
Toil Documentation
Release 5.11.0

UCSC Computational Genomics Lab

Jun 15, 2023

GETTING STARTED

1 Installation 3
1.1 Preparing Your Python Runtime Environment . 3
1.2 Basic Installation . 3
1.3 Installing Toil with Extra Features . 4
1.4 Building from Source . 6

2 Quickstart Examples 7
2.1 Running a basic workflow . 7
2.2 Running a basic CWL workflow . 8
2.3 Running a basic WDL workflow . 9
2.4 A (more) real-world example . 9
2.5 Launching a Toil Workflow in AWS . 16
2.6 Running a CWL Workflow on AWS . 17
2.7 Running a Workflow with Autoscaling - Cactus . 18

3 Introduction 23
3.1 Job Store . 23
3.2 Batch System . 24
3.3 Provisioner . 24

4 Commandline Options 25
4.1 The Job Store . 25
4.2 Commandline Options . 25
4.3 Restart Option . 33
4.4 Running Workflows with Services . 33
4.5 Setting Options directly with the Toil Script . 33

5 Toil Debugging 35
5.1 Introspecting the Jobstore . 35
5.2 Stats and Status . 35
5.3 Using a Python debugger . 36

6 Running in the Cloud 37
6.1 Managing a Cluster of Virtual Machines (Provisioning) . 37
6.2 Storage (Toil jobStore) . 37

7 Cloud Platforms 39
7.1 Running on Kubernetes . 39
7.2 Running in AWS . 49
7.3 Running in Google Compute Engine (GCE) . 58
7.4 Cluster Utilities . 61

i

7.5 Stats Command . 62
7.6 Status Command . 64
7.7 Clean Command . 65
7.8 Launch-Cluster Command . 65
7.9 Ssh-Cluster Command . 67
7.10 Rsync-Cluster Command . 67
7.11 Destroy-Cluster Command . 67
7.12 Kill Command . 68

8 HPC Environments 69
8.1 Standard Output/Error from Batch System Jobs . 69

9 CWL in Toil 71
9.1 Running CWL Locally . 71
9.2 Detailed Usage Instructions . 71
9.3 Running CWL in the Cloud . 72
9.4 Running CWL within Toil Scripts . 73
9.5 Running CWL workflows with InplaceUpdateRequirement . 74
9.6 Toil & CWL Tips . 74

10 WDL in Toil 79
10.1 Running WDL with Toil . 79
10.2 Toil WDL Runner Options . 80
10.3 WDL Specifications . 80
10.4 Using the Old WDL Compiler . 80

11 Workflow Execution Service (WES) 83
11.1 Preparing your WES environment . 83
11.2 Starting a WES server . 83
11.3 Running the Server with docker-compose . 84
11.4 Running on a Toil cluster . 86
11.5 WES API Endpoints . 86
11.6 Submitting a Workflow . 87
11.7 Monitoring a Workflow . 89

12 Developing a Workflow 91
12.1 Scripting Quick Start . 91
12.2 Job Basics . 92
12.3 Invoking a Workflow . 92
12.4 Specifying Commandline Arguments . 94
12.5 Resuming a Workflow . 95
12.6 Functions and Job Functions . 95
12.7 Workflows with Multiple Jobs . 96
12.8 Dynamic Job Creation . 98
12.9 Promises . 99
12.10 Promised Requirements . 101
12.11 FileID . 102
12.12 Managing files within a workflow . 102
12.13 Using Docker Containers in Toil . 106
12.14 Services . 107
12.15 Checkpoints . 108
12.16 Encapsulation . 109
12.17 Depending on Toil . 110
12.18 Best Practices for Dockerizing Toil Workflows . 110

ii

13 Toil Class API 113

14 Job Store API 117

15 Toil Job API 133
15.1 FunctionWrappingJob . 133
15.2 JobFunctionWrappingJob . 133
15.3 EncapsulatedJob . 134
15.4 Promise . 136

16 Job Methods API 139
16.1 JobDescription . 148

17 Job.Runner API 153

18 job.fileStore API 155

19 Batch System API 163
19.1 Batch System Enivronmental Variables . 163
19.2 Batch System API . 164

20 Job.Service API 167

21 Exceptions API 169

22 Running Tests 171
22.1 Running Tests with pytest . 172
22.2 Running Integration Tests . 172
22.3 Test Environment Variables . 172
22.4 Using Docker with Quay . 173
22.5 Running Mesos Tests . 173

23 Developing with Docker 175
23.1 Making Your Own Toil Docker Image . 175
23.2 Running a Cluster Locally . 176

24 Maintainer’s Guidelines 179
24.1 Naming Conventions . 179
24.2 Pull Requests . 179
24.3 Publishing a Release . 180
24.4 Using Git Hooks . 181
24.5 Adding Retries to a Function . 181

25 Pull Request Checklists 185
25.1 Reviewing Pull Requests . 185
25.2 Merging Pull Requests . 186

26 Toil Architecture 187
26.1 Jobs and JobDescriptions . 188
26.2 Optimizations . 189
26.3 Toil support for Common Workflow Language . 190

27 Minimum AWS IAM permissions 193

28 Auto-Deployment 195
28.1 Auto Deployment with Sibling Modules . 196

iii

28.2 Auto-Deploying a Package Hierarchy . 197
28.3 Relying on Shared Filesystems . 198

29 Environment Variables 199

30 API Reference 201
30.1 toil . 201
30.2 tutorial_docker . 805
30.3 tutorial_managing2 . 805
30.4 tutorial_helloworld . 805
30.5 tutorial_discoverfiles . 806
30.6 tutorial_multiplejobs2 . 806
30.7 tutorial_dynamic . 807
30.8 tutorial_invokeworkflow2 . 807
30.9 tutorial_jobfunctions . 808
30.10 tutorial_managing . 809
30.11 example_alwaysfail . 810
30.12 example_cachingbenchmark . 810
30.13 tutorial_quickstart . 811
30.14 tutorial_encapsulation2 . 812
30.15 tutorial_multiplejobs3 . 812
30.16 tutorial_cwlexample . 812
30.17 tutorial_encapsulation . 813
30.18 tutorial_invokeworkflow . 813
30.19 tutorial_requirements . 814
30.20 tutorial_staging . 814
30.21 tutorial_promises . 815
30.22 tutorial_services . 816
30.23 tutorial_promises2 . 817
30.24 tutorial_multiplejobs . 818
30.25 tutorial_arguments . 818
30.26 mkFile . 819
30.27 debugWorkflow . 819
30.28 fake_mpi_run . 820

Python Module Index 823

Index 827

iv

Toil Documentation, Release 5.11.0

Toil is an open-source pure-Python workflow engine that lets people write better pipelines.

Check out our website for a comprehensive list of Toil’s features and read our paper to learn what Toil can do in the real
world. Please subscribe to our low-volume announce mailing list and feel free to also join us on GitHub and Gitter.

If using Toil for your research, please cite

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., . . . Paten, B. (2017). Toil
enables reproducible, open source, big biomedical data analyses. Nature Biotechnology, 35(4), 314–316.
http://doi.org/10.1038/nbt.3772

GETTING STARTED 1

http://toil.ucsc-cgl.org/
http://biorxiv.org/content/early/2016/07/07/062497
https://groups.google.com/forum/#!forum/toil-announce
https://github.com/BD2KGenomics/toil
https://gitter.im/bd2k-genomics-toil/Lobby
http://doi.org/10.1038/nbt.3772

Toil Documentation, Release 5.11.0

2 GETTING STARTED

CHAPTER

ONE

INSTALLATION

This document describes how to prepare for and install Toil. Note that Toil requires that the user run all commands
inside of a Python virtualenv. Instructions for installing and creating a Python virtual environment are provided below.

1.1 Preparing Your Python Runtime Environment

Toil currently supports Python 3.7, 3.8, 3.9, and 3.10, and requires a virtualenv to be active to install.

If not already present, please install the latest Python virtualenv using pip:

$ sudo pip install virtualenv

And create a virtual environment called venv in your home directory:

$ virtualenv ~/venv

If the user does not have root privileges, there are a few more steps, but one can download a specific virtualenv package
directly, untar the file, create, and source the virtualenv (version 15.1.0 as an example) using

$ curl -O https://pypi.python.org/packages/d4/0c/
→˓9840c08189e030873387a73b90ada981885010dd9aea134d6de30cd24cb8/virtualenv-15.1.0.tar.gz
$ tar xvfz virtualenv-15.1.0.tar.gz
$ cd virtualenv-15.1.0
$ python virtualenv.py ~/venv

Now that you’ve created your virtualenv, activate your virtual environment:

$ source ~/venv/bin/activate

1.2 Basic Installation

If you need only the basic version of Toil, it can be easily installed using pip:

$ pip install toil

Now you’re ready to run your first Toil workflow!

(If you need any of the extra features don’t do this yet and instead skip to the next section.)

3

https://virtualenv.pypa.io/en/stable/
https://pip.readthedocs.io/en/latest/installing/

Toil Documentation, Release 5.11.0

1.3 Installing Toil with Extra Features

Python headers and static libraries

Needed for the mesos, aws, google, and encryption extras.

On Ubuntu:
$ sudo apt-get install build-essential python-dev

On macOS:
$ xcode-select --install

Encryption specific headers and library

Needed for the encryption extra.

On Ubuntu:
$ sudo apt-get install libssl-dev libffi-dev

On macOS:
$ brew install libssl libffi

Or see Cryptography for other systems.

Some optional features, called extras, are not included in the basic installation of Toil. To install Toil with all its bells
and whistles, first install any necessary headers and libraries (python-dev, libffi-dev). Then run

$ pip install toil[aws,google,mesos,encryption,cwl,wdl,kubernetes,server]

or

$ pip install toil[all]

Here’s what each extra provides:

4 Chapter 1. Installation

https://cryptography.io/en/latest/installation/

Toil Documentation, Release 5.11.0

Extra Description
all Installs all extras (though htcondor is linux-only and will

be skipped if not on a linux computer).
aws Provides support for managing a cluster on Amazon Web

Service (AWS) using Toil’s built in Cluster Utilities.
Clusters can scale up and down automatically. It also
supports storing workflow state.

google Experimental. Stores workflow state in Google Cloud
Storage.

mesos Provides support for running Toil on an Apache Mesos
cluster. Note that running Toil on other batch systems
does not require an extra. The mesos extra requires the
following native dependencies:

• Apache Mesos (Tested with Mesos v1.0.0)
• Python headers and static libraries

Important: If launching toil remotely on a mesos
instance, to install Toil with the mesos extra in a
virtualenv, be sure to create that virtualenv with the
--system-site-packages flag (only use remotely!):

$ virtualenv ~/venv --system-site-packages

Otherwise, you’ll see something like this:

ImportError: No module named mesos.native

htcondor Support for the htcondor batch system. This currently is
a linux only extra.

encryption Provides client-side encryption for files stored in the
AWS job store. This extra requires the following native
dependencies:

• Python headers and static libraries
• libffi headers and library

cwl Provides support for running workflows written using
the Common Workflow Language.

wdl Provides support for running workflows written using
the Workflow Description Language. This extra has no
native dependencies.

kubernetes Provides support for running workflows written using a
Kubernetes cluster.

server Provides support for Toil server mode, including support
for the GA4GH Workflow Execution Service API.

1.3. Installing Toil with Extra Features 5

https://aws.amazon.com/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/gettingstarted/
http://www.commonwl.org/
https://software.broadinstitute.org/wdl/
https://kubernetes.io/docs/concepts/overview/
https://ga4gh.github.io/workflow-execution-service-schemas/docs/

Toil Documentation, Release 5.11.0

1.4 Building from Source

If developing with Toil, you will need to build from source. This allows changes you make to Toil to be reflected
immediately in your runtime environment.

First, clone the source:

$ git clone https://github.com/DataBiosphere/toil.git
$ cd toil

Then, create and activate a virtualenv:

$ virtualenv venv
$. venv/bin/activate

From there, you can list all available Make targets by running make. First and foremost, we want to install Toil’s build
requirements (these are additional packages that Toil needs to be tested and built but not to be run):

$ make prepare

Now, we can install Toil in development mode (such that changes to the source code will immediately affect the vir-
tualenv):

$ make develop

Or, to install with support for all optional Installing Toil with Extra Features:

$ make develop extras=[aws,mesos,google,encryption,cwl]

Or:

$ make develop extras=[all]

To build the docs, run make develop with all extras followed by

$ make docs

To run a quick batch of tests (this should take less than 30 minutes) run

$ export TOIL_TEST_QUICK=True; make test

For more information on testing see Running Tests.

6 Chapter 1. Installation

CHAPTER

TWO

QUICKSTART EXAMPLES

2.1 Running a basic workflow

A Toil workflow can be run with just three steps:

1. Install Toil (see Installation)

2. Copy and paste the following code block into a new file called helloWorld.py:

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="1G", cores=1, disk="1G"):
return f"Hello, world!, here's a message: {message}"

if __name__ == "__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
options.clean = "always"
with Toil(options) as toil:

output = toil.start(Job.wrapFn(helloWorld, "You did it!"))
print(output)

3. Specify the name of the job store and run the workflow:

(venv) $ python helloWorld.py file:my-job-store

Note: Don’t actually type (venv) $ in at the beginning of each command. This is intended only to remind the user
that they should have their virtual environment running.

Congratulations! You’ve run your first Toil workflow using the default Batch System, singleMachine, using the file
job store.

Toil uses batch systems to manage the jobs it creates.

The singleMachine batch system is primarily used to prepare and debug workflows on a local machine. Once val-
idated, try running them on a full-fledged batch system (see Batch System API). Toil supports many different batch
systems such as Apache Mesos and Grid Engine; its versatility makes it easy to run your workflow in all kinds of
places.

7

https://mesos.apache.org/getting-started/

Toil Documentation, Release 5.11.0

Toil is totally customizable! Run python helloWorld.py --help to see a complete list of available options.

For something beyond a “Hello, world!” example, refer to A (more) real-world example.

2.2 Running a basic CWL workflow

The Common Workflow Language (CWL) is an emerging standard for writing workflows that are portable across
multiple workflow engines and platforms. Running CWL workflows using Toil is easy.

1. First ensure that Toil is installed with the cwl extra (see Installing Toil with Extra Features):

(venv) $ pip install 'toil[cwl]'

This installs the toil-cwl-runner executable.

2. Copy and paste the following code block into example.cwl:

cwlVersion: v1.0
class: CommandLineTool
baseCommand: echo
stdout: output.txt
inputs:
message:
type: string
inputBinding:
position: 1

outputs:
output:
type: stdout

and this code into example-job.yaml:

message: Hello world!

3. To run the workflow simply enter

(venv) $ toil-cwl-runner example.cwl example-job.yaml

Your output will be in output.txt:

(venv) $ cat output.txt
Hello world!

To learn more about CWL, see the CWL User Guide (from where this example was shamelessly borrowed).

To run this workflow on an AWS cluster have a look at Running a CWL Workflow on AWS.

For information on using CWL with Toil see the section CWL in Toil

8 Chapter 2. Quickstart Examples

http://www.commonwl.org/
https://www.commonwl.org/user_guide/

Toil Documentation, Release 5.11.0

2.3 Running a basic WDL workflow

The Workflow Description Language (WDL) is another emerging language for writing workflows that are portable
across multiple workflow engines and platforms. Running WDL workflows using Toil is still in alpha, and currently
experimental. Toil currently supports basic workflow syntax (see WDL in Toil for more details and examples). Here
we go over running a basic WDL helloworld workflow.

1. First ensure that Toil is installed with the wdl extra (see Installing Toil with Extra Features):

(venv) $ pip install 'toil[wdl]'

This installs the toil-wdl-runner executable.

2. Copy and paste the following code block into wdl-helloworld.wdl:

workflow write_simple_file {
call write_file

}
task write_file {
String message
command { echo ${message} > wdl-helloworld-output.txt }
output { File test = "wdl-helloworld-output.txt" }

}

and this code into ``wdl-helloworld.json``::

{
"write_simple_file.write_file.message": "Hello world!"

}

3. To run the workflow simply enter

(venv) $ toil-wdl-runner wdl-helloworld.wdl wdl-helloworld.json

Your output will be in wdl-helloworld-output.txt:

(venv) $ cat wdl-helloworld-output.txt
Hello world!

To learn more about WDL, see the main WDL website .

2.4 A (more) real-world example

For a more detailed example and explanation, we’ve developed a sample pipeline that merge-sorts a temporary file.
This is not supposed to be an efficient sorting program, rather a more fully worked example of what Toil is capable of.

2.3. Running a basic WDL workflow 9

https://software.broadinstitute.org/wdl/
https://software.broadinstitute.org/wdl/

Toil Documentation, Release 5.11.0

2.4.1 Running the example

1. Download the example code

2. Run it with the default settings:

(venv) $ python sort.py file:jobStore

The workflow created a file called sortedFile.txt in your current directory. Have a look at it and notice that
it contains a whole lot of sorted lines!

This workflow does a smart merge sort on a file it generates, fileToSort.txt. The sort is smart because
each step of the process—splitting the file into separate chunks, sorting these chunks, and merging them back
together—is compartmentalized into a job. Each job can specify its own resource requirements and will only be
run after the jobs it depends upon have run. Jobs without dependencies will be run in parallel.

Note: Delete fileToSort.txt before moving on to #3. This example introduces options that specify dimensions for
fileToSort.txt, if it does not already exist. If it exists, this workflow will use the existing file and the results will be
the same as #2.

3. Run with custom options:

(venv) $ python sort.py file:jobStore \
--numLines=5000 \
--lineLength=10 \
--overwriteOutput=True \
--workDir=/tmp/

Here we see that we can add our own options to a Toil script. As noted above, the first two options,
--numLines and --lineLength, determine the number of lines and how many characters are in each line.
--overwriteOutput causes the current contents of sortedFile.txt to be overwritten, if it already exists.
The last option, --workDir, is an option built into Toil to specify where temporary files unique to a job are kept.

2.4.2 Describing the source code

To understand the details of what’s going on inside. Let’s start with the main() function. It looks like a lot of code,
but don’t worry—we’ll break it down piece by piece.

def main(options=None):
if not options:

deal with command line arguments
parser = ArgumentParser()
Job.Runner.addToilOptions(parser)
parser.add_argument('--numLines', default=defaultLines, help='Number of lines in␣

→˓file to sort.', type=int)
parser.add_argument('--lineLength', default=defaultLineLen, help='Length of␣

→˓lines in file to sort.', type=int)
parser.add_argument("--fileToSort", help="The file you wish to sort")
parser.add_argument("--outputFile", help="Where the sorted output will go")
parser.add_argument("--overwriteOutput", help="Write over the output file if it␣

→˓already exists.", default=True)
parser.add_argument("--N", dest="N",

help="The threshold below which a serial sort function is␣
(continues on next page)

10 Chapter 2. Quickstart Examples

Toil Documentation, Release 5.11.0

(continued from previous page)

→˓used to sort file. "
"All lines must of length less than or equal to N or␣

→˓program will fail",
default=10000)

parser.add_argument('--downCheckpoints', action='store_true',
help='If this option is set, the workflow will make␣

→˓checkpoints on its way through'
'the recursive "down" part of the sort')

parser.add_argument("--sortMemory", dest="sortMemory",
help="Memory for jobs that sort chunks of the file.",
default=None)

parser.add_argument("--mergeMemory", dest="mergeMemory",
help="Memory for jobs that collate results.",
default=None)

options = parser.parse_args()
if not hasattr(options, "sortMemory") or not options.sortMemory:

options.sortMemory = sortMemory
if not hasattr(options, "mergeMemory") or not options.mergeMemory:

options.mergeMemory = sortMemory

do some input verification
sortedFileName = options.outputFile or "sortedFile.txt"
if not options.overwriteOutput and os.path.exists(sortedFileName):

print(f'Output file {sortedFileName} already exists. '
f'Delete it to run the sort example again or use --overwriteOutput=True')

exit()

fileName = options.fileToSort
if options.fileToSort is None:

make the file ourselves
fileName = 'fileToSort.txt'
if os.path.exists(fileName):

print(f'Sorting existing file: {fileName}')
else:

print(f'No sort file specified. Generating one automatically called:
→˓{fileName}.')

makeFileToSort(fileName=fileName, lines=options.numLines, lineLen=options.
→˓lineLength)
else:

if not os.path.exists(options.fileToSort):
raise RuntimeError("File to sort does not exist: %s" % options.fileToSort)

if int(options.N) <= 0:
raise RuntimeError("Invalid value of N: %s" % options.N)

Now we are ready to run
with Toil(options) as workflow:

sortedFileURL = 'file://' + os.path.abspath(sortedFileName)
if not workflow.options.restart:

sortFileURL = 'file://' + os.path.abspath(fileName)

(continues on next page)

2.4. A (more) real-world example 11

Toil Documentation, Release 5.11.0

(continued from previous page)

sortFileID = workflow.importFile(sortFileURL)
sortedFileID = workflow.start(Job.wrapJobFn(setup,

sortFileID,
int(options.N),
options.downCheckpoints,
options=options,
memory=sortMemory))

else:
sortedFileID = workflow.restart()

workflow.exportFile(sortedFileID, sortedFileURL)

First we make a parser to process command line arguments using the argparse module. It’s important that we add the
call to Job.Runner.addToilOptions() to initialize our parser with all of Toil’s default options. Then we add the
command line arguments unique to this workflow, and parse the input. The help message listed with the arguments
should give you a pretty good idea of what they can do.

Next we do a little bit of verification of the input arguments. The option --fileToSort allows you to specify a file that
needs to be sorted. If this option isn’t given, it’s here that we make our own file with the call to makeFileToSort().

Finally we come to the context manager that initializes the workflow. We create a path to the input file prepended with
'file://' as per the documentation for toil.common.Toil() when staging a file that is stored locally. Notice that
we have to check whether or not the workflow is restarting so that we don’t import the file more than once. Finally we
can kick off the workflow by calling toil.common.Toil.start() on the job setup. When the workflow ends we
capture its output (the sorted file’s fileID) and use that in toil.common.Toil.exportFile() to move the sorted file
from the job store back into “userland”.

Next let’s look at the job that begins the actual workflow, setup.

def setup(job, inputFile, N, downCheckpoints, options):
"""
Sets up the sort.
Returns the FileID of the sorted file
"""
RealtimeLogger.info("Starting the merge sort")
return job.addChildJobFn(down,

inputFile, N, 'root',
downCheckpoints,
options = options,
preemptible=True,
memory=sortMemory).rv()

setup really only does two things. First it writes to the logs using Job.log() and then calls addChildJobFn().
Child jobs run directly after the current job. This function turns the ‘job function’ down into an actual job and passes
in the inputs including an optional resource requirement, memory. The job doesn’t actually get run until the call to
Job.rv(). Once the job down finishes, its output is returned here.

Now we can look at what down does.

def down(job, inputFileStoreID, N, path, downCheckpoints, options, memory=sortMemory):
"""
Input is a file, a subdivision size N, and a path in the hierarchy of jobs.
If the range is larger than a threshold N the range is divided recursively and
a follow on job is then created which merges back the results else
the file is sorted and placed in the output.

(continues on next page)

12 Chapter 2. Quickstart Examples

https://docs.python.org/2.7/library/argparse.html

Toil Documentation, Release 5.11.0

(continued from previous page)

"""

RealtimeLogger.info("Down job starting: %s" % path)

Read the file
inputFile = job.fileStore.readGlobalFile(inputFileStoreID, cache=False)
length = os.path.getsize(inputFile)
if length > N:

We will subdivide the file
RealtimeLogger.critical("Splitting file: %s of size: %s"

% (inputFileStoreID, length))
Split the file into two copies
midPoint = getMidPoint(inputFile, 0, length)
t1 = job.fileStore.getLocalTempFile()
with open(t1, 'w') as fH:

fH.write(copySubRangeOfFile(inputFile, 0, midPoint+1))
t2 = job.fileStore.getLocalTempFile()
with open(t2, 'w') as fH:

fH.write(copySubRangeOfFile(inputFile, midPoint+1, length))
Call down recursively. By giving the rv() of the two jobs as inputs to the␣

→˓follow-on job, up,
we communicate the dependency without hindering concurrency.
result = job.addFollowOnJobFn(up,

job.addChildJobFn(down, job.fileStore.
→˓writeGlobalFile(t1), N, path + '/0',

downCheckpoints,␣
→˓checkpoint=downCheckpoints, options=options,

preemptible=True, memory=options.
→˓sortMemory).rv(),

job.addChildJobFn(down, job.fileStore.
→˓writeGlobalFile(t2), N, path + '/1',

downCheckpoints,␣
→˓checkpoint=downCheckpoints, options=options,

preemptible=True, memory=options.
→˓mergeMemory).rv(),

path + '/up', preemptible=True, options=options,␣
→˓memory=options.sortMemory).rv()
else:

We can sort this bit of the file
RealtimeLogger.critical("Sorting file: %s of size: %s"

% (inputFileStoreID, length))
Sort the copy and write back to the fileStore
shutil.copyfile(inputFile, inputFile + '.sort')
sort(inputFile + '.sort')
result = job.fileStore.writeGlobalFile(inputFile + '.sort')

RealtimeLogger.info("Down job finished: %s" % path)
return result

Down is the recursive part of the workflow. First we read the file into the local filestore by calling job.fileStore.
readGlobalFile(). This puts a copy of the file in the temp directory for this particular job. This storage will disappear
once this job ends. For a detailed explanation of the filestore, job store, and their interfaces have a look at Managing
files within a workflow.

2.4. A (more) real-world example 13

Toil Documentation, Release 5.11.0

Next down checks the base case of the recursion: is the length of the input file less than N (remember N was an option
we added to the workflow in main)? In the base case, we just sort the file, and return the file ID of this new sorted file.

If the base case fails, then the file is split into two new tempFiles using job.fileStore.getLocalTempFile() and
the helper function copySubRangeOfFile. Finally we add a follow on Job up with job.addFollowOnJobFn().
We’ve already seen child jobs. A follow-on Job is a job that runs after the current job and all of its children (and their
children and follow-ons) have completed. Using a follow-on makes sense because up is responsible for merging the
files together and we don’t want to merge the files together until we know they are sorted. Again, the return value of
the follow-on job is requested using Job.rv().

Looking at up

def up(job, inputFileID1, inputFileID2, path, options, memory=sortMemory):
"""
Merges the two files and places them in the output.
"""

RealtimeLogger.info("Up job starting: %s" % path)

with job.fileStore.writeGlobalFileStream() as (fileHandle, outputFileStoreID):
fileHandle = codecs.getwriter('utf-8')(fileHandle)
with job.fileStore.readGlobalFileStream(inputFileID1) as inputFileHandle1:

inputFileHandle1 = codecs.getreader('utf-8')(inputFileHandle1)
with job.fileStore.readGlobalFileStream(inputFileID2) as inputFileHandle2:

inputFileHandle2 = codecs.getreader('utf-8')(inputFileHandle2)
RealtimeLogger.info("Merging %s and %s to %s"

% (inputFileID1, inputFileID2, outputFileStoreID))
merge(inputFileHandle1, inputFileHandle2, fileHandle)

Cleanup up the input files - these deletes will occur after the completion is␣
→˓successful.

job.fileStore.deleteGlobalFile(inputFileID1)
job.fileStore.deleteGlobalFile(inputFileID2)

RealtimeLogger.info("Up job finished: %s" % path)

return outputFileStoreID

we see that the two input files are merged together and the output is written to a new file using job.fileStore.
writeGlobalFileStream(). After a little cleanup, the output file is returned.

Once the final up finishes and all of the rv() promises are fulfilled, main receives the sorted file’s ID which it uses in
exportFile to send it to the user.

There are other things in this example that we didn’t go over such as Checkpoints and the details of much of the Toil
Class API .

At the end of the script the lines

if __name__ == '__main__'
main()

are included to ensure that the main function is only run once in the ‘__main__’ process invoked by you, the user. In
Toil terms, by invoking the script you created the leader process in which the main() function is run. A worker process
is a separate process whose sole purpose is to host the execution of one or more jobs defined in that script. In any Toil
workflow there is always one leader process, and potentially many worker processes.

When using the single-machine batch system (the default), the worker processes will be running on the same machine

14 Chapter 2. Quickstart Examples

Toil Documentation, Release 5.11.0

as the leader process. With full-fledged batch systems like Mesos the worker processes will typically be started on
separate machines. The boilerplate ensures that the pipeline is only started once—on the leader—but not when its job
functions are imported and executed on the individual workers.

Typing python sort.py --help will show the complete list of arguments for the workflow which includes both
Toil’s and ones defined inside sort.py. A complete explanation of Toil’s arguments can be found in Commandline
Options.

2.4.3 Logging

By default, Toil logs a lot of information related to the current environment in addition to messages from the batch
system and jobs. This can be configured with the --logLevel flag. For example, to only log CRITICAL level messages
to the screen:

(venv) $ python sort.py file:jobStore \
--logLevel=critical \
--overwriteOutput=True

This hides most of the information we get from the Toil run. For more detail, we can run the pipeline with
--logLevel=debug to see a comprehensive output. For more information, see Commandline Options.

2.4.4 Error Handling and Resuming Pipelines

With Toil, you can recover gracefully from a bug in your pipeline without losing any progress from successfully com-
pleted jobs. To demonstrate this, let’s add a bug to our example code to see how Toil handles a failure and how we can
resume a pipeline after that happens. Add a bad assertion at line 52 of the example (the first line of down()):

def down(job, inputFileStoreID, N, downCheckpoints, memory=sortMemory):
...
assert 1 == 2, "Test error!"

When we run the pipeline, Toil will show a detailed failure log with a traceback:

(venv) $ python sort.py file:jobStore
...
---TOIL WORKER OUTPUT LOG---
...
m/j/jobonrSMP Traceback (most recent call last):
m/j/jobonrSMP File "toil/src/toil/worker.py", line 340, in main
m/j/jobonrSMP job._runner(jobGraph=jobGraph, jobStore=jobStore,␣
→˓fileStore=fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1270, in _runner
m/j/jobonrSMP returnValues = self._run(jobGraph, fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1217, in _run
m/j/jobonrSMP return self.run(fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1383, in run
m/j/jobonrSMP rValue = userFunction(*((self,) + tuple(self._args)), **self._
→˓kwargs)
m/j/jobonrSMP File "toil/example.py", line 30, in down
m/j/jobonrSMP assert 1 == 2, "Test error!"
m/j/jobonrSMP AssertionError: Test error!

2.4. A (more) real-world example 15

Toil Documentation, Release 5.11.0

If we try and run the pipeline again, Toil will give us an error message saying that a job store of the same name already
exists. By default, in the event of a failure, the job store is preserved so that the workflow can be restarted, starting from
the previously failed jobs. We can restart the pipeline by running

(venv) $ python sort.py file:jobStore \
--restart \
--overwriteOutput=True

We can also change the number of times Toil will attempt to retry a failed job:

(venv) $ python sort.py file:jobStore \
--retryCount 2 \
--restart \
--overwriteOutput=True

You’ll now see Toil attempt to rerun the failed job until it runs out of tries. --retryCount is useful for non-systemic
errors, like downloading a file that may experience a sporadic interruption, or some other non-deterministic failure.

To successfully restart our pipeline, we can edit our script to comment out line 30, or remove it, and then run

(venv) $ python sort.py file:jobStore \
--restart \
--overwriteOutput=True

The pipeline will run successfully, and the job store will be removed on the pipeline’s completion.

2.4.5 Collecting Statistics

Please see the Stats Command section for more on gathering runtime and resource info on jobs.

2.5 Launching a Toil Workflow in AWS

After having installed the aws extra for Toil during the Installation and set up AWS (see Preparing your AWS envi-
ronment), the user can run the basic helloWorld.py script (Running a basic workflow) on a VM in AWS just by
modifying the run command.

Note that when running in AWS, users can either run the workflow on a single instance or run it on a cluster (which is
running across multiple containers on multiple AWS instances). For more information on running Toil workflows on a
cluster, see Running in AWS.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise
things may not be cleaned up properly.

1. Launch a cluster in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
--keyPairName <AWS-key-pair-name> \
--leaderNodeType t2.medium \
--zone us-west-2a

The arguments keyPairName, leaderNodeType, and zone are required to launch a cluster.

2. Copy helloWorld.py to the /tmp directory on the leader node using the Rsync-Cluster Command command:

16 Chapter 2. Quickstart Examples

Toil Documentation, Release 5.11.0

(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> helloWorld.py :/tmp

Note that the command requires defining the file to copy as well as the target location on the cluster leader node.

3. Login to the cluster leader node using the Ssh-Cluster Command command:

(venv) $ toil ssh-cluster --zone us-west-2a <cluster-name>

Note that this command will log you in as the root user.

