the working directory.

	Parameters

	
	jobStorePath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory path to recursively look for files.

	nameOfJob (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Default is None, which prints out all files in the jobStore.

	Return type

	None

If specified, it will print all jobStore files that have been written to the
jobStore by that job.

	
toil.utils.toilDebugFile.main()

	
	Return type

	None

 toil.utils.toilDebugJob

toil.utils.toilDebugJob

Debug tool for running a toil job locally.

Module Contents

Functions

	main()

	

Attributes

	logger

	

	
toil.utils.toilDebugJob.logger

	

	
toil.utils.toilDebugJob.main()

	
	Return type

	None

 toil.utils.toilDestroyCluster

toil.utils.toilDestroyCluster

Terminates the specified cluster and associated resources.

Module Contents

Functions

	main()

	

Attributes

	logger

	

	
toil.utils.toilDestroyCluster.logger

	

	
toil.utils.toilDestroyCluster.main()

	
	Return type

	None

 toil.utils.toilKill

toil.utils.toilKill

Kills rogue toil processes.

Module Contents

Functions

	main()

	

Attributes

	logger

	

	
toil.utils.toilKill.logger

	

	
toil.utils.toilKill.main()

	
	Return type

	None

 toil.utils.toilLaunchCluster

toil.utils.toilLaunchCluster

Launches a toil leader instance with the specified provisioner.

Module Contents

Functions

	create_tags_dict(tags)

	

	main()

	

Attributes

	logger

	

	
toil.utils.toilLaunchCluster.logger

	

	
toil.utils.toilLaunchCluster.create_tags_dict(tags)

	
	Parameters

	tags (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.utils.toilLaunchCluster.main()

	
	Return type

	None

 toil.utils.toilMain

toil.utils.toilMain

Module Contents

Functions

	main()

	

	get_or_die(module, name)

	Get an object from a module or complain that it is missing.

	loadModules()

	

	printHelp(modules)

	

	printVersion()

	

	
toil.utils.toilMain.main()

	
	Return type

	None

	
toil.utils.toilMain.get_or_die(module, name)

	Get an object from a module or complain that it is missing.

	Parameters

	
	module (types.ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Any

	
toil.utils.toilMain.loadModules()

	
	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], types.ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType]]

	
toil.utils.toilMain.printHelp(modules)

	
	Parameters

	modules (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], types.ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType]]) –

	Return type

	None

	
toil.utils.toilMain.printVersion()

	
	Return type

	None

 toil.utils.toilRsyncCluster

toil.utils.toilRsyncCluster

Rsyncs into the toil appliance container running on the leader of the cluster.

Module Contents

Functions

	main()

	

Attributes

	logger

	

	
toil.utils.toilRsyncCluster.logger

	

	
toil.utils.toilRsyncCluster.main()

	
	Return type

	None

 toil.utils.toilServer

toil.utils.toilServer

CLI entry for the Toil servers.

Module Contents

Functions

	main()

	

Attributes

	logger

	

	
toil.utils.toilServer.logger

	

	
toil.utils.toilServer.main()

	
	Return type

	None

 toil.utils.toilSshCluster

toil.utils.toilSshCluster

SSH into the toil appliance container running on the leader of the cluster.

Module Contents

Functions

	main()

	

Attributes

	logger

	

	
toil.utils.toilSshCluster.logger

	

	
toil.utils.toilSshCluster.main()

	
	Return type

	None

 toil.utils.toilStats

toil.utils.toilStats

Reports statistical data about a given Toil workflow.

Module Contents

Classes

	ColumnWidths

	Convenience object that stores the width of columns for printing. Helps make things pretty.

Functions

	padStr(s[, field])

	Pad the beginning of a string with spaces, if necessary.

	prettyMemory(k[, field, isBytes])

	Given input k as kilobytes, return a nicely formatted string.

	prettyTime(t[, field])

	Given input t as seconds, return a nicely formatted string.

	reportTime(t, options[, field])

	Given t seconds, report back the correct format as string.

	reportMemory(k, options[, field, isBytes])

	Given k kilobytes, report back the correct format as string.

	reportNumber(n[, field])

	Given n an integer, report back the correct format as string.

	sprintTag(key, tag, options[, columnWidths])

	Generate a pretty-print ready string from a JTTag().

	decorateTitle(title, options)

	Add a marker to TITLE if the TITLE is sorted on.

	decorateSubHeader(title, columnWidths, options)

	Add a marker to the correct field if the TITLE is sorted on.

	get(tree, name)

	Return a float value attribute NAME from TREE.

	sortJobs(jobTypes, options)

	Return a jobTypes all sorted.

	reportPrettyData(root, worker, job, job_types, options)

	Print the important bits out.

	computeColumnWidths(job_types, worker, job, options)

	Return a ColumnWidths() object with the correct max widths.

	updateColumnWidths(tag, cw, options)

	Update the column width attributes for this tag's fields.

	buildElement(element, items, itemName)

	Create an element for output.

	createSummary(element, containingItems, ...)

	

	getStats(jobStore)

	Collect and return the stats and config data.

	processData(config, stats)

	Collate the stats and report

	reportData(tree, options)

	

	add_stats_options(parser)

	

	main()

	Reports stats on the workflow, use with --stats option to toil.

Attributes

	logger

	

	category_choices

	

	sort_category_choices

	

	sort_field_choices

	

	
toil.utils.toilStats.logger

	

	
class toil.utils.toilStats.ColumnWidths

	Convenience object that stores the width of columns for printing. Helps make things pretty.

	
title(category)

	Return the total printed length of this category item.

	Parameters

	category (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
getWidth(category, field)

	
	Parameters

	
	category (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	field (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
setWidth(category, field, width)

	
	Parameters

	
	category (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	field (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	width (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	None

	
report()

	
	Return type

	None

	
toil.utils.toilStats.padStr(s, field=None)

	Pad the beginning of a string with spaces, if necessary.

	Parameters

	
	s (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	field (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.utils.toilStats.prettyMemory(k, field=None, isBytes=False)

	Given input k as kilobytes, return a nicely formatted string.

	Parameters

	
	k (float [https://docs.python.org/3/library/functions.html#float]) –

	field (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	isBytes (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.utils.toilStats.prettyTime(t, field=None)

	Given input t as seconds, return a nicely formatted string.

	Parameters

	
	t (float [https://docs.python.org/3/library/functions.html#float]) –

	field (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.utils.toilStats.reportTime(t, options, field=None)

	Given t seconds, report back the correct format as string.

	Parameters

	
	t (float [https://docs.python.org/3/library/functions.html#float]) –

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	field (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.utils.toilStats.reportMemory(k, options, field=None, isBytes=False)

	Given k kilobytes, report back the correct format as string.

	Parameters

	
	k (float [https://docs.python.org/3/library/functions.html#float]) –

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	field (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	isBytes (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.utils.toilStats.reportNumber(n, field=None)

	Given n an integer, report back the correct format as string.

	Parameters

	
	n (float [https://docs.python.org/3/library/functions.html#float]) –

	field (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.utils.toilStats.sprintTag(key, tag, options, columnWidths=None)

	Generate a pretty-print ready string from a JTTag().

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	tag (toil.lib.expando.Expando) –

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	columnWidths (Optional[ColumnWidths]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.utils.toilStats.decorateTitle(title, options)

	Add a marker to TITLE if the TITLE is sorted on.

	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.utils.toilStats.decorateSubHeader(title, columnWidths, options)

	Add a marker to the correct field if the TITLE is sorted on.

	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	columnWidths (ColumnWidths) –

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.utils.toilStats.get(tree, name)

	Return a float value attribute NAME from TREE.

	Parameters

	
	tree (toil.lib.expando.Expando) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
toil.utils.toilStats.sortJobs(jobTypes, options)

	Return a jobTypes all sorted.

	Parameters

	
	jobTypes (List[Any]) –

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	Return type

	List[Any]

	
toil.utils.toilStats.reportPrettyData(root, worker, job, job_types, options)

	Print the important bits out.

	Parameters

	
	root (toil.lib.expando.Expando) –

	worker (List[toil.job.Job]) –

	job (List[toil.job.Job]) –

	job_types (List[Any]) –

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.utils.toilStats.computeColumnWidths(job_types, worker, job, options)

	Return a ColumnWidths() object with the correct max widths.

	Parameters

	
	job_types (List[Any]) –

	worker (List[toil.job.Job]) –

	job (List[toil.job.Job]) –

	options (toil.lib.expando.Expando) –

	Return type

	ColumnWidths

	
toil.utils.toilStats.updateColumnWidths(tag, cw, options)

	Update the column width attributes for this tag’s fields.

	Parameters

	
	tag (toil.lib.expando.Expando) –

	cw (ColumnWidths) –

	options (toil.lib.expando.Expando) –

	Return type

	None

	
toil.utils.toilStats.buildElement(element, items, itemName)

	Create an element for output.

	Parameters

	
	element (toil.lib.expando.Expando) –

	items (List[toil.job.Job]) –

	itemName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	toil.lib.expando.Expando

	
toil.utils.toilStats.createSummary(element, containingItems, containingItemName, getFn)

	
	Parameters

	
	element (toil.lib.expando.Expando) –

	containingItems (List[toil.job.Job]) –

	containingItemName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	getFn (Callable[[toil.job.Job], List[Optional[toil.job.Job]]]) –

	Return type

	None

	
toil.utils.toilStats.getStats(jobStore)

	Collect and return the stats and config data.

	Parameters

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	Return type

	toil.lib.expando.Expando

	
toil.utils.toilStats.processData(config, stats)

	Collate the stats and report

	Parameters

	
	config (toil.common.Config) –

	stats (toil.lib.expando.Expando) –

	Return type

	toil.lib.expando.Expando

	
toil.utils.toilStats.reportData(tree, options)

	
	Parameters

	
	tree (toil.lib.expando.Expando) –

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	Return type

	None

	
toil.utils.toilStats.category_choices = ['time', 'clock', 'wait', 'memory']

	

	
toil.utils.toilStats.sort_category_choices = ['time', 'clock', 'wait', 'memory', 'alpha', 'count']

	

	
toil.utils.toilStats.sort_field_choices = ['min', 'med', 'ave', 'max', 'total']

	

	
toil.utils.toilStats.add_stats_options(parser)

	
	Parameters

	parser (argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) –

	Return type

	None

	
toil.utils.toilStats.main()

	Reports stats on the workflow, use with –stats option to toil.

	Return type

	None

 toil.utils.toilStatus

toil.utils.toilStatus

Tool for reporting on job status.

Module Contents

Classes

	ToilStatus

	Tool for reporting on job status.

Functions

	main()

	Reports the state of a Toil workflow.

Attributes

	logger

	

	
toil.utils.toilStatus.logger

	

	
class toil.utils.toilStatus.ToilStatus(jobStoreName, specifiedJobs=None)

	Tool for reporting on job status.

	Parameters

	
	jobStoreName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	specifiedJobs (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	
print_dot_chart()

	Print a dot output graph representing the workflow.

	Return type

	None

	
printJobLog()

	Takes a list of jobs, finds their log files, and prints them to the terminal.

	Return type

	None

	
printJobChildren()

	Takes a list of jobs, and prints their successors.

	Return type

	None

	
printAggregateJobStats(properties, childNumber)

	Prints a job’s ID, log file, remaining tries, and other properties.

	Parameters

	
	properties (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	childNumber (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	None

	
report_on_jobs()

	Gathers information about jobs such as its child jobs and status.

	Returns jobStats

	Pairings of a useful category and a list of jobs which fall into it.

	Rtype dict

	

	
static getPIDStatus(jobStoreName)

	Determine the status of a process with a particular local pid.

Checks to see if a process exists or not.

	Returns

	A string indicating the status of the PID of the workflow as stored in the jobstore.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Parameters

	jobStoreName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
static getStatus(jobStoreName)

	Determine the status of a workflow.

If the jobstore does not exist, this returns ‘QUEUED’, assuming it has not been created yet.

Checks for the existence of files created in the toil.Leader.run(). In toil.Leader.run(), if a workflow completes
with failed jobs, ‘failed.log’ is created, otherwise ‘succeeded.log’ is written. If neither of these exist,
the leader is still running jobs.

	Returns

	A string indicating the status of the workflow. [‘COMPLETED’, ‘RUNNING’, ‘ERROR’, ‘QUEUED’]

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Parameters

	jobStoreName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
print_bus_messages()

	Goes through bus messages, returns a list of tuples which have correspondence between
PID on assigned batch system and

Prints a list of the currently running jobs

	Return type

	None

	
fetchRootJob()

	Fetches the root job from the jobStore that provides context for all other jobs.

Exactly the same as the jobStore.loadRootJob() function, but with a different
exit message if the root job is not found (indicating the workflow ran successfully
to completion and certain stats cannot be gathered from it meaningfully such
as which jobs are left to run).

	Raises

	JobException – if the root job does not exist.

	Return type

	toil.job.JobDescription

	
fetchUserJobs(jobs)

	Takes a user input array of jobs, verifies that they are in the jobStore
and returns the array of jobsToReport.

	Parameters

	jobs (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of jobs to be verified.

	Returns jobsToReport

	A list of jobs which are verified to be in the jobStore.

	Return type

	List[toil.job.JobDescription]

	
traverseJobGraph(rootJob, jobsToReport=None, foundJobStoreIDs=None)

	Find all current jobs in the jobStore and return them as an Array.

	Parameters

	
	rootJob (toil.job.JobDescription) – The root job of the workflow.

	jobsToReport (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of jobNodes to be added to and returned.

	foundJobStoreIDs (set [https://docs.python.org/3/library/stdtypes.html#set]) – A set of jobStoreIDs used to keep track of
jobStoreIDs encountered in traversal.

	Returns jobsToReport

	The list of jobs currently in the job graph.

	Return type

	List[toil.job.JobDescription]

	
toil.utils.toilStatus.main()

	Reports the state of a Toil workflow.

	Return type

	None

 toil.utils.toilUpdateEC2Instances

toil.utils.toilUpdateEC2Instances

Updates Toil’s internal list of EC2 instance types.

Module Contents

Functions

	internet_connection()

	Returns True if there is an internet connection present, and False otherwise.

	main()

	

Attributes

	logger

	

	
toil.utils.toilUpdateEC2Instances.logger

	

	
toil.utils.toilUpdateEC2Instances.internet_connection()

	Returns True if there is an internet connection present, and False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.utils.toilUpdateEC2Instances.main()

	
	Return type

	None

 toil.wdl

toil.wdl

Subpackages

	toil.wdl.versions
	toil.wdl.versions.dev

	toil.wdl.versions.draft2

	toil.wdl.versions.v1

Submodules

	toil.wdl.toilwdl

	toil.wdl.utils

	toil.wdl.wdl_analysis

	toil.wdl.wdl_functions

	toil.wdl.wdl_synthesis

	toil.wdl.wdl_types

	toil.wdl.wdltoil

 toil.wdl.versions

toil.wdl.versions

Submodules

	toil.wdl.versions.dev

	toil.wdl.versions.draft2

	toil.wdl.versions.v1

 toil.wdl.versions.dev

toil.wdl.versions.dev

Module Contents

Classes

	AnalyzeDevelopmentWDL

	AnalyzeWDL implementation for the development version using ANTLR4.

Attributes

	logger

	

	
toil.wdl.versions.dev.logger

	

	
class toil.wdl.versions.dev.AnalyzeDevelopmentWDL(wdl_file)

	Bases: toil.wdl.versions.v1.AnalyzeV1WDL

[image: Inheritance diagram of toil.wdl.versions.dev.AnalyzeDevelopmentWDL]

AnalyzeWDL implementation for the development version using ANTLR4.

	See: https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md
	https://github.com/openwdl/wdl/blob/main/versions/development/parsers/antlr4/WdlParser.g4

	Parameters

	wdl_file (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
property version: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the version of the WDL document as a string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
analyze()

	Analyzes the WDL file passed into the constructor and generates the two
intermediate data structures: self.workflows_dictionary and
self.tasks_dictionary.

	
visit_document(ctx)

	Similar to version 1.0, except the ‘workflow’ element is included in
ctx.document_element().

	Parameters

	ctx (wdlparse.dev.WdlParser.WdlParser.DocumentContext) –

	Return type

	None

	
visit_document_element(ctx)

	Similar to version 1.0, except this also contains ‘workflow’.

	Parameters

	ctx (wdlparse.dev.WdlParser.WdlParser.Document_elementContext) –

	Return type

	None

	
visit_call(ctx)

	Similar to version 1.0, except ctx.call_afters() is added.

	Parameters

	ctx (wdlparse.dev.WdlParser.WdlParser.CallContext) –

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
visit_string_expr_part(ctx)

	Similar to version 1.0, except ctx.expression_placeholder_option()
is removed.

	Parameters

	ctx (wdlparse.dev.WdlParser.WdlParser.String_expr_partContext) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
visit_wdl_type(ctx)

	Similar to version 1.0, except Directory type is added.

	Parameters

	ctx (wdlparse.dev.WdlParser.WdlParser.Wdl_typeContext) –

	Return type

	toil.wdl.wdl_types.WDLType

	
visit_expr_core(expr)

	Similar to version 1.0, except struct literal is added.

	Parameters

	expr (wdlparse.dev.WdlParser.WdlParser.Expr_coreContext) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 toil.wdl.versions.draft2

toil.wdl.versions.draft2

Module Contents

Classes

	AnalyzeDraft2WDL

	AnalyzeWDL implementation for the draft-2 version.

Attributes

	logger

	

	
toil.wdl.versions.draft2.logger

	

	
class toil.wdl.versions.draft2.AnalyzeDraft2WDL(wdl_file)

	Bases: toil.wdl.wdl_analysis.AnalyzeWDL

[image: Inheritance diagram of toil.wdl.versions.draft2.AnalyzeDraft2WDL]

AnalyzeWDL implementation for the draft-2 version.

	Parameters

	wdl_file (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
property version: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the version of the WDL document as a string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
analyze()

	Analyzes the WDL file passed into the constructor and generates the two
intermediate data structures: self.workflows_dictionary and
self.tasks_dictionary.

	Returns

	Returns nothing.

	
write_AST(out_dir=None)

	Writes a file with the AST for a wdl file in the out_dir.

	
find_asts(ast_root, name)

	Finds an AST node with the given name and the entire subtree under it.
A function borrowed from scottfrazer. Thank you Scott Frazer!

	Parameters

	
	ast_root – The WDL AST. The whole thing generally, but really
any portion that you wish to search.

	name – The name of the subtree you’re looking for, like “Task”.

	Returns

	nodes representing the AST subtrees matching the “name” given.

	
create_tasks_dict(ast)

	Parse each “Task” in the AST. This will create self.tasks_dictionary,
where each task name is a key.

	Returns

	Creates the self.tasks_dictionary necessary for much of the

parser. Returning it is only necessary for unittests.

	
parse_task(task)

	Parses a WDL task AST subtree.

Currently looks at and parses 4 sections:
1. Declarations (e.g. string x = ‘helloworld’)
2. Commandline (a bash command with dynamic variables inserted)
3. Runtime (docker image; disk; CPU; RAM; etc.)
4. Outputs (expected return values/files)

	Parameters

	task – An AST subtree of a WDL “Task”.

	Returns

	Returns nothing but adds a task to the self.tasks_dictionary

necessary for much of the parser.

	
parse_task_rawcommand_attributes(code_snippet)

	
	Parameters

	code_snippet –

	Returns

	

	
parse_task_rawcommand(rawcommand_subAST)

	Parses the rawcommand section of the WDL task AST subtree.

Task “rawcommands” are divided into many parts. There are 2 types of
parts: normal strings, & variables that can serve as changeable inputs.

	The following example command:
	‘echo ${variable1} ${variable2} > output_file.txt’

	Has 5 parts:
	Normal String: ‘echo ‘
Variable Input: variable1
Normal String: ‘ ‘
Variable Input: variable2
Normal String: ‘ > output_file.txt’

Variables can also have additional conditions, like ‘sep’, which is like
the python ‘’.join() function and in WDL looks like: ${sep=” -V ” GVCFs}
and would be translated as: ‘ -V ‘.join(GVCFs).

	Parameters

	rawcommand_subAST – A subAST representing some bash command.

	Returns

	A list=[] of tuples=() representing the parts of the command:
e.g. [(command_var, command_type, additional_conditions_list), …]

	Where: command_var = ‘GVCFs’
	command_type = ‘variable’
command_actions = {‘sep’: ‘ -V ‘}

	
modify_cmd_expr_w_attributes(code_expr, code_attr)

	
	Parameters

	
	code_expr –

	code_attr –

	Returns

	

	
parse_task_runtime_key(i)

	
	Parameters

	runtime_subAST –

	Returns

	

	
parse_task_runtime(runtime_subAST)

	Parses the runtime section of the WDL task AST subtree.

The task “runtime” section currently supports context fields for a
docker container, CPU resources, RAM resources, and disk resources.

	Parameters

	runtime_subAST – A subAST representing runtime parameters.

	Returns

	A list=[] of runtime attributes, for example:
runtime_attributes = [(‘docker’,’quay.io/encode-dcc/map:v1.0’),

(‘cpu’,’2’),
(‘memory’,’17.1 GB’),
(‘disks’,’local-disk 420 HDD’)]

	
parse_task_outputs(i)

	Parse the WDL output section.

Outputs are like declarations, with a type, name, and value. Examples:

Simple Cases

	‘Int num = 7’
	var_name: ‘num’
var_type: ‘Int’
var_value: 7

	String idea = ‘Lab grown golden eagle burgers.’
	var_name: ‘idea’
var_type: ‘String’
var_value: ‘Lab grown golden eagle burgers.’

	File ideaFile = ‘goldenEagleStemCellStartUpDisrupt.txt’
	var_name: ‘ideaFile’
var_type: ‘File’
var_value: ‘goldenEagleStemCellStartUpDisrupt.txt’

More Abstract Cases

	Array[File] allOfMyTerribleIdeas = glob(*.txt)[0]
	var_name: ‘allOfMyTerribleIdeas’
var_type**: ‘File’
var_value: [*.txt]
var_actions: {‘index_lookup’: ‘0’, ‘glob’: ‘None’}

**toilwdl.py converts ‘Array[File]’ to ‘ArrayFile’

	return

	output_array representing outputs generated by the job/task:
e.g. x = [(var_name, var_type, var_value, var_actions), …]

	
translate_wdl_string_to_python_string(some_string)

	Parses a string representing a given job’s output filename into something
python can read. Replaces ${string}’s with normal variables and the rest
with normal strings all concatenated with ‘ + ‘.

Will not work with additional parameters, such as:
${default=”foo” bar}
or
${true=”foo” false=”bar” Boolean baz}

This method expects to be passed only strings with some combination of
“${abc}” and “abc” blocks.

	Parameters

	
	job – A list such that:
(job priority #, job ID #, Job Skeleton Name, Job Alias)

	some_string – e.g. ‘${sampleName}.vcf’

	Returns

	output_string, e.g. ‘sampleName + “.vcf”’

	
create_workflows_dict(ast)

	Parse each “Workflow” in the AST. This will create self.workflows_dictionary,
where each called job is a tuple key of the form: (priority#, job#, name, alias).

	Returns

	Creates the self.workflows_dictionary necessary for much of the

parser. Returning it is only necessary for unittests.

	
parse_workflow(workflow)

	Parses a WDL workflow AST subtree.

Returns nothing but creates the self.workflows_dictionary necessary for much
of the parser.

	Parameters

	workflow – An AST subtree of a WDL “Workflow”.

	Returns

	Returns nothing but adds a workflow to the
self.workflows_dictionary necessary for much of the parser.

	
parse_workflow_body(i)

	Currently looks at and parses 3 sections:
1. Declarations (e.g. String x = ‘helloworld’)
2. Calls (similar to a python def)
3. Scatter (which expects to map to a Call or multiple Calls)
4. Conditionals

	
parse_workflow_if(ifAST)

	

	
parse_workflow_if_expression(i)

	

	
parse_workflow_scatter(scatterAST)

	

	
parse_workflow_scatter_item(i)

	

	
parse_workflow_scatter_collection(i)

	

	
parse_declaration(ast)

	Parses a WDL declaration AST subtree into a Python tuple.

Examples:

String my_name
String your_name
Int two_chains_i_mean_names = 0

	Parameters

	ast – Some subAST representing a task declaration like:
‘String file_name’

	Returns

	var_name, var_type, var_value
Example:

Input subAST representing: ‘String file_name’
Output: var_name=’file_name’, var_type=’String’, var_value=None

	
parse_declaration_name(nameAST)

	Required.

Nothing fancy here. Just the name of the workflow
function. For example: “rnaseqexample” would be the following
wdl workflow’s name:

workflow rnaseqexample {File y; call a {inputs: y}; call b;}
task a {File y}
task b {command{“echo ‘ATCG’”}}

	Parameters

	nameAST –

	Returns

	

	
parse_declaration_type(typeAST)

	Required.

Currently supported:
Types are: Boolean, Float, Int, File, String, Array[subtype],

Pair[subtype, subtype], and Map[subtype, subtype].

	OptionalTypes are: Boolean?, Float?, Int?, File?, String?, Array[subtype]?,
	Pair[subtype, subtype]?, and Map[subtype, subtype]?.

Python is not typed, so we don’t need typing except to identify type: “File”,
which Toil needs to import, so we recursively travel down to the innermost
type which will tell us if the variables are files that need importing.

For Pair and Map compound types, we recursively travel down the subtypes and
store them as attributes of a WDLType string. This way, the type structure is
preserved, which will allow us to import files appropriately.

	Parameters

	typeAST –

	Returns

	a WDLType instance

	
parse_declaration_expressn(expressionAST, es)

	Expressions are optional. Workflow declaration valid examples:

File x

or

File x = ‘/x/x.tmp’

	Parameters

	expressionAST –

	Returns

	

	
parse_declaration_expressn_logicalnot(exprssn, es)

	

	
parse_declaration_expressn_arraymaplookup(lhsAST, rhsAST, es)

	
	Parameters

	
	lhsAST –

	rhsAST –

	es –

	Returns

	

	
parse_declaration_expressn_memberaccess(lhsAST, rhsAST, es)

	Instead of “Class.variablename”, use “Class.rv(‘variablename’)”.

	Parameters

	
	lhsAST –

	rhsAST –

	es –

	Returns

	

	
parse_declaration_expressn_ternaryif(cond, iftrue, iffalse, es)

	Classic if statement. This needs to be rearranged.

In wdl, this looks like:
if <condition> then <iftrue> else <iffalse>

In python, this needs to be:
<iftrue> if <condition> else <iffalse>

	Parameters

	
	cond –

	iftrue –

	iffalse –

	es –

	Returns

	

	
parse_declaration_expressn_tupleliteral(values, es)

	Same in python. Just a parenthesis enclosed tuple.

	Parameters

	
	values –

	es –

	Returns

	

	
parse_declaration_expressn_arrayliteral(values, es)

	Same in python. Just a square bracket enclosed array.

	Parameters

	
	values –

	es –

	Returns

	

	
parse_declaration_expressn_operator(lhsAST, rhsAST, es, operator)

	Simply joins the left and right hand arguments lhs and rhs with an operator.

	Parameters

	
	lhsAST –

	rhsAST –

	es –

	operator –

	Returns

	

	
parse_declaration_expressn_fncall(name, params, es)

	Parses out cromwell’s built-in function calls.

Some of these are special and need minor adjustments,
for example size() requires a fileStore.

	Parameters

	
	name –

	params –

	es –

	Returns

	

	
parse_declaration_expressn_fncall_normalparams(params)

	

	
parse_workflow_call_taskname(i)

	Required.

	Parameters

	i –

	Returns

	

	
parse_workflow_call_taskalias(i)

	Required.

	Parameters

	i –

	Returns

	

	
parse_workflow_call_body_declarations(i)

	Have not seen this used, so expects to return “[]”.

	Parameters

	i –

	Returns

	

	
parse_workflow_call_body_io(i)

	Required.

	Parameters

	i –

	Returns

	

	
parse_workflow_call_body_io_map(i)

	Required.

	Parameters

	i –

	Returns

	

	
parse_workflow_call_body(i)

	Required.

	Parameters

	i –

	Returns

	

	
parse_workflow_call(i)

	Parses a WDL workflow call AST subtree to give the variable mappings for
that particular job/task “call”.

	Parameters

	i – WDL workflow job object

	Returns

	python dictionary of io mappings for that job call

 toil.wdl.versions.v1

toil.wdl.versions.v1

Module Contents

Classes

	AnalyzeV1WDL

	AnalyzeWDL implementation for the 1.0 version using ANTLR4.

Functions

	is_context(ctx, classname)

	Returns whether an ANTLR4 context object is of the precise type classname.

Attributes

	logger

	

	
toil.wdl.versions.v1.logger

	

	
toil.wdl.versions.v1.is_context(ctx, classname)

	Returns whether an ANTLR4 context object is of the precise type classname.

	Parameters

	
	ctx – An ANTLR4 context object.

	classname (Union[str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]]) – The class name(s) as a string or a tuple of strings. If a
tuple is provided, this returns True if the context object
matches one of the class names.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class toil.wdl.versions.v1.AnalyzeV1WDL(wdl_file)

	Bases: toil.wdl.wdl_analysis.AnalyzeWDL

[image: Inheritance diagram of toil.wdl.versions.v1.AnalyzeV1WDL]

AnalyzeWDL implementation for the 1.0 version using ANTLR4.

	See: https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md
	https://github.com/openwdl/wdl/blob/main/versions/1.0/parsers/antlr4/WdlV1Parser.g4

	Parameters

	wdl_file (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
property version: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the version of the WDL document as a string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
analyze()

	Analyzes the WDL file passed into the constructor and generates the two
intermediate data structures: self.workflows_dictionary and
self.tasks_dictionary.

	
visit_document(ctx)

	Root of tree. Contains version followed by an optional workflow and
any number of `document_element`s.

	
visit_document_element(ctx)

	Contains one of the following: ‘import_doc’, ‘struct’, or ‘task’.

	
visit_workflow(ctx)

	Contains an ‘identifier’ and an array of `workflow_element`s.

	
visit_workflow_input(ctx)

	Contains an array of ‘any_decls’, which can be unbound or bound declarations.
Example:

	input {
	String in_str = “twenty”
Int in_int

}

Returns a list of tuple=(name, type, expr).

	
visit_workflow_output(ctx)

	Contains an array of ‘bound_decls’ (unbound_decls not allowed).
Example:

	output {
	String out_str = “output”

}

Returns a list of tuple=(name, type, expr).

	
visit_inner_workflow_element(ctx)

	Returns a tuple=(unique_key, dict), where dict contains the contents of
the given inner workflow element.

	
visit_call(ctx)

	Pattern: CALL call_name call_alias? call_body?
Example WDL syntax: call task_1 {input: arr=arr}

Returns a dict={task, alias, io}.

	
visit_scatter(ctx)

	Pattern: SCATTER LPAREN Identifier In expr RPAREN LBRACE inner_workflow_element* RBRACE
Example WDL syntax: scatter (i in items) { … }

Returns a dict={item, collection, body}.

	
visit_conditional(ctx)

	Pattern: IF LPAREN expr RPAREN LBRACE inner_workflow_element* RBRACE
Example WDL syntax: if (condition) { … }

Returns a dict={expression, body}.

	
visit_task(ctx)

	Root of a task definition. Contains an identifier and an array of
`task_element`s.

	
visit_task_input(ctx)

	Contains an array of ‘any_decls’, which can be unbound or bound declarations.
Example:

	input {
	String in_str = “twenty”
Int in_int

}

Returns a list of tuple=(name, type, expr)

	
visit_task_output(ctx)

	Contains an array of ‘bound_decls’ (unbound_decls not allowed).
Example:

	output {
	String out_str = read_string(stdout())

}

Returns a list of tuple=(name, type, expr)

	
visit_task_command(ctx)

	Parses the command section of the WDL task.

Contains a string_part plus any number of `expr_with_string`s.
The following example command:

‘echo ${var1} ${var2} > output_file.txt’

	Has 3 parts:
	
	string_part: ‘echo ‘

	
	expr_with_string, which has two parts:
	
	expr_part: ‘var1’

	string_part: ‘ ‘

	
	expr_with_string, which has two parts:
	
	expr_part: ‘var2’

	string_part: ‘ > output_file.txt’

	Returns a list=[] of strings representing the parts of the command.
	e.g. [string_part, expr_part, string_part, …]

	
visit_task_command_string_part(ctx)

	Returns a string representing the string_part.

	
visit_task_command_expr_with_string(ctx)

	Returns a tuple=(expr_part, string_part).

	
visit_task_command_expr_part(ctx)

	Contains the expression inside ${expr}. Same function as self.visit_string_expr_part().

Returns the expression.

	
visit_task_runtime(ctx)

	Contains an array of `task_runtime_kv`s.

Returns a dict={key: value} where key can be ‘docker’, ‘cpu’, ‘memory’,
‘cores’, or ‘disks’.

	
visit_any_decls(ctx)

	Contains a bound or unbound declaration.

	
visit_unbound_decls(ctx)

	Contains an unbound declaration. E.g.: String in_str.

Returns a tuple=(name, type, expr), where expr is None.

	
visit_bound_decls(ctx)

	Contains a bound declaration. E.g.: String in_str = “some string”.

Returns a tuple=(name, type, expr).

	
visit_wdl_type(ctx)

	Returns a WDLType instance.

	
visit_primitive_literal(ctx)

	Returns the primitive literal as a string.

	
visit_number(ctx)

	Contains an IntLiteral or a FloatLiteral.

	
visit_string(ctx)

	Contains a string_part followed by an array of `string_expr_with_string_part`s.

	
visit_string_expr_with_string_part(ctx)

	Contains a string_expr_part and a string_part.

	
visit_string_expr_part(ctx)

	Contains an array of expression_placeholder_option`s and an `expr.

	
visit_string_part(ctx)

	Returns a string representing the string_part.

	
visit_expression_placeholder_option(ctx)

	Expression placeholder options.

	Can match one of the following:
	BoolLiteral EQUAL (string | number)
DEFAULT EQUAL (string | number)
SEP EQUAL (string | number)

See https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md#expression-placeholder-options

e.g.: ${sep=”, ” array_value}
e.g.: ${true=”–yes” false=”–no” boolean_value}
e.g.: ${default=”foo” optional_value}

Returns a tuple=(key, value)

	
visit_expr(ctx)

	Expression root.

	
visit_infix0(ctx)

	Expression infix0 (LOR).

	
visit_lor(ctx)

	Logical OR expression.

	
visit_infix1(ctx)

	Expression infix1 (LAND).

	
visit_land(ctx)

	Logical AND expresion.

	
visit_infix2(ctx)

	Expression infix2 (comparisons).

	
visit_infix3(ctx)

	Expression infix3 (add/subtract).

	
visit_infix4(ctx)

	Expression infix4 (multiply/divide/modulo).

	
visit_infix5(ctx)

	Expression infix5.

	
visit_expr_core(expr)

	Expression core.

	
visit_apply(ctx)

	A function call.
Pattern: Identifier LPAREN (expr (COMMA expr)*)? RPAREN

	
visit_array_literal(ctx)

	Pattern: LBRACK (expr (COMMA expr)*)* RBRACK

	
visit_pair_literal(ctx)

	Pattern: LPAREN expr COMMA expr RPAREN

	
visit_ifthenelse(ctx)

	Ternary expression.
Pattern: IF expr THEN expr ELSE expr

	
visit_expression_group(ctx)

	Pattern: LPAREN expr RPAREN

	
visit_at(ctx)

	Array or map lookup.
Pattern: expr_core LBRACK expr RBRACK

	
visit_get_name(ctx)

	Member access.
Pattern: expr_core DOT Identifier

	
visit_negate(ctx)

	Pattern: NOT expr

	
visit_unarysigned(ctx)

	Pattern: (PLUS | MINUS) expr

	
visit_primitives(ctx)

	Expression alias for primitive literal.

 toil.wdl.toilwdl

toil.wdl.toilwdl

Module Contents

Functions

	main()

	A program to run WDL input files using native Toil scripts.

Attributes

	logger

	

	
toil.wdl.toilwdl.logger

	

	
toil.wdl.toilwdl.main()

	A program to run WDL input files using native Toil scripts.

Calls two files, described below, wdl_analysis.py and wdl_synthesis.py:

wdl_analysis reads the wdl and restructures them into 2 intermediate data
structures before writing (python dictionaries):

“wf_dictionary”: containing the parsed workflow information.
“tasks_dictionary”: containing the parsed task information.

wdl_synthesis takes the “wf_dictionary”, “tasks_dictionary”, and the JSON file
and uses them to write a native python script for use with Toil.

Requires a WDL file, and a JSON file. The WDL file contains ordered commands,
and the JSON file contains input values for those commands. To run in Toil,
these two files must be parsed, restructured into python dictionaries, and
then compiled into a Toil formatted python script. This compiled Toil script
is deleted unless the user specifies: “–dev_mode” as an option.

The WDL parser was auto-generated from the Broad’s current WDL grammar file:
https://github.com/openwdl/wdl/blob/master/parsers/grammar.hgr
using Scott Frazer’s Hermes: https://github.com/scottfrazer/hermes
Thank you Scott Frazer!

Currently in alpha testing, and known to work with the Broad’s GATK tutorial
set for WDL on their main wdl site:
software.broadinstitute.org/wdl/documentation/topic?name=wdl-tutorials

And ENCODE’s WDL workflow:
github.com/ENCODE-DCC/pipeline-container/blob/master/local-workflows/encode_mapping_workflow.wdl

Additional support to be broadened to include more features soon.

 toil.wdl.utils

toil.wdl.utils

Module Contents

Functions

	get_version(iterable)

	Get the version of the WDL document.

	get_analyzer(wdl_file)

	Creates an instance of an AnalyzeWDL implementation based on the version.

	dict_from_JSON(JSON_file)

	Takes a WDL-mapped json file and creates a dict containing the bindings.

	write_mappings(parser[, filename])

	Takes an AnalyzeWDL instance and writes the final task dict and workflow

	
toil.wdl.utils.get_version(iterable)

	Get the version of the WDL document.

	Parameters

	iterable – An iterable that contains the lines of a WDL document.

	Returns

	The WDL version used in the workflow.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.wdl.utils.get_analyzer(wdl_file)

	Creates an instance of an AnalyzeWDL implementation based on the version.

	Parameters

	wdl_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the WDL file.

	Return type

	toil.wdl.wdl_analysis.AnalyzeWDL

	
toil.wdl.utils.dict_from_JSON(JSON_file)

	Takes a WDL-mapped json file and creates a dict containing the bindings.

	Parameters

	JSON_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – A required JSON file containing WDL variable bindings.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
toil.wdl.utils.write_mappings(parser, filename='mappings.out')

	Takes an AnalyzeWDL instance and writes the final task dict and workflow
dict to the given file.

	Parameters

	
	parser (toil.wdl.wdl_analysis.AnalyzeWDL) – An AnalyzeWDL instance.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a file to write to.

	Return type

	None

 toil.wdl.wdl_analysis

toil.wdl.wdl_analysis

Module Contents

Classes

	AnalyzeWDL

	An interface to analyze a WDL file. Each version corresponds to a subclass that

Attributes

	logger

	

	
toil.wdl.wdl_analysis.logger

	

	
class toil.wdl.wdl_analysis.AnalyzeWDL(wdl_file)

	An interface to analyze a WDL file. Each version corresponds to a subclass that
restructures the WDL document into 2 intermediate data structures (python
dictionaries):

“workflows_dictionary”: containing the parsed workflow information.
“tasks_dictionary”: containing the parsed task information.

These are then fed into wdl_synthesis.py which uses them to write a native python
script for use with Toil.

Requires a WDL file. The WDL file contains ordered commands.

	Parameters

	wdl_file (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
abstract property version: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the version of the WDL document as a string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
primitive_types

	

	
compound_types

	

	
analyze()

	Analyzes the WDL file passed into the constructor and generates the two
intermediate data structures: self.workflows_dictionary and
self.tasks_dictionary.

	Returns

	Returns nothing.

	
write_AST(out_dir)

	Writes a file with the AST for a wdl file in the out_dir.

	
create_wdl_primitive_type(key, optional=False)

	Returns an instance of WDLType.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
create_wdl_compound_type(key, elements, optional=False)

	Returns an instance of WDLCompoundType.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	elements (list [https://docs.python.org/3/library/stdtypes.html#list]) –

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

 toil.wdl.wdl_functions

toil.wdl.wdl_functions

Module Contents

Classes

	WDLJSONEncoder

	Extended JSONEncoder to support WDL-specific JSON encoding.

Functions

	generate_docker_bashscript_file(temp_dir, docker_dir, ...)

	Creates a bashscript to inject into a docker container for the job.

	process_single_infile(wdl_file, fileStore)

	

	process_infile(f, fileStore)

	Takes any input and imports the WDLFile into the fileStore.

	sub(input_str, pattern, replace)

	Given 3 String parameters input, pattern, replace, this function will

	defined(i)

	

	process_single_outfile(wdl_file, fileStore, workDir, ...)

	

	process_outfile(f, fileStore, workDir, outDir)

	

	abspath_single_file(f, cwd)

	

	abspath_file(f, cwd)

	

	read_single_file(f, tempDir, fileStore[, docker])

	

	read_file(f, tempDir, fileStore[, docker])

	

	process_and_read_file(f, tempDir, fileStore[, docker])

	

	generate_stdout_file(output, tempDir, fileStore[, stderr])

	Create a stdout (or stderr) file from a string or bytes object.

	parse_memory(memory)

	Parses a string representing memory and returns

	parse_cores(cores)

	

	parse_disk(disk)

	

	is_number(s)

	

	size([f, unit, fileStore])

	Given a File and a String (optional), returns the size of the file in Bytes

	select_first(values)

	

	combine_dicts(dict1, dict2)

	

	basename(path[, suffix])

	https://software.broadinstitute.org/wdl/documentation/article?id=10554

	heredoc_wdl(template[, dictionary, indent])

	

	floor(i)

	Converts a Float value into an Int by rounding down to the next lower integer.

	ceil(i)

	Converts a Float value into an Int by rounding up to the next higher integer.

	read_lines(path)

	Given a file-like object (String, File) as a parameter, this will read each

	read_tsv(path[, delimiter])

	Take a tsv filepath and return an array; e.g. [[],[],[]].

	read_csv(path)

	Take a csv filepath and return an array; e.g. [[],[],[]].

	read_json(path)

	The read_json() function takes one parameter, which is a file-like object

	read_map(path)

	Given a file-like object (String, File) as a parameter, this will read each

	read_int(path)

	The read_int() function takes a file path which is expected to contain 1

	read_string(path)

	The read_string() function takes a file path which is expected to contain 1

	read_float(path)

	The read_float() function takes a file path which is expected to contain 1

	read_boolean(path)

	The read_boolean() function takes a file path which is expected to contain 1

	write_lines(in_lines[, temp_dir, file_store])

	Given something that's compatible with Array[String], this writes each element

	write_tsv(in_tsv[, delimiter, temp_dir, file_store])

	Given something that's compatible with Array[Array[String]], this writes a TSV

	write_json(in_json[, indent, separators, temp_dir, ...])

	Given something with any type, this writes the JSON equivalent to a file. See

	write_map(in_map[, temp_dir, file_store])

	Given something that's compatible with Map[String, String], this writes a TSV

	wdl_range(num)

	Given an integer argument, the range function creates an array of integers of

	transpose(in_array)

	Given a two dimensional array argument, the transpose function transposes the

	length(in_array)

	Given an Array, the length function returns the number of elements in the Array

	wdl_zip(left, right)

	Return the dot product of the two arrays. If the arrays have different lengths

	cross(left, right)

	Return the cross product of the two arrays. Array[Y][1] appears before

	as_pairs(in_map)

	Given a Map, the as_pairs function returns an Array containing each element

	as_map(in_array)

	Given an Array consisting of Pairs, the as_map function returns a Map in

	keys(in_map)

	Given a Map, the keys function returns an Array consisting of the keys in

	collect_by_key(in_array)

	Given an Array consisting of Pairs, the collect_by_key function returns a Map

	flatten(in_array)

	Given an array of arrays, the flatten function concatenates all the member

Attributes

	logger

	

	
toil.wdl.wdl_functions.logger

	

	
exception toil.wdl.wdl_functions.WDLRuntimeError(message)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.wdl.wdl_functions.WDLRuntimeError]

WDL-related run-time error.

	
class toil.wdl.wdl_functions.WDLJSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Bases: json.JSONEncoder [https://docs.python.org/3/library/json.html#json.JSONEncoder]

[image: Inheritance diagram of toil.wdl.wdl_functions.WDLJSONEncoder]

Extended JSONEncoder to support WDL-specific JSON encoding.

	
default(obj)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
toil.wdl.wdl_functions.generate_docker_bashscript_file(temp_dir, docker_dir, globs, cmd, job_name)

	Creates a bashscript to inject into a docker container for the job.

This script wraps the job command(s) given in a bash script, hard links the
outputs and returns an “rc” file containing the exit code. All of this is
done in an effort to parallel the Broad’s cromwell engine, which is the
native WDL runner. As they’ve chosen to write and then run a bashscript for
every command, so shall we.

	Parameters

	
	temp_dir – The current directory outside of docker to deposit the
bashscript into, which will be the bind mount that docker
loads files from into its own containerized filesystem.
This is usually the tempDir created by this individual job
using ‘tempDir = job.fileStore.getLocalTempDir()’.

	docker_dir – The working directory inside of the docker container
which is bind mounted to ‘temp_dir’. By default this is
‘data’.

	globs – A list of expected output files to retrieve as glob patterns
that will be returned as hard links to the current working
directory.

	cmd – A bash command to be written into the bash script and run.

	job_name – The job’s name, only used to write in a file name
identifying the script as written for that job.
Will be used to call the script later.

	Returns

	Nothing, but it writes and deposits a bash script in temp_dir
intended to be run inside of a docker container for this job.

	
toil.wdl.wdl_functions.process_single_infile(wdl_file, fileStore)

	
	Parameters

	
	wdl_file (toil.wdl.wdl_types.WDLFile) –

	fileStore (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	toil.wdl.wdl_types.WDLFile

	
toil.wdl.wdl_functions.process_infile(f, fileStore)

	Takes any input and imports the WDLFile into the fileStore.

This returns the input importing all WDLFile instances to the fileStore. Toil
does not preserve a file’s original name upon import and so the WDLFile also keeps
track of this.

	Parameters

	
	f (Any) – A primitive, WDLFile, or a container. A file needs to be a WDLFile instance
to be imported.

	fileStore (toil.fileStores.abstractFileStore.AbstractFileStore) – The fileStore object that is called to load files into the fileStore.

	
toil.wdl.wdl_functions.sub(input_str, pattern, replace)

	Given 3 String parameters input, pattern, replace, this function will
replace any occurrence matching pattern in input by replace.
pattern is expected to be a regular expression. Details of regex evaluation
will depend on the execution engine running the WDL.

WDL syntax: String sub(String, String, String)

	Parameters

	
	input_str (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	replace (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.wdl.wdl_functions.defined(i)

	

	
toil.wdl.wdl_functions.process_single_outfile(wdl_file, fileStore, workDir, outDir)

	
	Parameters

	wdl_file (toil.wdl.wdl_types.WDLFile) –

	Return type

	toil.wdl.wdl_types.WDLFile

	
toil.wdl.wdl_functions.process_outfile(f, fileStore, workDir, outDir)

	

	
toil.wdl.wdl_functions.abspath_single_file(f, cwd)

	
	Parameters

	
	f (toil.wdl.wdl_types.WDLFile) –

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	toil.wdl.wdl_types.WDLFile

	
toil.wdl.wdl_functions.abspath_file(f, cwd)

	
	Parameters

	
	f (Any) –

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
toil.wdl.wdl_functions.read_single_file(f, tempDir, fileStore, docker=False)

	
	Parameters

	f (toil.wdl.wdl_types.WDLFile) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.wdl.wdl_functions.read_file(f, tempDir, fileStore, docker=False)

	
	Parameters

	
	f (Any) –

	tempDir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	fileStore (toil.fileStores.abstractFileStore.AbstractFileStore) –

	docker (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
toil.wdl.wdl_functions.process_and_read_file(f, tempDir, fileStore, docker=False)

	

	
toil.wdl.wdl_functions.generate_stdout_file(output, tempDir, fileStore, stderr=False)

	Create a stdout (or stderr) file from a string or bytes object.

	Parameters

	
	output (str [https://docs.python.org/3/library/stdtypes.html#str]|bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A str or bytes object that holds the stdout/stderr text.

	tempDir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory to write the stdout file.

	fileStore – A fileStore object.

	stderr (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a stderr instead of a stdout file is generated.

	Returns

	The file path to the generated file.

	
toil.wdl.wdl_functions.parse_memory(memory)

	Parses a string representing memory and returns
an integer # of bytes.

	Parameters

	memory –

	Returns

	

	
toil.wdl.wdl_functions.parse_cores(cores)

	

	
toil.wdl.wdl_functions.parse_disk(disk)

	

	
toil.wdl.wdl_functions.is_number(s)

	

	
toil.wdl.wdl_functions.size(f=None, unit='B', fileStore=None)

	Given a File and a String (optional), returns the size of the file in Bytes
or in the unit specified by the second argument.

Supported units are KiloByte (“K”, “KB”), MegaByte (“M”, “MB”), GigaByte
(“G”, “GB”), TeraByte (“T”, “TB”) (powers of 1000) as well as their binary version
(https://en.wikipedia.org/wiki/Binary_prefix) “Ki” (“KiB”), “Mi” (“MiB”),
“Gi” (“GiB”), “Ti” (“TiB”) (powers of 1024). Default unit is Bytes (“B”).

WDL syntax: Float size(File, [String])
Varieties: Float size(File?, [String])

Float size(Array[File], [String])
Float size(Array[File?], [String])

	Parameters

	
	f (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], toil.wdl.wdl_types.WDLFile, List[Union[str [https://docs.python.org/3/library/stdtypes.html#str], toil.wdl.wdl_types.WDLFile]]]]) –

	unit (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	fileStore (Optional[toil.fileStores.abstractFileStore.AbstractFileStore]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
toil.wdl.wdl_functions.select_first(values)

	

	
toil.wdl.wdl_functions.combine_dicts(dict1, dict2)

	

	
toil.wdl.wdl_functions.basename(path, suffix=None)

	https://software.broadinstitute.org/wdl/documentation/article?id=10554

	
toil.wdl.wdl_functions.heredoc_wdl(template, dictionary={}, indent='')

	

	
toil.wdl.wdl_functions.floor(i)

	Converts a Float value into an Int by rounding down to the next lower integer.

	Parameters

	i (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.wdl.wdl_functions.ceil(i)

	Converts a Float value into an Int by rounding up to the next higher integer.

	Parameters

	i (Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.wdl.wdl_functions.read_lines(path)

	Given a file-like object (String, File) as a parameter, this will read each
line as a string and return an Array[String] representation of the lines in
the file.

WDL syntax: Array[String] read_lines(String|File)

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.wdl.wdl_functions.read_tsv(path, delimiter='\t')

	Take a tsv filepath and return an array; e.g. [[],[],[]].

For example, a file containing:

1 2 3
4 5 6
7 8 9

would return the array: [[‘1’,’2’,’3’], [‘4’,’5’,’6’], [‘7’,’8’,’9’]]

WDL syntax: Array[Array[String]] read_tsv(String|File)

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	delimiter (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	List[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
toil.wdl.wdl_functions.read_csv(path)

	Take a csv filepath and return an array; e.g. [[],[],[]].

For example, a file containing:

1,2,3
4,5,6
7,8,9

would return the array: [[‘1’,’2’,’3’], [‘4’,’5’,’6’], [‘7’,’8’,’9’]]

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	List[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
toil.wdl.wdl_functions.read_json(path)

	
	The read_json() function takes one parameter, which is a file-like object
	(String, File) and returns a data type which matches the data
structure in the JSON file. See

https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#mixed-read_jsonstringfile

WDL syntax: mixed read_json(String|File)

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Any

	
toil.wdl.wdl_functions.read_map(path)

	Given a file-like object (String, File) as a parameter, this will read each
line from a file and expect the line to have the format col1 col2. In other
words, the file-like object must be a two-column TSV file.

WDL syntax: Map[String, String] read_map(String|File)

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.wdl.wdl_functions.read_int(path)

	The read_int() function takes a file path which is expected to contain 1
line with 1 integer on it. This function returns that integer.

WDL syntax: Int read_int(String|File)

	Parameters

	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], toil.wdl.wdl_types.WDLFile]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.wdl.wdl_functions.read_string(path)

	The read_string() function takes a file path which is expected to contain 1
line with 1 string on it. This function returns that string.

WDL syntax: String read_string(String|File)

	Parameters

	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], toil.wdl.wdl_types.WDLFile]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.wdl.wdl_functions.read_float(path)

	The read_float() function takes a file path which is expected to contain 1
line with 1 floating point number on it. This function returns that float.

WDL syntax: Float read_float(String|File)

	Parameters

	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], toil.wdl.wdl_types.WDLFile]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
toil.wdl.wdl_functions.read_boolean(path)

	The read_boolean() function takes a file path which is expected to contain 1
line with 1 Boolean value (either “true” or “false” on it). This function
returns that Boolean value.

WDL syntax: Boolean read_boolean(String|File)

	Parameters

	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], toil.wdl.wdl_types.WDLFile]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.wdl.wdl_functions.write_lines(in_lines, temp_dir=None, file_store=None)

	
Given something that’s compatible with Array[String], this writes each element
to it’s own line on a file. with newline `

` characters as line separators.

WDL syntax: File write_lines(Array[String])

	Parameters

	
	in_lines (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	temp_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	file_store (Optional[toil.fileStores.abstractFileStore.AbstractFileStore]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.wdl.wdl_functions.write_tsv(in_tsv, delimiter='\t', temp_dir=None, file_store=None)

	Given something that’s compatible with Array[Array[String]], this writes a TSV
file of the data structure.

WDL syntax: File write_tsv(Array[Array[String]])

	Parameters

	
	in_tsv (List[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	delimiter (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	temp_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	file_store (Optional[toil.fileStores.abstractFileStore.AbstractFileStore]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.wdl.wdl_functions.write_json(in_json, indent=None, separators=(',', ':'), temp_dir=None, file_store=None)

	Given something with any type, this writes the JSON equivalent to a file. See
the table in the definition of
https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#mixed-read_jsonstringfile

WDL syntax: File write_json(mixed)

	Parameters

	
	in_json (Any) –

	indent (Union[None, int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	separators (Optional[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	temp_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	file_store (Optional[toil.fileStores.abstractFileStore.AbstractFileStore]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.wdl.wdl_functions.write_map(in_map, temp_dir=None, file_store=None)

	
	Given something that’s compatible with Map[String, String], this writes a TSV
	file of the data structure.

WDL syntax: File write_map(Map[String, String])

	Parameters

	
	in_map (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	temp_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	file_store (Optional[toil.fileStores.abstractFileStore.AbstractFileStore]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.wdl.wdl_functions.wdl_range(num)

	Given an integer argument, the range function creates an array of integers of
length equal to the given argument.

WDL syntax: Array[Int] range(Int)

	Parameters

	num (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	List[int [https://docs.python.org/3/library/functions.html#int]]

	
toil.wdl.wdl_functions.transpose(in_array)

	Given a two dimensional array argument, the transpose function transposes the
two dimensional array according to the standard matrix transpose rules.

WDL syntax: Array[Array[X]] transpose(Array[Array[X]])

	Parameters

	in_array (List[List[Any]]) –

	Return type

	List[List[Any]]

	
toil.wdl.wdl_functions.length(in_array)

	Given an Array, the length function returns the number of elements in the Array
as an Int.

	Parameters

	in_array (List[Any]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.wdl.wdl_functions.wdl_zip(left, right)

	Return the dot product of the two arrays. If the arrays have different lengths
it is an error.

WDL syntax: Array[Pair[X,Y]] zip(Array[X], Array[Y])

	Parameters

	
	left (List[Any]) –

	right (List[Any]) –

	Return type

	List[toil.wdl.wdl_types.WDLPair]

	
toil.wdl.wdl_functions.cross(left, right)

	Return the cross product of the two arrays. Array[Y][1] appears before
Array[X][1] in the output.

WDL syntax: Array[Pair[X,Y]] cross(Array[X], Array[Y])

	Parameters

	
	left (List[Any]) –

	right (List[Any]) –

	Return type

	List[toil.wdl.wdl_types.WDLPair]

	
toil.wdl.wdl_functions.as_pairs(in_map)

	Given a Map, the as_pairs function returns an Array containing each element
in the form of a Pair. The key will be the left element of the Pair and the
value the right element. The order of the the Pairs in the resulting Array
is the same as the order of the key/value pairs in the Map.

WDL syntax: Array[Pair[X,Y]] as_pairs(Map[X,Y])

	Parameters

	in_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	Return type

	List[toil.wdl.wdl_types.WDLPair]

	
toil.wdl.wdl_functions.as_map(in_array)

	Given an Array consisting of Pairs, the as_map function returns a Map in
which the left elements of the Pairs are the keys and the right elements the
values.

WDL syntax: Map[X,Y] as_map(Array[Pair[X,Y]])

	Parameters

	in_array (List[toil.wdl.wdl_types.WDLPair]) –

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
toil.wdl.wdl_functions.keys(in_map)

	Given a Map, the keys function returns an Array consisting of the keys in
the Map. The order of the keys in the resulting Array is the same as the
order of the Pairs in the Map.

WDL syntax: Array[X] keys(Map[X,Y])

	Parameters

	in_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
toil.wdl.wdl_functions.collect_by_key(in_array)

	Given an Array consisting of Pairs, the collect_by_key function returns a Map
in which the left elements of the Pairs are the keys and the right elements the
values.

WDL syntax: Map[X,Array[Y]] collect_by_key(Array[Pair[X,Y]])

	Parameters

	in_array (List[toil.wdl.wdl_types.WDLPair]) –

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
toil.wdl.wdl_functions.flatten(in_array)

	Given an array of arrays, the flatten function concatenates all the member
arrays in the order to appearance to give the result. It does not deduplicate
the elements.

WDL syntax: Array[X] flatten(Array[Array[X]])

	Parameters

	in_array (List[list [https://docs.python.org/3/library/stdtypes.html#list]]) –

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

 toil.wdl.wdl_synthesis

toil.wdl.wdl_synthesis

Module Contents

Classes

	SynthesizeWDL

	SynthesizeWDL takes the "workflows_dictionary" and "tasks_dictionary" produced by

Attributes

	logger

	

	
toil.wdl.wdl_synthesis.logger

	

	
class toil.wdl.wdl_synthesis.SynthesizeWDL(version, tasks_dictionary, workflows_dictionary, output_directory, json_dict, docker_user, jobstore=None, destBucket=None)

	SynthesizeWDL takes the “workflows_dictionary” and “tasks_dictionary” produced by
wdl_analysis.py and uses them to write a native python script for use with Toil.

A WDL “workflow” section roughly corresponds to the python “main()” function, where
functions are wrapped as Toil “jobs”, output dependencies specified, and called.

A WDL “task” section corresponds to a unique python function, which will be wrapped
as a Toil “job” and defined outside of the “main()” function that calls it.

Generally this handles breaking sections into their corresponding Toil counterparts.

For example: write the imports, then write all functions defining jobs (which have subsections
like: write header, define variables, read “File” types into the jobstore, docker call, etc.),
then write the main and all of its subsections.

	Parameters

	
	version (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	tasks_dictionary (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	workflows_dictionary (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	output_directory (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	json_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	docker_user (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	jobstore (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	destBucket (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
write_modules()

	

	
write_main()

	Writes out a huge string representing the main section of the python
compiled toil script.

Currently looks at and writes 5 sections:
1. JSON Variables (includes importing and preparing files as tuples)
2. TSV Variables (includes importing and preparing files as tuples)
3. CSV Variables (includes importing and preparing files as tuples)
4. Wrapping each WDL “task” function as a toil job
5. List out children and encapsulated jobs by priority, then start job0.

This should create variable declarations necessary for function calls.
Map file paths appropriately and store them in the toil fileStore so
that they are persistent from job to job. Create job wrappers for toil.
And finally write out, and run the jobs in order of priority using the
addChild and encapsulate commands provided by toil.

	Returns

	giant string containing the main def for the toil script.

	
write_main_header()

	

	
write_main_jobwrappers()

	Writes out ‘jobs’ as wrapped toil objects in preparation for calling.

	Returns

	A string representing this.

	
write_main_jobwrappers_declaration(declaration)

	

	
write_main_destbucket()

	Writes out a loop for exporting outputs to a cloud bucket.

	Returns

	A string representing this.

	
fetch_ignoredifs(assignments, breaking_assignment)

	

	
fetch_ignoredifs_chain(assignments, breaking_assignment)

	

	
write_main_jobwrappers_if(if_statement)

	

	
write_main_jobwrappers_scatter(task, assignment)

	

	
fetch_scatter_outputs(task)

	

	
fetch_scatter_inputs(assigned)

	

	
fetch_scatter_inputs_chain(inputs, assigned, ignored_ifs, inputs_list)

	

	
write_main_jobwrappers_call(task)

	

	
fetch_call_outputs(task)

	

	
write_functions()

	Writes out a python function for each WDL “task” object.

	Returns

	a giant string containing the meat of the job defs.

	
write_scatterfunctions_within_if(ifstatement)

	

	
write_scatterfunction(job, scattername)

	Writes out a python function for each WDL “scatter” object.

	
write_scatterfunction_header(scattername)

	
	Returns

	

	
write_scatterfunction_outputreturn(scatter_outputs)

	
	Returns

	

	
write_scatterfunction_lists(scatter_outputs)

	
	Returns

	

	
write_scatterfunction_loop(job, scatter_outputs)

	
	Returns

	

	
write_scatter_callwrapper(job, previous_dependency)

	

	
write_function(job)

	Writes out a python function for each WDL “task” object.

Each python function is a unit of work written out as a string in
preparation to being written out to a file. In WDL, each “job” is
called a “task”. Each WDL task is written out in multiple steps:

1: Header and inputs (e.g. ‘def mapping(self, input1, input2)’)
2: Log job name (e.g. ‘job.fileStore.logToMaster(‘initialize_jobs’)’)
3: Create temp dir (e.g. ‘tempDir = fileStore.getLocalTempDir()’)
4: import filenames and use readGlobalFile() to get files from the

jobStore

5: Reformat commandline variables (like converting to ‘ ‘.join(files)).
6: Commandline call using subprocess.Popen().
7: Write the section returning the outputs. Also logs stats.