4. Run the Toil script in the cluster:

$ python /tmp/helloWorld.py aws:us-west-2:my-S3-bucket

In this particular case, we create an S3 bucket called my-S3-bucket in the us-west-2 availability zone to store
intermediate job results.

Along with some other INFO log messages, you should get the following output in your terminal window: Hello,
world!, here's a message: You did it!.

5. Exit from the SSH connection.

$ exit

6. Use the Destroy-Cluster Command command to destroy the cluster:

(venv) $ toil destroy-cluster --zone us-west-2a <cluster-name>

Note that this command will destroy the cluster leader node and any resources created to run the job, including
the S3 bucket.

2.6 Running a CWL Workflow on AWS

After having installed the aws and cwl extras for Toil during the Installation and set up AWS (see Preparing your AWS
environment), the user can run a CWL workflow with Toil on AWS.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise
things may not be cleaned up properly.

1. First launch a node in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
--keyPairName <AWS-key-pair-name> \
--leaderNodeType t2.medium \
--zone us-west-2a

2. Copy example.cwl and example-job.yaml from the CWL example to the node using the Rsync-Cluster Com-
mand command:

(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> example.cwl :/tmp
(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> example-job.yaml :/tmp

3. SSH into the cluster’s leader node using the Ssh-Cluster Command utility:

(venv) $ toil ssh-cluster --zone us-west-2a <cluster-name>

2.6. Running a CWL Workflow on AWS 17

Toil Documentation, Release 5.11.0

4. Once on the leader node, it’s a good idea to update and install the following:

sudo apt-get update
sudo apt-get -y upgrade
sudo apt-get -y dist-upgrade
sudo apt-get -y install git
sudo pip install mesos.cli

5. Now create a new virtualenv with the --system-site-packages option and activate:

virtualenv --system-site-packages venv
source venv/bin/activate

6. Now run the CWL workflow:

(venv) $ toil-cwl-runner \
--provisioner aws \
--jobStore aws:us-west-2a:any-name \
/tmp/example.cwl /tmp/example-job.yaml

Tip: When running a CWL workflow on AWS, input files can be provided either on the local file system or in
S3 buckets using s3:// URI references. Final output files will be copied to the local file system of the leader
node.

7. Finally, log out of the leader node and from your local computer, destroy the cluster:

(venv) $ toil destroy-cluster --zone us-west-2a <cluster-name>

2.7 Running a Workflow with Autoscaling - Cactus

Cactus is a reference-free, whole-genome multiple alignment program that can be run on any of the cloud platforms
Toil supports.

Note: Cloud Independence:

This example provides a “cloud agnostic” view of running Cactus with Toil. Most options will not change between
cloud providers. However, each provisioner has unique inputs for --leaderNodeType, --nodeType and --zone. We
recommend the following:

Option Used in AWS Google
--leaderNodeType launch-cluster t2.medium n1-standard-1
--zone launch-cluster us-west-2a us-west1-a
--zone cactus us-west-2
--nodeType cactus c3.4xlarge n1-standard-8

When executing toil launch-clusterwith gce specified for --provisioner, the option --botomust be specified
and given a path to your .boto file. See Running in Google Compute Engine (GCE) for more information about the
--boto option.

18 Chapter 2. Quickstart Examples

https://github.com/ComparativeGenomicsToolkit/cactus

Toil Documentation, Release 5.11.0

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise
things may not be cleaned up properly.

1. Download pestis.tar.gz

2. Launch a leader node using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
--provisioner <aws, gce> \
--keyPairName <key-pair-name> \
--leaderNodeType <type> \
--zone <zone>

Note: A Helpful Tip
When using AWS, setting the environment variable eliminates having to specify the --zone option for each
command. This will be supported for GCE in the future.

(venv) $ export TOIL_AWS_ZONE=us-west-2c

3. Create appropriate directory for uploading files:

(venv) $ toil ssh-cluster --provisioner <aws, gce> <cluster-name>
$ mkdir /root/cact_ex
$ exit

4. Copy the required files, i.e., seqFile.txt (a text file containing the locations of the input sequences as well as their
phylogenetic tree, see here), organisms’ genome sequence files in FASTA format, and configuration files (e.g.
blockTrim1.xml, if desired), up to the leader node:

(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> pestis-short-
→˓aws-seqFile.txt :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000169655.1_
→˓ASM16965v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000006645.1_
→˓ASM664v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000182485.1_
→˓ASM18248v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000013805.1_
→˓ASM1380v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> setup_
→˓leaderNode.sh :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> blockTrim1.xml␣
→˓:/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> blockTrim3.xml␣
→˓:/root/cact_ex

5. Log in to the leader node:

(venv) $ toil ssh-cluster --provisioner <aws, gce> <cluster-name>

6. Set up the environment of the leader node to run Cactus:

2.7. Running a Workflow with Autoscaling - Cactus 19

https://github.com/ComparativeGenomicsToolkit/cactus#seqfile-the-input-file

Toil Documentation, Release 5.11.0

$ bash /root/cact_ex/setup_leaderNode.sh
$ source cact_venv/bin/activate
(cact_venv) $ cd cactus
(cact_venv) $ pip install --upgrade .

7. Run Cactus as an autoscaling workflow:

(cact_venv) $ TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:3.14.0 cactus \
--provisioner <aws, gce> \
--nodeType <type> \
--maxNodes 2 \
--minNodes 0 \
--retry 10 \
--batchSystem mesos \
--logDebug \
--logFile /logFile_pestis3 \
--configFile \
/root/cact_ex/blockTrim3.xml <aws, google>:<zone>:cactus-pestis \
/root/cact_ex/pestis-short-aws-seqFile.txt \
/root/cact_ex/pestis_output3.hal

Note: Pieces of the Puzzle:

TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:3.14.0 — specifies the version of Toil being used,
3.14.0; if the latest one is desired, please eliminate.

--nodeType — determines the instance type used for worker nodes. The instance type specified here must be
on the same cloud provider as the one specified with --leaderNodeType

--maxNodes 2— creates up to two instances of the type specified with --nodeType and launches Mesos worker
containers inside them.

--logDebug — equivalent to --logLevel DEBUG.

--logFile /logFile_pestis3 — writes logs in a file named logFile_pestis3 under / folder.

--configFile — this is not required depending on whether a specific configuration file is intended to run the
alignment.

<aws, google>:<zone>:cactus-pestis — creates a bucket, named cactus-pestis, with the specified
cloud provider to store intermediate job files and metadata. NOTE: If you want to use a GCE-based jobstore,
specify google here, not gce.

The result file, named pestis_output3.hal, is stored under /root/cact_ex folder of the leader node.

Use cactus --help to see all the Cactus and Toil flags available.

8. Log out of the leader node:

(cact_venv) $ exit

9. Download the resulted output to local machine:

(venv) $ toil rsync-cluster \
--provisioner <aws, gce> <cluster-name> \
:/root/cact_ex/pestis_output3.hal \
<path-of-folder-on-local-machine>

20 Chapter 2. Quickstart Examples

https://github.com/ComparativeGenomicsToolkit/cactus

Toil Documentation, Release 5.11.0

10. Destroy the cluster:

(venv) $ toil destroy-cluster --provisioner <aws, gce> <cluster-name>

2.7. Running a Workflow with Autoscaling - Cactus 21

Toil Documentation, Release 5.11.0

22 Chapter 2. Quickstart Examples

CHAPTER

THREE

INTRODUCTION

Toil runs in various environments, including locally and in the cloud (Amazon Web Services and Google Compute
Engine). Toil also supports two DSLs: CWL and (Amazon Web Services and Google Compute Engine). Toil also
supports two DSLs: CWL and WDL (experimental).

Toil is built in a modular way so that it can be used on lots of different systems, and with different configurations. The
three configurable pieces are the

• Job Store API: A filepath or url that can host and centralize all files for a workflow (e.g. a local folder, or an AWS
s3 bucket url).

• Batch System API: Specifies either a local single-machine or a currently supported HPC environment (lsf, parasol,
mesos, slurm, torque, htcondor, kubernetes, or grid_engine). Mesos is a special case, and is launched for cloud
environments.

• Provisioner: For running in the cloud only. This specifies which cloud provider provides instances to do the
“work” of your workflow.

3.1 Job Store

The job store is a storage abstraction which contains all of the information used in a Toil run. This centralizes all of the
files used by jobs in the workflow and also the details of the progress of the run. If a workflow crashes or fails, the job
store contains all of the information necessary to resume with minimal repetition of work.

Several different job stores are supported, including the file job store and cloud job stores.

3.1.1 File Job Store

The file job store is for use locally, and keeps the workflow information in a directory on the machine where the workflow
is launched. This is the simplest and most convenient job store for testing or for small runs.

For an example that uses the file job store, see Running a basic workflow.

23

Toil Documentation, Release 5.11.0

3.1.2 Cloud Job Stores

Toil currently supports the following cloud storage systems as job stores:

• AWS Job Store: An AWS S3 bucket formatted as “aws:<zone>:<bucketname>” where only numbers, letters, and
dashes are allowed in the bucket name. Example: aws:us-west-2:my-aws-jobstore-name.

• Google Job Store: A Google Cloud Storage bucket formatted as “gce:<zone>:<bucketname>” where only num-
bers, letters, and dashes are allowed in the bucket name. Example: gce:us-west2-a:my-google-jobstore-name.

These use cloud buckets to house all of the files. This is useful if there are several different worker machines all running
jobs that need to access the job store.

3.2 Batch System

A Toil batch system is either a local single-machine (one computer) or a currently supported HPC cluster of computers
(lsf, parasol, mesos, slurm, torque, htcondor, or grid_engine). Mesos is a special case, and is launched for cloud
environments. These environments manage individual worker nodes under a leader node to process the work required
in a workflow. The leader and its workers all coordinate their tasks and files through a centralized job store location.

See Batch System API for a more detailed description of different batch systems.

3.3 Provisioner

The Toil provisioner provides a tool set for running a Toil workflow on a particular cloud platform.

The Cluster Utilities are command line tools used to provision nodes in your desired cloud platform. They allows you
to launch nodes, ssh to the leader, and rsync files back and forth.

For detailed instructions for using the provisioner see Running in AWS or Running in Google Compute Engine (GCE).

24 Chapter 3. Introduction

CHAPTER

FOUR

COMMANDLINE OPTIONS

A quick way to see all of Toil’s commandline options is by executing the following on a toil script:

$ toil example.py --help

For a basic toil workflow, Toil has one mandatory argument, the job store. All other arguments are optional.

4.1 The Job Store

Running toil scripts requires a filepath or url to a centralizing location for all of the files of the workflow. This is
Toil’s one required positional argument: the job store. To use the quickstart example, if you’re on a node that has
a large /scratch volume, you can specify that the jobstore be created there by executing: python HelloWorld.py
/scratch/my-job-store, or more explicitly, python HelloWorld.py file:/scratch/my-job-store.

Syntax for specifying different job stores:

Local: file:job-store-name

AWS: aws:region-here:job-store-name

Google: google:projectID-here:job-store-name

Different types of job store options can be found below.

4.2 Commandline Options

Core Toil Options Options to specify the location of the Toil workflow and turn on stats collation about the performance
of jobs.

--workDir WORKDIR Absolute path to directory where temporary files generated during
the Toil run should be placed. Standard output and error from batch
system jobs (unless –noStdOutErr) will be placed in this directory.
A cache directory may be placed in this directory. Temp files and
folders will be placed in a toil-<workflowID> within workDir. The
workflowID is generated by Toil and will be reported in the workflow
logs. Default is determined by the variables (TMPDIR, TEMP, TMP)
via mkdtemp. This directory needs to exist on all machines running
jobs; if capturing standard output and error from batch system jobs
is desired, it will generally need to be on a shared file system. When
sharing a cache between containers on a host, this directory must be
shared between the containers.

25

Toil Documentation, Release 5.11.0

--coordinationDir COORDINATION_DIR Absolute path to directory where Toil will
keep state and lock files. When sharing a cache between containers
on a host, this directory must be shared between the containers.

--noStdOutErr Do not capture standard output and error from batch system jobs.

--stats Records statistics about the toil workflow to be used by ‘toil stats’.

--clean=STATE Determines the deletion of the jobStore upon completion of the pro-
gram. Choices: ‘always’, ‘onError’,’never’, or ‘onSuccess’. The -\-
stats option requires information from the jobStore upon completion
so the jobStore will never be deleted with that flag. If you wish to
be able to restart the run, choose ‘never’ or ‘onSuccess’. Default is
‘never’ if stats is enabled, and ‘onSuccess’ otherwise

--cleanWorkDir STATE Determines deletion of temporary worker directory upon com-
pletion of a job. Choices: ‘always’, ‘onError’, ‘never’, or ‘onSuccess’.
Default = always. WARNING: This option should be changed for de-
bugging only. Running a full pipeline with this option could fill your
disk with intermediate data.

--clusterStats FILEPATH If enabled, writes out JSON resource usage statistics to a file.
The default location for this file is the current working directory, but
an absolute path can also be passed to specify where this file should be
written. This option only applies when using scalable batch systems.

--restart If -\-restart is specified then will attempt to restart existing workflow
at the location pointed to by the -\-jobStore option. Will raise an
exception if the workflow does not exist.

Logging Options Toil hides stdout and stderr by default except in case of job failure. Log levels in toil are based on
priority from the logging module:

--logOff Only CRITICAL log levels are shown. Equivalent to
--logLevel=OFF or --logLevel=CRITICAL.

--logCritical Only CRITICAL log levels are shown. Equivalent to
--logLevel=OFF or --logLevel=CRITICAL.

--logError Only ERROR, and CRITICAL log levels are shown. Equivalent to
--logLevel=ERROR.

--logWarning Only WARN, ERROR, and CRITICAL log levels are shown. Equiv-
alent to --logLevel=WARNING.

--logInfo All log statements are shown, except DEBUG. Equivalent to
--logLevel=INFO.

--logDebug All log statements are shown. Equivalent to --logLevel=DEBUG.

--logLevel=LOGLEVEL May be set to: OFF (or CRITICAL), ERROR, WARN (or WARNING),
INFO, or DEBUG.

--logFile FILEPATH Specifies a file path to write the logging output to.

--rotatingLogging Turn on rotating logging, which prevents log files from getting too
big (set using --maxLogFileSize BYTESIZE).

--maxLogFileSize BYTESIZE The maximum size of a job log file to keep (in bytes), log
files larger than this will be truncated to the last X bytes. Setting this
option to zero will prevent any truncation. Setting this option to a
negative value will truncate from the beginning. Default=62.5KiB

26 Chapter 4. Commandline Options

Toil Documentation, Release 5.11.0

Sets the maximum log file size in bytes (--rotatingLogging must
be active).

--log-dir DIRPATH For CWL and local file system only. Log stdout and stderr (if tool
requests stdout/stderr) to the DIRPATH.

Batch System Options
--batchSystem BATCHSYSTEM The type of batch system to run the job(s) with,

currently can be one of aws_batch, parasol, single_machine,
grid_engine, lsf, mesos, slurm, tes, torque, htcondor, kubernetes.
(default: single_machine)

--disableAutoDeployment Should auto-deployment of the user script be deactivated? If
True, the user script/package should be present at the same location
on all workers. Default = False.

--maxJobs MAXJOBS Specifies the maximum number of jobs to submit to the backing
scheduler at once. Not supported on Mesos or AWS Batch. Use 0 for
unlimited. Defaults to unlimited.

--maxLocalJobs MAXLOCALJOBS Specifies the maximum number of housekeeping
jobs to run simultaneously on the local system. Use 0 for unlimited.
Defaults to the number of local cores.

--manualMemArgs Do not add the default arguments: ‘hv=MEMORY’ &
‘h_vmem=MEMORY’ to the qsub call, and instead rely on
TOIL_GRIDGENGINE_ARGS to supply alternative arguments.
Requires that TOIL_GRIDGENGINE_ARGS be set.

--runCwlInternalJobsOnWorkers Whether to run CWL internal jobs (e.g. CWLScat-
ter) on the worker nodes instead of the primary node. If false (de-
fault), then all such jobs are run on the primary node. Setting this
to true can speed up the pipeline for very large workflows with many
sub-workflows and/or scatters, provided that the worker pool is large
enough.

--statePollingWait STATEPOLLINGWAIT Time, in seconds, to wait before doing a
scheduler query for job state. Return cached results if within the
waiting period. Only works for grid engine batch systems such as
gridengine, htcondor, torque, slurm, and lsf.

--batchLogsDir BATCHLOGSDIR Directory to tell the backing batch system to log into.
Should be available on both the leader and the workers, if the back-
ing batch system writes logs to the worker machines’ filesystems, as
many HPC schedulers do. If unset, the Toil work directory will be
used. Only works for grid engine batch systems such as gridengine,
htcondor, torque, slurm, and lsf.

--parasolCommand PARASOLCOMMAND The name or path of the parasol program.
Will be looked up on PATH unless it starts with a slash. (default:
parasol)

--parasolMaxBatches PARASOLMAXBATCHES Maximum number of job batches the
Parasol batch is allowed to create. One batch is created for jobs with
a unique set of resource requirements. (default: 1000)

--mesosEndpoint MESOSENDPOINT The host and port of the Mesos server separated
by a colon. (default: <leader IP>:5050)

--mesosFrameworkId MESOSFRAMEWORKID Use a specific Mesos framework ID.

4.2. Commandline Options 27

Toil Documentation, Release 5.11.0

--mesosRole MESOSROLE Use a Mesos role.

--mesosName MESOSNAME The Mesos name to use. (default: toil)

--kubernetesHostPath KUBERNETES_HOST_PATH Path on Kubernetes hosts to use
as shared inter-pod temp directory.

--kubernetesOwner KUBERNETES_OWNER Username to mark Kubernetes jobs
with.

--kubernetesServiceAccount KUBERNETES_SERVICE_ACCOUNT Service ac-
count to run jobs as.

--kubernetesPodTimeout KUBERNETES_POD_TIMEOUT Seconds to wait for a
scheduled Kubernetes pod to start running. (default: 120s)

--tesEndpoint TES_ENDPOINT The http(s) URL of the TES server. (default: http:
//<leader IP>:8000)

--tesUser TES_USER User name to use for basic authentication to TES server.

--tesPassword TES_PASSWORD Password to use for basic authentication to TES server.

--tesBearerToken TES_BEARER_TOKEN Bearer token to use for authentication to
TES server.

--awsBatchRegion AWS_BATCH_REGION The AWS region containing the AWS
Batch queue to submit to.

--awsBatchQueue AWS_BATCH_QUEUE The name or ARN of the AWS Batch queue
to submit to.

--awsBatchJobRoleArn AWS_BATCH_JOB_ROLE_ARN The ARN of an IAM role to
run AWS Batch jobs as, so they can e.g. access a job store. Must be
assumable by ecs-tasks.amazonaws.com

--scale SCALE A scaling factor to change the value of all submitted tasks’ submit-
ted cores. Used in single_machine batch system. Useful for running
workflows on smaller machines than they were designed for, by set-
ting a value less than 1. (default: 1)

Data Storage Options Allows configuring Toil’s data storage.

--linkImports When using a filesystem based job store, CWL input files are by de-
fault symlinked in. Specifying this option instead copies the files into
the job store, which may protect them from being modified externally.
When not specified and as long as caching is enabled, Toil will protect
the file automatically by changing the permissions to read-only.

--moveExports When using a filesystem based job store, output files are by default
moved to the output directory, and a symlink to the moved exported
file is created at the initial location. Specifying this option instead
copies the files into the output directory. Applies to filesystem-based
job stores only.

--disableCaching Disables caching in the file store. This flag must be set to use a batch
system that does not support cleanup, such as Parasol.

--caching BOOL Set caching options. This must be set to “false” to use a batch system
that does not support cleanup, such as Parasol. Set to “true” if caching
is desired.

28 Chapter 4. Commandline Options

http:/
http:/

Toil Documentation, Release 5.11.0

Autoscaling Options Allows the specification of the minimum and maximum number of nodes in an autoscaled cluster,
as well as parameters to control the level of provisioning.

--provisioner CLOUDPROVIDER The provisioner for cluster auto-scaling. This is the
main Toil -\-provisioner option, and defaults to None for running on
single_machine and non-auto-scaling batch systems. The currently
supported choices are ‘aws’ or ‘gce’.

--nodeTypes NODETYPES Specifies a list of comma-separated node types, each of
which is composed of slash-separated instance types, and an optional
spot bid set off by a colon, making the node type preemptible. In-
stance types may appear in multiple node types, and the same node
type may appear as both preemptible and non-preemptible.

Valid argument specifying two node types:
c5.4xlarge/c5a.4xlarge:0.42,t2.large

Node types:
c5.4xlarge/c5a.4xlarge:0.42 and t2.large

Instance types:
c5.4xlarge, c5a.4xlarge, and t2.large

Semantics:
Bid $0.42/hour for either c5.4xlarge or c5a.4xlarge instances,
treated interchangeably, while they are available at that price,
and buy t2.large instances at full price

--minNodes MINNODES Minimum number of nodes of each type in the cluster, if using
auto-scaling. This should be provided as a comma-separated list of
the same length as the list of node types. default=0

--maxNodes MAXNODES Maximum number of nodes of each type in the cluster, if us-
ing autoscaling, provided as a comma-separated list. The first value
is used as a default if the list length is less than the number of node-
Types. default=10

--targetTime TARGETTIME Sets how rapidly you aim to complete jobs in seconds.
Shorter times mean more aggressive parallelization. The autoscaler
attempts to scale up/down so that it expects all queued jobs will com-
plete within targetTime seconds. (Default: 1800)

--betaInertia BETAINERTIA A smoothing parameter to prevent unnecessary oscilla-
tions in the number of provisioned nodes. This controls an exponen-
tially weighted moving average of the estimated number of nodes. A
value of 0.0 disables any smoothing, and a value of 0.9 will smooth
so much that few changes will ever be made. Must be between 0.0
and 0.9. (Default: 0.1)

--scaleInterval SCALEINTERVAL The interval (seconds) between assessing if the scale
of the cluster needs to change. (Default: 60)

--preemptibleCompensation PREEMPTIBLECOMPENSATION The preference of
the autoscaler to replace preemptible nodes with non-preemptible
nodes, when preemptible nodes cannot be started for some reason.
Defaults to 0.0. This value must be between 0.0 and 1.0, inclusive.
A value of 0.0 disables such compensation, a value of 0.5 compen-
sates two missing preemptible nodes with a non-preemptible one. A
value of 1.0 replaces every missing pre-emptable node with a non-
preemptible one.

4.2. Commandline Options 29

Toil Documentation, Release 5.11.0

--nodeStorage NODESTORAGE Specify the size of the root volume of worker nodes
when they are launched in gigabytes. You may want to set this if
your jobs require a lot of disk space. The default value is 50.

--nodeStorageOverrides NODESTORAGEOVERRIDES Comma-separated list of
nodeType:nodeStorage that are used to override the default value
from -\-nodeStorage for the specified nodeType(s). This is useful for
heterogeneous jobs where some tasks require much more disk than
others.

--metrics Enable the prometheus/grafana dashboard for monitoring CPU/RAM
usage, queue size, and issued jobs.

--assumeZeroOverhead Ignore scheduler and OS overhead and assume jobs can use every
last byte of memory and disk on a node when autoscaling.

Service Options Allows the specification of the maximum number of service jobs in a cluster. By keeping this limited
we can avoid nodes occupied with services causing deadlocks. (Not for CWL).

--maxServiceJobs MAXSERVICEJOBS The maximum number of service jobs that can
be run concurrently, excluding service jobs running on preemptible
nodes. default=9223372036854775807

--maxPreemptibleServiceJobs MAXPREEMPTIBLESERVICEJOBS The maximum
number of service jobs that can run concurrently on preemptible
nodes. default=9223372036854775807

--deadlockWait DEADLOCKWAIT Time, in seconds, to tolerate the workflow running
only the same service jobs, with no jobs to use them, before declaring
the workflow to be deadlocked and stopping. default=60

--deadlockCheckInterval DEADLOCKCHECKINTERVAL Time, in seconds, to wait
between checks to see if the workflow is stuck running only ser-
vice jobs, with no jobs to use them. Should be shorter than -\-
deadlockWait. May need to be increased if the batch system cannot
enumerate running jobs quickly enough, or if polling for running jobs
is placing an unacceptable load on a shared cluster. default=30

Resource Options The options to specify default cores/memory requirements (if not specified by the jobs themselves),
and to limit the total amount of memory/cores requested from the batch system.

--defaultMemory INT The default amount of memory to request for a job. Only applica-
ble to jobs that do not specify an explicit value for this requirement.
Standard suffixes like K, Ki, M, Mi, G or Gi are supported. Default
is 2.0G

--defaultCores FLOAT The default number of CPU cores to dedicate a job. Only applica-
ble to jobs that do not specify an explicit value for this requirement.
Fractions of a core (for example 0.1) are supported on some batch
systems, namely Mesos and singleMachine. Default is 1.0

--defaultDisk INT The default amount of disk space to dedicate a job. Only applica-
ble to jobs that do not specify an explicit value for this requirement.
Standard suffixes like K, Ki, M, Mi, G or Gi are supported. Default
is 2.0G

--defaultAccelerators ACCELERATOR The default amount of accelerators to request
for a job. Only applicable to jobs that do not specify an explicit value
for this requirement. Each accelerator specification can have a type
(gpu [default], nvidia, amd, cuda, rocm, opencl, or a specific model

30 Chapter 4. Commandline Options

Toil Documentation, Release 5.11.0

like nvidia-tesla-k80), and a count [default: 1]. If both a type and a
count are used, they must be separated by a colon. If multiple types
of accelerators are used, the specifications are separated by commas.
Default is [].

--defaultPreemptible BOOL Make all jobs able to run on preemptible (spot) nodes by
default.

--maxCores INT The maximum number of CPU cores to request from the batch system
at any one time. Standard suffixes like K, Ki, M, Mi, G or Gi are
supported.

--maxMemory INT The maximum amount of memory to request from the batch system
at any one time. Standard suffixes like K, Ki, M, Mi, G or Gi are
supported.

--maxDisk INT The maximum amount of disk space to request from the batch system
at any one time. Standard suffixes like K, Ki, M, Mi, G or Gi are
supported.

Options for rescuing/killing/restarting jobs. The options for jobs that either run too long/fail or get lost (some batch
systems have issues!).

--retryCount RETRYCOUNT Number of times to retry a failing job before giving up and
labeling job failed. default=1

--enableUnlimitedPreemptibleRetries If set, preemptible failures (or any failure due to
an instance getting unexpectedly terminated) will not count towards
job failures and -\-retryCount.

--doubleMem If set, batch jobs which die due to reaching memory limit on batch
schedulers will have their memory doubled and they will be retried.
The remaining retry count will be reduced by 1. Currently only sup-
ported by LSF. default=False.

--maxJobDuration MAXJOBDURATION Maximum runtime of a job (in seconds) be-
fore we kill it (this is a lower bound, and the actual time before killing
the job may be longer).

--rescueJobsFrequency RESCUEJOBSFREQUENCY Period of time to wait (in sec-
onds) between checking for missing/overlong jobs, that is jobs which
get lost by the batch system. Expert parameter.

Log Management Options
--maxLogFileSize MAXLOGFILESIZE The maximum size of a job log file to keep (in

bytes), log files larger than this will be truncated to the last X bytes.
Setting this option to zero will prevent any truncation. Setting this
option to a negative value will truncate from the beginning. De-
fault=62.5 K

--writeLogs FILEPATH Write worker logs received by the leader into their own files at
the specified path. Any non-empty standard output and error from
failed batch system jobs will also be written into files at this path.
The current working directory will be used if a path is not specified
explicitly. Note: By default only the logs of failed jobs are returned
to leader. Set log level to ‘debug’ or enable -\-writeLogsFromAllJobs
to get logs back from successful jobs, and adjust -\-maxLogFileSize
to control the truncation limit for worker logs.

4.2. Commandline Options 31

Toil Documentation, Release 5.11.0

--writeLogsGzip FILEPATH Identical to -\-writeLogs except the logs files are gzipped
on the leader.

--writeMessages FILEPATH File to send messages from the leader’s message bus to.

--realTimeLogging Enable real-time logging from workers to leader.

Miscellaneous Options
--disableChaining Disables chaining of jobs (chaining uses one job’s resource allocation

for its successor job if possible).

--disableJobStoreChecksumVerification Disables checksum verification for files trans-
ferred to/from the job store. Checksum verification is a safety check
to ensure the data is not corrupted during transfer. Currently only
supported for non-streaming AWS files

--sseKey SSEKEY Path to file containing 32 character key to be used for server-side en-
cryption on awsJobStore or googleJobStore. SSE will not be used if
this flag is not passed.

--setEnv NAME, -e NAME NAME=VALUE or NAME, -e NAME=VALUE or NAME
are also valid. Set an environment variable early on in the worker.
If VALUE is omitted, it will be looked up in the current environ-
ment. Independently of this option, the worker will try to emulate
the leader’s environment before running a job, except for some vari-
ables known to vary across systems. Using this option, a variable can
be injected into the worker process itself before it is started.

--servicePollingInterval SERVICEPOLLINGINTERVAL Interval of time service jobs
wait between polling for the existence of the keep-alive flag (de-
fault=60)

--forceDockerAppliance Disables sanity checking the existence of the docker image spec-
ified by TOIL_APPLIANCE_SELF, which Toil uses to provision
mesos for autoscaling.

--statusWait INT Seconds to wait between reports of running jobs. (default=3600)

--disableProgress Disables the progress bar shown when standard error is a terminal.

Debug Options Debug options for finding problems or helping with testing.

--debugWorker Experimental no forking mode for local debugging. Specifically,
workers are not forked and stderr/stdout are not redirected to the log.
(default=False)

--disableWorkerOutputCapture Let worker output go to worker’s standard out/error in-
stead of per-job logs.

--badWorker BADWORKER For testing purposes randomly kill -\-badWorker propor-
tion of jobs using SIGKILL. (Default: 0.0)

--badWorkerFailInterval BADWORKERFAILINTERVAL When killing the job pick
uniformly within the interval from 0.0 to -\-badWorkerFailInterval
seconds after the worker starts. (Default: 0.01)

--kill_polling_interval KILL_POLLING_INTERVAL Interval of time (in seconds) the
leader waits between polling for the kill flag inside the job store set
by the “toil kill” command. (default=5)

32 Chapter 4. Commandline Options

Toil Documentation, Release 5.11.0

4.3 Restart Option

In the event of failure, Toil can resume the pipeline by adding the argument --restart and rerunning the python
script. Toil pipelines (but not CWL pipelines) can even be edited and resumed which is useful for development or
troubleshooting.

4.4 Running Workflows with Services

Toil supports jobs, or clusters of jobs, that run as services to other accessor jobs. Example services include server
databases or Apache Spark Clusters. As service jobs exist to provide services to accessor jobs their runtime is dependent
on the concurrent running of their accessor jobs. The dependencies between services and their accessor jobs can create
potential deadlock scenarios, where the running of the workflow hangs because only service jobs are being run and
their accessor jobs can not be scheduled because of too limited resources to run both simultaneously. To cope with this
situation Toil attempts to schedule services and accessors intelligently, however to avoid a deadlock with workflows
running service jobs it is advisable to use the following parameters:

• --maxServiceJobs: The maximum number of service jobs that can be run concurrently, excluding service jobs
running on preemptible nodes.

• --maxPreemptibleServiceJobs: The maximum number of service jobs that can run concurrently on pre-
emptible nodes.

Specifying these parameters so that at a maximum cluster size there will be sufficient resources to run accessors in
addition to services will ensure that such a deadlock can not occur.

If too low a limit is specified then a deadlock can occur in which toil can not schedule sufficient service jobs concurrently
to complete the workflow. Toil will detect this situation if it occurs and throw a toil.DeadlockException exception.
Increasing the cluster size and these limits will resolve the issue.

4.5 Setting Options directly with the Toil Script

It’s good to remember that commandline options can be overridden in the Toil script itself. For example, toil.job.
Job.Runner.getDefaultOptions() can be used to run toil with all default options, and in this example, it will
override commandline args to run the default options and always run with the “./toilWorkflow” directory specified as
the jobstore:

options = Job.Runner.getDefaultOptions("./toilWorkflow") # Get the options object

with Toil(options) as toil:
toil.start(Job()) # Run the script

However, each option can be explicitly set within the script by supplying arguments (in this example, we are setting
logLevel = "DEBUG" (all log statements are shown) and clean="ALWAYS" (always delete the jobstore) like so:

options = Job.Runner.getDefaultOptions("./toilWorkflow") # Get the options object
options.logLevel = "DEBUG" # Set the log level to the debug level.
options.clean = "ALWAYS" # Always delete the jobStore after a run

with Toil(options) as toil:
toil.start(Job()) # Run the script

However, the usual incantation is to accept commandline args from the user with the following:

4.3. Restart Option 33

Toil Documentation, Release 5.11.0

parser = Job.Runner.getDefaultArgumentParser() # Get the parser
options = parser.parse_args() # Parse user args to create the options object

with Toil(options) as toil:
toil.start(Job()) # Run the script

Which can also, of course, then accept script supplied arguments as before (which will overwrite any user supplied
args):

parser = Job.Runner.getDefaultArgumentParser() # Get the parser
options = parser.parse_args() # Parse user args to create the options object
options.logLevel = "DEBUG" # Set the log level to the debug level.
options.clean = "ALWAYS" # Always delete the jobStore after a run

with Toil(options) as toil:
toil.start(Job()) # Run the script

34 Chapter 4. Commandline Options

CHAPTER

FIVE

TOIL DEBUGGING

Toil has a number of tools to assist in debugging. Here we provide help in working through potential problems that a
user might encounter in attempting to run a workflow.

5.1 Introspecting the Jobstore

Note: Currently these features are only implemented for use locally (single machine) with the fileJobStore.

To view what files currently reside in the jobstore, run the following command:

$ toil debug-file file:path-to-jobstore-directory \
--listFilesInJobStore

When run from the commandline, this should generate a file containing the contents of the job store (in addition to
displaying a series of log messages to the terminal). This file is named “jobstore_files.txt” by default and will be
generated in the current working directory.

If one wishes to copy any of these files to a local directory, one can run for example:

$ toil debug-file file:path-to-jobstore \
--fetch overview.txt *.bam *.fastq \
--localFilePath=/home/user/localpath

To fetch overview.txt, and all .bam and .fastq files. This can be used to recover previously used input and output
files for debugging or reuse in other workflows, or use in general debugging to ensure that certain outputs were imported
into the jobStore.

5.2 Stats and Status

See Stats Command for more about gathering statistics about job success, runtime, and resource usage from workflows.

35

Toil Documentation, Release 5.11.0

5.3 Using a Python debugger

If you execute a workflow using the --debugWorker flag, Toil will not fork in order to run jobs, which means you can
either use pdb, or an IDE that supports debugging Python as you would normally. Note that the --debugWorker flag
will only work with the singleMachine batch system (the default), and not any of the custom job schedulers.

36 Chapter 5. Toil Debugging

https://docs.python.org/3/library/pdb.html
https://wiki.python.org/moin/PythonDebuggingTools#IDEs_with_Debug_Capabilities

CHAPTER

SIX

RUNNING IN THE CLOUD

Toil supports Amazon Web Services (AWS) and Google Compute Engine (GCE) in the cloud and has autoscaling
capabilities that can adapt to the size of your workflow, whether your workflow requires 10 instances or 20,000.

Toil does this by creating a virtual cluster with Apache Mesos. Apache Mesos requires a leader node to coordinate
the workflow, and worker nodes to execute the various tasks within the workflow. As the workflow runs, Toil will
“autoscale”, creating and terminating workers as needed to meet the demands of the workflow.

Once a user is familiar with the basics of running toil locally (specifying a jobStore, and how to write a toil script),
they can move on to the guides below to learn how to translate these workflows into cloud ready workflows.

6.1 Managing a Cluster of Virtual Machines (Provisioning)

Toil can launch and manage a cluster of virtual machines to run using the provisioner to run a workflow distributed
over several nodes. The provisioner also has the ability to automatically scale up or down the size of the cluster to
handle dynamic changes in computational demand (autoscaling). Currently we have working provisioners with AWS
and GCE (Azure support has been deprecated).

Toil uses Apache Mesos as the Batch System.

See here for instructions for Running in AWS.

See here for instructions for Running in Google Compute Engine (GCE).

6.2 Storage (Toil jobStore)

Toil can make use of cloud storage such as AWS or Google buckets to take care of storage needs.

This is useful when running Toil in single machine mode on any cloud platform since it allows you to make use of their
integrated storage systems.

For an overview of the job store see Job Store.

For instructions configuring a particular job store see:

• AWS Job Store

• Google Job Store

37

https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/gettingstarted/

Toil Documentation, Release 5.11.0

38 Chapter 6. Running in the Cloud

CHAPTER

SEVEN

CLOUD PLATFORMS

7.1 Running on Kubernetes

Kubernetes is a very popular container orchestration tool that has become a de facto cross-cloud-provider API for ac-
cessing cloud resources. Major cloud providers like Amazon, Microsoft, Kubernetes owner Google, and DigitalOcean
have invested heavily in making Kubernetes work well on their platforms, by writing their own deployment documen-
tation and developing provider-managed Kubernetes-based products. Using minikube, Kubernetes can even be run on
a single machine.

Toil supports running Toil workflows against a Kubernetes cluster, either in the cloud or deployed on user-owned
hardware.

7.1.1 Preparing your Kubernetes environment

1. Get a Kubernetes cluster
To run Toil workflows on Kubernetes, you need to have a Kubernetes cluster set up. This will not be covered
here, but there are many options available, and which one you choose will depend on which cloud ecosystem if
any you use already, and on pricing. If you are just following along with the documentation, use minikube on
your local machine.

Alternatively, Toil can set up a Kubernetes cluster for you with the Toil provisioner. Follow this guide to get
started with a Toil-managed Kubernetes cluster on AWS.

Note that currently the only way to run a Toil workflow on Kubernetes is to use the AWS Job Store, so
your Kubernetes workflow will currently have to store its data in Amazon’s cloud regardless of where you
run it. This can result in significant egress charges from Amazon if you run it outside of Amazon.
Kubernetes Cluster Providers:

• Your own institution

• Amazon EKS

• Microsoft Azure AKS

• Google GKE

• DigitalOcean Kubernetes

• minikube

2. Get a Kubernetes context on your local machine
There are two main ways to run Toil workflows on Kubernetes. You can either run the Toil leader on a machine
outside the cluster, with jobs submitted to and run on the cluster, or you can submit the Toil leader itself as a job
and have it run inside the cluster. Either way, you will need to configure your own machine to be able to submit

39

https://kubernetes.io/
https://aws.amazon.com/kubernetes/
https://azure.microsoft.com/en-us/overview/kubernetes-getting-started/
https://cloud.google.com/kubernetes-engine/
https://www.digitalocean.com/products/kubernetes/
https://github.com/kubernetes/minikube
https://aws.amazon.com/eks/
https://docs.microsoft.com/en-us/azure/aks/
https://cloud.google.com/kubernetes-engine/
https://www.digitalocean.com/docs/kubernetes/
https://kubernetes.io/docs/tasks/tools/install-minikube/

Toil Documentation, Release 5.11.0

jobs to the Kubernetes cluster. Generally, this involves creating and populating a file named .kube/config
in your user’s home directory, and specifying the cluster to connect to, the certificate and token information
needed for mutual authentication, and the Kubernetes namespace within which to work. However, Kubernetes
configuration can also be picked up from other files in the .kube directory, environment variables, and the
enclosing host when running inside a Kubernetes-managed container.

You will have to do different things here depending on where you got your Kubernetes cluster:

• Configuring for Amazon EKS

• Configuring for Microsoft Azure AKS

• Configuring for Google GKE

• Configuring for DigitalOcean Kubernetes Clusters

• Configuring for minikube

Toil’s internal Kubernetes configuration logic mirrors that of the kubectl command. Toil workflows will use
the current kubectl context to launch their Kubernetes jobs.

3. If running the Toil leader in the cluster, get a service account
If you are going to run your workflow’s leader within the Kubernetes cluster (see Option 1: Running the Leader
Inside Kubernetes), you will need a service account in your chosen Kubernetes namespace. Most namespaces
should have a service account named default which should work fine. If your cluster requires you to use
a different service account, you will need to obtain its name and use it when launching the Kubernetes job
containing the Toil leader.

4. Set up appropriate permissions
Your local Kubernetes context and/or the service account you are using to run the leader in the cluster will need
to have certain permissions in order to run the workflow. Toil needs to be able to interact with jobs and pods in
the cluster, and to retrieve pod logs. You as a user may need permission to set up an AWS credentials secret, if
one is not already available. Additionally, it is very useful for you as a user to have permission to interact with
nodes, and to shell into pods.

The appropriate permissions may already be available to you and your service account by default, especially in
managed or ease-of-use-optimized setups such as EKS or minikube.

However, if the appropriate permissions are not already available, you or your cluster administrator will have to
grant them manually. The following Role (toil-user) and ClusterRole (node-reader), to be applied with
kubectl apply -f filename.yaml, should grant sufficient permissions to run Toil workflows when bound
to your account and the service account used by Toil workflows. Be sure to replace YOUR_NAMESPACE_HERE
with the namespace you are running your workflows in

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: YOUR_NAMESPACE_HERE
name: toil-user

rules:
- apiGroups: ["*"]
resources: ["*"]
verbs: ["explain", "get", "watch", "list", "describe", "logs", "attach", "exec",

→˓"port-forward", "proxy", "cp", "auth"]
- apiGroups: ["batch"]
resources: ["*"]
verbs: ["get", "watch", "list", "create", "run", "set", "delete"]

- apiGroups: [""]
(continues on next page)

40 Chapter 7. Cloud Platforms

https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az-aks-get-credentials
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl
https://www.digitalocean.com/docs/kubernetes/how-to/connect-to-cluster/
https://kubernetes.io/docs/setup/learning-environment/minikube/#kubectl

Toil Documentation, Release 5.11.0

(continued from previous page)

resources: ["secrets", "pods", "pods/attach", "podtemplates", "configmaps",
→˓"events", "services"]
verbs: ["patch", "get", "update", "watch", "list", "create", "run", "set", "delete

→˓", "exec"]
- apiGroups: [""]
resources: ["pods", "pods/log"]
verbs: ["get", "list"]

- apiGroups: [""]
resources: ["pods/exec"]
verbs: ["create"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: node-reader

rules:
- apiGroups: [""]
resources: ["nodes"]
verbs: ["get", "list", "describe"]

- apiGroups: [""]
resources: ["namespaces"]
verbs: ["get", "list", "describe"]

- apiGroups: ["metrics.k8s.io"]
resources: ["*"]
verbs: ["*"]

To bind a user or service account to the Role or ClusterRole and actually grant the permissions, you will need
a RoleBinding and a ClusterRoleBinding, respectively. Make sure to fill in the namespace, username, and
service account name, and add more user stanzas if your cluster is to support multiple Toil users.

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: toil-developer-member
namespace: toil

subjects:
- kind: User
name: YOUR_KUBERNETES_USERNAME_HERE
apiGroup: rbac.authorization.k8s.io

- kind: ServiceAccount
name: YOUR_SERVICE_ACCOUNT_NAME_HERE
namespace: YOUR_NAMESPACE_HERE

roleRef:
kind: Role
name: toil-user
apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: read-nodes

subjects:
(continues on next page)

7.1. Running on Kubernetes 41

Toil Documentation, Release 5.11.0

(continued from previous page)

- kind: User
name: YOUR_KUBERNETES_USERNAME_HERE
apiGroup: rbac.authorization.k8s.io

- kind: ServiceAccount
name: YOUR_SERVICE_ACCOUNT_NAME_HERE
namespace: YOUR_NAMESPACE_HERE

roleRef:
kind: ClusterRole
name: node-reader
apiGroup: rbac.authorization.k8s.io

7.1.2 AWS Job Store for Kubernetes

Currently, the only job store, which is what Toil uses to exchange data between jobs, that works with jobs running on
Kubernetes is the AWS Job Store. This requires that the Toil leader and Kubernetes jobs be able to connect to and use
Amazon S3 and Amazon SimpleDB. It also requires that you have an Amazon Web Services account.

1. Get access to AWS S3 and SimpleDB
In your AWS account, you need to create an AWS access key. First go to the IAM dashboard; for “us-west1”, the
link would be:

https://console.aws.amazon.com/iam/home?region=us-west-1#/home

Then create an access key, and save the Access Key ID and the Secret Key. As documented in the AWS docu-
mentation:

1. On the IAM Dashboard page, choose your account name in the navigation bar, and then choose My Security
Credentials.

2. Expand the Access keys (access key ID and secret access key) section.

3. Choose Create New Access Key. Then choose Download Key File to save the access key ID and secret
access key to a file on your computer. After you close the dialog box, you can’t retrieve this secret access
key again.

Make sure that, if your AWS infrastructure requires your user to authenticate with a multi-factor authentication
(MFA) token, you obtain a second secret key and access key that don’t have this requirement. The secret key and
access key used to populate the Kubernetes secret that allows the jobs to contact the job store need to be usable
without human intervention.

2. Configure AWS access from the local machine
This only really needs to happen if you run the leader on the local machine. But we need the files in place to fill
in the secret in the next step. Run:

$ aws configure

Then when prompted, enter your secret key and access key. This should create a file ~/.aws/credentials that
looks like this:

[default]
aws_access_key_id = BLAH
aws_secret_access_key = blahblahblah

3. Create a Kubernetes secret to give jobs access to AWS

42 Chapter 7. Cloud Platforms

https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html
https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html

Toil Documentation, Release 5.11.0

Go into the directory where the credentials file is:

$ cd ~/.aws

Then, create a Kubernetes secret that contains it. We’ll call it aws-credentials:

$ kubectl create secret generic aws-credentials --from-file credentials

7.1.3 Configuring Toil for your Kubernetes environment

To configure your workflow to run on Kubernetes, you will have to configure several environment variables, in addi-
tion to passing the --batchSystem kubernetes option. Doing the research to figure out what values to give these
variables may require talking to your cluster provider.

1. TOIL_AWS_SECRET_NAME is the most important, and must be set to the secret that contains your AWS
credentials file, if your cluster nodes don’t otherwise have access to S3 and SimpleDB (such as through
IAM roles). This is required for the AWS job store to work, which is currently the only job store that can be used
on Kubernetes. In this example we are using aws-credentials.

2. TOIL_KUBERNETES_HOST_PATH can be set to allow Toil jobs on the same physical host to share a cache. It
should be set to a path on the host where the shared cache should be stored. It will be mounted as /var/lib/
toil, or at TOIL_WORKDIR if specified, inside the container. This path must already exist on the host, and must
have as much free space as your Kubernetes node offers to jobs. In this example, we are using /data/scratch.
To actually make use of caching, make sure not to use --disableCaching.

3. TOIL_KUBERNETES_OWNER should be set to the username of the user running the Toil workflow. The jobs that
Toil creates will include this username, so they can be more easily recognized, and cleaned up by the user if
anything happens to the Toil leader. In this example we are using demo-user.

Note that Docker containers cannot be run inside of unprivileged Kubernetes pods (which are themselves containers).
The Docker daemon does not (yet) support this. Other tools, such as Singularity in its user-namespace mode, are able
to run containers from within containers. If using Singularity to run containerized tools, and you want downloaded
container images to persist between Toil jobs, you will also want to set TOIL_KUBERNETES_HOST_PATH and make sure
that Singularity is downloading its containers under the Toil work directory (/var/lib/toil buy default) by setting
SINGULARITY_CACHEDIR. However, you will need to make sure that no two jobs try to download the same container
at the same time; Singularity has no synchronization or locking around its cache, but the cache is also not safe for
simultaneous access by multiple Singularity invocations. Some Toil workflows use their own custom workaround logic
for this problem; this work is likely to be made part of Toil in a future release.

7.1. Running on Kubernetes 43

Toil Documentation, Release 5.11.0

7.1.4 Running workflows

To run the workflow, you will need to run the Toil leader process somewhere. It can either be run inside Kubernetes as
a Kubernetes job, or outside Kubernetes as a normal command.

Option 1: Running the Leader Inside Kubernetes

Once you have determined a set of environment variable values for your workflow run, write a YAML file that defines
a Kubernetes job to run your workflow with that configuration. Some configuration items (such as your username, and
the name of your AWS credentials secret) need to be written into the YAML so that they can be used from the leader
as well.

Note that the leader pod will need your workflow script, its other dependencies, and Toil all installed. An easy way to
get Toil installed is to start with the Toil appliance image for the version of Toil you want to use. In this example, we
use quay.io/ucsc_cgl/toil:5.5.0.

Here’s an example YAML file to run a test workflow:

apiVersion: batch/v1
kind: Job
metadata:
It is good practice to include your username in your job name.
Also specify it in TOIL_KUBERNETES_OWNER
name: demo-user-toil-test

Do not try and rerun the leader job if it fails

spec:
backoffLimit: 0
template:
spec:
Do not restart the pod when the job fails, but keep it around so the
log can be retrieved
restartPolicy: Never
volumes:
- name: aws-credentials-vol
secret:
Make sure the AWS credentials are available as a volume.
This should match TOIL_AWS_SECRET_NAME
secretName: aws-credentials

You may need to replace this with a different service account name as
appropriate for your cluster.
serviceAccountName: default
containers:
- name: main
image: quay.io/ucsc_cgl/toil:5.5.0
env:
Specify your username for inclusion in job names
- name: TOIL_KUBERNETES_OWNER
value: demo-user

Specify where to find the AWS credentials to access the job store with
- name: TOIL_AWS_SECRET_NAME
value: aws-credentials

Specify where per-host caches should be stored, on the Kubernetes hosts.
Needs to be set for Toil's caching to be efficient.

(continues on next page)

44 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.11.0

(continued from previous page)

- name: TOIL_KUBERNETES_HOST_PATH
value: /data/scratch

volumeMounts:
Mount the AWS credentials volume
- mountPath: /root/.aws
name: aws-credentials-vol

resources:
Make sure to set these resource limits to values large enough
to accommodate the work your workflow does in the leader
process, but small enough to fit on your cluster.
#
Since no request values are specified, the limits are also used
for the requests.
limits:
cpu: 2
memory: "4Gi"
ephemeral-storage: "10Gi"

command:
- /bin/bash
- -c
- |
This Bash script will set up Toil and the workflow to run, and run them.
set -e
We make sure to create a work directory; Toil can't hot-deploy a
script from the root of the filesystem, which is where we start.
mkdir /tmp/work
cd /tmp/work
We make a virtual environment to allow workflow dependencies to be
hot-deployed.
#
We don't really make use of it in this example, but for workflows
that depend on PyPI packages we will need this.
#
We use --system-site-packages so that the Toil installed in the
appliance image is still available.
virtualenv --python python3 --system-site-packages venv
. venv/bin/activate
Now we install the workflow. Here we're using a demo workflow
script from Toil itself.
wget https://raw.githubusercontent.com/DataBiosphere/toil/releases/4.1.0/src/

→˓toil/test/docs/scripts/tutorial_helloworld.py
Now we run the workflow. We make sure to use the Kubernetes batch
system and an AWS job store, and we set some generally useful
logging options. We also make sure to enable caching.
python3 tutorial_helloworld.py \

aws:us-west-2:demouser-toil-test-jobstore \
--batchSystem kubernetes \
--realTimeLogging \
--logInfo

You can save this YAML as leader.yaml, and then run it on your Kubernetes installation with:

7.1. Running on Kubernetes 45

Toil Documentation, Release 5.11.0

$ kubectl apply -f leader.yaml

To monitor the progress of the leader job, you will want to read its logs. If you are using a Kubernetes dashboard such
as k9s, you can simply find the pod created for the job in the dashboard, and view its logs there. If not, you will need
to locate the pod by hand.

Monitoring and Debugging Kubernetes Jobs and Pods

The following techniques are most useful for looking at the pod which holds the Toil leader, but they can also be applied
to individual Toil jobs on Kubernetes, even when the leader is outside the cluster.

Kubernetes names pods for jobs by appending a short random string to the name of the job. You can find the name of
the pod for your job by doing:

$ kubectl get pods | grep demo-user-toil-test
demo-user-toil-test-g5496 1/1 Running 0 ␣
→˓ 2m

Assuming you have set TOIL_KUBERNETES_OWNER correctly, you should be able to find all of your workflow’s pods
by searching for your username:

$ kubectl get pods | grep demo-user

If the status of a pod is anything other than Pending, you will be able to view its logs with:

$ kubectl logs demo-user-toil-test-g5496

This will dump the pod’s logs from the beginning to now and terminate. To follow along with the logs from a running
pod, add the -f option:

$ kubectl logs -f demo-user-toil-test-g5496

A status of ImagePullBackoff suggests that you have requested to use an image that is not available. Check the image
section of your YAML if you are looking at a leader, or the value of TOIL_APPLIANCE_SELF if you are delaying with
a worker job. You also might want to check your Kubernetes node’s Internet connectivity and DNS function; in Ku-
bernetes, DNS depends on system-level pods which can be terminated or evicted in cases of resource oversubscription,
just like user workloads.

If your pod seems to be stuck Pending, ContainerCreating, you can get information on what is wrong with it by
using kubectl describe pod:

$ kubectl describe pod demo-user-toil-test-g5496

Pay particular attention to the Events: section at the end of the output. An indication that a job is too big for the
available nodes on your cluster, or that your cluster is too busy for your jobs, is FailedScheduling events:

Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 13s (x79 over 100m) default-scheduler 0/4 nodes are␣
→˓available: 1 Insufficient cpu, 1 Insufficient ephemeral-storage, 4 Insufficient memory.

If a pod is running but seems to be behaving erratically, or seems stuck, you can shell into it and look around:

$ kubectl exec -ti demo-user-toil-test-g5496 /bin/bash

46 Chapter 7. Cloud Platforms

https://github.com/derailed/k9s

Toil Documentation, Release 5.11.0

One common cause of stuck pods is attempting to use more memory than allowed by Kubernetes (or by the Toil job’s
memory resource requirement), but in a way that does not trigger the Linux OOM killer to terminate the pod’s processes.
In these cases, the pod can remain stuck at nearly 100% memory usage more or less indefinitely, and attempting to shell
into the pod (which needs to start a process within the pod, using some of its memory) will fail. In these cases, the
recommended solution is to kill the offending pod and increase its (or its Toil job’s) memory requirement, or reduce its
memory needs by adapting user code.

When Things Go Wrong

The Toil Kubernetes batch system includes cleanup code to terminate worker jobs when the leader shuts down. How-
ever, if the leader pod is removed by Kubernetes, is forcibly killed or otherwise suffers a sudden existence failure, it
can go away while its worker jobs live on. It is not recommended to restart a workflow in this state, as jobs from the
previous invocation will remain running and will be trying to modify the job store concurrently with jobs from the new
invocation.

To clean up dangling jobs, you can use the following snippet:

$ kubectl get jobs | grep demo-user | cut -f1 -d' ' | xargs -n10 kubectl delete job

This will delete all jobs with demo-user’s username in their names, in batches of 10. You can also use the UUID
that Toil assigns to a particular workflow invocation in the filter, to clean up only the jobs pertaining to that workflow
invocation.

Option 2: Running the Leader Outside Kubernetes

If you don’t want to run your Toil leader inside Kubernetes, you can run it locally instead. This can be useful when
developing a workflow; files can be hot-deployed from your local machine directly to Kubernetes. However, your local
machine will have to have (ideally role-assumption- and MFA-free) access to AWS, and access to Kubernetes. Real
time logging will not work unless your local machine is able to listen for incoming UDP packets on arbitrary ports on
the address it uses to contact the IPv4 Internet; Toil does no NAT traversal or detection.

Note that if you set TOIL_WORKDIR when running your workflow like this, it will need to be a directory that exists both
on the host and in the Toil appliance.

Here is an example of running our test workflow leader locally, outside of Kubernetes:

$ export TOIL_KUBERNETES_OWNER=demo-user # This defaults to your local username if not␣
→˓set
$ export TOIL_AWS_SECRET_NAME=aws-credentials
$ export TOIL_KUBERNETES_HOST_PATH=/data/scratch
$ virtualenv --python python3 --system-site-packages venv
$. venv/bin/activate
$ wget https://raw.githubusercontent.com/DataBiosphere/toil/releases/4.1.0/src/toil/test/
→˓docs/scripts/tutorial_helloworld.py
$ python3 tutorial_helloworld.py \

aws:us-west-2:demouser-toil-test-jobstore \
--batchSystem kubernetes \
--realTimeLogging \
--logInfo

7.1. Running on Kubernetes 47

Toil Documentation, Release 5.11.0

Running CWL Workflows

Running CWL workflows on Kubernetes can be challenging, because executing CWL can require toil-cwl-runner
to orchestrate containers of its own, within a Kubernetes job running in the Toil appliance container.

Normally, running a CWL workflow should Just Work, as long as the workflow’s Docker containers are able to be
executed with Singularity, your Kubernetes cluster does not impose extra capability-based confinement (i.e. SELinux,
AppArmor) that interferes with Singularity’s use of user-mode namespaces, and you make sure to configure Toil so
that its workers know where to store their data within the Kubernetes pods (which would be done for you if using a
Toil-managed cluster). For example, you should be able to run a CWL workflow like this:

$ export TOIL_KUBERNETES_OWNER=demo-user # This defaults to your local username if not␣
→˓set
$ export TOIL_AWS_SECRET_NAME=aws-credentials
$ export TOIL_KUBERNETES_HOST_PATH=/data/scratch
$ virtualenv --python python3 --system-site-packages venv
$. venv/bin/activate
$ pip install toil[kubernetes,cwl]==5.8.0
$ toil-cwl-runner \

--jobStore aws:us-west-2:demouser-toil-test-jobstore \
--batchSystem kubernetes \
--realTimeLogging \
--logInfo \
--disableCaching \
path/to/cwl/workflow \
path/to/cwl/input/object

Additional cwltool options that your workflow might require, such as --no-match-user, can be passed to
toil-cwl-runner, which inherits most cwltool options.

AppArmor and Singularity

Kubernetes clusters based on Ubuntu hosts often will have AppArmor enabled on the host. AppArmor is a capability-
based security enhancement system that integrates with the Linux kernel to enforce lists of things which programs may
or may not do, called profiles. For example, an AppArmor profile could be applied to a web server process to stop it
from using the mount() system call to manipulate the filesystem, because it has no business doing that under normal
circumstances but might attempt to do it if compromised by hackers.

Kubernetes clusters also often use Docker as the backing container runtime, to run pod containers. When AppArmor
is enabled, Docker will load an AppArmor profile and apply it to all of its containers by default, with the ability for
the profile to be overridden on a per-container basis. This profile unfortunately prevents some of the mount() system
calls that Singularity uses to set up user-mode containers from working inside the pod, even though these calls would
be allowed for an unprivileged user under normal circumstances.

On the UCSC Kubernetes cluster, we configure our Ubuntu hosts with an alternative default AppArmor profile for
Docker containers which allows these calls. Other solutions include turning off AppArmor on the host, configuring
Kubernetes with a container runtime other than Docker, or using Kubernetes’s AppArmor integration to apply a more
permissive profile or the unconfined profile to pods that Toil launches.

Toil does not yet have a way to apply a container.apparmor.security.beta.kubernetes.io/
runner-container: unconfined annotation to its pods, as described in the Kubernetes AppArmor docu-
mentation. This feature is tracked in issue #4331.

48 Chapter 7. Cloud Platforms

https://github.com/adamnovak/gi-kubernetes-autoscaling-config/blob/e1350ac9ad17d94b5073b20db3c75620957926e3/kubenode.ubuntu.cloud-config.yaml#L27-L67
https://github.com/adamnovak/gi-kubernetes-autoscaling-config/blob/e1350ac9ad17d94b5073b20db3c75620957926e3/kubenode.ubuntu.cloud-config.yaml#L27-L67
https://kubernetes.io/docs/tutorials/security/apparmor/
https://kubernetes.io/docs/tutorials/security/apparmor/#securing-a-pod
https://kubernetes.io/docs/tutorials/security/apparmor/#securing-a-pod
https://github.com/DataBiosphere/toil/issues/4331

Toil Documentation, Release 5.11.0

7.2 Running in AWS

Toil jobs can be run on a variety of cloud platforms. Of these, Amazon Web Services (AWS) is currently the best-
supported solution. Toil provides the Cluster Utilities to conveniently create AWS clusters, connect to the leader of the
cluster, and then launch a workflow. The leader handles distributing the jobs over the worker nodes and autoscaling to
optimize costs.

The Running a Workflow with Autoscaling section details how to create a cluster and run a workflow that will dynami-
cally scale depending on the workflow’s needs.

The Static Provisioning section explains how a static cluster (one that won’t automatically change in size) can be created
and provisioned (grown, shrunk, destroyed, etc.).

7.2.1 Preparing your AWS environment

To use Amazon Web Services (AWS) to run Toil or to just use S3 to host the files during the computation of a workflow,
first set up and configure an account with AWS:

1. If necessary, create and activate an AWS account

2. Next, generate a key pair for AWS with the command (do NOT generate your key pair with the Amazon browser):

$ ssh-keygen -t rsa

3. This should prompt you to save your key. Please save it in

~/.ssh/id_rsa

4. Now move this to where your OS can see it as an authorized key:

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

5. Next, you’ll need to add your key to the ssh-agent:

$ eval `ssh-agent -s`
$ ssh-add

If your key has a passphrase, you will be prompted to enter it here once.

6. You’ll also need to chmod your private key (good practice but also enforced by AWS):

$ chmod 400 id_rsa

7. Now you’ll need to add the key to AWS via the browser. For example, on us-west1, this address would accessible
at:

https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1
→˓#KeyPairs:sort=keyName

8. Now click on the “Import Key Pair” button to add your key:

7.2. Running in AWS 49

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/

Toil Documentation, Release 5.11.0

9. Next, you need to create an AWS access key. First go to the IAM dashboard, again; for “us-west1”, the example
link would be here:

https://console.aws.amazon.com/iam/home?region=us-west-1#/home

10. The directions (transcribed from: https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.
html) are now:

1. On the IAM Dashboard page, choose your account name in the navigation bar, and then choose My Security
Credentials.

2. Expand the Access keys (access key ID and secret access key) section.

3. Choose Create New Access Key. Then choose Download Key File to save the access key ID and secret
access key to a file on your computer. After you close the dialog box, you can’t retrieve this secret access
key again.

11. Now you should have a newly generated “AWS Access Key ID” and “AWS Secret Access Key”. We can now
install the AWS CLI and make sure that it has the proper credentials:

$ pip install awscli --upgrade --user

12. Now configure your AWS credentials with:

$ aws configure

13. Add your “AWS Access Key ID” and “AWS Secret Access Key” from earlier and your region and output format:

" AWS Access Key ID [****************Q65Q]: "
" AWS Secret Access Key [****************G0ys]: "
" Default region name [us-west-1]: "
" Default output format [json]: "

This will create the files ~/.aws/config and ~/.aws/credentials.

14. If not done already, install toil (example uses version 5.3.0, but we recommend the latest release):

$ virtualenv venv
$ source venv/bin/activate
$ pip install toil[all]==5.3.0

15. Now that toil is installed and you are running a virtualenv, an example of launching a toil leader node would be
the following (again, note that we set TOIL_APPLIANCE_SELF to toil version 5.3.0 in this example, but please
set the version to the installed version that you are using if you’re using a different version):

50 Chapter 7. Cloud Platforms

https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1#KeyPairs:sort=keyName
https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html
https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html

Toil Documentation, Release 5.11.0

$ TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:5.3.0 \
toil launch-cluster clustername \
--leaderNodeType t2.medium \
--zone us-west-1a \
--keyPairName id_rsa

To further break down each of these commands:

TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:latest — This is optional. It specifies a mesos docker
image that we maintain with the latest version of toil installed on it. If you want to use a different version of
toil, please specify the image tag you need from https://quay.io/repository/ucsc_cgl/toil?tag=latest&tab=
tags.

toil launch-cluster — Base command in toil to launch a cluster.

clustername — Just choose a name for your cluster.

–leaderNodeType t2.medium — Specify the leader node type. Make a t2.medium (2CPU; 4Gb RAM;
$0.0464/Hour). List of available AWS instances: https://aws.amazon.com/ec2/pricing/on-demand/

–zone us-west-1a — Specify the AWS zone you want to launch the instance in. Must have the same prefix
as the zone in your awscli credentials (which, in the example of this tutorial is: “us-west-1”).

–keyPairName id_rsa — The name of your key pair, which should be “id_rsa” if you’ve followed this
tutorial.

Note: You can set the TOIL_AWS_TAGS environment variable to a JSON object to specify arbitrary tags for AWS
resources. For example, if you export TOIL_AWS_TAGS='{"project-name": "variant-calling"}' in your
shell before using Toil, AWS resources created by Toil will be tagged with a project-name tag with the value
variant-calling.

7.2.2 AWS Job Store

Using the AWS job store is straightforward after you’ve finished Preparing your AWS environment; all you need to do
is specify the prefix for the job store name.

To run the sort example sort example with the AWS job store you would type

$ python sort.py aws:us-west-2:my-aws-sort-jobstore

7.2.3 Toil Provisioner

The Toil provisioner is included in Toil alongside the [aws] extra and allows us to spin up a cluster.

Getting started with the provisioner is simple:

1. Make sure you have Toil installed with the AWS extras. For detailed instructions see Installing Toil with Extra
Features.