	Returns

	a giant string containing the meat of the job defs for the toil script.

	
write_function_header(job)

	Writes the header that starts each function, for example, this function
can write and return:

‘def write_function_header(self, job, job_declaration_array):’

	Parameters

	
	job – A list such that:
(job priority #, job ID #, Job Skeleton Name, Job Alias)

	job_declaration_array – A list of all inputs that job requires.

	Returns

	A string representing this.

	
json_var(var, task=None, wf=None)

	
	Parameters

	
	var –

	task –

	wf –

	Returns

	

	
needs_file_import(var_type)

	Check if the given type contains a File type. A return value of True
means that the value with this type has files to import.

	Parameters

	var_type (toil.wdl.wdl_types.WDLType) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
write_declaration_type(var_type)

	Return a string that preserves the construction of the given WDL type
so it can be passed into the compiled script.

	Parameters

	var_type (toil.wdl.wdl_types.WDLType) –

	
write_function_bashscriptline(job)

	Writes a function to create a bashscript for injection into the docker
container.

	Parameters

	
	job_task_reference – The job referenced in WDL’s Task section.

	job_alias – The actual job name to be written.

	Returns

	A string writing all of this.

	
write_function_dockercall(job)

	Writes a string containing the apiDockerCall() that will run the job.

	Parameters

	
	job_task_reference – The name of the job calling docker.

	docker_image – The corresponding name of the docker image.
e.g. “ubuntu:latest”

	Returns

	A string containing the apiDockerCall() that will run the job.

	
write_function_cmdline(job)

	Write a series of commandline variables to be concatenated together
eventually and either called with subprocess.Popen() or with
apiDockerCall() if a docker image is called for.

	Parameters

	job – A list such that:
(job priority #, job ID #, Job Skeleton Name, Job Alias)

	Returns

	A string representing this.

	
write_function_subprocesspopen()

	Write a subprocess.Popen() call for this function and write it out as a
string.

	Parameters

	job – A list such that:
(job priority #, job ID #, Job Skeleton Name, Job Alias)

	Returns

	A string representing this.

	
write_function_outputreturn(job, docker=False)

	Find the output values that this function needs and write them out as a
string.

	Parameters

	
	job – A list such that:
(job priority #, job ID #, Job Skeleton Name, Job Alias)

	job_task_reference – The name of the job to look up values for.

	Returns

	A string representing this.

	
indent(string2indent)

	Indent the input string by 4 spaces.

	Parameters

	string2indent (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
needsdocker(job)

	
	Parameters

	job –

	Returns

	

	
write_python_file(module_section, fn_section, main_section, output_file)

	Just takes three strings and writes them to output_file.

	Parameters

	
	module_section – A string of ‘import modules’.

	fn_section – A string of python ‘def functions()’.

	main_section – A string declaring toil options and main’s header.

	job_section – A string import files into toil and declaring jobs.

	output_file – The file to write the compiled toil script to.

 toil.wdl.wdl_types

toil.wdl.wdl_types

Module Contents

Classes

	WDLType

	Represents a primitive or compound WDL type:

	WDLCompoundType

	Represents a WDL compound type.

	WDLStringType

	Represents a WDL String primitive type.

	WDLIntType

	Represents a WDL Int primitive type.

	WDLFloatType

	Represents a WDL Float primitive type.

	WDLBooleanType

	Represents a WDL Boolean primitive type.

	WDLFileType

	Represents a WDL File primitive type.

	WDLArrayType

	Represents a WDL Array compound type.

	WDLPairType

	Represents a WDL Pair compound type.

	WDLMapType

	Represents a WDL Map compound type.

	WDLFile

	Represents a WDL File.

	WDLPair

	Represents a WDL Pair literal defined at

	
exception toil.wdl.wdl_types.WDLRuntimeError

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

[image: Inheritance diagram of toil.wdl.wdl_types.WDLRuntimeError]

Unspecified run-time error.

	
class toil.wdl.wdl_types.WDLType(optional=False)

	Represents a primitive or compound WDL type:

https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#types

	Parameters

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
abstract property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Type name as string. Used in display messages / ‘mappings.out’ if dev
mode is enabled.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property default_value: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Default value if optional.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
create(value, output=False)

	Calls at runtime. Returns an instance of the current type. An error may
be raised if the value is not in the correct format.

	Parameters

	
	value (Any) – a Python object

	output (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	Any

	
__eq__(other)

	Return self==value.

	Parameters

	other (Any) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__repr__()

	Return repr(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.wdl.wdl_types.WDLCompoundType(optional=False)

	Bases: WDLType, abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

[image: Inheritance diagram of toil.wdl.wdl_types.WDLCompoundType]

Represents a WDL compound type.

	Parameters

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
class toil.wdl.wdl_types.WDLStringType(optional=False)

	Bases: WDLType

[image: Inheritance diagram of toil.wdl.wdl_types.WDLStringType]

Represents a WDL String primitive type.

	Parameters

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Type name as string. Used in display messages / ‘mappings.out’ if dev
mode is enabled.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property default_value: str [https://docs.python.org/3/library/stdtypes.html#str]

	Default value if optional.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.wdl.wdl_types.WDLIntType(optional=False)

	Bases: WDLType

[image: Inheritance diagram of toil.wdl.wdl_types.WDLIntType]

Represents a WDL Int primitive type.

	Parameters

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Type name as string. Used in display messages / ‘mappings.out’ if dev
mode is enabled.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.wdl.wdl_types.WDLFloatType(optional=False)

	Bases: WDLType

[image: Inheritance diagram of toil.wdl.wdl_types.WDLFloatType]

Represents a WDL Float primitive type.

	Parameters

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Type name as string. Used in display messages / ‘mappings.out’ if dev
mode is enabled.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.wdl.wdl_types.WDLBooleanType(optional=False)

	Bases: WDLType

[image: Inheritance diagram of toil.wdl.wdl_types.WDLBooleanType]

Represents a WDL Boolean primitive type.

	Parameters

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Type name as string. Used in display messages / ‘mappings.out’ if dev
mode is enabled.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.wdl.wdl_types.WDLFileType(optional=False)

	Bases: WDLType

[image: Inheritance diagram of toil.wdl.wdl_types.WDLFileType]

Represents a WDL File primitive type.

	Parameters

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Type name as string. Used in display messages / ‘mappings.out’ if dev
mode is enabled.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property default_value: str [https://docs.python.org/3/library/stdtypes.html#str]

	Default value if optional.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.wdl.wdl_types.WDLArrayType(element, optional=False)

	Bases: WDLCompoundType

[image: Inheritance diagram of toil.wdl.wdl_types.WDLArrayType]

Represents a WDL Array compound type.

	Parameters

	
	element (WDLType) –

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Type name as string. Used in display messages / ‘mappings.out’ if dev
mode is enabled.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.wdl.wdl_types.WDLPairType(left, right, optional=False)

	Bases: WDLCompoundType

[image: Inheritance diagram of toil.wdl.wdl_types.WDLPairType]

Represents a WDL Pair compound type.

	Parameters

	
	left (WDLType) –

	right (WDLType) –

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Type name as string. Used in display messages / ‘mappings.out’ if dev
mode is enabled.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.wdl.wdl_types.WDLMapType(key, value, optional=False)

	Bases: WDLCompoundType

[image: Inheritance diagram of toil.wdl.wdl_types.WDLMapType]

Represents a WDL Map compound type.

	Parameters

	
	key (WDLType) –

	value (WDLType) –

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Type name as string. Used in display messages / ‘mappings.out’ if dev
mode is enabled.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.wdl.wdl_types.WDLFile(file_path, file_name=None, imported=False)

	Represents a WDL File.

	Parameters

	
	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	file_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	imported (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
class toil.wdl.wdl_types.WDLPair(left, right)

	Represents a WDL Pair literal defined at
https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#pair-literals

	Parameters

	
	left (Any) –

	right (Any) –

	
to_dict()

	
	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
__eq__(other)

	Return self==value.

	Parameters

	other (Any) –

	Return type

	Any

	
__repr__()

	Return repr(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 toil.wdl.wdltoil

toil.wdl.wdltoil

Module Contents

Classes

	NonDownloadingSize

	WDL size() implementation that avoids downloading files.

	ToilWDLStdLibBase

	Standard library implementation for WDL as run on Toil.

	ToilWDLStdLibTaskOutputs

	Standard library implementation for WDL as run on Toil, with additional

	WDLBaseJob

	Base job class for all WDL-related jobs.

	WDLTaskJob

	Job that runs a WDL task.

	WDLWorkflowNodeJob

	Job that evaluates a WDL workflow node.

	WDLCombineBindingsJob

	Job that collects the results from WDL workflow nodes and combines their

	WDLNamespaceBindingsJob

	Job that puts a set of bindings into a namespace.

	WDLSectionJob

	Job that can create more graph for a section of the wrokflow.

	WDLScatterJob

	Job that evaluates a scatter in a WDL workflow. Runs the body for each

	WDLArrayBindingsJob

	Job that takes all new bindings created in an array of input environments,

	WDLConditionalJob

	Job that evaluates a conditional in a WDL workflow.

	WDLWorkflowJob

	Job that evaluates an entire WDL workflow.

	WDLOutputsJob

	Job which evaluates an outputs section (such as for a workflow).

	WDLRootJob

	Job that evaluates an entire WDL workflow, and returns the workflow outputs

Functions

	potential_absolute_uris(uri, path[, importer])

	Get potential absolute URIs to check for an imported file.

	toil_read_source(uri, path, importer)

	Implementation of a MiniWDL read_source function that can use any

	combine_bindings(all_bindings)

	Combine variable bindings from multiple predecessor tasks into one set for

	log_bindings(log_function, message, all_bindings)

	Log bindings to the console, even if some are still promises.

	get_supertype(types)

	Get the supertype that can hold values of all the given types.

	for_each_node(root)

	Iterate over all WDL workflow nodes in the given node, including inputs,

	recursive_dependencies(root)

	Get the combined workflow_node_dependencies of root and everything under

	pack_toil_uri(file_id, file_basename)

	Encode a Toil file ID and its source path in a URI that starts with the scheme in TOIL_URI_SCHEME.

	unpack_toil_uri(toil_uri)

	Unpack a URI made by make_toil_uri to retrieve the FileID and the basename

	evaluate_named_expression(context, name, ...)

	Evaluate an expression when we know the name of it.

	evaluate_decl(node, environment, stdlib)

	Evaluate the expression of a declaration node, or raise an error.

	evaluate_call_inputs(context, expressions, ...)

	Evaluate a bunch of expressions with names, and make them into a fresh set of bindings.

	evaluate_defaultable_decl(node, environment, stdlib)

	If the name of the declaration is already defined in the environment, return its value. Otherwise, return the evaluated expression.

	devirtualize_files(environment, stdlib)

	Make sure all the File values embedded in the given bindings point to files

	virtualize_files(environment, stdlib)

	Make sure all the File values embedded in the given bindings point to files

	import_files(environment, toil[, path])

	Make sure all File values embedded in the given bindings are imported,

	drop_missing_files(environment[, ...])

	Make sure all the File values embedded in the given bindings point to files

	get_file_paths_in_bindings(environment)

	Get the paths of all files in the bindings. Doesn't guarantee that

	map_over_typed_files_in_bindings(environment, transform)

	Run all File values embedded in the given bindings through the given

	map_over_files_in_bindings(bindings, transform)

	Run all File values' types and values embedded in the given bindings

	map_over_typed_files_in_binding(binding, transform)

	Run all File values' types and values embedded in the given binding's value through the given

	map_over_typed_files_in_value(value, transform)

	Run all File values embedded in the given value through the given

	main()

	A Toil workflow to interpret WDL input files.

Attributes

	logger

	

	WDLBindings

	

	TOIL_URI_SCHEME

	

	
toil.wdl.wdltoil.logger

	

	
toil.wdl.wdltoil.potential_absolute_uris(uri, path, importer=None)

	Get potential absolute URIs to check for an imported file.

Given a URI or bare path, yield in turn all the URIs, with schemes, where we
should actually try to find it, given that we want to search under/against
the given paths or URIs, the current directory, and the given importing WDL
document if any.

	Parameters

	
	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	path (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	importer (Optional[WDL.Tree.Document]) –

	Return type

	Iterator[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
async toil.wdl.wdltoil.toil_read_source(uri, path, importer)

	Implementation of a MiniWDL read_source function that can use any
filename or URL supported by Toil.

Needs to be async because MiniWDL will await its result.

	Parameters

	
	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	path (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	importer (Optional[WDL.Tree.Document]) –

	Return type

	WDL.ReadSourceResult

	
toil.wdl.wdltoil.WDLBindings

	

	
toil.wdl.wdltoil.combine_bindings(all_bindings)

	Combine variable bindings from multiple predecessor tasks into one set for
the current task.

	Parameters

	all_bindings (Sequence[WDLBindings]) –

	Return type

	WDLBindings

	
toil.wdl.wdltoil.log_bindings(log_function, message, all_bindings)

	Log bindings to the console, even if some are still promises.

	Parameters

	
	log_function (Callable[Ellipsis, None]) – Function (like logger.info) to call to log data

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Message to log before the bindings

	all_bindings (Sequence[toil.job.Promised[WDLBindings]]) – A list of bindings or promises for bindings, to log

	Return type

	None

	
toil.wdl.wdltoil.get_supertype(types)

	Get the supertype that can hold values of all the given types.

	Parameters

	types (Sequence[Optional[WDL.Type.Base]]) –

	Return type

	WDL.Type.Base

	
toil.wdl.wdltoil.for_each_node(root)

	Iterate over all WDL workflow nodes in the given node, including inputs,
internal nodes of conditionals and scatters, and gather nodes.

	Parameters

	root (WDL.Tree.WorkflowNode) –

	Return type

	Iterator[WDL.Tree.WorkflowNode]

	
toil.wdl.wdltoil.recursive_dependencies(root)

	Get the combined workflow_node_dependencies of root and everything under
it, which are not on anything in that subtree.

Useful because section nodes can have internal nodes with dependencies not
reflected in those of the section node itself.

	Parameters

	root (WDL.Tree.WorkflowNode) –

	Return type

	Set[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.wdl.wdltoil.TOIL_URI_SCHEME = 'toilfile:'

	

	
toil.wdl.wdltoil.pack_toil_uri(file_id, file_basename)

	Encode a Toil file ID and its source path in a URI that starts with the scheme in TOIL_URI_SCHEME.

	Parameters

	
	file_id (toil.fileStores.FileID) –

	file_basename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.wdl.wdltoil.unpack_toil_uri(toil_uri)

	Unpack a URI made by make_toil_uri to retrieve the FileID and the basename
(no path prefix) that the file is supposed to have.

	Parameters

	toil_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Tuple[toil.fileStores.FileID, str [https://docs.python.org/3/library/stdtypes.html#str]]

	
class toil.wdl.wdltoil.NonDownloadingSize

	Bases: WDL.StdLib._Size

[image: Inheritance diagram of toil.wdl.wdltoil.NonDownloadingSize]

WDL size() implementation that avoids downloading files.

MiniWDL’s default size() implementation downloads the whole file to get its
size. We want to be able to get file sizes from code running on the leader,
where there may not be space to download the whole file. So we override the
fancy class that implements it so that we can handle sizes for FileIDs
using the FileID’s stored size info.

	
class toil.wdl.wdltoil.ToilWDLStdLibBase(file_store)

	Bases: WDL.StdLib.Base

[image: Inheritance diagram of toil.wdl.wdltoil.ToilWDLStdLibBase]

Standard library implementation for WDL as run on Toil.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	
class toil.wdl.wdltoil.ToilWDLStdLibTaskOutputs(file_store, stdout_path, stderr_path, current_directory_override=None)

	Bases: ToilWDLStdLibBase, WDL.StdLib.TaskOutputs

[image: Inheritance diagram of toil.wdl.wdltoil.ToilWDLStdLibTaskOutputs]

Standard library implementation for WDL as run on Toil, with additional
functions only allowed in task output sections.

	Parameters

	
	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	stdout_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	stderr_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	current_directory_override (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
toil.wdl.wdltoil.evaluate_named_expression(context, name, expected_type, expression, environment, stdlib)

	Evaluate an expression when we know the name of it.

	Parameters

	
	context (Union[WDL.Error.SourceNode, WDL.Error.SourcePosition]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	expected_type (Optional[WDL.Type.Base]) –

	expression (Optional[WDL.Expr.Base]) –

	environment (WDLBindings) –

	stdlib (WDL.StdLib.Base) –

	Return type

	WDL.Value.Base

	
toil.wdl.wdltoil.evaluate_decl(node, environment, stdlib)

	Evaluate the expression of a declaration node, or raise an error.

	Parameters

	
	node (WDL.Tree.Decl) –

	environment (WDLBindings) –

	stdlib (WDL.StdLib.Base) –

	Return type

	WDL.Value.Base

	
toil.wdl.wdltoil.evaluate_call_inputs(context, expressions, environment, stdlib)

	Evaluate a bunch of expressions with names, and make them into a fresh set of bindings.

	Parameters

	
	context (Union[WDL.Error.SourceNode, WDL.Error.SourcePosition]) –

	expressions (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], WDL.Expr.Base]) –

	environment (WDLBindings) –

	stdlib (WDL.StdLib.Base) –

	Return type

	WDLBindings

	
toil.wdl.wdltoil.evaluate_defaultable_decl(node, environment, stdlib)

	If the name of the declaration is already defined in the environment, return its value. Otherwise, return the evaluated expression.

	Parameters

	
	node (WDL.Tree.Decl) –

	environment (WDLBindings) –

	stdlib (WDL.StdLib.Base) –

	Return type

	WDL.Value.Base

	
toil.wdl.wdltoil.devirtualize_files(environment, stdlib)

	Make sure all the File values embedded in the given bindings point to files
that are actually available to command line commands.

	Parameters

	
	environment (WDLBindings) –

	stdlib (WDL.StdLib.Base) –

	Return type

	WDLBindings

	
toil.wdl.wdltoil.virtualize_files(environment, stdlib)

	Make sure all the File values embedded in the given bindings point to files
that are usable from other machines.

	Parameters

	
	environment (WDLBindings) –

	stdlib (WDL.StdLib.Base) –

	Return type

	WDLBindings

	
toil.wdl.wdltoil.import_files(environment, toil, path=None)

	Make sure all File values embedded in the given bindings are imported,
using the given Toil object.

	Parameters

	
	path (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – If set, try resolving input location relative to the URLs or
directories in this list.

	environment (WDLBindings) –

	toil (toil.common.Toil) –

	Return type

	WDLBindings

	
toil.wdl.wdltoil.drop_missing_files(environment, current_directory_override=None)

	Make sure all the File values embedded in the given bindings point to files
that exist, or are null.

Files must not be virtualized.

	Parameters

	
	environment (WDLBindings) –

	current_directory_override (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	WDLBindings

	
toil.wdl.wdltoil.get_file_paths_in_bindings(environment)

	Get the paths of all files in the bindings. Doesn’t guarantee that
duplicates are removed.

TODO: Duplicative with WDL.runtime.task._fspaths, except that is internal
and supports Direcotry objects.

	Parameters

	environment (WDLBindings) –

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
toil.wdl.wdltoil.map_over_typed_files_in_bindings(environment, transform)

	Run all File values embedded in the given bindings through the given
transformation function.

TODO: Replace with WDL.Value.rewrite_env_paths or WDL.Value.rewrite_files

	Parameters

	
	environment (WDLBindings) –

	transform (Callable[[WDL.Type.Base, str [https://docs.python.org/3/library/stdtypes.html#str]], Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	WDLBindings

	
toil.wdl.wdltoil.map_over_files_in_bindings(bindings, transform)

	Run all File values’ types and values embedded in the given bindings
through the given transformation function.

TODO: Replace with WDL.Value.rewrite_env_paths or WDL.Value.rewrite_files

	Parameters

	
	bindings (WDLBindings) –

	transform (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	WDLBindings

	
toil.wdl.wdltoil.map_over_typed_files_in_binding(binding, transform)

	Run all File values’ types and values embedded in the given binding’s value through the given
transformation function.

	Parameters

	
	binding (WDL.Env.Binding[WDL.Value.Base]) –

	transform (Callable[[WDL.Type.Base, str [https://docs.python.org/3/library/stdtypes.html#str]], Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	WDL.Env.Binding[WDL.Value.Base]

	
toil.wdl.wdltoil.map_over_typed_files_in_value(value, transform)

	Run all File values embedded in the given value through the given
transformation function.

If the transform returns None, the file value is changed to Null.

The transform has access to the type information for the value, so it knows
if it may return None, depending on if the value is optional or not.

The transform is allowed to return None only if the mapping result won’t
actually be used, to allow for scans. So error checking needs to be part of
the transform itself.

	Parameters

	
	value (WDL.Value.Base) –

	transform (Callable[[WDL.Type.Base, str [https://docs.python.org/3/library/stdtypes.html#str]], Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	WDL.Value.Base

	
class toil.wdl.wdltoil.WDLBaseJob(**kwargs)

	Bases: toil.job.Job

[image: Inheritance diagram of toil.wdl.wdltoil.WDLBaseJob]

Base job class for all WDL-related jobs.

	Parameters

	kwargs (Any) –

	
run(file_store)

	Run a WDL-related job.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	Any

	
class toil.wdl.wdltoil.WDLTaskJob(task, prev_node_results, task_id, namespace, **kwargs)

	Bases: WDLBaseJob

[image: Inheritance diagram of toil.wdl.wdltoil.WDLTaskJob]

Job that runs a WDL task.

Responsible for evaluating the input declarations for unspecified inputs,
evaluating the runtime section, re-scheduling if resources are not
available, running any command, and evaluating the outputs.

All bindings are in terms of task-internal names.

	Parameters

	
	task (WDL.Tree.Task) –

	prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

	task_id (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	kwargs (Any) –

	
can_fake_root()

	Determie if –fakeroot is likely to work for Singularity.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
run(file_store)

	Actually run the task.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	toil.job.Promised[WDLBindings]

	
class toil.wdl.wdltoil.WDLWorkflowNodeJob(node, prev_node_results, namespace, **kwargs)

	Bases: WDLBaseJob

[image: Inheritance diagram of toil.wdl.wdltoil.WDLWorkflowNodeJob]

Job that evaluates a WDL workflow node.

	Parameters

	
	node (WDL.Tree.WorkflowNode) –

	prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	kwargs (Any) –

	
run(file_store)

	Actually execute the workflow node.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	toil.job.Promised[WDLBindings]

	
class toil.wdl.wdltoil.WDLCombineBindingsJob(prev_node_results, underlay=None, remove=None, **kwargs)

	Bases: WDLBaseJob

[image: Inheritance diagram of toil.wdl.wdltoil.WDLCombineBindingsJob]

Job that collects the results from WDL workflow nodes and combines their
environment changes.

	Parameters

	
	prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

	underlay (Optional[toil.job.Promised[WDLBindings]]) –

	remove (Optional[toil.job.Promised[WDLBindings]]) –

	kwargs (Any) –

	
run(file_store)

	Aggregate incoming results.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	WDLBindings

	
class toil.wdl.wdltoil.WDLNamespaceBindingsJob(namespace, prev_node_results, **kwargs)

	Bases: WDLBaseJob

[image: Inheritance diagram of toil.wdl.wdltoil.WDLNamespaceBindingsJob]

Job that puts a set of bindings into a namespace.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

	kwargs (Any) –

	
run(file_store)

	Apply the namespace

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	WDLBindings

	
class toil.wdl.wdltoil.WDLSectionJob(namespace, **kwargs)

	Bases: WDLBaseJob

[image: Inheritance diagram of toil.wdl.wdltoil.WDLSectionJob]

Job that can create more graph for a section of the wrokflow.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	kwargs (Any) –

	
create_subgraph(nodes, gather_nodes, environment, local_environment=None)

	Make a Toil job to evaluate a subgraph inside a workflow or workflow
section.

	Returns

	a child Job that will return the aggregated environment
after running all the things in the section.

	Parameters

	
	gather_nodes (Sequence[WDL.Tree.Gather]) – Names exposed by these will always be defined
with something, even if the code that defines them does
not actually run.

	environment (WDLBindings) – Bindings in this environment will be used
to evaluate the subgraph and will be passed through.

	local_environment (Optional[WDLBindings]) – Bindings in this environment will be
used to evaluate the subgraph but will go out of scope
at the end of the section.

	nodes (Sequence[WDL.Tree.WorkflowNode]) –

	Return type

	toil.job.Job

	
make_gather_bindings(gathers, undefined)

	Given a collection of Gathers, create bindings from every identifier
gathered, to the given “undefined” placeholder (which would be Null for
a single execution of the body, or an empty array for a completely
unexecuted scatter).

These bindings can be overlaid with bindings from the actual execution,
so that references to names defined in unexecuted code get a proper
default undefined value, and not a KeyError at runtime.

The information to do this comes from MiniWDL’s “gathers” system:
<https://miniwdl.readthedocs.io/en/latest/WDL.html#WDL.Tree.WorkflowSection.gathers>

TODO: This approach will scale O(n^2) when run on n nested
conditionals, because generating these bindings for the outer
conditional will visit all the bindings from the inner ones.

	Parameters

	
	gathers (Sequence[WDL.Tree.Gather]) –

	undefined (WDL.Value.Base) –

	Return type

	WDLBindings

	
class toil.wdl.wdltoil.WDLScatterJob(scatter, prev_node_results, namespace, **kwargs)

	Bases: WDLSectionJob

[image: Inheritance diagram of toil.wdl.wdltoil.WDLScatterJob]

Job that evaluates a scatter in a WDL workflow. Runs the body for each
value in an array, and makes arrays of the new bindings created in each
instance of the body. If an instance of the body doesn’t create a binding,
it gets a null value in the corresponding array.

	Parameters

	
	scatter (WDL.Tree.Scatter) –

	prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	kwargs (Any) –

	
run(file_store)

	Run the scatter.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	toil.job.Promised[WDLBindings]

	
class toil.wdl.wdltoil.WDLArrayBindingsJob(input_bindings, base_bindings, **kwargs)

	Bases: WDLBaseJob

[image: Inheritance diagram of toil.wdl.wdltoil.WDLArrayBindingsJob]

Job that takes all new bindings created in an array of input environments,
relative to a base environment, and produces bindings where each new
binding name is bound to an array of the values in all the input
environments.

Useful for producing the results of a scatter.

	Parameters

	
	input_bindings (Sequence[toil.job.Promised[WDLBindings]]) –

	base_bindings (WDLBindings) –

	kwargs (Any) –

	
run(file_store)

	Actually produce the array-ified bindings now that promised values are available.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	WDLBindings

	
class toil.wdl.wdltoil.WDLConditionalJob(conditional, prev_node_results, namespace, **kwargs)

	Bases: WDLSectionJob

[image: Inheritance diagram of toil.wdl.wdltoil.WDLConditionalJob]

Job that evaluates a conditional in a WDL workflow.

	Parameters

	
	conditional (WDL.Tree.Conditional) –

	prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	kwargs (Any) –

	
run(file_store)

	Run the conditional.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	toil.job.Promised[WDLBindings]

	
class toil.wdl.wdltoil.WDLWorkflowJob(workflow, prev_node_results, workflow_id, namespace, **kwargs)

	Bases: WDLSectionJob

[image: Inheritance diagram of toil.wdl.wdltoil.WDLWorkflowJob]

Job that evaluates an entire WDL workflow.

	Parameters

	
	workflow (WDL.Tree.Workflow) –

	prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

	workflow_id (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	kwargs (Any) –

	
run(file_store)

	Run the workflow. Return the result of the workflow.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	toil.job.Promised[WDLBindings]

	
class toil.wdl.wdltoil.WDLOutputsJob(outputs, bindings, **kwargs)

	Bases: WDLBaseJob

[image: Inheritance diagram of toil.wdl.wdltoil.WDLOutputsJob]

Job which evaluates an outputs section (such as for a workflow).

Returns an environment with just the outputs bound, in no namespace.

	Parameters

	
	outputs (List[WDL.Tree.Decl]) –

	bindings (toil.job.Promised[WDLBindings]) –

	kwargs (Any) –

	
run(file_store)

	Make bindings for the outputs.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	WDLBindings

	
class toil.wdl.wdltoil.WDLRootJob(workflow, inputs, **kwargs)

	Bases: WDLSectionJob

[image: Inheritance diagram of toil.wdl.wdltoil.WDLRootJob]

Job that evaluates an entire WDL workflow, and returns the workflow outputs
namespaced with the workflow name. Inputs may or may not be namespaced with
the workflow name; both forms are accepted.

	Parameters

	
	workflow (WDL.Tree.Workflow) –

	inputs (WDLBindings) –

	kwargs (Any) –

	
run(file_store)

	Actually build the subgraph.

	Parameters

	file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

	Return type

	toil.job.Promised[WDLBindings]

	
toil.wdl.wdltoil.main()

	A Toil workflow to interpret WDL input files.

	Return type

	None

 toil.bus

toil.bus

Message types and message bus for leader component coordination.

Historically, the Toil Leader has been organized around functions calling other
functions to “handle” different things happening. Over time, it has become very
brittle: exactly the right handling functions need to be called in exactly the
right order, or it gets confused and does the wrong thing.

The MessageBus is meant to let the leader avoid this by more losely coupling
its components together, by having them communicate by sending messages instead
of by calling functions.

When events occur (like a job coming back from the batch system with a failed
exit status), this will be translated into a message that will be sent to the
bus. Then, all the leader components that need to react to this message in some
way (by, say, decrementing the retry count) would listen for the relevant
messages on the bus and react to them. If a new component needs to be added, it
can be plugged into the message bus and receive and react to messages without
interfering with existing components’ ability to react to the same messages.

Eventually, the different aspects of the Leader could become separate objects.

By default, messages stay entirely within the Toil leader process, and are not
persisted anywhere, not even in the JobStore.

The Message Bus also provides an extension point: its messages can be
serialized to a file by the leader (see the –writeMessages option), and they
can then be decoded using MessageBus.scan_bus_messages() (as is done in the
Toil WES server backend). By replaying the messages and tracking their effects
on job state, you can get an up-to-date view of the state of the jobs in a
workflow. This includes information, such as whether jobs are issued or
running, or what jobs have completely finished, which is not persisted in the
JobStore.

The MessageBus instance for the leader process is owned by the Toil leader, but
the BatchSystem has an opportunity to connect to it, and can send (or listen
for) messages. Right now the BatchSystem deos not have to send or receive any
messages; the Leader is responsible for polling it via the BatchSystem API and
generating the events. But a BatchSystem implementation may send additional
events (like JobAnnotationMessage).

Currently, the MessageBus is implemented using pypubsub, and so messages are
always handled in a single Thread, the Toil leader’s main loop thread. If other
components send events, they will be shipped over to that thread inside the
MessageBus. Communication between processes is allowed using
MessageBus.connect_output_file() and MessageBus.scan_bus_messages().

Module Contents

Classes

	JobIssuedMessage

	Produced when a job is issued to run on the batch system.

	JobUpdatedMessage

	Produced when a job is "updated" and ready to have something happen to it.

	JobCompletedMessage

	Produced when a job is completed, whether successful or not.

	JobFailedMessage

	Produced when a job is completely failed, and will not be retried again.

	JobMissingMessage

	Produced when a job goes missing and should be in the batch system but isn't.

	JobAnnotationMessage

	Produced when extra information (such as an AWS Batch job ID from the

	ExternalBatchIdMessage

	Produced when using a batch system, links toil assigned batch ID to

	QueueSizeMessage

	Produced to describe the size of the queue of jobs issued but not yet

	ClusterSizeMessage

	Produced by the Toil-integrated autoscaler describe the number of

	ClusterDesiredSizeMessage

	Produced by the Toil-integrated autoscaler to describe the number of

	MessageBus

	Holds messages that should cause jobs to change their scheduling states.

	MessageBusClient

	Base class for clients (inboxes and outboxes) of a message bus. Handles

	MessageInbox

	A buffered connection to a message bus that lets us receive messages.

	MessageOutbox

	A connection to a message bus that lets us publish messages.

	MessageBusConnection

	A two-way connection to a message bus. Buffers incoming messages until you

	JobStatus

	Records the status of a job.

Functions

	message_to_bytes(message)

	Convert a plain-old-data named tuple into a byte string.

	bytes_to_message(message_type, data)

	Convert bytes from message_to_bytes back to a message of the given type.

	replay_message_bus(path)

	Replay all the messages and work out what they mean for jobs.

	gen_message_bus_path()

	Return a file path in tmp to store the message bus at.

Attributes

	logger

	

	MessageType

	

	
toil.bus.logger

	

	
class toil.bus.JobIssuedMessage

	Bases: NamedTuple

[image: Inheritance diagram of toil.bus.JobIssuedMessage]

Produced when a job is issued to run on the batch system.

	
job_type: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
job_id: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
toil_batch_id: int [https://docs.python.org/3/library/functions.html#int]

	

	
class toil.bus.JobUpdatedMessage

	Bases: NamedTuple

[image: Inheritance diagram of toil.bus.JobUpdatedMessage]

Produced when a job is “updated” and ready to have something happen to it.

	
job_id: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
result_status: int [https://docs.python.org/3/library/functions.html#int]

	

	
class toil.bus.JobCompletedMessage

	Bases: NamedTuple

[image: Inheritance diagram of toil.bus.JobCompletedMessage]

Produced when a job is completed, whether successful or not.

	
job_type: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
job_id: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
exit_code: int [https://docs.python.org/3/library/functions.html#int]

	

	
class toil.bus.JobFailedMessage

	Bases: NamedTuple

[image: Inheritance diagram of toil.bus.JobFailedMessage]

Produced when a job is completely failed, and will not be retried again.

	
job_type: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
job_id: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class toil.bus.JobMissingMessage

	Bases: NamedTuple

[image: Inheritance diagram of toil.bus.JobMissingMessage]

Produced when a job goes missing and should be in the batch system but isn’t.

	
job_id: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class toil.bus.JobAnnotationMessage

	Bases: NamedTuple

[image: Inheritance diagram of toil.bus.JobAnnotationMessage]

Produced when extra information (such as an AWS Batch job ID from the
AWSBatchBatchSystem) is available that goes with a job.

	
job_id: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
annotation_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
annotation_value: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class toil.bus.ExternalBatchIdMessage

	Bases: NamedTuple

[image: Inheritance diagram of toil.bus.ExternalBatchIdMessage]

Produced when using a batch system, links toil assigned batch ID to
Batch system ID (Whatever’s returned by local implementation, PID, batch ID, etc)

	
toil_batch_id: int [https://docs.python.org/3/library/functions.html#int]

	

	
external_batch_id: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
batch_system: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class toil.bus.QueueSizeMessage

	Bases: NamedTuple

[image: Inheritance diagram of toil.bus.QueueSizeMessage]

Produced to describe the size of the queue of jobs issued but not yet
completed. Theoretically recoverable from other messages.

	
queue_size: int [https://docs.python.org/3/library/functions.html#int]

	

	
class toil.bus.ClusterSizeMessage

	Bases: NamedTuple

[image: Inheritance diagram of toil.bus.ClusterSizeMessage]

Produced by the Toil-integrated autoscaler describe the number of
instances of a certain type in a cluster.

	
instance_type: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
current_size: int [https://docs.python.org/3/library/functions.html#int]

	

	
class toil.bus.ClusterDesiredSizeMessage

	Bases: NamedTuple

[image: Inheritance diagram of toil.bus.ClusterDesiredSizeMessage]

Produced by the Toil-integrated autoscaler to describe the number of
instances of a certain type that it thinks will be needed.

	
instance_type: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
desired_size: int [https://docs.python.org/3/library/functions.html#int]

	

	
toil.bus.message_to_bytes(message)

	Convert a plain-old-data named tuple into a byte string.

	Parameters

	message (NamedTuple) –

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
toil.bus.MessageType

	

	
toil.bus.bytes_to_message(message_type, data)

	Convert bytes from message_to_bytes back to a message of the given type.

	Parameters

	
	message_type (Type[MessageType]) –

	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	Return type

	MessageType

	
class toil.bus.MessageBus

	Holds messages that should cause jobs to change their scheduling states.
Messages are put in and buffered, and can be taken out and handled as
batches when convenient.

All messages are NamedTuple objects of various subtypes.

Message order is guaranteed to be preserved within a type.

	
MessageType

	

	
publish(message)

	Put a message onto the bus. Can be called from any thread.

	Parameters

	message (Any) –

	Return type

	None

	
check()

	If we are in the owning thread, deliver any messages that are in the
queue for us. Must be called every once in a while in the main thread,
possibly through inbox objects.

	Return type

	None

	
subscribe(message_type, handler)

	Register the given callable to be called when messages of the given type are sent.
It will be called with messages sent after the subscription is created.
Returns a subscription object; when the subscription object is GC’d the subscription will end.

	Parameters

	
	message_type (Type[MessageType]) –

	handler (Callable[[MessageType], Any]) –

	Return type

	pubsub.core.listener.Listener

	
connect(wanted_types)

	Get a connection object that serves as an inbox for messages of the
given types.
Messages of those types will accumulate in the inbox until it is
destroyed. You can check for them at any time.

	Parameters

	wanted_types (List[type [https://docs.python.org/3/library/functions.html#type]]) –

	Return type

	MessageBusConnection

	
outbox()

	Get a connection object that only allows sending messages.

	Return type

	MessageOutbox

	
connect_output_file(file_path)

	Send copies of all messages to the given output file.

Returns connection data which must be kept alive for the
connection to persist. That data is opaque: the user is not supposed to
look at it or touch it or do anything with it other than store it
somewhere or delete it.

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Any

	
classmethod scan_bus_messages(stream, message_types)

	Get an iterator over all messages in the given log stream of the given
types, in order. Discard any trailing partial messages.

	Parameters

	
	stream (IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]) –

	message_types (List[Type[NamedTuple]]) –

	Return type

	Iterator[Any]

	
class toil.bus.MessageBusClient

	Base class for clients (inboxes and outboxes) of a message bus. Handles
keeping a reference to the message bus.

	
class toil.bus.MessageInbox

	Bases: MessageBusClient

[image: Inheritance diagram of toil.bus.MessageInbox]

A buffered connection to a message bus that lets us receive messages.
Buffers incoming messages until you are ready for them.
Does not preserve ordering between messages of different types.

	
MessageType

	

	
count(message_type)

	Get the number of pending messages of the given type.

	Parameters

	message_type (type [https://docs.python.org/3/library/functions.html#type]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
empty()

	Return True if no messages are pending, and false otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
for_each(message_type)

	Loop over all messages currently pending of the given type. Each that
is handled without raising an exception will be removed.

Messages sent while this function is running will not be yielded by the
current call.

	Parameters

	message_type (Type[MessageType]) –

	Return type

	Iterator[MessageType]

	
class toil.bus.MessageOutbox

	Bases: MessageBusClient

[image: Inheritance diagram of toil.bus.MessageOutbox]

A connection to a message bus that lets us publish messages.

	
publish(message)

	Publish the given message to the connected message bus.

We have this so you don’t need to store both the bus and your connection.

	Parameters

	message (Any) –

	Return type

	None

	
class toil.bus.MessageBusConnection

	Bases: MessageInbox, MessageOutbox

[image: Inheritance diagram of toil.bus.MessageBusConnection]

A two-way connection to a message bus. Buffers incoming messages until you
are ready for them, and lets you send messages.

	
class toil.bus.JobStatus

	Records the status of a job.

	
job_store_id: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
exit_code: int [https://docs.python.org/3/library/functions.html#int]

	

	
annotations: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
toil_batch_id: int [https://docs.python.org/3/library/functions.html#int]

	

	
external_batch_id: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
batch_system: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
__repr__()

	Return repr(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.bus.replay_message_bus(path)

	Replay all the messages and work out what they mean for jobs.

We track the state and name of jobs here, by ID.
We would use a list of two items but MyPy can’t understand a list
of items of multiple types, so we need to define a new class.

Returns a dictionary from the job_id to a dataclass, JobStatus.
A JobStatus contains information about a job which we have gathered
from the message bus, including the job store id, name of the job
the exit code, any associated annotations, the toil batch id
the external batch id, and the batch system on which the job
is running.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], JobStatus]

	
toil.bus.gen_message_bus_path()

	Return a file path in tmp to store the message bus at.
Calling function is responsible for cleaning the generated file.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 toil.common

toil.common

Module Contents

Classes

	Config

	Class to represent configuration operations for a toil workflow run.

	Toil

	A context manager that represents a Toil workflow.

	ToilMetrics

	

Functions

	parser_with_common_options([provisioner_options, ...])

	

	addOptions(parser[, config, jobstore_as_flag])

	Add Toil command line options to a parser.

	parseBool(val)

	

	getNodeID()

	Return unique ID of the current node (host). The resulting string will be convertable to a uuid.UUID.

	parseSetEnv(l)

	Parse a list of strings of the form "NAME=VALUE" or just "NAME" into a dictionary.

	iC(minValue[, maxValue])

	Returns a function that checks if a given int is in the given half-open interval.

	fC(minValue[, maxValue])

	Returns a function that checks if a given float is in the given half-open interval.

	parse_accelerator_list(specs)

	Parse a string description of one or more accelerator requirements.

	cacheDirName(workflowID)

	
	return

	Name of the cache directory.

	getDirSizeRecursively(dirPath)

	This method will return the cumulative number of bytes occupied by the files

	getFileSystemSize(dirPath)

	Return the free space, and total size of the file system hosting dirPath.

	safeUnpickleFromStream(stream)

	

Attributes

	defaultTargetTime

	

	SYS_MAX_SIZE

	

	UUID_LENGTH

	

	logger

	

	JOBSTORE_HELP

	

	
toil.common.defaultTargetTime = 1800

	

	
toil.common.SYS_MAX_SIZE = 9223372036854775807

	

	
toil.common.UUID_LENGTH = 32

	

	
toil.common.logger

	

	
class toil.common.Config

	Class to represent configuration operations for a toil workflow run.

	
logFile: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
logRotating: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
cleanWorkDir: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
max_jobs: int [https://docs.python.org/3/library/functions.html#int]

	

	
max_local_jobs: int [https://docs.python.org/3/library/functions.html#int]

	

	
run_local_jobs_on_workers: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
tes_endpoint: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
tes_user: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
tes_password: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
tes_bearer_token: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
jobStore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
batchSystem: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
batch_logs_dir: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The backing scheduler will be instructed, if possible, to save logs
to this directory, where the leader can read them.

	
workflowAttemptNumber: int [https://docs.python.org/3/library/functions.html#int]

	

	
disableAutoDeployment: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
workflowID: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	This attribute uniquely identifies the job store and therefore the workflow. It is
necessary in order to distinguish between two consecutive workflows for which
self.jobStore is the same, e.g. when a job store name is reused after a previous run has
finished successfully and its job store has been clean up.

	
prepare_start()

	After options are set, prepare for initial start of workflow.

	Return type

	None

	
prepare_restart()

	Before restart options are set, prepare for a restart of a workflow.
Set up any execution-specific parameters and clear out any stale ones.

	Return type

	None

	
setOptions(options)

	Creates a config object from the options object.

	Parameters

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	Return type

	None

	
__eq__(other)

	Return self==value.

	Parameters

	other (object [https://docs.python.org/3/library/functions.html#object]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__hash__()

	Return hash(self).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.common.JOBSTORE_HELP = Multiline-String

	
Show Value"""The location of the job store for the workflow. A job store holds persistent information about the jobs, stats, and files in a workflow. If the workflow is run with a distributed batch system, the job store must be accessible by all worker nodes. Depending on the desired job store implementation, the location should be formatted according to one of the following schemes:

file:<path> where <path> points to a directory on the file systen

aws:<region>:<prefix> where <region> is the name of an AWS region like us-west-2 and <prefix> will be prepended to the names of any top-level AWS resources in use by job store, e.g. S3 buckets.

 google:<project_id>:<prefix> TODO: explain

For backwards compatibility, you may also specify ./foo (equivalent to file:./foo or just file:foo) or /bar (equivalent to file:/bar)."""

	
toil.common.parser_with_common_options(provisioner_options=False, jobstore_option=True)

	
	Parameters

	
	provisioner_options (bool [https://docs.python.org/3/library/functions.html#bool]) –

	jobstore_option (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	
toil.common.addOptions(parser, config=None, jobstore_as_flag=False)

	Add Toil command line options to a parser.

	Parameters

	
	config (Optional[Config]) – If specified, take defaults from the given Config.

	jobstore_as_flag (bool [https://docs.python.org/3/library/functions.html#bool]) – make the job store option a –jobStore flag instead of a required jobStore positional argument.

	parser (argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) –

	Return type

	None

	
toil.common.parseBool(val)

	
	Parameters

	val (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.common.getNodeID()

	Return unique ID of the current node (host). The resulting string will be convertable to a uuid.UUID.

Tries several methods until success. The returned ID should be identical across calls from different processes on
the same node at least until the next OS reboot.

The last resort method is uuid.getnode() that in some rare OS configurations may return a random ID each time it is
called. However, this method should never be reached on a Linux system, because reading from
/proc/sys/kernel/random/boot_id will be tried prior to that. If uuid.getnode() is reached, it will be called twice,
and exception raised if the values are not identical.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.common.Toil(options)

	Bases: ContextManager[Toil]

[image: Inheritance diagram of toil.common.Toil]

A context manager that represents a Toil workflow.

Specifically the batch system, job store, and its configuration.

	Parameters

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) –

	
config: Config

	

	
__enter__()

	Derive configuration from the command line options.

Then load the job store and, on restart, consolidate the derived
configuration with the one from the previous invocation of the workflow.

	Return type

	Toil

	
__exit__(exc_type, exc_val, exc_tb)

	Clean up after a workflow invocation.

Depending on the configuration, delete the job store.

	Parameters

	
	exc_type (Optional[Type[BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]]]) –

	exc_val (Optional[BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]]) –

	exc_tb (Optional[types.TracebackType [https://docs.python.org/3/library/types.html#types.TracebackType]]) –

	Return type

	Literal[False]

	
start(rootJob)

	Invoke a Toil workflow with the given job as the root for an initial run.

This method must be called in the body of a with Toil(...) as toil:
statement. This method should not be called more than once for a workflow
that has not finished.

	Parameters

	rootJob (toil.job.Job) – The root job of the workflow

	Returns

	The root job’s return value

	Return type

	Any

	
restart()

	Restarts a workflow that has been interrupted.

	Returns

	The root job’s return value

	Return type

	Any

	
classmethod getJobStore(locator)

	Create an instance of the concrete job store implementation that matches the given locator.

	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) – The location of the job store to be represent by the instance

	Returns

	an instance of a concrete subclass of AbstractJobStore

	Return type

	toil.jobStores.abstractJobStore.AbstractJobStore

	
static parseLocator(locator)

	
	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
static buildLocator(name, rest)

	
	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	rest (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod resumeJobStore(locator)

	
	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	toil.jobStores.abstractJobStore.AbstractJobStore

	
static createBatchSystem(config)

	Create an instance of the batch system specified in the given config.

	Parameters

	config (Config) – the current configuration

	Returns

	an instance of a concrete subclass of AbstractBatchSystem

	Return type

	toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

	
importFile(srcUrl: str [https://docs.python.org/3/library/stdtypes.html#str], sharedFileName: str [https://docs.python.org/3/library/stdtypes.html#str], symlink: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	
importFile(srcUrl: str [https://docs.python.org/3/library/stdtypes.html#str], sharedFileName: None [https://docs.python.org/3/library/constants.html#None] = None, symlink: bool [https://docs.python.org/3/library/functions.html#bool] = False) → toil.fileStores.FileID

	

	
import_file(src_uri: str [https://docs.python.org/3/library/stdtypes.html#str], shared_file_name: str [https://docs.python.org/3/library/stdtypes.html#str], symlink: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	
import_file(src_uri: str [https://docs.python.org/3/library/stdtypes.html#str], shared_file_name: None [https://docs.python.org/3/library/constants.html#None] = None, symlink: bool [https://docs.python.org/3/library/functions.html#bool] = False) → toil.fileStores.FileID

	Import the file at the given URL into the job store.

See toil.jobStores.abstractJobStore.AbstractJobStore.importFile() for a
full description

	
exportFile(jobStoreFileID, dstUrl)

	
	Parameters

	
	jobStoreFileID (toil.fileStores.FileID) –

	dstUrl (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
export_file(file_id, dst_uri)

	Export file to destination pointed at by the destination URL.

See toil.jobStores.abstractJobStore.AbstractJobStore.exportFile() for a
full description

	Parameters

	
	file_id (toil.fileStores.FileID) –

	dst_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
static normalize_uri(uri, check_existence=False)

	Given a URI, if it has no scheme, prepend “file:”.

	Parameters

	
	check_existence (bool [https://docs.python.org/3/library/functions.html#bool]) – If set, raise an error if a URI points to
a local file that does not exist.

	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
static getToilWorkDir(configWorkDir=None)

	Return a path to a writable directory under which per-workflow directories exist.

This directory is always required to exist on a machine, even if the Toil
worker has not run yet. If your workers and leader have different temp
directories, you may need to set TOIL_WORKDIR.

	Parameters

	configWorkDir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value passed to the program using the –workDir flag

	Returns

	Path to the Toil work directory, constant across all machines

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod get_toil_coordination_dir(config_work_dir, config_coordination_dir)

	Return a path to a writable directory, which will be in memory if
convenient. Ought to be used for file locking and coordination.

	Parameters

	
	config_work_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value passed to the program using the
–workDir flag

	config_coordination_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value passed to the program using the
–coordinationDir flag

	Returns

	Path to the Toil coordination directory. Ought to be on a
POSIX filesystem that allows directories containing open files to be
deleted.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod getLocalWorkflowDir(workflowID, configWorkDir=None)

	Return the directory where worker directories and the cache will be located for this workflow on this machine.

	Parameters

	
	configWorkDir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value passed to the program using the –workDir flag

	workflowID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	Path to the local workflow directory on this machine

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod get_local_workflow_coordination_dir(workflow_id, config_work_dir, config_coordination_dir)

	Return the directory where coordination files should be located for
this workflow on this machine. These include internal Toil databases
and lock files for the machine.

If an in-memory filesystem is available, it is used. Otherwise, the
local workflow directory, which may be on a shared network filesystem,
is used.

	Parameters

	
	workflow_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique ID of the current workflow.

	config_work_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value used for the work directory in the
current Toil Config.

	config_coordination_dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Value used for the coordination
directory in the current Toil Config.

	Returns

	Path to the local workflow coordination directory on this
machine.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exception toil.common.ToilRestartException(message)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.common.ToilRestartException]

Common base class for all non-exit exceptions.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
exception toil.common.ToilContextManagerException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.common.ToilContextManagerException]

Common base class for all non-exit exceptions.

	
class toil.common.ToilMetrics(bus, provisioner=None)

	
	Parameters

	
	bus (toil.bus.MessageBus) –

	provisioner (Optional[toil.provisioners.abstractProvisioner.AbstractProvisioner]) –

	
startDashboard(clusterName, zone)

	
	Parameters

	
	clusterName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	zone (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
add_prometheus_data_source()

	
	Return type

	None

	
log(message)

	
	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
logClusterSize(m)

	
	Parameters

	m (toil.bus.ClusterSizeMessage) –

	Return type

	None

	
logClusterDesiredSize(m)

	
	Parameters

	m (toil.bus.ClusterDesiredSizeMessage) –

	Return type

	None

	
logQueueSize(m)

	
	Parameters

	m (toil.bus.QueueSizeMessage) –

	Return type

	None

	
logMissingJob(m)

	
	Parameters

	m (toil.bus.JobMissingMessage) –

	Return type

	None

	
logIssuedJob(m)

	
	Parameters

	m (toil.bus.JobIssuedMessage) –

	Return type

	None

	
logFailedJob(m)

	
	Parameters

	m (toil.bus.JobFailedMessage) –

	Return type

	None

	
logCompletedJob(m)

	
	Parameters

	m (toil.bus.JobCompletedMessage) –

	Return type

	None

	
shutdown()

	
	Return type

	None

	
toil.common.parseSetEnv(l)

	Parse a list of strings of the form “NAME=VALUE” or just “NAME” into a dictionary.

Strings of the latter from will result in dictionary entries whose value is None.

>>> parseSetEnv([])
{}
>>> parseSetEnv(['a'])
{'a': None}
>>> parseSetEnv(['a='])
{'a': ''}
>>> parseSetEnv(['a=b'])
{'a': 'b'}
>>> parseSetEnv(['a=a', 'a=b'])
{'a': 'b'}
>>> parseSetEnv(['a=b', 'c=d'])
{'a': 'b', 'c': 'd'}
>>> parseSetEnv(['a=b=c'])
{'a': 'b=c'}
>>> parseSetEnv([''])
Traceback (most recent call last):
...
ValueError: Empty name
>>> parseSetEnv(['=1'])
Traceback (most recent call last):
...
ValueError: Empty name

	Parameters

	l (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
toil.common.iC(minValue, maxValue=SYS_MAX_SIZE)

	Returns a function that checks if a given int is in the given half-open interval.

	Parameters

	
	minValue (int [https://docs.python.org/3/library/functions.html#int]) –

	maxValue (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	Callable[[int [https://docs.python.org/3/library/functions.html#int]], bool [https://docs.python.org/3/library/functions.html#bool]]

	
toil.common.fC(minValue, maxValue=None)

	Returns a function that checks if a given float is in the given half-open interval.

	Parameters

	
	minValue (float [https://docs.python.org/3/library/functions.html#float]) –

	maxValue (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	Return type

	Callable[[float [https://docs.python.org/3/library/functions.html#float]], bool [https://docs.python.org/3/library/functions.html#bool]]

	
toil.common.parse_accelerator_list(specs)

	Parse a string description of one or more accelerator requirements.

	Parameters

	specs (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	List[toil.job.AcceleratorRequirement]

	
toil.common.cacheDirName(workflowID)

	
	Returns

	Name of the cache directory.

	Parameters

	workflowID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
toil.common.getDirSizeRecursively(dirPath)

	This method will return the cumulative number of bytes occupied by the files
on disk in the directory and its subdirectories.

If the method is unable to access a file or directory (due to insufficient
permissions, or due to the file or directory having been removed while this
function was attempting to traverse it), the error will be handled
internally, and a (possibly 0) lower bound on the size of the directory
will be returned.

The environment variable ‘BLOCKSIZE’=’512’ is set instead of the much cleaner
–block-size=1 because Apple can’t handle it.

	Parameters

	dirPath (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid path to a directory or file.

	Returns

	Total size, in bytes, of the file or directory at dirPath.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.common.getFileSystemSize(dirPath)

	Return the free space, and total size of the file system hosting dirPath.

	Parameters

	dirPath (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid path to a directory.

	Returns

	free space and total size of file system

	Return type

	Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	
toil.common.safeUnpickleFromStream(stream)

	
	Parameters

	stream (IO[Any]) –

	Return type

	Any

 toil.deferred

toil.deferred

Module Contents

Classes

	DeferredFunction

	>>> from collections import defaultdict

	DeferredFunctionManager

	Implements a deferred function system. Each Toil worker will have an

Attributes

	logger

	

	
toil.deferred.logger

	

	
class toil.deferred.DeferredFunction

	Bases: namedtuple('DeferredFunction', 'function args kwargs name module')

[image: Inheritance diagram of toil.deferred.DeferredFunction]

>>> from collections import defaultdict
>>> df = DeferredFunction.create(defaultdict, None, {'x':1}, y=2)
>>> df
DeferredFunction(defaultdict, ...)
>>> df.invoke() == defaultdict(None, x=1, y=2)
True

	
__repr__

	

	
classmethod create(function, *args, **kwargs)

	Capture the given callable and arguments as an instance of this class.

	Parameters

	
	function (callable) – The deferred action to take in the form of a function

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Non-keyword arguments to the function

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments to the function

	
invoke()

	Invoke the captured function with the captured arguments.

	
__str__()

	Return str(self).

	
class toil.deferred.DeferredFunctionManager(stateDirBase)

	Implements a deferred function system. Each Toil worker will have an
instance of this class. When a job is executed, it will happen inside a
context manager from this class. If the job registers any “deferred”
functions, they will be executed when the context manager is exited.

If the Python process terminates before properly exiting the context
manager and running the deferred functions, and some other worker process
enters or exits the per-job context manager of this class at a later time,
or when the DeferredFunctionManager is shut down on the worker, the earlier
job’s deferred functions will be picked up and run.

Note that deferred function cleanup is on a best-effort basis, and deferred
functions may end up getting executed multiple times.

Internally, deferred functions are serialized into files in the given
directory, which are locked by the owning process.

If that process dies, other processes can detect that the files are able to
be locked, and will take them over.

	Parameters

	stateDirBase (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
STATE_DIR_STEM = 'deferred'

	

	
PREFIX = 'func'

	

	
WIP_SUFFIX = '.tmp'

	

	
__del__()

	Clean up our state on disk. We assume that the deferred functions we
manage have all been executed, and none are currently recorded.

	
open()

	Yields a single-argument function that allows for deferred functions of
type toil.DeferredFunction to be registered. We use this
design so deferred functions can be registered only inside this context
manager.

Not thread safe.

	
classmethod cleanupWorker(stateDirBase)

	Called by the batch system when it shuts down the node, after all
workers are done, if the batch system supports worker cleanup. Checks
once more for orphaned deferred functions and runs them.

	Parameters

	stateDirBase (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

 toil.exceptions

toil.exceptions

Neutral place for exceptions, to break import cycles.

Module Contents

	
toil.exceptions.logger

	

	
exception toil.exceptions.FailedJobsException(job_store, failed_jobs, exit_code=1)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.exceptions.FailedJobsException]

Common base class for all non-exit exceptions.

	Parameters

	
	job_store (toil.jobStores.abstractJobStore.AbstractJobStore) –

	failed_jobs (List[toil.job.JobDescription]) –

	exit_code (int [https://docs.python.org/3/library/functions.html#int]) –

	
__str__()

	Stringify the exception, including the message.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 toil.job

toil.job

Module Contents

Classes

	TemporaryID

	Placeholder for a unregistered job ID used by a JobDescription.

	AcceleratorRequirement

	Requirement for one or more computational accelerators, like a GPU or FPGA.

	RequirementsDict

	Typed storage for requirements for a job.

	Requirer

	Base class implementing the storage and presentation of requirements.

	JobDescription

	Stores all the information that the Toil Leader ever needs to know about a Job.

	ServiceJobDescription

	A description of a job that hosts a service.

	CheckpointJobDescription

	A description of a job that is a checkpoint.

	Job

	Class represents a unit of work in toil.

	FunctionWrappingJob

	Job used to wrap a function. In its run method the wrapped function is called.

	JobFunctionWrappingJob

	A job function is a function whose first argument is a Job

	PromisedRequirementFunctionWrappingJob

	Handles dynamic resource allocation using toil.job.Promise instances.

	PromisedRequirementJobFunctionWrappingJob

	Handles dynamic resource allocation for job functions.

	EncapsulatedJob

	A convenience Job class used to make a job subgraph appear to be a single job.

	ServiceHostJob

	Job that runs a service. Used internally by Toil. Users should subclass Service instead of using this.

	Promise

	References a return value from a method as a promise before the method itself is run.

	PromisedRequirement

	Class for dynamically allocating job function resource requirements.

	UnfulfilledPromiseSentinel

	This should be overwritten by a proper promised value.

Functions

	parse_accelerator(spec)

	Parse an AcceleratorRequirement specified by user code.

	accelerator_satisfies(candidate, requirement[, ignore])

	Test if candidate partially satisfies the given requirement.

	accelerators_fully_satisfy(candidates, requirement[, ...])

	Determine if a set of accelerators satisfy a requirement.

	unwrap(p)

	Function for ensuring you actually have a promised value, and not just a promise.

	unwrap_all(p)

	Function for ensuring you actually have a collection of promised values,

Attributes

	logger

	

	REQUIREMENT_NAMES

	

	ParsedRequirement

	

	ParseableIndivisibleResource

	

	ParseableDivisibleResource

	

	ParseableFlag

	

	ParseableAcceleratorRequirement

	

	ParseableRequirement

	

	T

	

	Promised

	

	
toil.job.logger

	

	
exception toil.job.JobPromiseConstraintError(promisingJob, recipientJob=None)

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

[image: Inheritance diagram of toil.job.JobPromiseConstraintError]

Error for job being asked to promise its return value, but it not available.

(Due to the return value not yet been hit in the topological order of the job graph.)

	Parameters

	
	promisingJob (Job) –

	recipientJob (Optional[Job]) –

	
exception toil.job.ConflictingPredecessorError(predecessor, successor)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.job.ConflictingPredecessorError]

Common base class for all non-exit exceptions.

	Parameters

	
	predecessor (Job) –

	successor (Job) –

	
class toil.job.TemporaryID

	Placeholder for a unregistered job ID used by a JobDescription.

	Needs to be held:
	
	By JobDescription objects to record normal relationships.

	By Jobs to key their connected-component registries and to record
predecessor relationships to facilitate EncapsulatedJob adding
itself as a child.

	By Services to tie back to their hosting jobs, so the service
tree can be built up from Service objects.

	
__str__()

	Return str(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__repr__()

	Return repr(self).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__hash__()

	Return hash(self).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
__eq__(other)

	Return self==value.

	Parameters

	other (Any) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__ne__(other)

	Return self!=value.

	Parameters

	other (Any) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class toil.job.AcceleratorRequirement

	Bases: TypedDict

[image: Inheritance diagram of toil.job.AcceleratorRequirement]

Requirement for one or more computational accelerators, like a GPU or FPGA.

	
count: int [https://docs.python.org/3/library/functions.html#int]

	How many of the accelerator are needed to run the job.

	
kind: str [https://docs.python.org/3/library/stdtypes.html#str]

	What kind of accelerator is required. Can be “gpu”. Other kinds defined in
the future might be “fpga”, etc.

	
model: typing_extensions.NotRequired[str [https://docs.python.org/3/library/stdtypes.html#str]]

	What model of accelerator is needed. The exact set of values available
depends on what the backing scheduler calls its accelerators; strings like
“nvidia-tesla-k80” might be expected to work. If a specific model of
accelerator is not required, this should be absent.

	
brand: typing_extensions.NotRequired[str [https://docs.python.org/3/library/stdtypes.html#str]]

	What brand or manufacturer of accelerator is required. The exact set of
values available depends on what the backing scheduler calls the brands of
its accleerators; strings like “nvidia” or “amd” might be expected to work.
If a specific brand of accelerator is not required (for example, because
the job can use multiple brands of accelerator that support a given API)
this should be absent.

	
api: typing_extensions.NotRequired[str [https://docs.python.org/3/library/stdtypes.html#str]]

	What API is to be used to communicate with the accelerator. This can be
“cuda”. Other APIs supported in the future might be “rocm”, “opencl”,
“metal”, etc. If the job does not need a particular API to talk to the
accelerator, this should be absent.

	
toil.job.parse_accelerator(spec)

	Parse an AcceleratorRequirement specified by user code.

Supports formats like:

>>> parse_accelerator(8)
{'count': 8, 'kind': 'gpu'}

>>> parse_accelerator("1")
{'count': 1, 'kind': 'gpu'}

>>> parse_accelerator("nvidia-tesla-k80")
{'count': 1, 'kind': 'gpu', 'brand': 'nvidia', 'model': 'nvidia-tesla-k80'}

>>> parse_accelerator("nvidia-tesla-k80:2")
{'count': 2, 'kind': 'gpu', 'brand': 'nvidia', 'model': 'nvidia-tesla-k80'}

>>> parse_accelerator("gpu")
{'count': 1, 'kind': 'gpu'}

>>> parse_accelerator("cuda:1")
{'count': 1, 'kind': 'gpu', 'brand': 'nvidia', 'api': 'cuda'}

>>> parse_accelerator({"kind": "gpu"})
{'count': 1, 'kind': 'gpu'}

>>> parse_accelerator({"brand": "nvidia", "count": 5})
{'count': 5, 'kind': 'gpu', 'brand': 'nvidia'}

Assumes that if not specified, we are talking about GPUs, and about one
of them. Knows that “gpu” is a kind, and “cuda” is an API, and “nvidia”
is a brand.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if it gets somethign it can’t parse

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if it gets something it can’t parse because it’s the wrong type.

	Parameters

	spec (Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]]]) –

	Return type

	AcceleratorRequirement

	
toil.job.accelerator_satisfies(candidate, requirement, ignore=[])

	Test if candidate partially satisfies the given requirement.

	Returns

	True if the given candidate at least partially satisfies the
given requirement (i.e. check all fields other than count).

	Parameters

	
	candidate (AcceleratorRequirement) –

	requirement (AcceleratorRequirement) –

	ignore (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
toil.job.accelerators_fully_satisfy(candidates, requirement, ignore=[])

	Determine if a set of accelerators satisfy a requirement.

Ignores fields specified in ignore.

	Returns

	True if the requirement AcceleratorRequirement is
fully satisfied by the ones in the list, taken
together (i.e. check all fields including count).

	Parameters

	
	candidates (Optional[List[AcceleratorRequirement]]) –

	requirement (AcceleratorRequirement) –

	ignore (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class toil.job.RequirementsDict

	Bases: TypedDict

[image: Inheritance diagram of toil.job.RequirementsDict]

Typed storage for requirements for a job.

Where requirement values are of different types depending on the requirement.

	
cores: typing_extensions.NotRequired[Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]]

	

	
memory: typing_extensions.NotRequired[int [https://docs.python.org/3/library/functions.html#int]]

	

	
disk: typing_extensions.NotRequired[int [https://docs.python.org/3/library/functions.html#int]]

	

	
accelerators: typing_extensions.NotRequired[List[AcceleratorRequirement]]

	

	
preemptible: typing_extensions.NotRequired[bool [https://docs.python.org/3/library/functions.html#bool]]

	

	
toil.job.REQUIREMENT_NAMES = ['disk', 'memory', 'cores', 'accelerators', 'preemptible']

	

	
toil.job.ParsedRequirement

	

	
toil.job.ParseableIndivisibleResource

	

	
toil.job.ParseableDivisibleResource

	

	
toil.job.ParseableFlag

	

	
toil.job.ParseableAcceleratorRequirement

	

	
toil.job.ParseableRequirement

	

	
class toil.job.Requirer(requirements)

	Base class implementing the storage and presentation of requirements.

Has cores, memory, disk, and preemptability as properties.

	Parameters

	requirements (Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], ParseableRequirement]) –

	
property requirements: RequirementsDict

	Get dict containing all non-None, non-defaulted requirements.

	Return type

	RequirementsDict

	
property disk: int [https://docs.python.org/3/library/functions.html#int]

	Get the maximum number of bytes of disk required.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property memory: int [https://docs.python.org/3/library/functions.html#int]

	Get the maximum number of bytes of memory required.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property cores: Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	Get the number of CPU cores required.

	Return type

	Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	
property preemptible: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether a preemptible node is permitted, or a nonpreemptible one is required.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property accelerators: List[AcceleratorRequirement]

	Any accelerators, such as GPUs, that are needed.

	Return type

	List[AcceleratorRequirement]

	
assignConfig(config)

	Assign the given config object to be used to provide default values.

Must be called exactly once on a loaded JobDescription before any
requirements are queried.

	Parameters

	config (toil.common.Config) – Config object to query

	Return type

	None

	
__getstate__()

	Return the dict to use as the instance’s __dict__ when pickling.

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
__copy__()

	Return a semantically-shallow copy of the object, for copy.copy().

	Return type

	Requirer

	
__deepcopy__(memo)

	Return a semantically-deep copy of the object, for copy.deepcopy().

	Parameters

	memo (Any) –

	Return type

	Requirer

	
preemptable(val)

	
	Parameters

	val (ParseableFlag) –

	Return type

	None

	
scale(requirement, factor)

	Return a copy of this object with the given requirement scaled up or down.

Only works on requirements where that makes sense.

	Parameters

	
	requirement (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	factor (float [https://docs.python.org/3/library/functions.html#float]) –

	Return type

	Requirer

	
requirements_string()

	Get a nice human-readable string of our requirements.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.job.JobDescription(requirements, jobName, unitName='', displayName='', command=None, local=None)

	Bases: Requirer

[image: Inheritance diagram of toil.job.JobDescription]

Stores all the information that the Toil Leader ever needs to know about a Job.

(requirements information, dependency information, commands to issue,
etc.)

Can be obtained from an actual (i.e. executable) Job object, and can be
used to obtain the Job object from the JobStore.

Never contains other Jobs or JobDescriptions: all reference is by ID.

Subclassed into variants for checkpoint jobs and service jobs that have
their specific parameters.

	Parameters

	
	requirements (Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]]]) –

	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	unitName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	displayName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	command (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	local (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	
property services

	Get a collection of the IDs of service host jobs for this job, in arbitrary order.

Will be empty if the job has no unfinished services.

	
property remainingTryCount

	Get the number of tries remaining.

The try count set on the JobDescription, or the default based on the
retry count from the config if none is set.

	
serviceHostIDsInBatches()

	Find all batches of service host job IDs that can be started at the same time.

(in the order they need to start in)

	Return type

	Iterator[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
successorsAndServiceHosts()

	Get an iterator over all child, follow-on, and service job IDs.

	Return type

	Iterator[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
allSuccessors()

	Get an iterator over all child, follow-on, and chained, inherited successor job IDs.

Follow-ons will come before children.

	Return type

	Iterator[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
successors_by_phase()

	Get an iterator over all child/follow-on/chained inherited successor job IDs, along with their phase numbere on the stack.

Phases ececute higher numbers to lower numbers.

	Return type

	Iterator[Tuple[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
nextSuccessors()

	Return the collection of job IDs for the successors of this job that are ready to run.

If those jobs have multiple predecessor relationships, they may still
be blocked on other jobs.

Returns None when at the final phase (all successors done), and an
empty collection if there are more phases but they can’t be entered yet
(e.g. because we are waiting for the job itself to run).

	Return type

	Set[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
filterSuccessors(predicate)

	Keep only successor jobs for which the given predicate function approves.

The predicate function is called with the job’s ID.

Treats all other successors as complete and forgets them.

	Parameters

	predicate (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], bool [https://docs.python.org/3/library/functions.html#bool]]) –

	Return type

	None

	
filterServiceHosts(predicate)

	Keep only services for which the given predicate approves.

The predicate function is called with the service host job’s ID.

Treats all other services as complete and forgets them.

	Parameters

	predicate (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], bool [https://docs.python.org/3/library/functions.html#bool]]) –

	Return type

	None

	
clear_nonexistent_dependents(job_store)

	Remove all references to child, follow-on, and associated service jobs that do not exist.

That is to say, all those that have been completed and removed.

	Parameters

	job_store (toil.jobStores.abstractJobStore.AbstractJobStore) –

	Return type

	None

	
clear_dependents()

	Remove all references to successor and service jobs.

	Return type

	None

	
is_subtree_done()

	Check if the subtree is done.

	Returns

	True if the job appears to be done, and all related child,
follow-on, and service jobs appear to be finished and removed.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
replace(other)

	Take on the ID of another JobDescription, retaining our own state and type.

When updated in the JobStore, we will save over the other JobDescription.

Useful for chaining jobs: the chained-to job can replace the parent job.

Merges cleanup state and successors other than this job from the job
being replaced into this one.

	Parameters

	other (JobDescription) – Job description to replace.

	Return type

	None

	
addChild(childID)

	Make the job with the given ID a child of the described job.

	Parameters

	childID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
addFollowOn(followOnID)

	Make the job with the given ID a follow-on of the described job.

	Parameters

	followOnID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
addServiceHostJob(serviceID, parentServiceID=None)

	Make the ServiceHostJob with the given ID a service of the described job.

If a parent ServiceHostJob ID is given, that parent service will be started
first, and must have already been added.

	
hasChild(childID)

	Return True if the job with the given ID is a child of the described job.

	Parameters

	childID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hasFollowOn(followOnID)

	Test if the job with the given ID is a follow-on of the described job.

	Parameters

	followOnID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hasServiceHostJob(serviceID)

	Test if the ServiceHostJob is a service of the described job.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
renameReferences(renames)

	Apply the given dict of ID renames to all references to jobs.

Does not modify our own ID or those of finished predecessors.
IDs not present in the renames dict are left as-is.

	Parameters

	renames (Dict[TemporaryID, str [https://docs.python.org/3/library/stdtypes.html#str]]) – Rename operations to apply.

	Return type

	None

	
addPredecessor()

	Notify the JobDescription that a predecessor has been added to its Job.

	Return type

	None

	
onRegistration(jobStore)

	Perform setup work that requires the JobStore.

Called by the Job saving logic when this JobDescription meets the JobStore and has its ID assigned.

Overridden to perform setup work (like hooking up flag files for service
jobs) that requires the JobStore.

	Parameters

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The job store we are being placed into

	Return type

	None

	
setupJobAfterFailure(exit_status=None, exit_reason=None)

	Configure job after a failure.

Reduce the remainingTryCount if greater than zero and set the memory
to be at least as big as the default memory (in case of exhaustion of memory,
which is common).

Requires a configuration to have been assigned (see toil.job.Requirer.assignConfig()).

	Parameters

	
	exit_status (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – The exit code from the job.

	exit_reason (Optional[toil.batchSystems.abstractBatchSystem.BatchJobExitReason]) – The reason the job stopped, if available from the batch system.

	Return type

	None

	
getLogFileHandle(jobStore)

	Create a context manager that yields a file handle to the log file.

Assumes logJobStoreFileID is set.

	
clearRemainingTryCount()

	Clear remainingTryCount and set it back to its default value.

	Returns

	True if a modification to the JobDescription was made, and
False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__str__()

	Produce a useful logging string identifying this job.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__repr__()

	Return repr(self).

	
pre_update_hook()

	Run before pickling and saving a created or updated version of this job.

Called by the job store.

	Return type

	None

	
get_job_kind()

	Return an identifier of the job for use with the message bus.

	Returns: Either the unit name, job name, or display name, which identifies
	the kind of job it is to toil.
Otherwise “Unknown Job” in case no identifier is available

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.job.ServiceJobDescription(*args, **kwargs)

	Bases: JobDescription

[image: Inheritance diagram of toil.job.ServiceJobDescription]

A description of a job that hosts a service.

	
onRegistration(jobStore)

	Setup flag files.

When a ServiceJobDescription first meets the JobStore, it needs to set up its flag files.

	
class toil.job.CheckpointJobDescription(*args, **kwargs)

	Bases: JobDescription

[image: Inheritance diagram of toil.job.CheckpointJobDescription]

A description of a job that is a checkpoint.

	
restartCheckpoint(jobStore)

	Restart a checkpoint after the total failure of jobs in its subtree.

Writes the changes to the jobStore immediately. All the
checkpoint’s successors will be deleted, but its try count
will not be decreased.

Returns a list with the IDs of any successors deleted.

	Parameters

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
class toil.job.Job(memory=None, cores=None, disk=None, accelerators=None, preemptible=None, preemptable=None, unitName='', checkpoint=False, displayName='', descriptionClass=None, local=None)

	Class represents a unit of work in toil.

	Parameters

	
	memory (Optional[ParseableIndivisibleResource]) –

	cores (Optional[ParseableDivisibleResource]) –

	disk (Optional[ParseableIndivisibleResource]) –

	accelerators (Optional[ParseableAcceleratorRequirement]) –

	preemptible (Optional[ParseableFlag]) –

	preemptable (Optional[ParseableFlag]) –

	unitName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	checkpoint (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	displayName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	descriptionClass (Optional[type [https://docs.python.org/3/library/functions.html#type]]) –

	local (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	
class Runner

	Used to setup and run Toil workflow.

	
static getDefaultArgumentParser()

	Get argument parser with added toil workflow options.

	Returns

	The argument parser used by a toil workflow with added Toil options.

	Return type

	argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	
static getDefaultOptions(jobStore)

	Get default options for a toil workflow.

	Parameters

	jobStore (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string describing the jobStore for the workflow.

	Returns

	The options used by a toil workflow.

	Return type

	argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

	
static addToilOptions(parser)

	Adds the default toil options to an optparse [https://docs.python.org/3/library/optparse.html#module-optparse] or argparse [https://docs.python.org/3/library/argparse.html#module-argparse]
parser object.

	Parameters

	parser (Union[optparse.OptionParser [https://docs.python.org/3/library/optparse.html#optparse.OptionParser], argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]]) – Options object to add toil options to.

	Return type

	None

	
static startToil(job, options)

	Run the toil workflow using the given options.

Deprecated by toil.common.Toil.start.

(see Job.Runner.getDefaultOptions and Job.Runner.addToilOptions) starting with this
job.
:param job: root job of the workflow
:raises: toil.exceptions.FailedJobsException if at the end of function there remain failed jobs.
:return: The return value of the root job’s run function.

	Parameters

	job (Job) –

	Return type

	Any

	
class Service(memory=None, cores=None, disk=None, accelerators=None, preemptible=None, unitName=None)

	Bases: Requirer

[image: Inheritance diagram of toil.job.Job.Service]

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

	
abstract start(job)

	Start the service.

	Parameters

	job (Job) – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	Returns

	An object describing how to access the service. The object must be pickleable
and will be used by jobs to access the service (see toil.job.Job.addService()).

	Return type

	Any

	
abstract stop(job)

	Stops the service. Function can block until complete.

	Parameters

	job (Job) – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	Return type

	None

	
check()

	Checks the service is still running.

	Raises

	exceptions.RuntimeError – If the service failed, this will cause the service job to be labeled failed.

	Returns

	True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should raise a
RuntimeError, not return False!

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property jobStoreID: Union[str [https://docs.python.org/3/library/stdtypes.html#str], TemporaryID]

	Get the ID of this Job.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], TemporaryID]

	
property description: JobDescription

	Expose the JobDescription that describes this job.

	Return type

	JobDescription

	
property disk: int [https://docs.python.org/3/library/functions.html#int]

	The maximum number of bytes of disk the job will require to run.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property memory

	The maximum number of bytes of memory the job will require to run.

	
property cores: Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	The number of CPU cores required.

	Return type

	Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]]

	
property accelerators: List[AcceleratorRequirement]

	Any accelerators, such as GPUs, that are needed.

	Return type

	List[AcceleratorRequirement]

	
property preemptible: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the job can be run on a preemptible node.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property checkpoint: bool [https://docs.python.org/3/library/functions.html#bool]

	Determine if the job is a checkpoint job or not.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property tempDir: str [https://docs.python.org/3/library/stdtypes.html#str]

	Shortcut to calling job.fileStore.getLocalTempDir().

Temp dir is created on first call and will be returned for first and future calls
:return: Path to tempDir. See job.fileStore.getLocalTempDir

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__str__()

	Produce a useful logging string to identify this Job and distinguish it
from its JobDescription.

	
preemptable()

	

	
assignConfig(config)

	Assign the given config object.

It will be used by various actions implemented inside the Job class.

	Parameters

	config (toil.common.Config) – Config object to query

	Return type

	None

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore (toil.fileStores.abstractFileStore.AbstractFileStore) – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	Return type

	Any

	
addChild(childJob)

	Add a childJob to be run as child of this job.

Child jobs will be run directly after this job’s
toil.job.Job.run() method has completed.

	Returns

	childJob: for call chaining

	Parameters

	childJob (Job) –

	Return type

	Job

	
hasChild(childJob)

	Check if childJob is already a child of this job.

	Returns

	True if childJob is a child of the job, else False.

	Parameters

	childJob (Job) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
addFollowOn(followOnJob)

	Add a follow-on job.

Follow-on jobs will be run after the child jobs and their successors have been run.

	Returns

	followOnJob for call chaining

	Parameters

	followOnJob (Job) –

	Return type

	Job

	
hasPredecessor(job)

	Check if a given job is already a predecessor of this job.

	Parameters

	job (Job) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hasFollowOn(followOnJob)

	Check if given job is already a follow-on of this job.

	Returns

	True if the followOnJob is a follow-on of this job, else False.

	Parameters

	followOnJob (Job) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
addService(service, parentService=None)

	Add a service.

The toil.job.Job.Service.start() method of the service will be called
after the run method has completed but before any successors are run.
The service’s toil.job.Job.Service.stop() method will be called once
the successors of the job have been run.

Services allow things like databases and servers to be started and accessed
by jobs in a workflow.

	Raises

	toil.job.JobException – If service has already been made the child
of a job or another service.

	Parameters

	
	service (Service) – Service to add.

	parentService (Optional[Service]) – Service that will be started before ‘service’ is
started. Allows trees of services to be established. parentService must be a service
of this job.

	Returns

	a promise that will be replaced with the return value from
toil.job.Job.Service.start() of service in any successor of the job.

	Return type

	Promise

	
hasService(service)

	Return True if the given Service is a service of this job, and False otherwise.

	Parameters

	service (Service) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
addChildFn(fn, *args, **kwargs)

	Add a function as a child job.

	Parameters

	fn (Callable) – Function to be run as a child job with *args and **kwargs as arguments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new child job that wraps fn.

	Return type

	FunctionWrappingJob

	
addFollowOnFn(fn, *args, **kwargs)

	Add a function as a follow-on job.

	Parameters

	fn (Callable) – Function to be run as a follow-on job with *args and **kwargs as arguments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new follow-on job that wraps fn.

	Return type

	FunctionWrappingJob

	
addChildJobFn(fn, *args, **kwargs)

	Add a job function as a child job.

See toil.job.JobFunctionWrappingJob for a definition of a job function.

	Parameters

	fn (Callable) – Job function to be run as a child job with *args and **kwargs as arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new child job that wraps fn.

	Return type

	FunctionWrappingJob

	
addFollowOnJobFn(fn, *args, **kwargs)

	Add a follow-on job function.

See toil.job.JobFunctionWrappingJob for a definition of a job function.

	Parameters

	fn (Callable) – Job function to be run as a follow-on job with *args and **kwargs as arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new follow-on job that wraps fn.

	Return type

	FunctionWrappingJob

	
log(text, level=logging.INFO)

	Log using fileStore.logToMaster().

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
static wrapFn(fn, *args, **kwargs)

	Makes a Job out of a function.

Convenience function for constructor of toil.job.FunctionWrappingJob.

	Parameters

	fn – Function to be run with *args and **kwargs as arguments. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new function that wraps fn.

	Return type

	FunctionWrappingJob

	
static wrapJobFn(fn, *args, **kwargs)

	Makes a Job out of a job function.

Convenience function for constructor of toil.job.JobFunctionWrappingJob.

	Parameters

	fn – Job function to be run with *args and **kwargs as arguments. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new job function that wraps fn.

	Return type

	JobFunctionWrappingJob

	
encapsulate(name=None)

	Encapsulates the job, see toil.job.EncapsulatedJob.
Convenience function for constructor of toil.job.EncapsulatedJob.

	Parameters

	name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Human-readable name for the encapsulated job.

	Returns

	an encapsulated version of this job.

	Return type

	EncapsulatedJob

	
rv(*path)

	Create a promise (toil.job.Promise).

The “promise” representing a return value of the job’s run method, or,
in case of a function-wrapping job, the wrapped function’s return value.

	Parameters

	path ((Any)) – Optional path for selecting a component of the promised return value.
If absent or empty, the entire return value will be used. Otherwise, the first
element of the path is used to select an individual item of the return value. For
that to work, the return value must be a list, dictionary or of any other type
implementing the __getitem__() magic method. If the selected item is yet another
composite value, the second element of the path can be used to select an item from
it, and so on. For example, if the return value is [6,{‘a’:42}], .rv(0) would
select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3. To
select a slice from a return value that is slicable, e.g. tuple or list, the path
element should be a slice object. For example, assuming that the return value is
[6, 7, 8, 9] then .rv(slice(1, 3)) would select [7, 8]. Note that slicing
really only makes sense at the end of path.

	Returns

	A promise representing the return value of this jobs toil.job.Job.run()
method.

	Return type

	Promise

	
registerPromise(path)

	

	
prepareForPromiseRegistration(jobStore)

	Set up to allow this job’s promises to register themselves.

Prepare this job (the promisor) so that its promises can register
themselves with it, when the jobs they are promised to (promisees) are
serialized.

The promissee holds the reference to the promise (usually as part of the
job arguments) and when it is being pickled, so will the promises it refers
to. Pickling a promise triggers it to be registered with the promissor.

	Parameters

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	Return type

	None

	
checkJobGraphForDeadlocks()

	Ensures that a graph of Jobs (that hasn’t yet been saved to the
JobStore) doesn’t contain any pathological relationships between jobs
that would result in deadlocks if we tried to run the jobs.

See toil.job.Job.checkJobGraphConnected(),
toil.job.Job.checkJobGraphAcyclic() and
toil.job.Job.checkNewCheckpointsAreLeafVertices() for more info.

	Raises

	toil.job.JobGraphDeadlockException – if the job graph
is cyclic, contains multiple roots or contains checkpoint jobs that are
not leaf vertices when defined (see toil.job.Job.checkNewCheckpointsAreLeaves()).

	
getRootJobs()

	Return the set of root job objects that contain this job.

A root job is a job with no predecessors (i.e. which are not children, follow-ons, or services).

Only deals with jobs created here, rather than loaded from the job store.

	Return type

	Set[Job]

	
checkJobGraphConnected()

	
	Raises

	toil.job.JobGraphDeadlockException – if toil.job.Job.getRootJobs() does not contain exactly one root job.

As execution always starts from one root job, having multiple root jobs will cause a deadlock to occur.

Only deals with jobs created here, rather than loaded from the job store.

	
checkJobGraphAcylic()

	
	Raises

	toil.job.JobGraphDeadlockException – if the connected component of jobs containing this job contains any cycles of child/followOn dependencies in the augmented job graph (see below). Such cycles are not allowed in valid job graphs.

A follow-on edge (A, B) between two jobs A and B is equivalent to adding a child edge to B from (1) A, (2) from each child of A, and (3) from the successors of each child of A. We call each such edge an edge an “implied” edge. The augmented job graph is a job graph including all the implied edges.

For a job graph G = (V, E) the algorithm is O(|V|^2). It is O(|V| + |E|) for a graph with no follow-ons. The former follow-on case could be improved!

Only deals with jobs created here, rather than loaded from the job store.

	
checkNewCheckpointsAreLeafVertices()

	A checkpoint job is a job that is restarted if either it fails, or if any of its successors completely fails, exhausting their retries.

A job is a leaf it is has no successors.

A checkpoint job must be a leaf when initially added to the job graph. When its run method is invoked it can then create direct successors. This restriction is made
to simplify implementation.

Only works on connected components of jobs not yet added to the JobStore.

	Raises

	toil.job.JobGraphDeadlockException – if there exists a job being added to the graph for which checkpoint=True and which is not a leaf.

	Return type

	None

	
defer(function, *args, **kwargs)

	Register a deferred function, i.e. a callable that will be invoked after the current
attempt at running this job concludes. A job attempt is said to conclude when the job
function (or the toil.job.Job.run() method for class-based jobs) returns, raises an
exception or after the process running it terminates abnormally. A deferred function will
be called on the node that attempted to run the job, even if a subsequent attempt is made
on another node. A deferred function should be idempotent because it may be called
multiple times on the same node or even in the same process. More than one deferred
function may be registered per job attempt by calling this method repeatedly with
different arguments. If the same function is registered twice with the same or different
arguments, it will be called twice per job attempt.

Examples for deferred functions are ones that handle cleanup of resources external to
Toil, like Docker containers, files outside the work directory, etc.

	Parameters

	
	function (callable) – The function to be called after this job concludes.

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – The arguments to the function

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The keyword arguments to the function

	Return type

	None

	
getUserScript()

	
	Return type

	toil.resource.ModuleDescriptor

	
getTopologicalOrderingOfJobs()

	
	Returns

	a list of jobs such that for all pairs of indices i, j for which i < j, the job at index i can be run before the job at index j.

	Return type

	List[Job]

Only considers jobs in this job’s subgraph that are newly added, not loaded from the job store.

Ignores service jobs.

	
saveBody(jobStore)

	Save the execution data for just this job to the JobStore, and fill in
the JobDescription with the information needed to retrieve it.

The Job’s JobDescription must have already had a real jobStoreID assigned to it.

Does not save the JobDescription.

	Parameters

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The job store to save the job body into.

	Return type

	None

	
saveAsRootJob(jobStore)

	Save this job to the given jobStore as the root job of the workflow.

	Returns

	the JobDescription describing this job.

	Parameters

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	Return type

	JobDescription

	
classmethod loadJob(jobStore, jobDescription)

	Retrieves a toil.job.Job instance from a JobStore

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The job store.

	jobDescription (JobDescription) – the JobDescription of the job to retrieve.

	Returns

	The job referenced by the JobDescription.

	Return type

	Job

	
exception toil.job.JobException(message)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.job.JobException]

General job exception.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
exception toil.job.JobGraphDeadlockException(string)

	Bases: JobException

[image: Inheritance diagram of toil.job.JobGraphDeadlockException]

An exception raised in the event that a workflow contains an unresolvable dependency, such as a cycle. See toil.job.Job.checkJobGraphForDeadlocks().

	
class toil.job.FunctionWrappingJob(userFunction, *args, **kwargs)

	Bases: Job

[image: Inheritance diagram of toil.job.FunctionWrappingJob]

Job used to wrap a function. In its run method the wrapped function is called.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
getUserScript()

	

	
class toil.job.JobFunctionWrappingJob(userFunction, *args, **kwargs)

	Bases: FunctionWrappingJob

[image: Inheritance diagram of toil.job.JobFunctionWrappingJob]

A job function is a function whose first argument is a Job
instance that is the wrapping job for the function. This can be used to
add successor jobs for the function and perform all the functions the
Job class provides.

To enable the job function to get access to the
toil.fileStores.abstractFileStore.AbstractFileStore instance (see
toil.job.Job.run()), it is made a variable of the wrapping job called
fileStore.

To specify a job’s resource requirements the following default keyword arguments
can be specified:

	memory

	disk

	cores

	accelerators

	preemptible

For example to wrap a function into a job we would call:

Job.wrapJobFn(myJob, memory='100k', disk='1M', cores=0.1)

	
property fileStore

	

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
class toil.job.PromisedRequirementFunctionWrappingJob(userFunction, *args, **kwargs)

	Bases: FunctionWrappingJob

[image: Inheritance diagram of toil.job.PromisedRequirementFunctionWrappingJob]

Handles dynamic resource allocation using toil.job.Promise instances.
Spawns child function using parent function parameters and fulfilled promised
resource requirements.

	
classmethod create(userFunction, *args, **kwargs)

	Creates an encapsulated Toil job function with unfulfilled promised resource
requirements. After the promises are fulfilled, a child job function is created
using updated resource values. The subgraph is encapsulated to ensure that this
child job function is run before other children in the workflow. Otherwise, a
different child may try to use an unresolved promise return value from the parent.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
evaluatePromisedRequirements()

	

	
class toil.job.PromisedRequirementJobFunctionWrappingJob(userFunction, *args, **kwargs)

	Bases: PromisedRequirementFunctionWrappingJob

[image: Inheritance diagram of toil.job.PromisedRequirementJobFunctionWrappingJob]

Handles dynamic resource allocation for job functions.
See toil.job.JobFunctionWrappingJob

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
class toil.job.EncapsulatedJob(job, unitName=None)

	Bases: Job

[image: Inheritance diagram of toil.job.EncapsulatedJob]

A convenience Job class used to make a job subgraph appear to be a single job.

Let A be the root job of a job subgraph and B be another job we’d like to run after A
and all its successors have completed, for this use encapsulate:

Job A and subgraph, Job B
A, B = A(), B()
Aprime = A.encapsulate()
Aprime.addChild(B)
B will run after A and all its successors have completed, A and its subgraph of
successors in effect appear to be just one job.

If the job being encapsulated has predecessors (e.g. is not the root job), then the encapsulated
job will inherit these predecessors. If predecessors are added to the job being encapsulated
after the encapsulated job is created then the encapsulating job will NOT inherit these
predecessors automatically. Care should be exercised to ensure the encapsulated job has the
proper set of predecessors.

The return value of an encapsulated job (as accessed by the toil.job.Job.rv() function)
is the return value of the root job, e.g. A().encapsulate().rv() and A().rv() will resolve to
the same value after A or A.encapsulate() has been run.

	
addChild(childJob)

	Add a childJob to be run as child of this job.

Child jobs will be run directly after this job’s
toil.job.Job.run() method has completed.

	Returns

	childJob: for call chaining

	
addService(service, parentService=None)

	Add a service.

The toil.job.Job.Service.start() method of the service will be called
after the run method has completed but before any successors are run.
The service’s toil.job.Job.Service.stop() method will be called once
the successors of the job have been run.

Services allow things like databases and servers to be started and accessed
by jobs in a workflow.

	Raises

	toil.job.JobException – If service has already been made the child
of a job or another service.

	Parameters

	
	service – Service to add.

	parentService – Service that will be started before ‘service’ is
started. Allows trees of services to be established. parentService must be a service
of this job.

	Returns

	a promise that will be replaced with the return value from
toil.job.Job.Service.start() of service in any successor of the job.

	
addFollowOn(followOnJob)

	Add a follow-on job.

Follow-on jobs will be run after the child jobs and their successors have been run.

	Returns

	followOnJob for call chaining

	
rv(*path)

	Create a promise (toil.job.Promise).

The “promise” representing a return value of the job’s run method, or,
in case of a function-wrapping job, the wrapped function’s return value.

	Parameters

	path ((Any)) – Optional path for selecting a component of the promised return value.
If absent or empty, the entire return value will be used. Otherwise, the first
element of the path is used to select an individual item of the return value. For
that to work, the return value must be a list, dictionary or of any other type
implementing the __getitem__() magic method. If the selected item is yet another
composite value, the second element of the path can be used to select an item from
it, and so on. For example, if the return value is [6,{‘a’:42}], .rv(0) would
select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3. To
select a slice from a return value that is slicable, e.g. tuple or list, the path
element should be a slice object. For example, assuming that the return value is
[6, 7, 8, 9] then .rv(slice(1, 3)) would select [7, 8]. Note that slicing
really only makes sense at the end of path.

	Returns

	A promise representing the return value of this jobs toil.job.Job.run()
method.

	Return type

	Promise

	
prepareForPromiseRegistration(jobStore)

	Set up to allow this job’s promises to register themselves.

Prepare this job (the promisor) so that its promises can register
themselves with it, when the jobs they are promised to (promisees) are
serialized.

The promissee holds the reference to the promise (usually as part of the
job arguments) and when it is being pickled, so will the promises it refers
to. Pickling a promise triggers it to be registered with the promissor.

	
__reduce__()

	Called during pickling to define the pickled representation of the job.

We don’t want to pickle our internal references to the job we
encapsulate, so we elide them here. When actually run, we’re just a
no-op job that can maybe chain.

	
getUserScript()

	

	
class toil.job.ServiceHostJob(service)

	Bases: Job

[image: Inheritance diagram of toil.job.ServiceHostJob]

Job that runs a service. Used internally by Toil. Users should subclass Service instead of using this.

	
property fileStore

	Return the file store, which the Service may need.

	
addChild(child)

	Add a childJob to be run as child of this job.

Child jobs will be run directly after this job’s
toil.job.Job.run() method has completed.

	Returns

	childJob: for call chaining

	
addFollowOn(followOn)

	Add a follow-on job.

Follow-on jobs will be run after the child jobs and their successors have been run.

	Returns

	followOnJob for call chaining

	
addService(service, parentService=None)

	Add a service.

The toil.job.Job.Service.start() method of the service will be called
after the run method has completed but before any successors are run.
The service’s toil.job.Job.Service.stop() method will be called once
the successors of the job have been run.

Services allow things like databases and servers to be started and accessed
by jobs in a workflow.

	Raises

	toil.job.JobException – If service has already been made the child
of a job or another service.

	Parameters

	
	service – Service to add.

	parentService – Service that will be started before ‘service’ is
started. Allows trees of services to be established. parentService must be a service
of this job.

	Returns

	a promise that will be replaced with the return value from
toil.job.Job.Service.start() of service in any successor of the job.

	
saveBody(jobStore)

	Serialize the service itself before saving the host job’s body.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
getUserScript()

	

	
class toil.job.Promise(job, path)

	References a return value from a method as a promise before the method itself is run.

References a return value from a toil.job.Job.run() or
toil.job.Job.Service.start() method as a promise before the method itself is run.

Let T be a job. Instances of Promise (termed a promise) are returned by T.rv(),
which is used to reference the return value of T’s run function. When the promise is passed
to the constructor (or as an argument to a wrapped function) of a different, successor job
the promise will be replaced by the actual referenced return value. This mechanism allows a
return values from one job’s run method to be input argument to job before the former job’s
run function has been executed.

	Parameters

	
	job (Job) –

	path (Any) –

	
filesToDelete

	A set of IDs of files containing promised values when we know we won’t need them anymore

	
__reduce__()

	Return the Promise class and construction arguments.

Called during pickling when a promise (an instance of this class) is about
to be be pickled. Returns the Promise class and construction arguments
that will be evaluated during unpickling, namely the job store coordinates
of a file that will hold the promised return value. By the time the
promise is about to be unpickled, that file should be populated.

	
toil.job.T

	

	
toil.job.Promised

	

	
toil.job.unwrap(p)

	Function for ensuring you actually have a promised value, and not just a promise.
Mostly useful for satisfying type-checking.

The “unwrap” terminology is borrowed from Rust.

	Parameters

	p (Promised[T]) –

	Return type

	T

	
toil.job.unwrap_all(p)

	Function for ensuring you actually have a collection of promised values,
and not any remaining promises. Mostly useful for satisfying type-checking.

The “unwrap” terminology is borrowed from Rust.

	Parameters

	p (Sequence[Promised[T]]) –

	Return type

	Sequence[T]

	
class toil.job.PromisedRequirement(valueOrCallable, *args)

	Class for dynamically allocating job function resource requirements.

(involving toil.job.Promise instances.)

Use when resource requirements depend on the return value of a parent function.
PromisedRequirements can be modified by passing a function that takes the
Promise as input.

For example, let f, g, and h be functions. Then a Toil workflow can be
defined as follows::
A = Job.wrapFn(f)
B = A.addChildFn(g, cores=PromisedRequirement(A.rv())
C = B.addChildFn(h, cores=PromisedRequirement(lambda x: 2*x, B.rv()))

	
getValue()

	Return PromisedRequirement value.

	
static convertPromises(kwargs)

	Return True if reserved resource keyword is a Promise or PromisedRequirement instance.

Converts Promise instance to PromisedRequirement.

	Parameters

	kwargs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – function keyword arguments

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class toil.job.UnfulfilledPromiseSentinel(fulfillingJobName, file_id, unpickled)

	This should be overwritten by a proper promised value.

Throws an exception when unpickled.

	Parameters

	
	fulfillingJobName (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	unpickled (Any) –

	
static __setstate__(stateDict)

	Only called when unpickling.

This won’t be unpickled unless the promise wasn’t resolved, so we throw
an exception.

	Parameters

	stateDict (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) –

	Return type

	None

 toil.leader

toil.leader

The leader script (of the leader/worker pair) for running jobs.

Module Contents

Classes

	Leader

	Represents the Toil leader.

Attributes

	logger

	

	
toil.leader.logger

	

	
class toil.leader.Leader(config, batchSystem, provisioner, jobStore, rootJob, jobCache=None)

	Represents the Toil leader.

Responsible for determining what jobs are ready to be scheduled, by
consulting the job store, and issuing them in the batch system.

	Parameters

	
	config (toil.common.Config) –

	batchSystem (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem) –

	provisioner (Optional[toil.provisioners.abstractProvisioner.AbstractProvisioner]) –

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	rootJob (toil.job.JobDescription) –

	jobCache (Optional[Dict[Union[str [https://docs.python.org/3/library/stdtypes.html#str], toil.job.TemporaryID], toil.job.JobDescription]]) –

	
run()

	Run the leader process to issue and manage jobs.

	Raises

	toil.exceptions.FailedJobsException if failed jobs remain after running.

	Returns

	The return value of the root job’s run function.

	Return type

	Any

	
create_status_sentinel_file(fail)

	Create a file in the jobstore indicating failure or success.

	Parameters

	fail (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
innerLoop()

	Process jobs.

This is the leader’s main loop.

	
checkForDeadlocks()

	Check if the system is deadlocked running service jobs.

	
feed_deadlock_watchdog()

	Note that progress has been made and any pending deadlock checks should be reset.

	Return type

	None

	
issueJob(jobNode)

	Add a job to the queue of jobs currently trying to run.

	Parameters

	jobNode (toil.job.JobDescription) –

	Return type

	None

	
issueJobs(jobs)

	Add a list of jobs, each represented as a jobNode object.

	
issueServiceJob(service_id)

	Issue a service job.

Put it on a queue if the maximum number of service jobs to be scheduled has been reached.

	Parameters

	service_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
issueQueingServiceJobs()

	Issues any queuing service jobs up to the limit of the maximum allowed.

	
getNumberOfJobsIssued(preemptible=None)

	Get number of jobs that have been added by issueJob(s) and not removed by removeJob.

	Parameters

	preemptible (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – If none, return all types of jobs.
If true, return just the number of preemptible jobs. If false, return
just the number of non-preemptible jobs.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
removeJob(jobBatchSystemID)

	Remove a job from the system by batch system ID.

	Returns

	Job description as it was issued.

	Parameters

	jobBatchSystemID (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	toil.job.JobDescription

	
getJobs(preemptible=None)

	Get all issued jobs.

	Parameters

	preemptible (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) – If specified, select only preemptible or only non-preemptible jobs.

	Return type

	List[toil.job.JobDescription]

	
killJobs(jobsToKill)

	Kills the given set of jobs and then sends them for processing.

Returns the jobs that, upon processing, were reissued.

	
reissueOverLongJobs()

	Check each issued job.

If a job is running for longer than desirable issue a kill instruction.
Wait for the job to die then we pass the job to process_finished_job.

	Return type

	None

	
reissueMissingJobs(killAfterNTimesMissing=3)

	Check all the current job ids are in the list of currently issued batch system jobs.

If a job is missing, we mark it as so, if it is missing for a number of runs of
this function (say 10).. then we try deleting the job (though its probably lost), we wait
then we pass the job to process_finished_job.

	
processRemovedJob(issuedJob, result_status)

	

	
process_finished_job(batch_system_id, result_status, wall_time=None, exit_reason=None)

	Process finished jobs.

Called when an attempt to run a job finishes, either successfully or otherwise.

Takes the job out of the issued state, and then works out what
to do about the fact that it succeeded or failed.

	Returns

	True if the job is going to run again, and False if the job is
fully done or completely failed.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
process_finished_job_description(finished_job, result_status, wall_time=None, exit_reason=None, batch_system_id=None)

	Process a finished JobDescription based upon its succees or failure.

If wall-clock time is available, informs the cluster scaler about the
job finishing.

If the job failed and a batch system ID is available, checks for and
reports batch system logs.

Checks if it succeeded and was removed, or if it failed and needs to be
set up after failure, and dispatches to the appropriate function.

	Returns

	True if the job is going to run again, and False if the job is
fully done or completely failed.

	Parameters

	
	finished_job (toil.job.JobDescription) –

	result_status (int [https://docs.python.org/3/library/functions.html#int]) –

	wall_time (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	exit_reason (Optional[toil.batchSystems.abstractBatchSystem.BatchJobExitReason]) –

	batch_system_id (Optional[int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
getSuccessors(job_id, alreadySeenSuccessors)

	Get successors of the given job by walking the job graph recursively.

	Parameters

	
	alreadySeenSuccessors (Set[str [https://docs.python.org/3/library/stdtypes.html#str]]) – any successor seen here is ignored and not traversed.

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	The set of found successors. This set is added to alreadySeenSuccessors.

	Return type

	Set[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
processTotallyFailedJob(job_id)

	Process a totally failed job.

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

 toil.realtimeLogger

toil.realtimeLogger

Implements a real-time UDP-based logging system that user scripts can use for debugging.

Module Contents

Classes

	LoggingDatagramHandler

	Receive logging messages from the jobs and display them on the leader.

	JSONDatagramHandler

	Send logging records over UDP serialized as JSON.

	RealtimeLoggerMetaclass

	Metaclass for RealtimeLogger that lets add logging methods.

	RealtimeLogger

	Provide a logger that logs over UDP to the leader.

Attributes

	logger

	

	
toil.realtimeLogger.logger

	

	
class toil.realtimeLogger.LoggingDatagramHandler(request, client_address, server)

	Bases: socketserver.BaseRequestHandler [https://docs.python.org/3/library/socketserver.html#socketserver.BaseRequestHandler]

[image: Inheritance diagram of toil.realtimeLogger.LoggingDatagramHandler]

Receive logging messages from the jobs and display them on the leader.

Uses bare JSON message encoding.

	
handle()

	Handle a single message. SocketServer takes care of splitting out the messages.

Messages are JSON-encoded logging module records.

	Return type

	None

	
class toil.realtimeLogger.JSONDatagramHandler(host, port)

	Bases: logging.handlers.DatagramHandler [https://docs.python.org/3/library/logging.handlers.html#logging.handlers.DatagramHandler]

[image: Inheritance diagram of toil.realtimeLogger.JSONDatagramHandler]

Send logging records over UDP serialized as JSON.

They have to fit in a single UDP datagram, so don’t try to log more than 64kb at once.

	
makePickle(record)

	Actually, encode the record as bare JSON instead.

	Parameters

	record (logging.LogRecord [https://docs.python.org/3/library/logging.html#logging.LogRecord]) –

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
class toil.realtimeLogger.RealtimeLoggerMetaclass

	Bases: type [https://docs.python.org/3/library/functions.html#type]

[image: Inheritance diagram of toil.realtimeLogger.RealtimeLoggerMetaclass]

Metaclass for RealtimeLogger that lets add logging methods.

Like RealtimeLogger.warning(), RealtimeLogger.info(), etc.

	
__getattr__(name)

	Fallback to attributes on the logger.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Any

	
class toil.realtimeLogger.RealtimeLogger(batchSystem, level=defaultLevel)

	Provide a logger that logs over UDP to the leader.

To use in a Toil job, do:

>>> from toil.realtimeLogger import RealtimeLogger
>>> RealtimeLogger.info("This logging message goes straight to the leader")

That’s all a user of Toil would need to do. On the leader, Job.Runner.startToil()
automatically starts the UDP server by using an instance of this class as a context manager.

	Parameters

	
	batchSystem (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem) –

	level (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
envPrefix = 'TOIL_RT_LOGGING_'

	

	
defaultLevel = 'INFO'

	

	
lock

	

	
loggingServer

	

	
serverThread

	

	
initialized = 0

	

	
logger

	

	
classmethod getLogger()

	Get the logger that logs real-time to the leader.

Note that if the returned logger is used on the leader, you will see the message twice,
since it still goes to the normal log handlers, too.

	Return type

	logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]

	
__enter__()

	
	Return type

	None

	
__exit__(exc_type, exc_val, exc_tb)

	
	Parameters

	
	exc_type (Optional[Type[BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]]]) –

	exc_val (Optional[BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]]) –

	exc_tb (Optional[types.TracebackType [https://docs.python.org/3/library/types.html#types.TracebackType]]) –

	Return type

	None

 toil.resource

toil.resource

Module Contents

Classes

	Resource

	Represents a file or directory that will be deployed to each node before any jobs in the user script are invoked.

	FileResource

	A resource read from a file on the leader.

	DirectoryResource

	A resource read from a directory on the leader.

	VirtualEnvResource

	A resource read from a virtualenv on the leader.

	ModuleDescriptor

	A path to a Python module decomposed into a namedtuple of three elements

Attributes

	logger

	

	
toil.resource.logger

	

	
class toil.resource.Resource

	Bases: namedtuple('Resource', ('name', 'pathHash', 'url', 'contentHash'))

[image: Inheritance diagram of toil.resource.Resource]

Represents a file or directory that will be deployed to each node before any jobs in the user script are invoked.

Each instance is a namedtuple with the following elements:

The pathHash element contains the MD5 (in hexdigest form) of the path to the resource on the
leader node. The path, and therefore its hash is unique within a job store.

The url element is a “file:” or “http:” URL at which the resource can be obtained.

The contentHash element is an MD5 checksum of the resource, allowing for validation and
caching of resources.

If the resource is a regular file, the type attribute will be ‘file’.

If the resource is a directory, the type attribute will be ‘dir’ and the URL will point at a
ZIP archive of that directory.

	
abstract property localPath: str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the path to resource on the worker.

The file or directory at the returned path may or may not yet exist.
Invoking download() will ensure that it does.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property localDirPath: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to the directory containing the resource on the worker.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
resourceEnvNamePrefix = 'JTRES_'

	

	
rootDirPathEnvName

	

	
classmethod create(jobStore, leaderPath)

	Saves the content of the file or directory at the given path to the given job store
and returns a resource object representing that content for the purpose of obtaining it
again at a generic, public URL. This method should be invoked on the leader node.

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	leaderPath (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Resource

	
refresh(jobStore)

	
	Parameters

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	Return type

	Resource

	
classmethod prepareSystem()

	Prepares this system for the downloading and lookup of resources. This method should only
be invoked on a worker node. It is idempotent but not thread-safe.

	Return type

	None

	
classmethod cleanSystem()

	Remove all downloaded, localized resources.

	Return type

	None

	
register()

	Register this resource for later retrieval via lookup(), possibly in a child process.

	Return type

	None

	
classmethod lookup(leaderPath)

	Return a resource object representing a resource created from a file or directory at the given path on the leader.

This method should be invoked on the worker. The given path does not need
to refer to an existing file or directory on the worker, it only identifies
the resource within an instance of toil. This method returns None if no resource
for the given path exists.

	Parameters

	leaderPath (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Optional[Resource]

	
download(callback=None)

	Download this resource from its URL to a file on the local system.

This method should only be invoked on a worker node after the node was setup
for accessing resources via prepareSystem().

	Parameters

	callback (Optional[Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], None]]) –

	Return type

	None

	
pickle()

	
	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod unpickle(s)

	
	Parameters

	s (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Resource

	
class toil.resource.FileResource

	Bases: Resource

[image: Inheritance diagram of toil.resource.FileResource]

A resource read from a file on the leader.

	
property localPath: str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the path to resource on the worker.

The file or directory at the returned path may or may not yet exist.
Invoking download() will ensure that it does.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.resource.DirectoryResource

	Bases: Resource

[image: Inheritance diagram of toil.resource.DirectoryResource]

A resource read from a directory on the leader.

The URL will point to a ZIP archive of the directory. All files in that directory
(and any subdirectories) will be included. The directory
may be a package but it does not need to be.

	
property localPath: str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the path to resource on the worker.

The file or directory at the returned path may or may not yet exist.
Invoking download() will ensure that it does.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class toil.resource.VirtualEnvResource

	Bases: DirectoryResource

[image: Inheritance diagram of toil.resource.VirtualEnvResource]

A resource read from a virtualenv on the leader.

All modules and packages found in the virtualenv’s site-packages directory will be included.

	
class toil.resource.ModuleDescriptor

	Bases: namedtuple('ModuleDescriptor', ('dirPath', 'name', 'fromVirtualEnv'))

[image: Inheritance diagram of toil.resource.ModuleDescriptor]

A path to a Python module decomposed into a namedtuple of three elements

	dirPath, the path to the directory that should be added to sys.path before importing the
module,

	moduleName, the fully qualified name of the module with leading package names separated by
dot and

>>> import toil.resource
>>> ModuleDescriptor.forModule('toil.resource')
ModuleDescriptor(dirPath='/.../src', name='toil.resource', fromVirtualEnv=False)

>>> import subprocess, tempfile, os
>>> dirPath = tempfile.mkdtemp()
>>> path = os.path.join(dirPath, 'foo.py')
>>> with open(path,'w') as f:
... _ = f.write('from toil.resource import ModuleDescriptor\n'
... 'print(ModuleDescriptor.forModule(__name__))')
>>> subprocess.check_output([sys.executable, path])
b"ModuleDescriptor(dirPath='...', name='foo', fromVirtualEnv=False)\n"

>>> from shutil import rmtree
>>> rmtree(dirPath)

Now test a collision. ‘collections’ is part of the standard library in Python 2 and 3.
>>> dirPath = tempfile.mkdtemp()
>>> path = os.path.join(dirPath, ‘collections.py’)
>>> with open(path,’w’) as f:
… _ = f.write(‘from toil.resource import ModuleDescriptorn’
… ‘ModuleDescriptor.forModule(__name__)’)

This should fail and return exit status 1 due to the collision with the built-in module:
>>> subprocess.call([sys.executable, path])
1

Clean up
>>> rmtree(dirPath)

	
property belongsToToil: bool [https://docs.python.org/3/library/functions.html#bool]

	True if this module is part of the Toil distribution

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
dirPath: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
classmethod forModule(name)

	Return an instance of this class representing the module of the given name.

If the given module name is “__main__”, it will be translated to the actual
file name of the top-level script without the .py or .pyc extension. This
method assumes that the module with the specified name has already been loaded.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	ModuleDescriptor

	
saveAsResourceTo(jobStore)

	Store the file containing this module–or even the Python package directory hierarchy
containing that file–as a resource to the given job store and return the
corresponding resource object. Should only be called on a leader node.

	Parameters

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	Return type

	Resource

	
localize()

	Check if this module was saved as a resource.

If it was, return a new module descriptor that points to a local copy of
that resource. Should only be called on a worker node. On
the leader, this method returns this resource, i.e. self.

	Return type

	ModuleDescriptor

	
globalize()

	Reverse the effect of localize().

	Return type

	ModuleDescriptor

	
toCommand()

	
	Return type

	Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
classmethod fromCommand(command)

	
	Parameters

	command (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	ModuleDescriptor

	
makeLoadable()

	
	Return type

	ModuleDescriptor

	
load()

	
	Return type

	Optional[types.ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType]]

	
exception toil.resource.ResourceException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

[image: Inheritance diagram of toil.resource.ResourceException]

Common base class for all non-exit exceptions.

 toil.serviceManager

toil.serviceManager

Module Contents

Classes

	ServiceManager

	Manages the scheduling of services.

Attributes

	logger

	

	
toil.serviceManager.logger

	

	
class toil.serviceManager.ServiceManager(job_store, toil_state)

	Manages the scheduling of services.

	Parameters

	
	job_store (toil.jobStores.abstractJobStore.AbstractJobStore) –

	toil_state (toil.toilState.ToilState) –

	
services_are_starting(job_id)

	Check if services are being started.

	Returns

	True if the services for the given job are currently being started, and False otherwise.

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_job_count()

	Get the total number of jobs we are working on.

(services and their parent non-service jobs)

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
start()

	Start the service scheduling thread.

	Return type

	None

	
put_client(client_id)

	Schedule the services of a job asynchronously.

When the job’s services are running the ID for the job will
be returned by toil.leader.ServiceManager.get_ready_client.

	Parameters

	client_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of job with services to schedule.

	Return type

	None

	
get_ready_client(maxWait)

	Fetch a ready client, waiting as needed.

	Parameters

	maxWait (float [https://docs.python.org/3/library/functions.html#float]) – Time in seconds to wait to get a JobDescription before returning

	Returns

	the ID of a client whose services are running, or None if no
such job is available.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_unservable_client(maxWait)

	Fetch a client whos services failed to start.

	Parameters

	maxWait (float [https://docs.python.org/3/library/functions.html#float]) – Time in seconds to wait to get a JobDescription before returning

	Returns

	the ID of a client whose services failed to start, or None if
no such job is available.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_startable_service(maxWait)

	Fetch a service job that is ready to start.

	Parameters

	maxWait (float [https://docs.python.org/3/library/functions.html#float]) – Time in seconds to wait to get a job before returning.

	Returns

	the ID of a service job that the leader can start, or None if no such job exists.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
kill_services(service_ids, error=False)

	Stop all the given service jobs.

	Parameters

	
	services – Service jobStoreIDs to kill

	error (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to signal that the service failed with an error when stopping it.

	service_ids (Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
is_active(service_id)

	Return true if the service job has not been told to terminate.

	Parameters

	service_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Service to check on

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_running(service_id)

	Return true if the service job has started and is active.

	Parameters

	
	service – Service to check on

	service_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
check()

	Check on the service manager thread.

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the underlying thread has quit.

	Return type

	None

	
shutdown()

	Terminate worker threads cleanly; starting and killing all service threads.

Will block until all services are started and blocked.

	Return type

	None

 toil.statsAndLogging

toil.statsAndLogging

Module Contents

Classes

	StatsAndLogging

	A thread to aggregate statistics and logging.

Functions

	set_log_level(level[, set_logger])

	Sets the root logger level to a given string level (like "INFO").

	add_logging_options(parser)

	Add logging options to set the global log level.

	configure_root_logger()

	Set up the root logger with handlers and formatting.

	log_to_file(log_file, log_rotation)

	

	set_logging_from_options(options)

	

	suppress_exotic_logging(local_logger)

	Attempts to suppress the loggers of all non-Toil packages by setting them to CRITICAL.

Attributes

	logger

	

	root_logger

	

	toil_logger

	

	DEFAULT_LOGLEVEL

	

	
toil.statsAndLogging.logger

	

	
toil.statsAndLogging.root_logger

	

	
toil.statsAndLogging.toil_logger

	

	
toil.statsAndLogging.DEFAULT_LOGLEVEL

	

	
class toil.statsAndLogging.StatsAndLogging(jobStore, config)

	A thread to aggregate statistics and logging.

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	config (toil.common.Config) –

	
start()

	Start the stats and logging thread.

	Return type

	None

	
classmethod formatLogStream(stream, job_name=None)

	Given a stream of text or bytes, and the job name, job itself, or some
other optional stringifyable identity info for the job, return a big
text string with the formatted job log, suitable for printing for the
user.

We don’t want to prefix every line of the job’s log with our own
logging info, or we get prefixes wider than any reasonable terminal
and longer than the messages.

	Parameters

	
	stream (Union[IO[str [https://docs.python.org/3/library/stdtypes.html#str]], IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]) – The stream of text or bytes to print for the user.

	job_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod logWithFormatting(jobStoreID, jobLogs, method=logger.debug, message=None)

	
	Parameters

	
	jobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	jobLogs (Union[IO[str [https://docs.python.org/3/library/stdtypes.html#str]], IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]) –

	method (Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], None]) –

	message (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	None

	
classmethod writeLogFiles(jobNames, jobLogList, config, failed=False)

	
	Parameters

	
	jobNames (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	jobLogList (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	config (toil.common.Config) –

	failed (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
classmethod statsAndLoggingAggregator(jobStore, stop, config)

	The following function is used for collating stats/reporting log messages from the workers.
Works inside of a thread, collates as long as the stop flag is not True.

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	stop (threading.Event [https://docs.python.org/3/library/threading.html#threading.Event]) –

	config (toil.common.Config) –

	Return type

	None

	
check()

	Check on the stats and logging aggregator.
:raise RuntimeError: If the underlying thread has quit.

	Return type

	None

	
shutdown()

	Finish up the stats/logging aggregation thread.

	Return type

	None

	
toil.statsAndLogging.set_log_level(level, set_logger=None)

	Sets the root logger level to a given string level (like “INFO”).

	Parameters

	
	level (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	set_logger (Optional[logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]]) –

	Return type

	None

	
toil.statsAndLogging.add_logging_options(parser)

	Add logging options to set the global log level.

	Parameters

	parser (argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) –

	Return type

	None

	
toil.statsAndLogging.configure_root_logger()

	Set up the root logger with handlers and formatting.

Should be called before any entry point tries to log anything,
to ensure consistent formatting.

	Return type

	None

	
toil.statsAndLogging.log_to_file(log_file, log_rotation)

	
	Parameters

	
	log_file (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	log_rotation (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
toil.statsAndLogging.set_logging_from_options(options)

	
	Parameters

	options (Union[toil.common.Config, argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]]) –

	Return type

	None

	
toil.statsAndLogging.suppress_exotic_logging(local_logger)

	Attempts to suppress the loggers of all non-Toil packages by setting them to CRITICAL.

For example: ‘requests_oauthlib’, ‘google’, ‘boto’, ‘websocket’, ‘oauthlib’, etc.

This will only suppress loggers that have already been instantiated and can be seen in the environment,
except for the list declared in “always_suppress”.

This is important because some packages, particularly boto3, are not always instantiated yet in the
environment when this is run, and so we create the logger and set the level preemptively.

	Parameters

	local_logger (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

 toil.toilState

toil.toilState

Module Contents

Classes

	ToilState

	Holds the leader's scheduling information.

Attributes

	logger

	

	
toil.toilState.logger

	

	
class toil.toilState.ToilState(jobStore)

	Holds the leader’s scheduling information.

But onlt that which does not need to be persisted back to the JobStore (such
as information on completed and outstanding predecessors)

Holds the true single copies of all JobDescription objects that the Leader
and ServiceManager will use. The leader and service manager shouldn’t do
their own load() and update() calls on the JobStore; they should go through
this class.

Everything in the leader should reference JobDescriptions by ID.

Only holds JobDescription objects, not Job objects, and those
JobDescription objects only exist in single copies.

	Parameters

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	
load_workflow(rootJob, jobCache=None)

	Load the workflow rooted at the given job.

If jobs are loaded that have updated and need to be dealt with by the
leader, JobUpdatedMessage messages will be sent to the message bus.

The jobCache is a map from jobStoreID to JobDescription or None. Is
used to speed up the building of the state when loading initially from
the JobStore, and is not preserved.

	Parameters

	
	rootJob (toil.job.JobDescription) – The description for the root job of the workflow being run.

	jobCache (Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], toil.job.JobDescription]]) – A dict to cache downloaded job descriptions in, keyed by ID.

	Return type

	None

	
job_exists(job_id)

	Test if the givin job exists now.

Returns True if the given job exists right now, and false if it hasn’t
been created or it has been deleted elsewhere.

Doesn’t guarantee that the job will or will not be gettable, if racing
another process, or if it is still cached.

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_job(job_id)

	Get the one true copy of the JobDescription with the given ID.

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	toil.job.JobDescription

	
commit_job(job_id)

	Save back any modifications made to a JobDescription.

(one retrieved from get_job())

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
delete_job(job_id)

	Destroy a JobDescription.

May raise an exception if the job could not be cleaned up (i.e. files
belonging to it failed to delete).

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
reset_job(job_id)

	Discard any local modifications to a JobDescription.

Will make modifications from other hosts visible.

	Parameters

	job_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
successors_pending(predecessor_id, count)

	Remember that the given job has the given number more pending successors.

(that have not yet succeeded or failed.)

	Parameters

	
	predecessor_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	count (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	None

	
successor_returned(predecessor_id)

	Remember that the given job has one fewer pending successors.

(because one has succeeded or failed.)

	Parameters

	predecessor_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
count_pending_successors(predecessor_id)

	Count number of pending successors of the given job.

Pending successors are those which have not yet succeeded or failed.

	Parameters

	predecessor_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

 toil.version

toil.version

Module Contents

	
toil.version.baseVersion = '5.10.0'

	

	
toil.version.cgcloudVersion = '1.6.0a1.dev393'

	

	
toil.version.version = '5.10.0-21422a3440f8a6d5e9d2f1c9695c4fbc57fa5372'

	

	
toil.version.distVersion = '5.10.0'

	

	
toil.version.exactPython = 'python3.7'

	

	
toil.version.python = 'python3.7'

	

	
toil.version.dockerTag = '5.10.0-21422a3440f8a6d5e9d2f1c9695c4fbc57fa5372-py3.7'

	

	
toil.version.currentCommit = '21422a3440f8a6d5e9d2f1c9695c4fbc57fa5372'

	

	
toil.version.dockerRegistry = 'quay.io/ucsc_cgl'

	

	
toil.version.dockerName = 'toil'

	

	
toil.version.dirty = False

	

	
toil.version.cwltool_version = '3.1.20230425144158'

	

 toil.worker

toil.worker

Module Contents

Classes

	StatsDict

	Subclass of MagicExpando for type-checking purposes.

Functions

	nextChainable(predecessor, jobStore, config)

	Returns the next chainable job's JobDescription after the given predecessor

	workerScript(jobStore, config, jobName, jobStoreID[, ...])

	Worker process script, runs a job.

	parse_args(args)

	Parse command-line arguments to the worker.

	in_contexts(contexts)

	Unpickle and enter all the pickled, base64-encoded context managers in the

	main([argv])

	

Attributes

	logger

	

	
toil.worker.logger

	

	
class toil.worker.StatsDict(*args, **kwargs)

	Bases: toil.lib.expando.MagicExpando

[image: Inheritance diagram of toil.worker.StatsDict]

Subclass of MagicExpando for type-checking purposes.

	
jobs: List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
toil.worker.nextChainable(predecessor, jobStore, config)

	Returns the next chainable job’s JobDescription after the given predecessor
JobDescription, if one exists, or None if the chain must terminate.

	Parameters

	
	predecessor (toil.job.JobDescription) – The job to chain from

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The JobStore to fetch JobDescriptions from.

	config (toil.common.Config) – The configuration for the current run.

	Return type

	Optional[toil.job.JobDescription]

	
toil.worker.workerScript(jobStore, config, jobName, jobStoreID, redirectOutputToLogFile=True)

	Worker process script, runs a job.