2. You will need an AWS account and you will need to save your AWS credentials on your local machine. For help
setting up an AWS account see here. For setting up your AWS credentials follow instructions here.

The Toil provisioner is built around the Toil Appliance, a Docker image that bundles Toil and all its requirements (e.g.
Mesos). This makes deployment simple across platforms, and you can even simulate a cluster locally (see Developing
with Docker for details).

7.2. Running in AWS 51

https://quay.io/repository/ucsc_cgl/toil?tag=latest&tab=tags
https://quay.io/repository/ucsc_cgl/toil?tag=latest&tab=tags
https://aws.amazon.com/ec2/pricing/on-demand/
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files

Toil Documentation, Release 5.11.0

Choosing Toil Appliance Image
When using the Toil provisioner, the appliance image will be automatically chosen based on the pip-installed version of
Toil on your system. That choice can be overridden by setting the environment variables TOIL_DOCKER_REGISTRY and
TOIL_DOCKER_NAME or TOIL_APPLIANCE_SELF. See Environment Variables for more information on these variables.
If you are developing with autoscaling and want to test and build your own appliance have a look at Developing with
Docker.

For information on using the Toil Provisioner have a look at Running a Workflow with Autoscaling.

7.2.4 Details about Launching a Cluster in AWS

Using the provisioner to launch a Toil leader instance is simple using the launch-cluster command. For example,
to launch a cluster named “my-cluster” with a t2.medium leader in the us-west-2a zone, run

(venv) $ toil launch-cluster my-cluster \
--leaderNodeType t2.medium \
--zone us-west-2a \
--keyPairName <your-AWS-key-pair-name>

The cluster name is used to uniquely identify your cluster and will be used to populate the instance’s Name tag. Also,
the Toil provisioner will automatically tag your cluster with an Owner tag that corresponds to your keypair name to
facilitate cost tracking. In addition, the ToilNodeType tag can be used to filter “leader” vs. “worker” nodes in your
cluster.

The leaderNodeType is an EC2 instance type. This only affects the leader node.

The --zone parameter specifies which EC2 availability zone to launch the cluster in. Alternatively, you can specify
this option via the TOIL_AWS_ZONE environment variable. Note: the zone is different from an EC2 region. A region
corresponds to a geographical area like us-west-2 (Oregon), and availability zones are partitions of this area like
us-west-2a.

By default, Toil creates an IAM role for each cluster with sufficient permissions to perform cluster operations (e.g. full
S3, EC2, and SDB access). If the default permissions are not sufficient for your use case (e.g. if you need access to
ECR), you may create a custom IAM role with all necessary permissions and set the --awsEc2ProfileArn parameter
when launching the cluster. Note that your custom role must at least have these permissions in order for the Toil cluster
to function properly.

In addition, Toil creates a new security group with the same name as the cluster name with default rules (e.g. opens port
22 for SSH access). If you require additional security groups, you may use the --awsEc2ExtraSecurityGroupId
parameter when launching the cluster. Note: Do not use the same name as the cluster name for the extra security groups
as any security group matching the cluster name will be deleted once the cluster is destroyed.

For more information on options try:

(venv) $ toil launch-cluster --help

52 Chapter 7. Cloud Platforms

https://aws.amazon.com/ec2/instance-types/

Toil Documentation, Release 5.11.0

Static Provisioning

Toil can be used to manage a cluster in the cloud by using the Cluster Utilities. The cluster utilities also make it easy
to run a toil workflow directly on this cluster. We call this static provisioning because the size of the cluster does not
change. This is in contrast with Running a Workflow with Autoscaling.

To launch worker nodes alongside the leader we use the -w option:

(venv) $ toil launch-cluster my-cluster \
--leaderNodeType t2.small -z us-west-2a \
--keyPairName your-AWS-key-pair-name \
--nodeTypes m3.large,t2.micro -w 1,4

This will spin up a leader node of type t2.small with five additional workers — one m3.large instance and four t2.micro.

Currently static provisioning is only possible during the cluster’s creation. The ability to add new nodes and remove
existing nodes via the native provisioner is in development. Of course the cluster can always be deleted with the
Destroy-Cluster Command utility.

Uploading Workflows

Now that our cluster is launched, we use the Rsync-Cluster Command utility to copy the workflow to the leader. For a
simple workflow in a single file this might look like

(venv) $ toil rsync-cluster -z us-west-2a my-cluster toil-workflow.py :/

Note: If your toil workflow has dependencies have a look at the Auto-Deployment section for a detailed explanation
on how to include them.

Running a Workflow with Autoscaling

Autoscaling is a feature of running Toil in a cloud whereby additional cloud instances are launched to run the workflow.
Autoscaling leverages Mesos containers to provide an execution environment for these workflows.

Note: Make sure you’ve done the AWS setup in Preparing your AWS environment.

1. Download sort.py

2. Launch the leader node in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
--keyPairName <AWS-key-pair-name> \
--leaderNodeType t2.medium \
--zone us-west-2a

3. Copy the sort.py script up to the leader node:

(venv) $ toil rsync-cluster -z us-west-2a <cluster-name> sort.py :/root

4. Login to the leader node:

7.2. Running in AWS 53

Toil Documentation, Release 5.11.0

(venv) $ toil ssh-cluster -z us-west-2a <cluster-name>

5. Run the script as an autoscaling workflow:

$ python /root/sort.py aws:us-west-2:<my-jobstore-name> \
--provisioner aws \
--nodeTypes c3.large \
--maxNodes 2 \
--batchSystem mesos

Note: In this example, the autoscaling Toil code creates up to two instances of type c3.large and launches Mesos slave
containers inside them. The containers are then available to run jobs defined by the sort.py script. Toil also creates
a bucket in S3 called aws:us-west-2:autoscaling-sort-jobstore to store intermediate job results. The Toil autoscaler
can also provision multiple different node types, which is useful for workflows that have jobs with varying resource
requirements. For example, one could execute the script with --nodeTypes c3.large,r3.xlarge --maxNodes
5,1, which would allow the provisioner to create up to five c3.large nodes and one r3.xlarge node for memory-intensive
jobs. In this situation, the autoscaler would avoid creating the more expensive r3.xlarge node until needed, running
most jobs on the c3.large nodes.

1. View the generated file to sort:

$ head fileToSort.txt

2. View the sorted file:

$ head sortedFile.txt

For more information on other autoscaling (and other) options have a look at Commandline Options and/or run

$ python my-toil-script.py --help

Important: Some important caveats about starting a toil run through an ssh session are explained in the Ssh-Cluster
Command section.

Preemptibility

Toil can run on a heterogeneous cluster of both preemptible and non-preemptible nodes. Being a preemptible node
simply means that the node may be shut down at any time, while jobs are running. These jobs can then be restarted
later somewhere else.

A node type can be specified as preemptible by adding a spot bid to its entry in the list of node types provided with the
--nodeTypes flag. If spot instance prices rise above your bid, the preemptible node whill be shut down.

Individual jobs can explicitly specify whether they should be run on preemptible nodes via the boolean preemptible
resource requirement, if this is not specified, the job will not run on preemptible nodes even if preemptible nodes are
available unless specified with the --defaultPreemptible flag. The --defaultPreemptible flag will allow jobs
without a preemptible requirement to run on preemptible machines. For example:

$ python /root/sort.py aws:us-west-2:<my-jobstore-name> \
--provisioner aws \

(continues on next page)

54 Chapter 7. Cloud Platforms

https://aws.amazon.com/ec2/spot/pricing/

Toil Documentation, Release 5.11.0

(continued from previous page)

--nodeTypes c3.4xlarge:2.00 \
--maxNodes 2 \
--batchSystem mesos \
--defaultPreemptible

Specify Preemptibility Carefully
Ensure that your choices for --nodeTypes and --maxNodes <> make sense for your workflow and won’t cause it to
hang. You should make sure the provisioner is able to create nodes large enough to run the largest job in the workflow,
and that non-preemptible node types are allowed if there are non-preemptible jobs in the workflow.

Finally, the --preemptibleCompensation flag can be used to handle cases where preemptible nodes may not be
available but are required for your workflow. With this flag enabled, the autoscaler will attempt to compensate for a
shortage of preemptible nodes of a certain type by creating non-preemptible nodes of that type, if non-preemptible
nodes of that type were specified in --nodeTypes.

Provisioning with a Kubernetes cluster

If you don’t have an existing Kubernetes cluster but still want to use Kubernetes to orchestrate jobs, Toil can create a
Kubernetes cluster for you using the AWS provisioner.

By default, the toil launch-cluster command uses a Mesos cluster as the jobs scheduler. Toil can also create a
Kubernetes cluster to schedule Toil jobs. To set up a Kubernetes cluster, simply add the --clusterType=kubernetes
command line option to toil launch-cluster.

For example, to launch a Toil cluster with a Kubernetes scheduler, run:

(venv) $ toil launch-cluster <cluster-name> \
--provisioner=aws \
--clusterType kubernetes \
--zone us-west-2a \
--keyPairName wlgao@ucsc.edu \
--leaderNodeType t2.medium \
--leaderStorage 50 \
--nodeTypes t2.medium -w 1-4 \
--nodeStorage 20 \
--logDebug

Behind the scenes, Toil installs kubeadm and configures kubelet on the Toil leader and all worker nodes. This Toil
cluster can then schedule jobs using Kubernetes.

Note: You should set at least one worker node, otherwise Kubernetes would not be able to schedule any jobs. It is
also normal for this step to take a while.

Below is a tutorial on how to launch a Toil job on this newly created cluster. As a demostration, we will use sort.py
again, but run it on a Toil cluster with Kubernetes. First, download this file and put it to the current working directory.

We then need to copy over the workflow file and SSH into the cluster:

(venv) $ toil rsync-cluster -z us-west-2a <cluster-name> sort.py :/root
(venv) $ toil ssh-cluster -z us-west-2a <cluster-name>

7.2. Running in AWS 55

Toil Documentation, Release 5.11.0

Remember to replace <cluster-name> with your actual cluster name, and feel free to use your own cluster configura-
tion and/or workflow files. For more information on this step, see the corresponding section of the Static Provisioning
tutorial.

Now that we are inside the cluster, a Kubernetes environment should already be configured and running. To verify this,
simply run:

$ kubectl get nodes

You should see a leader node with the Ready status. Depending on the number of worker nodes you set to create
upfront, you should also see them displayed here.

Additionally, you can also verify that the metrics server is running:

$ kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes"

If there is a JSON response (similar to the output below), and you are not seeing any errors, that means the metrics
server is set up and running, and you are good to start running workflows.

{"kind":"NodeMetricsList","apiVersion":"metrics.k8s.io/v1beta1", ...}

Note: It’ll take a while for all nodes to get set up and running, so you might not be able to see all nodes running at
first. You can start running workflows already, but Toil might complain until the necessary resources are set up and
running.

Now we can run the workflow:

$ python sort.py \
--provisioner aws
--batchSystem kubernetes \
aws:<region>:<job-store-name>

Make sure to replace <region> and <job-store-name>. It is required to use a cloud-accessible job store like AWS
or Google when using the Kubernetes batch system.

The sort workflow should start running on the Kubernetes cluster set up by Toil. This workflow would take a while to
execute, so you could put the job in the background and monitor the Kubernetes cluster using kubectl. For example,
you can check out the pods that are running:

$ kubectl get pods

You should see an output like:

NAME READY STATUS ␣
→˓RESTARTS AGE
root-toil-a864e1b0-2e1f-48db-953c-038e5ad293c7-11-4cwdl 0/1 ContainerCreating 0 ␣
→˓ 85s
root-toil-a864e1b0-2e1f-48db-953c-038e5ad293c7-14-5dqtk 0/1 Completed 0 ␣
→˓ 18s
root-toil-a864e1b0-2e1f-48db-953c-038e5ad293c7-7-gkwc9 0/1 ContainerCreating 0 ␣
→˓ 107s
root-toil-a864e1b0-2e1f-48db-953c-038e5ad293c7-9-t7vsb 1/1 Running 0 ␣
→˓ 96s

56 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.11.0

If a pod failed for whatever reason or if you want to make sure a pod isn’t stuck, you can use kubectl describe pod
<pod-name> or kubectl logs <pod-name> to inspect the pod.

If everything is successful, you should be able to see an output file from the sort workflow:

$ head sortedFile.txt

You can now run your own workflows!

Using MinIO and S3-Compatible object stores

Toil can be configured to access files stored in an S3-compatible object store such as MinIO. The following environment
variables can be used to configure the S3 connection used:

• TOIL_S3_HOST: the IP address or hostname to use for connecting to S3

• TOIL_S3_PORT: the port number to use for connecting to S3, if needed

• TOIL_S3_USE_SSL: enable or disable the usage of SSL for connecting to S3 (True by default)

Examples:

TOIL_S3_HOST=127.0.0.1
TOIL_S3_PORT=9010
TOIL_S3_USE_SSL=False

7.2.5 Dashboard

Toil provides a dashboard for viewing the RAM and CPU usage of each node, the number of issued jobs of each type,
the number of failed jobs, and the size of the jobs queue. To launch this dashboard for a toil workflow, include the
--metrics flag in the toil script command. The dashboard can then be viewed in your browser at localhost:3000 while
connected to the leader node through toil ssh-cluster:

To change the default port number, you can use the --grafana_port argument:

(venv) $ toil ssh-cluster -z us-west-2a --grafana_port 8000 <cluster-name>

On AWS, the dashboard keeps track of every node in the cluster to monitor CPU and RAM usage, but it can also be used
while running a workflow on a single machine. The dashboard uses Grafana as the front end for displaying real-time
plots, and Prometheus for tracking metrics exported by toil:

7.2. Running in AWS 57

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://min.io/

Toil Documentation, Release 5.11.0

In order to use the dashboard for a non-released toil version, you will have to build the containers locally with make
docker, since the prometheus, grafana, and mtail containers used in the dashboard are tied to a specific toil version.

7.3 Running in Google Compute Engine (GCE)

Toil supports a provisioner with Google, and a Google Job Store. To get started, follow instructions for Preparing your
Google environment.

7.3.1 Preparing your Google environment

Toil supports using the Google Cloud Platform. Setting this up is easy!

1. Make sure that the google extra (Installing Toil with Extra Features) is installed

2. Follow Google’s Instructions to download credentials and set the GOOGLE_APPLICATION_CREDENTIALS envi-
ronment variable

3. Create a new ssh key with the proper format. To create a new ssh key run the command

$ ssh-keygen -t rsa -f ~/.ssh/id_rsa -C [USERNAME]

where [USERNAME] is something like jane@example.com. Make sure to leave your password blank.

Warning: This command could overwrite an old ssh key you may be using. If you have an existing ssh key
you would like to use, it will need to be called id_rsa and it needs to have no password set.

Make sure only you can read the SSH keys:

58 Chapter 7. Cloud Platforms

https://cloud.google.com/storage/
https://cloud.google.com/docs/authentication/getting-started

Toil Documentation, Release 5.11.0

$ chmod 400 ~/.ssh/id_rsa ~/.ssh/id_rsa.pub

4. Add your newly formatted public key to Google. To do this, log into your Google Cloud account and go to
metadata section under the Compute tab.

Near the top of the screen click on ‘SSH Keys’, then edit, add item, and paste the key. Then save:

7.3. Running in Google Compute Engine (GCE) 59

https://console.cloud.google.com/compute/metadata

Toil Documentation, Release 5.11.0

For more details look at Google’s instructions for adding SSH keys.

7.3.2 Google Job Store

To use the Google Job Store you will need to set the GOOGLE_APPLICATION_CREDENTIALS environment variable by
following Google’s instructions.

Then to run the sort example with the Google job store you would type

$ python sort.py google:my-project-id:my-google-sort-jobstore

7.3.3 Running a Workflow with Autoscaling

Warning: Google Autoscaling is in beta!

The steps to run a GCE workflow are similar to those of AWS (Running a Workflow with Autoscaling), except you will
need to explicitly specify the --provisioner gce option which otherwise defaults to aws.

1. Download sort.py

2. Launch the leader node in GCE using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <CLUSTER-NAME> \
--provisioner gce \
--leaderNodeType n1-standard-1 \
--keyPairName <SSH-KEYNAME> \
--zone us-west1-a

Where <SSH-KEYNAME> is the first part of [USERNAME] used when setting up your ssh key. For example if
[USERNAME] was jane@example.com, <SSH-KEYNAME> should be jane.

60 Chapter 7. Cloud Platforms

https://cloud.google.com/compute/docs/instances/adding-removing-ssh-keys
https://cloud.google.com/docs/authentication/getting-started
mailto:jane@example.com

Toil Documentation, Release 5.11.0

The --keyPairName option is for an SSH key that was added to the Google account. If your ssh key [USERNAME]
was jane@example.com, then your key pair name will be just jane.

3. Upload the sort example and ssh into the leader:

(venv) $ toil rsync-cluster --provisioner gce <CLUSTER-NAME> sort.py :/root
(venv) $ toil ssh-cluster --provisioner gce <CLUSTER-NAME>

4. Run the workflow:

$ python /root/sort.py google:<PROJECT-ID>:<JOBSTORE-NAME> \
--provisioner gce \
--batchSystem mesos \
--nodeTypes n1-standard-2 \
--maxNodes 2

5. Clean up:

$ exit # this exits the ssh from the leader node
(venv) $ toil destroy-cluster --provisioner gce <CLUSTER-NAME>

7.4 Cluster Utilities

There are several utilities used for starting and managing a Toil cluster using the AWS provisioner. They are installed
via the [aws] or [google] extra. For installation details see Toil Provisioner. The cluster utilities are used for
Running in AWS and are comprised of toil launch-cluster, toil rsync-cluster, toil ssh-cluster, and
toil destroy-cluster entry points.

Cluster commands specific to toil are:

status — Reports runtime and resource usage for all jobs in a specified jobstore (workflow must have
originally been run using the -\-stats option).

stats — Inspects a job store to see which jobs have failed, run successfully, etc.

destroy-cluster — For autoscaling. Terminates the specified cluster and associated resources.

launch-cluster — For autoscaling. This is used to launch a toil leader instance with the specified
provisioner.

rsync-cluster — For autoscaling. Used to transfer files to a cluster launched with toil
launch-cluster.

ssh-cluster — SSHs into the toil appliance container running on the leader of the cluster.

clean — Delete the job store used by a previous Toil workflow invocation.

kill — Kills any running jobs in a rogue toil.

For information on a specific utility run:

toil launch-cluster --help

for a full list of its options and functionality.

The cluster utilities can be used for Running in Google Compute Engine (GCE) and Running in AWS.

7.4. Cluster Utilities 61

Toil Documentation, Release 5.11.0

Tip: By default, all of the cluster utilities expect to be running on AWS. To run with Google you will need to specify
the --provisioner gce option for each utility.

Note: Boto must be configured with AWS credentials before using cluster utilities.

Running in Google Compute Engine (GCE) contains instructions for

7.5 Stats Command

To use the stats command, a workflow must first be run using the --stats option. Using this command makes
certain that toil does not delete the job store, no matter what other options are specified (i.e. normally the option
--clean=always would delete the job, but --stats will override this).

An example of this would be running the following:

python discoverfiles.py file:my-jobstore --stats

Where discoverfiles.py is the following:

import os
import subprocess

from toil.common import Toil
from toil.job import Job

class discoverFiles(Job):
"""Views files at a specified path using ls."""

def __init__(self, path, *args, **kwargs):
self.path = path
super().__init__(*args, **kwargs)

def run(self, fileStore):
if os.path.exists(self.path):

subprocess.check_call(["ls", self.path])

def main():
options = Job.Runner.getDefaultArgumentParser().parse_args()
options.clean = "always"

job1 = discoverFiles(path="/sys/", displayName='sysFiles')
job2 = discoverFiles(path=os.path.expanduser("~"), displayName='userFiles')
job3 = discoverFiles(path="/tmp/")

job1.addChild(job2)
job2.addChild(job3)

(continues on next page)

62 Chapter 7. Cloud Platforms

http://boto3.readthedocs.io/en/latest/guide/quickstart.html#configuration

Toil Documentation, Release 5.11.0

(continued from previous page)

with Toil(options) as toil:
if not toil.options.restart:

toil.start(job1)
else:

toil.restart()

if __name__ == '__main__':
main()

Notice the displayName key, which can rename a job, giving it an alias when it is finally displayed in stats. Running
this workflow file should record three job names: sysFiles (job1), userFiles (job2), and discoverFiles (job3).
To see the runtime and resources used for each job when it was run, type

toil stats file:my-jobstore

This should output the following:

Batch System: singleMachine
Default Cores: 1 Default Memory: 2097152K
Max Cores: 9.22337e+18
Total Clock: 0.56 Total Runtime: 1.01
Worker

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓Memory

n | min med* ave max total | min med ave max ␣
→˓ total | min med ave max total | min med ave max ␣
→˓total

1 | 0.14 0.14 0.14 0.14 0.14 | 0.13 0.13 0.13 0.13 ␣
→˓ 0.13 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K 76K ␣
→˓ 76K
Job
Worker Jobs | min med ave max

| 3 3 3 3
Count | Time* | ␣

→˓ Clock | Wait | ␣
→˓Memory

n | min med* ave max total | min med ave max ␣
→˓ total | min med ave max total | min med ave max ␣
→˓total

3 | 0.01 0.06 0.05 0.07 0.14 | 0.00 0.06 0.04 0.07 ␣
→˓ 0.12 | 0.00 0.01 0.00 0.01 0.01 | 76K 76K 76K 76K ␣
→˓ 229K
sysFiles

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓Memory

n | min med* ave max total | min med ave max ␣
→˓ total | min med ave max total | min med ave max ␣
→˓total

1 | 0.01 0.01 0.01 0.01 0.01 | 0.00 0.00 0.00 0.00 ␣
(continues on next page)

7.5. Stats Command 63

Toil Documentation, Release 5.11.0

(continued from previous page)

→˓ 0.00 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K 76K ␣
→˓ 76K
userFiles

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓Memory

n | min med* ave max total | min med ave max ␣
→˓ total | min med ave max total | min med ave max ␣
→˓total

1 | 0.06 0.06 0.06 0.06 0.06 | 0.06 0.06 0.06 0.06 ␣
→˓ 0.06 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K 76K ␣
→˓ 76K
discoverFiles

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓Memory

n | min med* ave max total | min med ave max ␣
→˓ total | min med ave max total | min med ave max ␣
→˓total

1 | 0.07 0.07 0.07 0.07 0.07 | 0.07 0.07 0.07 0.07 ␣
→˓ 0.07 | 0.00 0.00 0.00 0.00 0.00 | 76K 76K 76K 76K ␣
→˓ 76K

Once we’re done, we can clean up the job store by running

toil clean file:my-jobstore

7.6 Status Command

Continuing the example from the stats section above, if we ran our workflow with the command

python discoverfiles.py file:my-jobstore --stats

We could interrogate our jobstore with the status command, for example:

toil status file:my-jobstore

If the run was successful, this would not return much valuable information, something like

2018-01-11 19:31:29,739 - toil.lib.bioio - INFO - Root logger is at level 'INFO', 'toil'␣
→˓logger at level 'INFO'.
2018-01-11 19:31:29,740 - toil.utils.toilStatus - INFO - Parsed arguments
2018-01-11 19:31:29,740 - toil.utils.toilStatus - INFO - Checking if we have files for␣
→˓Toil
The root job of the job store is absent, the workflow completed successfully.

Otherwise, the status command should return the following:

There are x unfinished jobs, y parent jobs with children, z jobs with services, a services, and b totally
failed jobs currently in c.

64 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.11.0

7.7 Clean Command

If a Toil pipeline didn’t finish successfully, or was run using --clean=always or --stats, the job store will exist
until it is deleted. toil clean <jobStore> ensures that all artifacts associated with a job store are removed. This is
particularly useful for deleting AWS job stores, which reserves an SDB domain as well as an S3 bucket.

The deletion of the job store can be modified by the --clean argument, and may be set to always, onError, never,
or onSuccess (default).

Temporary directories where jobs are running can also be saved from deletion using the --cleanWorkDir, which has
the same options as --clean. This option should only be run when debugging, as intermediate jobs will fill up disk
space.

7.8 Launch-Cluster Command

Running toil launch-cluster starts up a leader for a cluster. Workers can be added to the initial cluster by speci-
fying the -w option. An example would be

$ toil launch-cluster my-cluster \
--leaderNodeType t2.small -z us-west-2a \
--keyPairName your-AWS-key-pair-name \
--nodeTypes m3.large,t2.micro -w 1,4

Options are listed below. These can also be displayed by running

$ toil launch-cluster --help

launch-cluster’s main positional argument is the clusterName. This is simply the name of your cluster. If it does not
exist yet, Toil will create it for you.

Launch-Cluster Options
--help -h also accepted. Displays this help menu.

--tempDirRoot TEMPDIRROOT Path to the temporary directory where all temp files
are created, by default uses the current working directory as the base.

--version Display version.

--provisioner CLOUDPROVIDER -p CLOUDPROVIDER also accepted. The provi-
sioner for cluster auto-scaling. Both AWS and GCE are currently
supported.

--zone ZONE -z ZONE also accepted. The availability zone of the leader.
This parameter can also be set via the TOIL_AWS_ZONE
or TOIL_GCE_ZONE environment variables, or by the
ec2_region_name parameter in your .boto file if using AWS, or
derived from the instance metadata if using this utility on an existing
EC2 instance.

--leaderNodeType LEADERNODETYPE Non-preemptable node type to use for the
cluster leader.

--keyPairName KEYPAIRNAME The name of the AWS or ssh key pair to include on the
instance.

7.7. Clean Command 65

Toil Documentation, Release 5.11.0

--owner OWNER The owner tag for all instances. If not given, the value in
TOIL_OWNER_TAG will be used, or else the value of –keyPair-
Name.

--boto BOTOPATH The path to the boto credentials directory. This is transferred to all
nodes in order to access the AWS jobStore from non-AWS instances.

--tag KEYVALUE KEYVALUE is specified as KEY=VALUE. -t KEY=VALUE also ac-
cepted. Tags are added to the AWS cluster for this node and all of its
children. Tags are of the form: -t key1=value1 –tag key2=value2.
Multiple tags are allowed and each tag needs its own flag. By default
the cluster is tagged with: { “Name”: clusterName, “Owner”: IAM
username }.

--vpcSubnet VPCSUBNET VPC subnet ID to launch cluster leader in. Uses default sub-
net if not specified. This subnet needs to have auto assign IPs turned
on.

--nodeTypes NODETYPES Comma-separated list of node types to create while launch-
ing the leader. The syntax for each node type depends on the pro-
visioner used. For the AWS provisioner this is the name of an EC2
instance type followed by a colon and the price in dollars to bid for
a spot instance, for example ‘c3.8xlarge:0.42’. Must also provide the
–workers argument to specify how many workers of each node type
to create.

--workers WORKERS -w WORKERS also accepted. Comma-separated list of the num-
ber of workers of each node type to launch alongside the leader when
the cluster is created. This can be useful if running toil without auto-
scaling but with need of more hardware support.

--leaderStorage LEADERSTORAGE Specify the size (in gigabytes) of the root volume
for the leader instance. This is an EBS volume.

--nodeStorage NODESTORAGE Specify the size (in gigabytes) of the root volume for
any worker instances created when using the -w flag. This is an EBS
volume.

--nodeStorageOverrides NODESTORAGEOVERRIDES Comma-separated list of
nodeType:nodeStorage that are used to override the default value
from –nodeStorage for the specified nodeType(s). This is useful for
heterogeneous jobs where some tasks require much more disk than
others.

Logging Options
--logOff Same as -\-logCritical.

--logCritical Turn on logging at level CRITICAL and above. (default is INFO)

--logError Turn on logging at level ERROR and above. (default is INFO)

--logWarning Turn on logging at level WARNING and above. (default is INFO)

--logInfo Turn on logging at level INFO and above. (default is INFO)

--logDebug Turn on logging at level DEBUG and above. (default is INFO)

--logLevel LOGLEVEL Log at given level (may be either OFF (or CRITICAL), ERROR,
WARN (or WARNING), INFO or DEBUG). (default is INFO)

--logFile LOGFILE File to log in.

66 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.11.0

--rotatingLogging Turn on rotating logging, which prevents log files getting too big.

7.9 Ssh-Cluster Command

Toil provides the ability to ssh into the leader of the cluster. This can be done as follows:

$ toil ssh-cluster CLUSTER-NAME-HERE

This will open a shell on the Toil leader and is used to start an Running a Workflow with Autoscaling run. Issues with
docker prevent using screen and tmux when sshing the cluster (The shell doesn’t know that it is a TTY which prevents
it from allocating a new screen session). This can be worked around via

$ script
$ screen

Simply running screen within script will get things working properly again.

Finally, you can execute remote commands with the following syntax:

$ toil ssh-cluster CLUSTER-NAME-HERE remoteCommand

It is not advised that you run your Toil workflow using remote execution like this unless a tool like nohup is used to
ensure the process does not die if the SSH connection is interrupted.

For an example usage, see Running a Workflow with Autoscaling.

7.10 Rsync-Cluster Command

The most frequent use case for the rsync-cluster utility is deploying your Toil script to the Toil leader. Note that
the syntax is the same as traditional rsync with the exception of the hostname before the colon. This is not needed in
toil rsync-cluster since the hostname is automatically determined by Toil.

Here is an example of its usage:

$ toil rsync-cluster CLUSTER-NAME-HERE \
~/localFile :/remoteDestination

7.11 Destroy-Cluster Command

The destroy-cluster command is the advised way to get rid of any Toil cluster launched using the Launch-Cluster
Command command. It ensures that all attached nodes, volumes, security groups, etc. are deleted. If a node or cluster
is shut down using Amazon’s online portal residual resources may still be in use in the background. To delete a cluster
run

$ toil destroy-cluster CLUSTER-NAME-HERE

7.9. Ssh-Cluster Command 67

https://linux.die.net/man/1/nohup
https://linux.die.net/man/1/rsync

Toil Documentation, Release 5.11.0

7.12 Kill Command

To kill all currently running jobs for a given jobstore, use the command

toil kill file:my-jobstore

68 Chapter 7. Cloud Platforms

CHAPTER

EIGHT

HPC ENVIRONMENTS

Toil is a flexible framework that can be leveraged in a variety of environments, including high-performance computing
(HPC) environments. Toil provides support for a number of batch systems, including Grid Engine, Slurm, Torque and
LSF, which are popular schedulers used in these environments. Toil also supports HTCondor, which is a popular sched-
uler for high-throughput computing (HTC). To use one of these batch systems specify the “-\-batchSystem” argument
to the toil script.

Due to the cost and complexity of maintaining support for these schedulers we currently consider them to be “com-
munity supported”, that is the core development team does not regularly test or develop support for these systems.
However, there are members of the Toil community currently deploying Toil in HPC environments and we welcome
external contributions.

Developing the support of a new or existing batch system involves extending the abstract batch system class toil.
batchSystems.abstractBatchSystem.AbstractBatchSystem .

8.1 Standard Output/Error from Batch System Jobs

Standard output and error from batch system jobs (except for the Parasol and Mesos batch systems) are redirected
to files in the toil-<workflowID> directory created within the temporary directory specified by the --workDir
option; see Commandline Options. Each file is named as follows: toil_job_<Toil job ID>_batch_<name of
batch system>_<job ID from batch system>_<file description>.log, where <file description> is
std_output for standard output, and std_error for standard error. HTCondor will also write job event log files with
<file description> = job_events.

If capturing standard output and error is desired, --workDirwill generally need to be on a shared file system; otherwise
if these are written to local temporary directories on each node (e.g. /tmp) Toil will not be able to retrieve them.
Alternatively, the --noStdOutErr option forces Toil to discard all standard output and error from batch system jobs.

69

http://www.univa.com/oracle
https://www.schedmd.com/
http://www.adaptivecomputing.com/products/open-source/torque/
https://en.wikipedia.org/wiki/Platform_LSF
https://research.cs.wisc.edu/htcondor/

Toil Documentation, Release 5.11.0

70 Chapter 8. HPC Environments

CHAPTER

NINE

CWL IN TOIL

The Common Workflow Language (CWL) is an emerging standard for writing workflows that are portable across
multiple workflow engines and platforms. Toil has full support for the CWL v1.0, v1.1, and v1.2 standards.

9.1 Running CWL Locally

The toil-cwl-runner command provides cwl-parsing functionality using cwltool, and leverages the job-scheduling and
batch system support of Toil.

To run in local batch mode, provide the CWL file and the input object file:

$ toil-cwl-runner example.cwl example-job.yml

For a simple example of CWL with Toil see Running a basic CWL workflow.

9.1.1 Note for macOS + Docker + Toil

When invoking CWL documents that make use of Docker containers if you see errors that look like

docker: Error response from daemon: Mounts denied:
The paths /var/...tmp are not shared from OS X and are not known to Docker.

you may need to add

export TMPDIR=/tmp/docker_tmp

either in your startup file (.bashrc) or add it manually in your shell before invoking toil.