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The JobStore to fetch JobDescriptions from.

	config (toil.common.Config) – The configuration for the current run.

	jobName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The “job name” (a user friendly name) of the job to be run

	jobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – The job store ID of the job to be run

	redirectOutputToLogFile (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return int

	1 if a job failed, or 0 if all jobs succeeded

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
toil.worker.parse_args(args)

	Parse command-line arguments to the worker.

	Parameters

	args (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

	
toil.worker.in_contexts(contexts)

	Unpickle and enter all the pickled, base64-encoded context managers in the
given list. Then do the body, then leave them all.

	Parameters

	contexts (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	Iterator[None]

	
toil.worker.main(argv=None)

	
	Parameters

	argv (Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type

	None

 tutorial_docker

tutorial_docker

Module Contents

	
tutorial_docker.align

	

	
tutorial_docker.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_managing2

tutorial_managing2

Module Contents

Functions

	globalFileStoreJobFn(job)

	

Attributes

	jobstore

	

	
tutorial_managing2.globalFileStoreJobFn(job)

	

	
tutorial_managing2.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_helloworld

tutorial_helloworld

Module Contents

Functions

	helloWorld(message[, memory, cores, disk])

	

Attributes

	parser

	

	
tutorial_helloworld.helloWorld(message, memory='1G', cores=1, disk='1G')

	

	
tutorial_helloworld.parser

	

 tutorial_discoverfiles

tutorial_discoverfiles

Module Contents

Classes

	discoverFiles

	Views files at a specified path using ls.

Functions

	main()

	

	
class tutorial_discoverfiles.discoverFiles(path, *args, **kwargs)

	Bases: toil.job.Job

[image: Inheritance diagram of tutorial_discoverfiles.discoverFiles]

Views files at a specified path using ls.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
tutorial_discoverfiles.main()

	

 tutorial_multiplejobs2

tutorial_multiplejobs2

Module Contents

Functions

	helloWorld(job, message[, memory, cores, disk])

	

Attributes

	parser

	

	
tutorial_multiplejobs2.helloWorld(job, message, memory='2G', cores=2, disk='3G')

	

	
tutorial_multiplejobs2.parser

	

 tutorial_dynamic

tutorial_dynamic

Module Contents

Functions

	binaryStringFn(job, depth[, message])

	

Attributes

	jobstore

	

	
tutorial_dynamic.binaryStringFn(job, depth, message='')

	

	
tutorial_dynamic.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_invokeworkflow2

tutorial_invokeworkflow2

Module Contents

Classes

	HelloWorld

	Class represents a unit of work in toil.

Attributes

	jobstore

	

	
class tutorial_invokeworkflow2.HelloWorld(message)

	Bases: toil.job.Job

[image: Inheritance diagram of tutorial_invokeworkflow2.HelloWorld]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
tutorial_invokeworkflow2.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_jobfunctions

tutorial_jobfunctions

Module Contents

Functions

	helloWorld(job, message)

	

Attributes

	jobstore

	

	
tutorial_jobfunctions.helloWorld(job, message)

	

	
tutorial_jobfunctions.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_managing

tutorial_managing

Module Contents

Classes

	LocalFileStoreJob

	Class represents a unit of work in toil.

Attributes

	jobstore

	

	
class tutorial_managing.LocalFileStoreJob(memory=None, cores=None, disk=None, accelerators=None, preemptible=None, preemptable=None, unitName='', checkpoint=False, displayName='', descriptionClass=None, local=None)

	Bases: toil.job.Job

[image: Inheritance diagram of tutorial_managing.LocalFileStoreJob]

Class represents a unit of work in toil.

	Parameters

	
	memory (Optional[ParseableIndivisibleResource]) –

	cores (Optional[ParseableDivisibleResource]) –

	disk (Optional[ParseableIndivisibleResource]) –

	accelerators (Optional[ParseableAcceleratorRequirement]) –

	preemptible (Optional[ParseableFlag]) –

	preemptable (Optional[ParseableFlag]) –

	unitName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	checkpoint (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	displayName (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	descriptionClass (Optional[type [https://docs.python.org/3/library/functions.html#type]]) –

	local (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
tutorial_managing.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 example_alwaysfail

example_alwaysfail

Module Contents

Functions

	main()

	This workflow always fails.

	explode(job)

	

	
example_alwaysfail.main()

	This workflow always fails.

Invoke like:

python examples/example_alwaysfail.py ./jobstore

Then you can inspect the job store with tools like toil status:

toil status –printLogs ./jobstore

	
example_alwaysfail.explode(job)

	

 example_cachingbenchmark

example_cachingbenchmark

This workflow collects statistics about caching.

Invoke like:

python examples/example_cachingbenchmark.py ./jobstore –realTimeLogging –logInfo

python examples/example_cachingbenchmark.py ./jobstore –realTimeLogging –logInfo –disableCaching

python examples/example_cachingbenchmark.py aws:us-west-2:cachingjobstore –realTimeLogging –logInfo

python examples/example_cachingbenchmark.py aws:us-west-2:cachingjobstore –realTimeLogging –logInfo –disableCaching

Module Contents

Functions

	main()

	

	root(job, options)

	

	poll(job, options, file_id, number[, cores, disk, memory])

	

	report(job, views)

	

	
example_cachingbenchmark.main()

	

	
example_cachingbenchmark.root(job, options)

	

	
example_cachingbenchmark.poll(job, options, file_id, number, cores=0.1, disk='200M', memory='512M')

	

	
example_cachingbenchmark.report(job, views)

	

 tutorial_quickstart

tutorial_quickstart

Module Contents

Functions

	helloWorld(message[, memory, cores, disk])

	

Attributes

	jobstore

	

	
tutorial_quickstart.helloWorld(message, memory='2G', cores=2, disk='3G')

	

	
tutorial_quickstart.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_encapsulation2

tutorial_encapsulation2

Module Contents

	
tutorial_encapsulation2.A

	

 tutorial_multiplejobs3

tutorial_multiplejobs3

Module Contents

Functions

	helloWorld(job, message[, memory, cores, disk])

	

Attributes

	parser

	

	
tutorial_multiplejobs3.helloWorld(job, message, memory='2G', cores=2, disk='3G')

	

	
tutorial_multiplejobs3.parser

	

 tutorial_cwlexample

tutorial_cwlexample

Module Contents

Functions

	initialize_jobs(job)

	

	runQC(job, cwl_file, cwl_filename, yml_file, ...)

	

Attributes

	jobstore

	

	
tutorial_cwlexample.initialize_jobs(job)

	

	
tutorial_cwlexample.runQC(job, cwl_file, cwl_filename, yml_file, yml_filename, outputs_dir, output_num)

	

	
tutorial_cwlexample.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_encapsulation

tutorial_encapsulation

Module Contents

	
tutorial_encapsulation.A

	

 tutorial_invokeworkflow

tutorial_invokeworkflow

Module Contents

Classes

	HelloWorld

	Class represents a unit of work in toil.

Attributes

	jobstore

	

	
class tutorial_invokeworkflow.HelloWorld(message)

	Bases: toil.job.Job

[image: Inheritance diagram of tutorial_invokeworkflow.HelloWorld]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
tutorial_invokeworkflow.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_requirements

tutorial_requirements

Module Contents

Functions

	parentJob(job)

	

	stageFn(job, url[, cores])

	

	analysisJob(job, fileStoreID[, cores])

	

Attributes

	jobstore

	

	
tutorial_requirements.parentJob(job)

	

	
tutorial_requirements.stageFn(job, url, cores=1)

	

	
tutorial_requirements.analysisJob(job, fileStoreID, cores=2)

	

	
tutorial_requirements.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_staging

tutorial_staging

Module Contents

Classes

	HelloWorld

	Class represents a unit of work in toil.

Attributes

	jobstore

	

	
class tutorial_staging.HelloWorld(id)

	Bases: toil.job.Job

[image: Inheritance diagram of tutorial_staging.HelloWorld]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
tutorial_staging.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_promises

tutorial_promises

Module Contents

Functions

	fn(job, i)

	

Attributes

	jobstore

	

	
tutorial_promises.fn(job, i)

	

	
tutorial_promises.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_services

tutorial_services

Module Contents

Classes

	DemoService

	Abstract class used to define the interface to a service.

Functions

	dbFn(loginCredentials)

	

Attributes

	j

	

	s

	

	loginCredentialsPromise

	

	jobstore

	

	
class tutorial_services.DemoService(memory=None, cores=None, disk=None, accelerators=None, preemptible=None, unitName=None)

	Bases: toil.job.Job.Service

[image: Inheritance diagram of tutorial_services.DemoService]

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

	
start(fileStore)

	Start the service.

	Parameters

	job – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	Returns

	An object describing how to access the service. The object must be pickleable
and will be used by jobs to access the service (see toil.job.Job.addService()).

	
check()

	Checks the service is still running.

	Raises

	exceptions.RuntimeError – If the service failed, this will cause the service job to be labeled failed.

	Returns

	True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should raise a
RuntimeError, not return False!

	
stop(fileStore)

	Stops the service. Function can block until complete.

	Parameters

	job – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	
tutorial_services.j

	

	
tutorial_services.s

	

	
tutorial_services.loginCredentialsPromise

	

	
tutorial_services.dbFn(loginCredentials)

	

	
tutorial_services.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_promises2

tutorial_promises2

Module Contents

Functions

	binaryStrings(job, depth[, message])

	

	merge(strings)

	

Attributes

	jobstore

	

	
tutorial_promises2.binaryStrings(job, depth, message='')

	

	
tutorial_promises2.merge(strings)

	

	
tutorial_promises2.jobstore: str [https://docs.python.org/3/library/stdtypes.html#str]

	

 tutorial_multiplejobs

tutorial_multiplejobs

Module Contents

Functions

	helloWorld(job, message[, memory, cores, disk])

	

Attributes

	parser

	

	
tutorial_multiplejobs.helloWorld(job, message, memory='2G', cores=2, disk='3G')

	

	
tutorial_multiplejobs.parser

	

 tutorial_arguments

tutorial_arguments

Module Contents

Classes

	HelloWorld

	Class represents a unit of work in toil.

Attributes

	parser

	

	
class tutorial_arguments.HelloWorld(message)

	Bases: toil.job.Job

[image: Inheritance diagram of tutorial_arguments.HelloWorld]

Class represents a unit of work in toil.

	
run(fileStore)

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
tutorial_arguments.parser

	

 mkFile

mkFile

Module Contents

Functions

	main()

	

	
mkFile.main()

	

 debugWorkflow

debugWorkflow

Module Contents

Functions

	initialize_jobs(job)

	Stub function used to start a toil workflow since toil workflows can only

	writeA(job, mkFile)

	Runs a program, and writes a string 'A' into A.txt using mkFile.py.

	writeB(job, mkFile, B_file)

	Runs a program, extracts a string 'B' from an existing file, B_file.txt, and

	writeC(job)

	Creates/writes a file, C.txt, containing the string 'C'.

	writeABC(job, A_dict, B_dict, C_dict, filepath)

	Takes 3 files (specified as dictionaries) and writes their contents to ABC.txt.

	finalize_jobs(job, num)

	Does nothing but should be recorded in stats, status, and printDot().

	broken_job(job, num)

	A job that will always fail. To be used for a tutorial.

Attributes

	logger

	This workflow's purpose is to create files and jobs for viewing using stats,

	jobStorePath

	

	
debugWorkflow.logger

	This workflow’s purpose is to create files and jobs for viewing using stats,
status, and printDot() in toilDebugTest.py. It’s intended for future use in a
debugging tutorial containing a broken job. It is also a minor integration test.

	
debugWorkflow.initialize_jobs(job)

	Stub function used to start a toil workflow since toil workflows can only
start with one job (but afterwards can run many in parallel).

	
debugWorkflow.writeA(job, mkFile)

	Runs a program, and writes a string ‘A’ into A.txt using mkFile.py.

	
debugWorkflow.writeB(job, mkFile, B_file)

	Runs a program, extracts a string ‘B’ from an existing file, B_file.txt, and
writes it into B.txt using mkFile.py.

	
debugWorkflow.writeC(job)

	Creates/writes a file, C.txt, containing the string ‘C’.

	
debugWorkflow.writeABC(job, A_dict, B_dict, C_dict, filepath)

	Takes 3 files (specified as dictionaries) and writes their contents to ABC.txt.

	
debugWorkflow.finalize_jobs(job, num)

	Does nothing but should be recorded in stats, status, and printDot().

	
debugWorkflow.broken_job(job, num)

	A job that will always fail. To be used for a tutorial.

	
debugWorkflow.jobStorePath

	

 fake_mpi_run

fake_mpi_run

Module Contents

Classes

	Runner

	

Functions

	make_parser()

	

Attributes

	args

	

	
fake_mpi_run.make_parser()

	

	
class fake_mpi_run.Runner

	
	
run_once(args)

	
	Parameters

	args (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
run_many(n, args)

	
	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) –

	args (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
fake_mpi_run.args

	

 Python Module Index

 Python Module Index

 d |
 e |
 f |
 m |
 t

 		 	

 		
 d	

 	
 	
 debugWorkflow	

 		 	

 		
 e	

 	
 	
 example_alwaysfail	

 	
 	
 example_cachingbenchmark	

 		 	

 		
 f	

 	
 	
 fake_mpi_run	

 		 	

 		
 m	

 	
 	
 mkFile	

 		 	

 		
 t	

 	[image: -]
 	
 toil	

 	
 	
 toil.batchSystems	

 	
 	
 toil.batchSystems.abstractBatchSystem	

 	
 	
 toil.batchSystems.abstractGridEngineBatchSystem	

 	
 	
 toil.batchSystems.awsBatch	

 	
 	
 toil.batchSystems.cleanup_support	

 	
 	
 toil.batchSystems.contained_executor	

 	
 	
 toil.batchSystems.gridengine	

 	
 	
 toil.batchSystems.htcondor	

 	
 	
 toil.batchSystems.kubernetes	

 	
 	
 toil.batchSystems.local_support	

 	
 	
 toil.batchSystems.lsf	

 	
 	
 toil.batchSystems.lsfHelper	

 	
 	
 toil.batchSystems.mesos	

 	
 	
 toil.batchSystems.mesos.batchSystem	

 	
 	
 toil.batchSystems.mesos.conftest	

 	
 	
 toil.batchSystems.mesos.executor	

 	
 	
 toil.batchSystems.mesos.test	

 	
 	
 toil.batchSystems.options	

 	
 	
 toil.batchSystems.parasol	

 	
 	
 toil.batchSystems.registry	

 	
 	
 toil.batchSystems.singleMachine	

 	
 	
 toil.batchSystems.slurm	

 	
 	
 toil.batchSystems.tes	

 	
 	
 toil.batchSystems.torque	

 	
 	
 toil.bus	

 	
 	
 toil.common	

 	
 	
 toil.cwl	

 	
 	
 toil.cwl.conftest	

 	
 	
 toil.cwl.cwltoil	

 	
 	
 toil.cwl.utils	

 	
 	
 toil.deferred	

 	
 	
 toil.exceptions	

 	
 	
 toil.fileStores	

 	
 	
 toil.fileStores.abstractFileStore	

 	
 	
 toil.fileStores.cachingFileStore	

 	
 	
 toil.fileStores.nonCachingFileStore	

 	
 	
 toil.job	

 	
 	
 toil.jobStores	

 	
 	
 toil.jobStores.abstractJobStore	

 	
 	
 toil.jobStores.aws	

 	
 	
 toil.jobStores.aws.jobStore	

 	
 	
 toil.jobStores.aws.utils	

 	
 	
 toil.jobStores.conftest	

 	
 	
 toil.jobStores.fileJobStore	

 	
 	
 toil.jobStores.googleJobStore	

 	
 	
 toil.jobStores.utils	

 	
 	
 toil.leader	

 	
 	
 toil.lib	

 	
 	
 toil.lib.accelerators	

 	
 	
 toil.lib.aws	

 	
 	
 toil.lib.aws.ami	

 	
 	
 toil.lib.aws.iam	

 	
 	
 toil.lib.aws.session	

 	
 	
 toil.lib.aws.utils	

 	
 	
 toil.lib.bioio	

 	
 	
 toil.lib.compatibility	

 	
 	
 toil.lib.conversions	

 	
 	
 toil.lib.docker	

 	
 	
 toil.lib.ec2	

 	
 	
 toil.lib.ec2nodes	

 	
 	
 toil.lib.encryption	

 	
 	
 toil.lib.encryption._dummy	

 	
 	
 toil.lib.encryption._nacl	

 	
 	
 toil.lib.encryption.conftest	

 	
 	
 toil.lib.exceptions	

 	
 	
 toil.lib.expando	

 	
 	
 toil.lib.generatedEC2Lists	

 	
 	
 toil.lib.humanize	

 	
 	
 toil.lib.io	

 	
 	
 toil.lib.iterables	

 	
 	
 toil.lib.memoize	

 	
 	
 toil.lib.misc	

 	
 	
 toil.lib.objects	

 	
 	
 toil.lib.resources	

 	
 	
 toil.lib.retry	

 	
 	
 toil.lib.threading	

 	
 	
 toil.lib.throttle	

 	
 	
 toil.provisioners	

 	
 	
 toil.provisioners.abstractProvisioner	

 	
 	
 toil.provisioners.aws	

 	
 	
 toil.provisioners.aws.awsProvisioner	

 	
 	
 toil.provisioners.clusterScaler	

 	
 	
 toil.provisioners.gceProvisioner	

 	
 	
 toil.provisioners.node	

 	
 	
 toil.realtimeLogger	

 	
 	
 toil.resource	

 	
 	
 toil.server	

 	
 	
 toil.server.api_spec	

 	
 	
 toil.server.app	

 	
 	
 toil.server.celery_app	

 	
 	
 toil.server.cli	

 	
 	
 toil.server.cli.wes_cwl_runner	

 	
 	
 toil.server.utils	

 	
 	
 toil.server.wes	

 	
 	
 toil.server.wes.abstract_backend	

 	
 	
 toil.server.wes.amazon_wes_utils	

 	
 	
 toil.server.wes.tasks	

 	
 	
 toil.server.wes.toil_backend	

 	
 	
 toil.server.wsgi_app	

 	
 	
 toil.serviceManager	

 	
 	
 toil.statsAndLogging	

 	
 	
 toil.test	

 	
 	
 toil.test.batchSystems	

 	
 	
 toil.test.batchSystems.batchSystemTest	

 	
 	
 toil.test.batchSystems.parasolTestSupport	

 	
 	
 toil.test.batchSystems.test_lsf_helper	

 	
 	
 toil.test.batchSystems.test_slurm	

 	
 	
 toil.test.cwl	

 	
 	
 toil.test.cwl.conftest	

 	
 	
 toil.test.cwl.cwlTest	

 	
 	
 toil.test.docs	

 	
 	
 toil.test.docs.scriptsTest	

 	
 	
 toil.test.jobStores	

 	
 	
 toil.test.jobStores.jobStoreTest	

 	
 	
 toil.test.lib	

 	
 	
 toil.test.lib.aws	

 	
 	
 toil.test.lib.aws.test_iam	

 	
 	
 toil.test.lib.aws.test_s3	

 	
 	
 toil.test.lib.aws.test_utils	

 	
 	
 toil.test.lib.dockerTest	

 	
 	
 toil.test.lib.test_conversions	

 	
 	
 toil.test.lib.test_ec2	

 	
 	
 toil.test.lib.test_misc	

 	
 	
 toil.test.mesos	

 	
 	
 toil.test.mesos.helloWorld	

 	
 	
 toil.test.mesos.MesosDataStructuresTest	

 	
 	
 toil.test.mesos.stress	

 	
 	
 toil.test.provisioners	

 	
 	
 toil.test.provisioners.aws	

 	
 	
 toil.test.provisioners.aws.awsProvisionerTest	

 	
 	
 toil.test.provisioners.clusterScalerTest	

 	
 	
 toil.test.provisioners.clusterTest	

 	
 	
 toil.test.provisioners.gceProvisionerTest	

 	
 	
 toil.test.provisioners.provisionerTest	

 	
 	
 toil.test.provisioners.restartScript	

 	
 	
 toil.test.server	

 	
 	
 toil.test.server.serverTest	

 	
 	
 toil.test.sort	

 	
 	
 toil.test.sort.restart_sort	

 	
 	
 toil.test.sort.sort	

 	
 	
 toil.test.sort.sortTest	

 	
 	
 toil.test.src	

 	
 	
 toil.test.src.autoDeploymentTest	

 	
 	
 toil.test.src.busTest	

 	
 	
 toil.test.src.checkpointTest	

 	
 	
 toil.test.src.deferredFunctionTest	

 	
 	
 toil.test.src.dockerCheckTest	

 	
 	
 toil.test.src.fileStoreTest	

 	
 	
 toil.test.src.helloWorldTest	

 	
 	
 toil.test.src.importExportFileTest	

 	
 	
 toil.test.src.jobDescriptionTest	

 	
 	
 toil.test.src.jobEncapsulationTest	

 	
 	
 toil.test.src.jobFileStoreTest	

 	
 	
 toil.test.src.jobServiceTest	

 	
 	
 toil.test.src.jobTest	

 	
 	
 toil.test.src.miscTests	

 	
 	
 toil.test.src.promisedRequirementTest	

 	
 	
 toil.test.src.promisesTest	

 	
 	
 toil.test.src.realtimeLoggerTest	

 	
 	
 toil.test.src.regularLogTest	

 	
 	
 toil.test.src.resourceTest	

 	
 	
 toil.test.src.restartDAGTest	

 	
 	
 toil.test.src.resumabilityTest	

 	
 	
 toil.test.src.retainTempDirTest	

 	
 	
 toil.test.src.systemTest	

 	
 	
 toil.test.src.threadingTest	

 	
 	
 toil.test.src.toilContextManagerTest	

 	
 	
 toil.test.src.userDefinedJobArgTypeTest	

 	
 	
 toil.test.src.workerTest	

 	
 	
 toil.test.utils	

 	
 	
 toil.test.utils.toilDebugTest	

 	
 	
 toil.test.utils.toilKillTest	

 	
 	
 toil.test.utils.utilsTest	

 	
 	
 toil.test.wdl	

 	
 	
 toil.test.wdl.builtinTest	

 	
 	
 toil.test.wdl.conftest	

 	
 	
 toil.test.wdl.toilwdlTest	

 	
 	
 toil.test.wdl.wdltoil_test	

 	
 	
 toil.toilState	

 	
 	
 toil.utils	

 	
 	
 toil.utils.toilClean	

 	
 	
 toil.utils.toilDebugFile	

 	
 	
 toil.utils.toilDebugJob	

 	
 	
 toil.utils.toilDestroyCluster	

 	
 	
 toil.utils.toilKill	

 	
 	
 toil.utils.toilLaunchCluster	

 	
 	
 toil.utils.toilMain	

 	
 	
 toil.utils.toilRsyncCluster	

 	
 	
 toil.utils.toilServer	

 	
 	
 toil.utils.toilSshCluster	

 	
 	
 toil.utils.toilStats	

 	
 	
 toil.utils.toilStatus	

 	
 	
 toil.utils.toilUpdateEC2Instances	

 	
 	
 toil.version	

 	
 	
 toil.wdl	

 	
 	
 toil.wdl.toilwdl	

 	
 	
 toil.wdl.utils	

 	
 	
 toil.wdl.versions	

 	
 	
 toil.wdl.versions.dev	

 	
 	
 toil.wdl.versions.draft2	

 	
 	
 toil.wdl.versions.v1	

 	
 	
 toil.wdl.wdl_analysis	

 	
 	
 toil.wdl.wdl_functions	

 	
 	
 toil.wdl.wdl_synthesis	

 	
 	
 toil.wdl.wdl_types	

 	
 	
 toil.wdl.wdltoil	

 	
 	
 toil.worker	

 	
 	
 tutorial_arguments	

 	
 	
 tutorial_cwlexample	

 	
 	
 tutorial_discoverfiles	

 	
 	
 tutorial_docker	

 	
 	
 tutorial_dynamic	

 	
 	
 tutorial_encapsulation	

 	
 	
 tutorial_encapsulation2	

 	
 	
 tutorial_helloworld	

 	
 	
 tutorial_invokeworkflow	

 	
 	
 tutorial_invokeworkflow2	

 	
 	
 tutorial_jobfunctions	

 	
 	
 tutorial_managing	

 	
 	
 tutorial_managing2	

 	
 	
 tutorial_multiplejobs	

 	
 	
 tutorial_multiplejobs2	

 	
 	
 tutorial_multiplejobs3	

 	
 	
 tutorial_promises	

 	
 	
 tutorial_promises2	

 	
 	
 tutorial_quickstart	

 	
 	
 tutorial_requirements	

 	
 	
 tutorial_services	

 	
 	
 tutorial_staging	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__call__() (toil.batchSystems.options.OptionSetter method)

 	(toil.lib.objects.InnerClass method)

 	(toil.lib.throttle.LocalThrottle method)

 	(toil.lib.throttle.throttle method)

 	__copy__() (toil.job.Requirer method)

 	__deepcopy__() (toil.job.Requirer method)

 	__del__() (toil.deferred.DeferredFunctionManager method)

 	(toil.fileStores.cachingFileStore.CachingFileStore method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	__enter__() (toil.batchSystems.cleanup_support.WorkerCleanupContext method)

 	(toil.common.Toil method)

 	(toil.jobStores.utils.ReadablePipe method)

 	(toil.jobStores.utils.WritablePipe method)

 	(toil.lib.exceptions.panic method)

 	(toil.lib.throttle.throttle method)

 	(toil.realtimeLogger.RealtimeLogger method)

 	(toil.test.ApplianceTestSupport.Appliance method)

 	__eq__() (toil.batchSystems.mesos.Shape method)

 	(toil.common.Config method)

 	(toil.job.TemporaryID method)

 	(toil.lib.ec2nodes.InstanceType method)

 	(toil.provisioners.abstractProvisioner.Shape method)

 	(toil.wdl.wdl_types.WDLPair method)

 	(toil.wdl.wdl_types.WDLType method)

 	__exit__() (toil.batchSystems.cleanup_support.WorkerCleanupContext method)

 	(toil.common.Toil method)

 	(toil.jobStores.utils.ReadablePipe method)

 	(toil.jobStores.utils.WritablePipe method)

 	(toil.lib.exceptions.panic method)

 	(toil.lib.throttle.throttle method)

 	(toil.realtimeLogger.RealtimeLogger method)

 	(toil.test.ApplianceTestSupport.Appliance method)

 	__get__() (toil.lib.objects.InnerClass method)

 	__getattr__() (toil.batchSystems.kubernetes.KubernetesBatchSystem.DecoratorWrapper method)

 	(toil.realtimeLogger.RealtimeLoggerMetaclass method)

 	__getattribute__() (toil.lib.expando.MagicExpando method)

 	__getstate__() (toil.job.Requirer method)

 	__gt__() (toil.batchSystems.mesos.MesosShape method)

 	(toil.batchSystems.mesos.Shape method)

 	(toil.provisioners.abstractProvisioner.Shape method)

 	__hash__() (toil.batchSystems.mesos.Shape method)

 	(toil.common.Config method)

 	(toil.job.TemporaryID method)

 	(toil.provisioners.abstractProvisioner.Shape method)

 	(toil.provisioners.node.Node method)

 	
 	__iter__() (toil.lib.iterables.concat method)

 	(toil.test.concat method)

 	__ne__() (toil.job.TemporaryID method)

 	__reduce__() (toil.job.EncapsulatedJob method)

 	(toil.job.Promise method)

 	__repr__ (toil.deferred.DeferredFunction attribute)

 	__repr__() (toil.batchSystems.abstractBatchSystem.ResourcePool method)

 	(toil.batchSystems.abstractBatchSystem.ResourceSet method)

 	(toil.batchSystems.mesos.Shape method)

 	(toil.bus.JobStatus method)

 	(toil.cwl.cwltoil.ResolveSource method)

 	(toil.job.JobDescription method)

 	(toil.job.TemporaryID method)

 	(toil.jobStores.aws.jobStore.AWSJobStore.FileInfo method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.provisioners.abstractProvisioner.Shape method)

 	(toil.provisioners.node.Node method)

 	(toil.wdl.wdl_types.WDLPair method)

 	(toil.wdl.wdl_types.WDLType method)

 	__setstate__() (toil.job.UnfulfilledPromiseSentinel static method)

 	__slots__ (toil.lib.ec2nodes.InstanceType attribute)

 	__str__() (toil.batchSystems.abstractBatchSystem.InsufficientSystemResources method)

 	(toil.batchSystems.abstractBatchSystem.ResourcePool method)

 	(toil.batchSystems.abstractBatchSystem.ResourceSet method)

 	(toil.batchSystems.DeadlockException method)

 	(toil.batchSystems.mesos.Shape method)

 	(toil.cwl.cwltoil.ToilTool method)

 	(toil.deferred.DeferredFunction method)

 	(toil.exceptions.FailedJobsException method)

 	(toil.job.Job method)

 	(toil.job.JobDescription method)

 	(toil.job.TemporaryID method)

 	(toil.lib.ec2nodes.InstanceType method)

 	(toil.lib.misc.CalledProcessErrorStderr method)

 	(toil.provisioners.abstractProvisioner.Shape method)

 	(toil.provisioners.clusterScaler.JobTooBigError method)

 	(toil.provisioners.clusterScaler.NodeReservation method)

 	(toil.provisioners.node.Node method)

 	(toil.wdl.wdl_types.WDLType method)

A

 	
 	A (in module tutorial_encapsulation)

 	(in module tutorial_encapsulation2)

 	a() (in module toil.test.src.promisesTest)

 	a_long_time (in module toil.lib.ec2)

 	a_short_time (in module toil.lib.ec2)

 	(in module toil.provisioners.abstractProvisioner)

 	(in module toil.provisioners.node)

 	abspath_file() (in module toil.wdl.wdl_functions)

 	abspath_single_file() (in module toil.wdl.wdl_functions)

 	AbstractAWSAutoscaleTest (class in toil.test.provisioners.aws.awsProvisionerTest)

 	AbstractBatchSystem (class in toil.batchSystems.abstractBatchSystem)

 	AbstractClusterTest (class in toil.test.provisioners.clusterTest)

 	AbstractEncryptedJobStoreTest (class in toil.test.jobStores.jobStoreTest)

 	AbstractEncryptedJobStoreTest.Test (class in toil.test.jobStores.jobStoreTest)

 	AbstractFileStore (class in toil.fileStores.abstractFileStore)

 	AbstractGCEAutoscaleTest (class in toil.test.provisioners.gceProvisionerTest)

 	AbstractGridEngineBatchSystem (class in toil.batchSystems.abstractGridEngineBatchSystem)

 	AbstractGridEngineBatchSystem.Worker (class in toil.batchSystems.abstractGridEngineBatchSystem)

 	AbstractJobStore (class in toil.jobStores.abstractJobStore)

 	AbstractJobStoreTest (class in toil.test.jobStores.jobStoreTest)

 	AbstractJobStoreTest.Test (class in toil.test.jobStores.jobStoreTest)

 	AbstractProvisioner (class in toil.provisioners.abstractProvisioner)

 	AbstractProvisioner.InstanceConfiguration (class in toil.provisioners.abstractProvisioner)

 	AbstractScalableBatchSystem (class in toil.batchSystems.abstractBatchSystem)

 	AbstractStateStore (class in toil.server.utils)

 	AbstractToilWESServerTest (class in toil.test.server.serverTest)

 	accelerator_satisfies() (in module toil.job)

 	AcceleratorRequirement (class in toil.job)

 	accelerators (toil.job.Job property)

 	(toil.job.RequirementsDict attribute)

 	(toil.job.Requirer property)

 	accelerators_fully_satisfy() (in module toil.job)

 	acquire() (toil.batchSystems.abstractBatchSystem.ResourcePool method)

 	(toil.batchSystems.abstractBatchSystem.ResourceSet method)

 	acquireNow() (toil.batchSystems.abstractBatchSystem.ResourcePool method)

 	(toil.batchSystems.abstractBatchSystem.ResourceSet method)

 	acquisitionOf() (toil.batchSystems.abstractBatchSystem.ResourcePool method)

 	(toil.batchSystems.abstractBatchSystem.ResourceSet method)

 	AcquisitionTimeoutException

 	add_all_batchsystem_options() (in module toil.batchSystems.options)

 	add_logging_options() (in module toil.statsAndLogging)

 	add_options() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem class method)

 	(toil.batchSystems.awsBatch.AWSBatchBatchSystem class method)

 	(toil.batchSystems.kubernetes.KubernetesBatchSystem class method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem class method)

 	(toil.batchSystems.parasol.ParasolBatchSystem class method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem class method)

 	(toil.batchSystems.slurm.SlurmBatchSystem class method)

 	(toil.batchSystems.tes.TESBatchSystem class method)

 	add_prometheus_data_source() (toil.common.ToilMetrics method)

 	add_provisioner_options() (in module toil.provisioners)

 	add_stats_options() (in module toil.utils.toilStats)

 	add_to_action_collection() (in module toil.lib.aws.iam)

 	add_toil_service() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	addBatchSystemFactory() (in module toil.batchSystems.registry)

 	addChild() (toil.cwl.cwltoil.SelfJob method)

 	(toil.job.EncapsulatedJob method)

 	(toil.job.Job method)

 	(toil.job.JobDescription method)

 	(toil.job.ServiceHostJob method)

 	addChildFn() (toil.job.Job method)

 	addChildJobFn() (toil.job.Job method)

 	addCompletedJob() (toil.provisioners.clusterScaler.ClusterScaler method)

 	(toil.provisioners.clusterScaler.ScalerThread method)

 	addFile() (toil.provisioners.abstractProvisioner.AbstractProvisioner.InstanceConfiguration method)

 	addFollowOn() (toil.job.EncapsulatedJob method)

 	(toil.job.Job method)

 	(toil.job.JobDescription method)

 	(toil.job.ServiceHostJob method)

 	addFollowOnFn() (toil.job.Job method)

 	addFollowOnJobFn() (toil.job.Job method)

 	addJob() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	addJobShape() (toil.provisioners.clusterScaler.BinPackedFit method)

 	addKubernetesLeader() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	addKubernetesServices() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	addKubernetesWorker() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	addManagedNodes() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	addNodeExporterService() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	addNodes() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	(toil.provisioners.gceProvisioner.GCEProvisioner method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	addOptions() (in module toil.common)

 	addPredecessor() (toil.job.JobDescription method)

 	
 	addRandomFollowOnEdges() (toil.test.src.jobTest.JobTest method)

 	addService() (toil.job.EncapsulatedJob method)

 	(toil.job.Job method)

 	(toil.job.ServiceHostJob method)

 	addServiceHostJob() (toil.job.JobDescription method)

 	addSSHRSAKey() (toil.provisioners.abstractProvisioner.AbstractProvisioner.InstanceConfiguration method)

 	addToilOptions() (toil.job.Job.Runner static method)

 	addUnit() (toil.provisioners.abstractProvisioner.AbstractProvisioner.InstanceConfiguration method)

 	addVolumesService() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	adjustCacheLimit() (toil.fileStores.cachingFileStore.CachingFileStore method)

 	adjustEndingReservationForJob() (in module toil.provisioners.clusterScaler)

 	align (in module tutorial_docker)

 	allocatedCores (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest attribute)

 	allowed_actions_attached() (in module toil.lib.aws.iam)

 	allowed_actions_roles() (in module toil.lib.aws.iam)

 	allowed_actions_users() (in module toil.lib.aws.iam)

 	AllowedActionCollection (in module toil.lib.aws.iam)

 	allSuccessors() (toil.job.JobDescription method)

 	AlwaysFail (class in toil.test.src.checkpointTest)

 	AMITest (class in toil.test.lib.test_ec2)

 	analysisJob() (in module tutorial_requirements)

 	analyze() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL method)

 	(toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	(toil.wdl.versions.v1.AnalyzeV1WDL method)

 	(toil.wdl.wdl_analysis.AnalyzeWDL method)

 	AnalyzeDevelopmentWDL (class in toil.wdl.versions.dev)

 	AnalyzeDraft2WDL (class in toil.wdl.versions.draft2)

 	AnalyzeV1WDL (class in toil.wdl.versions.v1)

 	AnalyzeWDL (class in toil.wdl.wdl_analysis)

 	annotation_name (toil.bus.JobAnnotationMessage attribute)

 	annotation_value (toil.bus.JobAnnotationMessage attribute)

 	annotations (toil.bus.JobStatus attribute)

 	api (toil.job.AcceleratorRequirement attribute)

 	apiDockerCall() (in module toil.lib.docker)

 	ApplianceImageNotFound, [1]

 	applianceSelf() (in module toil)

 	(in module toil.test)

 	ApplianceTestSupport (class in toil.test)

 	ApplianceTestSupport.Appliance (class in toil.test)

 	ApplianceTestSupport.LeaderThread (class in toil.test)

 	ApplianceTestSupport.WorkerThread (class in toil.test)

 	apply() (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement method)

 	apply_bparams() (in module toil.batchSystems.lsfHelper)

 	apply_conf_file() (in module toil.batchSystems.lsfHelper)

 	apply_lsadmin() (in module toil.batchSystems.lsfHelper)

 	aRepr (in module toil.jobStores.aws.jobStore)

 	args (in module fake_mpi_run)

 	as_map() (in module toil.wdl.wdl_functions)

 	as_pairs() (in module toil.wdl.wdl_functions)

 	assertIsCopy() (toil.test.src.userDefinedJobArgTypeTest.Foo method)

 	assertUrl() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	assign_job_id() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	assignConfig() (toil.job.Job method)

 	(toil.job.Requirer method)

 	assignID() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	atomic_copy() (in module toil.lib.io)

 	atomic_copyobj() (in module toil.lib.io)

 	atomic_install() (in module toil.lib.io)

 	atomic_tmp_file() (in module toil.lib.io)

 	AtomicFileCreate() (in module toil.lib.io)

 	attemptToAddJob() (toil.provisioners.clusterScaler.NodeReservation method)

 	attributesToBinary() (toil.jobStores.aws.utils.SDBHelper class method)

 	AutoDeploymentTest (class in toil.test.src.autoDeploymentTest)

 	aws_batch_batch_system_factory() (in module toil.batchSystems.registry)

 	aws_marketplace_flatcar_ami_search() (in module toil.lib.aws.ami)

 	AWSAutoscaleTest (class in toil.test.provisioners.aws.awsProvisionerTest)

 	AWSAutoscaleTestMultipleNodeTypes (class in toil.test.provisioners.aws.awsProvisionerTest)

 	AWSBatchBatchSystem (class in toil.batchSystems.awsBatch)

 	AWSBatchBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	AWSConnectionManager (class in toil.lib.aws.session)

 	awsFilterImpairedNodes() (in module toil.provisioners.aws.awsProvisioner)

 	AWSJobStore (class in toil.jobStores.aws.jobStore)

 	AWSJobStore.FileInfo (class in toil.jobStores.aws.jobStore)

 	AWSJobStoreTest (class in toil.test.jobStores.jobStoreTest)

 	AWSManagedAutoscaleTest (class in toil.test.provisioners.aws.awsProvisionerTest)

 	AWSProvisioner (class in toil.provisioners.aws.awsProvisioner)

 	AWSProvisionerBenchTest (class in toil.test.provisioners.aws.awsProvisionerTest)

 	awsRegion() (toil.test.ToilTest class method)

 	AWSRestartTest (class in toil.test.provisioners.aws.awsProvisionerTest)

 	awsRetry() (in module toil.provisioners.aws.awsProvisioner)

 	awsRetryPredicate() (in module toil.provisioners.aws.awsProvisioner)

 	AWSStateStoreTest (class in toil.test.server.serverTest)

 	AWSStaticAutoscaleTest (class in toil.test.provisioners.aws.awsProvisionerTest)

B

 	
 	b() (in module toil.test.src.promisesTest)

 	b_to_mib() (in module toil.lib.conversions)

 	badChild() (in module toil.test.src.resumabilityTest)

 	basename() (in module toil.wdl.wdl_functions)

 	BaseToilWdlTest (class in toil.test.wdl.toilwdlTest)

 	baseVersion (in module toil.version)

 	batch() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	batch_logs_dir (toil.common.Config attribute)

 	batch_system (toil.bus.ExternalBatchIdMessage attribute)

 	(toil.bus.JobStatus attribute)

 	BATCH_SYSTEM_FACTORY_REGISTRY (in module toil.batchSystems.registry)

 	BATCH_SYSTEMS (in module toil.batchSystems.registry)

 	BatchJobExitReason (class in toil.batchSystems.abstractBatchSystem)

 	batchSystem (toil.common.Config attribute)

 	BatchSystemCleanupSupport (class in toil.batchSystems.cleanup_support)

 	BatchSystemLocalSupport (class in toil.batchSystems.local_support)

 	BatchSystemPluginTest (class in toil.test.batchSystems.batchSystemTest)

 	BatchSystemSupport (class in toil.batchSystems.abstractBatchSystem)

 	belongsToToil (toil.resource.ModuleDescriptor property)

 	BINARY_PREFIXES (in module toil.lib.conversions)

 	binaryStringFn() (in module tutorial_dynamic)

 	binaryStrings() (in module tutorial_promises2)

 	binaryToAttributes() (toil.jobStores.aws.utils.SDBHelper class method)

 	
 	binPack() (toil.provisioners.clusterScaler.BinPackedFit method)

 	BinPackedFit (class in toil.provisioners.clusterScaler)

 	binPacking() (in module toil.provisioners.clusterScaler)

 	BinPackingTest (class in toil.test.provisioners.clusterScalerTest)

 	boto2() (toil.lib.aws.session.AWSConnectionManager method)

 	boto3_session (in module toil.jobStores.aws.jobStore)

 	botocore (in module toil.lib.retry)

 	BotoServerError (in module toil.lib.aws.utils)

 	brand (toil.job.AcceleratorRequirement attribute)

 	broken_job() (in module debugWorkflow)

 	bucket (toil.test.lib.aws.test_s3.S3Test attribute)

 	(toil.test.server.serverTest.BucketUsingTest attribute)

 	bucket_location_to_region() (in module toil.lib.aws.utils)

 	bucket_name (toil.test.server.serverTest.BucketUsingTest attribute)

 	bucket_path (toil.test.server.serverTest.AWSStateStoreTest attribute)

 	BucketLocationConflictException

 	bucketNameRe (toil.jobStores.aws.jobStore.AWSJobStore attribute)

 	BucketUsingTest (class in toil.test.server.serverTest)

 	BUFFER_SIZE (toil.jobStores.fileJobStore.FileJobStore attribute)

 	build_tag_dict_from_env() (in module toil.lib.aws)

 	build_wes_request() (toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters method)

 	buildElement() (in module toil.utils.toilStats)

 	buildLocator() (toil.common.Toil static method)

 	bytes2human() (in module toil.lib.conversions)

 	(in module toil.lib.humanize)

 	bytes_in_unit() (in module toil.lib.conversions)

 	bytes_to_message() (in module toil.bus)

C

 	
 	c() (in module toil.test.src.promisesTest)

 	c4_8xlarge (in module toil.test.provisioners.clusterScalerTest)

 	c4_8xlarge_preemptible (in module toil.test.provisioners.clusterScalerTest)

 	cache_path (in module toil)

 	cacheDirName() (in module toil.common)

 	CachedUnpicklingJobStoreTest (class in toil.test.src.promisesTest)

 	CacheError

 	CacheUnbalancedError

 	CachingFileStore (class in toil.fileStores.cachingFileStore)

 	CachingFileStoreTestWithAwsJobStore (class in toil.test.src.fileStoreTest)

 	CachingFileStoreTestWithFileJobStore (class in toil.test.src.fileStoreTest)

 	CachingFileStoreTestWithGoogleJobStore (class in toil.test.src.fileStoreTest)

 	cachingIsFree() (toil.fileStores.cachingFileStore.CachingFileStore method)

 	call_cmd() (toil.server.wes.tasks.ToilWorkflowRunner method)

 	call_command() (in module toil.lib.misc)

 	call_sacct() (in module toil.test.batchSystems.test_slurm)

 	call_sacct_raises() (in module toil.test.batchSystems.test_slurm)

 	call_scontrol() (in module toil.test.batchSystems.test_slurm)

 	CalledProcessErrorStderr

 	can_fake_root() (toil.wdl.wdltoil.WDLTaskJob method)

 	cancel() (toil.server.wes.tasks.MultiprocessingTaskRunner class method)

 	(toil.server.wes.tasks.TaskRunner static method)

 	cancel_run() (in module toil.server.wes.tasks)

 	(toil.server.wes.abstract_backend.WESBackend method)

 	(toil.server.wes.toil_backend.ToilBackend method)

 	category_choices (in module toil.utils.toilStats)

 	ceil() (in module toil.wdl.wdl_functions)

 	celery (in module toil.server.celery_app)

 	cgcloudVersion (in module toil.version)

 	ChainedIndexedPromisesTest (class in toil.test.src.promisesTest)

 	check() (toil.bus.MessageBus method)

 	(toil.job.Job.Service method)

 	(toil.provisioners.clusterScaler.ScalerThread method)

 	(toil.serviceManager.ServiceManager method)

 	(toil.statsAndLogging.StatsAndLogging method)

 	(toil.test.batchSystems.batchSystemTest.Service method)

 	(toil.test.src.jobServiceTest.ToySerializableService method)

 	(toil.test.src.jobServiceTest.ToyService method)

 	(toil.test.src.jobTest.TrivialService method)

 	(tutorial_services.DemoService method)

 	check_cwltool_version() (in module toil.cwl)

 	check_directory_dict_invariants() (in module toil.cwl.cwltoil)

 	check_for_coordination_corruption() (toil.fileStores.nonCachingFileStore.NonCachingFileStore static method)

 	check_for_state_corruption() (toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	check_function() (toil.test.wdl.builtinTest.WdlWorkflowsTest method)

 	check_lsf_json_output_supported() (in module toil.batchSystems.lsfHelper)

 	check_on_run() (toil.server.wes.toil_backend.ToilWorkflow method)

 	check_resource_request() (toil.batchSystems.abstractBatchSystem.BatchSystemSupport method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem method)

 	check_status() (toil.test.utils.utilsTest.UtilsTest method)

 	check_valid_node_types() (in module toil.provisioners)

 	checkDockerImageExists() (in module toil)

 	checkDockerSchema() (in module toil)

 	checkExitCode() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	checkExpectedOut() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	checkExpectedPattern() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	checkForDeadlocks() (toil.leader.Leader method)

 	checkJobGraphAcylic() (toil.job.Job method)

 	checkJobGraphConnected() (toil.job.Job method)

 	checkJobGraphForDeadlocks() (toil.job.Job method)

 	checkNewCheckpointsAreLeafVertices() (toil.job.Job method)

 	checkOnJobs() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	checkpoint (toil.job.Job property)

 	CheckpointFailsFirstTime (class in toil.test.src.checkpointTest)

 	CheckpointJobDescription (class in toil.job)

 	CheckpointTest (class in toil.test.src.checkpointTest)

 	CheckRetryCount (class in toil.test.src.checkpointTest)

 	checkStats() (toil.provisioners.clusterScaler.ClusterStats method)

 	checksum (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo property)

 	ChecksumError

 	child() (in module toil.test.src.jobTest)

 	(in module toil.test.src.promisesTest)

 	childFn() (in module toil.test.src.helloWorldTest)

 	(in module toil.test.src.toilContextManagerTest)

 	childJob() (in module toil.test.batchSystems.batchSystemTest)

 	childMessage (in module toil.test.mesos.helloWorld)

 	choose_spot_zone() (in module toil.provisioners.aws)

 	clean() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	clean_up() (toil.server.wes.toil_backend.ToilWorkflow method)

 	clean_work_dir (toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo attribute)

 	cleanCommand (toil.test.utils.utilsTest.UtilsTest property)

 	cleanJobStoreUtil() (toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest method)

 	cleanSystem() (toil.resource.Resource class method)

 	cleanUpExternalStores() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test class method)

 	cleanupWorker() (toil.deferred.DeferredFunctionManager class method)

 	cleanWorkDir (toil.common.Config attribute)

 	CleanWorkDirTest (class in toil.test.src.retainTempDirTest)

 	clear_dependents() (toil.job.JobDescription method)

 	clear_nonexistent_dependents() (toil.job.JobDescription method)

 	clearRemainingTryCount() (toil.job.JobDescription method)

 	client() (in module toil.lib.aws.session)

 	(toil.lib.aws.session.AWSConnectionManager method)

 	close() (toil.lib.io.WriteWatchingStream method)

 	cloud (toil.provisioners.abstractProvisioner.AbstractProvisioner attribute)

 	cluster_factory() (in module toil.provisioners)

 	CLUSTER_LAUNCHING_PERMISSIONS (in module toil.lib.aws.iam)

 	ClusterCombinationNotSupportedException

 	ClusterDesiredSizeMessage (class in toil.bus)

 	ClusterScaler (class in toil.provisioners.clusterScaler)

 	ClusterScalerTest (class in toil.test.provisioners.clusterScalerTest)

 	ClusterSizeMessage (class in toil.bus)

 	ClusterStats (class in toil.provisioners.clusterScaler)

 	ClusterTypeNotSupportedException

 	coalesce_job_exit_codes() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	(toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	(toil.batchSystems.slurm.SlurmBatchSystem.Worker method)

 	collect_attachments() (toil.server.wes.abstract_backend.WESBackend method)

 	collect_by_key() (in module toil.wdl.wdl_functions)

 	collect_ignore (in module toil.batchSystems.mesos.conftest)

 	(in module toil.cwl.conftest)

 	(in module toil.jobStores.conftest)

 	(in module toil.lib.encryption.conftest)

 	(in module toil.test.cwl.conftest)

 	(in module toil.test.wdl.conftest)

 	collect_process_name_garbage() (in module toil.lib.threading)

 	ColumnWidths (class in toil.utils.toilStats)

 	combine_bindings() (in module toil.wdl.wdltoil)

 	combine_dicts() (in module toil.wdl.wdl_functions)

 	commit_job() (toil.toilState.ToilState method)

 	compare_runs() (in module toil.test.wdl.toilwdlTest)

 	compare_vcf_files() (in module toil.test.wdl.toilwdlTest)

 	compat_bytes() (in module toil.lib.compatibility)

 	compat_bytes_recursive() (in module toil.lib.compatibility)

 	compound_types (toil.wdl.wdl_analysis.AnalyzeWDL attribute)

 	computeColumnWidths() (in module toil.utils.toilStats)

 	
 	concat (class in toil.lib.iterables)

 	(class in toil.test)

 	ConcurrentFileModificationException

 	Conditional (class in toil.cwl.cwltoil)

 	Config (class in toil.common)

 	config (toil.common.Toil attribute)

 	(toil.jobStores.abstractJobStore.AbstractJobStore property)

 	configure_root_logger() (in module toil.statsAndLogging)

 	ConflictingPredecessorError

 	CONFORMANCE_TEST_TIMEOUT (in module toil.test.cwl.cwlTest)

 	connect() (toil.bus.MessageBus method)

 	connect_output_file() (toil.bus.MessageBus method)

 	connect_to_state_store() (in module toil.server.utils)

 	connect_to_workflow_state_store() (in module toil.server.utils)

 	connection_reset() (in module toil.lib.aws.utils)

 	connectSchedd() (toil.batchSystems.htcondor.HTCondorBatchSystem.Worker method)

 	CONSISTENCY_TICKS (in module toil.jobStores.aws.jobStore)

 	CONSISTENCY_TIME (in module toil.jobStores.aws.jobStore)

 	containerIsRunning() (in module toil.lib.docker)

 	content (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo property)

 	ConversionTest (class in toil.test.lib.test_conversions)

 	convert_units() (in module toil.lib.conversions)

 	convertPromises() (toil.job.PromisedRequirement static method)

 	coordination_dir (toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo attribute)

 	copy() (toil.lib.expando.Expando method)

 	copyFrom() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo method)

 	copyKeyMultipart() (in module toil.jobStores.aws.utils)

 	copySshKeys() (toil.provisioners.node.Node method)

 	copySubRangeOfFile() (in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	copyTo() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo method)

 	coreRsync() (toil.provisioners.node.Node method)

 	cores (toil.job.Job property)

 	(toil.job.RequirementsDict attribute)

 	(toil.job.Requirer property)

 	coreSSH() (toil.provisioners.node.Node method)

 	count (toil.job.AcceleratorRequirement attribute)

 	count() (in module toil.test.batchSystems.batchSystemTest)

 	(toil.bus.MessageInbox method)

 	count_nvidia_gpus() (in module toil.lib.accelerators)

 	count_pending_successors() (toil.toilState.ToilState method)

 	CovItemT (toil.batchSystems.kubernetes.KubernetesBatchSystem attribute)

 	cpu_count() (in module toil.batchSystems.mesos.test)

 	(in module toil.lib.threading)

 	(in module toil.test)

 	cpuCount (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest attribute)

 	create() (toil.deferred.DeferredFunction class method)

 	(toil.job.PromisedRequirementFunctionWrappingJob class method)

 	(toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore.FileInfo class method)

 	(toil.resource.Resource class method)

 	(toil.wdl.wdl_types.WDLType method)

 	create_app() (in module toil.server.app)

 	create_auto_scaling_group() (in module toil.lib.ec2)

 	create_celery_app() (in module toil.server.celery_app)

 	create_file() (toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest method)

 	(toil.test.src.importExportFileTest.ImportExportFileTest method)

 	create_instances() (in module toil.lib.ec2)

 	create_job() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	create_launch_template() (in module toil.lib.ec2)

 	create_ondemand_instances() (in module toil.lib.ec2)

 	create_root_job() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	create_s3_bucket() (in module toil.lib.aws.utils)

 	create_spot_instances() (in module toil.lib.ec2)

 	create_status_sentinel_file() (toil.leader.Leader method)

 	create_subgraph() (toil.wdl.wdltoil.WDLSectionJob method)

 	create_tags_dict() (in module toil.utils.toilLaunchCluster)

 	create_tasks_dict() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	create_wdl_compound_type() (toil.wdl.wdl_analysis.AnalyzeWDL method)

 	create_wdl_primitive_type() (toil.wdl.wdl_analysis.AnalyzeWDL method)

 	create_workflows_dict() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	createBatchSystem() (toil.common.Toil static method)

 	(toil.test.batchSystems.batchSystemTest.AWSBatchBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.GridEngineBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.HTCondorBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.LSFBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.ParasolBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.SlurmBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.TESBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.TorqueBatchSystemTest method)

 	createClusterSettings() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	(toil.provisioners.gceProvisioner.GCEProvisioner method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	createClusterUtil() (toil.test.provisioners.clusterTest.AbstractClusterTest method)

 	(toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest method)

 	createConfig() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest class method)

 	(toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest class method)

 	createFileStore() (toil.fileStores.abstractFileStore.AbstractFileStore static method)

 	createJobs() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	(toil.batchSystems.htcondor.HTCondorBatchSystem.Worker method)

 	createRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	createSummary() (in module toil.utils.toilStats)

 	cross() (in module toil.wdl.wdl_functions)

 	current_process_name_for (in module toil.lib.threading)

 	current_process_name_lock (in module toil.lib.threading)

 	current_size (toil.bus.ClusterSizeMessage attribute)

 	currentCommit (in module toil)

 	(in module toil.version)

 	custom_repr (in module toil.jobStores.aws.jobStore)

 	customDockerInitCmd() (in module toil)

 	customInitCmd() (in module toil)

 	CWL_UNSUPPORTED_REQUIREMENT_EXCEPTION (in module toil.cwl.utils)

 	CWL_UNSUPPORTED_REQUIREMENT_EXIT_CODE (in module toil.cwl.utils)

 	CWLGather (class in toil.cwl.cwltoil)

 	CWLJob (class in toil.cwl.cwltoil)

 	CWLJobWrapper (class in toil.cwl.cwltoil)

 	CWLNamedJob (class in toil.cwl.cwltoil)

 	CWLOnARMTest (class in toil.test.cwl.cwlTest)

 	CWLScatter (class in toil.cwl.cwltoil)

 	cwltoil_was_removed() (in module toil.cwl.cwltoil)

 	cwltool_version (in module toil.cwl)

 	(in module toil.version)

 	CWLUnsupportedException

 	CWLv10Test (class in toil.test.cwl.cwlTest)

 	CWLv11Test (class in toil.test.cwl.cwlTest)

 	CWLv12Test (class in toil.test.cwl.cwlTest)

 	CWLWorkflow (class in toil.cwl.cwltoil)

 	CWLWorkflowTest (class in toil.test.cwl.cwlTest)

D

 	
 	d() (in module toil.test.src.promisesTest)

 	daddy() (toil.batchSystems.singleMachine.SingleMachineBatchSystem method)

 	data (toil.server.wes.amazon_wes_utils.WorkflowPlan attribute)

 	data() (toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest method)

 	DataDict (class in toil.server.wes.amazon_wes_utils)

 	DataStructuresTest (class in toil.test.mesos.MesosDataStructuresTest)

 	dbFn() (in module tutorial_services)

 	DeadlockException

 	
 debugWorkflow

 	module

 	DECIMAL_PREFIXES (in module toil.lib.conversions)

 	decode_directory() (in module toil.cwl.cwltoil)

 	decorateSubHeader() (in module toil.utils.toilStats)

 	decorateTitle() (in module toil.utils.toilStats)

 	decrypt() (in module toil.lib.encryption._dummy)

 	(in module toil.lib.encryption._nacl)

 	default() (toil.wdl.wdl_functions.WDLJSONEncoder method)

 	DEFAULT_BATCH_SYSTEM (in module toil.batchSystems.registry)

 	default_caching() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	DEFAULT_DELAYS (in module toil.lib.retry)

 	DEFAULT_LOGLEVEL (in module toil.statsAndLogging)

 	DEFAULT_LSF_UNITS (in module toil.batchSystems.lsfHelper)

 	DEFAULT_RESOURCE_UNITS (in module toil.batchSystems.lsfHelper)

 	DEFAULT_TASK_COMPLETION_TIMEOUT (toil.provisioners.gceProvisioner.GCEProvisioner attribute)

 	DEFAULT_TIMEOUT (in module toil.lib.retry)

 	DEFAULT_TMPDIR (in module toil.cwl.cwltoil)

 	DEFAULT_TMPDIR_PREFIX (in module toil.cwl.cwltoil)

 	default_value (toil.wdl.wdl_types.WDLFileType property)

 	(toil.wdl.wdl_types.WDLStringType property)

 	(toil.wdl.wdl_types.WDLType property)

 	defaultLevel (toil.realtimeLogger.RealtimeLogger attribute)

 	defaultLineLen (in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	(in module toil.test.sort.sortTest)

 	defaultLines (in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	(in module toil.test.sort.sortTest)

 	defaultN (in module toil.test.sort.sortTest)

 	defaultRequirements (in module toil.test.batchSystems.batchSystemTest)

 	defaultTargetTime (in module toil.common)

 	DefaultWithSource (class in toil.cwl.cwltoil)

 	defer() (toil.job.Job method)

 	DeferredFunction (class in toil.deferred)

 	DeferredFunctionManager (class in toil.deferred)

 	DeferredFunctionTest (class in toil.test.src.deferredFunctionTest)

 	defined() (in module toil.wdl.wdl_functions)

 	delete() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore.FileInfo method)

 	delete_file() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	delete_iam_instance_profile() (in module toil.lib.aws.utils)

 	delete_iam_role() (in module toil.lib.aws.utils)

 	delete_job() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	(toil.toilState.ToilState method)

 	delete_s3_bucket() (in module toil.lib.aws.utils)

 	delete_sdb_domain() (in module toil.lib.aws.utils)

 	deleteFile() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	deleteGlobalFile() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.fileStores.cachingFileStore.CachingFileStore method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	
 	deleteLocalFile() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.fileStores.cachingFileStore.CachingFileStore method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	DemoService (class in tutorial_services)

 	deployScript() (toil.test.ApplianceTestSupport.Appliance method)

 	deprecated() (in module toil.lib.compatibility)

 	description (toil.job.Job property)

 	desired_labels (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement attribute)

 	desired_size (toil.bus.ClusterDesiredSizeMessage attribute)

 	destroy() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	destroy_all_process_names() (in module toil.lib.threading)

 	destroyCluster() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	(toil.provisioners.gceProvisioner.GCEProvisioner method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	(toil.test.provisioners.clusterTest.AbstractClusterTest method)

 	destroyClusterUtil() (toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest method)

 	determine_load_listing() (in module toil.cwl.cwltoil)

 	devirtualize_files() (in module toil.wdl.wdltoil)

 	DIAL_SPECIFIC_REGION_CONFIG (in module toil.jobStores.aws.utils)

 	diamond() (in module toil.test.src.jobTest)

 	dict_from_JSON() (in module toil.wdl.utils)

 	DirectoryContents (in module toil.cwl.cwltoil)

 	DirectoryResource (class in toil.resource)

 	DirectoryStructure (in module toil.cwl.utils)

 	dirname (in module toil.lib.ec2nodes)

 	dirPath (toil.resource.ModuleDescriptor attribute)

 	dirty (in module toil.version)

 	disableAutoDeployment (toil.common.Config attribute)

 	disconnected() (toil.batchSystems.mesos.executor.MesosExecutor method)

 	discoverFiles (class in tutorial_discoverfiles)

 	disk (toil.job.Job property)

 	(toil.job.RequirementsDict attribute)

 	(toil.job.Requirer property)

 	distVersion (in module toil.test)

 	(in module toil.version)

 	do_eval() (toil.cwl.cwltoil.StepValueFrom method)

 	do_GET() (toil.test.jobStores.jobStoreTest.StubHttpRequestHandler method)

 	dockerCall() (in module toil.lib.docker)

 	dockerCheckOutput() (in module toil.lib.docker)

 	DockerCheckTest (class in toil.test.src.dockerCheckTest)

 	dockerKill() (in module toil.lib.docker)

 	dockerName (in module toil.version)

 	dockerRegistry (in module toil.version)

 	dockerStop() (in module toil.lib.docker)

 	dockerTag (in module toil.version)

 	DockerTest (class in toil.test.lib.dockerTest)

 	down() (in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	download() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo method)

 	(toil.resource.Resource method)

 	(toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	download_directory() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	download_file_from_internet() (in module toil.server.utils)

 	download_file_from_s3() (in module toil.server.utils)

 	download_structure() (in module toil.cwl.utils)

 	download_subdirectory() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	downloadStream() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo method)

 	DownReturnType (in module toil.cwl.utils)

 	drop_missing_files() (in module toil.wdl.wdltoil)

 	duplicate_quotes() (toil.batchSystems.htcondor.HTCondorBatchSystem.Worker method)

E

 	
 	e() (in module toil.test.src.promisesTest)

 	E2Instances (in module toil.lib.generatedEC2Lists)

 	ec2InstancesByRegion (in module toil.lib.generatedEC2Lists)