9.2 Detailed Usage Instructions

Help information can be found by using this toil command:

$ toil-cwl-runner -h

A more detailed example shows how we can specify both Toil and cwltool arguments for our workflow:

71

Toil Documentation, Release 5.11.0

$ toil-cwl-runner \
--singularity \
--jobStore my_jobStore \
--batchSystem lsf \
--workDir `pwd` \
--outdir `pwd` \
--logFile cwltoil.log \
--writeLogs `pwd` \
--logLevel DEBUG \
--retryCount 2 \
--maxLogFileSize 20000000000 \
--stats \
standard_bam_processing.cwl \
inputs.yaml

In this example, we set the following options, which are all passed to Toil:

--singularity: Specifies that all jobs with Docker format containers specified should be run using the Singularity
container engine instead of the Docker container engine.

--jobStore: Path to a folder which doesn’t exist yet, which will contain the Toil jobstore and all related job-tracking
information.

--batchSystem: Use the specified HPC or Cloud-based cluster platform.

--workDir: The directory where all temporary files will be created for the workflow. A subdirectory of this will be
set as the $TMPDIR environment variable and this subdirectory can be referenced using the CWL parameter reference
$(runtime.tmpdir) in CWL tools and workflows.

--outdir: Directory where final File and Directory outputs will be written. References to these and other output
types will be in the JSON object printed to the stdout stream after workflow execution.

--logFile: Path to the main logfile with logs from all jobs.

--writeLogs: Directory where all job logs will be stored.

--retryCount: How many times to retry each Toil job.

--maxLogFileSize: Logs that get larger than this value will be truncated.

--stats: Save resources usages in json files that can be collected with the toil stats command after the workflow
is done.

--disable-streaming: Does not allow streaming of input files. This is enabled by default for files marked with
streamable flag True and only for remote files when the jobStore is not on local machine.

9.3 Running CWL in the Cloud

To run in cloud and HPC configurations, you may need to provide additional command line parameters to select and
configure the batch system to use.

To run a CWL workflow in AWS with toil see Running a CWL Workflow on AWS.

72 Chapter 9. CWL in Toil

Toil Documentation, Release 5.11.0

9.4 Running CWL within Toil Scripts

A CWL workflow can be run indirectly in a native Toil script. However, this is not the standard way to run CWL
workflows with Toil and doing so comes at the cost of job efficiency. For some use cases, such as running one process
on multiple files, it may be useful. For example, if you want to run a CWL workflow with 3 YML files specifying
different samples inputs, it could look something like:

import os
import subprocess
import tempfile

from toil.common import Toil
from toil.job import Job

def initialize_jobs(job):
job.fileStore.logToMaster('initialize_jobs')

def runQC(job, cwl_file, cwl_filename, yml_file, yml_filename, outputs_dir, output_num):
job.fileStore.logToMaster("runQC")
tempDir = job.fileStore.getLocalTempDir()

cwl = job.fileStore.readGlobalFile(cwl_file, userPath=os.path.join(tempDir, cwl_
→˓filename))

yml = job.fileStore.readGlobalFile(yml_file, userPath=os.path.join(tempDir, yml_
→˓filename))

subprocess.check_call(["toil-cwl-runner", cwl, yml])

output_filename = "output.txt"
output_file = job.fileStore.writeGlobalFile(output_filename)
job.fileStore.readGlobalFile(output_file, userPath=os.path.join(outputs_dir, "sample_

→˓" + output_num + "_" + output_filename))
return output_file

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_cwlexample")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"
with Toil(options) as toil:

specify the folder where the cwl and yml files live
inputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)),

→˓"cwlExampleFiles")
specify where you wish the outputs to be written
outputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)),

→˓"cwlExampleFiles")

job0 = Job.wrapJobFn(initialize_jobs)
(continues on next page)

9.4. Running CWL within Toil Scripts 73

Toil Documentation, Release 5.11.0

(continued from previous page)

cwl_filename = "hello.cwl"
cwl_file = toil.importFile("file://" + os.path.abspath(os.path.join(inputs_dir,␣

→˓cwl_filename)))

add list of yml config inputs here or import and construct from file
yml_files = ["hello1.yml", "hello2.yml", "hello3.yml"]
i = 0
for yml in yml_files:

i = i + 1
yml_file = toil.importFile("file://" + os.path.abspath(os.path.join(inputs_

→˓dir, yml)))
yml_filename = yml
job = Job.wrapJobFn(runQC, cwl_file, cwl_filename, yml_file, yml_filename,␣

→˓outputs_dir, output_num=str(i))
job0.addChild(job)

toil.start(job0)

9.5 Running CWL workflows with InplaceUpdateRequirement

Some CWL workflows use the InplaceUpdateRequirement feature, which requires that operations on files have
visible side effects that Toil’s file store cannot support. If you need to run a workflow like this, you can make sure that
all of your worker nodes have a shared filesystem, and use the --bypass-file-store option to toil-cwl-runner.
This will make it leave all CWL intermediate files on disk and share them between jobs using file paths, instead of
storing them in the file store and downloading them when jobs need them.

9.6 Toil & CWL Tips

See logs for just one job by using the full log file
This requires knowing the job’s toil-generated ID, which can be found in the log files.

cat cwltoil.log | grep jobVM1fIs

Grep for full tool commands from toil logs
This gives you a more concise view of the commands being run (note that this information is only available from Toil
when running with –logDebug).

pcregrep -M "\[job .*\.cwl.*$\n(.* .*$\n)*" cwltoil.log
^allows for multiline matching

Find Bams that have been generated for specific step while pipeline is running:

find . | grep -P '^./out_tmpdir.*_MD\.bam$'

See what jobs have been run

cat log/cwltoil.log | grep -oP "\[job .*.cwl\]" | sort | uniq

74 Chapter 9. CWL in Toil

Toil Documentation, Release 5.11.0

or:

cat log/cwltoil.log | grep -i "issued job"

Get status of a workflow

$ toil status /home/johnsoni/TEST_RUNS_3/TEST_run/tmp/jobstore-09ae0acc-c800-11e8-9d09-
→˓70106fb1697e
<hostname> 2018-10-04 15:01:44,184 MainThread INFO toil.lib.bioio: Root logger is at␣
→˓level 'INFO', 'toil' logger at level 'INFO'.
<hostname> 2018-10-04 15:01:44,185 MainThread INFO toil.utils.toilStatus: Parsed␣
→˓arguments
<hostname> 2018-10-04 15:01:47,081 MainThread INFO toil.utils.toilStatus: Traversing the␣
→˓job graph gathering jobs. This may take a couple of minutes.

Of the 286 jobs considered, there are 179 jobs with children, 107 jobs ready to run, 0␣
→˓zombie jobs, 0 jobs with services, 0 services, and 0 jobs with log files currently in␣
→˓file:/home/user/jobstore-09ae0acc-c800-11e8-9d09-70106fb1697e.

Toil Stats
You can get run statistics broken down by CWL file. This only works once the workflow is finished:

$ toil stats /path/to/jobstore

The output will contain CPU, memory, and walltime information for all CWL job types:

<hostname> 2018-10-15 12:06:19,003 MainThread INFO toil.lib.bioio: Root logger is at␣
→˓level 'INFO', 'toil' logger at level 'INFO'.
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Parsed arguments
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Checking if we␣
→˓have files for toil
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Checked␣
→˓arguments
Batch System: lsf
Default Cores: 1 Default Memory: 10485760K
Max Cores: 9.22337e+18
Total Clock: 106608.01 Total Runtime: 86634.11
Worker

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓ Memory

n | min med* ave max total | min med ave ␣
→˓max total | min med ave max total | min med ␣
→˓ ave max total

1659 | 0.00 0.80 264.87 12595.59 439424.40 | 0.00 0.46 449.05␣
→˓42240.74 744968.80 | -35336.69 0.16 -184.17 4230.65 -305544.39 | 48K ␣
→˓223K 1020K 40235K 1692300K
Job
Worker Jobs | min med ave max

| 1077 1077 1077 1077
Count | Time* | ␣

→˓ Clock | Wait | ␣
→˓ Memory

n | min med* ave max total | min med ave ␣
(continues on next page)

9.6. Toil & CWL Tips 75

Toil Documentation, Release 5.11.0

(continued from previous page)

→˓max total | min med ave max total | min med ␣
→˓ ave max total

1077 | 0.04 1.18 407.06 12593.43 438404.73 | 0.01 0.28 691.17␣
→˓42240.35 744394.14 | -35336.83 0.27 -284.11 4230.49 -305989.41 | 135K ␣
→˓268K 1633K 40235K 1759734K
ResolveIndirect

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓ Memory

n | min med* ave max total | min med ave ␣
→˓max total | min med ave max total | min med ␣
→˓ ave max total

205 | 0.04 0.07 0.16 2.29 31.95 | 0.01 0.02 0.02 ␣
→˓0.14 3.60 | 0.02 0.05 0.14 2.28 28.35 | 190K 266K ␣
→˓ 256K 314K 52487K
CWLGather

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓ Memory

n | min med* ave max total | min med ave ␣
→˓max total | min med ave max total | min med ␣
→˓ ave max total

40 | 0.05 0.17 0.29 1.90 11.62 | 0.01 0.02 0.02 ␣
→˓0.05 0.80 | 0.03 0.14 0.27 1.88 10.82 | 188K 265K ␣
→˓ 250K 316K 10039K
CWLWorkflow

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓ Memory

n | min med* ave max total | min med ave ␣
→˓max total | min med ave max total | min med ␣
→˓ ave max total

205 | 0.09 0.40 0.98 13.70 200.82 | 0.04 0.15 0.16 ␣
→˓1.08 31.78 | 0.04 0.26 0.82 12.62 169.04 | 190K 270K ␣
→˓ 257K 316K 52826K
file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/group_
→˓waltz_files.cwl

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓ Memory

n | min med* ave max total | min med ave ␣
→˓max total | min med ave max total | min med ␣
→˓ ave max total

99 | 0.29 0.49 0.59 2.50 58.11 | 0.14 0.26 0.29 ␣
→˓1.04 28.95 | 0.14 0.22 0.29 1.48 29.16 | 135K 135K ␣
→˓ 135K 136K 13459K
file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/make_
→˓sample_output_dirs.cwl

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓ Memory

n | min med* ave max total | min med ave ␣

(continues on next page)

76 Chapter 9. CWL in Toil

Toil Documentation, Release 5.11.0

(continued from previous page)

→˓max total | min med ave max total | min med ␣
→˓ ave max total

11 | 0.34 0.52 0.74 2.63 8.18 | 0.20 0.30 0.41 ␣
→˓1.17 4.54 | 0.14 0.20 0.33 1.45 3.65 | 136K 136K ␣
→˓ 136K 136K 1496K
file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/
→˓consolidate_files.cwl

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓ Memory

n | min med* ave max total | min med ave ␣
→˓max total | min med ave max total | min med ␣
→˓ ave max total

8 | 0.31 0.59 0.71 1.80 5.69 | 0.18 0.35 0.37 ␣
→˓0.63 2.94 | 0.13 0.27 0.34 1.17 2.75 | 136K 136K ␣
→˓ 136K 136K 1091K
file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/bwa-mem/bwa-mem.cwl

Count | Time* | ␣
→˓ Clock | Wait | ␣
→˓ Memory

n | min med* ave max total | min med ave ␣
→˓max total | min med ave max total | min med ␣
→˓ ave max total

22 | 895.76 3098.13 3587.34 12593.43 78921.51 | 2127.02 7910.31 8123.06␣
→˓16959.13 178707.34 | -11049.84 -3827.96 -4535.72 19.49 -99785.83 | 5659K ␣
→˓5950K 5854K 6128K 128807K

Understanding toil log files
There is a worker_log.txt file for each job, this file is written to while the job is running, and deleted after the job
finishes. The contents are printed to the main log file and transferred to a log file in the –logDir folder once the job is
completed successfully.

The new log file will be named something like:

file:<path to cwl tool>.cwl_<job ID>.log

file:---home-johnsoni-pipeline_1.1.14-ACCESS--Pipeline-cwl_tools-marianas-
→˓ProcessLoopUMIFastq.cwl_I-O-jobfGsQQw000.log

This is the toil job command with spaces replaced by dashes.

9.6. Toil & CWL Tips 77

Toil Documentation, Release 5.11.0

78 Chapter 9. CWL in Toil

CHAPTER

TEN

WDL IN TOIL

Toil has beta support for running WDL workflows, using the toil-wdl-runner command.

10.1 Running WDL with Toil

You can run WDL workflows with toil-wdl-runner. Currently, toil-wdl-runner works by using MiniWDL to
parse and interpret the WDL workflow, and has support for workflows in WDL 1.0 or later (which are required to
declare a version and to use inputs and outputs sections).

You can write workflows like this by following the official WDL tutorials.

When you reach the point of executing your workflow, instead of running with Cromwell:

java -jar Cromwell.jar run myWorkflow.wdl --inputs myWorkflow_inputs.json

you can instead run with toil-wdl-runner:

toil-wdl-runner myWorkflow.wdl --inputs myWorkflow_inputs.json

This will default to executing on the current machine, with a job store in an automatically determined temporary
location, but you can add a few Toil options to use other Toil-supported batch systems, such as Kubernetes:

toil-wdl-runner --jobStore aws:us-west-2:wdl-job-store --batchSystem kubernetes
myWorkflow.wdl --inputs myWorkflow_inputs.json

For Toil, the --inputs is optional, and inputs can be passed as a positional argument:

toil-wdl-runner myWorkflow.wdl myWorkflow_inputs.json

You can also run workflows from URLs. For example, to run the MiniWDL self test workflow, you can do:

toil-wdl-runner https://raw.githubusercontent.com/DataBiosphere/toil/
36b54c45e8554ded5093bcdd03edb2f6b0d93887/src/toil/test/wdl/miniwdl_self_test/
self_test.wdl https://raw.githubusercontent.com/DataBiosphere/toil/
36b54c45e8554ded5093bcdd03edb2f6b0d93887/src/toil/test/wdl/miniwdl_self_test/inputs.json

79

https://github.com/chanzuckerberg/miniwdl/#miniwdl
https://wdl-docs.readthedocs.io/en/stable/
https://wdl-docs.readthedocs.io/en/stable/WDL/execute/

Toil Documentation, Release 5.11.0

10.2 Toil WDL Runner Options

‘-\-jobStore’: Specifies where to keep the Toil state information while running the workflow. Must be accessible from
all machines.

‘-o’ or ‘-\-outputDirectory’: Specifies the output folder to save workflow output files in. Defaults to a new directory
in the current directory.

‘-m’ or ‘-\-outputFile’: Specifies a JSON file to save workflow output values to. Defaults to standard output.

‘-i’ or ‘-\-input’: Alternative to the positional argument for the input JSON file, for compatibility with other WDL
runners.

‘-\-outputDialect’: Specifies an output format dialect. Can be cromwell to just return the workflow’s output values
as JSON or miniwdl to nest that under an outputs key and includes a dir key.

Any number of other Toil options may also be specified. For defined Toil options, see the documentation: http://toil.
readthedocs.io/en/latest/running/cliOptions.html

10.3 WDL Specifications

WDL language specifications can be found here: https://github.com/broadinstitute/wdl/blob/develop/SPEC.md

Toil is not yet fully conformant with the WDL specification, but it inherits most of the functionality of MiniWDL.

10.4 Using the Old WDL Compiler

Up through Toil 5.9.2, toil-wdl-runner worked by compiling the WDL code to a Toil Python workflow, and exe-
cuting that. The old compiler is still available as toil-wdl-runner-old.

The compiler implements:
• Scatter

• Many Built-In Functions

• Docker Calls

• Handles Priority, and Output File Wrangling

• Currently Handles Primitives and Arrays

The compiler DOES NOT implement:
• Robust cloud autoscaling

• WDL files that import other WDL files (including URI handling for ‘http://’ and ‘https://’)

Recommended best practice when running wdl files with toil-wdl-runner-old is to first use the Broad’s wdltool
for syntax validation and generating the needed json input file. Full documentation can be found in the repository, and
a precompiled jar binary can be downloaded here: wdltool (this requires java7).

That means two steps. First, make sure your wdl file is valid and devoid of syntax errors by running

java -jar wdltool.jar validate example_wdlfile.wdl

Second, generate a complementary json file if your wdl file needs one. This json will contain keys for every necessary
input that your wdl file needs to run:

java -jar wdltool.jar inputs example_wdlfile.wdl

80 Chapter 10. WDL in Toil

http://toil.readthedocs.io/en/latest/running/cliOptions.html
http://toil.readthedocs.io/en/latest/running/cliOptions.html
https://github.com/broadinstitute/wdl/blob/develop/SPEC.md
https://github.com/chanzuckerberg/miniwdl/#miniwdl
http://
https://
https://github.com/broadinstitute/wdltool
https://github.com/broadinstitute/wdltool/releases
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html

Toil Documentation, Release 5.11.0

When this json template is generated, open the file, and fill in values as necessary by hand. WDL files all require json
files to accompany them. If no variable inputs are needed, a json file containing only ‘{}’ may be required.

Once a wdl file is validated and has an appropriate json file, workflows can be compiled and run using:

toil-wdl-runner-old example_wdlfile.wdl example_jsonfile.json

10.4.1 Toil WDL Compiler Options

‘-o’ or ‘-\-outdir’: Specifies the output folder, and defaults to the current working directory if not specified by the user.

‘-\-dev_mode’: Creates “AST.out”, which holds a printed AST of the wdl file and “mappings.out”, which holds the
printed task, workflow, csv, and tsv dictionaries generated by the parser. Also saves the compiled toil python workflow
file for debugging.

Any number of arbitrary options may also be specified. These options will not be parsed immediately, but passed
down as toil options once the wdl/json files are processed. For valid toil options, see the documentation: http://toil.
readthedocs.io/en/latest/running/cliOptions.html

10.4.2 Compiler Example: ENCODE Example from ENCODE-DCC

For this example, we will run a WDL draft-2 workflow. This version is too old to be supported by toil-wdl-runner,
so we will need to use toil-wdl-runner-old.

To follow this example, you will need docker installed. The original workflow can be found here: https://github.com/
ENCODE-DCC/pipeline-container

We’ve included the wdl file and data files in the toil repository needed to run this example. First, download the example
code and unzip. The file needed is “testENCODE/encode_mapping_workflow.wdl”.

Next, use wdltool (this requires java7) to validate this file:

java -jar wdltool.jar validate encode_mapping_workflow.wdl

Next, use wdltool to generate a json file for this wdl file:

java -jar wdltool.jar inputs encode_mapping_workflow.wdl

This json file once opened should look like this:

{
"encode_mapping_workflow.fastqs": "Array[File]",
"encode_mapping_workflow.trimming_parameter": "String",
"encode_mapping_workflow.reference": "File"
}

You will need to edit this file to replace the types (like Array[File]) with values of those types.

The trimming_parameter should be set to ‘native’.

For the file parameters, download the example data and unzip. Inside are two data files required for the run

ENCODE_data/reference/GRCh38_chr21_bwa.tar.gz ENCODE_data/ENCFF000VOL_chr21.fq.gz

Editing the json to include these as inputs, the json should now look something like this:

{
"encode_mapping_workflow.fastqs": ["/path/to/unzipped/ENCODE_data/ENCFF000VOL_chr21.fq.gz
→˓"],

(continues on next page)

10.4. Using the Old WDL Compiler 81

http://toil.readthedocs.io/en/latest/running/cliOptions.html
http://toil.readthedocs.io/en/latest/running/cliOptions.html
https://github.com/ENCODE-DCC/pipeline-container
https://github.com/ENCODE-DCC/pipeline-container
https://toil-datasets.s3.amazonaws.com/wdl_templates.zip
https://github.com/broadinstitute/wdltool/releases
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
https://toil-datasets.s3.amazonaws.com/ENCODE_data.zip

Toil Documentation, Release 5.11.0

(continued from previous page)

"encode_mapping_workflow.trimming_parameter": "native",
"encode_mapping_workflow.reference": "/path/to/unzipped/ENCODE_data/reference/GRCh38_
→˓chr21_bwa.tar.gz"
}

The wdl and json files can now be run using the command:

toil-wdl-runner-old encode_mapping_workflow.wdl encode_mapping_workflow.json

This should deposit the output files in the user’s current working directory (to change this, specify a new directory with
the ‘-o’ option).

10.4.3 Compiler Example: GATK Examples from the Broad

Terra hosts some example documentation for using early, pre-1.0 versions of WDL, originally authored by the Broad:
https://support.terra.bio/hc/en-us/sections/360007347652?name=wdl-tutorials

One can follow along with these tutorials, write their own old-style WDL files following the directions and run them
using either Cromwell or Toil’s old WDL compiler. For example, in tutorial 1, if you’ve followed along and named your
wdl file ‘helloHaplotypeCall.wdl’, then once you’ve validated your wdl file using wdltool (this requires java7) using

java -jar wdltool.jar validate helloHaplotypeCaller.wdl

and generated a json file (and subsequently typed in appropriate file paths and variables) using

java -jar wdltool.jar inputs helloHaplotypeCaller.wdl

Note: Absolute filepath inputs are recommended for local testing with the Toil WDL compiler.

then the WDL script can be compiled and run using

toil-wdl-runner-old helloHaplotypeCaller.wdl helloHaplotypeCaller_inputs.json

82 Chapter 10. WDL in Toil

https://support.terra.bio/hc/en-us/sections/360007347652?name=wdl-tutorials
https://github.com/broadinstitute/wdltool/releases
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html

CHAPTER

ELEVEN

WORKFLOW EXECUTION SERVICE (WES)

The GA4GH Workflow Execution Service (WES) is a standardized API for submitting and monitoring workflows. Toil
has experimental support for setting up a WES server and executing CWL, WDL, and Toil workflows using the WES
API. More information about the WES API specification can be found here.

To get started with the Toil WES server, make sure that the server extra (Installing Toil with Extra Features) is installed.

11.1 Preparing your WES environment

The WES server requires Celery to distribute and execute workflows. To set up Celery:

1. Start RabbitMQ, which is the broker between the WES server and Celery workers:

docker run -d --name wes-rabbitmq -p 5672:5672 rabbitmq:3.9.5

2. Start Celery workers:

celery -A toil.server.celery_app worker --loglevel=INFO

11.2 Starting a WES server

To start a WES server on the default port 8080, run the Toil command:

$ toil server

The WES API will be hosted on the following URL:

http://localhost:8080/ga4gh/wes/v1

To use another port, e.g.: 3000, you can specify the --port argument:

$ toil server --port 3000

There are many other command line options. Help information can be found by using this command:

$ toil server --help

Below is a detailed summary of all server-specific options:

--debug Enable debug mode.

83

https://ga4gh.github.io/workflow-execution-service-schemas/docs/
https://docs.celeryproject.org/en/stable/getting-started/introduction.html

Toil Documentation, Release 5.11.0

--bypass_celery Skip sending workflows to Celery and just run them under the server. For testing.

--host HOST The host interface that the Toil server binds on. (default: “127.0.0.1”).

--port PORT The port that the Toil server listens on. (default: 8080).

--swagger_ui If True, the swagger UI will be enabled and hosted on the {api_base_path}/ui
endpoint. (default: False)

--cors Enable Cross Origin Resource Sharing (CORS). This should only be turned on if
the server is intended to be used by a website or domain. (default: False).

--cors_origins CORS_ORIGIN Ignored if -//-cors is False. This sets the allowed origins for CORS.
For details about CORS and its security risks, see the GA4GH docs on CORS.
(default: “*”).

--workers WORKERS, -w WORKERS Ignored if -\-debug is True. The number of worker processes
launched by the WSGI server. (default: 2).

--work_dir WORK_DIR The directory where workflows should be stored. This directory should be
empty or only contain previous workflows. (default: ‘./workflows’).

--state_store STATE_STORE The local path or S3 URL where workflow state metadata should be
stored. (default: in -\-work_dir)

--opt OPT, -o OPT Specify the default parameters to be sent to the workflow engine for each run.
Options taking arguments must use = syntax. Accepts multiple values. Example:
-\-opt=-\-logLevel=CRITICAL -\-opt=-\-workDir=/tmp.

--dest_bucket_base DEST_BUCKET_BASE Direct CWL workflows to save output files to dynami-
cally generated unique paths under the given URL. Supports AWS S3.

--wes_dialect DIALECT Restrict WES responses to a dialect compatible with clients that do not fully
implement the WES standard. (default: ‘standard’)

11.3 Running the Server with docker-compose

Instead of manually setting up the server components (toil server, RabbitMQ, and Celery), you can use the follow-
ing docker-compose.yml file to orchestrate and link them together.

Make sure to change the credentials for basic authentication by updating the traefik.http.middlewares.auth.
basicauth.users label. The passwords can be generated with tools like htpasswd like this. (Note that single $ signs
need to be replaced with $$ in the yaml file).

When running on a different host other than localhost, make sure to change the Host to your tartget host in the
traefik.http.routers.wes.rule and traefik.http.routers.wespublic.rule labels.

You can also change /tmp/toil-workflows if you want Toil workflows to live somewhere else, and create the direc-
tory before starting the server.

In order to run workflows that require Docker, the docker.sock socket must be mounted as volume for Celery. Addi-
tionally, the TOIL_WORKDIR directory (defaults to: /var/lib/toil) and /var/lib/cwl (if running CWL workflows
with DockerRequirement) should exist on the host and also be mounted as volumes.

Also make sure to run it behind a firewall; it opens up the Toil server on port 8080 to anyone who connects.

docker-compose.yml
version: "3.8"

services:
(continues on next page)

84 Chapter 11. Workflow Execution Service (WES)

https://w3id.org/ga4gh/product-approval-support/cors
https://doc.traefik.io/traefik/v2.0/middlewares/basicauth/#configuration-examples

Toil Documentation, Release 5.11.0

(continued from previous page)

rabbitmq:
image: rabbitmq:3.9.5
hostname: rabbitmq

celery:
image: ${TOIL_APPLIANCE_SELF}
volumes:
- /var/run/docker.sock:/var/run/docker.sock
- /var/lib/docker:/var/lib/docker
- /var/lib/toil:/var/lib/toil
- /var/lib/cwl:/var/lib/cwl
- /tmp/toil-workflows:/tmp/toil-workflows

command: celery --broker=amqp://guest:guest@rabbitmq:5672// -A toil.server.celery_
→˓app worker --loglevel=INFO
depends_on:

- rabbitmq
wes-server:
image: ${TOIL_APPLIANCE_SELF}
volumes:
- /tmp/toil-workflows:/tmp/toil-workflows

environment:
- TOIL_WES_BROKER_URL=amqp://guest:guest@rabbitmq:5672//

command: toil server --host 0.0.0.0 --port 8000 --work_dir /tmp/toil-workflows
expose:
- 8000

labels:
- "traefik.enable=true"
- "traefik.http.routers.wes.rule=Host(`localhost`)"
- "traefik.http.routers.wes.entrypoints=web"
- "traefik.http.routers.wes.middlewares=auth"
- "traefik.http.middlewares.auth.basicauth.users=test:$$2y$$12$$ci.

→˓4U63YX83CwkyUrjqxAucnmi2xXOIlEF6T/KdP9824f1Rf1iyNG"
- "traefik.http.routers.wespublic.rule=Host(`localhost`) && Path(`/ga4gh/wes/v1/

→˓service-info`)"
depends_on:

- rabbitmq
- celery

traefik:
image: traefik:v2.2
command:
- "--providers.docker"
- "--providers.docker.exposedbydefault=false"
- "--entrypoints.web.address=:8080"

ports:
- "8080:8080"

volumes:
- /var/run/docker.sock:/var/run/docker.sock

Further customization can also be made as needed. For example, if you have a domain, you can set up HTTPS with
Let’s Encrypt.

Once everything is configured, simply run docker-compose up to start the containers. Run docker-compose down
to stop and remove all containers.

11.3. Running the Server with docker-compose 85

https://doc.traefik.io/traefik/user-guides/docker-compose/acme-http/
https://doc.traefik.io/traefik/user-guides/docker-compose/acme-http/

Toil Documentation, Release 5.11.0

Note: docker-compose is not installed on the Toil appliance by default. See the following section to set up the WES
server on a Toil cluster.

11.4 Running on a Toil cluster

To run the server on a Toil leader instance on EC2:

1. Launch a Toil cluster with the toil launch-cluster command with the AWS provisioner

2. SSH into your cluster with the --sshOption=-L8080:localhost:8080 option to forward port 8080

3. Install Docker Compose by running the following commands from the Docker docs:

curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-compose-
→˓$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose

check installation
docker-compose --version

or, install a different version of Docker Compose by changing "1.29.2" to another version.

4. Copy the docker-compose.yml file from (Running the Server with docker-compose) to an empty directory, and
modify the configuration as needed.

5. Now, run docker-compose up -d to start the WES server in detach mode on the Toil appliance.

6. To stop the server, run docker-compose down.

11.5 WES API Endpoints

As defined by the GA4GH WES API specification, the following endpoints with base path ga4gh/wes/v1/ are sup-
ported by Toil:

GET /service-info Get information about the Workflow Execution Service.
GET /runs List the workflow runs.
POST /runs Run a workflow. This endpoint creates a new workflow run and returns a run_id to

monitor its progress.
GET /runs/{run_id} Get detailed info about a workflow run.
POST
/runs/{run_id}/cancel

Cancel a running workflow.

GET
/runs/{run_id}/status

Get the status (overall state) of a workflow run.

When running the WES server with the docker-compose setup above, most endpoints (except GET /service-info)
will be protected with basic authentication. Make sure to set the Authorization header with the correct credentials
when submitting or retrieving a workflow.

86 Chapter 11. Workflow Execution Service (WES)

https://docs.docker.com/compose/install/#install-compose

Toil Documentation, Release 5.11.0

11.6 Submitting a Workflow

Now that the WES API is up and running, we can submit and monitor workflows remotely using the WES API endpoints.
A workflow can be submitted for execution using the POST /runs endpoint.

As a quick example, we can submit the example CWL workflow from Running a basic CWL workflow to our WES
API:

example.cwl
cwlVersion: v1.0
class: CommandLineTool
baseCommand: echo
stdout: output.txt
inputs:
message:
type: string
inputBinding:
position: 1

outputs:
output:
type: stdout

using cURL:

$ curl --location --request POST 'http://localhost:8080/ga4gh/wes/v1/runs' \
--user test:test \
--form 'workflow_url="example.cwl"' \
--form 'workflow_type="cwl"' \
--form 'workflow_type_version="v1.0"' \
--form 'workflow_params="{\"message\": \"Hello world!\"}"' \
--form 'workflow_attachment=@"./toil_test_files/example.cwl"'

{
"run_id": "4deb8beb24894e9eb7c74b0f010305d1"

}

Note that the --user argument is used to attach the basic authentication credentials along with the request. Make sure
to change test:test to the username and password you configured for your WES server. Alternatively, you can also
set the Authorization header manually as "Authorization: Basic base64_encoded_auth".

If the workflow is submitted successfully, a JSON object containing a run_idwill be returned. The run_id is a unique
identifier of your requested workflow, which can be used to monitor or cancel the run.

There are a few required parameters that have to be set for all workflow submissions, which are the following:

workflow_url The URL of the workflow to run. This can refer to a file from workflow_attachment.
work-
flow_type

The type of workflow language. Toil currently supports one of the following: "CWL", "WDL", or
"py". To run a Toil native python script, set this to "py".

work-
flow_type_version

The version of the workflow language. Supported versions can be found by accessing the GET
/service-info endpoint of your WES server.

work-
flow_params

A JSON object that specifies the inputs of the workflow.

Additionally, the following optional parameters are also available:

11.6. Submitting a Workflow 87

Toil Documentation, Release 5.11.0

work-
flow_attachment

A list of files associated with the workflow run.

work-
flow_engine_parameters

A JSON key-value map of workflow engine parameters to send to the runner.
Example: {"--logLevel": "INFO", "--workDir": "/tmp/"}

tags A JSON key-value map of metadata associated with the workflow.

For more details about these parameters, refer to the Run Workflow section in the WES API spec.

11.6.1 Upload multiple files

Looking at the body of the request of the previous example, note that the workflow_url is a relative URL that refers
to the example.cwl file uploaded from the local path ./toil_test_files/example.cwl.

To specify the file name (or subdirectory) of the remote destination file, set the filename field in the
Content-Disposition header. You could also upload more than one file by providing the workflow_attachment
parameter multiple times with different files.