 	EC2Regions (in module toil.lib.ec2nodes)

 	emit() (toil.test.src.realtimeLoggerTest.MessageDetector method)

 	empty() (toil.bus.MessageInbox method)

 	enable_public_objects() (in module toil.lib.aws.utils)

 	encapsulate() (toil.job.Job method)

 	EncapsulatedJob (class in toil.job)

 	encapsulatedJobFn() (in module toil.test.src.jobEncapsulationTest)

 	encode_data (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest attribute)

 	encode_data_dir (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest attribute)

 	encode_directory() (in module toil.cwl.cwltoil)

 	encrypt() (in module toil.lib.encryption._dummy)

 	(in module toil.lib.encryption._nacl)

 	EncryptedAWSJobStoreTest (class in toil.test.jobStores.jobStoreTest)

 	ensure_no_collisions() (in module toil.cwl.cwltoil)

 	enter() (toil.lib.threading.LastProcessStandingArena method)

 	envPrefix (toil.realtimeLogger.RealtimeLogger attribute)

 	ERROR (toil.batchSystems.abstractBatchSystem.BatchJobExitReason attribute)

 	error() (toil.batchSystems.mesos.executor.MesosExecutor method)

 	error_meets_conditions() (in module toil.lib.retry)

 	errorChild() (in module toil.test.src.jobTest)

 	ErrorCondition (class in toil.lib.retry)

 	establish_boto3_session() (in module toil.lib.aws.session)

 	eval_prep() (toil.cwl.cwltoil.StepValueFrom method)

 	evaluate_call_inputs() (in module toil.wdl.wdltoil)

 	evaluate_decl() (in module toil.wdl.wdltoil)

 	evaluate_defaultable_decl() (in module toil.wdl.wdltoil)

 	evaluate_named_expression() (in module toil.wdl.wdltoil)

 	evaluatePromisedRequirements() (toil.job.PromisedRequirementFunctionWrappingJob method)

 	EVICTION_THRESHOLD (in module toil.provisioners.clusterScaler)

 	ex_create_multiple_nodes() (toil.provisioners.gceProvisioner.GCEProvisioner method)

 	exactPython (in module toil.version)

 	
 example_alwaysfail

 	module

 	
 example_cachingbenchmark

 	module

 	
 	exc_info (toil.batchSystems.mesos.test.ExceptionalThread attribute)

 	(toil.lib.threading.ExceptionalThread attribute)

 	(toil.test.ExceptionalThread attribute)

 	ExceptionalThread (class in toil.batchSystems.mesos.test)

 	(class in toil.lib.threading)

 	(class in toil.test)

 	executor() (in module toil.batchSystems.contained_executor)

 	executorLost() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	exists() (toil.cwl.cwltoil.ToilFsAccess method)

 	(toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore.FileInfo class method)

 	(toil.server.wes.toil_backend.ToilWorkflow method)

 	exit_code (toil.bus.JobCompletedMessage attribute)

 	(toil.bus.JobStatus attribute)

 	EXIT_STATUS_UNAVAILABLE_VALUE (in module toil.batchSystems.abstractBatchSystem)

 	exitReason (toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo attribute)

 	exitStatus (toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo attribute)

 	Expando (class in toil.lib.expando)

 	expectedShutdownErrors() (in module toil.provisioners.aws.awsProvisioner)

 	explode() (in module example_alwaysfail)

 	export_file() (toil.common.Toil method)

 	(toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.fileStores.cachingFileStore.CachingFileStore method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	(toil.jobStores.abstractJobStore.AbstractJobStore method)

 	exportFile() (toil.common.Toil method)

 	(toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.fileStores.cachingFileStore.CachingFileStore method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	(toil.jobStores.abstractJobStore.AbstractJobStore method)

 	external_batch_id (toil.bus.ExternalBatchIdMessage attribute)

 	(toil.bus.JobStatus attribute)

 	ExternalBatchIdMessage (class in toil.bus)

 	externalStoreCache (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test attribute)

 	extract() (toil.cwl.cwltoil.CWLGather static method)

 	extractFile() (toil.provisioners.node.Node method)

F

 	
 	f0() (in module toil.test.provisioners.restartScript)

 	FAILED (toil.batchSystems.abstractBatchSystem.BatchJobExitReason attribute)

 	FailedConstraint (in module toil.provisioners.clusterScaler)

 	FailedJobsException

 	failing_job_fn() (in module toil.test.src.busTest)

 	failingFn() (in module toil.test.src.restartDAGTest)

 	FailOnce (class in toil.test.src.checkpointTest)

 	
 fake_mpi_run

 	module

 	FakeBatchSystem (class in toil.test.batchSystems.test_slurm)

 	fallbackGetJobExitCode() (toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	fallbackRunningJobIDs() (toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	fC() (in module toil.common)

 	feed_deadlock_watchdog() (toil.leader.Leader method)

 	feed_flatcar_ami_release() (in module toil.lib.aws.ami)

 	fetch_and_unzip_from_s3() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest class method)

 	fetch_call_outputs() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	fetch_ignoredifs() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	fetch_ignoredifs_chain() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	fetch_scatter_inputs() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	fetch_scatter_inputs_chain() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	fetch_scatter_outputs() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	fetch_scratch() (toil.server.wes.toil_backend.ToilWorkflow method)

 	fetch_state() (toil.server.wes.toil_backend.ToilWorkflow method)

 	fetch_url() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	fetchEC2Index() (in module toil.lib.ec2nodes)

 	fetchEC2InstanceDict() (in module toil.lib.ec2nodes)

 	fetchFiles() (in module toil.test.utils.toilDebugTest)

 	fetchJobStoreFiles() (in module toil.utils.toilDebugFile)

 	fetchRootJob() (toil.utils.toilStatus.ToilStatus method)

 	fetchUserJobs() (toil.utils.toilStatus.ToilStatus method)

 	file_exists() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	fileContents (toil.test.jobStores.jobStoreTest.StubHttpRequestHandler attribute)

 	fileExists() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	FileID (class in toil.fileStores)

 	fileID (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo property)

 	fileIsCached() (toil.fileStores.cachingFileStore.CachingFileStore method)

 	FileJobStore (class in toil.jobStores.fileJobStore)

 	FileJobStoreTest (class in toil.test.jobStores.jobStoreTest)

 	FileResource (class in toil.resource)

 	files (toil.server.wes.amazon_wes_utils.WorkflowPlan attribute)

 	FilesDict (class in toil.server.wes.amazon_wes_utils)

 	fileSizeAndTime() (in module toil.jobStores.aws.utils)

 	FileStateStore (class in toil.server.utils)

 	FileStateStoreTest (class in toil.test.server.serverTest)

 	FileStateStoreURLTest (class in toil.test.server.serverTest)

 	
 	filesToDelete (toil.job.Promise attribute)

 	fileStore (toil.job.JobFunctionWrappingJob property)

 	(toil.job.ServiceHostJob property)

 	fileStoreChild() (in module toil.test.src.jobFileStoreTest)

 	fileStoreString (in module toil.test.src.jobFileStoreTest)

 	fileTestJob() (in module toil.test.src.jobFileStoreTest)

 	filter_out_static_nodes() (toil.provisioners.clusterScaler.ClusterScaler method)

 	filter_skip_null() (in module toil.cwl.cwltoil)

 	filtered_secondary_files() (in module toil.cwl.cwltoil)

 	filterServiceHosts() (toil.job.JobDescription method)

 	filterSuccessors() (toil.job.JobDescription method)

 	finalize_jobs() (in module debugWorkflow)

 	find() (in module toil.batchSystems.lsfHelper)

 	find_asts() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	find_default_container() (in module toil.cwl.cwltoil)

 	find_first_match() (in module toil.batchSystems.lsfHelper)

 	findMesosBinary() (toil.batchSystems.mesos.test.MesosTestSupport.MesosThread method)

 	FINISHED (toil.batchSystems.abstractBatchSystem.BatchJobExitReason attribute)

 	fits() (toil.provisioners.clusterScaler.NodeReservation method)

 	flat_crossproduct_scatter() (toil.cwl.cwltoil.CWLScatter method)

 	flatcar_release_feed_amis() (in module toil.lib.aws.ami)

 	FlatcarFeedTest (class in toil.test.lib.test_ec2)

 	flatten() (in module toil.lib.iterables)

 	(in module toil.wdl.wdl_functions)

 	flatten_tags() (in module toil.lib.aws.utils)

 	floor() (in module toil.wdl.wdl_functions)

 	flush() (toil.lib.io.WriteWatchingStream method)

 	fn() (in module tutorial_promises)

 	fn1Test() (in module toil.test.src.jobTest)

 	fn2Test() (in module toil.test.src.jobTest)

 	fnTest() (in module toil.test.src.jobServiceTest)

 	FollowOn (class in toil.test.src.helloWorldTest)

 	(class in toil.test.src.toilContextManagerTest)

 	Foo (class in toil.test.src.userDefinedJobArgTypeTest)

 	for_each() (toil.bus.MessageInbox method)

 	for_each_node() (in module toil.wdl.wdltoil)

 	forgetJob() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	FORGO (in module toil.lib.docker)

 	format_std_out_err_glob() (toil.batchSystems.abstractBatchSystem.BatchSystemSupport method)

 	format_std_out_err_path() (toil.batchSystems.abstractBatchSystem.BatchSystemSupport method)

 	formatLogStream() (toil.statsAndLogging.StatsAndLogging class method)

 	forModule() (toil.resource.ModuleDescriptor class method)

 	forPath() (toil.fileStores.FileID class method)

 	frameworkMessage() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.batchSystems.mesos.executor.MesosExecutor method)

 	fromCommand() (toil.resource.ModuleDescriptor class method)

 	fromItem() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo class method)

 	full_policy() (toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	FunctionWrappingJob (class in toil.job)

G

 	
 	gatk_data (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest attribute)

 	gatk_data_dir (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest attribute)

 	GCEAutoscaleTest (class in toil.test.provisioners.gceProvisionerTest)

 	GCEAutoscaleTestMultipleNodeTypes (class in toil.test.provisioners.gceProvisionerTest)

 	GCEProvisioner (class in toil.provisioners.gceProvisioner)

 	GCERestartTest (class in toil.test.provisioners.gceProvisionerTest)

 	GCEStaticAutoscaleTest (class in toil.test.provisioners.gceProvisionerTest)

 	gen_message_bus_path() (in module toil.bus)

 	generate_attachment_path_names() (in module toil.server.cli.wes_cwl_runner)

 	generate_default_job_store() (in module toil.cwl.cwltoil)

 	generate_docker_bashscript_file() (in module toil.wdl.wdl_functions)

 	generate_locator() (in module toil.jobStores.utils)

 	generate_stdout_file() (in module toil.wdl.wdl_functions)

 	generateTorqueWrapper() (toil.batchSystems.torque.TorqueBatchSystem.Worker method)

 	get() (in module toil.utils.toilStats)

 	(toil.server.utils.AbstractStateStore method)

 	(toil.server.utils.FileStateStore method)

 	(toil.server.utils.MemoryStateCache method)

 	(toil.server.utils.S3StateStore method)

 	(toil.server.utils.WorkflowStateStore method)

 	get_actions_from_policy_document() (in module toil.lib.aws.iam)

 	get_analyzer() (in module toil.wdl.utils)

 	get_aws_account_num() (in module toil.lib.aws.iam)

 	get_aws_zone_from_boto() (in module toil.lib.aws)

 	(in module toil.provisioners.aws)

 	get_aws_zone_from_environment() (in module toil.lib.aws)

 	(in module toil.provisioners.aws)

 	get_aws_zone_from_environment_region() (in module toil.lib.aws)

 	(in module toil.provisioners.aws)

 	get_aws_zone_from_metadata() (in module toil.lib.aws)

 	(in module toil.provisioners.aws)

 	get_aws_zone_from_spot_market() (in module toil.provisioners.aws)

 	get_batch_logs_dir() (toil.batchSystems.abstractBatchSystem.BatchSystemSupport method)

 	get_best_aws_zone() (in module toil.provisioners.aws)

 	get_bucket_region() (in module toil.lib.aws.utils)

 	get_conf_file() (in module toil.batchSystems.lsfHelper)

 	get_container_engine() (in module toil.cwl.cwltoil)

 	get_current_aws_region() (in module toil.lib.aws)

 	get_current_aws_zone() (in module toil.lib.aws)

 	get_current_state() (toil.server.utils.WorkflowStateMachine method)

 	get_default_kubernetes_owner() (toil.batchSystems.kubernetes.KubernetesBatchSystem class method)

 	get_default_mesos_endpoint() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem class method)

 	get_default_tes_endpoint() (toil.batchSystems.tes.TESBatchSystem class method)

 	get_deps_from_cwltool() (in module toil.server.cli.wes_cwl_runner)

 	get_empty_file_store_id() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	get_env() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	get_error_body() (in module toil.lib.retry)

 	get_error_code() (in module toil.lib.retry)

 	get_error_message() (in module toil.lib.retry)

 	get_error_status() (in module toil.lib.retry)

 	get_failed_constraints() (toil.provisioners.clusterScaler.NodeReservation method)

 	get_file_class() (in module toil.server.utils)

 	get_file_paths_in_bindings() (in module toil.wdl.wdltoil)

 	get_file_size() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	get_flatcar_ami() (in module toil.lib.aws.ami)

 	get_free_snapshot() (toil.batchSystems.abstractBatchSystem.ResourceSet method)

 	get_health() (toil.server.wes.toil_backend.ToilBackend method)

 	get_homepage() (toil.server.wes.toil_backend.ToilBackend method)

 	get_individual_local_accelerators() (in module toil.lib.accelerators)

 	get_is_directory() (toil.jobStores.abstractJobStore.AbstractJobStore class method)

 	get_iso_time() (in module toil.server.utils)

 	get_job() (toil.toilState.ToilState method)

 	get_job_count() (toil.serviceManager.ServiceManager method)

 	get_job_kind() (toil.job.JobDescription method)

 	get_local_workflow_coordination_dir() (toil.common.Toil class method)

 	get_lsf_units() (in module toil.batchSystems.lsfHelper)

 	get_lsf_units_from_stream() (in module toil.batchSystems.lsfHelper)

 	get_lsf_version() (in module toil.batchSystems.lsfHelper)

 	get_max_startup_seconds() (toil.test.batchSystems.batchSystemTest.AWSBatchBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest method)

 	get_messages_path() (toil.server.wes.toil_backend.ToilWorkflow method)

 	get_object_for_url() (in module toil.lib.aws.utils)

 	get_omp_threads() (in module toil.test.batchSystems.batchSystemTest)

 	get_or_die() (in module toil.utils.toilMain)

 	get_output_files() (toil.server.wes.toil_backend.ToilWorkflow method)

 	get_policy_permissions() (in module toil.lib.aws.iam)

 	get_process_name() (in module toil.lib.threading)

 	get_public_ip() (in module toil.lib.misc)

 	get_public_url() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	get_ready_client() (toil.serviceManager.ServiceManager method)

 	get_restrictive_environment_for_local_accelerators() (in module toil.lib.accelerators)

 	get_root_job_return_value() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	get_run_log() (toil.server.wes.abstract_backend.WESBackend method)

 	(toil.server.wes.toil_backend.ToilBackend method)

 	get_run_status() (toil.server.wes.abstract_backend.WESBackend method)

 	(toil.server.wes.toil_backend.ToilBackend method)

 	get_runs() (toil.server.wes.toil_backend.ToilBackend method)

 	get_service_info() (toil.server.wes.abstract_backend.WESBackend method)

 	(toil.server.wes.toil_backend.ToilBackend method)

 	get_shared_public_url() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	get_size() (toil.jobStores.abstractJobStore.AbstractJobStore class method)

 	(toil.jobStores.abstractJobStore.JobStoreSupport class method)

 	(toil.jobStores.aws.jobStore.AWSJobStore class method)

 	(toil.jobStores.fileJobStore.FileJobStore class method)

 	(toil.jobStores.googleJobStore.GoogleJobStore class method)

 	get_startable_service() (toil.serviceManager.ServiceManager method)

 	get_state() (toil.server.wes.tasks.ToilWorkflowRunner method)

 	(toil.server.wes.toil_backend.ToilBackend method)

 	(toil.server.wes.toil_backend.ToilWorkflow method)

 	get_state_store() (toil.test.server.serverTest.AWSStateStoreTest method)

 	(toil.test.server.serverTest.FileStateStoreTest method)

 	(toil.test.server.serverTest.FileStateStoreURLTest method)

 	(toil.test.server.serverTest.hidden.AbstractStateStoreTest method)

 	get_stderr() (toil.server.wes.toil_backend.ToilBackend method)

 	get_stderr_path() (toil.server.wes.toil_backend.ToilWorkflow method)

 	get_stdout() (toil.server.wes.toil_backend.ToilBackend method)

 	get_stdout_path() (toil.server.wes.toil_backend.ToilWorkflow method)

 	get_supertype() (in module toil.wdl.wdltoil)

 	get_task_logs() (toil.server.wes.toil_backend.ToilWorkflow method)

 	get_temp_file() (in module toil.test)

 	get_toil_coordination_dir() (toil.common.Toil class method)

 	get_total_cpu_time() (in module toil.lib.resources)

 	get_total_cpu_time_and_memory_usage() (in module toil.lib.resources)

 	get_unservable_client() (toil.serviceManager.ServiceManager method)

 	get_user_name() (in module toil.lib.misc)

 	get_version() (in module toil.wdl.utils)

 	(toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters method)

 	getAdjacencyList() (toil.test.src.jobTest.JobTest static method)

 	getAutoscaledInstanceShapes() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	getAverageRuntime() (toil.provisioners.clusterScaler.ClusterScaler method)

 	getBaseInstanceConfiguration() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	getBatchSystemID() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	getBatchSystemName() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest method)

 	(toil.test.batchSystems.batchSystemTest.MesosBatchSystemJobTest method)

 	(toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemJobTest method)

 	(toil.test.src.promisedRequirementTest.MesosPromisedRequirementsTest method)

 	(toil.test.src.promisedRequirementTest.SingleMachinePromisedRequirementsTest method)

 	getCacheAvailable() (toil.fileStores.cachingFileStore.CachingFileStore method)

 	getCacheExtraJobSpace() (toil.fileStores.cachingFileStore.CachingFileStore method)

 	getCacheLimit() (toil.fileStores.cachingFileStore.CachingFileStore method)

 	getCacheUnusedJobRequirement() (toil.fileStores.cachingFileStore.CachingFileStore method)

 	getCacheUsed() (toil.fileStores.cachingFileStore.CachingFileStore method)

 	getContainerName() (in module toil.lib.docker)

 	getCounterPath() (toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest method)

 	getCounters() (in module toil.test.batchSystems.batchSystemTest)

 	getDefaultArgumentParser() (toil.job.Job.Runner static method)

 	getDefaultOptions() (toil.job.Job.Runner static method)

 	getDirSizeRecursively() (in module toil.common)

 	
 	getEmptyFileStoreID() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getEnv() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getEnvString() (toil.batchSystems.htcondor.HTCondorBatchSystem.Worker method)

 	getEstimatedNodeCounts() (toil.provisioners.clusterScaler.ClusterScaler method)

 	getFileReaderCount() (toil.fileStores.cachingFileStore.CachingFileStore method)

 	getFileSize() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getFileSystemSize() (in module toil.common)

 	getGlobalFileSize() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	getIssuedBatchJobIDs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem method)

 	(toil.batchSystems.awsBatch.AWSBatchBatchSystem method)

 	(toil.batchSystems.kubernetes.KubernetesBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.batchSystems.parasol.ParasolBatchSystem method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem method)

 	(toil.batchSystems.tes.TESBatchSystem method)

 	getIssuedLocalJobIDs() (toil.batchSystems.local_support.BatchSystemLocalSupport method)

 	getJobExitCode() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	(toil.batchSystems.gridengine.GridEngineBatchSystem.Worker method)

 	(toil.batchSystems.htcondor.HTCondorBatchSystem.Worker method)

 	(toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	(toil.batchSystems.slurm.SlurmBatchSystem.Worker method)

 	(toil.batchSystems.torque.TorqueBatchSystem.Worker method)

 	getJobExitCodeBACCT() (toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	getJobIDsForResultsFile() (toil.batchSystems.parasol.ParasolBatchSystem method)

 	getJobs() (toil.leader.Leader method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	getJobStore() (toil.common.Toil class method)

 	getKubernetesAutoscalerSetupCommands() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	getKubernetesCloudProvider() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	getKubernetesValues() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	getLeader() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	(toil.provisioners.gceProvisioner.GCEProvisioner method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	getLocalTempDir() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	getLocalTempFile() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	getLocalTempFileName() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	getLocalWorkflowDir() (toil.common.Toil class method)

 	getLogFileHandle() (toil.job.JobDescription method)

 	getLogger() (toil.realtimeLogger.RealtimeLogger class method)

 	getLogLevelString() (in module toil.lib.bioio)

 	getMidPoint() (in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	getNextJobID() (toil.batchSystems.local_support.BatchSystemLocalSupport method)

 	getNodeID() (in module toil.common)

 	getNodes() (toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.provisioners.clusterScaler.ClusterScaler method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	getNodeShape() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	(toil.provisioners.gceProvisioner.GCEProvisioner method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	getNumberOfJobsIssued() (toil.leader.Leader method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	getNumberOfNodes() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	getNumRetries() (toil.test.src.checkpointTest.CheckRetryCount method)

 	getOne() (in module toil.test.src.promisedRequirementTest)

 	getOptions() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest method)

 	(toil.test.batchSystems.batchSystemTest.MesosBatchSystemJobTest method)

 	(toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest method)

 	(toil.test.src.promisedRequirementTest.MesosPromisedRequirementsTest method)

 	getPIDStatus() (toil.utils.toilStatus.ToilStatus static method)

 	getProvisionedWorkers() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	(toil.provisioners.gceProvisioner.GCEProvisioner method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	getPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getRandomEdge() (toil.test.src.jobTest.JobTest static method)

 	getRequiredNodes() (toil.provisioners.clusterScaler.BinPackedFit method)

 	getRootJobReturnValue() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getRootJobs() (toil.job.Job method)

 	getRootVolID() (toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest method)

 	(toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest method)

 	getRunningBatchJobIDs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem method)

 	(toil.batchSystems.awsBatch.AWSBatchBatchSystem method)

 	(toil.batchSystems.kubernetes.KubernetesBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.batchSystems.parasol.ParasolBatchSystem method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem method)

 	(toil.batchSystems.tes.TESBatchSystem method)

 	getRunningJobIDs() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	(toil.batchSystems.gridengine.GridEngineBatchSystem.Worker method)

 	(toil.batchSystems.htcondor.HTCondorBatchSystem.Worker method)

 	(toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	(toil.batchSystems.slurm.SlurmBatchSystem.Worker method)

 	(toil.batchSystems.torque.TorqueBatchSystem.Worker method)

 	getRunningLocalJobIDs() (toil.batchSystems.local_support.BatchSystemLocalSupport method)

 	getSchedulingStatusMessage() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem method)

 	getSharedPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getSize() (toil.jobStores.abstractJobStore.AbstractJobStore class method)

 	(toil.jobStores.aws.jobStore.AWSJobStore.FileInfo method)

 	getSpaceUsableForJobs() (toil.fileStores.cachingFileStore.CachingFileStore method)

 	getStaticNodes() (toil.provisioners.clusterScaler.ClusterScaler method)

 	getStats() (in module toil.utils.toilStats)

 	getStatus() (toil.utils.toilStatus.ToilStatus static method)

 	getSuccessors() (toil.leader.Leader method)

 	getTempFile() (in module toil.lib.bioio)

 	getThirtyTwoMb() (in module toil.test.src.promisedRequirementTest)

 	getToilWorkDir() (toil.common.Toil static method)

 	getTopologicalOrderingOfJobs() (toil.job.Job method)

 	getUpdatedBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem method)

 	(toil.batchSystems.awsBatch.AWSBatchBatchSystem method)

 	(toil.batchSystems.kubernetes.KubernetesBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.batchSystems.parasol.ParasolBatchSystem method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem method)

 	(toil.batchSystems.tes.TESBatchSystem method)

 	(toil.batchSystems.torque.TorqueBatchSystem.Worker method)

 	getUpdatedLocalJob() (toil.batchSystems.local_support.BatchSystemLocalSupport method)

 	getUserScript() (toil.job.EncapsulatedJob method)

 	(toil.job.FunctionWrappingJob method)

 	(toil.job.Job method)

 	(toil.job.ServiceHostJob method)

 	getValue() (toil.job.PromisedRequirement method)

 	getWaitDuration() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem class method)

 	(toil.batchSystems.gridengine.GridEngineBatchSystem class method)

 	(toil.batchSystems.lsf.LSFBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.test.batchSystems.test_slurm.FakeBatchSystem method)

 	getWidth() (toil.utils.toilStats.ColumnWidths method)

 	getWorkerContexts() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.batchSystems.cleanup_support.BatchSystemCleanupSupport method)

 	getWorkersInCluster() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	glob() (in module toil.lib.resources)

 	(toil.cwl.cwltoil.ToilFsAccess method)

 	global_mutex() (in module toil.lib.threading)

 	globalFileStoreJobFn() (in module tutorial_managing2)

 	globalize() (toil.resource.ModuleDescriptor method)

 	goodChild() (in module toil.test.src.resumabilityTest)

 	google_retry() (in module toil.jobStores.googleJobStore)

 	(in module toil.test.jobStores.jobStoreTest)

 	google_retry_predicate() (in module toil.jobStores.googleJobStore)

 	GOOGLE_STORAGE (in module toil.jobStores.googleJobStore)

 	GoogleJobStore (class in toil.jobStores.googleJobStore)

 	GoogleJobStoreTest (class in toil.test.jobStores.jobStoreTest)

 	grandChildJob() (in module toil.test.batchSystems.batchSystemTest)

 	greater_than() (toil.batchSystems.mesos.Shape method)

 	(toil.provisioners.abstractProvisioner.Shape method)

 	greatGrandChild() (in module toil.test.batchSystems.batchSystemTest)

 	gridengine_batch_system_factory() (in module toil.batchSystems.registry)

 	GridEngineBatchSystem (class in toil.batchSystems.gridengine)

 	GridEngineBatchSystem.Worker (class in toil.batchSystems.gridengine)

 	GridEngineBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	GunicornApplication (class in toil.server.wsgi_app)

H

 	
 	handle() (toil.realtimeLogger.LoggingDatagramHandler method)

 	handle_errors() (in module toil.server.wes.abstract_backend)

 	handleLocalJob() (toil.batchSystems.local_support.BatchSystemLocalSupport method)

 	hasAutoscaledNodeTypes() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	hasChild() (toil.cwl.cwltoil.SelfJob method)

 	(toil.job.Job method)

 	(toil.job.JobDescription method)

 	hasFollowOn() (toil.job.Job method)

 	(toil.job.JobDescription method)

 	hasPredecessor() (toil.job.Job method)

 	hasService() (toil.job.Job method)

 	hasServiceHostJob() (toil.job.JobDescription method)

 	HAVE_S3 (in module toil.server.utils)

 	have_working_nvidia_docker_runtime() (in module toil.lib.accelerators)

 	(in module toil.test)

 	have_working_nvidia_smi() (in module toil.lib.accelerators)

 	(in module toil.test)

 	headers (toil.test.jobStores.jobStoreTest.GoogleJobStoreTest attribute)

 	hello_world() (in module toil.test.mesos.helloWorld)

 	hello_world_child() (in module toil.test.mesos.helloWorld)

 	HelloWorld (class in toil.test.src.helloWorldTest)

 	(class in toil.test.src.toilContextManagerTest)

 	(class in tutorial_arguments)

 	(class in tutorial_invokeworkflow)

 	(class in tutorial_invokeworkflow2)

 	(class in tutorial_staging)

 	helloWorld() (in module tutorial_helloworld)

 	(in module tutorial_jobfunctions)

 	(in module tutorial_multiplejobs)

 	(in module tutorial_multiplejobs2)

 	(in module tutorial_multiplejobs3)

 	(in module tutorial_quickstart)

 	
 	HelloWorldFollowOn (class in toil.test.mesos.stress)

 	HelloWorldJob (class in toil.test.mesos.stress)

 	HelloWorldTest (class in toil.test.src.helloWorldTest)

 	heredoc_wdl() (in module toil.wdl.wdl_functions)

 	hidden (class in toil.test.batchSystems.batchSystemTest)

 	(class in toil.test.server.serverTest)

 	(class in toil.test.src.fileStoreTest)

 	(class in toil.test.src.promisedRequirementTest)

 	hidden.AbstractBatchSystemJobTest (class in toil.test.batchSystems.batchSystemTest)

 	hidden.AbstractBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	hidden.AbstractCachingFileStoreTest (class in toil.test.src.fileStoreTest)

 	hidden.AbstractFileStoreTest (class in toil.test.src.fileStoreTest)

 	hidden.AbstractGridEngineBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	hidden.AbstractNonCachingFileStoreTest (class in toil.test.src.fileStoreTest)

 	hidden.AbstractPromisedRequirementsTest (class in toil.test.src.promisedRequirementTest)

 	hidden.AbstractStateStoreTest (class in toil.test.server.serverTest)

 	hms_duration_to_seconds() (in module toil.lib.conversions)

 	htcondor_batch_system_factory() (in module toil.batchSystems.registry)

 	HTCondorBatchSystem (class in toil.batchSystems.htcondor)

 	HTCondorBatchSystem.Worker (class in toil.batchSystems.htcondor)

 	HTCondorBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	human2bytes() (in module toil.lib.conversions)

 	(in module toil.lib.humanize)

I

 	
 	iam_client (in module toil.lib.ec2)

 	IAMTest (class in toil.test.lib.aws.test_iam)

 	iC() (in module toil.common)

 	ignoreNode() (toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	IllegalDeletionCacheError

 	import_file() (toil.common.Toil method)

 	(toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.jobStores.abstractJobStore.AbstractJobStore method)

 	import_files() (in module toil.cwl.cwltoil)

 	(in module toil.wdl.wdltoil)

 	ImportExportFileTest (class in toil.test.src.importExportFileTest)

 	importFile() (toil.common.Toil method)

 	(toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.jobStores.abstractJobStore.AbstractJobStore method)

 	in_contexts() (in module toil.worker)

 	inconsistencies_detected() (in module toil.lib.ec2)

 	INCONSISTENCY_ERRORS (in module toil.lib.ec2)

 	indent() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	Info (class in toil.batchSystems.singleMachine)

 	init() (toil.server.wsgi_app.GunicornApplication method)

 	init_action_collection() (in module toil.lib.aws.iam)

 	initialize() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	initialize_jobs() (in module debugWorkflow)

 	(in module tutorial_cwlexample)

 	initialize_run() (toil.server.wes.tasks.ToilWorkflowRunner method)

 	initialized (toil.realtimeLogger.RealtimeLogger attribute)

 	injectFile() (toil.provisioners.node.Node method)

 	InnerClass (class in toil.lib.objects)

 	innerLoop() (toil.leader.Leader method)

 	insertJob() (toil.batchSystems.mesos.JobQueue method)

 	instance_type (toil.bus.ClusterDesiredSizeMessage attribute)

 	(toil.bus.ClusterSizeMessage attribute)

 	InstanceType (class in toil.lib.ec2nodes)

 	
 	InsufficientSystemResources

 	integrative() (in module toil.test)

 	internet_connection() (in module toil.utils.toilUpdateEC2Instances)

 	InvalidAWSJobStoreTest (class in toil.test.jobStores.jobStoreTest)

 	InvalidClusterStateException

 	InvalidImportExportUrlException

 	InvalidSourceCacheError

 	InvalidVersion

 	inVirtualEnv() (in module toil)

 	invoke() (toil.deferred.DeferredFunction method)

 	is_active() (toil.serviceManager.ServiceManager method)

 	is_context() (in module toil.wdl.versions.v1)

 	is_false() (toil.cwl.cwltoil.Conditional method)

 	is_number() (in module toil.wdl.wdl_functions)

 	is_ok() (toil.server.wes.tasks.MultiprocessingTaskRunner class method)

 	(toil.server.wes.tasks.TaskRunner static method)

 	is_retryable_kubernetes_error() (in module toil.batchSystems.kubernetes)

 	is_running() (toil.serviceManager.ServiceManager method)

 	is_subtree_done() (toil.job.JobDescription method)

 	isAcyclic() (toil.test.src.jobTest.JobTest method)

 	isdir() (toil.cwl.cwltoil.ToilFsAccess method)

 	isfile() (toil.cwl.cwltoil.ToilFsAccess method)

 	isNumber() (in module toil.lib.ec2nodes)

 	issueBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem method)

 	(toil.batchSystems.awsBatch.AWSBatchBatchSystem method)

 	(toil.batchSystems.htcondor.HTCondorBatchSystem method)

 	(toil.batchSystems.kubernetes.KubernetesBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.batchSystems.parasol.ParasolBatchSystem method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem method)

 	(toil.batchSystems.tes.TESBatchSystem method)

 	issueJob() (toil.leader.Leader method)

 	issueJobs() (toil.leader.Leader method)

 	issueQueingServiceJobs() (toil.leader.Leader method)

 	issueServiceJob() (toil.leader.Leader method)

 	IT (in module toil.lib.iterables)

 	itemsPerBatchDelete (toil.jobStores.aws.jobStore.AWSJobStore attribute)

 	ItemT (toil.batchSystems.kubernetes.KubernetesBatchSystem attribute)

J

 	
 	j (in module tutorial_services)

 	Job (class in toil.job)

 	Job.Runner (class in toil.job)

 	Job.Service (class in toil.job)

 	JOB_DIR_PREFIX (toil.jobStores.fileJobStore.FileJobStore attribute)

 	job_exists() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	(toil.toilState.ToilState method)

 	job_id (toil.bus.JobAnnotationMessage attribute)

 	(toil.bus.JobCompletedMessage attribute)

 	(toil.bus.JobFailedMessage attribute)

 	(toil.bus.JobIssuedMessage attribute)

 	(toil.bus.JobMissingMessage attribute)

 	(toil.bus.JobUpdatedMessage attribute)

 	JOB_NAME_DIR_PREFIX (toil.jobStores.fileJobStore.FileJobStore attribute)

 	job_store_id (toil.bus.JobStatus attribute)

 	job_type (toil.bus.JobCompletedMessage attribute)

 	(toil.bus.JobFailedMessage attribute)

 	(toil.bus.JobIssuedMessage attribute)

 	JobAnnotationMessage (class in toil.bus)

 	JobClass (class in toil.test.src.userDefinedJobArgTypeTest)

 	JobCompletedMessage (class in toil.bus)

 	JobDescription (class in toil.job)

 	JobDescriptionTest (class in toil.test.src.jobDescriptionTest)

 	JobEncapsulationTest (class in toil.test.src.jobEncapsulationTest)

 	JobException

 	JobFailedMessage (class in toil.bus)

 	JobFileStoreTest (class in toil.test.src.jobFileStoreTest)

 	jobFunction() (in module toil.test.src.userDefinedJobArgTypeTest)

 	JobFunctionWrappingJob (class in toil.job)

 	JobGraphDeadlockException

 	jobID (toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo attribute)

 	jobIDs() (toil.batchSystems.mesos.JobQueue method)

 	JobIssuedMessage (class in toil.bus)

 	JobMissingMessage (class in toil.bus)

 	JobPromiseConstraintError

 	JobQueue (class in toil.batchSystems.mesos)

 	jobs (toil.worker.StatsDict attribute)

 	jobs() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	
 	JobServiceTest (class in toil.test.src.jobServiceTest)

 	jobsPerBatchInsert (toil.jobStores.aws.jobStore.AWSJobStore attribute)

 	JobStatus (class in toil.bus)

 	jobstore (in module tutorial_cwlexample)

 	(in module tutorial_docker)

 	(in module tutorial_dynamic)

 	(in module tutorial_invokeworkflow)

 	(in module tutorial_invokeworkflow2)

 	(in module tutorial_jobfunctions)

 	(in module tutorial_managing)

 	(in module tutorial_managing2)

 	(in module tutorial_promises)

 	(in module tutorial_promises2)

 	(in module tutorial_quickstart)

 	(in module tutorial_requirements)

 	(in module tutorial_services)

 	(in module tutorial_staging)

 	jobStore (toil.common.Config attribute)

 	JOBSTORE_HELP (in module toil.common)

 	JobStoreExistsException

 	jobStoreID (toil.job.Job property)

 	jobStorePath (in module debugWorkflow)

 	JobStoreSupport (class in toil.jobStores.abstractJobStore)

 	jobStoreType (toil.test.src.deferredFunctionTest.DeferredFunctionTest attribute)

 	(toil.test.src.fileStoreTest.CachingFileStoreTestWithAwsJobStore attribute)

 	(toil.test.src.fileStoreTest.CachingFileStoreTestWithFileJobStore attribute)

 	(toil.test.src.fileStoreTest.CachingFileStoreTestWithGoogleJobStore attribute)

 	(toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest attribute)

 	(toil.test.src.fileStoreTest.NonCachingFileStoreTestWithAwsJobStore attribute)

 	(toil.test.src.fileStoreTest.NonCachingFileStoreTestWithFileJobStore attribute)

 	(toil.test.src.fileStoreTest.NonCachingFileStoreTestWithGoogleJobStore attribute)

 	JobStoreUnavailableException

 	JobTest (class in toil.test.src.jobTest)

 	JobTooBigError

 	JobTuple (in module toil.batchSystems.abstractGridEngineBatchSystem)

 	(in module toil.batchSystems.htcondor)

 	JobUpdatedMessage (class in toil.bus)

 	join() (toil.batchSystems.mesos.test.ExceptionalThread method)

 	(toil.cwl.cwltoil.ToilFsAccess method)

 	(toil.lib.threading.ExceptionalThread method)

 	(toil.test.ExceptionalThread method)

 	json_var() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	JSONDatagramHandler (class in toil.realtimeLogger)

 	JustAValue (class in toil.cwl.cwltoil)

K

 	
 	keys() (in module toil.wdl.wdl_functions)

 	KeyValuesList (in module toil.batchSystems.kubernetes)

 	kill_services() (toil.serviceManager.ServiceManager method)

 	killBatchJobs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem method)

 	(toil.batchSystems.awsBatch.AWSBatchBatchSystem method)

 	(toil.batchSystems.kubernetes.KubernetesBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.batchSystems.parasol.ParasolBatchSystem method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem method)

 	(toil.batchSystems.tes.TESBatchSystem method)

 	KILLED (toil.batchSystems.abstractBatchSystem.BatchJobExitReason attribute)

 	killJob() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	(toil.batchSystems.gridengine.GridEngineBatchSystem.Worker method)

 	(toil.batchSystems.htcondor.HTCondorBatchSystem.Worker method)

 	(toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	(toil.batchSystems.slurm.SlurmBatchSystem.Worker method)

 	(toil.batchSystems.torque.TorqueBatchSystem.Worker method)

 	
 	killJobs() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	(toil.leader.Leader method)

 	killLocalJobs() (toil.batchSystems.local_support.BatchSystemLocalSupport method)

 	killTask() (toil.batchSystems.mesos.executor.MesosExecutor method)

 	kind (toil.job.AcceleratorRequirement attribute)

 	KNOWN_EXTANT_IMAGES (in module toil)

 	kubernetes (in module toil.lib.retry)

 	kubernetes_batch_system_factory() (in module toil.batchSystems.registry)

 	kubernetes_host_path (toil.batchSystems.kubernetes.KubernetesBatchSystem.KubernetesConfig attribute)

 	kubernetes_owner (toil.batchSystems.kubernetes.KubernetesBatchSystem.KubernetesConfig attribute)

 	kubernetes_pod_timeout (toil.batchSystems.kubernetes.KubernetesBatchSystem.KubernetesConfig attribute)

 	kubernetes_policy() (toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	kubernetes_service_account (toil.batchSystems.kubernetes.KubernetesBatchSystem.KubernetesConfig attribute)

 	KubernetesBatchSystem (class in toil.batchSystems.kubernetes)

 	KubernetesBatchSystem.DecoratorWrapper (class in toil.batchSystems.kubernetes)

 	KubernetesBatchSystem.KubernetesConfig (class in toil.batchSystems.kubernetes)

 	KubernetesBatchSystem.Placement (class in toil.batchSystems.kubernetes)

 	KubernetesBatchSystemBenchTest (class in toil.test.batchSystems.batchSystemTest)

 	KubernetesBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

L

 	
 	LastProcessStandingArena (class in toil.lib.threading)

 	launchCluster() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	(toil.provisioners.gceProvisioner.GCEProvisioner method)

 	(toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest method)

 	(toil.test.provisioners.aws.awsProvisionerTest.AWSManagedAutoscaleTest method)

 	(toil.test.provisioners.aws.awsProvisionerTest.AWSStaticAutoscaleTest method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	(toil.test.provisioners.clusterTest.AbstractClusterTest method)

 	(toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest method)

 	(toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTest method)

 	(toil.test.provisioners.gceProvisionerTest.GCEStaticAutoscaleTest method)

 	launchTask() (toil.batchSystems.mesos.executor.MesosExecutor method)

 	Leader (class in toil.leader)

 	LEADER_HOME_DIR (toil.provisioners.abstractProvisioner.AbstractProvisioner attribute)

 	leave() (toil.lib.threading.LastProcessStandingArena method)

 	length() (in module toil.wdl.wdl_functions)

 	link_file() (in module toil.server.utils)

 	link_merge() (toil.cwl.cwltoil.ResolveSource method)

 	list_objects_for_url() (in module toil.lib.aws.utils)

 	list_runs() (toil.server.wes.abstract_backend.WESBackend method)

 	(toil.server.wes.toil_backend.ToilBackend method)

 	list_url() (toil.jobStores.abstractJobStore.AbstractJobStore class method)

 	listdir() (toil.cwl.cwltoil.ToilFsAccess method)

 	load() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore.FileInfo class method)

 	(toil.resource.ModuleDescriptor method)

 	(toil.server.wsgi_app.GunicornApplication method)

 	load_config() (toil.server.wsgi_app.GunicornApplication method)

 	load_contents() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	load_job() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	load_root_job() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	load_workflow() (toil.toilState.ToilState method)

 	loadJob() (toil.job.Job class method)

 	loadModules() (in module toil.utils.toilMain)

 	loadOrCreate() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo class method)

 	loadOrFail() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo class method)

 	loadRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	localDirPath (toil.resource.Resource property)

 	LocalFileStoreJob (class in tutorial_managing)

 	localize() (toil.resource.ModuleDescriptor method)

 	localPath (toil.resource.DirectoryResource property)

 	(toil.resource.FileResource property)

 	(toil.resource.Resource property)

 	LocalThrottle (class in toil.lib.throttle)

 	locator (toil.jobStores.abstractJobStore.AbstractJobStore property)

 	lock (toil.batchSystems.mesos.test.MesosTestSupport.MesosThread attribute)

 	(toil.realtimeLogger.RealtimeLogger attribute)

 	(toil.test.ApplianceTestSupport.Appliance attribute)

 	(toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolThread attribute)

 	log (in module toil)

 	(in module toil.batchSystems.mesos.batchSystem)

 	(in module toil.batchSystems.mesos.executor)

 	(in module toil.batchSystems.mesos.test)

 	(in module toil.jobStores.googleJobStore)

 	(in module toil.jobStores.utils)

 	(in module toil.test.batchSystems.parasolTestSupport)

 	(in module toil.test.cwl.cwlTest)

 	(in module toil.test.provisioners.aws.awsProvisionerTest)

 	(in module toil.test.provisioners.clusterTest)

 	(in module toil.test.provisioners.gceProvisionerTest)

 	(in module toil.test.provisioners.provisionerTest)

 	(in module toil.test.src.miscTests)

 	(in module toil.test.src.promisedRequirementTest)

 	(in module toil.test.src.threadingTest)

 	log() (toil.common.ToilMetrics method)

 	(toil.job.Job method)

 	log_bindings() (in module toil.wdl.wdltoil)

 	log_for_run() (toil.server.wes.abstract_backend.WESBackend static method)

 	log_to_file() (in module toil.statsAndLogging)

 	logAccess() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	logClusterDesiredSize() (toil.common.ToilMetrics method)

 	logClusterSize() (toil.common.ToilMetrics method)

 	logCompletedJob() (toil.common.ToilMetrics method)

 	logDiskUsage() (in module toil.test.src.promisedRequirementTest)

 	logFailedJob() (toil.common.ToilMetrics method)

 	logFile (toil.common.Config attribute)

 	logger (in module debugWorkflow)

 	(in module toil.batchSystems.abstractBatchSystem)

 	(in module toil.batchSystems.abstractGridEngineBatchSystem)

 	(in module toil.batchSystems.awsBatch)

 	(in module toil.batchSystems.cleanup_support)

 	(in module toil.batchSystems.contained_executor)

 	(in module toil.batchSystems.gridengine)

 	(in module toil.batchSystems.htcondor)

 	(in module toil.batchSystems.kubernetes)

 	(in module toil.batchSystems.local_support)

 	(in module toil.batchSystems.lsf)

 	(in module toil.batchSystems.lsfHelper)

 	(in module toil.batchSystems.options)

 	(in module toil.batchSystems.parasol)

 	(in module toil.batchSystems.registry)

 	(in module toil.batchSystems.singleMachine)

 	(in module toil.batchSystems.slurm)

 	(in module toil.batchSystems.tes)

 	(in module toil.batchSystems.torque)

 	(in module toil.bus)

 	(in module toil.common)

 	(in module toil.cwl)

 	(in module toil.cwl.cwltoil)

 	(in module toil.cwl.utils)

 	(in module toil.deferred)

 	(in module toil.exceptions)

 	(in module toil.fileStores.abstractFileStore)

 	(in module toil.fileStores.cachingFileStore)

 	(in module toil.fileStores.nonCachingFileStore)

 	(in module toil.job)

 	(in module toil.jobStores.abstractJobStore)

 	(in module toil.jobStores.aws.jobStore)

 	(in module toil.jobStores.aws.utils)

 	(in module toil.jobStores.fileJobStore)

 	(in module toil.leader)

 	(in module toil.lib.aws)

 	(in module toil.lib.aws.ami)

 	(in module toil.lib.aws.iam)

 	(in module toil.lib.aws.session)

 	(in module toil.lib.aws.utils)

 	(in module toil.lib.docker)

 	(in module toil.lib.ec2)

 	(in module toil.lib.ec2nodes)

 	(in module toil.lib.humanize)

 	(in module toil.lib.io)

 	(in module toil.lib.misc)

 	(in module toil.lib.retry)

 	(in module toil.lib.threading)

 	(in module toil.provisioners)

 	(in module toil.provisioners.abstractProvisioner)

 	(in module toil.provisioners.aws)

 	(in module toil.provisioners.aws.awsProvisioner)

 	(in module toil.provisioners.clusterScaler)

 	(in module toil.provisioners.gceProvisioner)

 	(in module toil.provisioners.node)

 	(in module toil.realtimeLogger)

 	(in module toil.resource)

 	(in module toil.server.app)

 	(in module toil.server.cli.wes_cwl_runner)

 	(in module toil.server.utils)

 	(in module toil.server.wes.abstract_backend)

 	(in module toil.server.wes.amazon_wes_utils)

 	(in module toil.server.wes.tasks)

 	(in module toil.server.wes.toil_backend)

 	(in module toil.serviceManager)

 	(in module toil.statsAndLogging)

 	(in module toil.test)

 	(in module toil.test.batchSystems.batchSystemTest)

 	(in module toil.test.jobStores.jobStoreTest)

 	(in module toil.test.lib.aws.test_iam)

 	(in module toil.test.lib.aws.test_s3)

 	(in module toil.test.lib.aws.test_utils)

 	(in module toil.test.lib.dockerTest)

 	(in module toil.test.lib.test_conversions)

 	(in module toil.test.lib.test_ec2)

 	(in module toil.test.lib.test_misc)

 	(in module toil.test.provisioners.clusterScalerTest)

 	(in module toil.test.server.serverTest)

 	(in module toil.test.sort.sortTest)

 	(in module toil.test.src.autoDeploymentTest)

 	(in module toil.test.src.busTest)

 	(in module toil.test.src.deferredFunctionTest)

 	(in module toil.test.src.fileStoreTest)

 	(in module toil.test.src.jobFileStoreTest)

 	(in module toil.test.src.jobServiceTest)

 	(in module toil.test.src.jobTest)

 	(in module toil.test.src.regularLogTest)

 	(in module toil.test.src.restartDAGTest)

 	(in module toil.test.utils.toilDebugTest)

 	(in module toil.test.utils.toilKillTest)

 	(in module toil.test.utils.utilsTest)

 	(in module toil.toilState)

 	(in module toil.utils.toilClean)

 	(in module toil.utils.toilDebugFile)

 	(in module toil.utils.toilDebugJob)

 	(in module toil.utils.toilDestroyCluster)

 	(in module toil.utils.toilKill)

 	(in module toil.utils.toilLaunchCluster)

 	(in module toil.utils.toilRsyncCluster)

 	(in module toil.utils.toilServer)

 	(in module toil.utils.toilSshCluster)

 	(in module toil.utils.toilStats)

 	(in module toil.utils.toilStatus)

 	(in module toil.utils.toilUpdateEC2Instances)

 	(in module toil.wdl.toilwdl)

 	(in module toil.wdl.versions.dev)

 	(in module toil.wdl.versions.draft2)

 	(in module toil.wdl.versions.v1)

 	(in module toil.wdl.wdl_analysis)

 	(in module toil.wdl.wdl_functions)

 	(in module toil.wdl.wdl_synthesis)

 	(in module toil.wdl.wdltoil)

 	(in module toil.worker)

 	(toil.realtimeLogger.RealtimeLogger attribute)

 	
 	LoggingDatagramHandler (class in toil.realtimeLogger)

 	loggingServer (toil.realtimeLogger.RealtimeLogger attribute)

 	loginCredentialsPromise (in module tutorial_services)

 	logIssuedJob() (toil.common.ToilMetrics method)

 	logMissingJob() (toil.common.ToilMetrics method)

 	logProcessContext() (in module toil)

 	logQueueSize() (toil.common.ToilMetrics method)

 	logRotating (toil.common.Config attribute)

 	LogTest (class in toil.test.src.realtimeLoggerTest)

 	logToMaster() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	logWithFormatting() (toil.statsAndLogging.StatsAndLogging class method)

 	LongTestFollowOn (class in toil.test.mesos.stress)

 	LongTestJob (class in toil.test.mesos.stress)

 	lookup() (toil.resource.Resource class method)

 	lookupEnvVar() (in module toil)

 	LOST (toil.batchSystems.abstractBatchSystem.BatchJobExitReason attribute)

 	LSB_PARAMS_FILENAME (in module toil.batchSystems.lsfHelper)

 	lsf_batch_system_factory() (in module toil.batchSystems.registry)

 	LSF_CONF_ENV (in module toil.batchSystems.lsfHelper)

 	LSF_CONF_FILENAME (in module toil.batchSystems.lsfHelper)

 	LSF_JSON_OUTPUT_MIN_VERSION (in module toil.batchSystems.lsfHelper)

 	LSFBatchSystem (class in toil.batchSystems.lsf)

 	LSFBatchSystem.Worker (class in toil.batchSystems.lsf)

 	LSFBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	LSFHelperTest (class in toil.test.batchSystems.test_lsf_helper)

M

 	
 	MagicExpando (class in toil.lib.expando)

 	main() (in module example_alwaysfail)

 	(in module example_cachingbenchmark)

 	(in module mkFile)

 	(in module toil.batchSystems.mesos.executor)

 	(in module toil.cwl.cwltoil)

 	(in module toil.server.cli.wes_cwl_runner)

 	(in module toil.test.mesos.helloWorld)

 	(in module toil.test.mesos.stress)

 	(in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	(in module toil.test.src.userDefinedJobArgTypeTest)

 	(in module toil.utils.toilClean)

 	(in module toil.utils.toilDebugFile)

 	(in module toil.utils.toilDebugJob)

 	(in module toil.utils.toilDestroyCluster)

 	(in module toil.utils.toilKill)

 	(in module toil.utils.toilLaunchCluster)

 	(in module toil.utils.toilMain)

 	(in module toil.utils.toilRsyncCluster)

 	(in module toil.utils.toilServer)

 	(in module toil.utils.toilSshCluster)

 	(in module toil.utils.toilStats)

 	(in module toil.utils.toilStatus)

 	(in module toil.utils.toilUpdateEC2Instances)

 	(in module toil.wdl.toilwdl)

 	(in module toil.wdl.wdltoil)

 	(in module toil.worker)

 	(in module tutorial_discoverfiles)

 	make_gather_bindings() (toil.wdl.wdltoil.WDLSectionJob method)

 	make_parser() (in module fake_mpi_run)

 	make_path_mapper() (toil.cwl.cwltoil.ToilTool method)

 	make_public_dir() (in module toil.lib.io)

 	make_tests() (in module toil.test)

 	makeFileToSort() (in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	makeImportExportTests() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test class method)

 	makeJob() (in module toil.cwl.cwltoil)

 	makeJobGraph() (toil.test.src.jobTest.JobTest method)

 	makeLoadable() (toil.resource.ModuleDescriptor method)

 	makePickle() (toil.realtimeLogger.JSONDatagramHandler method)

 	makeRandomDAG() (toil.test.src.jobTest.JobTest static method)

 	MalformedRequestException

 	ManagedNodesNotSupportedException

 	map_over_files_in_bindings() (in module toil.wdl.wdltoil)

 	map_over_typed_files_in_binding() (in module toil.wdl.wdltoil)

 	map_over_typed_files_in_bindings() (in module toil.wdl.wdltoil)

 	map_over_typed_files_in_value() (in module toil.wdl.wdltoil)

 	MAT (in module toil.lib.memoize)

 	MAX_BATCH_SIZE (in module toil.jobStores.googleJobStore)

 	MAX_CANCELING_SECONDS (in module toil.server.utils)

 	max_jobs (toil.common.Config attribute)

 	max_local_jobs (toil.common.Config attribute)

 	MAX_POLL_COUNT (in module toil.batchSystems.awsBatch)

 	maxAttributesPerItem (toil.jobStores.aws.utils.SDBHelper attribute)

 	maxBinarySize() (toil.jobStores.aws.utils.SDBHelper class method)

 	maxBucketNameLen (toil.jobStores.aws.jobStore.AWSJobStore attribute)

 	maxConcurrency() (in module toil.test.src.promisedRequirementTest)

 	MaxCoresSingleMachineBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	maxInlinedSize() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo static method)

 	maxNameLen (toil.jobStores.aws.jobStore.AWSJobStore attribute)

 	maxRawValueSize (toil.jobStores.aws.utils.SDBHelper attribute)

 	maxValueSize (toil.jobStores.aws.utils.SDBHelper attribute)

 	maxWaitTime (toil.provisioners.node.Node attribute)

 	measureConcurrency() (in module toil.test.batchSystems.batchSystemTest)

 	meets_boto_error_code_condition() (in module toil.lib.retry)

 	meets_error_code_condition() (in module toil.lib.retry)

 	meets_error_message_condition() (in module toil.lib.retry)

 	MEMLIMIT (toil.batchSystems.abstractBatchSystem.BatchJobExitReason attribute)

 	memoize (in module toil)

 	(in module toil.lib.memoize)

 	(in module toil.test)

 	memory (toil.job.Job property)

 	(toil.job.RequirementsDict attribute)

 	(toil.job.Requirer property)

 	MemoryStateCache (class in toil.server.utils)

 	MemoryStateStore (class in toil.server.utils)

 	merge() (in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	(in module tutorial_promises2)

 	mesos_batch_system_factory() (in module toil.batchSystems.registry)

 	MesosBatchSystem (class in toil.batchSystems.mesos.batchSystem)

 	MesosBatchSystem.ExecutorInfo (class in toil.batchSystems.mesos.batchSystem)

 	MesosBatchSystemJobTest (class in toil.test.batchSystems.batchSystemTest)

 	MesosBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	mesosCommand() (toil.batchSystems.mesos.test.MesosTestSupport.MesosAgentThread method)

 	(toil.batchSystems.mesos.test.MesosTestSupport.MesosMasterThread method)

 	(toil.batchSystems.mesos.test.MesosTestSupport.MesosThread method)

 	MesosExecutor (class in toil.batchSystems.mesos.executor)

 	MesosPromisedRequirementsTest (class in toil.test.src.promisedRequirementTest)

 	MesosShape (class in toil.batchSystems.mesos)

 	MesosTestSupport (class in toil.batchSystems.mesos.test)

 	MesosTestSupport.MesosAgentThread (class in toil.batchSystems.mesos.test)

 	MesosTestSupport.MesosMasterThread (class in toil.batchSystems.mesos.test)

 	MesosTestSupport.MesosThread (class in toil.batchSystems.mesos.test)

 	message (toil.fileStores.cachingFileStore.CacheUnbalancedError attribute)

 	message_to_bytes() (in module toil.bus)

 	MessageBus (class in toil.bus)

 	MessageBusClient (class in toil.bus)

 	MessageBusConnection (class in toil.bus)

 	MessageBusTest (class in toil.test.src.busTest)

 	MessageDetector (class in toil.test.src.realtimeLoggerTest)

 	MessageInbox (class in toil.bus)

 	MessageOutbox (class in toil.bus)

 	MessageType (in module toil.bus)

 	(toil.bus.MessageBus attribute)

 	(toil.bus.MessageInbox attribute)

 	methodNamePartRegex (in module toil.test)

 	mib_to_b() (in module toil.lib.conversions)

 	MIN_REQUESTABLE_CORES (in module toil.batchSystems.awsBatch)

 	MIN_REQUESTABLE_MIB (in module toil.batchSystems.awsBatch)

 	minBucketNameLen (toil.jobStores.aws.jobStore.AWSJobStore attribute)

 	minCores (toil.batchSystems.singleMachine.SingleMachineBatchSystem attribute)

 	MiscTests (class in toil.test.src.miscTests)

 	
 mkFile

 	module

 	MockBatchSystemAndProvisioner (class in toil.test.provisioners.clusterScalerTest)

 	model (toil.job.AcceleratorRequirement attribute)

 	modify_cmd_expr_w_attributes() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	modify_param_paths() (toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters method)

 	
 module

 	debugWorkflow

 	example_alwaysfail

 	example_cachingbenchmark

 	fake_mpi_run

 	mkFile

 	toil

 	toil.batchSystems

 	toil.batchSystems.abstractBatchSystem

 	toil.batchSystems.abstractGridEngineBatchSystem

 	toil.batchSystems.awsBatch

 	toil.batchSystems.cleanup_support

 	toil.batchSystems.contained_executor

 	toil.batchSystems.gridengine

 	toil.batchSystems.htcondor

 	toil.batchSystems.kubernetes

 	toil.batchSystems.local_support

 	toil.batchSystems.lsf

 	toil.batchSystems.lsfHelper

 	toil.batchSystems.mesos

 	toil.batchSystems.mesos.batchSystem

 	toil.batchSystems.mesos.conftest

 	toil.batchSystems.mesos.executor

 	toil.batchSystems.mesos.test

 	toil.batchSystems.options

 	toil.batchSystems.parasol

 	toil.batchSystems.registry

 	toil.batchSystems.singleMachine

 	toil.batchSystems.slurm

 	toil.batchSystems.tes

 	toil.batchSystems.torque

 	toil.bus

 	toil.common

 	toil.cwl

 	toil.cwl.conftest

 	toil.cwl.cwltoil

 	toil.cwl.utils

 	toil.deferred

 	toil.exceptions

 	toil.fileStores

 	toil.fileStores.abstractFileStore

 	toil.fileStores.cachingFileStore

 	toil.fileStores.nonCachingFileStore

 	toil.job

 	toil.jobStores

 	toil.jobStores.abstractJobStore

 	toil.jobStores.aws

 	toil.jobStores.aws.jobStore

 	toil.jobStores.aws.utils

 	toil.jobStores.conftest

 	toil.jobStores.fileJobStore

 	toil.jobStores.googleJobStore

 	toil.jobStores.utils

 	toil.leader

 	toil.lib

 	toil.lib.accelerators

 	toil.lib.aws

 	toil.lib.aws.ami

 	toil.lib.aws.iam

 	toil.lib.aws.session

 	toil.lib.aws.utils

 	toil.lib.bioio

 	toil.lib.compatibility

 	toil.lib.conversions

 	toil.lib.docker

 	toil.lib.ec2

 	toil.lib.ec2nodes

 	toil.lib.encryption

 	toil.lib.encryption._dummy

 	toil.lib.encryption._nacl

 	toil.lib.encryption.conftest

 	toil.lib.exceptions

 	toil.lib.expando

 	toil.lib.generatedEC2Lists

 	toil.lib.humanize

 	toil.lib.io

 	toil.lib.iterables

 	toil.lib.memoize

 	toil.lib.misc

 	toil.lib.objects

 	toil.lib.resources

 	toil.lib.retry

 	toil.lib.threading

 	toil.lib.throttle

 	toil.provisioners

 	toil.provisioners.abstractProvisioner

 	toil.provisioners.aws

 	toil.provisioners.aws.awsProvisioner

 	toil.provisioners.clusterScaler

 	toil.provisioners.gceProvisioner

 	toil.provisioners.node

 	toil.realtimeLogger

 	toil.resource

 	toil.server

 	toil.server.api_spec

 	toil.server.app

 	toil.server.celery_app

 	toil.server.cli

 	toil.server.cli.wes_cwl_runner

 	toil.server.utils

 	toil.server.wes

 	toil.server.wes.abstract_backend

 	toil.server.wes.amazon_wes_utils

 	toil.server.wes.tasks

 	toil.server.wes.toil_backend

 	toil.server.wsgi_app

 	toil.serviceManager

 	toil.statsAndLogging

 	toil.test

 	toil.test.batchSystems

 	toil.test.batchSystems.batchSystemTest

 	toil.test.batchSystems.parasolTestSupport

 	toil.test.batchSystems.test_lsf_helper

 	toil.test.batchSystems.test_slurm

 	toil.test.cwl

 	toil.test.cwl.conftest

 	toil.test.cwl.cwlTest

 	toil.test.docs

 	toil.test.docs.scriptsTest

 	toil.test.jobStores

 	toil.test.jobStores.jobStoreTest

 	toil.test.lib

 	toil.test.lib.aws

 	toil.test.lib.aws.test_iam

 	toil.test.lib.aws.test_s3

 	toil.test.lib.aws.test_utils

 	toil.test.lib.dockerTest

 	toil.test.lib.test_conversions

 	toil.test.lib.test_ec2

 	toil.test.lib.test_misc

 	toil.test.mesos

 	toil.test.mesos.helloWorld

 	toil.test.mesos.MesosDataStructuresTest

 	toil.test.mesos.stress

 	toil.test.provisioners

 	toil.test.provisioners.aws

 	toil.test.provisioners.aws.awsProvisionerTest

 	toil.test.provisioners.clusterScalerTest

 	toil.test.provisioners.clusterTest

 	toil.test.provisioners.gceProvisionerTest

 	toil.test.provisioners.provisionerTest

 	toil.test.provisioners.restartScript

 	toil.test.server

 	toil.test.server.serverTest

 	toil.test.sort

 	toil.test.sort.restart_sort

 	toil.test.sort.sort

 	toil.test.sort.sortTest

 	toil.test.src

 	toil.test.src.autoDeploymentTest

 	toil.test.src.busTest

 	toil.test.src.checkpointTest

 	toil.test.src.deferredFunctionTest

 	toil.test.src.dockerCheckTest

 	toil.test.src.fileStoreTest

 	toil.test.src.helloWorldTest

 	toil.test.src.importExportFileTest

 	toil.test.src.jobDescriptionTest

 	toil.test.src.jobEncapsulationTest

 	toil.test.src.jobFileStoreTest

 	toil.test.src.jobServiceTest

 	toil.test.src.jobTest

 	toil.test.src.miscTests

 	toil.test.src.promisedRequirementTest

 	toil.test.src.promisesTest

 	toil.test.src.realtimeLoggerTest

 	toil.test.src.regularLogTest

 	toil.test.src.resourceTest

 	toil.test.src.restartDAGTest

 	toil.test.src.resumabilityTest

 	toil.test.src.retainTempDirTest

 	toil.test.src.systemTest

 	toil.test.src.threadingTest

 	toil.test.src.toilContextManagerTest

 	toil.test.src.userDefinedJobArgTypeTest

 	toil.test.src.workerTest

 	toil.test.utils

 	toil.test.utils.toilDebugTest

 	toil.test.utils.toilKillTest

 	toil.test.utils.utilsTest

 	toil.test.wdl

 	toil.test.wdl.builtinTest

 	toil.test.wdl.conftest

 	toil.test.wdl.toilwdlTest

 	toil.test.wdl.wdltoil_test

 	toil.toilState

 	toil.utils

 	toil.utils.toilClean

 	toil.utils.toilDebugFile

 	toil.utils.toilDebugJob

 	toil.utils.toilDestroyCluster

 	toil.utils.toilKill

 	toil.utils.toilLaunchCluster

 	toil.utils.toilMain

 	toil.utils.toilRsyncCluster

 	toil.utils.toilServer

 	toil.utils.toilSshCluster

 	toil.utils.toilStats

 	toil.utils.toilStatus

 	toil.utils.toilUpdateEC2Instances

 	toil.version

 	toil.wdl

 	toil.wdl.toilwdl

 	toil.wdl.utils

 	toil.wdl.versions

 	toil.wdl.versions.dev

 	toil.wdl.versions.draft2

 	toil.wdl.versions.v1

 	toil.wdl.wdl_analysis

 	toil.wdl.wdl_functions

 	toil.wdl.wdl_synthesis

 	toil.wdl.wdl_types

 	toil.wdl.wdltoil

 	toil.worker

 	tutorial_arguments

 	tutorial_cwlexample

 	tutorial_discoverfiles

 	tutorial_docker

 	tutorial_dynamic

 	tutorial_encapsulation

 	tutorial_encapsulation2

 	tutorial_helloworld

 	tutorial_invokeworkflow

 	tutorial_invokeworkflow2

 	tutorial_jobfunctions

 	tutorial_managing

 	tutorial_managing2

 	tutorial_multiplejobs

 	tutorial_multiplejobs2

 	tutorial_multiplejobs3

 	tutorial_promises

 	tutorial_promises2

 	tutorial_quickstart

 	tutorial_requirements

 	tutorial_services

 	tutorial_staging

 	
 	ModuleDescriptor (class in toil.resource)

 	monkeyPatchSdbConnection() (in module toil.jobStores.aws.utils)

 	mpTestPartSize (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test attribute)

 	MRT (in module toil.lib.memoize)

 	MT (in module toil.test)

 	MultiprocessingTaskRunner (class in toil.server.wes.tasks)

N

 	
 	name (toil.bus.JobStatus attribute)

 	(toil.resource.ModuleDescriptor attribute)

 	(toil.wdl.wdl_types.WDLArrayType property)

 	(toil.wdl.wdl_types.WDLBooleanType property)

 	(toil.wdl.wdl_types.WDLFileType property)

 	(toil.wdl.wdl_types.WDLFloatType property)

 	(toil.wdl.wdl_types.WDLIntType property)

 	(toil.wdl.wdl_types.WDLMapType property)

 	(toil.wdl.wdl_types.WDLPairType property)

 	(toil.wdl.wdl_types.WDLStringType property)

 	(toil.wdl.wdl_types.WDLType property)

 	nameSeparator (toil.jobStores.aws.jobStore.AWSJobStore attribute)

 	needs_aws_batch() (in module toil.test)

 	needs_aws_ec2() (in module toil.test)

 	needs_aws_s3() (in module toil.test)

 	needs_celery_broker() (in module toil.test)

 	needs_cwl() (in module toil.test)

 	needs_docker() (in module toil.test)

 	needs_docker_cuda() (in module toil.test)

 	needs_encryption() (in module toil.test)

 	needs_env_var() (in module toil.test)

 	needs_fetchable_appliance() (in module toil.test)

 	needs_file_import() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	needs_google() (in module toil.test)

 	needs_gridengine() (in module toil.test)

 	needs_htcondor() (in module toil.test)

 	needs_java() (in module toil.test)

 	needs_kubernetes() (in module toil.test)

 	needs_kubernetes_installed() (in module toil.test)

 	needs_local_appliance() (in module toil.test)

 	needs_local_cuda() (in module toil.test)

 	needs_lsf() (in module toil.test)

 	needs_mesos() (in module toil.test)

 	needs_parasol() (in module toil.test)

 	needs_rsync3() (in module toil.test)

 	needs_server() (in module toil.test)

 	
 	needs_singularity() (in module toil.test)

 	needs_slurm() (in module toil.test)

 	needs_tes() (in module toil.test)

 	needs_torque() (in module toil.test)

 	needs_wes_server() (in module toil.test)

 	needsdocker() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	nested_crossproduct_scatter() (toil.cwl.cwltoil.CWLScatter method)

 	nextChainable() (in module toil.worker)

 	nextJobOfType() (toil.batchSystems.mesos.JobQueue method)

 	nextSuccessors() (toil.job.JobDescription method)

 	no_such_sdb_domain() (in module toil.jobStores.aws.utils)

 	NoAvailableJobStoreException

 	Node (class in toil.provisioners.node)

 	NODE_BOTO_PATH (toil.provisioners.gceProvisioner.GCEProvisioner attribute)

 	NodeInfo (class in toil.batchSystems.abstractBatchSystem)

 	nodeInUse() (toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	NodeReservation (class in toil.provisioners.clusterScaler)

 	nodeReservations (toil.provisioners.clusterScaler.BinPackedFit attribute)

 	nodeServiceAccountJson (toil.jobStores.googleJobStore.GoogleJobStore attribute)

 	NonCachingFileStore (class in toil.fileStores.nonCachingFileStore)

 	NonCachingFileStoreTestWithAwsJobStore (class in toil.test.src.fileStoreTest)

 	NonCachingFileStoreTestWithFileJobStore (class in toil.test.src.fileStoreTest)

 	NonCachingFileStoreTestWithGoogleJobStore (class in toil.test.src.fileStoreTest)

 	NonDownloadingSize (class in toil.wdl.wdltoil)

 	noOp() (in module toil.test.src.jobEncapsulationTest)

 	normalize_uri() (toil.common.Toil static method)

 	NoSuchClusterException

 	NoSuchFileException

 	NoSuchJobException

 	NoSuchJobStoreException

 	not_found() (in module toil.lib.ec2)

 	NOTICE (in module toil.server.wes.amazon_wes_utils)

 	numCores (in module toil.test.batchSystems.batchSystemTest)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem attribute)

O

 	
 	old_retry() (in module toil.lib.retry)

 	onRegistration() (toil.job.JobDescription method)

 	(toil.job.ServiceJobDescription method)

 	onWrite() (toil.lib.io.WriteWatchingStream method)

 	open() (toil.cwl.cwltoil.ToilFsAccess method)

 	(toil.deferred.DeferredFunctionManager method)

 	(toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.fileStores.cachingFileStore.CachingFileStore method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	OperationForbidden

 	optimize_spot_bid() (in module toil.provisioners.aws)

 	
 	optional_hard_copy() (toil.jobStores.fileJobStore.FileJobStore method)

 	OptionSetter (class in toil.batchSystems.options)

 	OptionType (toil.batchSystems.kubernetes.KubernetesBatchSystem attribute)

 	(toil.batchSystems.options.OptionSetter attribute)

 	(toil.batchSystems.slurm.SlurmBatchSystem attribute)

 	OS_SIZE (in module toil.provisioners.clusterScaler)

 	outbox() (toil.bus.MessageBus method)

 	outer (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo attribute)

 	overhead (in module toil.lib.encryption._dummy)

 	(in module toil.lib.encryption._nacl)

 	ownerID (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo property)

P

 	
 	P (toil.batchSystems.kubernetes.KubernetesBatchSystem attribute)

 	(toil.batchSystems.kubernetes.KubernetesBatchSystem.DecoratorWrapper attribute)

 	pack() (toil.fileStores.FileID method)

 	pack_job() (in module toil.batchSystems.contained_executor)

 	pack_toil_uri() (in module toil.wdl.wdltoil)

 	padStr() (in module toil.utils.toilStats)

 	panic (class in toil.lib.exceptions)

 	parasol_batch_system_factory() (in module toil.batchSystems.registry)

 	ParasolBatchSystem (class in toil.batchSystems.parasol)

 	ParasolBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	parasolCommand() (toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolLeaderThread method)

 	(toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolThread method)

 	(toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolWorkerThread method)

 	parasolOutputPattern (toil.batchSystems.parasol.ParasolBatchSystem attribute)

 	ParasolTestSupport (class in toil.test.batchSystems.parasolTestSupport)

 	ParasolTestSupport.ParasolLeaderThread (class in toil.test.batchSystems.parasolTestSupport)

 	ParasolTestSupport.ParasolThread (class in toil.test.batchSystems.parasolTestSupport)

 	ParasolTestSupport.ParasolWorkerThread (class in toil.test.batchSystems.parasolTestSupport)

 	parent() (in module toil.test.src.jobTest)

 	(in module toil.test.src.promisesTest)

 	(in module toil.test.src.resumabilityTest)

 	parentJob() (in module toil.test.batchSystems.batchSystemTest)

 	(in module tutorial_requirements)

 	parentMessage (in module toil.test.mesos.helloWorld)

 	parse_accelerator() (in module toil.job)

 	parse_accelerator_list() (in module toil.common)

 	parse_args() (in module toil.worker)

 	parse_bjobs_record() (toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	parse_cores() (in module toil.wdl.wdl_functions)

 	parse_declaration() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_expressn() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_expressn_arrayliteral() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_expressn_arraymaplookup() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_expressn_fncall() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_expressn_fncall_normalparams() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_expressn_logicalnot() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_expressn_memberaccess() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_expressn_operator() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_expressn_ternaryif() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_expressn_tupleliteral() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_name() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_declaration_type() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_disk() (in module toil.wdl.wdl_functions)

 	parse_elapsed() (toil.batchSystems.slurm.SlurmBatchSystem.Worker method)

 	parse_iso_utc() (in module toil.lib.memoize)

 	parse_mem_and_cmd_from_output() (in module toil.batchSystems.lsfHelper)

 	parse_memory() (in module toil.batchSystems.lsfHelper)

 	(in module toil.wdl.wdl_functions)

 	parse_memory_string() (in module toil.lib.conversions)

 	parse_node_types() (in module toil.provisioners)

 	parse_params() (toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters method)

 	parse_task() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_task_outputs() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_task_rawcommand() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_task_rawcommand_attributes() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_task_runtime() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_task_runtime_key() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_body() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_call() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_call_body() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_call_body_declarations() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_call_body_io() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_call_body_io_map() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_call_taskalias() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_call_taskname() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_if() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_if_expression() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_manifest_file() (in module toil.server.wes.amazon_wes_utils)

 	parse_workflow_scatter() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_scatter_collection() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_scatter_item() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	parse_workflow_zip_file() (in module toil.server.wes.amazon_wes_utils)

 	ParseableAcceleratorRequirement (in module toil.job)

 	ParseableDivisibleResource (in module toil.job)

 	ParseableFlag (in module toil.job)

 	ParseableIndivisibleResource (in module toil.job)

 	ParseableRequirement (in module toil.job)

 	parseBjobs() (toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	parseBool() (in module toil.common)

 	parseDockerAppliance() (in module toil)

 	ParsedRequirement (in module toil.job)

 	parseLocator() (toil.common.Toil static method)

 	parseMaxMem() (toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	parseMemory() (in module toil.lib.ec2nodes)

 	parser (in module toil.test.provisioners.restartScript)

 	(in module tutorial_arguments)

 	(in module tutorial_helloworld)

 	(in module tutorial_multiplejobs)

 	(in module tutorial_multiplejobs2)

 	(in module tutorial_multiplejobs3)

 	parser_with_common_options() (in module toil.common)

 	parser_with_server_options() (in module toil.server.app)

 	parseSetEnv() (in module toil.common)

 	parseStorage() (in module toil.lib.ec2nodes)

 	
 	passingFn() (in module toil.test.src.restartDAGTest)

 	path_to_loc() (in module toil.cwl.cwltoil)

 	PathIndexingPromiseTest (class in toil.test.src.promisesTest)

 	per_core_reservation() (in module toil.batchSystems.lsfHelper)

 	per_core_reserve_from_stream() (in module toil.batchSystems.lsfHelper)

 	PerfectServiceTest (class in toil.test.src.jobServiceTest)

 	permission_matches_any() (in module toil.lib.aws.iam)

 	physicalDisk() (in module toil)

 	physicalMemory (toil.batchSystems.singleMachine.SingleMachineBatchSystem attribute)

 	physicalMemory() (in module toil)

 	pick_value() (toil.cwl.cwltoil.ResolveSource method)

 	pickle() (toil.resource.Resource method)

 	pip() (toil.test.provisioners.clusterTest.AbstractClusterTest method)

 	pkg_root (in module toil.test.cwl.cwlTest)

 	(in module toil.test.docs.scriptsTest)

 	(in module toil.test.utils.toilKillTest)

 	(in module toil.test.utils.utilsTest)

 	policy_permissions_allow() (in module toil.lib.aws.iam)

 	poll() (in module example_cachingbenchmark)

 	poll_run() (in module toil.server.cli.wes_cwl_runner)

 	populate_env_vars() (toil.cwl.cwltoil.CWLJob method)

 	potential_absolute_uris() (in module toil.wdl.wdltoil)

 	pre_update_hook() (toil.job.JobDescription method)

 	preemptable() (toil.job.Job method)

 	(toil.job.Requirer method)

 	preemptible (in module toil.test.batchSystems.batchSystemTest)

 	(toil.job.Job property)

 	(toil.job.RequirementsDict attribute)

 	(toil.job.Requirer property)

 	PreemptibleDeficitCompensationTest (class in toil.test.provisioners.aws.awsProvisionerTest)

 	PREFIX (toil.deferred.DeferredFunctionManager attribute)

 	PREFIX_LENGTH (in module toil.test.src.jobFileStoreTest)

 	prepare_restart() (toil.common.Config method)

 	prepare_start() (toil.common.Config method)

 	prepareBsub() (toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	prepareForPromiseRegistration() (toil.job.EncapsulatedJob method)

 	(toil.job.Job method)

 	prepareQsub() (toil.batchSystems.gridengine.GridEngineBatchSystem.Worker method)

 	(toil.batchSystems.torque.TorqueBatchSystem.Worker method)

 	prepareSbatch() (toil.batchSystems.slurm.SlurmBatchSystem.Worker method)

 	prepareSubmission() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	(toil.batchSystems.gridengine.GridEngineBatchSystem.Worker method)

 	(toil.batchSystems.htcondor.HTCondorBatchSystem.Worker method)

 	(toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	(toil.batchSystems.slurm.SlurmBatchSystem.Worker method)

 	(toil.batchSystems.torque.TorqueBatchSystem.Worker method)

 	prepareSystem() (toil.resource.Resource class method)

 	presenceIndicator() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo class method)

 	(toil.jobStores.aws.utils.SDBHelper class method)

 	prettyMemory() (in module toil.utils.toilStats)

 	prettyTime() (in module toil.utils.toilStats)

 	previousVersion (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo property)

 	primitive_types (toil.wdl.wdl_analysis.AnalyzeWDL attribute)

 	print_bus_messages() (toil.utils.toilStatus.ToilStatus method)

 	print_dot_chart() (toil.utils.toilStatus.ToilStatus method)

 	print_logs_and_exit() (in module toil.server.cli.wes_cwl_runner)

 	printAggregateJobStats() (toil.utils.toilStatus.ToilStatus method)

 	printContentsOfJobStore() (in module toil.utils.toilDebugFile)

 	printHelp() (in module toil.utils.toilMain)

 	printJobChildren() (toil.utils.toilStatus.ToilStatus method)

 	printJobLog() (toil.utils.toilStatus.ToilStatus method)

 	printq() (in module toil.lib.misc)

 	printUnicodeCharacter() (in module toil.test.utils.utilsTest)

 	printVersion() (in module toil.utils.toilMain)

 	process_and_read_file() (in module toil.wdl.wdl_functions)

 	process_finished_job() (toil.leader.Leader method)

 	process_finished_job_description() (toil.leader.Leader method)

 	process_infile() (in module toil.wdl.wdl_functions)

 	process_name_exists() (in module toil.lib.threading)

 	process_outfile() (in module toil.wdl.wdl_functions)

 	process_single_infile() (in module toil.wdl.wdl_functions)

 	process_single_outfile() (in module toil.wdl.wdl_functions)

 	processData() (in module toil.utils.toilStats)

 	processRemovedJob() (toil.leader.Leader method)

 	processTotallyFailedJob() (toil.leader.Leader method)

 	ProcessType (in module toil.cwl.cwltoil)

 	prohibited_labels (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement attribute)

 	projectID (toil.test.jobStores.jobStoreTest.GoogleJobStoreTest attribute)

 	(toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest attribute)

 	Promise (class in toil.job)

 	promise_tuples (toil.cwl.cwltoil.ResolveSource attribute)

 	Promised (in module toil.job)

 	PromisedRequirement (class in toil.job)

 	PromisedRequirementFunctionWrappingJob (class in toil.job)

 	PromisedRequirementJobFunctionWrappingJob (class in toil.job)

 	ProvisionerTest (class in toil.test.provisioners.provisionerTest)

 	ProxyConnectionError

 	prune() (in module toil.lib.ec2)

 	publicUrlExpiration (toil.jobStores.abstractJobStore.AbstractJobStore attribute)

 	publish() (toil.bus.MessageBus method)

 	(toil.bus.MessageOutbox method)

 	put_client() (toil.serviceManager.ServiceManager method)

 	putScript() (toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest method)

 	python (in module toil.version)

 	python() (toil.test.provisioners.clusterTest.AbstractClusterTest method)

Q

 	
 	queue_run() (toil.server.wes.toil_backend.ToilWorkflow method)

 	
 	queue_size (toil.bus.QueueSizeMessage attribute)

 	QueueSizeMessage (class in toil.bus)

R

 	
 	R (toil.batchSystems.kubernetes.KubernetesBatchSystem attribute)

 	r3_8xlarge (in module toil.test.provisioners.clusterScalerTest)

 	r5_2xlarge (in module toil.test.provisioners.clusterScalerTest)

 	r5_4xlarge (in module toil.test.provisioners.clusterScalerTest)

 	raise_() (in module toil.lib.exceptions)

 	reachable() (toil.test.src.jobTest.JobTest method)

 	read_boolean() (in module toil.wdl.wdl_functions)

 	read_cache() (toil.server.utils.AbstractStateStore method)

 	(toil.server.utils.WorkflowStateStore method)

 	read_csv() (in module toil.wdl.wdl_functions)

 	read_file() (in module toil.wdl.wdl_functions)

 	(toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	read_file_stream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	read_float() (in module toil.wdl.wdl_functions)

 	read_from_url() (toil.jobStores.abstractJobStore.AbstractJobStore class method)

 	read_int() (in module toil.wdl.wdl_functions)

 	read_json() (in module toil.wdl.wdl_functions)

 	read_kill_flag() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	read_leader_node_id() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	read_leader_pid() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	read_lines() (in module toil.wdl.wdl_functions)

 	read_logs() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	read_map() (in module toil.wdl.wdl_functions)

 	read_shared_file_stream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	read_single_file() (in module toil.wdl.wdl_functions)

 	read_string() (in module toil.wdl.wdl_functions)

 	read_tsv() (in module toil.wdl.wdl_functions)

 	ReadablePipe (class in toil.jobStores.utils)

 	ReadableTransformingPipe (class in toil.jobStores.utils)

 	readClusterSettings() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	(toil.provisioners.gceProvisioner.GCEProvisioner method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	readFile() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	readFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	readFrom() (toil.jobStores.utils.WritablePipe method)

 	readGlobalFile() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.fileStores.cachingFileStore.CachingFileStore method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	readGlobalFileStream() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.fileStores.cachingFileStore.CachingFileStore method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	readSharedFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	readStatsAndLogging() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	readStatsFileOwnerID (toil.jobStores.aws.jobStore.AWSJobStore attribute)

 	realpath() (toil.cwl.cwltoil.ToilFsAccess method)

 	RealtimeLogger (class in toil.realtimeLogger)

 	RealtimeLoggerMetaclass (class in toil.realtimeLogger)

 	RealtimeLoggerTest (class in toil.test.src.realtimeLoggerTest)

 	recursive_dependencies() (in module toil.wdl.wdltoil)

 	refresh() (toil.resource.Resource method)

 	region (toil.test.server.serverTest.BucketUsingTest attribute)

 	region_to_bucket_location() (in module toil.lib.aws.utils)

 	regionDict (in module toil.lib.generatedEC2Lists)

 	register() (toil.resource.Resource method)

 	registered() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.batchSystems.mesos.executor.MesosExecutor method)

 	registerPromise() (toil.job.Job method)

 	RegularLogTest (class in toil.test.src.regularLogTest)

 	reissueMissingJobs() (toil.leader.Leader method)

 	reissueOverLongJobs() (toil.leader.Leader method)

 	release() (toil.batchSystems.abstractBatchSystem.ResourcePool method)

 	(toil.batchSystems.abstractBatchSystem.ResourceSet method)

 	remainingBillingInterval() (toil.provisioners.node.Node method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	remainingTryCount (toil.job.JobDescription property)

 	remove_empty_listings() (in module toil.cwl.cwltoil)

 	remove_pickle_problems() (in module toil.cwl.cwltoil)

 	removeJob() (toil.leader.Leader method)

 	renameReferences() (toil.job.JobDescription method)

 	replace() (toil.job.JobDescription method)

 	replay_message_bus() (in module toil.bus)

 	report() (in module example_cachingbenchmark)

 	(toil.utils.toilStats.ColumnWidths method)

 	report_on_jobs() (toil.utils.toilStatus.ToilStatus method)

 	reportData() (in module toil.utils.toilStats)

 	reportMemory() (in module toil.utils.toilStats)

 	reportNumber() (in module toil.utils.toilStats)

 	reportPrettyData() (in module toil.utils.toilStats)

 	reportTime() (in module toil.utils.toilStats)

 	requestCheckDockerIo() (in module toil)

 	requestCheckRegularDocker() (in module toil)

 	required_env_vars() (toil.cwl.cwltoil.CWLJob method)

 	required_labels (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement attribute)

 	REQUIREMENT_NAMES (in module toil.job)

 	requirements (toil.job.Requirer property)

 	requirements_string() (toil.job.Requirer method)

 	RequirementsDict (class in toil.job)

 	Requirer (class in toil.job)

 	reregistered() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.batchSystems.mesos.executor.MesosExecutor method)

 	RESERVE_BREAKPOINTS (in module toil.provisioners.clusterScaler)

 	RESERVE_FRACTIONS (in module toil.provisioners.clusterScaler)

 	RESERVE_SMALL_AMOUNT (in module toil.provisioners.clusterScaler)

 	RESERVE_SMALL_LIMIT (in module toil.provisioners.clusterScaler)

 	reset_job() (toil.toilState.ToilState method)

 	resetCounters() (in module toil.test.batchSystems.batchSystemTest)

 	resolve() (toil.cwl.cwltoil.DefaultWithSource method)

 	(toil.cwl.cwltoil.JustAValue method)

 	(toil.cwl.cwltoil.ResolveSource method)

 	(toil.cwl.cwltoil.StepValueFrom method)

 	resolve_dict_w_promises() (in module toil.cwl.cwltoil)

 	resolve_operation_id() (toil.server.wes.abstract_backend.WESBackend method)

 	resolveEntryPoint() (in module toil)

 	ResolveIndirect (class in toil.cwl.cwltoil)

 	ResolveSource (class in toil.cwl.cwltoil)

 	Resource (class in toil.resource)

 	resource() (in module toil.lib.aws.session)

 	(toil.lib.aws.session.AWSConnectionManager method)

 	resourceEnvNamePrefix (toil.resource.Resource attribute)

 	ResourceException

 	resourceOffers() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	ResourcePool (class in toil.batchSystems.abstractBatchSystem)

 	
 	ResourceSet (class in toil.batchSystems.abstractBatchSystem)

 	ResourceTest (class in toil.test.src.resourceTest)

 	restart() (toil.common.Toil method)

 	restartCheckpoint() (toil.job.CheckpointJobDescription method)

 	RestartDAGTest (class in toil.test.src.restartDAGTest)

 	RestartingJob (class in toil.test.src.importExportFileTest)

 	restore_batch_system_plugin_state() (in module toil.batchSystems.registry)

 	result_status (toil.bus.JobUpdatedMessage attribute)

 	ResumabilityTest (class in toil.test.src.resumabilityTest)

 	resume() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	resumeJobStore() (toil.common.Toil class method)

 	retry() (in module toil)

 	(in module toil.batchSystems.mesos.test)

 	(in module toil.lib.retry)

 	retry_ec2() (in module toil.lib.ec2)

 	retry_flaky_test (in module toil.lib.retry)

 	retry_s3() (in module toil.lib.aws.utils)

 	retry_sdb() (in module toil.jobStores.aws.utils)

 	retryable_kubernetes_errors (in module toil.batchSystems.kubernetes)

 	retryable_s3_errors() (in module toil.lib.aws.utils)

 	retryable_sdb_errors() (in module toil.jobStores.aws.utils)

 	retryable_ssl_error() (in module toil.jobStores.aws.utils)

 	retryPredicate() (toil.provisioners.abstractProvisioner.AbstractProvisioner static method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner static method)

 	(toil.provisioners.gceProvisioner.GCEProvisioner static method)

 	return_status_code() (in module toil.lib.retry)

 	revsort() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	revsort_no_checksum() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	RM (in module toil.lib.docker)

 	rm_unprocessed_secondary_files() (in module toil.cwl.cwltoil)

 	robust_rmtree() (in module toil.lib.io)

 	root() (in module example_cachingbenchmark)

 	root_logger (in module toil.statsAndLogging)

 	rootDirPathEnvName (toil.resource.Resource attribute)

 	rootJobStoreIDFileName (toil.jobStores.abstractJobStore.AbstractJobStore attribute)

 	rsyncUtil() (toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest method)

 	(toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest method)

 	run() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	(toil.batchSystems.mesos.test.ExceptionalThread method)

 	(toil.cwl.cwltoil.CWLGather method)

 	(toil.cwl.cwltoil.CWLJob method)

 	(toil.cwl.cwltoil.CWLJobWrapper method)

 	(toil.cwl.cwltoil.CWLScatter method)

 	(toil.cwl.cwltoil.CWLWorkflow method)

 	(toil.cwl.cwltoil.ResolveIndirect method)

 	(toil.job.FunctionWrappingJob method)

 	(toil.job.Job method)

 	(toil.job.JobFunctionWrappingJob method)

 	(toil.job.PromisedRequirementFunctionWrappingJob method)

 	(toil.job.PromisedRequirementJobFunctionWrappingJob method)

 	(toil.job.ServiceHostJob method)

 	(toil.leader.Leader method)

 	(toil.lib.threading.ExceptionalThread method)

 	(toil.server.wes.tasks.MultiprocessingTaskRunner class method)

 	(toil.server.wes.tasks.TaskRunner static method)

 	(toil.server.wes.tasks.ToilWorkflowRunner method)

 	(toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolLeaderThread method)

 	(toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolThread method)

 	(toil.test.ExceptionalThread method)

 	(toil.test.mesos.stress.HelloWorldFollowOn method)

 	(toil.test.mesos.stress.HelloWorldJob method)

 	(toil.test.mesos.stress.LongTestFollowOn method)

 	(toil.test.mesos.stress.LongTestJob method)

 	(toil.test.src.checkpointTest.AlwaysFail method)

 	(toil.test.src.checkpointTest.CheckpointFailsFirstTime method)

 	(toil.test.src.checkpointTest.CheckRetryCount method)

 	(toil.test.src.checkpointTest.FailOnce method)

 	(toil.test.src.helloWorldTest.FollowOn method)

 	(toil.test.src.helloWorldTest.HelloWorld method)

 	(toil.test.src.importExportFileTest.RestartingJob method)

 	(toil.test.src.realtimeLoggerTest.LogTest method)

 	(toil.test.src.toilContextManagerTest.FollowOn method)

 	(toil.test.src.toilContextManagerTest.HelloWorld method)

 	(toil.test.src.userDefinedJobArgTypeTest.JobClass method)

 	(toil.test.utils.utilsTest.RunTwoJobsPerWorker method)

 	(toil.wdl.wdltoil.WDLArrayBindingsJob method)

 	(toil.wdl.wdltoil.WDLBaseJob method)

 	(toil.wdl.wdltoil.WDLCombineBindingsJob method)

 	(toil.wdl.wdltoil.WDLConditionalJob method)

 	(toil.wdl.wdltoil.WDLNamespaceBindingsJob method)

 	(toil.wdl.wdltoil.WDLOutputsJob method)

 	(toil.wdl.wdltoil.WDLRootJob method)

 	(toil.wdl.wdltoil.WDLScatterJob method)

 	(toil.wdl.wdltoil.WDLTaskJob method)

 	(toil.wdl.wdltoil.WDLWorkflowJob method)

 	(toil.wdl.wdltoil.WDLWorkflowNodeJob method)

 	(tutorial_arguments.HelloWorld method)

 	(tutorial_discoverfiles.discoverFiles method)

 	(tutorial_invokeworkflow.HelloWorld method)

 	(tutorial_invokeworkflow2.HelloWorld method)

 	(tutorial_managing.LocalFileStoreJob method)

 	(tutorial_staging.HelloWorld method)

 	run1000JobsOnMicros() (toil.test.provisioners.clusterScalerTest.BinPackingTest method)

 	run_app() (in module toil.server.wsgi_app)

 	run_conformance_tests() (in module toil.test.cwl.cwlTest)

 	run_jobs() (toil.cwl.cwltoil.ToilSingleJobExecutor method)

 	run_local_jobs_on_workers (toil.common.Config attribute)

 	run_many() (fake_mpi_run.Runner method)

 	run_once() (fake_mpi_run.Runner method)

 	run_wes (in module toil.server.wes.tasks)

 	run_wes_task() (in module toil.server.wes.tasks)

 	run_with_engine_options() (toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters method)

 	run_workflow() (toil.server.wes.abstract_backend.WESBackend method)

 	(toil.server.wes.toil_backend.ToilBackend method)

 	run_zip_workflow() (toil.test.server.serverTest.ToilWESServerWorkflowTest method)

 	runCheckpointVertexTest() (toil.test.src.jobTest.JobTest method)

 	runMain() (in module toil.test.sort.sortTest)

 	Runner (class in fake_mpi_run)

 	runNewCheckpointIsLeafVertexTest() (toil.test.src.jobTest.JobTest method)

 	running_on_ec2() (in module toil.lib.aws)

 	(in module toil.provisioners.aws)

 	(in module toil.test)

 	running_on_ecs() (in module toil.lib.aws)

 	runningPattern (toil.batchSystems.parasol.ParasolBatchSystem attribute)

 	runOnAppliance() (toil.test.ApplianceTestSupport.Appliance method)

 	runQC() (in module tutorial_cwlexample)

 	runToil() (toil.test.src.jobServiceTest.JobServiceTest method)

 	(toil.test.src.jobServiceTest.PerfectServiceTest method)

 	RunTwoJobsPerWorker (class in toil.test.utils.utilsTest)

 	rv() (toil.cwl.cwltoil.SelfJob method)

 	(toil.job.EncapsulatedJob method)

 	(toil.job.Job method)

S

 	
 	s (in module tutorial_services)

 	s3_boto3_client (in module toil.jobStores.aws.jobStore)

 	s3_boto3_resource (in module toil.jobStores.aws.jobStore)

 	s3_resource (toil.test.lib.aws.test_s3.S3Test attribute)

 	(toil.test.server.serverTest.BucketUsingTest attribute)

 	S3StateStore (class in toil.server.utils)

 	S3Test (class in toil.test.lib.aws.test_s3)

 	safe_read_file() (in module toil.server.utils)

 	safe_write_file() (in module toil.server.utils)

 	safeUnpickleFromStream() (in module toil.common)

 	save() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo method)

 	save_batch_system_plugin_state() (in module toil.batchSystems.registry)

 	saveAsResourceTo() (toil.resource.ModuleDescriptor method)

 	saveAsRootJob() (toil.job.Job method)

 	saveBody() (toil.job.Job method)

 	(toil.job.ServiceHostJob method)

 	scale() (toil.job.Requirer method)

 	ScalerThread (class in toil.provisioners.clusterScaler)

 	ScalerThreadTest (class in toil.test.provisioners.clusterScalerTest)

 	scan_bus_messages() (toil.bus.MessageBus class method)

 	scan_for_unsupported_requirements() (in module toil.cwl.cwltoil)

 	schedd_lock (in module toil.batchSystems.htcondor)

 	script() (toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest method)

 	scriptCommand() (toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest method)

 	sdb_unavailable() (in module toil.jobStores.aws.utils)

 	SDBHelper (class in toil.jobStores.aws.utils)

 	secure_path() (toil.server.wes.abstract_backend.WESBackend static method)

 	select_first() (in module toil.wdl.wdl_functions)

 	SelfJob (class in toil.cwl.cwltoil)

 	send_cancel() (toil.server.utils.WorkflowStateMachine method)

 	send_canceled() (toil.server.utils.WorkflowStateMachine method)

 	send_complete() (toil.server.utils.WorkflowStateMachine method)

 	send_enqueue() (toil.server.utils.WorkflowStateMachine method)

 	send_executor_error() (toil.server.utils.WorkflowStateMachine method)

 	send_initialize() (toil.server.utils.WorkflowStateMachine method)

 	send_run() (toil.server.utils.WorkflowStateMachine method)

 	send_system_error() (toil.server.utils.WorkflowStateMachine method)

 	ServerSideCopyProhibitedError

 	serverThread (toil.realtimeLogger.RealtimeLogger attribute)

 	Service (class in toil.test.batchSystems.batchSystemTest)

 	serviceAccessor() (in module toil.test.src.jobServiceTest)

 	serviceHostIDsInBatches() (toil.job.JobDescription method)

 	ServiceHostJob (class in toil.job)

 	ServiceJobDescription (class in toil.job)

 	ServiceManager (class in toil.serviceManager)

 	services (toil.job.JobDescription property)

 	services_are_starting() (toil.serviceManager.ServiceManager method)

 	serviceTest() (in module toil.test.src.jobServiceTest)

 	serviceTestParallelRecursive() (in module toil.test.src.jobServiceTest)

 	serviceTestRecursive() (in module toil.test.src.jobServiceTest)

 	serviceWorker() (toil.test.src.jobServiceTest.ToyService static method)

 	session() (toil.lib.aws.session.AWSConnectionManager method)

 	set() (toil.server.utils.AbstractStateStore method)

 	(toil.server.utils.FileStateStore method)

 	(toil.server.utils.MemoryStateCache method)

 	(toil.server.utils.S3StateStore method)

 	(toil.server.utils.WorkflowStateStore method)

 	set_batchsystem_config_defaults() (in module toil.batchSystems.options)

 	set_batchsystem_options() (in module toil.batchSystems.options)

 	set_log_level() (in module toil.statsAndLogging)

 	set_logging_from_options() (in module toil.statsAndLogging)

 	set_message_bus() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.batchSystems.abstractBatchSystem.BatchSystemSupport method)

 	set_preemptible() (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement method)

 	set_root_job() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	set_up_and_run_task() (toil.server.wes.tasks.MultiprocessingTaskRunner static method)

 	set_up_run() (toil.server.wes.toil_backend.ToilWorkflow method)

 	setAutoscaledNodeTypes() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	setEnv() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.batchSystems.abstractBatchSystem.BatchSystemSupport method)

 	(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem method)

 	(toil.batchSystems.parasol.ParasolBatchSystem method)

 	setLoggingFromOptions() (in module toil.lib.bioio)

 	setNodeCount() (toil.provisioners.clusterScaler.ClusterScaler method)

 	setOptions() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem class method)

 	(toil.batchSystems.awsBatch.AWSBatchBatchSystem class method)

 	(toil.batchSystems.kubernetes.KubernetesBatchSystem class method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem class method)

 	(toil.batchSystems.parasol.ParasolBatchSystem class method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem class method)

 	(toil.batchSystems.slurm.SlurmBatchSystem class method)

 	(toil.batchSystems.tes.TESBatchSystem class method)

 	(toil.common.Config method)

 	setRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	setStaticNodes() (toil.provisioners.clusterScaler.ClusterScaler method)

 	setup() (in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	setUp() (toil.test.batchSystems.batchSystemTest.BatchSystemPluginTest method)

 	(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest method)

 	(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest method)

 	(toil.test.batchSystems.test_slurm.SlurmTest method)

 	(toil.test.cwl.cwlTest.CWLOnARMTest method)

 	(toil.test.cwl.cwlTest.CWLv10Test method)

 	(toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	(toil.test.jobStores.jobStoreTest.AbstractEncryptedJobStoreTest.Test method)

 	(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	(toil.test.lib.dockerTest.DockerTest method)

 	(toil.test.lib.test_misc.UserNameUnvailableTest method)

 	(toil.test.lib.test_misc.UserNameVeryBrokenTest method)

 	(toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest method)

 	(toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTestMultipleNodeTypes method)

 	(toil.test.provisioners.aws.awsProvisionerTest.AWSRestartTest method)

 	(toil.test.provisioners.aws.awsProvisionerTest.PreemptibleDeficitCompensationTest method)

 	(toil.test.provisioners.clusterScalerTest.BinPackingTest method)

 	(toil.test.provisioners.clusterScalerTest.ClusterScalerTest method)

 	(toil.test.provisioners.clusterTest.AbstractClusterTest method)

 	(toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest method)

 	(toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTest method)

 	(toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTestMultipleNodeTypes method)

 	(toil.test.provisioners.gceProvisionerTest.GCERestartTest method)

 	(toil.test.server.serverTest.AbstractToilWESServerTest method)

 	(toil.test.server.serverTest.FileStateStoreTest method)

 	(toil.test.server.serverTest.FileStateStoreURLTest method)

 	(toil.test.server.serverTest.ToilWESServerCeleryS3StateWorkflowTest method)

 	(toil.test.sort.sortTest.SortTest method)

 	(toil.test.src.autoDeploymentTest.AutoDeploymentTest method)

 	(toil.test.src.deferredFunctionTest.DeferredFunctionTest method)

 	(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	(toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest method)

 	(toil.test.src.fileStoreTest.hidden.AbstractNonCachingFileStoreTest method)

 	(toil.test.src.importExportFileTest.ImportExportFileTest method)

 	(toil.test.src.jobDescriptionTest.JobDescriptionTest method)

 	(toil.test.src.miscTests.MiscTests method)

 	(toil.test.src.regularLogTest.RegularLogTest method)

 	(toil.test.src.restartDAGTest.RestartDAGTest method)

 	(toil.test.src.retainTempDirTest.CleanWorkDirTest method)

 	(toil.test.src.toilContextManagerTest.ToilContextManagerTest method)

 	(toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest method)

 	(toil.test.src.workerTest.WorkerTests method)

 	(toil.test.ToilTest method)

 	(toil.test.utils.toilKillTest.ToilKillTest method)

 	(toil.test.utils.utilsTest.UtilsTest method)

 	(toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	(toil.test.wdl.toilwdlTest.BaseToilWdlTest method)

 	setup_method() (toil.test.ToilTest method)

 	setUpClass() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest class method)

 	(toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest class method)

 	(toil.test.cwl.cwlTest.CWLv11Test class method)

 	(toil.test.cwl.cwlTest.CWLv12Test class method)

 	(toil.test.docs.scriptsTest.ToilDocumentationTest class method)

 	(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test class method)

 	(toil.test.lib.aws.test_s3.S3Test class method)

 	(toil.test.lib.test_ec2.AMITest class method)

 	(toil.test.server.serverTest.BucketUsingTest class method)

 	(toil.test.src.jobTest.JobTest class method)

 	(toil.test.ToilTest class method)

 	(toil.test.wdl.builtinTest.WdlLanguageSpecWorkflowsTest class method)

 	(toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest class method)

 	(toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest class method)

 	(toil.test.wdl.builtinTest.WdlWorkflowsTest class method)

 	(toil.test.wdl.toilwdlTest.BaseToilWdlTest class method)

 	(toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest class method)

 	(toil.test.wdl.wdltoil_test.WdlToilTest class method)

 	setupJobAfterFailure() (toil.job.JobDescription method)

 	setUserScript() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.batchSystems.awsBatch.AWSBatchBatchSystem method)

 	(toil.batchSystems.kubernetes.KubernetesBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.batchSystems.tes.TESBatchSystem method)

 	
 	setWidth() (toil.utils.toilStats.ColumnWidths method)

 	Shape (class in toil.batchSystems.mesos)

 	(class in toil.provisioners.abstractProvisioner)

 	shapes() (toil.provisioners.clusterScaler.NodeReservation method)

 	sharedFileNameRegex (toil.jobStores.abstractJobStore.AbstractJobStore attribute)

 	sharedFileOwnerID (toil.jobStores.aws.jobStore.AWSJobStore attribute)

 	shutdown() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem method)

 	(toil.batchSystems.awsBatch.AWSBatchBatchSystem method)

 	(toil.batchSystems.kubernetes.KubernetesBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.batchSystems.mesos.executor.MesosExecutor method)

 	(toil.batchSystems.parasol.ParasolBatchSystem method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem method)

 	(toil.batchSystems.tes.TESBatchSystem method)

 	(toil.common.ToilMetrics method)

 	(toil.fileStores.abstractFileStore.AbstractFileStore class method)

 	(toil.fileStores.cachingFileStore.CachingFileStore class method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore class method)

 	shutDown() (toil.provisioners.clusterScaler.ClusterScaler method)

 	shutdown() (toil.provisioners.clusterScaler.ScalerThread method)

 	(toil.serviceManager.ServiceManager method)

 	(toil.statsAndLogging.StatsAndLogging method)

 	shutDown() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	shutdownFileStore() (toil.fileStores.abstractFileStore.AbstractFileStore static method)

 	shutdownLocal() (toil.batchSystems.local_support.BatchSystemLocalSupport method)

 	shutDownStats() (toil.provisioners.clusterScaler.ClusterStats method)

 	simpleFileStoreJob() (in module toil.test.src.jobFileStoreTest)

 	simpleJobFn() (in module toil.test.src.jobTest)

 	simplify_list() (in module toil.cwl.cwltoil)

 	single_machine_batch_system_factory() (in module toil.batchSystems.registry)

 	SingleMachineBatchSystem (class in toil.batchSystems.singleMachine)

 	SingleMachineBatchSystemJobTest (class in toil.test.batchSystems.batchSystemTest)

 	SingleMachineBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	SingleMachinePromisedRequirementsTest (class in toil.test.src.promisedRequirementTest)

 	sitePackages (toil.test.src.autoDeploymentTest.AutoDeploymentTest attribute)

 	size() (in module toil.wdl.wdl_functions)

 	(toil.cwl.cwltoil.ToilFsAccess method)

 	SkipNull (class in toil.cwl.cwltoil)

 	skipped_outputs() (toil.cwl.cwltoil.Conditional method)

 	sleepSeconds() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem method)

 	sleepTime (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest attribute)

 	slow() (in module toil.test)

 	slow_down() (in module toil.lib.misc)

 	slurm_batch_system_factory() (in module toil.batchSystems.registry)

 	SlurmBatchSystem (class in toil.batchSystems.slurm)

 	SlurmBatchSystem.Worker (class in toil.batchSystems.slurm)

 	SlurmBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	SlurmTest (class in toil.test.batchSystems.test_slurm)

 	smoothEstimate() (toil.provisioners.clusterScaler.ClusterScaler method)

 	sort() (in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	sort_category_choices (in module toil.utils.toilStats)

 	sort_field_choices (in module toil.utils.toilStats)

 	sort_options() (toil.server.wes.tasks.ToilWorkflowRunner method)

 	sortJobs() (in module toil.utils.toilStats)

 	sortMemory (in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	SortTest (class in toil.test.sort.sortTest)

 	SOURCE_IMAGE (toil.provisioners.gceProvisioner.GCEProvisioner attribute)

 	split() (in module toil.provisioners.clusterScaler)

 	sprintTag() (in module toil.utils.toilStats)

 	SQLITE_TIMEOUT_SECS (in module toil.fileStores.cachingFileStore)

 	sseKeyPath (toil.jobStores.aws.jobStore.AWSJobStore property)

 	sshAppliance() (toil.provisioners.node.Node method)

 	sshInstance() (toil.provisioners.node.Node method)

 	sshUtil() (toil.test.provisioners.clusterTest.AbstractClusterTest method)

 	(toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest method)

 	stageFn() (in module tutorial_requirements)

 	start() (toil.common.Toil method)

 	(toil.job.Job.Service method)

 	(toil.serviceManager.ServiceManager method)

 	(toil.statsAndLogging.StatsAndLogging method)

 	(toil.test.batchSystems.batchSystemTest.Service method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	(toil.test.src.jobServiceTest.ToySerializableService method)

 	(toil.test.src.jobServiceTest.ToyService method)

 	(toil.test.src.jobTest.TrivialService method)

 	(tutorial_services.DemoService method)

 	start_server() (in module toil.server.app)

 	startCommit() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.fileStores.cachingFileStore.CachingFileStore method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	startCommitThread() (toil.fileStores.cachingFileStore.CachingFileStore method)

 	startDashboard() (toil.common.ToilMetrics method)

 	startStats() (toil.provisioners.clusterScaler.ClusterStats method)

 	startToil() (toil.job.Job.Runner static method)

 	STATE_DIR_STEM (toil.deferred.DeferredFunctionManager attribute)

 	state_store_cache (in module toil.server.utils)

 	STATE_TO_EXIT_REASON (in module toil.batchSystems.awsBatch)

 	(in module toil.batchSystems.tes)

 	StatsAndLogging (class in toil.statsAndLogging)

 	statsAndLoggingAggregator() (toil.statsAndLogging.StatsAndLogging class method)

 	statsCommand (toil.test.utils.utilsTest.UtilsTest property)

 	StatsDict (class in toil.worker)

 	statsFileOwnerID (toil.jobStores.aws.jobStore.AWSJobStore attribute)

 	statusCommand() (toil.test.utils.utilsTest.UtilsTest method)

 	statusUpdate() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	StepValueFrom (class in toil.cwl.cwltoil)

 	STOP (in module toil.lib.docker)

 	stop() (toil.job.Job.Service method)

 	(toil.test.batchSystems.batchSystemTest.Service method)

 	(toil.test.src.jobServiceTest.ToySerializableService method)

 	(toil.test.src.jobServiceTest.ToyService method)

 	(toil.test.src.jobTest.TrivialService method)

 	(tutorial_services.DemoService method)

 	streamingFileStoreString (in module toil.test.src.jobFileStoreTest)

 	strict_bool() (in module toil.lib.memoize)

 	StubHttpRequestHandler (class in toil.test.jobStores.jobStoreTest)

 	sub() (in module toil.wdl.wdl_functions)

 	submit_run() (in module toil.server.cli.wes_cwl_runner)

 	submitJob() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker method)

 	(toil.batchSystems.gridengine.GridEngineBatchSystem.Worker method)

 	(toil.batchSystems.htcondor.HTCondorBatchSystem.Worker method)

 	(toil.batchSystems.lsf.LSFBatchSystem.Worker method)

 	(toil.batchSystems.slurm.SlurmBatchSystem.Worker method)

 	(toil.batchSystems.torque.TorqueBatchSystem.Worker method)

 	subprocessDockerCall() (in module toil.lib.docker)

 	subscribe() (toil.bus.MessageBus method)

 	subtract() (toil.provisioners.clusterScaler.NodeReservation method)

 	successor_returned() (toil.toilState.ToilState method)

 	successors_by_phase() (toil.job.JobDescription method)

 	successors_pending() (toil.toilState.ToilState method)

 	successorsAndServiceHosts() (toil.job.JobDescription method)

 	SUPPORTED_HTTP_ERRORS (in module toil.lib.retry)

 	supportedClusterTypes() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	(toil.provisioners.gceProvisioner.GCEProvisioner method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	supportsAutoDeployment() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem class method)

 	(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem class method)

 	(toil.batchSystems.awsBatch.AWSBatchBatchSystem class method)

 	(toil.batchSystems.kubernetes.KubernetesBatchSystem class method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem class method)

 	(toil.batchSystems.parasol.ParasolBatchSystem class method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem class method)

 	(toil.batchSystems.tes.TESBatchSystem class method)

 	supportsWallTime() (toil.test.batchSystems.batchSystemTest.AWSBatchBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.ParasolBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.TESBatchSystemTest method)

 	supportsWorkerCleanup() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem class method)

 	(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem class method)

 	(toil.batchSystems.cleanup_support.BatchSystemCleanupSupport class method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem class method)

 	(toil.batchSystems.parasol.ParasolBatchSystem class method)

 	(toil.batchSystems.singleMachine.SingleMachineBatchSystem class method)

 	suppress_exotic_logging() (in module toil.statsAndLogging)

 	sync_memoize() (in module toil.lib.memoize)

 	SynthesizeWDL (class in toil.wdl.wdl_synthesis)

 	SYS_MAX_SIZE (in module toil.common)

 	system() (in module toil.lib.bioio)

 	SystemTest (class in toil.test.src.systemTest)

T

 	
 	T (in module toil.job)

 	t2_micro (in module toil.test.provisioners.clusterScalerTest)

 	TagGenerationTest (class in toil.test.lib.aws.test_utils)

 	task_filter() (in module toil.server.wes.amazon_wes_utils)

 	TaskData (in module toil.batchSystems.mesos)

 	TaskLog (in module toil.server.wes.abstract_backend)

 	TaskRunner (class in toil.server.wes.tasks)

 	tearDown() (toil.test.batchSystems.batchSystemTest.BatchSystemPluginTest method)

 	(toil.test.batchSystems.batchSystemTest.GridEngineBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest method)

 	(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.HTCondorBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.MesosBatchSystemJobTest method)

 	(toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.ParasolBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.SlurmBatchSystemTest method)

 	(toil.test.batchSystems.batchSystemTest.TorqueBatchSystemTest method)

 	(toil.test.cwl.cwlTest.CWLv10Test method)

 	(toil.test.cwl.cwlTest.CWLv11Test method)

 	(toil.test.cwl.cwlTest.CWLv12Test method)

 	(toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	(toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	(toil.test.jobStores.jobStoreTest.AbstractEncryptedJobStoreTest.Test method)

 	(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	(toil.test.lib.test_misc.UserNameUnvailableTest method)

 	(toil.test.lib.test_misc.UserNameVeryBrokenTest method)

 	(toil.test.provisioners.clusterTest.AbstractClusterTest method)

 	(toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest method)

 	(toil.test.server.serverTest.AbstractToilWESServerTest method)

 	(toil.test.sort.sortTest.SortTest method)

 	(toil.test.src.jobDescriptionTest.JobDescriptionTest method)

 	(toil.test.src.promisedRequirementTest.MesosPromisedRequirementsTest method)

 	(toil.test.src.promisedRequirementTest.SingleMachinePromisedRequirementsTest method)

 	(toil.test.src.restartDAGTest.RestartDAGTest method)

 	(toil.test.src.retainTempDirTest.CleanWorkDirTest method)

 	(toil.test.src.toilContextManagerTest.ToilContextManagerTest method)

 	(toil.test.ToilTest method)

 	(toil.test.utils.toilKillTest.ToilKillTest method)

 	(toil.test.utils.utilsTest.UtilsTest method)

 	(toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	(toil.test.wdl.toilwdlTest.BaseToilWdlTest method)

 	tearDownClass() (toil.test.lib.aws.test_s3.S3Test class method)

 	(toil.test.server.serverTest.BucketUsingTest class method)

 	(toil.test.ToilTest class method)

 	(toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest class method)

 	tearDownModule() (in module toil.test.jobStores.jobStoreTest)

 	tempDir (toil.job.Job property)

 	tempFileContaining() (in module toil.test.src.resourceTest)

 	tempFileTestErrorJob() (in module toil.test.src.retainTempDirTest)

 	tempFileTestJob() (in module toil.test.src.retainTempDirTest)

 	TemporaryID (class in toil.job)

 	TERMINAL_STATES (in module toil.server.utils)

 	terminateNodes() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	(toil.provisioners.gceProvisioner.GCEProvisioner method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	tes_batch_system_factory() (in module toil.batchSystems.registry)

 	tes_bearer_token (toil.common.Config attribute)

 	tes_endpoint (toil.common.Config attribute)

 	tes_password (toil.common.Config attribute)

 	tes_user (toil.common.Config attribute)

 	TESBatchSystem (class in toil.batchSystems.tes)

 	TESBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	test() (toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest method)

 	(toil.test.provisioners.aws.awsProvisionerTest.PreemptibleDeficitCompensationTest method)

 	(toil.test.src.promisesTest.CachedUnpicklingJobStoreTest method)

 	(toil.test.src.promisesTest.ChainedIndexedPromisesTest method)

 	(toil.test.src.promisesTest.PathIndexingPromiseTest method)

 	(toil.test.src.resumabilityTest.ResumabilityTest method)

 	test_AMI_finding() (toil.test.provisioners.aws.awsProvisionerTest.AWSProvisionerBenchTest method)

 	test_as_map() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_as_pairs() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_atomic_context_error() (toil.test.src.miscTests.MiscTests method)

 	test_atomic_context_ok() (toil.test.src.miscTests.MiscTests method)

 	test_atomic_install() (toil.test.src.miscTests.MiscTests method)

 	test_atomic_install_dev() (toil.test.src.miscTests.MiscTests method)

 	test_available_cores() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest method)

 	test_basic_import_export() (toil.test.src.importExportFileTest.ImportExportFileTest method)

 	test_bioconda() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_biocontainers() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_build_tag() (toil.test.lib.aws.test_utils.TagGenerationTest method)

 	test_build_tag_with_tags() (toil.test.lib.aws.test_utils.TagGenerationTest method)

 	test_bypass_stable_feed() (toil.test.lib.test_ec2.FlatcarFeedTest method)

 	test_call_command_err() (toil.test.src.miscTests.MiscTests method)

 	test_call_command_ok() (toil.test.src.miscTests.MiscTests method)

 	test_ceil() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_coalesce_job_exit_codes_many_all_exist() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_coalesce_job_exit_codes_one_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_coalesce_job_exit_codes_one_not_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_coalesce_job_exit_codes_sacct_raises_job_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_coalesce_job_exit_codes_sacct_raises_job_not_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_coalesce_job_exit_codes_some_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_collect_by_key() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_convert() (toil.test.lib.test_conversions.ConversionTest method)

 	test_create_bucket() (toil.test.lib.aws.test_s3.S3Test method)

 	test_cross() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_cross_thread_messaging() (toil.test.src.busTest.MessageBusTest method)

 	test_cuda() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_cwl_on_arm() (toil.test.cwl.cwlTest.CWLOnARMTest method)

 	test_cwl_toil_kill() (toil.test.utils.toilKillTest.ToilKillTest method)

 	test_download_directory_file() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_download_directory_s3() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_download_file() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_download_http() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_download_https() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_download_s3() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_download_structure() (in module toil.test.cwl.cwlTest)

 	test_download_subdirectory_file() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_download_subdirectory_s3() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_empty_aws_tags() (toil.test.lib.aws.test_utils.TagGenerationTest method)

 	test_enum_ints_in_file() (toil.test.src.busTest.MessageBusTest method)

 	test_fetch_arm_flatcar() (toil.test.lib.test_ec2.AMITest method)

 	test_fetch_flatcar() (toil.test.lib.test_ec2.AMITest method)

 	test_filename_conflict_detection() (in module toil.test.cwl.cwlTest)

 	test_filename_conflict_detection_at_root() (in module toil.test.cwl.cwlTest)

 	test_filename_conflict_resolution() (in module toil.test.cwl.cwlTest)

 	test_flatten() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_floor() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_get_bucket_location_public_bucket() (toil.test.lib.aws.test_s3.S3Test method)

 	test_get_service_info() (toil.test.server.serverTest.ToilWESServerBenchTest method)

 	test_get_user_name() (toil.test.lib.test_misc.UserNameAvailableTest method)

 	(toil.test.lib.test_misc.UserNameUnvailableTest method)

 	(toil.test.lib.test_misc.UserNameVeryBrokenTest method)

 	test_getJobDetailsFromSacct_many_all_exist() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobDetailsFromSacct_many_none_exist() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobDetailsFromSacct_many_some_exist() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobDetailsFromSacct_one_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobDetailsFromSacct_one_not_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobDetailsFromScontrol_many_all_exist() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobDetailsFromScontrol_many_none_exist() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobDetailsFromScontrol_many_some_exist() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobDetailsFromScontrol_one_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobDetailsFromScontrol_one_not_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobExitCode_job_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobExitCode_job_not_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobExitCode_sacct_raises_job_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_getJobExitCode_sacct_raises_job_not_exists() (toil.test.batchSystems.test_slurm.SlurmTest method)

 	test_giraffe() (toil.test.wdl.wdltoil_test.WdlToilTest method)

 	test_giraffe_deepvariant() (toil.test.wdl.wdltoil_test.WdlToilTest method)

 	test_gridengine_cwl_conformance() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_gridengine_cwl_conformance_with_caching() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_health() (toil.test.server.serverTest.ToilWESServerBenchTest method)

 	test_hms_duration_to_seconds() (toil.test.lib.test_conversions.ConversionTest method)

 	test_home() (toil.test.server.serverTest.ToilWESServerBenchTest method)

 	test_human2bytes() (toil.test.lib.test_conversions.ConversionTest method)

 	test_import_export_restart_false() (toil.test.src.importExportFileTest.ImportExportFileTest method)

 	test_import_export_restart_true() (toil.test.src.importExportFileTest.ImportExportFileTest method)

 	test_incorrect_json_emoji() (toil.test.lib.aws.test_utils.TagGenerationTest method)

 	test_incorrect_json_object() (toil.test.lib.aws.test_utils.TagGenerationTest method)

 	test_jobstore_does_not_leak_symlinks() (toil.test.jobStores.jobStoreTest.FileJobStoreTest method)

 	test_jobstore_init_preserves_symlink_path() (toil.test.jobStores.jobStoreTest.FileJobStoreTest method)

 	test_keys() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_kubernetes_cwl_conformance() (toil.test.cwl.cwlTest.CWLv10Test method)

 	(toil.test.cwl.cwlTest.CWLv11Test method)

 	(toil.test.cwl.cwlTest.CWLv12Test method)

 	test_kubernetes_cwl_conformance_with_caching() (toil.test.cwl.cwlTest.CWLv10Test method)

 	(toil.test.cwl.cwlTest.CWLv11Test method)

 	(toil.test.cwl.cwlTest.CWLv12Test method)

 	test_label_constraints() (toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemBenchTest method)

 	test_length() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_load_contents_file() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_load_contents_http() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_load_contents_https() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_load_contents_s3() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_log_dir_echo_no_output() (in module toil.test.cwl.cwlTest)

 	test_log_dir_echo_stderr() (in module toil.test.cwl.cwlTest)

 	test_lsf_cwl_conformance() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_lsf_cwl_conformance_with_caching() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_mesos_cwl_conformance() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_mesos_cwl_conformance_with_caching() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_miniwdl_self_test() (toil.test.wdl.wdltoil_test.WdlToilTest method)

 	test_mpi() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_negative_permissions_iam() (toil.test.lib.aws.test_iam.IAMTest method)

 	test_nested_panic() (toil.test.src.miscTests.TestPanic method)

 	test_node_type_parsing() (toil.test.provisioners.provisionerTest.ProvisionerTest method)

 	test_omp_threads() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest method)

 	test_overhead_accounting_large() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest method)

 	test_overhead_accounting_observed() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest method)

 	test_overhead_accounting_small() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest method)

 	test_panic() (toil.test.src.miscTests.TestPanic method)

 	test_panic_by_hand() (toil.test.src.miscTests.TestPanic method)

 	test_panic_with_secondary() (toil.test.src.miscTests.TestPanic method)

 	test_parasol_cwl_conformance() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_parasol_cwl_conformance_with_caching() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_parse_archive_feed() (toil.test.lib.test_ec2.FlatcarFeedTest method)

 	test_parse_beta_feed() (toil.test.lib.test_ec2.FlatcarFeedTest method)

 	test_parse_mem_and_cmd_from_output() (toil.test.batchSystems.test_lsf_helper.LSFHelperTest method)

 	test_parse_stable_feed() (toil.test.lib.test_ec2.FlatcarFeedTest method)

 	test_permissions_iam() (toil.test.lib.aws.test_iam.IAMTest method)

 	test_pick_value_with_one_null_value() (in module toil.test.cwl.cwlTest)

 	test_preemptability_constraints() (toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemBenchTest method)

 	test_range() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_read() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_read_write_global_files() (toil.test.provisioners.aws.awsProvisionerTest.AWSProvisionerBenchTest method)

 	test_restart() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_restart_without_bus_path() (toil.test.src.busTest.MessageBusTest method)

 	test_round() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_run_and_cancel_workflows() (toil.test.server.serverTest.ToilWESServerWorkflowTest method)

 	test_run_colon_output() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_run_conformance() (toil.test.cwl.cwlTest.CWLv10Test method)