This can be shown by the following example:

$ curl --location --request POST 'http://localhost:8080/ga4gh/wes/v1/runs' \
--user test:test \
--form 'workflow_url="example.cwl"' \
--form 'workflow_type="cwl"' \
--form 'workflow_type_version="v1.0"' \
--form 'workflow_params="{\"message\": \"Hello world!\"}"' \
--form 'workflow_attachment=@"./toil_test_files/example.cwl"' \
--form 'workflow_attachment=@"./toil_test_files/2.fasta";filename=inputs/test.fasta'␣

→˓\
--form 'workflow_attachment=@"./toil_test_files/2.fastq";filename=inputs/test.fastq'

On the server, the execution directory would have the following structure from the above request:

execution/
example.cwl
inputs

test.fasta
| test.fastq

wes_inputs.json

11.6.2 Specify Toil options

To pass Toil-specific parameters to the workflow, you can include the workflow_engine_parameters parameter
along with your request.

For example, to set the logging level to INFO, and change the working directory of the workflow, simply include the
following as workflow_engine_parameters:

{"--logLevel": "INFO", "--workDir": "/tmp/"}

These options would be appended at the end of existing parameters during command construction, which would override
the default parameters if provided. (Default parameters that can be passed multiple times would not be overridden).

88 Chapter 11. Workflow Execution Service (WES)

https://ga4gh.github.io/workflow-execution-service-schemas/docs/#operation/RunWorkflow

Toil Documentation, Release 5.11.0

11.7 Monitoring a Workflow

With the run_id returned when submitting the workflow, we can check the status or get the full logs of the workflow
run.

11.7.1 Checking the state

The GET /runs/{run_id}/status endpoint can be used to get a simple result with the overall state of your run:

$ curl --user test:test http://localhost:8080/ga4gh/wes/v1/runs/
→˓4deb8beb24894e9eb7c74b0f010305d1/status
{
"run_id": "4deb8beb24894e9eb7c74b0f010305d1",
"state": "RUNNING"

}

The possible states here are: QUEUED, INITIALIZING, RUNNING, COMPLETE, EXECUTOR_ERROR, SYSTEM_ERROR,
CANCELING, and CANCELED.

11.7.2 Getting the full logs

To get the detailed information about a workflow run, use the GET /runs/{run_id} endpoint:

$ curl --user test:test http://localhost:8080/ga4gh/wes/v1/runs/
→˓4deb8beb24894e9eb7c74b0f010305d1
{
"run_id": "4deb8beb24894e9eb7c74b0f010305d1",
"request": {
"workflow_attachment": [
"example.cwl"

],
"workflow_url": "example.cwl",
"workflow_type": "cwl",
"workflow_type_version": "v1.0",
"workflow_params": {
"message": "Hello world!"

}
},
"state": "RUNNING",
"run_log": {
"cmd": [
"toil-cwl-runner --outdir=/home/toil/workflows/4deb8beb24894e9eb7c74b0f010305d1/

→˓outputs --jobStore=file:/home/toil/workflows/4deb8beb24894e9eb7c74b0f010305d1/toil_job_
→˓store /home/toil/workflows/4deb8beb24894e9eb7c74b0f010305d1/execution/example.cwl /
→˓home/workflows/4deb8beb24894e9eb7c74b0f010305d1/execution/wes_inputs.json"

],
"start_time": "2021-08-30T17:35:50Z",
"end_time": null,
"stdout": null,
"stderr": null,
"exit_code": null

(continues on next page)

11.7. Monitoring a Workflow 89

Toil Documentation, Release 5.11.0

(continued from previous page)

},
"task_logs": [],
"outputs": {}

}

11.7.3 Canceling a run

To cancel a workflow run, use the POST /runs/{run_id}/cancel endpoint:

$ curl --location --request POST 'http://localhost:8080/ga4gh/wes/v1/runs/
→˓4deb8beb24894e9eb7c74b0f010305d1/cancel' \

--user test:test
{
"run_id": "4deb8beb24894e9eb7c74b0f010305d1"

}

90 Chapter 11. Workflow Execution Service (WES)

CHAPTER

TWELVE

DEVELOPING A WORKFLOW

This tutorial walks through the features of Toil necessary for developing a workflow using the Toil Python API.

Note: “script” and “workflow” will be used interchangeably

12.1 Scripting Quick Start

To begin, consider this short toil script which illustrates defining a workflow:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
return f"Hello, world!, here's a message: {message}"

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_quickstart")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "OFF"
options.clean = "always"

hello_job = Job.wrapFn(helloWorld, "Woot")

with Toil(options) as toil:
print(toil.start(hello_job)) # prints "Hello, world!, ..."

The workflow consists of a single job. The resource requirements for that job are (optionally) specified by keyword
arguments (memory, cores, disk). The script is run using toil.job.Job.Runner.getDefaultOptions(). Below
we explain the components of this code in detail.

91

Toil Documentation, Release 5.11.0

12.2 Job Basics

The atomic unit of work in a Toil workflow is a Job. User scripts inherit from this base class to define units of work.
For example, here is a more long-winded class-based version of the job in the quick start example:

from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return f"Hello, world! Here's a message: {self.message}"

In the example a class, HelloWorld, is defined. The constructor requests 2 gigabytes of memory, 2 cores and 3 gigabytes
of local disk to complete the work.

The toil.job.Job.run()method is the function the user overrides to get work done. Here it just returns a message.

It is also possible to log a message using toil.job.Job.log(), which will be registered in the log output of the
leader process of the workflow:

...
def run(self, fileStore):

self.log(f"Hello, world! Here's a message: {self.message}")

12.3 Invoking a Workflow

We can add to the previous example to turn it into a complete workflow by adding the necessary function calls to create
an instance of HelloWorld and to run this as a workflow containing a single job. For example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return f"Hello, world!, here's a message: {self.message}"

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_invokeworkflow")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)

(continues on next page)

92 Chapter 12. Developing a Workflow

Toil Documentation, Release 5.11.0

(continued from previous page)

options.logLevel = "OFF"
options.clean = "always"

hello_job = HelloWorld("Woot")

with Toil(options) as toil:
print(toil.start(hello_job))

Note: Do not include a . in the name of your python script (besides .py at the end). This is to allow toil to import the
types and functions defined in your file while starting a new process.

This uses the toil.common.Toil class, which is used to run and resume Toil workflows. It is used as a context manager
and allows for preliminary setup, such as staging of files into the job store on the leader node. An instance of the class
is initialized by specifying an options object. The actual workflow is then invoked by calling the toil.common.Toil.
start() method, passing the root job of the workflow, or, if a workflow is being restarted, toil.common.Toil.
restart() should be used. Note that the context manager should have explicit if else branches addressing restart and
non restart cases. The boolean value for these if else blocks is toil.options.restart.

For example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return f"Hello, world!, I have a message: {self.message}"

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_invokeworkflow2")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
if not toil.options.restart:

job = HelloWorld("Woot!")
output = toil.start(job)

else:
output = toil.restart()

print(output)

The call to toil.job.Job.Runner.getDefaultOptions() creates a set of default options for the workflow. The
only argument is a description of how to store the workflow’s state in what we call a job-store. Here the job-store is

12.3. Invoking a Workflow 93

Toil Documentation, Release 5.11.0

contained in a directory within the current working directory called “toilWorkflowRun”. Alternatively this string can
encode other ways to store the necessary state, e.g. an S3 bucket object store location. By default the job-store is
deleted if the workflow completes successfully.

The workflow is executed in the final line, which creates an instance of HelloWorld and runs it as a workflow. Note all
Toil workflows start from a single starting job, referred to as the root job. The return value of the root job is returned
as the result of the completed workflow (see promises below to see how this is a useful feature!).

12.4 Specifying Commandline Arguments

To allow command line control of the options we can use the toil.job.Job.Runner.
getDefaultArgumentParser() method to create a argparse.ArgumentParser object which can be used
to parse command line options for a Toil script. For example:

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return "Hello, world!, here's a message: %s" % self.message

if __name__ == "__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
options.logLevel = "OFF"
options.clean = "always"

hello_job = HelloWorld("Woot")

with Toil(options) as toil:
print(toil.start(hello_job))

Creates a fully fledged script with all the options Toil exposed as command line arguments. Running this script with
“–help” will print the full list of options.

Alternatively an existing argparse.ArgumentParser or optparse.OptionParser object can have Toil script com-
mand line options added to it with the toil.job.Job.Runner.addToilOptions() method.

94 Chapter 12. Developing a Workflow

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/optparse.html#optparse.OptionParser

Toil Documentation, Release 5.11.0

12.5 Resuming a Workflow

In the event that a workflow fails, either because of programmatic error within the jobs being run, or because of node
failure, the workflow can be resumed. Workflows can only not be reliably resumed if the job-store itself becomes
corrupt.

Critical to resumption is that jobs can be rerun, even if they have apparently completed successfully. Put succinctly, a
user defined job should not corrupt its input arguments. That way, regardless of node, network or leader failure the job
can be restarted and the workflow resumed.

To resume a workflow specify the “restart” option in the options object passed to toil.common.Toil.start(). If
node failures are expected it can also be useful to use the integer “retryCount” option, which will attempt to rerun a job
retryCount number of times before marking it fully failed.

In the common scenario that a small subset of jobs fail (including retry attempts) within a workflow Toil will continue to
run other jobs until it can do no more, at which point toil.common.Toil.start() will raise a toil.exceptions.
FailedJobsException exception. Typically at this point the user can decide to fix the script and resume the workflow
or delete the job-store manually and rerun the complete workflow.

12.6 Functions and Job Functions

Defining jobs by creating class definitions generally involves the boilerplate of creating a constructor. To avoid this
the classes toil.job.FunctionWrappingJob and toil.job.JobFunctionWrappingTarget allow functions to
be directly converted to jobs. For example, the quick start example (repeated here):

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
return f"Hello, world!, here's a message: {message}"

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_quickstart")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "OFF"
options.clean = "always"

hello_job = Job.wrapFn(helloWorld, "Woot")

with Toil(options) as toil:
print(toil.start(hello_job)) # prints "Hello, world!, ..."

Is equivalent to the previous example, but using a function to define the job.

The function call:

Job.wrapFn(helloWorld, "Woot")

12.5. Resuming a Workflow 95

Toil Documentation, Release 5.11.0

Creates the instance of the toil.job.FunctionWrappingTarget that wraps the function.

The keyword arguments memory, cores and disk allow resource requirements to be specified as before. Even if they
are not included as keyword arguments within a function header they can be passed as arguments when wrapping a
function as a job and will be used to specify resource requirements.

We can also use the function wrapping syntax to a job function, a function whose first argument is a reference to the
wrapping job. Just like a self argument in a class, this allows access to the methods of the wrapping job, see toil.
job.JobFunctionWrappingTarget. For example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message):
job.log(f"Hello world, I have a message: {message}")

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_jobfunctions")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"

hello_job = Job.wrapJobFn(helloWorld, "Woot!")

with Toil(options) as toil:
toil.start(hello_job)

Here helloWorld() is a job function. It uses the toil.job.Job.log() to log a message that will be printed to the
output console. Here the only subtle difference to note is the line:

hello_job = Job.wrapJobFn(helloWorld, "Woot")

Which uses the function toil.job.Job.wrapJobFn() to wrap the job function instead of toil.job.Job.wrapFn()
which wraps a vanilla function.

12.7 Workflows with Multiple Jobs

A parent job can have child jobs and follow-on jobs. These relationships are specified by methods of the job class, e.g.
toil.job.Job.addChild() and toil.job.Job.addFollowOn().

Considering a set of jobs the nodes in a job graph and the child and follow-on relationships the directed edges of the
graph, we say that a job B that is on a directed path of child/follow-on edges from a job A in the job graph is a successor
of A, similarly A is a predecessor of B.

A parent job’s child jobs are run directly after the parent job has completed, and in parallel. The follow-on jobs of a
job are run after its child jobs and their successors have completed. They are also run in parallel. Follow-ons allow the
easy specification of cleanup tasks that happen after a set of parallel child tasks. The following shows a simple example
that uses the earlier helloWorld() job function:

96 Chapter 12. Developing a Workflow

Toil Documentation, Release 5.11.0

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.log(f"Hello world, I have a message: {message}")

if __name__ == "__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
options.logLevel = "INFO"
options.clean = "always"

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = Job.wrapJobFn(helloWorld, "second or third")
j3 = Job.wrapJobFn(helloWorld, "second or third")
j4 = Job.wrapJobFn(helloWorld, "last")

j1.addChild(j2)
j1.addChild(j3)
j1.addFollowOn(j4)

with Toil(options) as toil:
toil.start(j1)

In the example four jobs are created, first j1 is run, then j2 and j3 are run in parallel as children of j1, finally j4 is
run as a follow-on of j1.

There are multiple short hand functions to achieve the same workflow, for example:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.log(f"Hello world, I have a message: {message}")

if __name__ == "__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
options.logLevel = "INFO"
options.clean = "always"

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = j1.addChildJobFn(helloWorld, "second or third")
j3 = j1.addChildJobFn(helloWorld, "second or third")
j4 = j1.addFollowOnJobFn(helloWorld, "last")

with Toil(options) as toil:
toil.start(j1)

Equivalently defines the workflow, where the functions toil.job.Job.addChildJobFn() and toil.job.Job.

12.7. Workflows with Multiple Jobs 97

Toil Documentation, Release 5.11.0

addFollowOnJobFn() are used to create job functions as children or follow-ons of an earlier job.

Jobs graphs are not limited to trees, and can express arbitrary directed acyclic graphs. For a precise definition of legal
graphs see toil.job.Job.checkJobGraphForDeadlocks(). The previous example could be specified as a DAG
as follows:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.log(f"Hello world, I have a message: {message}")

if __name__ == "__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
options.logLevel = "INFO"
options.clean = "always"

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = j1.addChildJobFn(helloWorld, "second or third")
j3 = j1.addChildJobFn(helloWorld, "second or third")
j4 = j2.addChildJobFn(helloWorld, "last")
j3.addChild(j4)

with Toil(options) as toil:
toil.start(j1)

Note the use of an extra child edge to make j4 a child of both j2 and j3.

12.8 Dynamic Job Creation

The previous examples show a workflow being defined outside of a job. However, Toil also allows jobs to be created
dynamically within jobs. For example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def binaryStringFn(job, depth, message=""):
if depth > 0:

job.addChildJobFn(binaryStringFn, depth-1, message + "0")
job.addChildJobFn(binaryStringFn, depth-1, message + "1")

else:
job.log(f"Binary string: {message}")

if __name__ == "__main__":
(continues on next page)

98 Chapter 12. Developing a Workflow

Toil Documentation, Release 5.11.0

(continued from previous page)

jobstore: str = tempfile.mkdtemp("tutorial_dynamic")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
toil.start(Job.wrapJobFn(binaryStringFn, depth=5))

The job function binaryStringFn logs all possible binary strings of length n (here n=5), creating a total of 2^(n+2)
- 1 jobs dynamically and recursively. Static and dynamic creation of jobs can be mixed in a Toil workflow, with jobs
defined within a job or job function being created at run time.

12.9 Promises

The previous example of dynamic job creation shows variables from a parent job being passed to a child job. Such
forward variable passing is naturally specified by recursive invocation of successor jobs within parent jobs. This can
also be achieved statically by passing around references to the return variables of jobs. In Toil this is achieved with
promises, as illustrated in the following example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def fn(job, i):
job.log("i is: %s" % i, level=100)
return i + 1

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_promises")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"

j1 = Job.wrapJobFn(fn, 1)
j2 = j1.addChildJobFn(fn, j1.rv())
j3 = j1.addFollowOnJobFn(fn, j2.rv())

with Toil(options) as toil:
toil.start(j1)

Running this workflow results in three log messages from the jobs: i is 1 from j1, i is 2 from j2 and i is 3
from j3.

The return value from the first job is promised to the second job by the call to toil.job.Job.rv() in the following
line:

12.9. Promises 99

Toil Documentation, Release 5.11.0

j2 = j1.addChildFn(fn, j1.rv())

The value of j1.rv() is a promise, rather than the actual return value of the function, because j1 for the given input
has at that point not been evaluated. A promise (toil.job.Promise) is essentially a pointer to for the return value
that is replaced by the actual return value once it has been evaluated. Therefore, when j2 is run the promise becomes
2.

Promises also support indexing of return values:

def parent(job):
indexable = Job.wrapJobFn(fn)
job.addChild(indexable)
job.addFollowOnFn(raiseWrap, indexable.rv(2))

def raiseWrap(arg):
raise RuntimeError(arg) # raises "2"

def fn(job):
return (0, 1, 2, 3)

Promises can be quite useful. For example, we can combine dynamic job creation with promises to achieve a job
creation process that mimics the functional patterns possible in many programming languages:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def binaryStrings(job, depth, message=""):
if depth > 0:

s = [job.addChildJobFn(binaryStrings, depth - 1, message + "0").rv(),
job.addChildJobFn(binaryStrings, depth - 1, message + "1").rv()]

return job.addFollowOnFn(merge, s).rv()
return [message]

def merge(strings):
return strings[0] + strings[1]

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_promises2")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.loglevel = "OFF"
options.clean = "always"

with Toil(options) as toil:
print(toil.start(Job.wrapJobFn(binaryStrings, depth=5)))

The return value l of the workflow is a list of all binary strings of length 10, computed recursively. Although a toy
example, it demonstrates how closely Toil workflows can mimic typical programming patterns.

100 Chapter 12. Developing a Workflow

Toil Documentation, Release 5.11.0

12.10 Promised Requirements

Promised requirements are a special case of Promises that allow a job’s return value to be used as another job’s resource
requirements.

This is useful when, for example, a job’s storage requirement is determined by a file staged to the job store by an earlier
job:

import os
import tempfile

from toil.common import Toil
from toil.job import Job, PromisedRequirement

def parentJob(job):
downloadJob = Job.wrapJobFn(stageFn, "file://" + os.path.realpath(__file__), cores=0.

→˓1, memory='32M', disk='1M')
job.addChild(downloadJob)

analysis = Job.wrapJobFn(analysisJob,
fileStoreID=downloadJob.rv(0),
disk=PromisedRequirement(downloadJob.rv(1)))

job.addFollowOn(analysis)

def stageFn(job, url, cores=1):
importedFile = job.fileStore.import_file(url)
return importedFile, importedFile.size

def analysisJob(job, fileStoreID, cores=2):
now do some analysis on the file
pass

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_requirements")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
toil.start(Job.wrapJobFn(parentJob))

Note that this also makes use of the size attribute of the FileID object. This promised requirements mechanism can
also be used in combination with an aggregator for multiple jobs’ output values:

def parentJob(job):
aggregator = []
for fileNum in range(0, 10):

downloadJob = Job.wrapJobFn(stageFn, "file://" + os.path.realpath(__file__),␣
(continues on next page)

12.10. Promised Requirements 101

Toil Documentation, Release 5.11.0

(continued from previous page)

→˓cores=0.1, memory='32M', disk='1M')
job.addChild(downloadJob)
aggregator.append(downloadJob)

analysis = Job.wrapJobFn(analysisJob,
fileStoreID=downloadJob.rv(0),
disk=PromisedRequirement(lambda xs: sum(xs), [j.rv(1) for j␣

→˓in aggregator]))
job.addFollowOn(analysis)

Limitations
Just like regular promises, the return value must be determined prior to scheduling any job that depends on the return
value. In our example above, notice how the dependent jobs were follow ons to the parent while promising jobs are
children of the parent. This ordering ensures that all promises are properly fulfilled.

12.11 FileID

The toil.fileStore.FileID class is a small wrapper around Python’s builtin string class. It is used to represent a
file’s ID in the file store, and has a size attribute that is the file’s size in bytes. This object is returned by importFile
and writeGlobalFile.

12.12 Managing files within a workflow

It is frequently the case that a workflow will want to create files, both persistent and temporary, during its run. The toil.
fileStores.abstractFileStore.AbstractFileStore class is used by jobs to manage these files in a manner that
guarantees cleanup and resumption on failure.

The toil.job.Job.run() method has a file store instance as an argument. The following example shows how this
can be used to create temporary files that persist for the length of the job, be placed in a specified local disk of the node
and that will be cleaned up, regardless of failure, when the job finishes:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

class LocalFileStoreJob(Job):
def run(self, fileStore):

self.tempDir will always contain the name of a directory within the allocated␣
→˓disk space reserved for the job

scratchDir = self.tempDir

Similarly create a temporary file.
scratchFile = fileStore.getLocalTempFile()

(continues on next page)

102 Chapter 12. Developing a Workflow

Toil Documentation, Release 5.11.0

(continued from previous page)

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_managing")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"

Create an instance of FooJob which will have at least 2 gigabytes of storage space.
j = LocalFileStoreJob(disk="2G")

Run the workflow
with Toil(options) as toil:

toil.start(j)

Job functions can also access the file store for the job. The equivalent of the LocalFileStoreJob class is

def localFileStoreJobFn(job):
scratchDir = job.tempDir
scratchFile = job.fileStore.getLocalTempFile()

Note that the fileStore attribute is accessed as an attribute of the job argument.

In addition to temporary files that exist for the duration of a job, the file store allows the creation of files in a global
store, which persists during the workflow and are globally accessible (hence the name) between jobs. For example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

def globalFileStoreJobFn(job):
job.log("The following example exercises all the methods provided "

"by the toil.fileStores.abstractFileStore.AbstractFileStore class")

Create a local temporary file.
scratchFile = job.fileStore.getLocalTempFile()

Write something in the scratch file.
with open(scratchFile, 'w') as fH:

fH.write("What a tangled web we weave")

Write a copy of the file into the file-store; fileID is the key that can be used␣
→˓to retrieve the file.
This write is asynchronous by default
fileID = job.fileStore.writeGlobalFile(scratchFile)

Write another file using a stream; fileID2 is the
key for this second file.
with job.fileStore.writeGlobalFileStream(cleanup=True) as (fH, fileID2):

fH.write(b"Out brief candle")
(continues on next page)

12.12. Managing files within a workflow 103

Toil Documentation, Release 5.11.0

(continued from previous page)

Now read the first file; scratchFile2 is a local copy of the file that is read-
→˓only by default.

scratchFile2 = job.fileStore.readGlobalFile(fileID)

Read the second file to a desired location: scratchFile3.
scratchFile3 = os.path.join(job.tempDir, "foo.txt")
job.fileStore.readGlobalFile(fileID2, userPath=scratchFile3)

Read the second file again using a stream.
with job.fileStore.readGlobalFileStream(fileID2) as fH:

print(fH.read()) # This prints "Out brief candle"

Delete the first file from the global file-store.
job.fileStore.deleteGlobalFile(fileID)

It is unnecessary to delete the file keyed by fileID2 because we used the cleanup␣
→˓flag,
which removes the file after this job and all its successors have run (if the file␣

→˓still exists)

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_managing2")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
toil.start(Job.wrapJobFn(globalFileStoreJobFn))

The example demonstrates the global read, write and delete functionality of the file-store, using both local copies of
the files and streams to read and write the files. It covers all the methods provided by the file store interface.

What is obvious is that the file-store provides no functionality to update an existing “global” file, meaning that files
are, barring deletion, immutable. Also worth noting is that there is no file system hierarchy for files in the global file
store. These limitations allow us to fairly easily support different object stores and to use caching to limit the amount
of network file transfer between jobs.

12.12.1 Staging of Files into the Job Store

External files can be imported into or exported out of the job store prior to running a workflow when the toil.
common.Toil context manager is used on the leader. The context manager provides methods toil.common.Toil.
importFile(), and toil.common.Toil.exportFile() for this purpose. The destination and source locations of
such files are described with URLs passed to the two methods. Local files can be imported and exported as relative
paths, and should be relative to the directory where the toil workflow is initially run from.

Using absolute paths and appropriate schema where possible (prefixing with “file://” or “s3:/” for example), make
imports and exports less ambiguous and is recommended.

A list of the currently supported URLs can be found at toil.jobStores.abstractJobStore.AbstractJobStore.
importFile(). To import an external file into the job store as a shared file, pass the optional sharedFileName

104 Chapter 12. Developing a Workflow

file://

Toil Documentation, Release 5.11.0

parameter to that method.

If a workflow fails for any reason an imported file acts as any other file in the job store. If the workflow was configured
such that it not be cleaned up on a failed run, the file will persist in the job store and needs not be staged again when
the workflow is resumed.

Example:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
def __init__(self, id):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.inputFileID = id

def run(self, fileStore):
with fileStore.readGlobalFileStream(self.inputFileID, encoding='utf-8') as fi:

with fileStore.writeGlobalFileStream(encoding='utf-8') as (fo, outputFileID):
fo.write(fi.read() + 'World!')

return outputFileID

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_staging")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
if not toil.options.restart:

ioFileDirectory = os.path.join(os.path.dirname(os.path.abspath(__file__)),
→˓"stagingExampleFiles")

inputFileID = toil.importFile("file://" + os.path.abspath(os.path.
→˓join(ioFileDirectory, "in.txt")))

outputFileID = toil.start(HelloWorld(inputFileID))
else:

outputFileID = toil.restart()

toil.exportFile(outputFileID, "file://" + os.path.abspath(os.path.
→˓join(ioFileDirectory, "out.txt")))

12.12. Managing files within a workflow 105

Toil Documentation, Release 5.11.0

12.13 Using Docker Containers in Toil

Docker containers are commonly used with Toil. The combination of Toil and Docker allows for pipelines to be fully
portable between any platform that has both Toil and Docker installed. Docker eliminates the need for the user to do
any other tool installation or environment setup.

In order to use Docker containers with Toil, Docker must be installed on all workers of the cluster. Instructions for
installing Docker can be found on the Docker website.

When using Toil-based autoscaling, Docker will be automatically set up on the cluster’s worker nodes, so no additional
installation steps are necessary. Further information on using Toil-based autoscaling can be found in the Running a
Workflow with Autoscaling documentation.

In order to use docker containers in a Toil workflow, the container can be built locally or downloaded in real time from
an online docker repository like Quay. If the container is not in a repository, the container’s layers must be accessible
on each node of the cluster.

When invoking docker containers from within a Toil workflow, it is strongly recommended that you use dockerCall(),
a toil job function provided in toil.lib.docker. dockerCall leverages docker’s own python API, and provides
container cleanup on job failure. When docker containers are run without this feature, failed jobs can result in resource
leaks. Docker’s API can be found at docker-py.

In order to use dockerCall, your installation of Docker must be set up to run without sudo. Instructions for setting
this up can be found here.

An example of a basic dockerCall is below:

dockerCall(job=job,
tool='quay.io/ucsc_cgl/bwa',
workDir=job.tempDir,
parameters=['index', '/data/reference.fa'])

Note the assumption that reference.fa file is located in /data. This is Toil’s standard convention as a mount location to
reduce boilerplate when calling dockerCall. Users can choose their own mount locations by supplying a volumes kwarg
to dockerCall, such as: volumes={working_dir: {‘bind’: ‘/data’, ‘mode’: ‘rw’}}, where working_dir is an absolute path
on the user’s filesystem.

dockerCall can also be added to workflows like any other job function:

import os
import tempfile

from toil.common import Toil
from toil.job import Job
from toil.lib.docker import apiDockerCall

align = Job.wrapJobFn(apiDockerCall,
image='ubuntu',
working_dir=os.getcwd(),
parameters=['ls', '-lha'])

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_docker")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"

(continues on next page)

106 Chapter 12. Developing a Workflow

https://docs.docker.com/engine/getstarted/step_one/
quay.io
https://docker-py.readthedocs.io/en/stable/
https://docs.docker.com/engine/installation/linux/ubuntulinux/#/create-a-docker-group

Toil Documentation, Release 5.11.0

(continued from previous page)

options.clean = "always"

with Toil(options) as toil:
toil.start(align)

cgl-docker-lib contains dockerCall-compatible Dockerized tools that are commonly used in bioinformatics analysis.

The documentation provides guidelines for developing your own Docker containers that can be used with Toil and
dockerCall. In order for a container to be compatible with dockerCall, it must have an ENTRYPOINT set to a
wrapper script, as described in cgl-docker-lib containerization standards. This can be set by passing in the optional
keyword argument, ‘entrypoint’. Example:

entrypoint=[“/bin/bash”,”-c”]

dockerCall supports currently the 75 keyword arguments found in the python Docker API, under the ‘run’ command.

12.14 Services

It is sometimes desirable to run services, such as a database or server, concurrently with a workflow. The toil.job.
Job.Service class provides a simple mechanism for spawning such a service within a Toil workflow, allowing precise
specification of the start and end time of the service, and providing start and end methods to use for initialization and
cleanup. The following simple, conceptual example illustrates how services work:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

class DemoService(Job.Service):
def start(self, fileStore):

Start up a database/service here
Return a value that enables another process to connect to the database
return "loginCredentials"

def check(self):
A function that if it returns False causes the service to quit
If it raises an exception the service is killed and an error is reported
return True

def stop(self, fileStore):
Cleanup the database here
pass

j = Job()
s = DemoService()
loginCredentialsPromise = j.addService(s)

def dbFn(loginCredentials):
(continues on next page)

12.14. Services 107

https://github.com/BD2KGenomics/cgl-docker-lib/blob/master/README.md
https://docker-py.readthedocs.io/en/stable/containers.html

Toil Documentation, Release 5.11.0

(continued from previous page)

Use the login credentials returned from the service's start method to connect to␣
→˓the service
pass

j.addChildFn(dbFn, loginCredentialsPromise)

if __name__ == "__main__":
jobstore: str = tempfile.mkdtemp("tutorial_services")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
toil.start(j)

In this example the DemoService starts a database in the start method, returning an object from the start method
indicating how a client job would access the database. The service’s stop method cleans up the database, while the
service’s check method is polled periodically to check the service is alive.

A DemoService instance is added as a service of the root job j, with resource requirements specified. The return value
from toil.job.Job.addService() is a promise to the return value of the service’s start method. When the promised
is fulfilled it will represent how to connect to the database. The promise is passed to a child job of j, which uses it to
make a database connection. The services of a job are started before any of its successors have been run and stopped
after all the successors of the job have completed successfully.

Multiple services can be created per job, all run in parallel. Additionally, services can define sub-services using toil.
job.Job.Service.addChild(). This allows complex networks of services to be created, e.g. Apache Spark clusters,
within a workflow.

12.15 Checkpoints

Services complicate resuming a workflow after failure, because they can create complex dependencies between jobs.
For example, consider a service that provides a database that multiple jobs update. If the database service fails and
loses state, it is not clear that just restarting the service will allow the workflow to be resumed, because jobs that created
that state may have already finished. To get around this problem Toil supports checkpoint jobs, specified as the boolean
keyword argument checkpoint to a job or wrapped function, e.g.:

j = Job(checkpoint=True)

A checkpoint job is rerun if one or more of its successors fails its retry attempts, until it itself has exhausted its retry
attempts. Upon restarting a checkpoint job all its existing successors are first deleted, and then the job is rerun to define
new successors. By checkpointing a job that defines a service, upon failure of the service the database and the jobs that
access the service can be redefined and rerun.

To make the implementation of checkpoint jobs simple, a job can only be a checkpoint if when first defined it has no
successors, i.e. it can only define successors within its run method.

108 Chapter 12. Developing a Workflow

Toil Documentation, Release 5.11.0

12.16 Encapsulation

Let A be a root job potentially with children and follow-ons. Without an encapsulated job the simplest way to specify
a job B which runs after A and all its successors is to create a parent of A, call it Ap, and then make B a follow-on of Ap.
e.g.:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

if __name__ == "__main__":
A is a job with children and follow-ons, for example:
A = Job()
A.addChild(Job())
A.addFollowOn(Job())

B is a job which needs to run after A and its successors
B = Job()

The way to do this without encapsulation is to make a parent of A, Ap, and make B␣
→˓a follow-on of Ap.

Ap = Job()
Ap.addChild(A)
Ap.addFollowOn(B)

jobstore: str = tempfile.mkdtemp("tutorial_encapsulations")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
print(toil.start(Ap))

An encapsulated job E(A) of A saves making Ap, instead we can write:

import os
import tempfile

from toil.common import Toil
from toil.job import Job

if __name__ == "__main__":
A
A = Job()
A.addChild(Job())
A.addFollowOn(Job())

Encapsulate A
A = A.encapsulate()

(continues on next page)

12.16. Encapsulation 109

Toil Documentation, Release 5.11.0

(continued from previous page)

B is a job which needs to run after A and its successors
B = Job()

With encapsulation A and its successor subgraph appear to be a single job, hence:
A.addChild(B)

jobstore: str = tempfile.mkdtemp("tutorial_encapsulations2")
os.rmdir(jobstore)
options = Job.Runner.getDefaultOptions(jobstore)
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
print(toil.start(A))

Note the call to toil.job.Job.encapsulate() creates the toil.job.Job.EncapsulatedJob.