 	(toil.test.cwl.cwlTest.CWLv11Test method)

 	(toil.test.cwl.cwlTest.CWLv12Test method)

 	test_run_conformance_with_caching() (toil.test.cwl.cwlTest.CWLv10Test method)

 	(toil.test.cwl.cwlTest.CWLv11Test method)

 	(toil.test.cwl.cwlTest.CWLv12Test method)

 	test_run_conformance_with_in_place_update() (toil.test.cwl.cwlTest.CWLv12Test method)

 	test_run_jobs() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest method)

 	test_run_revsort() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_run_revsort2() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_run_revsort_debug_worker() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_run_revsort_nochecksum() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_run_workflow_https_url() (toil.test.server.serverTest.ToilWESServerWorkflowTest method)

 	test_run_workflow_inputs_zip() (toil.test.server.serverTest.ToilWESServerWorkflowTest method)

 	test_run_workflow_manifest_and_inputs_zip() (toil.test.server.serverTest.ToilWESServerWorkflowTest method)

 	test_run_workflow_manifest_zip() (toil.test.server.serverTest.ToilWESServerWorkflowTest method)

 	test_run_workflow_multi_file_zip() (toil.test.server.serverTest.ToilWESServerWorkflowTest method)

 	test_run_workflow_no_params_zip() (toil.test.server.serverTest.ToilWESServerWorkflowTest method)

 	test_run_workflow_relative_url() (toil.test.server.serverTest.ToilWESServerWorkflowTest method)

 	test_run_workflow_relative_url_no_attachments_fails() (toil.test.server.serverTest.ToilWESServerWorkflowTest method)

 	test_run_workflow_single_file_zip() (toil.test.server.serverTest.ToilWESServerWorkflowTest method)

 	test_s3_as_secondary_file() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_set_env() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest method)

 	test_set_job_env() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest method)

 	test_size() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_size_large() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest method)

 	test_slurm_cwl_conformance() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_slurm_cwl_conformance_with_caching() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_state_store() (toil.test.server.serverTest.hidden.AbstractStateStoreTest method)

 	test_state_store_paths() (toil.test.server.serverTest.AWSStateStoreTest method)

 	test_stdout() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_streamable() (toil.test.cwl.cwlTest.CWLWorkflowTest method)

 	test_sub() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_torque_cwl_conformance() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_torque_cwl_conformance_with_caching() (toil.test.cwl.cwlTest.CWLv10Test method)

 	test_transpose() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_type_pair() (toil.test.wdl.builtinTest.WdlLanguageSpecWorkflowsTest method)

 	test_usage_message() (in module toil.test.cwl.cwlTest)

 	test_v1_declaration() (toil.test.wdl.builtinTest.WdlLanguageSpecWorkflowsTest method)

 	test_visit_cwl_class_and_reduce() (in module toil.test.cwl.cwlTest)

 	test_visit_top_cwl_class() (in module toil.test.cwl.cwlTest)

 	test_wes_server_cwl_conformance() (toil.test.cwl.cwlTest.CWLv12Test method)

 	test_wildcard_handling() (toil.test.lib.aws.test_iam.IAMTest method)

 	test_workflow_canceling_recovery() (toil.test.server.serverTest.ToilServerUtilsTest method)

 	test_workflow_echo_string() (in module toil.test.cwl.cwlTest)

 	test_workflow_echo_string_scatter_capture_stdout() (in module toil.test.cwl.cwlTest)

 	test_workflow_echo_string_scatter_stderr_log_dir() (in module toil.test.cwl.cwlTest)

 	test_write() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	test_zip() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest method)

 	testAddBatchSystemFactory() (toil.test.batchSystems.batchSystemTest.BatchSystemPluginTest method)

 	testAddChildEncapsulate() (toil.test.src.jobEncapsulationTest.JobEncapsulationTest method)

 	testAddingInitialNode() (toil.test.provisioners.clusterScalerTest.BinPackingTest method)

 	testAlways() (toil.test.src.retainTempDirTest.CleanWorkDirTest method)

 	testApplianceParser() (toil.test.src.dockerCheckTest.DockerCheckTest method)

 	testArguments() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testAsyncWriteWithCaching() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testAtomicityOfNonEmptyDirectoryRenames() (toil.test.src.systemTest.SystemTest method)

 	testAutoScale() (toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest method)

 	(toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTestMultipleNodeTypes method)

 	(toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTest method)

 	(toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTestMultipleNodeTypes method)

 	testAutoScaledCluster() (toil.test.provisioners.aws.awsProvisionerTest.AWSRestartTest method)

 	(toil.test.provisioners.gceProvisionerTest.GCERestartTest method)

 	testAwsMesos() (toil.test.sort.sortTest.SortTest method)

 	testAWSProvisionerUtils() (toil.test.utils.utilsTest.UtilsTest method)

 	testAwsSingle() (toil.test.sort.sortTest.SortTest method)

 	testBadGoogleRepo() (toil.test.src.dockerCheckTest.DockerCheckTest method)

 	testBadQuayRepo() (toil.test.src.dockerCheckTest.DockerCheckTest method)

 	testBadQuayRepoNTag() (toil.test.src.dockerCheckTest.DockerCheckTest method)

 	testBadQuayTag() (toil.test.src.dockerCheckTest.DockerCheckTest method)

 	testBatchCreate() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testBatchResourceLimits() (toil.test.batchSystems.batchSystemTest.ParasolBatchSystemTest method)

 	testBatchSystemCleanupCanHandleWorkerDeaths() (toil.test.src.deferredFunctionTest.DeferredFunctionTest method)

 	testBetaInertia() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest method)

 	testBroadDockerRepo() (toil.test.src.dockerCheckTest.DockerCheckTest method)

 	testBroadDockerRepoBadTag() (toil.test.src.dockerCheckTest.DockerCheckTest method)

 	testBuiltIn() (toil.test.src.resourceTest.ResourceTest method)

 	testCacheEvictionFailCase() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testCacheEvictionPartialEvict() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testCacheEvictionTotalEvict() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testCachingFileStore() (toil.test.src.jobFileStoreTest.JobFileStoreTest method)

 	testCheckpointedRestartSucceeds() (toil.test.src.checkpointTest.CheckpointTest method)

 	testCheckpointNotRetried() (toil.test.src.checkpointTest.CheckpointTest method)

 	testCheckpointRetriedOnce() (toil.test.src.checkpointTest.CheckpointTest method)

 	testCheckResourceRequest() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest method)

 	testChildLoadingEquality() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testCleanCache() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testClusterScaling() (toil.test.provisioners.clusterScalerTest.ScalerThreadTest method)

 	testClusterScalingMultipleNodeTypes() (toil.test.provisioners.clusterScalerTest.ScalerThreadTest method)

 	testClusterScalingWithPreemptibleJobs() (toil.test.provisioners.clusterScalerTest.ScalerThreadTest method)

 	testConcurrencyDynamic() (toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest method)

 	testConcurrencyStatic() (toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest method)

 	testConcurrencyWithDisk() (toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemJobTest method)

 	testConfigEquality() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testContextManger() (toil.test.src.toilContextManagerTest.ToilContextManagerTest method)

 	testControlledFailedWorkerRetry() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testCopySubRangeOfFile() (toil.test.sort.sortTest.SortTest method)

 	testCSV() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest method)

 	testCwlexample() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testDAGConsistency() (toil.test.src.jobTest.JobTest method)

 	testDeadlockDetection() (toil.test.src.jobTest.JobTest method)

 	testDeferralWithConcurrentEncapsulation() (toil.test.src.autoDeploymentTest.AutoDeploymentTest method)

 	testDeferralWithFailureAndEncapsulation() (toil.test.src.autoDeploymentTest.AutoDeploymentTest method)

 	testDeferredFunctionRunsWithClassMethod() (toil.test.src.deferredFunctionTest.DeferredFunctionTest method)

 	testDeferredFunctionRunsWithFailures() (toil.test.src.deferredFunctionTest.DeferredFunctionTest method)

 	testDeferredFunctionRunsWithLambda() (toil.test.src.deferredFunctionTest.DeferredFunctionTest method)

 	testDeferredFunctionRunsWithMethod() (toil.test.src.deferredFunctionTest.DeferredFunctionTest method)

 	testDeleteLocalFile() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testDestructionIdempotence() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testDestructionOfCorruptedJobStore() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testDiscoverfiles() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testDocker() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testDockerClean() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_CRx_FORGO() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_CRx_None() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_CRx_RM() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_CRx_STOP() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_CxD_FORGO() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_CxD_None() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_CxD_RM() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_CxD_STOP() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_Cxx_FORGO() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_Cxx_None() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_Cxx_RM() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_Cxx_STOP() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xRx_FORGO() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xRx_None() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xRx_RM() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xRx_STOP() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xxD_FORGO() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xxD_None() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xxD_RM() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xxD_STOP() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xxx_FORGO() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xxx_None() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xxx_RM() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerClean_xxx_STOP() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerLogs() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerLogs_Demux() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerLogs_Demux_Stream() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerLogs_Stream() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerPipeChain() (toil.test.lib.dockerTest.DockerTest method)

 	testDockerPipeChainErrorDetection() (toil.test.lib.dockerTest.DockerTest method)

 	testDynamic() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testEmptyFileStoreIDIsReadable() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testEncapsulation() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	(toil.test.src.jobEncapsulationTest.JobEncapsulationTest method)

 	testEncapsulation2() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testENCODE() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest method)

 	testEncrypted() (toil.test.jobStores.jobStoreTest.AbstractEncryptedJobStoreTest.Test method)

 	testEvaluatingRandomDAG() (toil.test.src.jobTest.JobTest method)

 	testExportAfterFailedExport() (toil.test.src.toilContextManagerTest.ToilContextManagerTest method)

 	testExtremeCacheSetup() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testFetchJobStoreFiles() (in module toil.test.utils.toilDebugTest)

 	testFetchJobStoreFilesWSymlinks() (in module toil.test.utils.toilDebugTest)

 	testFileDeletion() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testFileGridEngine() (toil.test.sort.sortTest.SortTest method)

 	testFileMesos() (toil.test.sort.sortTest.SortTest method)

 	testFileParasol() (toil.test.sort.sortTest.SortTest method)

 	testFileSingle() (toil.test.sort.sortTest.SortTest method)

 	testFileSingle10000() (toil.test.sort.sortTest.SortTest method)

 	testFileSingleCheckpoints() (toil.test.sort.sortTest.SortTest method)

 	testFileSingleNonCaching() (toil.test.sort.sortTest.SortTest method)

 	testFileStoreExportFile() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testFileStoreLogging() (toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest method)

 	testFileStoreOperations() (toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest method)

 	testFileTorqueEngine() (toil.test.sort.sortTest.SortTest method)

 	testFn_Basename() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest method)

 	testFn_Ceil() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_Cross() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_Floor() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_Glob() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest method)

 	testFn_Length() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_ParseCores() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest method)

 	testFn_ParseDisk() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest method)

 	testFn_ParseMemory() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest method)

 	testFn_ReadBoolean() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_ReadFloat() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_ReadInt() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_ReadJson() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_ReadLines() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_ReadMap() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_ReadString() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_ReadTsv() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_SelectFirst() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest method)

 	testFn_Size() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest method)

 	testFn_Sub() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_Transpose() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_WriteJson() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_WriteLines() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_WriteMap() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_WriteTsv() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testFn_Zip() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest method)

 	testGetMidPoint() (toil.test.sort.sortTest.SortTest method)

 	testGetPIDStatus() (toil.test.utils.utilsTest.UtilsTest method)

 	testGetSizeOfDirectoryWorks() (toil.test.src.miscTests.MiscTests method)

 	testGetStatusFailedCWLWF() (toil.test.utils.utilsTest.UtilsTest method)

 	testGetStatusFailedToilWF() (toil.test.utils.utilsTest.UtilsTest method)

 	testGetStatusSuccessfulCWLWF() (toil.test.utils.utilsTest.UtilsTest method)

 	testGlobalMutexOrdering() (toil.test.src.threadingTest.ThreadingTest method)

 	testGoogleMesos() (toil.test.sort.sortTest.SortTest method)

 	testGoogleRepo() (toil.test.src.dockerCheckTest.DockerCheckTest method)

 	testGoogleSingle() (toil.test.sort.sortTest.SortTest method)

 	testGrowingAndShrinkingJob() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testHelloworld() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testHelloWorld() (toil.test.src.helloWorldTest.HelloWorldTest method)

 	testHidingProcessEscape() (toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemTest method)

 	testHighTargetTime() (toil.test.provisioners.clusterScalerTest.BinPackingTest method)

 	testIDStability() (toil.test.src.miscTests.MiscTests method)

 	testIgnoreNode() (toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest method)

 	testImportFtpFile() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testImportHttpFile() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testImportReadFileCompatibility() (toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest method)

 	testingIsAutomatic (in module toil.test.src.fileStoreTest)

 	testInitialState() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testInlinedFiles() (toil.test.jobStores.jobStoreTest.AWSJobStoreTest method)

 	testInvalidJobStoreName() (toil.test.jobStores.jobStoreTest.InvalidAWSJobStoreTest method)

 	testInvokeworkflow() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testInvokeworkflow2() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testJobClass() (toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest method)

 	testJobClassFromMain() (toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest method)

 	testJobConcurrency() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest method)

 	testJobCreation() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testJobDeletions() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testJobDescription() (toil.test.src.jobDescriptionTest.JobDescriptionTest method)

 	testJobDescriptionSequencing() (toil.test.src.jobDescriptionTest.JobDescriptionTest method)

 	testJobFileStore() (toil.test.src.jobFileStoreTest.JobFileStoreTest method)

 	testJobFileStoreWithBadWorker() (toil.test.src.jobFileStoreTest.JobFileStoreTest method)

 	testJobFunction() (toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest method)

 	testJobFunctionFromMain() (toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest method)

 	testJobFunctions() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testJobLoadEquality() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testJobQueue() (toil.test.mesos.MesosDataStructuresTest.DataStructuresTest method)

 	testJobStoreContents() (in module toil.test.utils.toilDebugTest)

 	testJobTooLargeForAllNodes() (toil.test.provisioners.clusterScalerTest.BinPackingTest method)

 	testJSON() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest method)

 	testLargeFile() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testLastProcessStanding() (toil.test.src.threadingTest.ThreadingTest method)

 	testLogToMaster() (toil.test.src.regularLogTest.RegularLogTest method)

 	testLongRunningJobs() (toil.test.provisioners.clusterScalerTest.BinPackingTest method)

 	testLowTargetTime() (toil.test.provisioners.clusterScalerTest.BinPackingTest method)

 	testManaging() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testManaging2() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testMaxNodes() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest method)

 	testMD5sum() (toil.test.wdl.toilwdlTest.ToilWdlTest method)

 	(toil.test.wdl.wdltoil_test.WdlToilTest method)

 	testMerge() (toil.test.sort.sortTest.SortTest method)

 	testMinNodes() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest method)

 	testMultipartUploads() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testMultiplejobs() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testMultiplejobs2() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testMultiplejobs3() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testMultipleJobsPerWorkerStats() (toil.test.utils.utilsTest.UtilsTest method)

 	testMultipleJobsReadSameCacheHitGlobalFile() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testMultipleJobsReadSameCacheMissGlobalFile() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testMultipleLogToMaster() (toil.test.src.regularLogTest.RegularLogTest method)

 	testMultiThreadImportFile() (toil.test.jobStores.jobStoreTest.AWSJobStoreTest method)

 	testNestedResourcesDoNotBlock() (toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemJobTest method)

 	testNever() (toil.test.src.retainTempDirTest.CleanWorkDirTest method)

 	testNewCheckpointIsLeafVertexNonRootCase() (toil.test.src.jobTest.JobTest method)

 	testNewCheckpointIsLeafVertexRootCase() (toil.test.src.jobTest.JobTest method)

 	testNewJobsCanHandleOtherJobDeaths() (toil.test.src.deferredFunctionTest.DeferredFunctionTest method)

 	testNextChainable() (toil.test.src.workerTest.WorkerTests method)

 	testNo (toil.test.sort.sortTest.SortTest attribute)

 	testNoContextManger() (toil.test.src.toilContextManagerTest.ToilContextManagerTest method)

 	testNoLaunchingIfDeltaAlreadyMet() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest method)

 	testNonCachingDockerChain() (toil.test.lib.dockerTest.DockerTest method)

 	testNonCachingDockerChainErrorDetection() (toil.test.lib.dockerTest.DockerTest method)

 	testNonCachingFileStore() (toil.test.src.jobFileStoreTest.JobFileStoreTest method)

 	testNonexistentRepo() (toil.test.src.dockerCheckTest.DockerCheckTest method)

 	testNonPyStandAlone() (toil.test.src.resourceTest.ResourceTest method)

 	testOfficialUbuntuRepo() (toil.test.src.dockerCheckTest.DockerCheckTest method)

 	testOnErrorWithError() (toil.test.src.retainTempDirTest.CleanWorkDirTest method)

 	testOnErrorWithNoError() (toil.test.src.retainTempDirTest.CleanWorkDirTest method)

 	testOnSuccessWithError() (toil.test.src.retainTempDirTest.CleanWorkDirTest method)

 	testOnSuccessWithSuccess() (toil.test.src.retainTempDirTest.CleanWorkDirTest method)

 	testOverlargeJob() (toil.test.jobStores.jobStoreTest.AWSJobStoreTest method)

 	testPackage() (toil.test.src.resourceTest.ResourceTest method)

 	testPackingOneShape() (toil.test.provisioners.clusterScalerTest.BinPackingTest method)

 	TestPanic (class in toil.test.src.miscTests)

 	testPartialReadFromStream() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testPathologicalCase() (toil.test.provisioners.clusterScalerTest.BinPackingTest method)

 	testPerJobFiles() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testPersistantFilesToDelete() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testPipe() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest method)

 	testPreemptibleDeficitIsSet() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest method)

 	testPreemptibleDeficitResponse() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest method)

 	testPreserveFileName() (toil.test.jobStores.jobStoreTest.FileJobStoreTest method)

 	testPrimitives() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest method)

 	testPrintJobLog() (toil.test.utils.utilsTest.UtilsTest method)

 	testProcessEscape() (toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemTest method)

 	testPromiseRequirementRaceStatic() (toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest method)

 	testPromises() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testPromises2() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testPromisesWithJobStoreFileObjects() (toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest method)

 	testPromisesWithNonCachingFileStore() (toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest method)

 	testQuickstart() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testReadCacheMissFileFromJobStoreWithCachingReadFile() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testReadCacheMissFileFromJobStoreWithoutCachingReadFile() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testReadCachHitFileFromJobStore() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testReadWriteFileStreamTextMode() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	(toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest method)

 	testReadWriteSharedFilesTextMode() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testRealtimeLogger() (toil.test.src.realtimeLoggerTest.RealtimeLoggerTest method)

 	testRegularLog() (toil.test.src.regularLogTest.RegularLogTest method)

 	testRemoveLocalImmutablyReadFile() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testRemoveLocalMutablyReadFile() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testRequirements() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testRestart() (toil.test.src.autoDeploymentTest.AutoDeploymentTest method)

 	testRestartAttribute() (toil.test.utils.utilsTest.UtilsTest method)

 	testRestartedWorkflowSchedulesCorrectJobsOnFailedParent() (toil.test.src.restartDAGTest.RestartDAGTest method)

 	testRestartedWorkflowSchedulesCorrectJobsOnKilledParent() (toil.test.src.restartDAGTest.RestartDAGTest method)

 	testReturnFileSizes() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testReturnFileSizesWithBadWorker() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testRounding() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest method)

 	testScalableBatchSystem() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest method)

 	testSDBDomainsDeletedOnFailedJobstoreBucketCreation() (toil.test.jobStores.jobStoreTest.AWSJobStoreTest method)

 	testService() (toil.test.src.jobServiceTest.JobServiceTest method)

 	testServiceDeadlock() (toil.test.src.jobServiceTest.JobServiceTest method)

 	testServiceParallelRecursive() (toil.test.src.jobServiceTest.JobServiceTest method)

 	testServiceRecursive() (toil.test.src.jobServiceTest.JobServiceTest method)

 	testServices() (toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest method)

 	(toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testServiceSerialization() (toil.test.src.jobServiceTest.JobServiceTest method)

 	testServiceWithCheckpoints() (toil.test.src.jobServiceTest.JobServiceTest method)

 	testSharedFiles() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testSiblingDAGConsistency() (toil.test.src.jobTest.JobTest method)

 	testSimultaneousReadsUncachedStream() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testSort() (toil.test.sort.sortTest.SortTest method)

 	testSorting() (toil.test.provisioners.clusterScalerTest.BinPackingTest method)

 	testSplitRootPackages() (toil.test.src.autoDeploymentTest.AutoDeploymentTest method)

 	testSpotAutoScale() (toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest method)

 	(toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTest method)

 	testSpotAutoScaleBalancingTypes() (toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest method)

 	testStaging() (toil.test.docs.scriptsTest.ToilDocumentationTest method)

 	testStandAlone() (toil.test.src.resourceTest.ResourceTest method)

 	testStandAloneInPackage() (toil.test.src.resourceTest.ResourceTest method)

 	testStatic() (toil.test.src.jobTest.JobTest method)

 	testStatic2() (toil.test.src.jobTest.JobTest method)

 	testStatsAndLogging() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testToilIsNotBroken() (toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest method)

 	testToilQuayRepo() (toil.test.src.dockerCheckTest.DockerCheckTest method)

 	testTrivialDAGConsistency() (toil.test.src.jobTest.JobTest method)

 	testTSV() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest method)

 	testTut01() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest method)

 	testTut02() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest method)

 	testTut03() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest method)

 	testTut04() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest method)

 	testUnicodeSupport() (toil.test.utils.utilsTest.UtilsTest method)

 	testUpdateBehavior() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testUserTypesInJobFunctionArgs() (toil.test.src.autoDeploymentTest.AutoDeploymentTest method)

 	testUtilsSort() (toil.test.utils.utilsTest.UtilsTest method)

 	testUtilsStatsSort() (toil.test.utils.utilsTest.UtilsTest method)

 	
 	testVirtualEnv() (toil.test.src.resourceTest.ResourceTest method)

 	testWriteExportFileCompatibility() (toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest method)

 	testWriteGzipLogs() (toil.test.src.regularLogTest.RegularLogTest method)

 	testWriteLocalFileToJobStore() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testWriteLogFiles() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testWriteLogs() (toil.test.src.regularLogTest.RegularLogTest method)

 	testWriteNonLocalFileToJobStore() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest method)

 	testWriteReadGlobalFilePermissions() (toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest method)

 	testZeroLengthFiles() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test method)

 	testZeroResourceJobs() (toil.test.provisioners.clusterScalerTest.BinPackingTest method)

 	ThreadingTest (class in toil.test.src.threadingTest)

 	throttle (class in toil.lib.throttle)

 	throttle() (toil.lib.throttle.LocalThrottle method)

 	THROTTLED_ERROR_CODES (in module toil.lib.aws.utils)

 	timeLimit() (in module toil.test)

 	title() (toil.utils.toilStats.ColumnWidths method)

 	to_dict() (toil.wdl.wdl_types.WDLPair method)

 	toCommand() (toil.resource.ModuleDescriptor method)

 	toIgnitionConfig() (toil.provisioners.abstractProvisioner.AbstractProvisioner.InstanceConfiguration method)

 	
 toil

 	module

 	Toil (class in toil.common)

 	
 toil.batchSystems

 	module

 	
 toil.batchSystems.abstractBatchSystem

 	module

 	
 toil.batchSystems.abstractGridEngineBatchSystem

 	module

 	
 toil.batchSystems.awsBatch

 	module

 	
 toil.batchSystems.cleanup_support

 	module

 	
 toil.batchSystems.contained_executor

 	module

 	
 toil.batchSystems.gridengine

 	module

 	
 toil.batchSystems.htcondor

 	module

 	
 toil.batchSystems.kubernetes

 	module

 	
 toil.batchSystems.local_support

 	module

 	
 toil.batchSystems.lsf

 	module

 	
 toil.batchSystems.lsfHelper

 	module

 	
 toil.batchSystems.mesos

 	module

 	
 toil.batchSystems.mesos.batchSystem

 	module

 	
 toil.batchSystems.mesos.conftest

 	module

 	
 toil.batchSystems.mesos.executor

 	module

 	
 toil.batchSystems.mesos.test

 	module

 	
 toil.batchSystems.options

 	module

 	
 toil.batchSystems.parasol

 	module

 	
 toil.batchSystems.registry

 	module

 	
 toil.batchSystems.singleMachine

 	module

 	
 toil.batchSystems.slurm

 	module

 	
 toil.batchSystems.tes

 	module

 	
 toil.batchSystems.torque

 	module

 	
 toil.bus

 	module

 	
 toil.common

 	module

 	
 toil.cwl

 	module

 	
 toil.cwl.conftest

 	module

 	
 toil.cwl.cwltoil

 	module

 	
 toil.cwl.utils

 	module

 	
 toil.deferred

 	module

 	
 toil.exceptions

 	module

 	
 toil.fileStores

 	module

 	
 toil.fileStores.abstractFileStore

 	module

 	
 toil.fileStores.cachingFileStore

 	module

 	
 toil.fileStores.nonCachingFileStore

 	module

 	
 toil.job

 	module

 	
 toil.jobStores

 	module

 	
 toil.jobStores.abstractJobStore

 	module

 	
 toil.jobStores.aws

 	module

 	
 toil.jobStores.aws.jobStore

 	module

 	
 toil.jobStores.aws.utils

 	module

 	
 toil.jobStores.conftest

 	module

 	
 toil.jobStores.fileJobStore

 	module

 	
 toil.jobStores.googleJobStore

 	module

 	
 toil.jobStores.utils

 	module

 	
 toil.leader

 	module

 	
 toil.lib

 	module

 	
 toil.lib.accelerators

 	module

 	
 toil.lib.aws

 	module

 	
 toil.lib.aws.ami

 	module

 	
 toil.lib.aws.iam

 	module

 	
 toil.lib.aws.session

 	module

 	
 toil.lib.aws.utils

 	module

 	
 toil.lib.bioio

 	module

 	
 toil.lib.compatibility

 	module

 	
 toil.lib.conversions

 	module

 	
 toil.lib.docker

 	module

 	
 toil.lib.ec2

 	module

 	
 toil.lib.ec2nodes

 	module

 	
 toil.lib.encryption

 	module

 	
 toil.lib.encryption._dummy

 	module

 	
 toil.lib.encryption._nacl

 	module

 	
 toil.lib.encryption.conftest

 	module

 	
 toil.lib.exceptions

 	module

 	
 toil.lib.expando

 	module

 	
 toil.lib.generatedEC2Lists

 	module

 	
 toil.lib.humanize

 	module

 	
 toil.lib.io

 	module

 	
 toil.lib.iterables

 	module

 	
 toil.lib.memoize

 	module

 	
 toil.lib.misc

 	module

 	
 toil.lib.objects

 	module

 	
 toil.lib.resources

 	module

 	
 toil.lib.retry

 	module

 	
 toil.lib.threading

 	module

 	
 toil.lib.throttle

 	module

 	
 toil.provisioners

 	module

 	
 toil.provisioners.abstractProvisioner

 	module

 	
 toil.provisioners.aws

 	module

 	
 toil.provisioners.aws.awsProvisioner

 	module

 	
 toil.provisioners.clusterScaler

 	module

 	
 toil.provisioners.gceProvisioner

 	module

 	
 toil.provisioners.node

 	module

 	
 toil.realtimeLogger

 	module

 	
 toil.resource

 	module

 	
 toil.server

 	module

 	
 toil.server.api_spec

 	module

 	
 toil.server.app

 	module

 	
 toil.server.celery_app

 	module

 	
 toil.server.cli

 	module

 	
 toil.server.cli.wes_cwl_runner

 	module

 	
 toil.server.utils

 	module

 	
 toil.server.wes

 	module

 	
 toil.server.wes.abstract_backend

 	module

 	
 toil.server.wes.amazon_wes_utils

 	module

 	
 toil.server.wes.tasks

 	module

 	
 toil.server.wes.toil_backend

 	module

 	
 toil.server.wsgi_app

 	module

 	
 toil.serviceManager

 	module

 	
 toil.statsAndLogging

 	module

 	
 toil.test

 	module

 	
 toil.test.batchSystems

 	module

 	
 toil.test.batchSystems.batchSystemTest

 	module

 	
 toil.test.batchSystems.parasolTestSupport

 	module

 	
 toil.test.batchSystems.test_lsf_helper

 	module

 	
 toil.test.batchSystems.test_slurm

 	module

 	
 toil.test.cwl

 	module

 	
 toil.test.cwl.conftest

 	module

 	
 toil.test.cwl.cwlTest

 	module

 	
 toil.test.docs

 	module

 	
 toil.test.docs.scriptsTest

 	module

 	
 toil.test.jobStores

 	module

 	
 toil.test.jobStores.jobStoreTest

 	module

 	
 toil.test.lib

 	module

 	
 toil.test.lib.aws

 	module

 	
 toil.test.lib.aws.test_iam

 	module

 	
 toil.test.lib.aws.test_s3

 	module

 	
 toil.test.lib.aws.test_utils

 	module

 	
 toil.test.lib.dockerTest

 	module

 	
 toil.test.lib.test_conversions

 	module

 	
 toil.test.lib.test_ec2

 	module

 	
 toil.test.lib.test_misc

 	module

 	
 toil.test.mesos

 	module

 	
 toil.test.mesos.helloWorld

 	module

 	
 toil.test.mesos.MesosDataStructuresTest

 	module

 	
 toil.test.mesos.stress

 	module

 	
 toil.test.provisioners

 	module

 	
 toil.test.provisioners.aws

 	module

 	
 toil.test.provisioners.aws.awsProvisionerTest

 	module

 	
 toil.test.provisioners.clusterScalerTest

 	module

 	
 toil.test.provisioners.clusterTest

 	module

 	
 toil.test.provisioners.gceProvisionerTest

 	module

 	
 toil.test.provisioners.provisionerTest

 	module

 	
 toil.test.provisioners.restartScript

 	module

 	
 toil.test.server

 	module

 	
 toil.test.server.serverTest

 	module

 	
 toil.test.sort

 	module

 	
 toil.test.sort.restart_sort

 	module

 	
 toil.test.sort.sort

 	module

 	
 toil.test.sort.sortTest

 	module

 	
 toil.test.src

 	module

 	
 toil.test.src.autoDeploymentTest

 	module

 	
 toil.test.src.busTest

 	module

 	
 toil.test.src.checkpointTest

 	module

 	
 toil.test.src.deferredFunctionTest

 	module

 	
 toil.test.src.dockerCheckTest

 	module

 	
 toil.test.src.fileStoreTest

 	module

 	
 toil.test.src.helloWorldTest

 	module

 	
 toil.test.src.importExportFileTest

 	module

 	
 toil.test.src.jobDescriptionTest

 	module

 	
 toil.test.src.jobEncapsulationTest

 	module

 	
 toil.test.src.jobFileStoreTest

 	module

 	
 toil.test.src.jobServiceTest

 	module

 	
 toil.test.src.jobTest

 	module

 	
 toil.test.src.miscTests

 	module

 	
 toil.test.src.promisedRequirementTest

 	module

 	
 toil.test.src.promisesTest

 	module

 	
 toil.test.src.realtimeLoggerTest

 	module

 	
 toil.test.src.regularLogTest

 	module

 	
 toil.test.src.resourceTest

 	module

 	
 toil.test.src.restartDAGTest

 	module

 	
 toil.test.src.resumabilityTest

 	module

 	
 toil.test.src.retainTempDirTest

 	module

 	
 toil.test.src.systemTest

 	module

 	
 toil.test.src.threadingTest

 	module

 	
 toil.test.src.toilContextManagerTest

 	module

 	
 toil.test.src.userDefinedJobArgTypeTest

 	module

 	
 toil.test.src.workerTest

 	module

 	
 toil.test.utils

 	module

 	
 toil.test.utils.toilDebugTest

 	module

 	
 toil.test.utils.toilKillTest

 	module

 	
 toil.test.utils.utilsTest

 	module

 	
 toil.test.wdl

 	module

 	
 toil.test.wdl.builtinTest

 	module

 	
 toil.test.wdl.conftest

 	module

 	
 toil.test.wdl.toilwdlTest

 	module

 	
 toil.test.wdl.wdltoil_test

 	module

 	
 toil.toilState

 	module

 	
 toil.utils

 	module

 	
 toil.utils.toilClean

 	module

 	
 toil.utils.toilDebugFile

 	module

 	
 toil.utils.toilDebugJob

 	module

 	
 toil.utils.toilDestroyCluster

 	module

 	
 toil.utils.toilKill

 	module

 	
 toil.utils.toilLaunchCluster

 	module

 	
 toil.utils.toilMain

 	module

 	
 toil.utils.toilRsyncCluster

 	module

 	
 toil.utils.toilServer

 	module

 	
 toil.utils.toilSshCluster

 	module

 	
 toil.utils.toilStats

 	module

 	
 toil.utils.toilStatus

 	module

 	
 toil.utils.toilUpdateEC2Instances

 	module

 	
 toil.version

 	module

 	
 toil.wdl

 	module

 	
 toil.wdl.toilwdl

 	module

 	
 toil.wdl.utils

 	module

 	
 toil.wdl.versions

 	module

 	
 toil.wdl.versions.dev

 	module

 	
 toil.wdl.versions.draft2

 	module

 	
 toil.wdl.versions.v1

 	module

 	
 toil.wdl.wdl_analysis

 	module

 	
 toil.wdl.wdl_functions

 	module

 	
 toil.wdl.wdl_synthesis

 	module

 	
 toil.wdl.wdl_types

 	module

 	
 toil.wdl.wdltoil

 	module

 	
 toil.worker

 	module

 	toil_batch_id (toil.bus.ExternalBatchIdMessage attribute)

 	(toil.bus.JobIssuedMessage attribute)

 	(toil.bus.JobStatus attribute)

 	toil_get_file() (in module toil.cwl.cwltoil)

 	toil_logger (in module toil.statsAndLogging)

 	toil_make_tool() (in module toil.cwl.cwltoil)

 	toil_read_source() (in module toil.wdl.wdltoil)

 	toil_service_env_options() (toil.provisioners.abstractProvisioner.AbstractProvisioner method)

 	(toil.provisioners.aws.awsProvisioner.AWSProvisioner method)

 	TOIL_URI_SCHEME (in module toil.wdl.wdltoil)

 	ToilBackend (class in toil.server.wes.toil_backend)

 	ToilCommandLineTool (class in toil.cwl.cwltoil)

 	ToilContextManagerException

 	ToilContextManagerTest (class in toil.test.src.toilContextManagerTest)

 	ToilDocumentationTest (class in toil.test.docs.scriptsTest)

 	ToilExpressionTool (class in toil.cwl.cwltoil)

 	ToilFsAccess (class in toil.cwl.cwltoil)

 	ToilJob (in module toil.batchSystems.mesos)

 	ToilKillTest (class in toil.test.utils.toilKillTest)

 	ToilKillTestWithAWSJobStore (class in toil.test.utils.toilKillTest)

 	toilMain (toil.test.utils.utilsTest.UtilsTest property)

 	ToilMetrics (class in toil.common)

 	toilPackageDirPath() (in module toil)

 	(in module toil.test)

 	ToilPathMapper (class in toil.cwl.cwltoil)

 	ToilRestartException

 	ToilServerUtilsTest (class in toil.test.server.serverTest)

 	ToilSingleJobExecutor (class in toil.cwl.cwltoil)

 	toilStageFiles() (in module toil.cwl.cwltoil)

 	ToilState (class in toil.toilState)

 	ToilStatus (class in toil.utils.toilStatus)

 	ToilTest (class in toil.test)

 	ToilTool (class in toil.cwl.cwltoil)

 	ToilWdlIntegrationTest (class in toil.test.wdl.toilwdlTest)

 	ToilWDLLibraryTest (class in toil.test.wdl.toilwdlTest)

 	ToilWDLStdLibBase (class in toil.wdl.wdltoil)

 	ToilWDLStdLibTaskOutputs (class in toil.wdl.wdltoil)

 	ToilWdlTest (class in toil.test.wdl.toilwdlTest)

 	ToilWESServerBenchTest (class in toil.test.server.serverTest)

 	ToilWESServerCeleryS3StateWorkflowTest (class in toil.test.server.serverTest)

 	ToilWESServerCeleryWorkflowTest (class in toil.test.server.serverTest)

 	ToilWESServerWorkflowTest (class in toil.test.server.serverTest)

 	ToilWorkflow (class in toil.server.wes.toil_backend)

 	ToilWorkflowRunner (class in toil.server.wes.tasks)

 	toItem() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo method)

 	tokenize_conf_stream() (in module toil.batchSystems.lsfHelper)

 	tolerated_taints (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement attribute)

 	torque_batch_system_factory() (in module toil.batchSystems.registry)

 	TorqueBatchSystem (class in toil.batchSystems.torque)

 	TorqueBatchSystem.Worker (class in toil.batchSystems.torque)

 	TorqueBatchSystemTest (class in toil.test.batchSystems.batchSystemTest)

 	touchFile() (in module toil.test.mesos.stress)

 	ToySerializableService (class in toil.test.src.jobServiceTest)

 	ToyService (class in toil.test.src.jobServiceTest)

 	transform() (toil.jobStores.utils.ReadableTransformingPipe method)

 	translate_wdl_string_to_python_string() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	transpose() (in module toil.wdl.wdl_functions)

 	traverseJobGraph() (toil.utils.toilStatus.ToilStatus method)

 	trivialParent() (in module toil.test.src.jobTest)

 	TrivialService (class in toil.test.src.jobTest)

 	truncExpBackoff() (in module toil.lib.misc)

 	try_and_nested_panic_with_secondary() (toil.test.src.miscTests.TestPanic method)

 	try_and_panic() (toil.test.src.miscTests.TestPanic method)

 	try_and_panic_by_hand() (toil.test.src.miscTests.TestPanic method)

 	try_and_panic_with_secondary() (toil.test.src.miscTests.TestPanic method)

 	try_path() (in module toil.lib.io)

 	tryRun() (toil.batchSystems.mesos.test.ExceptionalThread method)

 	(toil.batchSystems.mesos.test.MesosTestSupport.MesosThread method)

 	(toil.lib.threading.ExceptionalThread method)

 	(toil.provisioners.clusterScaler.ScalerThread method)

 	(toil.test.ApplianceTestSupport.Appliance method)

 	(toil.test.ExceptionalThread method)

 	
 tutorial_arguments

 	module

 	
 tutorial_cwlexample

 	module

 	
 tutorial_discoverfiles

 	module

 	
 tutorial_docker

 	module

 	
 tutorial_dynamic

 	module

 	
 tutorial_encapsulation

 	module

 	
 tutorial_encapsulation2

 	module

 	
 tutorial_helloworld

 	module

 	
 tutorial_invokeworkflow

 	module

 	
 tutorial_invokeworkflow2

 	module

 	
 tutorial_jobfunctions

 	module

 	
 tutorial_managing

 	module

 	
 tutorial_managing2

 	module

 	
 tutorial_multiplejobs

 	module

 	
 tutorial_multiplejobs2

 	module

 	
 tutorial_multiplejobs3

 	module

 	
 tutorial_promises

 	module

 	
 tutorial_promises2

 	module

 	
 tutorial_quickstart

 	module

 	
 tutorial_requirements

 	module

 	
 tutorial_services

 	module

 	
 tutorial_staging

 	module

 	typeEmpty() (toil.batchSystems.mesos.JobQueue method)

U

 	
 	UnexpectedResourceState

 	UnfulfilledPromiseSentinel (class in toil.job)

 	unignoreNode() (toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem method)

 	(toil.batchSystems.mesos.batchSystem.MesosBatchSystem method)

 	(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner method)

 	unix_now_ms() (in module toil.lib.misc)

 	unpack() (toil.fileStores.FileID class method)

 	unpack_toil_uri() (in module toil.wdl.wdltoil)

 	unpickle() (toil.resource.Resource class method)

 	UnresolvedDict (class in toil.cwl.cwltoil)

 	unwrap() (in module toil.job)

 	unwrap_all() (in module toil.job)

 	up() (in module toil.test.sort.restart_sort)

 	(in module toil.test.sort.sort)

 	update() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	update_file() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	update_file_stream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	update_job() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	
 	updateClusterSize() (toil.provisioners.clusterScaler.ClusterScaler method)

 	updateColumnWidths() (in module toil.utils.toilStats)

 	UpdatedBatchJobInfo (class in toil.batchSystems.abstractBatchSystem)

 	updatedJobWorker() (toil.batchSystems.parasol.ParasolBatchSystem method)

 	updateFile() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	updateFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	updateStaticEC2Instances() (in module toil.lib.ec2nodes)

 	upload() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo method)

 	upload_directory() (in module toil.cwl.cwltoil)

 	upload_file() (in module toil.cwl.cwltoil)

 	uploadFile() (in module toil.jobStores.aws.utils)

 	uploadFromPath() (in module toil.jobStores.aws.utils)

 	uploadStream() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo method)

 	UpReturnType (in module toil.cwl.utils)

 	usage_message (in module toil.cwl.cwltoil)

 	UserDefinedJobArgTypeTest (class in toil.test.src.userDefinedJobArgTypeTest)

 	UserError

 	UserNameAvailableTest (class in toil.test.lib.test_misc)

 	UserNameUnvailableTest (class in toil.test.lib.test_misc)

 	UserNameVeryBrokenTest (class in toil.test.lib.test_misc)

 	userScript (toil.batchSystems.mesos.batchSystem.MesosBatchSystem attribute)

 	utc_now() (in module toil.lib.misc)

 	UtilsTest (class in toil.test.utils.utilsTest)

 	UUID_LENGTH (in module toil.common)

V

 	
 	VALID_PREFIXES (in module toil.lib.conversions)

 	validDirs (toil.jobStores.fileJobStore.FileJobStore attribute)

 	validDirsSet (toil.jobStores.fileJobStore.FileJobStore attribute)

 	version (in module toil.version)

 	(toil.jobStores.aws.jobStore.AWSJobStore.FileInfo property)

 	(toil.wdl.versions.dev.AnalyzeDevelopmentWDL property)

 	(toil.wdl.versions.draft2.AnalyzeDraft2WDL property)

 	(toil.wdl.versions.v1.AnalyzeV1WDL property)

 	(toil.wdl.wdl_analysis.AnalyzeWDL property)

 	versionings (toil.jobStores.aws.jobStore.AWSJobStore attribute)

 	VersionNotImplementedException

 	VirtualEnvResource (class in toil.resource)

 	virtualize_files() (in module toil.wdl.wdltoil)

 	visit() (toil.cwl.cwltoil.ToilPathMapper method)

 	visit_any_decls() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_apply() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_array_literal() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_at() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_bound_decls() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_call() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL method)

 	(toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_conditional() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_cwl_class_and_reduce() (in module toil.cwl.utils)

 	visit_document() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL method)

 	(toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_document_element() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL method)

 	(toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_expr() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_expr_core() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL method)

 	(toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_expression_group() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_expression_placeholder_option() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_get_name() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_ifthenelse() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_infix0() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	
 	visit_infix1() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_infix2() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_infix3() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_infix4() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_infix5() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_inner_workflow_element() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_land() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_lor() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_negate() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_number() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_pair_literal() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_primitive_literal() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_primitives() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_scatter() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_string() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_string_expr_part() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL method)

 	(toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_string_expr_with_string_part() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_string_part() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_task() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_task_command() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_task_command_expr_part() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_task_command_expr_with_string() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_task_command_string_part() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_task_input() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_task_output() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_task_runtime() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_top_cwl_class() (in module toil.cwl.utils)

 	visit_unarysigned() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_unbound_decls() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_wdl_type() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL method)

 	(toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_workflow() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_workflow_input() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visit_workflow_output() (toil.wdl.versions.v1.AnalyzeV1WDL method)

 	visitSteps() (in module toil.cwl.cwltoil)

W

 	
 	WAIT_FOR_DEATH_TIMEOUT (in module toil.server.wes.tasks)

 	wait_for_master() (toil.batchSystems.mesos.test.MesosTestSupport method)

 	wait_instances_running() (in module toil.lib.ec2)

 	wait_spot_requests_active() (in module toil.lib.ec2)

 	wait_transition() (in module toil.lib.ec2)

 	wait_until_instance_profile_arn_exists() (in module toil.lib.ec2)

 	waitForCommit() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.fileStores.cachingFileStore.CachingFileStore method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	waitForNode() (toil.provisioners.node.Node method)

 	wallTime (toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo attribute)

 	wdl_data (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest attribute)

 	wdl_data_dir (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest attribute)

 	wdl_range() (in module toil.wdl.wdl_functions)

 	wdl_zip() (in module toil.wdl.wdl_functions)

 	WDLArrayBindingsJob (class in toil.wdl.wdltoil)

 	WDLArrayType (class in toil.wdl.wdl_types)

 	WDLBaseJob (class in toil.wdl.wdltoil)

 	WDLBindings (in module toil.wdl.wdltoil)

 	WDLBooleanType (class in toil.wdl.wdl_types)

 	WDLCombineBindingsJob (class in toil.wdl.wdltoil)

 	WDLCompoundType (class in toil.wdl.wdl_types)

 	WDLConditionalJob (class in toil.wdl.wdltoil)

 	WDLFile (class in toil.wdl.wdl_types)

 	WDLFileType (class in toil.wdl.wdl_types)

 	WDLFloatType (class in toil.wdl.wdl_types)

 	WDLIntType (class in toil.wdl.wdl_types)

 	WDLJSONEncoder (class in toil.wdl.wdl_functions)

 	WdlLanguageSpecWorkflowsTest (class in toil.test.wdl.builtinTest)

 	WDLMapType (class in toil.wdl.wdl_types)

 	WDLNamespaceBindingsJob (class in toil.wdl.wdltoil)

 	WDLOutputsJob (class in toil.wdl.wdltoil)

 	WDLPair (class in toil.wdl.wdl_types)

 	WDLPairType (class in toil.wdl.wdl_types)

 	WDLRootJob (class in toil.wdl.wdltoil)

 	WDLRuntimeError, [1]

 	WDLScatterJob (class in toil.wdl.wdltoil)

 	WDLSectionJob (class in toil.wdl.wdltoil)

 	WdlStandardLibraryFunctionsTest (class in toil.test.wdl.builtinTest)

 	WdlStandardLibraryWorkflowsTest (class in toil.test.wdl.builtinTest)

 	WDLStringType (class in toil.wdl.wdl_types)

 	WDLTaskJob (class in toil.wdl.wdltoil)

 	WdlToilTest (class in toil.test.wdl.wdltoil_test)

 	WDLType (class in toil.wdl.wdl_types)

 	WDLWorkflowJob (class in toil.wdl.wdltoil)

 	WDLWorkflowNodeJob (class in toil.wdl.wdltoil)

 	WdlWorkflowsTest (class in toil.test.wdl.builtinTest)

 	WESBackend (class in toil.server.wes.abstract_backend)

 	WESClientWithWorkflowEngineParameters (class in toil.server.cli.wes_cwl_runner)

 	which() (in module toil)

 	WIP_SUFFIX (toil.deferred.DeferredFunctionManager attribute)

 	with_retries() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem method)

 	work_dir (toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo attribute)

 	workerCleanup() (toil.batchSystems.abstractBatchSystem.BatchSystemSupport static method)

 	WorkerCleanupContext (class in toil.batchSystems.cleanup_support)

 	WorkerCleanupInfo (class in toil.batchSystems.abstractBatchSystem)

 	workerScript() (in module toil.worker)

 	WorkerTests (class in toil.test.src.workerTest)

 	workflow_debug_jobstore() (in module toil.test.utils.toilDebugTest)

 	workflow_id (toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo attribute)

 	workflow_manifest_url_to_path() (in module toil.server.wes.amazon_wes_utils)

 	workflowAttemptNumber (toil.common.Config attribute)

 	WorkflowConflictException

 	workflowDependencies (toil.server.wes.amazon_wes_utils.FilesDict attribute)

 	WorkflowExecutionException

 	workflowID (toil.common.Config attribute)

 	workflowInputFiles (toil.server.wes.amazon_wes_utils.FilesDict attribute)

 	WorkflowNotFoundException

 	workflowOptions (toil.server.wes.amazon_wes_utils.FilesDict attribute)

 	WorkflowPlan (class in toil.server.wes.amazon_wes_utils)

 	workflowSource (toil.server.wes.amazon_wes_utils.FilesDict attribute)

 	WorkflowStateMachine (class in toil.server.utils)

 	WorkflowStateStore (class in toil.server.utils)

 	workflowUrl (toil.server.wes.amazon_wes_utils.DataDict attribute)

 	wrapFn() (toil.job.Job static method)

 	wrapJobFn() (toil.job.Job static method)

 	WritablePipe (class in toil.jobStores.utils)

 	write() (toil.lib.io.WriteWatchingStream method)

 	write_AST() (toil.wdl.versions.draft2.AnalyzeDraft2WDL method)

 	(toil.wdl.wdl_analysis.AnalyzeWDL method)

 	
 	write_cache() (toil.server.utils.AbstractStateStore method)

 	(toil.server.utils.WorkflowStateStore method)

 	write_config() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	write_declaration_type() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_file() (in module toil.cwl.cwltoil)

 	(toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	write_file_stream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	write_function() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_function_bashscriptline() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_function_cmdline() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_function_dockercall() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_function_header() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_function_outputreturn() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_function_subprocesspopen() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_functions() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_json() (in module toil.wdl.wdl_functions)

 	write_kill_flag() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	write_leader_node_id() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	write_leader_pid() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	write_lines() (in module toil.wdl.wdl_functions)

 	write_logs() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	write_main() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_main_destbucket() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_main_header() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_main_jobwrappers() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_main_jobwrappers_call() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_main_jobwrappers_declaration() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_main_jobwrappers_if() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_main_jobwrappers_scatter() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_map() (in module toil.wdl.wdl_functions)

 	write_mappings() (in module toil.wdl.utils)

 	write_modules() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_output_files() (toil.server.wes.tasks.ToilWorkflowRunner method)

 	write_python_file() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_scatter_callwrapper() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_scatterfunction() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_scatterfunction_header() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_scatterfunction_lists() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_scatterfunction_loop() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_scatterfunction_outputreturn() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_scatterfunctions_within_if() (toil.wdl.wdl_synthesis.SynthesizeWDL method)

 	write_scratch_file() (toil.server.wes.tasks.ToilWorkflowRunner method)

 	write_shared_file_stream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.aws.jobStore.AWSJobStore method)

 	(toil.jobStores.fileJobStore.FileJobStore method)

 	(toil.jobStores.googleJobStore.GoogleJobStore method)

 	write_temp_file() (in module toil.test.batchSystems.batchSystemTest)

 	write_tsv() (in module toil.wdl.wdl_functions)

 	write_workflow() (toil.server.wes.tasks.ToilWorkflowRunner method)

 	writeA() (in module debugWorkflow)

 	writeABC() (in module debugWorkflow)

 	writeB() (in module debugWorkflow)

 	writeC() (in module debugWorkflow)

 	writeConfig() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	writeFile() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	writeFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	writeGlobalFile() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.fileStores.cachingFileStore.CachingFileStore method)

 	(toil.fileStores.nonCachingFileStore.NonCachingFileStore method)

 	writeGlobalFileStream() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	writeGlobalFileWrapper() (in module toil.cwl.cwltoil)

 	writelines() (toil.lib.io.WriteWatchingStream method)

 	writeLogFiles() (toil.statsAndLogging.StatsAndLogging class method)

 	writeSharedFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	writeStatsAndLogging() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	writeTo() (toil.jobStores.utils.ReadablePipe method)

 	(toil.jobStores.utils.ReadableTransformingPipe method)

 	writeToAppliance() (toil.test.ApplianceTestSupport.Appliance method)

 	WriteWatchingStream (class in toil.lib.io)

Z

 	
 	zone_to_region() (in module toil.lib.aws)

 	(in module toil.provisioners.aws)

 	
 	ZoneTuple (in module toil.provisioners.aws)

 toil.lib.encryption._dummy

toil.lib.encryption._dummy

Module Contents

Functions

	encrypt(message, keyPath)

	

	decrypt(ciphertext, keyPath)

	

Attributes

	overhead

	

	
toil.lib.encryption._dummy.overhead = 0

	

	
toil.lib.encryption._dummy.encrypt(message, keyPath)

	
	Parameters

	
	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	keyPath (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
toil.lib.encryption._dummy.decrypt(ciphertext, keyPath)

	
	Parameters

	
	ciphertext (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	keyPath (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

 toil.lib.encryption._nacl

toil.lib.encryption._nacl

Module Contents

Functions

	encrypt(message, keyPath)

	Encrypts a message given a path to a local file containing a key.

	decrypt(ciphertext, keyPath)

	Decrypts a given message that was encrypted with the encrypt() method.

Attributes

	overhead

	

	
toil.lib.encryption._nacl.overhead

	

	
toil.lib.encryption._nacl.encrypt(message, keyPath)

	Encrypts a message given a path to a local file containing a key.

	Parameters

	
	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message to be encrypted.

	keyPath (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path to a file containing a 256-bit key (and nothing else).

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

A constant overhead is added to every encrypted message (for the nonce and MAC).
>>> import tempfile
>>> k = tempfile.mktemp()
>>> with open(k, ‘wb’) as f:
… _ = f.write(nacl.utils.random(SecretBox.KEY_SIZE))
>>> message = ‘test’.encode(‘utf-8’)
>>> len(encrypt(message, k)) == overhead + len(message)
True
>>> import os
>>> os.remove(k)

	
toil.lib.encryption._nacl.decrypt(ciphertext, keyPath)

	Decrypts a given message that was encrypted with the encrypt() method.

	Parameters

	
	ciphertext (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The encrypted message (as a string).

	keyPath (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path to a file containing a 256-bit key (and nothing else).

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

Raises an error if ciphertext was modified
>>> import tempfile
>>> k = tempfile.mktemp()
>>> with open(k, ‘wb’) as f:
… _ = f.write(nacl.utils.random(SecretBox.KEY_SIZE))
>>> ciphertext = encrypt(“testMessage”.encode(‘utf-8’), k)
>>> ciphertext = b’5’ + ciphertext[1:]
>>> decrypt(ciphertext, k) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
…
CryptoError: Decryption failed. Ciphertext failed verification

Otherwise works correctly
>>> decrypt(encrypt(“testMessage”.encode(‘utf-8’), k), k).decode(‘utf-8’) in (u’testMessage’, b’testMessage’, ‘testMessage’) # doctest: +ALLOW_UNICODE
True

>>> import os
>>> os.remove(k)

 toil.test.lib.aws.test_iam

toil.test.lib.aws.test_iam

Module Contents

Classes

	IAMTest

	Check that given permissions and associated functions perform correctly

Attributes

	logger

	

	
toil.test.lib.aws.test_iam.logger

	

	
class toil.test.lib.aws.test_iam.IAMTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.lib.aws.test_iam.IAMTest]

Check that given permissions and associated functions perform correctly

	
test_permissions_iam()

	

	
test_negative_permissions_iam()

	

	
test_wildcard_handling()

	

 toil.test.lib.aws.test_s3

toil.test.lib.aws.test_s3

Module Contents

Classes

	S3Test

	Confirm the workarounds for us-east-1.

Attributes

	logger

	

	
toil.test.lib.aws.test_s3.logger

	

	
class toil.test.lib.aws.test_s3.S3Test(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.lib.aws.test_s3.S3Test]

Confirm the workarounds for us-east-1.

	
s3_resource: Optional[mypy_boto3_s3.S3ServiceResource]

	

	
bucket: Optional[mypy_boto3_s3.service_resource.Bucket]

	

	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	Return type

	None

	
test_create_bucket()

	Test bucket creation for us-east-1.

	Return type

	None

	
test_get_bucket_location_public_bucket()

	Test getting buket location for a bucket we don’t own.

	Return type

	None

	
classmethod tearDownClass()

	Hook method for deconstructing the class fixture after running all tests in the class.

	Return type

	None

 toil.test.lib.aws.test_utils

toil.test.lib.aws.test_utils

Module Contents

Classes

	TagGenerationTest

	Test for tag generation from environment variables

Attributes

	logger

	

	
toil.test.lib.aws.test_utils.logger

	

	
class toil.test.lib.aws.test_utils.TagGenerationTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.lib.aws.test_utils.TagGenerationTest]

Test for tag generation from environment variables

	
test_build_tag()

	

	
test_empty_aws_tags()

	

	
test_incorrect_json_object()

	

	
test_incorrect_json_emoji()

	

	
test_build_tag_with_tags()

	

 toil.test.provisioners.aws.awsProvisionerTest

toil.test.provisioners.aws.awsProvisionerTest

Module Contents

Classes

	AWSProvisionerBenchTest

	Tests for the AWS provisioner that don't actually provision anything.

	AbstractAWSAutoscaleTest

	A common base class for Toil tests.

	AWSAutoscaleTest

	A common base class for Toil tests.

	AWSStaticAutoscaleTest

	Runs the tests on a statically provisioned cluster with autoscaling enabled.

	AWSManagedAutoscaleTest

	Runs the tests on a self-scaling Kubernetes cluster.

	AWSAutoscaleTestMultipleNodeTypes

	A common base class for Toil tests.

	AWSRestartTest

	This test insures autoscaling works on a restarted Toil run.

	PreemptibleDeficitCompensationTest

	A common base class for Toil tests.

Attributes

	log

	

	
toil.test.provisioners.aws.awsProvisionerTest.log

	

	
class toil.test.provisioners.aws.awsProvisionerTest.AWSProvisionerBenchTest(methodName='runTest')

	Bases: toil.test.ToilTest

[image: Inheritance diagram of toil.test.provisioners.aws.awsProvisionerTest.AWSProvisionerBenchTest]

Tests for the AWS provisioner that don’t actually provision anything.

	
test_AMI_finding()

	

	
test_read_write_global_files()

	Make sure the _write_file_to_cloud() and _read_file_from_cloud()
functions of the AWS provisioner work as intended.

	
class toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest(methodName)

	Bases: toil.test.provisioners.clusterTest.AbstractClusterTest

[image: Inheritance diagram of toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
script()

	Return the full path to the user script on the leader.

	
data(filename)

	Return the full path to the data file with the given name on the leader.

	
rsyncUtil(src, dest)

	

	
getRootVolID()

	

	
putScript(content)

	Helper method for _getScript to inject a script file at the configured script path, from text.

	Parameters

	content (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
class toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest(name)

	Bases: AbstractAWSAutoscaleTest

[image: Inheritance diagram of toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Set up for the test.
Must be overridden to call this method and set self.jobStore.

	
launchCluster()

	

	
getRootVolID()

	Adds in test to check that EBS volume is build with adequate size.
Otherwise is functionally equivalent to parent.
:return: volumeID

	
testAutoScale()

	

	
testSpotAutoScale()

	

	
testSpotAutoScaleBalancingTypes()

	

	
class toil.test.provisioners.aws.awsProvisionerTest.AWSStaticAutoscaleTest(name)

	Bases: AWSAutoscaleTest

[image: Inheritance diagram of toil.test.provisioners.aws.awsProvisionerTest.AWSStaticAutoscaleTest]

Runs the tests on a statically provisioned cluster with autoscaling enabled.

	
launchCluster()

	

	
class toil.test.provisioners.aws.awsProvisionerTest.AWSManagedAutoscaleTest(name)

	Bases: AWSAutoscaleTest

[image: Inheritance diagram of toil.test.provisioners.aws.awsProvisionerTest.AWSManagedAutoscaleTest]

Runs the tests on a self-scaling Kubernetes cluster.

	
launchCluster()

	

	
class toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTestMultipleNodeTypes(name)

	Bases: AbstractAWSAutoscaleTest

[image: Inheritance diagram of toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTestMultipleNodeTypes]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Set up for the test.
Must be overridden to call this method and set self.jobStore.

	
testAutoScale()

	

	
class toil.test.provisioners.aws.awsProvisionerTest.AWSRestartTest(name)

	Bases: AbstractAWSAutoscaleTest

[image: Inheritance diagram of toil.test.provisioners.aws.awsProvisionerTest.AWSRestartTest]

This test insures autoscaling works on a restarted Toil run.

	
setUp()

	Set up for the test.
Must be overridden to call this method and set self.jobStore.

	
testAutoScaledCluster()

	

	
class toil.test.provisioners.aws.awsProvisionerTest.PreemptibleDeficitCompensationTest(name)

	Bases: AbstractAWSAutoscaleTest

[image: Inheritance diagram of toil.test.provisioners.aws.awsProvisionerTest.PreemptibleDeficitCompensationTest]

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable
to the path of a directory where you want temporary test files be placed. The
directory will be created if it doesn’t exist. The path may be relative in which
case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s
default location for such files and any temporary files or directories left
over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

	
setUp()

	Set up for the test.
Must be overridden to call this method and set self.jobStore.

	
test()

	

_images/inheritance-35e06c3103af56e34c5e3bc6218b1223bf13dae8.png
ToilFsAccess

_images/inheritance-37817393d2fcb27bfcde57b04abf9f9afd480ca8.png
Job

WDLBasejob

v

WDLTaskjob

_images/inheritance-34b8a70a1b79cc7846759970cdb120ea6b3ea977.png
‘AnalyzeWDL

v

‘AnalyzeVIWDL

v

‘AnalyzeDevelopmentWbL

_images/inheritance-3573b7ca718ab680bc2dd9ef97ba131535ffc077.png
MessageBusClient

MessageOutbox

_images/inheritance-379bf850e2c09a3d799b505309f88abbe23d44a5.png
Requirer

Service

DemoService

_images/inheritance-37dcd49d4a7b53e3aac36325fd3d9930ff11cd6c.png
Expando

o MagicExpando

» statsDict

_images/inheritance-33ad1f7e7bb6f7f5c37eac6e618719b600e9734d.png
TypedDict

»| RequirementsDict

_images/inheritance-33cf040002feeb094040ccf937e2644fc31986fc.png
ToilRestartException

_images/inheritance-31fc7ee5a83ab38ee5bc30893ff1138348d090bb.png
ABC

‘AbstractBatchsystem

o Batchsystemsupport

v

BatchSystemLocalSupport

_images/inheritance-32c3efde4a8ed54994c35a185166d76064da861d.png
Job

v

CWLNamedjob.

o cwijob

_images/inheritance-1dc70aed4efede7e2e5dbd5ec40c190cc5bc830c.png
TestCase

ToilTest.

wdlworkflowsTest

_images/inheritance-1dce73caba4412450ef7e12b98cfce47854bce08.png
ABC

/J WDLCompoundType

wDLype

_images/inheritance-1d9e9d0f88dd2e82eaf3cee12b97501c60fc0184.png
WwDLype

WDLFloatType

_images/inheritance-1dc6b170fe56606c2292ac3d7f617d1e10b26d1c.png
NamedTuple + QueueSizeMessage

_images/inheritance-1ee45181e233c73c429bb4ffc85c5b0f38b180b3.png
TestCase

ToilTest.