12.17 Depending on Toil

If you are packing your workflow(s) as a pip-installable distribution on PyPI, you might be tempted to declare Toil as a
dependency in your setup.py, via the install_requires keyword argument to setup(). Unfortunately, this does
not work, for two reasons: For one, Toil uses Setuptools’ extra mechanism to manage its own optional dependencies.
If you explicitly declared a dependency on Toil, you would have to hard-code a particular combination of extras (or no
extras at all), robbing the user of the choice what Toil extras to install. Secondly, and more importantly, declaring a
dependency on Toil would only lead to Toil being installed on the leader node of a cluster, but not the worker nodes.
Auto-deployment does not work here because Toil cannot auto-deploy itself, the classic “Which came first, chicken or
egg?” problem.

In other words, you shouldn’t explicitly depend on Toil. Document the dependency instead (as in “This workflow
needs Toil version X.Y.Z to be installed”) and optionally add a version check to your setup.py. Refer to the
check_version() function in the toil-lib project’s setup.py for an example. Alternatively, you can also just depend
on toil-lib and you’ll get that check for free.

If your workflow depends on a dependency of Toil, consider not making that dependency explicit either. If you do, you
risk a version conflict between your project and Toil. The pip utility may silently ignore that conflict, breaking either
Toil or your workflow. It is safest to simply assume that Toil installs that dependency for you. The only downside is
that you are locked into the exact version of that dependency that Toil declares. But such is life with Python, which,
unlike Java, has no means of dependencies belonging to different software components within the same process, and
whose favored software distribution utility is incapable of properly resolving overlapping dependencies and detecting
conflicts.

12.18 Best Practices for Dockerizing Toil Workflows

Computational Genomics Lab’s Dockstore based production system provides workflow authors a way to run Dockerized
versions of their pipeline in an automated, scalable fashion. To be compatible with this system of a workflow should
meet the following requirements. In addition to the Docker container, a common workflow language descriptor file is
needed. For inputs:

• Only command line arguments should be used for configuring the workflow. If the workflow relies on a configu-
ration file, like Toil-RNAseq or ProTECT, a wrapper script inside the Docker container can be used to parse the
CLI and generate the necessary configuration file.

110 Chapter 12. Developing a Workflow

https://github.com/BD2KGenomics/toil-lib/blob/master/setup.py
https://github.com/pypa/pip/issues/988
https://cgl.genomics.ucsc.edu/
https://dockstore.org/docs
https://dockstore.org/docs/getting-started-with-cwl
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/protect

Toil Documentation, Release 5.11.0

• All inputs to the pipeline should be explicitly enumerated rather than implicit. For example, don’t rely on one
FASTQ read’s path to discover the location of its pair. This is necessary since all inputs are mapped to their own
isolated directories when the Docker is called via Dockstore.

• All inputs must be documented in the CWL descriptor file. Examples of this file can be seen in both Toil-RNAseq
and ProTECT.

For outputs:

• All outputs should be written to a local path rather than S3.

• Take care to package outputs in a local and user-friendly way. For example, don’t tar up all output if there are
specific files that will care to see individually.

• All output file names should be deterministic and predictable. For example, don’t prepend the name of an output
file with PASS/FAIL depending on the outcome of the pipeline.

• All outputs must be documented in the CWL descriptor file. Examples of this file can be seen in both Toil-
RNAseq and ProTECT.

12.18. Best Practices for Dockerizing Toil Workflows 111

https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/protect
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/protect

Toil Documentation, Release 5.11.0

112 Chapter 12. Developing a Workflow

CHAPTER

THIRTEEN

TOIL CLASS API

The Toil class configures and starts a Toil run.

class toil.common.Toil(options)
A context manager that represents a Toil workflow.

Specifically the batch system, job store, and its configuration.

Parameters
options (Namespace) –

__init__(options)
Initialize a Toil object from the given options.

Note that this is very light-weight and that the bulk of the work is done when the context is entered.

Parameters
options (Namespace) – command line options specified by the user

Return type
None

start(rootJob)
Invoke a Toil workflow with the given job as the root for an initial run.

This method must be called in the body of a with Toil(...) as toil: statement. This method should
not be called more than once for a workflow that has not finished.

Parameters
rootJob (Job) – The root job of the workflow

Return type
Any

Returns
The root job’s return value

restart()

Restarts a workflow that has been interrupted.

Return type
Any

Returns
The root job’s return value

classmethod getJobStore(locator)
Create an instance of the concrete job store implementation that matches the given locator.

113

https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

Toil Documentation, Release 5.11.0

Parameters
• locator (str) – The location of the job store to be represent by the instance

• locator –

Return type
AbstractJobStore

Returns
an instance of a concrete subclass of AbstractJobStore

static createBatchSystem(config)
Create an instance of the batch system specified in the given config.

Parameters
config (Config) – the current configuration

Return type
AbstractBatchSystem

Returns
an instance of a concrete subclass of AbstractBatchSystem

import_file(src_uri, shared_file_name=None, symlink=True)
Import the file at the given URL into the job store.

See toil.jobStores.abstractJobStore.AbstractJobStore.importFile() for a full description

Parameters
• src_uri (str) –

• shared_file_name (Optional[str]) –

• symlink (bool) –

Return type
Optional[FileID]

export_file(file_id, dst_uri)
Export file to destination pointed at by the destination URL.

See toil.jobStores.abstractJobStore.AbstractJobStore.exportFile() for a full description

Parameters
• file_id (FileID) –

• dst_uri (str) –

Return type
None

static normalize_uri(uri, check_existence=False)
Given a URI, if it has no scheme, prepend “file:”.

Parameters
• check_existence (bool) – If set, raise an error if a URI points to a local file that does

not exist.

• uri (str) –

Return type
str

114 Chapter 13. Toil Class API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

static getToilWorkDir(configWorkDir=None)
Return a path to a writable directory under which per-workflow directories exist.

This directory is always required to exist on a machine, even if the Toil worker has not run yet. If your
workers and leader have different temp directories, you may need to set TOIL_WORKDIR.

Parameters
configWorkDir (Optional[str]) – Value passed to the program using the –workDir flag

Return type
str

Returns
Path to the Toil work directory, constant across all machines

classmethod get_toil_coordination_dir(config_work_dir, config_coordination_dir)
Return a path to a writable directory, which will be in memory if convenient. Ought to be used for file
locking and coordination.

Parameters
• config_work_dir (Optional[str]) – Value passed to the program using the –workDir

flag

• config_coordination_dir (Optional[str]) – Value passed to the program using the
–coordinationDir flag

Return type
str

Returns
Path to the Toil coordination directory. Ought to be on a POSIX filesystem that allows direc-
tories containing open files to be deleted.

classmethod getLocalWorkflowDir(workflowID, configWorkDir=None)
Return the directory where worker directories and the cache will be located for this workflow on this ma-
chine.

Parameters
• configWorkDir (Optional[str]) – Value passed to the program using the –workDir flag

• workflowID (str) –

Return type
str

Returns
Path to the local workflow directory on this machine

classmethod get_local_workflow_coordination_dir(workflow_id, config_work_dir,
config_coordination_dir)

Return the directory where coordination files should be located for this workflow on this machine. These
include internal Toil databases and lock files for the machine.

If an in-memory filesystem is available, it is used. Otherwise, the local workflow directory, which may be
on a shared network filesystem, is used.

Parameters
• workflow_id (str) – Unique ID of the current workflow.

115

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• config_work_dir (Optional[str]) – Value used for the work directory in the current
Toil Config.

• config_coordination_dir (Optional[str]) – Value used for the coordination direc-
tory in the current Toil Config.

Return type
str

Returns
Path to the local workflow coordination directory on this machine.

116 Chapter 13. Toil Class API

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

FOURTEEN

JOB STORE API

The job store interface is an abstraction layer that that hides the specific details of file storage, for example standard file
systems, S3, etc. The AbstractJobStore API is implemented to support a give file store, e.g. S3. Implement this
API to support a new file store.

class toil.jobStores.abstractJobStore.AbstractJobStore(locator)
Represents the physical storage for the jobs and files in a Toil workflow.

JobStores are responsible for storing toil.job.JobDescription (which relate jobs to each other) and files.

Actual toil.job.Job objects are stored in files, referenced by JobDescriptions. All the non-file CRUD methods
the JobStore provides deal in JobDescriptions and not full, executable Jobs.

To actually get ahold of a toil.job.Job, use toil.job.Job.loadJob() with a JobStore and the relevant
JobDescription.

Parameters
locator (str) –

__init__(locator)
Create an instance of the job store.

The instance will not be fully functional until either initialize() or resume() is invoked. Note that the
destroy() method may be invoked on the object with or without prior invocation of either of these two
methods.

Takes and stores the locator string for the job store, which will be accessible via self.locator.

Parameters
locator (str) –

Return type
None

initialize(config)
Initialize this job store.

Create the physical storage for this job store, allocate a workflow ID and persist the given Toil configuration
to the store.

Parameters
config (Config) – the Toil configuration to initialize this job store with. The given config-
uration will be updated with the newly allocated workflow ID.

Raises
JobStoreExistsException – if the physical storage for this job store already exists

Return type
None

117

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

write_config()

Persists the value of the AbstractJobStore.config attribute to the job store, so that it can be retrieved
later by other instances of this class.

Return type
None

resume()

Connect this instance to the physical storage it represents and load the Toil configuration into the
AbstractJobStore.config attribute.

Raises
NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

Return type
None

property config: Config

Return the Toil configuration associated with this job store.

Return type
toil.common.Config

property locator: str

Get the locator that defines the job store, which can be used to connect to it.

Return type
str

setRootJob(rootJobStoreID)

Set the root job of the workflow backed by this job store.

Parameters
rootJobStoreID (FileID) –

Return type
None

set_root_job(job_id)
Set the root job of the workflow backed by this job store.

Parameters
job_id (FileID) – The ID of the job to set as root

Return type
None

load_root_job()

Loads the JobDescription for the root job in the current job store.

Raises
toil.job.JobException – If no root job is set or if the root job doesn’t exist in this job
store

Return type
JobDescription

Returns
The root job.

118 Chapter 14. Job Store API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

create_root_job(job_description)
Create the given JobDescription and set it as the root job in this job store.

Parameters
job_description (JobDescription) – JobDescription to save and make the root job.

Return type
JobDescription

get_root_job_return_value()

Parse the return value from the root job.

Raises an exception if the root job hasn’t fulfilled its promise yet.

Return type
Any

import_file(src_uri, shared_file_name=None, hardlink=False, symlink=True)
Imports the file at the given URL into job store. The ID of the newly imported file is returned. If the name
of a shared file name is provided, the file will be imported as such and None is returned. If an executable
file on the local filesystem is uploaded, its executability will be preserved when it is downloaded.

Currently supported schemes are:

• ‘s3’ for objects in Amazon S3
e.g. s3://bucket/key

• ‘file’ for local files
e.g. file:///local/file/path

• ‘http’
e.g. http://someurl.com/path

• ‘gs’
e.g. gs://bucket/file

Parameters
• src_uri (str) – URL that points to a file or object in the storage mechanism of a supported

URL scheme e.g. a blob in an AWS s3 bucket. It must be a file, not a directory or prefix.

• shared_file_name (Optional[str]) – Optional name to assign to the imported file
within the job store

• src_uri –

• shared_file_name –

• hardlink (bool) –

• symlink (bool) –

Returns
The jobStoreFileID of the imported file or None if shared_file_name was given

Return type
toil.fileStores.FileID or None

export_file(file_id, dst_uri)
Exports file to destination pointed at by the destination URL. The exported file will be executable if and
only if it was originally uploaded from an executable file on the local filesystem.

Refer to AbstractJobStore.import_file() documentation for currently supported URL schemes.

119

https://docs.python.org/3/library/typing.html#typing.Any
file:///local/file/path
http://someurl.com/path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Note that the helper method _exportFile is used to read from the source and write to destination. To imple-
ment any optimizations that circumvent this, the _exportFile method should be overridden by subclasses of
AbstractJobStore.

Parameters
• file_id (FileID) – The id of the file in the job store that should be exported.

• dst_uri (str) – URL that points to a file or object in the storage mechanism of a supported
URL scheme e.g. a blob in an AWS s3 bucket.

• file_id –

• dst_uri –

Return type
None

classmethod list_url(src_uri)
List the directory at the given URL. Returned path components can be joined with ‘/’ onto the passed URL
to form new URLs. Those that end in ‘/’ correspond to directories. The provided URL may or may not end
with ‘/’.

Currently supported schemes are:

• ‘s3’ for objects in Amazon S3
e.g. s3://bucket/prefix/

• ‘file’ for local files
e.g. file:///local/dir/path/

Parameters
• src_uri (str) – URL that points to a directory or prefix in the storage mechanism of a

supported URL scheme e.g. a prefix in an AWS s3 bucket.

• src_uri –

Return type
List[str]

Returns
A list of URL components in the given directory, already URL-encoded.

classmethod get_is_directory(src_uri)
Return True if the thing at the given URL is a directory, and False if it is a file. The URL may or may not
end in ‘/’.

Parameters
src_uri (str) –

Return type
bool

classmethod read_from_url(src_uri, writable)
Read the given URL and write its content into the given writable stream.

Returns
The size of the file in bytes and whether the executable permission bit is set

Return type
Tuple[int, bool]

Parameters

120 Chapter 14. Job Store API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
file:///local/dir/path/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

• src_uri (str) –

• writable (IO[bytes]) –

abstract classmethod get_size(src_uri)
Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

Parameters
src_uri (ParseResult) – URL that points to a file or object in the storage mechanism of a
supported URL scheme e.g. a blob in an AWS s3 bucket.

Return type
None

abstract destroy()

The inverse of initialize(), this method deletes the physical storage represented by this instance. While
not being atomic, this method is at least idempotent, as a means to counteract potential issues with eventual
consistency exhibited by the underlying storage mechanisms. This means that if the method fails (raises
an exception), it may (and should be) invoked again. If the underlying storage mechanism is eventually
consistent, even a successful invocation is not an ironclad guarantee that the physical storage vanished
completely and immediately. A successful invocation only guarantees that the deletion will eventually
happen. It is therefore recommended to not immediately reuse the same job store location for a new Toil
workflow.

Return type
None

get_env()

Returns a dictionary of environment variables that this job store requires to be set in order to function
properly on a worker.

Return type
dict[str,str]

clean(jobCache=None)
Function to cleanup the state of a job store after a restart.

Fixes jobs that might have been partially updated. Resets the try counts and removes jobs that are not
successors of the current root job.

Parameters
jobCache (Optional[Dict[Union[str, TemporaryID], JobDescription]]) – if a value
it must be a dict from job ID keys to JobDescription object values. Jobs will be loaded from
the cache (which can be downloaded from the job store in a batch) instead of piecemeal when
recursed into.

Return type
JobDescription

abstract assign_job_id(job_description)
Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created or
updated.

Parameters
• job_description (JobDescription) – The JobDescription to give an ID to

• job_description –

121

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
None

batch()

If supported by the batch system, calls to create() with this context manager active will be performed in a
batch after the context manager is released.

Return type
Iterator[None]

abstract create_job(job_description)
Writes the given JobDescription to the job store. The job must have an ID assigned already.

Must call jobDescription.pre_update_hook()

Returns
The JobDescription passed.

Return type
toil.job.JobDescription

Parameters
job_description (JobDescription) –

abstract job_exists(job_id)
Indicates whether a description of the job with the specified jobStoreID exists in the job store

Return type
bool

Parameters
job_id (str) –

abstract get_public_url(file_name)
Returns a publicly accessible URL to the given file in the job store. The returned URL may expire as early
as 1h after its been returned. Throw an exception if the file does not exist.

Parameters
• file_name (str) – the jobStoreFileID of the file to generate a URL for

• file_name –

Raises
NoSuchFileException – if the specified file does not exist in this job store

Return type
str

abstract get_shared_public_url(shared_file_name)
Differs from getPublicUrl() in that this method is for generating URLs for shared files written by
writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL starts with ‘http:’,
‘https:’ or ‘file:’. The returned URL may expire as early as 1h after its been returned. Throw an exception
if the file does not exist.

Parameters
• shared_file_name (str) – The name of the shared file to generate a publically accessible

url for.

• shared_file_name –

122 Chapter 14. Job Store API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Raises
NoSuchFileException – raised if the specified file does not exist in the store

Return type
str

abstract load_job(job_id)
Loads the description of the job referenced by the given ID, assigns it the job store’s config, and returns it.

May declare the job to have failed (see toil.job.JobDescription.setupJobAfterFailure()) if
there is evidence of a failed update attempt.

Parameters
job_id (str) – the ID of the job to load

Raises
NoSuchJobException – if there is no job with the given ID

Return type
JobDescription

abstract update_job(job_description)
Persists changes to the state of the given JobDescription in this store atomically.

Must call jobDescription.pre_update_hook()

Parameters
• job (toil.job.JobDescription) – the job to write to this job store

• job_description (JobDescription) –

Return type
None

abstract delete_job(job_id)
Removes the JobDescription from the store atomically. You may not then subsequently call load(), write(),
update(), etc. with the same jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job will succeed silently.

Parameters
• job_id (str) – the ID of the job to delete from this job store

• job_id –

Return type
None

jobs()

Best effort attempt to return iterator on JobDescriptions for all jobs in the store. The iterator may not return
all jobs and may also contain orphaned jobs that have already finished successfully and should not be rerun.
To guarantee you get any and all jobs that can be run instead construct a more expensive ToilState object

Returns
Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may
contain invalid jobs

Return type
Iterator[toil.job.jobDescription]

123

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

abstract write_file(local_path, job_id=None, cleanup=False)
Takes a file (as a path) and places it in this job store. Returns an ID that can be used to retrieve the file at
a later time. The file is written in a atomic manner. It will not appear in the jobStore until the write has
successfully completed.

Parameters
• local_path (str) – the path to the local file that will be uploaded to the job store. The

last path component (basename of the file) will remain associated with the file in the file
store, if supported, so that the file can be searched for by name or name glob.

• job_id (str) – the id of a job, or None. If specified, the may be associated with that job
in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

Return type
str

FIXME: some implementations may not raise this

Returns
an ID referencing the newly created file and can be used to read the file in the future.

Return type
str

Parameters
• local_path (str) –

• job_id (Optional[str]) –

• cleanup (bool) –

abstract write_file_stream(job_id=None, cleanup=False, basename=None, encoding=None,
errors=None)

Similar to writeFile, but returns a context manager yielding a tuple of 1) a file handle which can be written
to and 2) the ID of the resulting file in the job store. The yielded file handle does not need to and should
not be closed explicitly. The file is written in a atomic manner. It will not appear in the jobStore until the
write has successfully completed.

Parameters
• job_id (str) – the id of a job, or None. If specified, the may be associated with that job

in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (str) – If supported by the implementation, use the given file basename so that
when searching the job store with a query matching that basename, the file will be detected.

124 Chapter 14. Job Store API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

Return type
Iterator[Tuple[IO[bytes], str]]

FIXME: some implementations may not raise this

Returns
a context manager yielding a file handle which can be written to and an ID that references the
newly created file and can be used to read the file in the future.

Return type
Iterator[Tuple[IO[bytes], str]]

Parameters
• job_id (Optional[str]) –

• cleanup (bool) –

• basename (Optional[str]) –

• encoding (Optional[str]) –

• errors (Optional[str]) –

abstract get_empty_file_store_id(job_id=None, cleanup=False, basename=None)
Creates an empty file in the job store and returns its ID. Call to fileExists(getEmptyFileStoreID(jobStoreID))
will return True.

Parameters
• job_id (Optional[str]) – the id of a job, or None. If specified, the may be associated

with that job in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (Optional[str]) – If supported by the implementation, use the given file base-
name so that when searching the job store with a query matching that basename, the file
will be detected.

• job_id –

• cleanup –

• basename –

Returns
a jobStoreFileID that references the newly created file and can be used to reference the file in
the future.

Return type
str

125

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

abstract read_file(file_id, local_path, symlink=False)
Copies or hard links the file referenced by jobStoreFileID to the given local file path. The version will
be consistent with the last copy of the file written/updated. If the file in the job store is later modified
via updateFile or updateFileStream, it is implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not appear in the local file system until the
copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

Parameters
• file_id (str) – ID of the file to be copied

• local_path (str) – the local path indicating where to place the contents of the given file
in the job store

• symlink (bool) – whether the reader can tolerate a symlink. If set to true, the job store
may create a symlink instead of a full copy of the file or a hard link.

• file_id –

• local_path –

• symlink –

Return type
None

abstract read_file_stream(file_id, encoding=None, errors=None)
Similar to readFile, but returns a context manager yielding a file handle which can be read from. The
yielded file handle does not need to and should not be closed explicitly.

Parameters
• file_id (Union[FileID, str]) – ID of the file to get a readable file handle for

• encoding (Optional[str]) – the name of the encoding used to decode the file. Encodings
are the same as for decode(). Defaults to None which represents binary mode.

• errors (Optional[str]) – an optional string that specifies how encoding errors are to
be handled. Errors are the same as for open(). Defaults to ‘strict’ when an encoding is
specified.

• file_id –

• encoding –

• errors –

Returns
a context manager yielding a file handle which can be read from

Return type
Iterator[Union[IO[bytes], IO[str]]]

abstract delete_file(file_id)
Deletes the file with the given ID from this job store. This operation is idempotent, i.e. deleting a file twice
or deleting a non-existent file will succeed silently.

Parameters
• file_id (str) – ID of the file to delete

126 Chapter 14. Job Store API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• file_id –

Return type
None

fileExists(jobStoreFileID)

Determine whether a file exists in this job store.

Parameters
jobStoreFileID (str) –

Return type
bool

abstract file_exists(file_id)
Determine whether a file exists in this job store.

Parameters
file_id (str) – an ID referencing the file to be checked

Return type
bool

getFileSize(jobStoreFileID)

Get the size of the given file in bytes.

Parameters
jobStoreFileID (str) –

Return type
int

abstract get_file_size(file_id)
Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of file sizes, since the encrypted file may
have been padded to the nearest block, augmented with an initialization vector, etc.

Parameters
• file_id (str) – an ID referencing the file to be checked

• file_id –

Return type
int

updateFile(jobStoreFileID, localFilePath)
Replaces the existing version of a file in the job store.

Parameters
• jobStoreFileID (str) –

• localFilePath (str) –

Return type
None

abstract update_file(file_id, local_path)
Replaces the existing version of a file in the job store.

Throws an exception if the file does not exist.

Parameters

127

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

• file_id (str) – the ID of the file in the job store to be updated

• local_path (str) – the local path to a file that will overwrite the current version in the
job store

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchFileException – if the specified file does not exist

Return type
None

abstract update_file_stream(file_id, encoding=None, errors=None)
Replaces the existing version of a file in the job store. Similar to writeFile, but returns a context manager
yielding a file handle which can be written to. The yielded file handle does not need to and should not be
closed explicitly.

Parameters
• file_id (str) – the ID of the file in the job store to be updated

• encoding (Optional[str]) – the name of the encoding used to encode the file. Encodings
are the same as for encode(). Defaults to None which represents binary mode.

• errors (Optional[str]) – an optional string that specifies how encoding errors are to
be handled. Errors are the same as for open(). Defaults to ‘strict’ when an encoding is
specified.

• file_id –

• encoding –

• errors –

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchFileException – if the specified file does not exist

Return type
Iterator[IO[Any]]

abstract write_shared_file_stream(shared_file_name, encrypted=None, encoding=None,
errors=None)

Returns a context manager yielding a writable file handle to the global file referenced by the given name.
File will be created in an atomic manner.

Parameters
• shared_file_name (str) – A file name matching AbstractJobStore.fileNameRegex,

unique within this job store

• encrypted (Optional[bool]) – True if the file must be encrypted, None if it may be
encrypted or False if it must be stored in the clear.

• encoding (Optional[str]) – the name of the encoding used to encode the file. Encodings
are the same as for encode(). Defaults to None which represents binary mode.

128 Chapter 14. Job Store API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• errors (Optional[str]) – an optional string that specifies how encoding errors are to
be handled. Errors are the same as for open(). Defaults to ‘strict’ when an encoding is
specified.

• shared_file_name –

• encrypted –

• encoding –

• errors –

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Returns
a context manager yielding a writable file handle

Return type
Iterator[IO[bytes]]

abstract read_shared_file_stream(shared_file_name, encoding=None, errors=None)
Returns a context manager yielding a readable file handle to the global file referenced by the given name.

Parameters
• shared_file_name (str) – A file name matching AbstractJobStore.fileNameRegex,

unique within this job store

• encoding (Optional[str]) – the name of the encoding used to decode the file. Encodings
are the same as for decode(). Defaults to None which represents binary mode.

• errors (Optional[str]) – an optional string that specifies how encoding errors are to
be handled. Errors are the same as for open(). Defaults to ‘strict’ when an encoding is
specified.

• shared_file_name –

• encoding –

• errors –

Returns
a context manager yielding a readable file handle

Return type
Iterator[IO[bytes]]

abstract write_logs(msg)
Stores a message as a log in the jobstore.

Parameters
• msg (str) – the string to be written

• msg –

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Return type
None

129

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

abstract read_logs(callback, read_all=False)
Reads logs accumulated by the write_logs() method. For each log this method calls the given callback
function with the message as an argument (rather than returning logs directly, this method must be supplied
with a callback which will process log messages).

Only unread logs will be read unless the read_all parameter is set.

Parameters
• callback (Callable[..., Any]) – a function to be applied to each of the stats file handles

found

• read_all (bool) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

• callback –

• read_all –

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Returns
the number of stats files processed

Return type
int

write_leader_pid()

Write the pid of this process to a file in the job store.

Overwriting the current contents of pid.log is a feature, not a bug of this method. Other methods will rely
on always having the most current pid available. So far there is no reason to store any old pids.

Return type
None

read_leader_pid()

Read the pid of the leader process to a file in the job store.

Raises
NoSuchFileException – If the PID file doesn’t exist.

Return type
int

write_leader_node_id()

Write the leader node id to the job store. This should only be called by the leader.

Return type
None

read_leader_node_id()

Read the leader node id stored in the job store.

Raises
NoSuchFileException – If the node ID file doesn’t exist.

Return type
str

130 Chapter 14. Job Store API

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

write_kill_flag(kill=False)
Write a file inside the job store that serves as a kill flag.

The initialized file contains the characters “NO”. This should only be changed when the user runs the “toil
kill” command.

Changing this file to a “YES” triggers a kill of the leader process. The workers are expected to be cleaned
up by the leader.

Parameters
kill (bool) –

Return type
None

read_kill_flag()

Read the kill flag from the job store, and return True if the leader has been killed. False otherwise.

Return type
bool

default_caching()

Jobstore’s preference as to whether it likes caching or doesn’t care about it. Some jobstores benefit from
caching, however on some local configurations it can be flaky.

see https://github.com/DataBiosphere/toil/issues/4218

Return type
bool

131

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://github.com/DataBiosphere/toil/issues/4218
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

132 Chapter 14. Job Store API

CHAPTER

FIFTEEN

TOIL JOB API

Functions to wrap jobs and return values (promises).

15.1 FunctionWrappingJob

The subclass of Job for wrapping user functions.

class toil.job.FunctionWrappingJob(userFunction, *args, **kwargs)
Job used to wrap a function. In its run method the wrapped function is called.

__init__(userFunction, *args, **kwargs)

Parameters
userFunction (callable) – The function to wrap. It will be called with *args and
**kwargs as arguments.

The keywords memory, cores, disk, accelerators`, ``preemptible and checkpoint are reserved
keyword arguments that if specified will be used to determine the resources required for the job, as toil.
job.Job.__init__(). If they are keyword arguments to the function they will be extracted from the
function definition, but may be overridden by the user (as you would expect).

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

15.2 JobFunctionWrappingJob

The subclass of FunctionWrappingJob for wrapping user job functions.

class toil.job.JobFunctionWrappingJob(userFunction, *args, **kwargs)
A job function is a function whose first argument is a Job instance that is the wrapping job for the function. This
can be used to add successor jobs for the function and perform all the functions the Job class provides.

To enable the job function to get access to the toil.fileStores.abstractFileStore.AbstractFileStore
instance (see toil.job.Job.run()), it is made a variable of the wrapping job called fileStore.

133

Toil Documentation, Release 5.11.0

To specify a job’s resource requirements the following default keyword arguments can be specified:

• memory

• disk

• cores

• accelerators

• preemptible

For example to wrap a function into a job we would call:

Job.wrapJobFn(myJob, memory='100k', disk='1M', cores=0.1)

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

15.3 EncapsulatedJob

The subclass of Job for encapsulating a job, allowing a subgraph of jobs to be treated as a single job.

class toil.job.EncapsulatedJob(job, unitName=None)
A convenience Job class used to make a job subgraph appear to be a single job.

Let A be the root job of a job subgraph and B be another job we’d like to run after A and all its successors have
completed, for this use encapsulate:

Job A and subgraph, Job B
A, B = A(), B()
Aprime = A.encapsulate()
Aprime.addChild(B)
B will run after A and all its successors have completed, A and its subgraph of
successors in effect appear to be just one job.

If the job being encapsulated has predecessors (e.g. is not the root job), then the encapsulated job will inherit
these predecessors. If predecessors are added to the job being encapsulated after the encapsulated job is created
then the encapsulating job will NOT inherit these predecessors automatically. Care should be exercised to ensure
the encapsulated job has the proper set of predecessors.

The return value of an encapsulated job (as accessed by the toil.job.Job.rv() function) is the return value
of the root job, e.g. A().encapsulate().rv() and A().rv() will resolve to the same value after A or A.encapsulate()
has been run.

__init__(job, unitName=None)

Parameters
• job (toil.job.Job) – the job to encapsulate.

134 Chapter 15. Toil Job API

Toil Documentation, Release 5.11.0

• unitName (str) – human-readable name to identify this job instance.

addChild(childJob)
Add a childJob to be run as child of this job.

Child jobs will be run directly after this job’s toil.job.Job.run() method has completed.

Returns
childJob: for call chaining

addService(service, parentService=None)
Add a service.

The toil.job.Job.Service.start() method of the service will be called after the run method has
completed but before any successors are run. The service’s toil.job.Job.Service.stop() method
will be called once the successors of the job have been run.

Services allow things like databases and servers to be started and accessed by jobs in a workflow.

Raises
toil.job.JobException – If service has already been made the child of a job or another
service.

Parameters
• service – Service to add.

• parentService – Service that will be started before ‘service’ is started. Allows trees of
services to be established. parentService must be a service of this job.

Returns
a promise that will be replaced with the return value from toil.job.Job.Service.
start() of service in any successor of the job.

addFollowOn(followOnJob)
Add a follow-on job.

Follow-on jobs will be run after the child jobs and their successors have been run.

Returns
followOnJob for call chaining

rv(*path)
Create a promise (toil.job.Promise).

The “promise” representing a return value of the job’s run method, or, in case of a function-wrapping job,
the wrapped function’s return value.

Parameters
path ((Any)) – Optional path for selecting a component of the promised return value. If
absent or empty, the entire return value will be used. Otherwise, the first element of the path
is used to select an individual item of the return value. For that to work, the return value must
be a list, dictionary or of any other type implementing the __getitem__() magic method. If
the selected item is yet another composite value, the second element of the path can be used
to select an item from it, and so on. For example, if the return value is [6,{‘a’:42}], .rv(0)
would select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3. To select a slice
from a return value that is slicable, e.g. tuple or list, the path element should be a slice object.
For example, assuming that the return value is [6, 7, 8, 9] then .rv(slice(1, 3)) would select
[7, 8]. Note that slicing really only makes sense at the end of path.

Return type
Promise

15.3. EncapsulatedJob 135

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Returns
A promise representing the return value of this jobs toil.job.Job.run() method.

prepareForPromiseRegistration(jobStore)
Set up to allow this job’s promises to register themselves.

Prepare this job (the promisor) so that its promises can register themselves with it, when the jobs they are
promised to (promisees) are serialized.

The promissee holds the reference to the promise (usually as part of the job arguments) and when it is being
pickled, so will the promises it refers to. Pickling a promise triggers it to be registered with the promissor.

15.4 Promise

The class used to reference return values of jobs/services not yet run/started.

class toil.job.Promise(job, path)
References a return value from a method as a promise before the method itself is run.

References a return value from a toil.job.Job.run() or toil.job.Job.Service.start() method as a
promise before the method itself is run.

Let T be a job. Instances of Promise (termed a promise) are returned by T.rv(), which is used to reference the
return value of T’s run function. When the promise is passed to the constructor (or as an argument to a wrapped
function) of a different, successor job the promise will be replaced by the actual referenced return value. This
mechanism allows a return values from one job’s run method to be input argument to job before the former job’s
run function has been executed.

Parameters
• job (Job) –

• path (Any) –

Return type
Promise

filesToDelete = {}

A set of IDs of files containing promised values when we know we won’t need them anymore

__init__(job, path)
Initialize this promise.

Parameters
• job (Job) – the job whose return value this promise references

• path (Any) – see Job.rv()

• job –

class toil.job.PromisedRequirement(valueOrCallable, *args)
Class for dynamically allocating job function resource requirements.