DatastructuresTest

_images/inheritance-1f0180fbd9fd0c603d9d87ab5440c78b5f3cb1fc.png
Job

v

Selfjob,

_images/inheritance-1dec8ce4b390dcb86fb07acdd361d9a4ffee23d2.png
Job

Cwscatter

_images/inheritance-1dfc7119f644f0a013043f4880dc1a4750d11362.png
TestCase

ToilTest

AbstractBatchSystemTest

AbstractGridEngineBatchSystemTest

HTCondorBatchsy stemTest

_images/inheritance-1f333953296cb3c49558578a74515d4426a4206d.png
TestCase

ToilTest.

WorkerTests

_images/inheritance-2053270ab58cb56f9206b59e74a3a77d3bf12f84.png
ABC

WritablePipe

_images/inheritance-2271bcef53e47337ec703222dbf76a5922ef6400.png
TestCase

ToilTest.

‘AbstractBatchsystemjobTest

v

SingleMachineBatchsystemjobTest

_images/inheritance-22732e9c572cfc0ec284916c4d2ec156fb23dff4.png
!

TestCase

ToilTest.

Test

_images/inheritance-21c334e1a47cc2386355ef3f9b106caf7a90ddf5.png
Expando o MagicExpando

_images/inheritance-22450925604eed9d6677e7a1b51f2182cb808f73.png
TestCase

ToilTest.

‘AbstractBatchSystemTest

_images/inheritance-235664ef311a8dc9315d33524b3dc7e3cec67068.png
Thread

v

ExceptionalThread

_images/inheritance-24202a1abd69350f3568b67d77e013f705ea02c0.png
AWSJobStoreTest

TestCase

ToilTest.

[t

EncryptedAWS]obStoreTest

_images/inheritance-2273be957ea90698ba3880f7bcf8b3ef195dc5f2.png
TestCase

ToilTest.

v

JobDescriptionTest

_images/inheritance-230479d5d41c399cefef575e4452e3edd1394ef2.png
[amc | dbmracamiyzem o stcrgymmSuooont |—of BdSymemioniSupont |——of BadSyRemCeampsumoont | ——of AbRracGrdEngneB ISy zem | ShmBxISyzem

_images/inheritance-25ccd205d712e9f08835357bf927080577d7c6c0.png
TestCase

ToilTest.

wdlworkflowsTest

wdlstandardLibraryWorkflowsTest

_images/inheritance-2187861c7d5368df38aa95a3615221cc87819e32.png
TestCase

ToilTest.

v

JobServiceTest

_images/inheritance-28e1ac262175721e9221ef372ba87848b213689d.png
ABC

‘AbstractBatchSystem

BatchSystemSupport

BatchSystemLocalSupport |——

BatchSystemCleanupSupport

_images/inheritance-28e9cc81283561a463f886c9144412e04fb8d0ae.png
AbstractToil WESServerTest

| ilwesservervorkfouTest

TolWESServerCelen/635tateiorkfowTest

Bucketusingrest |-

_images/inheritance-28211192cdce573da322b7a6e0efb5ca1e26395d.png
TestCase

ToilTest.

TagGenerationTest

_images/inheritance-2872f28966bdc98f682335a168a5cebacc399cfa.png
TestCase

ToilTest |——f AbstractBatchSystemest

‘AbstractGridEngineBatchSystemTest

SlumBatchsystemTest

_images/inheritance-2a210664cdc0025fcfddfb7d6977d38d3271bab7.png
TestCase

ToilTest.

PathindexingPromiseTest

_images/inheritance-2b356ac71f5dffc185b4d3513440d722cf72f8f4.png
Job

v

FunctionWrappingjob.

_images/inheritance-291f96a256a6d799713b65382bdfef515a1515f2.png
Thread

ParasolThread

+| ParasolworkerThread

_images/inheritance-2a1fde199d617b15531b982d3e34ac3ed2928401.png
TestCase

ToilTest.

v

JobServiceTest

PerfectServiceTest

_images/inheritance-267a89921e07aaf8b9089a9942f6fdd0de5bfd7a.png
Job

v

CWLNamedjob.

+| Resolveindirect

_images/inheritance-279b137ca3538f6f25e18f473e59d68cef1266b5.png
TestCase

ToilTest.

DeferredfunctionTest

_images/inheritance-2ecad59aae0d08efdc6eb53eb5a33c0c6f7838d8.png
TestCase

ToilTest.

AbstractToilWESServerTest

+ ToilwEsserverworkflowTest

_images/inheritance-2ff27e9397c56e33b489332a066bde81b9bf81b6.png
TestCase

ToilTest

‘AbstractileStoreTest

‘AbstractCachingFileStoreTest

‘Cachingfi eStoreTestWithAwsjobstore

_images/inheritance-2e36a9657e6a12b0fd1091ce5d4b835b89853720.png
AbstractStateStoreTest

TestCase

ToilTest.

AWSStatestoreTest

—
BucketUsingTest

_images/inheritance-2e6f7ebb9bd658bb6c78e7fa3974e0aaf8076741.png
MesosTestSupport

ParasolTestsupport

SortTest

TestCase

[ToilTest

_images/inheritance-3132b3658ec53f16cba6029a490a2ceda09900f2.png
Thread

Worker

_images/inheritance-30c2a8ae1e6f4bb95da0f86770ef9eff7b44782a.png
TestCase

ToilTest.

ToilkillTest

_images/inheritance-30e1799749e4ed8b779b9fec19fa42bde00bf870.png
TestCase

ToilTest.

v

InvalidAWS]obStoreTest

_images/inheritance-2b832648e21cd0cac7095e7d6a751ae1a96ad627.png
TestCase

ToilTest.

TestPanic

_images/inheritance-2c17e41c3093d7c02e5b1fd2c8a113a0e6ac3979.png
Thread

v

ExceptionalThread

o Appliance

LeaderThread

_images/inheritance-2b509e2ad89777a2a98ae7e197cec22dabfcb88d.png
TestCase

ToilTest.

HelloworldTest

nav.xhtml

 Table of Contents

 		
 Toil Documentation

 		
 Installation

 		
 Preparing Your Python Runtime Environment

 		
 Basic Installation

 		
 Installing Toil with Extra Features

 		
 Building from Source

 		
 Quickstart Examples

 		
 Running a basic workflow

 		
 Running a basic CWL workflow

 		
 Running a basic WDL workflow

 		
 A (more) real-world example

 		
 Running the example

 		
 Describing the source code

 		
 Logging

 		
 Error Handling and Resuming Pipelines

 		
 Collecting Statistics

 		
 Launching a Toil Workflow in AWS

 		
 Running a CWL Workflow on AWS

 		
 Running a Workflow with Autoscaling - Cactus

 		
 Introduction

 		
 Job Store

 		
 File Job Store

 		
 Cloud Job Stores

 		
 Batch System

 		
 Provisioner

 		
 Commandline Options

 		
 The Job Store

 		
 Commandline Options

 		
 Restart Option

 		
 Running Workflows with Services

 		
 Setting Options directly with the Toil Script

 		
 Toil Debugging

 		
 Introspecting the Jobstore

 		
 Stats and Status

 		
 Using a Python debugger

 		
 Running in the Cloud

 		
 Managing a Cluster of Virtual Machines (Provisioning)

 		
 Storage (Toil jobStore)

 		
 Cloud Platforms

 		
 Running on Kubernetes

 		
 Preparing your Kubernetes environment

 		
 AWS Job Store for Kubernetes

 		
 Configuring Toil for your Kubernetes environment

 		
 Running workflows

 		
 Running in AWS

 		
 Preparing your AWS environment

 		
 AWS Job Store

 		
 Toil Provisioner

 		
 Details about Launching a Cluster in AWS

 		
 Dashboard

 		
 Running in Google Compute Engine (GCE)

 		
 Preparing your Google environment

 		
 Google Job Store

 		
 Running a Workflow with Autoscaling

 		
 Cluster Utilities

 		
 Stats Command

 		
 Status Command

 		
 Clean Command

 		
 Launch-Cluster Command

 		
 Ssh-Cluster Command

 		
 Rsync-Cluster Command

 		
 Destroy-Cluster Command

 		
 Kill Command

 		
 HPC Environments

 		
 Standard Output/Error from Batch System Jobs

 		
 CWL in Toil

 		
 Running CWL Locally

 		
 Note for macOS + Docker + Toil

 		
 Detailed Usage Instructions

 		
 Running CWL in the Cloud

 		
 Running CWL within Toil Scripts

 		
 Running CWL workflows with InplaceUpdateRequirement

 		
 Toil & CWL Tips

 		
 WDL in Toil

 		
 Running WDL with Toil

 		
 Toil WDL Runner Options

 		
 WDL Specifications

 		
 Using the Old WDL Compiler

 		
 Toil WDL Compiler Options

 		
 Compiler Example: ENCODE Example from ENCODE-DCC

 		
 Compiler Example: GATK Examples from the Broad

 		
 Workflow Execution Service (WES)

 		
 Preparing your WES environment

 		
 Starting a WES server

 		
 Running the Server with docker-compose

 		
 Running on a Toil cluster

 		
 WES API Endpoints

 		
 Submitting a Workflow

 		
 Upload multiple files

 		
 Specify Toil options

 		
 Monitoring a Workflow

 		
 Checking the state

 		
 Getting the full logs

 		
 Canceling a run

 		
 Developing a Workflow

 		
 Scripting Quick Start

 		
 Job Basics

 		
 Invoking a Workflow

 		
 Specifying Commandline Arguments

 		
 Resuming a Workflow

 		
 Functions and Job Functions

 		
 Workflows with Multiple Jobs

 		
 Dynamic Job Creation

 		
 Promises

 		
 Promised Requirements

 		
 FileID

 		
 Managing files within a workflow

 		
 Staging of Files into the Job Store

 		
 Using Docker Containers in Toil

 		
 Services

 		
 Checkpoints

 		
 Encapsulation

 		
 Depending on Toil

 		
 Best Practices for Dockerizing Toil Workflows

 		
 Toil Class API

 		
 Job Store API

 		
 Toil Job API

 		
 FunctionWrappingJob

 		
 JobFunctionWrappingJob

 		
 EncapsulatedJob

 		
 Promise

 		
 Job Methods API

 		
 JobDescription

 		
 Job.Runner API

 		
 job.fileStore API

 		
 Batch System API

 		
 Batch System Enivronmental Variables

 		
 Batch System API

 		
 Job.Service API

 		
 Exceptions API

 		
 Running Tests

 		
 Running Tests with pytest

 		
 Running Integration Tests

 		
 Test Environment Variables

 		
 Using Docker with Quay

 		
 Running Mesos Tests

 		
 Developing with Docker

 		
 Making Your Own Toil Docker Image

 		
 Running a Cluster Locally

 		
 Maintainerâ��s Guidelines

 		
 Naming Conventions

 		
 Pull Requests

 		
 Publishing a Release

 		
 Using Git Hooks

 		
 Adding Retries to a Function

 		
 Pull Request Checklists

 		
 Reviewing Pull Requests

 		
 Merging Pull Requests

 		
 Toil Architecture

 		
 Jobs and JobDescriptions

 		
 Optimizations

 		
 Read-only leader

 		
 Job chaining

 		
 Preemptable node support

 		
 Caching

 		
 Toil support for Common Workflow Language

 		
 Minimum AWS IAM permissions

 		
 Auto-Deployment

 		
 Auto Deployment with Sibling Modules

 		
 Auto-Deploying a Package Hierarchy

 		
 Relying on Shared Filesystems

 		
 Toil Appliance

 		
 Environment Variables

 		
 API Reference

 		
 toil

 		
 Subpackages

 		
 Submodules

 		
 Package Contents

 		
 tutorial_docker

 		
 Module Contents

 		
 tutorial_managing2

 		
 Module Contents

 		
 tutorial_helloworld

 		
 Module Contents

 		
 tutorial_discoverfiles

 		
 Module Contents

 		
 tutorial_multiplejobs2

 		
 Module Contents

 		
 tutorial_dynamic

 		
 Module Contents

 		
 tutorial_invokeworkflow2

 		
 Module Contents

 		
 tutorial_jobfunctions

 		
 Module Contents

 		
 tutorial_managing

 		
 Module Contents

 		
 example_alwaysfail

 		
 Module Contents

 		
 example_cachingbenchmark

 		
 Module Contents

 		
 tutorial_quickstart

 		
 Module Contents

 		
 tutorial_encapsulation2

 		
 Module Contents

 		
 tutorial_multiplejobs3

 		
 Module Contents

 		
 tutorial_cwlexample

 		
 Module Contents

 		
 tutorial_encapsulation

 		
 Module Contents

 		
 tutorial_invokeworkflow

 		
 Module Contents

 		
 tutorial_requirements

 		
 Module Contents

 		
 tutorial_staging

 		
 Module Contents

 		
 tutorial_promises

 		
 Module Contents

 		
 tutorial_services

 		
 Module Contents

 		
 tutorial_promises2

 		
 Module Contents

 		
 tutorial_multiplejobs

 		
 Module Contents

 		
 tutorial_arguments

 		
 Module Contents

 		
 mkFile

 		
 Module Contents

 		
 debugWorkflow

 		
 Module Contents

 		
 fake_mpi_run

 		
 Module Contents

_images/inheritance-7ee7380ef21b6b8a95317a14b9517cdb12337357.png
TestCase

ToilTest.

AbstractStateStoreTest

+| FilestatestoreTest

_images/inheritance-803c8a01cad0b1405c66afb654de14dbf040e498.png
TestCase

ToilTest.

Test

v

FileJobStoreTest

_images/inheritance-7f7eab113b0034e48e1e9aecaad662861c129dcc.png
Job

v

Restartingjob

_images/inheritance-80f4db868649f4c34ec1388258dc25daca37e9dd.png
TestCase

ToilTest.

MessageBusTest

_images/inheritance-80a5426b2ac03594a23925bb63e093d9e9473de3.png
TestCase

ToilTest.

v

BaseToilWdlTest

_images/inheritance-835d4f2c549c93e36ca524fc35b3d2394d57ab02.png
TestCase

ToilTest

AbstractBatchSystemTast

‘AbstractGridEngineBatchSystemTast

‘GridEngine BatchSystemTest

_images/inheritance-834135faa3e144510ce36dbd431cb4066914fff6.png
TestCase

ToilTest.

AWSProvisionerBenchTest

_images/inheritance-8508e206047b284d3e923f23f743b806a426a63a.png
TaskRunner

v

MultiprocessingTaskRunner

_images/inheritance-8366349d3bbe33adf809ee513ca74d3764aabe89.png
TestCase

ToilTest.

UserNameUnvailableTest

_images/inheritance-853c0872c262c3448eee89dc2e9c6fc71f71ef55.png
TestCase

ToilTest.

AbstractStateStoreTest

» FilestateStoreURTest

_images/inheritance-77f458c292d16d86bb300d8c9b1f8cf4479755f6.png
Requirer

Service

Trivialservice

_images/inheritance-7689aeaff15624d4893aad87e05d829325f545eb.png
NamedTuple

o JoblssuedMessage

_images/inheritance-792c47a72e20ce98c3d71f70c148d0bb179d957e.png
ABC

v

‘AbstractFileStore

NonCachingfileStore

_images/inheritance-792bf8edc3db34381bb45754e1deadc02627168f.png
Messagelnbox

S

MessageBusClient J MessageBusConnection

‘1 MessageOutbox T’

_images/inheritance-7990dd95a1ffd64bbc1b959ab2fdc10e3d8ad040.png
Job

Helloworld

_images/inheritance-79437dbd3a4bc09fad64a99c2da0e59494273ded.png
WwDLype

WDLstringType

_images/inheritance-7ba08d11e697b7c381cdc970f72196a819521957.png
Job

v

CheckpointFailsFirstTime

_images/inheritance-7b0b984507e70e3c5de1148cead422002c0f67d3.png
WorkflowNotFoundException

_images/inheritance-7ddf4768874c724e577cccdc89f60af49452dcbb.png
Thread

Worker

_images/inheritance-7d3668f291564d4d0b76ad371d0cbac4d908e7c4.png
Requirer

v

JobDeseription

_images/inheritance-64943e769ec3bc6341b0a82a2da91cdda50cd0e2.png
Job

CWLGather

_images/inheritance-b93eba11cee7873448f2a342bf66cd6b01598577.png
TestCase

ToilTest.

ToilContextManagerTest

_images/inheritance-b8c6fa2cb9281bdbe66fe7f5bc649e83bf878550.png
NamedTuple

+| JobCompletedMessage

_images/inheritance-66b464507ed5615658db30d065fa0331c1e3bfc8.png
TestCase

ToilTest.

AbstractileStoreTest

o] AbstractNonCachingFileStoreTest

_images/inheritance-ba53185a6f5e3fbe30c41d7c700485d740fbb157.png
TypedDict

o[AcceleratorRequirement

_images/inheritance-6530a4cd18a25285a7d29a09af04cd415253f27e.png
TestCase

ToilTest.

v

‘ApplianceTestsupport

_images/inheritance-b9fdbdfea71658eacf625be470c38a9b8d5a5986.png
[

ModuleDescriptor

_images/inheritance-67c8b4fad4dec36c75953d01c806b987f8b83f08.png
TestCase

ToilTest.

v

BaseToilWdlTest

+ ToilwdiTest

wdlToilTest

_images/inheritance-bc0e04bfa37610db1c9455024821e4cc91e073f0.png
ABC

wDLype

/J WDLCompoundType

_images/inheritance-6762df043a593349f23e470fdbd88ea50300e8d3.png
TestCase

ToilTest.

‘AbstractBatchSystemTest

TESBatchsystemTest

_images/inheritance-bafaac33353972ed51d41908d5a3a637cc4db5a9.png
TestCase

Toil Test

‘AbstractBatchSystemTest |——»

‘AbstractGri dEngineBatchSy stemest |——»

LSFBatchSystemTest

_images/inheritance-694d8c6920089da4f83cbd378eb89b4f3d66330d.png
ToilPathMapper

_images/inheritance-bc9f735c733aed37fc212dbd4f6d61e18db3188f.png
NonDownloadingsize

_images/inheritance-681068520d0476f7e476dbf22323bef1398d5e79.png
TestCase

ToilTest.

v

BinPackingTest

_images/inheritance-bc661164678b136b349f00b999b6214d0723d173.png
| dostmcmaasyzem | o sschSymemsumart |——of SshsymemiscaiSuman | o SshSymemGeanussumport | AbsrasGedEngneBamisyzEm | HTCandarBsthsyzem

_images/inheritance-6976903567466bf07c49097ef60c43b617e7b479.png
ToilTest

AbstractRileStoreTest

‘AbstractionCachingFilestoreTest

|-+ NonCachingFieStoreTestwithawsjobstore.

_images/inheritance-be30dda574950779d870fcbef257ab16db876e17.png
Thread

v

ExceptionalThread

»| MesosThread

_images/inheritance-695d6e4be3c552227df375cd0e473e2a0f38891b.png
Job

v

LongTestFollowon

_images/inheritance-be0f9c3357f45dfa999460acf8e64a7d76091839.png
Job

v

FunctionWrappingjob.

PromisedRequirementFunctionWrappingjob

_images/inheritance-645d9894f033227c7edd50e22da9929934eb3586.png
TestCase

ToilTest.

CachedunpicklingjobStoreTest

_images/inheritance-6326ed382cc971ec2aa9498ebc6ae9f9b0e5303c.png
Job

Followon

_images/inheritance-b8c63ffd63e2d7da4d4bd705c0816f7996a1f4f8.png
TestCase

ToilTest.

AbstractClusterTest

AbstractAwSAutoscaleTest

_images/inheritance-b082700f9e2f7c66af2689bb441284b86345662f.png
Job

WDLBasejob

WDLAmayBindingsjob

_images/inheritance-5b7f62c88e77dc6d19c2c15b58e67bbc6baab063.png
UserError

_images/inheritance-b40c948c92bb322c9d145d5efe21c9fd29e81405.png
NamedTuple

o ClusterDesiredsizeMessage

_images/inheritance-59cde7977c5e733cc668372290a6291759483356.png
TestCase

ToilTest.

UserNameAvailableTest

_images/inheritance-b3012c0718116e31dc098d652054cc044f4b69a1.png
TestCase

ToilTest.

ChainedindexedPromisesTest

_images/inheritance-5e5cd4f6cde8961836e3c35a7b07f9612ba27814.png
TestCase

ToilTest.

‘AbstractBatchsystemjobTest

_images/inheritance-b48a7078147d4955a1b1a98762201de5655922c2.png
Alterer

Handler

SocketHandler

v

DatagramHandler

JSONDatagramHandler

_images/inheritance-5da54b8097667ed9556d44f29c4d0f84e59866da.png
TestCase

ToilTest.

AbstractClusterTest

CWLONARMTest

_images/inheritance-b45dcbe9d685b4471f00da0f3f8dfa5e7bb1b34a.png
TestCase

ToilTest.

AMITest

_images/inheritance-6018f485f9fd3453efa9d49e6b4e907f0cc010f2.png
ABC

v

‘AbstractjobStore

_images/inheritance-b57c6f024b0538a8a8ef3163e748740f0b004372.png
Job

Helloworld

_images/inheritance-5e6c06891e3dca44404562e63b6db82820758699.png
TestCase

ToilTest.

BucketUsingTest

_images/inheritance-b4b68c8ae6e92a9f30f87c336793d5113ea42af9.png
AcquisitionTimeoutException

_images/inheritance-6111264aa19aa7e690a5e96158cfd2f1ab574a53.png
ToilTool

v

ToilExpressionTool

_images/inheritance-b7af09799a1b58f32f5627adebaad3cb9a3cc340.png
‘AnalyzeWDL

v

‘AnalyzeDraft2WpL

_images/inheritance-610f5585867a320dcdcec58a1a799adee1303b04.png
TestCase

ToilTest.

‘AbstractBatchSystemTest

AWSBatchBatchSystemTest

_images/inheritance-b787a92e16f54a2483aa899873f5adeec2bf040c.png
TestCase

ToilTest.

‘AbstractBatchSystemTest

KubernetesBatchsystemTest

_images/inheritance-58f91a68b4fddfe9f9e4f46fb3ec861d360801ff.png
NamedTuple

o WorkerCleanupinfo

_images/inheritance-b06c90792b67fea5ca0ccdd152e32966f84e29e8.png
Job

Failonce

_images/inheritance-583348889fbf16f9d48f6dae54fbd11c94680033.png
Job

Helloworld

_images/inheritance-afb887de29e3b05401f1d826b48d90468da6b634.png
ABC

WDLCompoundType

WDLPairType

wDLIype

_images/inheritance-595be4d6f0dad52b614d2dac9d63200b3cd1b927.png
Filterer

Handler

streamHandler

MessageDetector

_images/inheritance-70e8953311ff136ed1495ffb5f0c1e5429fbfde0.png
WorkflowConflictException

_images/inheritance-c8af735e87f22b7e1f70eebf2506c87b20473dac.png
JobException

o[JobGraphDeadiockException

_images/inheritance-c8179070beb998ffc43320a5ddc22fc7f4fc1694.png
NamedTuple o JobMissingMessage

_images/inheritance-723397b1f11f67ef1cf747398c7ee161f6cb86a1.png
Job

JobClass

_images/inheritance-cad02e67bf1b7619b24cdc16176f13fb0aa6d3d8.png
TestCase

ToilTest

AbstractClusterTest

f——f AbstractawsautoscaleTest

_images/inheritance-7125c136f7ead27993a37daf66a9784ac9c57694.png
TestCase

ToilTest.

AbstractileStoreTest

_images/inheritance-c8b337629639fb27db027cb993aa4d7d8cefbdc2.png
ABC

v

‘AbstractFileStore

v

CachingFilestore

_images/inheritance-7294477ca3b21dc3cde4888895784df15850343c.png
FailedjobsException

_images/inheritance-cc146e51083fa958b49b25278767c6a057216a80.png
ToilTool

ToilcommandLineTool

_images/inheritance-7286d3ccdc129011989de36c1043a92a3a2d8bf4.png
Job

Helloworld

_images/inheritance-cae082387356df75dbb62d49a8c4d6102b60fb99.png
Job

v

LocalFiletorejob

_images/inheritance-7489c72e663ac81ec8a53835d033ef58bb97a30b.png
Job

v

CWLNamedjob.

o cwijobwrapper

_images/inheritance-cedc11f5e428c9e8768164699f0b809e90c1c672.png
WDLRuntimeError

_images/inheritance-7336f7bca35030e42e508c685101241473bab0ec.png
Thread

Worker

_images/inheritance-cd8684a55b0e166f97615d3fa48bfa058d862ff8.png
TestCase

ToiTest

AbstractBatchSystemTest

|-——+f AbstractGridengineBatchsystemTest |——f ToraueBatchsystemTest

_images/inheritance-75e669fa9725c7d7078cdb27be158ad4473e20c6.png
TestCase

ToilTest.

UtilsTest.

_images/inheritance-cfc2bc8ebd587ffb0ec23f474622a623e6b9104c.png
CacheError

_images/inheritance-7567bd88eafb66442f59ecf8b6b2404c926c4774.png
TestCase

ToilTest.

AbstractGCEAutoscaleTest

_images/inheritance-cf45a7834dc893a7fde3e20f09daa9e5434fdfb9.png
TestCase

ToilTest.

v

ResumabilityTest

_images/inheritance-7668b472a50e7876d12336bca8914f8f4ead885b.png
JobPromiseConstraintError

_images/inheritance-be4b2f3b11ad56339edc5addf051c11a20ca4db1.png
‘AbstractGCEAUtoscal eTest. o GCEAutoscaleTest GCEStaticAutoscaleTest.

TestCase of ToiTest

_images/inheritance-6a4f0757e3f5eb79585005e63630430c276c4238.png
TestCase

ToilTest.

Test

_images/inheritance-bf6d934238226cd239db287f1376e352aff3947c.png
TestCase

ToilTest.

UserNameVeryBrokenTest

_images/inheritance-69d8780621d306f358df47f4215f89dd83cb6092.png
TestCase

ToilTest.

DockerCheckTest.

_images/inheritance-be71cf99f9b55a26ccd5b9e7de99d51900ed2906.png
[amc | dmtacmamismm | saxnsy zemsumoot | BaSsEmLOG S0t | ——of 83ASyzemCeanmsuooor | AmTAGAEMRERASRen o BRuSaciisten.

_images/inheritance-6a6f1ccd2ff64848978eed2fbcadd8c9dc33544a.png
TestCase

ToilTest.

MaxCoresSingleMachineBatchsystemTest

_images/inheritance-c059f2323c59b82b9a6ed342bcc890b459780772.png
TestCase

ToilTest.

CleanWorkDirTest

_images/inheritance-6a572df57d2bf312c2dfeabbb29ab609cef92a70.png
TestCase

ToilTest.

AbstractStateStoreTest

_images/inheritance-bf77407be7534c21723bea29da7c897c26617cfe.png
Job

v

Encapsulatedjob

_images/inheritance-6ece2a18b5f1f50a7fe3921599774244df78e7cf.png
TestCase

ToilTest.

AbstractToilWESServerTest

_images/inheritance-c2176f19e7ac04b85209cf9ac4fdb82d839d9615.png
ConcurrentFileModificationException

_images/inheritance-6e60046e459d1fc7c5c590f17333aaa55e1df254.png
TestCase

ToilTest.

v

JobEncapsulationTest

_images/inheritance-c102cbade92b028f53ab98131e4399a012669345.png
(-

Resource

FileResource

_images/inheritance-6fed3e58bb5ce7420070e6d6d276a3574fbfc771.png
TestCase

ToilTest.

CWLv12Test

_images/inheritance-c6e68ddaaf2f4e5faa2fb7fc5270305c809e3b2b.png
ServersideCopyProhibitedError

_images/inheritance-6ed73f8d222df6d67bf115458d0dc0531788cd83.png
ABC

AbstractProvisioner

GCEProvisioner

_images/inheritance-c2f9c04f76a9ecb73254b9bb3bd45e2857bf1fdf.png
JobTooBigError

_images/inheritance-70b611fb6d7087a2d63eb63bcdad4e8c481d2e7a.png
TestCase

ToilTest.

AbstractGCEAutoscaleTest

GCEAutoscaleTest

_images/inheritance-70377d11e82ba9568476ec1dba217671752e4a2b.png
TestCase

ToilTest.

v

RegularLogTest

_images/inheritance-c7a91c2b653185505fca67581660be16255a9087.png
CWLUnsupportedException

_images/inheritance-69d53812510aab6bfca3364ba0789b809cdbda20.png
ToilSinglejobExecutor

_images/inheritance-f8dc8948e847fb100c7b46f1f73b946b702aa670.png
ABC

‘AbstractBatchsystem

o Batchsystemsupport

ParasolBatchsystem

_images/inheritance-459ee93a33e2567fc799df56f1e40927757e3922.png
MesosTestSupport

MesosBatchSystemjobTest

TestCase

ToilTest.

‘AbstractBatchSystemjobTest

_images/inheritance-9dc1279a345c02ba2976f79b71b455a9491d2e4b.png
a8

BbstractBatchystem

‘BatchSystemSupport

BachSystemlocalSupport

BatchSystemCleanupSupport

J-—f TESBatchSystem

_images/inheritance-fc26357de631752520e1d3120d5d9f02df1a4940.png
Thread

Worker

_images/inheritance-9d8f5149613b0d8bc83a9fcbdfde23a796902ab7.png
MalformedRequestException

_images/inheritance-fa3437c944fc54e3050fa4a71c0041003d04c1db.png
- ‘AbstractScalableBatchystem

S

|/ AbstractBatchsystem

MesosBatchsystem

"] Batchsystemsupport

|+ BatchsystemLocalsupport |

_images/inheritance-478e4ccda53f1347ab1813af70a9eaa4607345e1.png
ToilwpLStdLibBase

o ToilwbLStdLibTaskoutputs

_images/inheritance-9f39cb4956b7cb08d041d134aa1fb61de53d09b3.png
RequestException

HTTPError

ApiEror

Notround

Imagenotfound

‘AppliancelmageNiotFound

DockerException

_images/inheritance-fd7e94361e488e9b218634c805b1095b5538fad5.png
ABC

‘AbstractBatchsystem

o AbstractScalableBatchsystem

_images/inheritance-462a86c21b6b6f367dd9b8fa09b5400e81fd526a.png
Job

WDLBasejob

v

WDLSectionjob

‘WDLConditionaljob.

_images/inheritance-9e4c45486ca9069895be55a3ce6d9323f0700c09.png
Job

HelloworldFollowon

_images/inheritance-fd1eec70156c34d1049ffadb09ede98c25fe2087.png
Thread

v

ExceptionalThread

o ScalerThread

_images/inheritance-47a81bbc006eca8bc1f08befe28f3cf6c1a34614.png
Job

WDLBasejob

WDLCombineBindingsjob

_images/inheritance-a17add5e6f9220bcadcdb2dffadb9ab6800843ee.png
JobStoreUnavailableException

_images/inheritance-fdc8b97ba6c918fdfa5d192e4700f71649d91675.png
TypedDict

» FlesDict

_images/inheritance-4799a9a2c6ca19a61b10e95f2e2cb7e64b0329d9.png
NoSuchjobStoreException

_images/inheritance-a049a5b3a562c6ee44c648113a449a8c2cd5a875.png
TestCase

ToilTest.

AbstractToilWESServerTest

+ ToilwESserverBenchTest

_images/inheritance-fdafd219fede89a0b577c5f582027515deb7e4a4.png
ManagedNodesNotSupportedException

_images/inheritance-3eae682b52f2f0b1fc67e34cc01a9c679b6f3163.png
Job

v

LogTest,

_images/inheritance-9b83cd45d25d521d03667ebaec427f00abe3a4c6.png
ABC

‘AbstractContextManager

»| ContextManager

Toil

_images/inheritance-f6e2313262795f03facc64b9a84e4c6d4cd60e39.png
WwDLype

WhLBooleanType

_images/inheritance-3e94503531f1b997648af9f09fe2916f02eb15f2.png
Enum

IntEnum

v

BatchjobExitReason

_images/inheritance-9b11e990ac276dbb3affb5e6cbee3d5a7a7e81db.png
WDLRuntimeError

_images/inheritance-f5d966e38584a9a5d1e3f491588099dbc3fba227.png
InsufficientSystemResources

_images/inheritance-3f6d6da76be5d9be746da8a5e900e4393fae4abc.png
MesosTestSupport

MesosBatchSystemTest

TestCase

ToilTest.

‘AbstractBatchSystemTest

_images/inheritance-9d0f441372d2a17db662f476cd752aa6dadb4b67.png
Job

Followon

_images/inheritance-f8af3a7eb04d348a510e75d9c8ee555e925ae595.png
AbstractStatestore

T emorysttesioe
MemoryStateCache

_images/inheritance-3f42f79a8bb6690180e23c181e5e6cd692dd90a6.png
Job

v

ServiceHostjob

_images/inheritance-9c421f15892ee5254b82d2c25f1069f7ec1420ce.png
BaseRequestHandler

v

LoggingDatagramHandier

_images/inheritance-f854302da710c696cb3e1accceb86fb8c1d91229.png
Shape

Mesosshape

_images/inheritance-4362d0ac9d5120f2653cf71407357963d0256c0a.png
ABC

AbstractProvisioner

AWSProvisioner

_images/inheritance-41d3f6b58f5552c9316660c7512f48fb1dc32eb2.png
RequestException

HTTPError

ApiEror

Notround

Imagenotfound

‘AppliancelmageNiotFound

DockerException

_images/inheritance-9d526aa142e818672fc16c0e9acededeffd311c1.png
NamedTuple

o JobUpdatedMessage

_images/googleScreenShot2.png
Google Cloud Platform

{e} Compute Engine Metadata

B VMinstances Metadata SSHKeys

@ Instance groups
Enter entire key data
B Instance templates
O Disks X
Snapshots

] Images

[+ Add item

A Committed use discounts
Cancel
wetadsta B3 e

A Health checks.

_images/inheritance-00fea97f8280fa782719149b14a300edfeedd360.png
(@)

DeferredFunction

_images/dashboard_screenshot.png
toil stats - Grafana X New Tab X +

(6 @ localhost:3000/?orgld=1&refresh=30s&from=now-5m&to=now

@ 88 General / toil stats

CPU usage
Q !
oo 0.800
oo
0.600 No data
0.400
0.200
0

15:51:30 15:52:00 15:52:30 15:53:00 15:53:30 15:54:00 15:54:30 15:55:00 15:55:30

Cluster size
1
0.500
No data
0
-0.50
Sl
15:51:30 15:52:00 15:52:30 15:53:00 15:53:30 15:54:00 15:54:30 15:55:00 15:55:30
Running or queued jobs (log scale)
100

1 ..

15:56:00

15:51:30 15:52:00 15:52:30 15:53:00 15:53:30 15:54:00 15:54:30 15:55:00 15:55:30

15:56:00

15:56:00

® Last5minutes v Q 8 30s v

Memory usage
1B
0.500B
No data
0B
-0.50 B
-1B

15:51:30 15:52:00 15:52:30 15:53:00 15:53:30 15:54:00 15:54:30 15:55:00 15:55:30 15:56:00

Queue size ~

40
30
20 2021-05-18 15:54:30
= Queue size: 20
10 —
0

15:51:30 15:52:00 15:52:30 15:53:00 15:53:30 15:54:00 15:54:30 15:55:00 15:55:30 15:56:00

Failed jobs
1
0.500
No data
0
-0.50

15:51:30 15:52:00 15:52:30 15:53:.00 15:53:30 15:54:00 15:54:30 15:55:00 15:55:30 15:56:00

_images/googleScreenShot.png
Google Cloud Platform

Cloud Launcher

& Biling

API APIs & Services >
4 Support >
© 1AM &admin >
® Getting started

COMPUTE

-®- App Engine >
{&f Compute Engine >

VMinstances
Instance groups

Instance templates

Disks

Snapshots

Images

Committed use discounts
Metadata

Health checks

Zones

Operations

Quotas.

Settings.

_images/inheritance-010366ada2f18235a3d8e44dd10e75cfada469f3.png
| AbstractBatchsystem |——of AbstractscalableBatchsystem

\ ABC \ MockBatchSystemAndProvisioner
‘AbstractProvisioner

_images/amazonaddkeypair.png
EC2 Dashboard
Events
Tags
Reports
Limits
Instances
Launch Templates
Spot Requests
Reserved Instances
Dedicated Hosts

:
AMIs
Bundle Tasks

Key pair name ~ Fingerprint

fresh
id_rsa
keyk

test-lon

Ttodofd

Select a key pair

_N-}=]

_images/caching_benefits.png
TCGA-33-AASS

PU: Population of Jobstore
Aln: Alignment and Haplotyping
MC: Mutation Caling

+: Epitope Prediction

400 - = Cached Workflow
300 = Uncached Workflow

0 1 2 3 4 5 6 7

Time Elapsed (Hours)

TCGA77-6842

Bl Al MC E3

© 630 <
% 500 o
8 400 4
B 300 4
2 200 4

100 -

0 1 2 3 4 5 6 7 8 9

Time Elapsed (Hours)

TCGA-18-3410

5 Pl A Ne 4]

© 630 o
% 500 -
8 400 4
300
35200
100
0 T T T T T T T u T T T T T

0 1 2 3 4 5 6 7 8 ¢ 10 11 12 138 14 15 16 17 18

Time Elapsed (Hours)

_images/inheritance-9608c1f276caa6f73b2b9946f781665525c66186.png
NosuchClusterException

_images/inheritance-f19aec37cd56ade201678741f7ba1347fcb60a68.png
ToilwpLStdLibBase

_images/inheritance-f0f78abe4e55e9215e17e07e3054b3d9c4d18ecd.png
Job

v

CWLNamedjob.

_images/inheritance-3a23d7191356b60a6d97cae279d4eb0e26c8c77c.png
AbstractStatestore

S3statestore

_images/inheritance-970cd6394a9ca10f3abeb82a05e7ec8fe3fba433.png
JobStoreExistsException

_images/inheritance-f3fa87a74018c119dca3d3cc73908038df53d45a.png
VersionNotimplementedException

_images/inheritance-39d7d4f412365563d9cd0d5175d9381fd5955b54.png
TestCase

ToilTest

AbstractClusterTest

‘AbstractAWSAtoscaleTest

PreemptibleDeficitCompensatioriTest

_images/inheritance-9676c94fb8bad7f3fc9b7a7cd8591548c74e29ae.png
Job

v

HelloWorldjob.

_images/inheritance-f2556e7ef48c183c27b12e4883fd50bad311f917.png
WorkflowExecutionException

_images/inheritance-3c95f7e6526f3f4c13b263d09ff8a05be3c1627a.png
JSONEncoder +/ WDLjsoNEncoder

_images/inheritance-9ac0813ab4895eb1e0ab74abeb540e68c91f6d20.png
TestCase

ToilTest.

SlurmTest

_images/inheritance-f53d2beb9b2b1b7ea63ad5b4c2dc8c8a79cd02d5.png
TestCase

ToilTest

of AbstraciClustermest |

of AbstractAnsAutoscaleTest |

of ANsAutoscaleTest

AWSStaticAutoscaleTest

_images/inheritance-3c1aa25a9c7055a85f2d7f33e8d313911b7f4836.png
Protocol o Optionsetter

_images/inheritance-9a3f499c5f38619f081d8f753709f93b4ff36c3f.png
SubprocessEror

» calledprocessError

+ calledprocessErrorstderr

_images/inheritance-f4dc5f83e184bcdbf6927afc05f893013f9f3043.png
TestCase

ToilTest.

Test

v

AWSJobStoreTest

_images/inheritance-92b3e30232d6a13c4076b925ab9bc036c39fbe24.png
Thread

v

ExceptionalThread

o Appliance

WorkerThread

_images/inheritance-ec3089a3e2a041d9e0b1fc3155fdc4adf95f4f5c.png
TestCase

ToilTest.

cwiworkflowTest

_images/inheritance-9178c5f26d52619781969668695eca02d971a36d.png
Protocol +f KubernetesConfig

_images/inheritance-ebb018d0ef2a87662ec45a333b2ff09c8dfd47ec.png
Requirer

Service

_images/inheritance-938469c6a7419b85939320dd4fa5bdbbd17a3a6d.png
TestCase

ToilTest.

RealtimeLoggerTest

_images/inheritance-ed7c8bf1295188b83b76d6fa65ccd26fc9aec8fa.png
DeadlockException

_images/inheritance-930355815e384f6780338b6242170cacfe8e33ed.png
ClusterTypeNotSupportedException

_images/inheritance-ed4525b74af44d2b9576c8808fdb9765fa4f96d3.png
(@)

Resource

v

DirectoryResource

_images/inheritance-944c5db88accd58d66e48b4cd30fa512ceab2b78.png
SDBHelper

Fileinfo

_images/inheritance-93bb496672467d7269bc2eaefdc1e2d5aed72089.png
ParasolTestSupport

TestCase

ToilTest.

AbstractBatchSystemTest [

j:] ParasolBatchsystemTest

_images/inheritance-f0ab135db52e804f105dff4a924c002f0629a565.png
TestCase

ToilTest.

v

JobTest

_images/inheritance-5277c7c143d6101f0c549d36fb6435b3b5bf2b85.png
f——{ Taiftest |——of AbstractilestoraTest |——+f AbstraciNonCachingFilestorsTest

| NonCachingFilestoreTestiithFilsjobstore

_images/inheritance-ab030bad0a9c4da08eddab599c7426a63196aca9.png
WESClientWithWorkflowEngineParameters

_images/inheritance-aaa88fd81b0df43ee2c6d1b3547b38585e8e2a3b.png
TestCase

ToilTest.

ConversionTest

_static/shortcut.png

_images/inheritance-55b3230649f6c9128d29fef0830f01074f984d02.png
TestCase

ToilTest.

MiscTests

_images/inheritance-ac9ce09655fd4ee6958ed7ba9fba458ed10a8352.png
Job

WDLBasejob

v

WDLSectionjob

v

WoLscatterjob

_images/inheritance-52927135a35012e93781b89cfe3bc07ae8b68bf1.png
Thread

Worker

_images/inheritance-abf964bd2daed997df6a68b60ee88f6f46e6b53a.png
TestCase

ToilTest.

v

‘ApplianceTestsupport

o AutoDeploymentTest

_images/inheritance-55fd46534a67d245fd0e40da24ae2cee4dabf0b8.png
Job

discoverfiles

_images/inheritance-ad8630fce421f79ebc1cbc4d0ba0cdf6697e819f.png
NamedTuple

o ExternalBatchidMessage

_images/inheritance-55cc69a43d22db9172661871ce4ea7c0522fe2ef.png
OperationForbidden

_images/inheritance-aca7cfbf6ea847c07e7ff329a1a5e215d96aad2d.png
Thread

v

ExceptionalThread

»| MesosThread

»| MesosMasterThread

_images/inheritance-56a1243ecc9c19ff52587837678ccd3f54fe560e.png
Requirer

Service

v

ToySerializableservice

_images/inheritance-afa91d0c404ac84d75d3eb01f09a7bb83763756b.png
(@)

Resource

v

DirectoryResource o VirtualEnvResource

_images/inheritance-5667cb67b610cb27b6d2c788b78ece52ad245cda.png
TypedDict

» Workflowplan

_images/inheritance-adec61d313b656987c57d7118b892c3e715df9fb.png
BucketLocationConflictException

_images/inheritance-51da3292c787db9b3c17370f1604738e40aa1de9.png
WwDLype

v

WDLFleType

_images/inheritance-a90c01ad888e0a9497e2aa85b24f11967c6e5403.png
TestCase

ToilTest.

v

UserDefinedjobArgTypeTest

_static/plus.png

_images/inheritance-5165cf65d54831f1ecf256f0f66fedf6bba616a5.png
ABC

‘AbstractBatchsystem

o Batchsystemsupport

v

SingleMachineBatchsystem

_images/inheritance-a7d1485191a61e0aeef67e18d818386a594acf7b.png
ClusterCombinationNotSupportedException

_static/minus.png

_images/inheritance-51eed15567f53fc4900d41d014fc2605023e2cad.png
Thread

v

ExceptionalThread

_images/inheritance-51dc8f0184599d47af3f3205427632fa10d6a031.png
ABC

v

‘AbstractFileStore

_images/inheritance-a9158257c71c7ba217ad94eb890fface20e663bc.png
TestCaze |

ToilTest |

AbstractBatchystemjobTest

}—of BbswractPromisedRequirementTet |

‘SingleMachinePromisedRequirementsTest

_images/inheritance-a4655a3caf50a814fc29228f90986d828e0df66c.png
TestCase

ToilTest.

ToilDocumentationTest

_images/inheritance-ff4ff8f39f4fdb6153866b195ebd4a33e34abcc5.png
TestCase

ToilTest.

ToilserverutilsTest

_images/inheritance-feddcdc49095d0fcfd8d69b4aae1a35cdd3d70f9.png
ABC

ReadablePipe

+| ReadableTransformingPipe

_images/inheritance-4d9b563268dba7bda9db08c00bd151f705af0835.png
TestCase

ToilTest.

IAMTest

_images/inheritance-a60eed30453689c85a4f75ebd85806f3d672dd07.png
Thread

ParasolThread

_images/toil_architecture.jpg
Worker Node

u Worker

Batch Node
Job Store System Provisioner
Stats & Leader

Logger

_images/inheritance-4be0876eaa25381608d8df95db5c08fe5d6c0b80.png
M
1]

Resource

_images/inheritance-a48c64a9752adea78921305889b2ed6dc0c65cc3.png
TestCase

ToilTest.

WalstandardLibraryFunctionsTest

_images/inheritance-ff8b889e71cec031ccc1fbb15ec04f53b3229eb9.png
CacheError

CacheUnbalancedError

_images/inheritance-4ee5977a8727f211a88a79b78a4cf2fdc66cb519.png
TestCase

ToilTest.

v

BaseToilWdlTest

o ToilwdlintegrationTest

_images/inheritance-a6f214fa167b8d3306b5d99628d481745b74ac5c.png
TypedDict

+ Databict

_images/inheritance-4e1b75e07499a6d34c209cb56d13fd77a2caed6f.png
Job

v

AlwaysFail

_images/inheritance-a6c9496d4b3f7db855bfb151e2472808bce67e97.png
Requirer

v

JobDeseription

v

ServiceJobDescription

_images/inheritance-50ebe3b6e2d753d8a0b67d3c2be0e83b223a1734.png
TestCase

ToilTest.

‘AbstractBatchsystemjobTest

v

‘AbstractPromisedRequirementsTest

_images/inheritance-a76679471debd4925e8ae3a7285d7360e0f3647c.png
WwDLype

v

WDLIntType

_static/logo.png
%, UNIVERSITY OF CALIFORNIA

OHNTH GRUL

(Genomics
Institute

_images/inheritance-5016e6c0f02f0354bc8c722ca1d5699b38e25671.png
TestCase

of Toilrest

AbstractfieStoreTest |

+f AbstractiorCachingFilestoreTest

NonCachingFleStoreTestWithGoaglejobStore

_images/inheritance-a715a62d333d2a25a4b4c5af9265da0966cabe58.png
TestCase

ToilTest.

CWLv10Test

_static/file.png

_images/inheritance-4912a5806fbb599423b6b05312e159db5557f6a1.png
TestCase

ToilTest.

v

JobfileStoreTest

_images/inheritance-a22fed7c1f6a486f2bf9bf778e6ff2d8b153f234.png
CacheError

InvalidsourceCacheError

_images/inheritance-fea7a3753e9c43e4a181d7138531314aebd228ff.png
FilelD

_images/inheritance-484b2a81546961de2a509a5c40f852d6214a492a.png
TestCase

ToilTest.

DockerTest

_images/inheritance-a18cd9a3da71a6379c3154ea1bffeef3585d4b69.png
TestCase

ToilTest.

_images/inheritance-fe5e09a4b47721b198081564e0a41460ddf7d5eb.png
MesosExecutor

_images/inheritance-4a6be2a0e6fe7de2357cac9af69f5ebb4e87f385.png
TestCase

ToilTest.

wdlworkflowsTest

v

WalLanguagespecWorkflowsTest

_images/inheritance-a42bb1bc612df6a8df3ebde370196385e37a1b06.png
TestCase

ToilTest.

v

CheckpointTest

_images/inheritance-49c66547a57e723b31642d3dc1857cf2df7459b8.png
GunicomApplication

_images/inheritance-a321f81ba7f8428520f935d37aae52fb151f5b3b.png
NoSuchjobException

_images/inheritance-feaf275f92fa745ce8991384b5a7d91db1c8add2.png
TestCase

ToilTest

AbstractClustarlest

AbstractAWSAutscaleTest

AWSAutoscaleTest |——of AWSManagedAumscaleTest

_images/inheritance-4b0319e6d4f6f6e465fb1ac293c6a446fa1fe95c.png
ABC

ReadablePipe

_images/inheritance-03c6bd8d540ec01d210a73e1d325f4e4d6f003d7.png
BaseRequestandler

}——f stresmRequesthandier

BaseHTTPRequestHandier | ——

‘SimpleHTTPRequestHandler

J——f subHtmRequestandier

_images/inheritance-04c63ea84171e1c85a775990c6a624f9157629b5.png
TestCase

ToilTest.

AbstractileStoreTest

o AbstractCachingfilestoreTest

_images/inheritance-010c89486de6e95254d746e93d10574ecc2a1a76.png
InvalidClusterstateException

_images/inheritance-01e0b253a2508e52df99b147436a7b8e71618204.png
ResourceException

_images/inheritance-05d329d68e82aa52a607e7ff81fc2093dd106a69.png
TestCase

ToilTest.

KubernetesBatchSystemBenchTest

_images/inheritance-05db0819964bb0d13e4f8040f8c608d86d47aff5.png
UnexpectedResourcestate

_images/inheritance-04ca610dffb271ac2d1b0c493700e15526a5b389.png
TestCase

ToilTest.

FlatcarFeedTest

_images/inheritance-05ca213571ddfa70cbe72b987aaee87a0594790b.png
TestCase

ToilTest.

ProvisionerTest

_images/inheritance-d5e1c1814d26979af15c996d87495bee93f4db8f.png
Job

v

CheckRetryCount

_images/inheritance-06684c2c7fbdcc7a0a6540afba729a8030480065.png
Thread

Worker

_images/inheritance-da8c49e29f1edbd5ab4f584ef82af41f91522c73.png
TestCase

ToilTest.

v

RestartDAGTest

_images/inheritance-07161a342e6c4b4454debed2ef4d27724675739a.png
TestCase

ToilTest.

v

LSFHelperTest

_images/inheritance-d69c0482ae77337894b0fbf7a543b64790152472.png
!

Requirer

Service

_images/inheritance-d1f14e4e42cd902b3302fb671517076011393cb3.png
NoAvailablejobStoreException

_images/inheritance-d1d7e6134d42370594a6b6a8a37ab3da7ced83db.png
ABC

‘AbstractBatchsystem

_images/inheritance-d3c90689ec85912ed08a60e8821f935260f8cfad.png
Job

RunTwojobsPerWorker

_images/inheritance-d262b78114668c6e8a7cafed4caf9d3623e12bc1.png
InvalidimportExportUrlException

_images/inheritance-d3e735a9b4bc4d108b4ec93be931bed70b2665ad.png
WEsBackend » ToilBackend

_images/inheritance-d3ca8d4740a42bf470d1309ec4bff11e6ee518d7.png
MessageBusClient

Messagelnbox

_images/inheritance-d56be86a31969212596392b9c04b9486f9907265.png
Job

WDLBasejob

v

WDLSectionjob

_images/inheritance-d549f28db4dacbf095f54ddd59d90af2c9919c42.png
RealtimeLoggerMetaclass

_images/inheritance-0841e9645b682590527c90e5cd24744388f0d4f3.png
[T&Bc | AbmtreciBatchSysmem | BatchSymemsupport | ——+f BstchSymemiacalSuppore |+ BatchSymemGieanupSuppart | —+{ AbstractOndEngineBachSystem |

_images/inheritance-0a4df3fc069bdde08d78802a146af425247f8f81.png
TestCase

ToilTest.

v

ThreadingTest

_images/inheritance-0a79abd5eb7939db0b3be150f54ddc138a248754.png
TestCase

ToilTest.

ClusterscalerTest

_images/inheritance-08e1f2d49cad43519f6c5f3e4ae8ccdfe1c7d868.png
ABC

v

‘AbstractjobStore

o Awsjobstore

_images/inheritance-097363df618d16a15adf4ba33ff961600ff0c130.png
Requirer

v

JobDeseription

v

CheckpointjobDescription

_images/inheritance-0d72bbfa9126586f2e469b0b7ecbfd87bf7894ea.png
[(amc | mzacaxasmn | swcristemsimoot |—of Batcrystemioct Suos | o] BawnSy RemCeaninsooot ——of AlTAGAEgne BTGy Rem | ——of LSFEITRSSteM

_images/inheritance-0e78d6a3b563219cc9ab4f5203e2be111f3ba54b.png
Job

WDLBasejob

v

WDLOutputsjob

_images/inheritance-0af4d15c7c7d010cf70e441fbebd0b98f658645d.png
Expando

_images/inheritance-0b04b4b039a1b9e17687f724754b1e1ad90e0563.png
ChecksumError

_images/inheritance-0f6833d6f3b9c20299ca2d6947ef4df1df5f481d.png
TestCase

ToilTest.

v

ScalerThreadTest

_images/inheritance-d0a5eaef5c4ba92f448a7f3cbff3459862f73458.png
NamedTuple

+ UpdatedBatchjobinfo

_images/inheritance-cfc4c9fb9c36bef85e535721d1ded4beb2fc97d4.png
Job

WDLBasejob

v

WDLSectionjob

WDLWorkflowjob

_images/inheritance-0f6f5eddbd331c4db31f128309b3228b8bd9e6ea.png
TestCase

ToilTest.

‘AbstractBatchSystemTest

‘AbstractGridEngineBatchSystemTest

_images/inheritance-10d37071c10c72a71d2f918c1826e77626261e3b.png
TestCase

ToilTest.

Test

v

GooglejobstoreTest

_images/inheritance-13891e84da975f4a8a4a685961654636ab142e12.png
NamedTuple o ClustersizeMessage

_images/inheritance-14b5052316ad04ec6f241bcf77dfeb7d951b4b26.png
ABC

v

‘AbstractjobStore

o Googlejobstore

_images/inheritance-1171ef331a74779752ba251d5003b6b6628bbbde.png
TestCase

ToilTest.

‘AbstractBatchSystemTest

v

SingleMachineBatchsystemTest

_images/inheritance-132b953feb9f8126b42aa0c04d6913b03b6a05aa.png
TestCase

ToilTest.

v

BaseToilWdlTest

o ToillWbLLibraryTest

_images/inheritance-15bde5ecdc35ae42fce1dcc2bce106cfacdc3273.png
Thread

v

ExceptionalThread

»| MesosThread

o MesosAgentThread

_images/inheritance-15fc0c9e5806c510a0447fd37d1f3f7b932ea1be.png
TestCase |

Toiltest

‘Abstra ctToilWESSe rverTest.

ToilWESSe v erorkflowTest.

Toil WESSarverCelery WorkflowTest

_images/inheritance-150caec18c6a7821e8a2772314d077dd4242b9a3.png
MesosTestSupport |

WesosPromisedhequirementsTest

TestCaze

it

‘AbstracatzhsystamjobTest

‘AbstracpromisedraguirementsTest

_images/inheritance-e6a764448baffb8eb8a5f4e723370ed614fc1c8c.png
Job

v

FunctionWrappingjob.

v

JobFunctionWrappingjob

_images/inheritance-15bd8e724bdf289ed0d45edac350b948673f6d75.png
NoSuchFileException

_images/inheritance-8d5bc9491bc4e17a00429f32f447216134c637ae.png
Job

v

LongTestjob

_images/inheritance-e8091e54973335dbffbb6ec587bdfe1f62c19966.png
Thread

ParasolThread

+ ParasolLeaderThread

_images/inheritance-8cfeae3beade4301cf8e408fa0e904666c20db2c.png
o Amwacsaznsyzem |

o samnsyzmmiacisumat |

BatSystemCieamumsumon |-

o AbzracGedEngnesaznsysmm |

+{ GedEngmesaznsyzem |

_images/inheritance-e79a2f969da2014ad3b2d3751eb5657ce7d49a9a.png
Job

WDLBasejob

v

WDLSectionjob

v

WDLRootjob

_images/inheritance-912acde8de943f607bda00bb47fb5e3e625c368a.png
Job

WDLBasejob

WDLNamespaceBindingsjob

_images/inheritance-eae201005be87d2b361eb30b449dc6ae5f454238.png
TestCase

Toiltest

‘Abstractfile StoreTest

‘AbstractCachingFilestoreTest

CachingFileStoreTestWithFile obStore

_images/inheritance-8f3ff3fd1c2c3b3a1d4591fecc85eadf5c86c3c9.png
NamedTuple

o[JobFailedMessage

_images/inheritance-ea3574e34d9c0572d35b6f76a4a8f1bbcc77ce85.png
TestCase

ToilTest.

ToilkillTest

of ToilKillTestWithAWS]obstore

_images/inheritance-881f137af52a9e3262673c324639e60eed28a18b.png
TestCase

ToilTest.

ResourceTest

_images/inheritance-e39392f9a1d967c6487a93c86d52ef45716e3e2d.png
Dict

v

UnresolvedDict

_images/inheritance-87cfce34cab29539d50ee43a84e53b1ecfbd03f0.png
TestCase

ToilTest.

AbstractClusterTest

_images/inheritance-e35060c2667771e8fe36879d68eff4d25ca61d48.png
ABC

‘AbstractBatchsystem

o Batchsystemsupport

_images/inheritance-894fc7a75298e43184d8a71edac5b19c35176597.png
aec |

RbsrscibarchSymem |

BoxchSymem Support |——of

BorchSyztembocsiSupport |——of

BarchSyztemCleanvpSuppor | ——of

Kubemetes BatchSysem

_images/inheritance-e54653ac6cfc8ec068b085e8cdeb81042c040882.png
TestCase

ToilTest.

AbstractGCEAutoscaleTest

GCEAutoscaleTestMultipleNodeTypes

_images/inheritance-88abfc0598812208ae623b4ba368ef8afdc8a10a.png
Thread

v

ExceptionalThread

o Appliance

_images/inheritance-e530a77ee1a30ad4100ecf543166728dc918198f.png
Job

WDLBasejob

WDLWorkflowNodejob

_images/inheritance-89ca3a5daa7b0b53efc28b3c1a225bb88df56311.png
Job

Helloworld

_images/inheritance-e62eec0d2c02a0e0eb4f9cc2ebe071cd7aa1c5d8.png
TestCase.

f——f ilfest |——of AbstracthilestorsTest | AbstrctCachingFileStoreTest

[CachingFieStoreTestiithGooglejobstore

_images/inheritance-8993c8e19f9f6ecea7beeca4fa27578d892369e4.png
Jof Boeracmarchsymem |

BorchSyztemSuppon |

BorchSyztemlocsiSuppon:

BatchSyztemCleanupSupport

e s)

_images/inheritance-e62d47b9c6ba64f7e99acf2701593a84e906265f.png
ABC

v

‘AbstractjobStore

+f Filejobstore

_images/inheritance-8be88c30e312cf7fdc3eea5a1652d7da32029004.png
JobException

_images/inheritance-163fbdee57af576dea3037d6aab231bf00b6d7d4.png
Requirer

Service

v

ToyService

_images/inheritance-171e02afb609fbeca4b7311498d6c18ab0f3af78.png
ToilContextManagerException

_images/inheritance-160d5d733972825b8040bafbd85ff216ac3e44a0.png
TestCase

ToilTest.

v

systemTest

_images/inheritance-1af99d1710dc9d4a152275295547bfe6ba7eceaa.png
TestCase

ToilTest.

v

BatchSystemPluginTest

_images/inheritance-1b8af5ec975aaf9692e4ead042dbd43c6fc05fa8.png
ConflictingPredecessorError

_images/inheritance-176ec1030fdb6ccbec587ab2809b217600a35cb5.png
Thread

v

ExceptionalThread

_images/inheritance-18d09e150b782619f909fde157995c19e020d3a7.png
TestCase

ToilTest.

CWLv11Test

_images/inheritance-1d4f3073c523fa51004547ce0cfe394bb0ef9f94.png
ABC

v

‘AbstractjobStore

+f Jobstoresupport

_images/inheritance-1c6a7bd47412b788f55f72f347bc949768e03e58.png
ABC

AbstractProvisioner

_images/inheritance-1c83f2806d3ac4fe8ecf751a551a876a0c17b393.png
Job

WDLBasejob

_images/inheritance-8579b96276bfc6d870ba5c64d1e41de54bce8be5.png
Job | RunctionWrappinglob |——| PromisedRequirementFunctionWrappinglob |——| PromisedRequirementjobFunctionWirappinglob

_images/inheritance-e0c9b3326143bd9922e0eea83ab85ef2d04a976e.png
CacheError

v

illegalDeletionCacheError

_images/inheritance-de034bf5f769824cd94e7d4524a419a6f5f21b84.png
ABC

wDLype

/J WDLCompoundType

_images/inheritance-874d78c419b18d1cd77cb0c42dd574f307d21316.png
TestCase

ToilTest.

v

ImportExporthileTest

_images/inheritance-e2cdfa3db7e7f4a0909c44e56f439da93b8043e3.png
TestCase |

ToilTest |——{ AbstractClusterTest

AbstractAWSAutoscaleTest

_images/inheritance-862759706a355d4a5fa5874399a712728c8a702a.png
Job

v

CWLNamedjob.

» cwiworkflow

_images/inheritance-e25d0b0c2842c1a3782e35ae5410d94132568f7b.png
TestCase

ToilTest.

S3Test

_images/inheritance-db63715a7ea7e4b00d0acbb61df83799e9dda776.png
NamedTuple

+| JobAnnotationMessage

_images/inheritance-db41a5d15e7ff158ca7fec3846bfcdc05c722b83.png
‘AnalyzeWDL

v

‘AnalyzeVIWDL

_images/inheritance-dbbbf3ed32