(involving toil.job.Promise instances.)

Use when resource requirements depend on the return value of a parent function. PromisedRequirements can be
modified by passing a function that takes the Promise as input.

136 Chapter 15. Toil Job API

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

Toil Documentation, Release 5.11.0

For example, let f, g, and h be functions. Then a Toil workflow can be defined as follows::
A = Job.wrapFn(f) B = A.addChildFn(g, cores=PromisedRequirement(A.rv()) C = B.addChildFn(h,
cores=PromisedRequirement(lambda x: 2*x, B.rv()))

__init__(valueOrCallable, *args)
Initialize this Promised Requirement.

Parameters
• valueOrCallable – A single Promise instance or a function that takes args as input pa-

rameters.

• args (int or .Promise) – variable length argument list

getValue()

Return PromisedRequirement value.

static convertPromises(kwargs)
Return True if reserved resource keyword is a Promise or PromisedRequirement instance.

Converts Promise instance to PromisedRequirement.

Parameters
kwargs (Dict[str, Any]) – function keyword arguments

Return type
bool

15.4. Promise 137

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

138 Chapter 15. Toil Job API

CHAPTER

SIXTEEN

JOB METHODS API

Jobs are the units of work in Toil which are composed into workflows.

class toil.job.Job(memory=None, cores=None, disk=None, accelerators=None, preemptible=None,
preemptable=None, unitName='', checkpoint=False, displayName='',
descriptionClass=None, local=None)

Class represents a unit of work in toil.

Parameters
• memory (Union[str, int, None]) –

• cores (Union[str, int, float, None]) –

• disk (Union[str, int, None]) –

• accelerators (Union[str, int, Mapping[str, Any], AcceleratorRequirement,
Sequence[Union[str, int, Mapping[str, Any], AcceleratorRequirement]], None]) –

• preemptible (Union[str, int, bool, None]) –

• preemptable (Union[str, int, bool, None]) –

• unitName (Optional[str]) –

• checkpoint (Optional[bool]) –

• displayName (Optional[str]) –

• descriptionClass (Optional[type]) –

• local (Optional[bool]) –

__init__(memory=None, cores=None, disk=None, accelerators=None, preemptible=None,
preemptable=None, unitName='', checkpoint=False, displayName='', descriptionClass=None,
local=None)

Job initializer.

This method must be called by any overriding constructor.

Parameters
• memory (int or string convertible by toil.lib.conversions.human2bytes
to an int) – the maximum number of bytes of memory the job will require to run.

• cores (float, int, or string convertible by toil.lib.conversions.
human2bytes to an int) – the number of CPU cores required.

• disk (int or string convertible by toil.lib.conversions.human2bytes
to an int) – the amount of local disk space required by the job, expressed in bytes.

139

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

• accelerators (int, string, dict, or list of those. Strings and dicts
must be parseable by parse_accelerator.) – the computational accelerators re-
quired by the job. If a string, can be a string of a number, or a string specifying a model,
brand, or API (with optional colon-delimited count).

• preemptible (bool, int in {0, 1}, or string in {'false', 'true'} in any
case) – if the job can be run on a preemptible node.

• preemptable (Union[str, int, bool, None]) – legacy preemptible parameter, for back-
wards compatibility with workflows not using the preemptible keyword

• unitName (str) – Human-readable name for this instance of the job.

• checkpoint (bool) – if any of this job’s successor jobs completely fails, exhausting
all their retries, remove any successor jobs and rerun this job to restart the subtree.
Job must be a leaf vertex in the job graph when initially defined, see toil.job.Job.
checkNewCheckpointsAreCutVertices().

• displayName (str) – Human-readable job type display name.

• descriptionClass (class) – Override for the JobDescription class used to describe the
job.

• local (Optional[bool]) – if the job can be run on the leader.

Return type
None

property jobStoreID: Union[str, TemporaryID]

Get the ID of this Job.

Return type
Union[str, TemporaryID]

property description: JobDescription

Expose the JobDescription that describes this job.

Return type
JobDescription

property disk: int

The maximum number of bytes of disk the job will require to run.

Return type
int

property memory

The maximum number of bytes of memory the job will require to run.

property cores: Union[int, float]

The number of CPU cores required.

Return type
Union[int, float]

property accelerators: List[AcceleratorRequirement]

Any accelerators, such as GPUs, that are needed.

Return type
List[AcceleratorRequirement]

140 Chapter 16. Job Methods API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List

Toil Documentation, Release 5.11.0

property preemptible: bool

Whether the job can be run on a preemptible node.

Return type
bool

property checkpoint: bool

Determine if the job is a checkpoint job or not.

Return type
bool

assignConfig(config)
Assign the given config object.

It will be used by various actions implemented inside the Job class.

Parameters
config (Config) – Config object to query

Return type
None

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore (AbstractFileStore) – Used to create local and globally sharable temporary
files and to send log messages to the leader process.

Return type
Any

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

addChild(childJob)
Add a childJob to be run as child of this job.

Child jobs will be run directly after this job’s toil.job.Job.run() method has completed.

Return type
Job

Returns
childJob: for call chaining

Parameters
childJob (Job) –

hasChild(childJob)
Check if childJob is already a child of this job.

Return type
bool

Returns
True if childJob is a child of the job, else False.

Parameters
childJob (Job) –

141

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

addFollowOn(followOnJob)
Add a follow-on job.

Follow-on jobs will be run after the child jobs and their successors have been run.

Return type
Job

Returns
followOnJob for call chaining

Parameters
followOnJob (Job) –

hasPredecessor(job)
Check if a given job is already a predecessor of this job.

Parameters
job (Job) –

Return type
bool

hasFollowOn(followOnJob)
Check if given job is already a follow-on of this job.

Return type
bool

Returns
True if the followOnJob is a follow-on of this job, else False.

Parameters
followOnJob (Job) –

addService(service, parentService=None)
Add a service.

The toil.job.Job.Service.start() method of the service will be called after the run method has
completed but before any successors are run. The service’s toil.job.Job.Service.stop() method
will be called once the successors of the job have been run.

Services allow things like databases and servers to be started and accessed by jobs in a workflow.

Raises
toil.job.JobException – If service has already been made the child of a job or another
service.

Parameters
• service (Service) – Service to add.

• parentService (Optional[Service]) – Service that will be started before ‘service’ is
started. Allows trees of services to be established. parentService must be a service of this
job.

Return type
Promise

Returns
a promise that will be replaced with the return value from toil.job.Job.Service.
start() of service in any successor of the job.

142 Chapter 16. Job Methods API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional

Toil Documentation, Release 5.11.0

hasService(service)
Return True if the given Service is a service of this job, and False otherwise.

Parameters
service (Service) –

Return type
bool

addChildFn(fn, *args, **kwargs)
Add a function as a child job.

Parameters
fn (Callable) – Function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to
specify resource requirements.

Return type
FunctionWrappingJob

Returns
The new child job that wraps fn.

addFollowOnFn(fn, *args, **kwargs)
Add a function as a follow-on job.

Parameters
fn (Callable) – Function to be run as a follow-on job with *args and **kwargs as argu-
ments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments
used to specify resource requirements.

Return type
FunctionWrappingJob

Returns
The new follow-on job that wraps fn.

addChildJobFn(fn, *args, **kwargs)
Add a job function as a child job.

See toil.job.JobFunctionWrappingJob for a definition of a job function.

Parameters
fn (Callable) – Job function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used
to specify resource requirements.

Return type
FunctionWrappingJob

Returns
The new child job that wraps fn.

addFollowOnJobFn(fn, *args, **kwargs)
Add a follow-on job function.

See toil.job.JobFunctionWrappingJob for a definition of a job function.

Parameters
fn (Callable) – Job function to be run as a follow-on job with *args and **kwargs as
arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword argu-
ments used to specify resource requirements.

143

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable

Toil Documentation, Release 5.11.0

Return type
FunctionWrappingJob

Returns
The new follow-on job that wraps fn.

property tempDir: str

Shortcut to calling job.fileStore.getLocalTempDir().

Temp dir is created on first call and will be returned for first and future calls :return: Path to tempDir. See
job.fileStore.getLocalTempDir

Return type
str

log(text, level=20)
Log using fileStore.logToMaster().

Parameters
text (str) –

Return type
None

static wrapFn(fn, *args, **kwargs)
Makes a Job out of a function.

Convenience function for constructor of toil.job.FunctionWrappingJob.

Parameters
fn – Function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify re-
source requirements.

Return type
FunctionWrappingJob

Returns
The new function that wraps fn.

static wrapJobFn(fn, *args, **kwargs)
Makes a Job out of a job function.

Convenience function for constructor of toil.job.JobFunctionWrappingJob.

Parameters
fn – Job function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource
requirements.

Return type
JobFunctionWrappingJob

Returns
The new job function that wraps fn.

encapsulate(name=None)
Encapsulates the job, see toil.job.EncapsulatedJob. Convenience function for constructor of toil.
job.EncapsulatedJob.

Parameters
name (Optional[str]) – Human-readable name for the encapsulated job.

144 Chapter 16. Job Methods API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
EncapsulatedJob

Returns
an encapsulated version of this job.

rv(*path)
Create a promise (toil.job.Promise).

The “promise” representing a return value of the job’s run method, or, in case of a function-wrapping job,
the wrapped function’s return value.

Parameters
path ((Any)) – Optional path for selecting a component of the promised return value. If
absent or empty, the entire return value will be used. Otherwise, the first element of the path
is used to select an individual item of the return value. For that to work, the return value must
be a list, dictionary or of any other type implementing the __getitem__() magic method. If
the selected item is yet another composite value, the second element of the path can be used
to select an item from it, and so on. For example, if the return value is [6,{‘a’:42}], .rv(0)
would select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3. To select a slice
from a return value that is slicable, e.g. tuple or list, the path element should be a slice object.
For example, assuming that the return value is [6, 7, 8, 9] then .rv(slice(1, 3)) would select
[7, 8]. Note that slicing really only makes sense at the end of path.

Return type
Promise

Returns
A promise representing the return value of this jobs toil.job.Job.run() method.

prepareForPromiseRegistration(jobStore)
Set up to allow this job’s promises to register themselves.

Prepare this job (the promisor) so that its promises can register themselves with it, when the jobs they are
promised to (promisees) are serialized.

The promissee holds the reference to the promise (usually as part of the job arguments) and when it is being
pickled, so will the promises it refers to. Pickling a promise triggers it to be registered with the promissor.

Parameters
jobStore (AbstractJobStore) –

Return type
None

checkJobGraphForDeadlocks()

Ensures that a graph of Jobs (that hasn’t yet been saved to the JobStore) doesn’t contain any pathological
relationships between jobs that would result in deadlocks if we tried to run the jobs.

See toil.job.Job.checkJobGraphConnected(), toil.job.Job.checkJobGraphAcyclic() and
toil.job.Job.checkNewCheckpointsAreLeafVertices() for more info.

Raises
toil.job.JobGraphDeadlockException – if the job graph is cyclic, contains multiple
roots or contains checkpoint jobs that are not leaf vertices when defined (see toil.job.
Job.checkNewCheckpointsAreLeaves()).

getRootJobs()

Return the set of root job objects that contain this job.

A root job is a job with no predecessors (i.e. which are not children, follow-ons, or services).

145

https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

Only deals with jobs created here, rather than loaded from the job store.

Return type
Set[Job]

checkJobGraphConnected()

Raises
toil.job.JobGraphDeadlockException – if toil.job.Job.getRootJobs() does not
contain exactly one root job.

As execution always starts from one root job, having multiple root jobs will cause a deadlock to occur.

Only deals with jobs created here, rather than loaded from the job store.

checkJobGraphAcylic()

Raises
toil.job.JobGraphDeadlockException – if the connected component of jobs containing
this job contains any cycles of child/followOn dependencies in the augmented job graph (see
below). Such cycles are not allowed in valid job graphs.

A follow-on edge (A, B) between two jobs A and B is equivalent to adding a child edge to B from (1) A,
(2) from each child of A, and (3) from the successors of each child of A. We call each such edge an edge
an “implied” edge. The augmented job graph is a job graph including all the implied edges.

For a job graph G = (V, E) the algorithm is O(|V|^2). It is O(|V| + |E|) for a graph with no follow-ons.
The former follow-on case could be improved!

Only deals with jobs created here, rather than loaded from the job store.

checkNewCheckpointsAreLeafVertices()

A checkpoint job is a job that is restarted if either it fails, or if any of its successors completely fails,
exhausting their retries.

A job is a leaf it is has no successors.

A checkpoint job must be a leaf when initially added to the job graph. When its run method is invoked it
can then create direct successors. This restriction is made to simplify implementation.

Only works on connected components of jobs not yet added to the JobStore.

Raises
toil.job.JobGraphDeadlockException – if there exists a job being added to the graph
for which checkpoint=True and which is not a leaf.

Return type
None

defer(function, *args, **kwargs)
Register a deferred function, i.e. a callable that will be invoked after the current attempt at running this job
concludes. A job attempt is said to conclude when the job function (or the toil.job.Job.run()method
for class-based jobs) returns, raises an exception or after the process running it terminates abnormally. A
deferred function will be called on the node that attempted to run the job, even if a subsequent attempt is
made on another node. A deferred function should be idempotent because it may be called multiple times
on the same node or even in the same process. More than one deferred function may be registered per job
attempt by calling this method repeatedly with different arguments. If the same function is registered twice
with the same or different arguments, it will be called twice per job attempt.

Examples for deferred functions are ones that handle cleanup of resources external to Toil, like Docker
containers, files outside the work directory, etc.

Parameters

146 Chapter 16. Job Methods API

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

• function (callable) – The function to be called after this job concludes.

• args (list) – The arguments to the function

• kwargs (dict) – The keyword arguments to the function

Return type
None

getTopologicalOrderingOfJobs()

Return type
List[Job]

Returns
a list of jobs such that for all pairs of indices i, j for which i < j, the job at index i can be run
before the job at index j.

Only considers jobs in this job’s subgraph that are newly added, not loaded from the job store.

Ignores service jobs.

saveBody(jobStore)
Save the execution data for just this job to the JobStore, and fill in the JobDescription with the information
needed to retrieve it.

The Job’s JobDescription must have already had a real jobStoreID assigned to it.

Does not save the JobDescription.

Parameters
jobStore (AbstractJobStore) – The job store to save the job body into.

Return type
None

saveAsRootJob(jobStore)
Save this job to the given jobStore as the root job of the workflow.

Return type
JobDescription

Returns
the JobDescription describing this job.

Parameters
jobStore (AbstractJobStore) –

classmethod loadJob(jobStore, jobDescription)
Retrieves a toil.job.Job instance from a JobStore

Parameters
• jobStore (AbstractJobStore) – The job store.

• jobDescription (JobDescription) – the JobDescription of the job to retrieve.

Return type
Job

Returns
The job referenced by the JobDescription.

147

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

16.1 JobDescription

The class used to store all the information that the Toil Leader ever needs to know about a Job.

class toil.job.JobDescription(requirements, jobName, unitName='', displayName='', command=None,
local=None)

Stores all the information that the Toil Leader ever needs to know about a Job.

(requirements information, dependency information, commands to issue, etc.)

Can be obtained from an actual (i.e. executable) Job object, and can be used to obtain the Job object from the
JobStore.

Never contains other Jobs or JobDescriptions: all reference is by ID.

Subclassed into variants for checkpoint jobs and service jobs that have their specific parameters.

Parameters
• requirements (Mapping[str, Union[int, str, bool]]) –

• jobName (str) –

• unitName (Optional[str]) –

• displayName (Optional[str]) –

• command (Optional[str]) –

• local (Optional[bool]) –

__init__(requirements, jobName, unitName='', displayName='', command=None, local=None)
Create a new JobDescription.

Parameters
• requirements (Mapping[str, Union[int, str, bool]]) – Dict from string to number,

string, or bool describing the resource requirements of the job. ‘cores’, ‘memory’, ‘disk’,
and ‘preemptible’ fields, if set, are parsed and broken out into properties. If unset, the
relevant property will be unspecified, and will be pulled from the assigned Config object
if queried (see toil.job.Requirer.assignConfig()).

• jobName (str) – Name of the kind of job this is. May be used in job store IDs and logging.
Also used to let the cluster scaler learn a model for how long the job will take. Ought to be
the job class’s name if no real user-defined name is available.

• unitName (Optional[str]) – Name of this instance of this kind of job. May appear with
jobName in logging.

• displayName (Optional[str]) – A human-readable name to identify this particular job
instance. Ought to be the job class’s name if no real user-defined name is available.

• local (Optional[bool]) – If True, the job is meant to use minimal resources but is sen-
sitive to execution latency, and so should be executed by the leader.

• command (Optional[str]) –

Return type
None

serviceHostIDsInBatches()

Find all batches of service host job IDs that can be started at the same time.

(in the order they need to start in)

148 Chapter 16. Job Methods API

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
Iterator[List[str]]

successorsAndServiceHosts()

Get an iterator over all child, follow-on, and service job IDs.

Return type
Iterator[str]

allSuccessors()

Get an iterator over all child, follow-on, and chained, inherited successor job IDs.

Follow-ons will come before children.

Return type
Iterator[str]

successors_by_phase()

Get an iterator over all child/follow-on/chained inherited successor job IDs, along with their phase numbere
on the stack.

Phases ececute higher numbers to lower numbers.

Return type
Iterator[Tuple[int, str]]

property services

Get a collection of the IDs of service host jobs for this job, in arbitrary order.

Will be empty if the job has no unfinished services.

nextSuccessors()

Return the collection of job IDs for the successors of this job that are ready to run.

If those jobs have multiple predecessor relationships, they may still be blocked on other jobs.

Returns None when at the final phase (all successors done), and an empty collection if there are more phases
but they can’t be entered yet (e.g. because we are waiting for the job itself to run).

Return type
Set[str]

filterSuccessors(predicate)
Keep only successor jobs for which the given predicate function approves.

The predicate function is called with the job’s ID.

Treats all other successors as complete and forgets them.

Parameters
predicate (Callable[[str], bool]) –

Return type
None

filterServiceHosts(predicate)
Keep only services for which the given predicate approves.

The predicate function is called with the service host job’s ID.

Treats all other services as complete and forgets them.

Parameters
predicate (Callable[[str], bool]) –

16.1. JobDescription 149

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Return type
None

clear_nonexistent_dependents(job_store)
Remove all references to child, follow-on, and associated service jobs that do not exist.

That is to say, all those that have been completed and removed.

Parameters
job_store (AbstractJobStore) –

Return type
None

clear_dependents()

Remove all references to successor and service jobs.

Return type
None

is_subtree_done()

Check if the subtree is done.

Return type
bool

Returns
True if the job appears to be done, and all related child, follow-on, and service jobs appear to
be finished and removed.

replace(other)
Take on the ID of another JobDescription, retaining our own state and type.

When updated in the JobStore, we will save over the other JobDescription.

Useful for chaining jobs: the chained-to job can replace the parent job.

Merges cleanup state and successors other than this job from the job being replaced into this one.

Parameters
other (JobDescription) – Job description to replace.

Return type
None

addChild(childID)

Make the job with the given ID a child of the described job.

Parameters
childID (str) –

Return type
None

addFollowOn(followOnID)

Make the job with the given ID a follow-on of the described job.

Parameters
followOnID (str) –

Return type
None

150 Chapter 16. Job Methods API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

addServiceHostJob(serviceID, parentServiceID=None)
Make the ServiceHostJob with the given ID a service of the described job.

If a parent ServiceHostJob ID is given, that parent service will be started first, and must have already been
added.

hasChild(childID)

Return True if the job with the given ID is a child of the described job.

Parameters
childID (str) –

Return type
bool

hasFollowOn(followOnID)

Test if the job with the given ID is a follow-on of the described job.

Parameters
followOnID (str) –

Return type
bool

hasServiceHostJob(serviceID)

Test if the ServiceHostJob is a service of the described job.

Return type
bool

renameReferences(renames)
Apply the given dict of ID renames to all references to jobs.

Does not modify our own ID or those of finished predecessors. IDs not present in the renames dict are left
as-is.

Parameters
renames (Dict[TemporaryID, str]) – Rename operations to apply.

Return type
None

addPredecessor()

Notify the JobDescription that a predecessor has been added to its Job.

Return type
None

onRegistration(jobStore)
Perform setup work that requires the JobStore.

Called by the Job saving logic when this JobDescription meets the JobStore and has its ID assigned.

Overridden to perform setup work (like hooking up flag files for service jobs) that requires the JobStore.

Parameters
jobStore (AbstractJobStore) – The job store we are being placed into

Return type
None

16.1. JobDescription 151

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

setupJobAfterFailure(exit_status=None, exit_reason=None)
Configure job after a failure.

Reduce the remainingTryCount if greater than zero and set the memory to be at least as big as the default
memory (in case of exhaustion of memory, which is common).

Requires a configuration to have been assigned (see toil.job.Requirer.assignConfig()).

Parameters
• exit_status (Optional[int]) – The exit code from the job.

• exit_reason (Optional[BatchJobExitReason]) – The reason the job stopped, if avail-
able from the batch system.

Return type
None

getLogFileHandle(jobStore)
Create a context manager that yields a file handle to the log file.

Assumes logJobStoreFileID is set.

property remainingTryCount

Get the number of tries remaining.

The try count set on the JobDescription, or the default based on the retry count from the config if none is
set.

clearRemainingTryCount()

Clear remainingTryCount and set it back to its default value.

Return type
bool

Returns
True if a modification to the JobDescription was made, and False otherwise.

pre_update_hook()

Run before pickling and saving a created or updated version of this job.

Called by the job store.

Return type
None

get_job_kind()

Return an identifying string for the job.

The result may contain spaces.

Return type
str

Returns: Either the unit name, job name, or display name, which identifies
the kind of job it is to toil. Otherwise “Unknown Job” in case no identifier is available

152 Chapter 16. Job Methods API

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

SEVENTEEN

JOB.RUNNER API

The Runner contains the methods needed to configure and start a Toil run.

class Job.Runner

Used to setup and run Toil workflow.

static getDefaultArgumentParser()

Get argument parser with added toil workflow options.

Return type
ArgumentParser

Returns
The argument parser used by a toil workflow with added Toil options.

static getDefaultOptions(jobStore)
Get default options for a toil workflow.

Parameters
jobStore (str) – A string describing the jobStore for the workflow.

Return type
Namespace

Returns
The options used by a toil workflow.

static addToilOptions(parser)
Adds the default toil options to an optparse or argparse parser object.

Parameters
parser (Union[OptionParser, ArgumentParser]) – Options object to add toil options to.

Return type
None

static startToil(job, options)
Run the toil workflow using the given options.

Deprecated by toil.common.Toil.start.

(see Job.Runner.getDefaultOptions and Job.Runner.addToilOptions) starting with this job. :type job: Job
:param job: root job of the workflow :raises: toil.exceptions.FailedJobsException if at the end of function
there remain failed jobs. :rtype: Any :return: The return value of the root job’s run function.

Parameters
job (Job) –

153

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/optparse.html#module-optparse
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/optparse.html#optparse.OptionParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any

Toil Documentation, Release 5.11.0

Return type
Any

154 Chapter 17. Job.Runner API

https://docs.python.org/3/library/typing.html#typing.Any

CHAPTER

EIGHTEEN

JOB.FILESTORE API

The AbstractFileStore is an abstraction of a Toil run’s shared storage.

class toil.fileStores.abstractFileStore.AbstractFileStore(jobStore, jobDesc, file_store_dir,
waitForPreviousCommit)

Interface used to allow user code run by Toil to read and write files.

Also provides the interface to other Toil facilities used by user code, including:

• normal (non-real-time) logging

• finding the correct temporary directory for scratch work

• importing and exporting files into and out of the workflow

Stores user files in the jobStore, but keeps them separate from actual jobs.

May implement caching.

Passed as argument to the toil.job.Job.run() method.

Access to files is only permitted inside the context manager provided by toil.fileStores.
abstractFileStore.AbstractFileStore.open().

Also responsible for committing completed jobs back to the job store with an update operation, and allowing that
commit operation to be waited for.

Parameters
• jobStore (AbstractJobStore) –

• jobDesc (JobDescription) –

• file_store_dir (str) –

• waitForPreviousCommit (Callable[[], Any]) –

__init__(jobStore, jobDesc, file_store_dir, waitForPreviousCommit)
Create a new file store object.

Parameters
• jobStore (AbstractJobStore) – the job store in use for the current Toil run.

• jobDesc (JobDescription) – the JobDescription object for the currently running job.

• file_store_dir (str) – the per-worker local temporary directory where the file store
should store local files. Per-job directories will be created under here by the file store.

• waitForPreviousCommit (Callable[[], Any]) – the waitForCommit method of the pre-
vious job’s file store, when jobs are running in sequence on the same worker. Used to

155

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any

Toil Documentation, Release 5.11.0

prevent this file store’s startCommit and the previous job’s startCommit methods from run-
ning at the same time and racing. If they did race, it might be possible for the later job to
be fully marked as completed in the job store before the eralier job was.

Return type
None

static createFileStore(jobStore, jobDesc, file_store_dir, waitForPreviousCommit, caching)
Create a concreate FileStore.

Parameters
• jobStore (AbstractJobStore) –

• jobDesc (JobDescription) –

• file_store_dir (str) –

• waitForPreviousCommit (Callable[[], Any]) –

• caching (Optional[bool]) –

Return type
Union[NonCachingFileStore, CachingFileStore]

static shutdownFileStore(workflowID, config_work_dir, config_coordination_dir)
Carry out any necessary filestore-specific cleanup.

This is a destructive operation and it is important to ensure that there are no other running processes on the
system that are modifying or using the file store for this workflow.

This is the intended to be the last call to the file store in a Toil run, called by the batch system cleanup
function upon batch system shutdown.

Parameters
• workflowID (str) – The workflow ID for this invocation of the workflow

• config_work_dir (Optional[str]) – The path to the work directory in the Toil Config.

• config_coordination_dir (Optional[str]) – The path to the coordination directory
in the Toil Config.

Return type
None

open(job)
Create the context manager around tasks prior and after a job has been run.

File operations are only permitted inside the context manager.

Implementations must only yield from within with super().open(job):.

Parameters
job (Job) – The job instance of the toil job to run.

Return type
Generator[None, None, None]

getLocalTempDir()

Get a new local temporary directory in which to write files.

The directory will only persist for the duration of the job.

Return type
str

156 Chapter 18. job.fileStore API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Returns
The absolute path to a new local temporary directory. This directory will exist for the duration
of the job only, and is guaranteed to be deleted once the job terminates, removing all files it
contains recursively.

getLocalTempFile(suffix=None, prefix=None)
Get a new local temporary file that will persist for the duration of the job.

Parameters
• suffix (Optional[str]) – If not None, the file name will end with this string. Otherwise,

default value “.tmp” will be used

• prefix (Optional[str]) – If not None, the file name will start with this string. Otherwise,
default value “tmp” will be used

Return type
str

Returns
The absolute path to a local temporary file. This file will exist for the duration of the job only,
and is guaranteed to be deleted once the job terminates.

getLocalTempFileName(suffix=None, prefix=None)
Get a valid name for a new local file. Don’t actually create a file at the path.

Parameters
• suffix (Optional[str]) – If not None, the file name will end with this string. Otherwise,

default value “.tmp” will be used

• prefix (Optional[str]) – If not None, the file name will start with this string. Otherwise,
default value “tmp” will be used

Return type
str

Returns
Path to valid file

abstract writeGlobalFile(localFileName, cleanup=False)
Upload a file (as a path) to the job store.

If the file is in a FileStore-managed temporary directory (i.e. from toil.fileStores.
abstractFileStore.AbstractFileStore.getLocalTempDir()), it will become a local copy
of the file, eligible for deletion by toil.fileStores.abstractFileStore.AbstractFileStore.
deleteLocalFile().

If an executable file on the local filesystem is uploaded, its executability will be preserved when it is down-
loaded again.

Parameters
• localFileName (str) – The path to the local file to upload. The last path component

(basename of the file) will remain associated with the file in the file store, if supported by
the backing JobStore, so that the file can be searched for by name or name glob.

• cleanup (bool) – if True then the copy of the global file will be deleted once the job and
all its successors have completed running. If not the global file must be deleted manually.

Return type
FileID

157

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Returns
an ID that can be used to retrieve the file.

writeGlobalFileStream(cleanup=False, basename=None, encoding=None, errors=None)
Similar to writeGlobalFile, but allows the writing of a stream to the job store. The yielded file handle does
not need to and should not be closed explicitly.

Parameters
• encoding (Optional[str]) – The name of the encoding used to decode the file. Encod-

ings are the same as for decode(). Defaults to None which represents binary mode.

• errors (Optional[str]) – Specifies how encoding errors are to be handled. Errors are
the same as for open(). Defaults to ‘strict’ when an encoding is specified.

• cleanup (bool) – is as in toil.fileStores.abstractFileStore.
AbstractFileStore.writeGlobalFile().

• basename (Optional[str]) – If supported by the backing JobStore, use the given file
basename so that when searching the job store with a query matching that basename, the
file will be detected.

Return type
Iterator[Tuple[WriteWatchingStream , FileID]]

Returns
A context manager yielding a tuple of 1) a file handle which can be written to and 2) the
toil.fileStores.FileID of the resulting file in the job store.

logAccess(fileStoreID, destination=None)
Record that the given file was read by the job.

(to be announced if the job fails)

If destination is not None, it gives the path that the file was downloaded to. Otherwise, assumes that the
file was streamed.

Must be called by readGlobalFile() and readGlobalFileStream() implementations.

Parameters
• fileStoreID (Union[FileID, str]) –

• destination (Optional[str]) –

Return type
None

abstract readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=False, symlink=False)
Make the file associated with fileStoreID available locally.

If mutable is True, then a copy of the file will be created locally so that the original is not modified and
does not change the file for other jobs. If mutable is False, then a link can be created to the file, saving disk
resources. The file that is downloaded will be executable if and only if it was originally uploaded from an
executable file on the local filesystem.

If a user path is specified, it is used as the destination. If a user path isn’t specified, the file is stored in the
local temp directory with an encoded name.

The destination file must not be deleted by the user; it can only be deleted through deleteLocalFile.

Implementations must call logAccess() to report the download.

Parameters

158 Chapter 18. job.fileStore API

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

• fileStoreID (str) – job store id for the file

• userPath (Optional[str]) – a path to the name of file to which the global file will be
copied or hard-linked (see below).

• cache (bool) – Described in toil.fileStores.CachingFileStore.
readGlobalFile()

• mutable (bool) – Described in toil.fileStores.CachingFileStore.
readGlobalFile()

• symlink (bool) – True if caller can accept symlink, False if caller can only accept a normal
file or hardlink

Return type
str

Returns
An absolute path to a local, temporary copy of the file keyed by fileStoreID.

abstract readGlobalFileStream(fileStoreID, encoding=None, errors=None)
Read a stream from the job store; similar to readGlobalFile.

The yielded file handle does not need to and should not be closed explicitly.

Parameters
• encoding (Optional[str]) – the name of the encoding used to decode the file. Encodings

are the same as for decode(). Defaults to None which represents binary mode.

• errors (Optional[str]) – an optional string that specifies how encoding errors are to
be handled. Errors are the same as for open(). Defaults to ‘strict’ when an encoding is
specified.

• fileStoreID (str) –

Return type
AbstractContextManager[Union[IO[bytes], IO[str]]]

Implementations must call logAccess() to report the download.

Return type
AbstractContextManager[Union[IO[bytes], IO[str]]]

Returns
a context manager yielding a file handle which can be read from.

Parameters
• fileStoreID (str) –

• encoding (Optional[str]) –

• errors (Optional[str]) –

getGlobalFileSize(fileStoreID)

Get the size of the file pointed to by the given ID, in bytes.

If a FileID or something else with a non-None ‘size’ field, gets that.

Otherwise, asks the job store to poll the file’s size.

Note that the job store may overestimate the file’s size, for example if it is encrypted and had to be augmented
with an IV or other encryption framing.

159

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
fileStoreID (Union[FileID, str]) – File ID for the file

Return type
int

Returns
File’s size in bytes, as stored in the job store

abstract deleteLocalFile(fileStoreID)

Delete local copies of files associated with the provided job store ID.

Raises an OSError with an errno of errno.ENOENT if no such local copies exist. Thus, cannot be called
multiple times in succession.

The files deleted are all those previously read from this file ID via readGlobalFile by the current job into
the job’s file-store-provided temp directory, plus the file that was written to create the given file ID, if it
was written by the current job from the job’s file-store-provided temp directory.

Parameters
fileStoreID (Union[FileID, str]) – File Store ID of the file to be deleted.

Return type
None

abstract deleteGlobalFile(fileStoreID)

Delete local files and then permanently deletes them from the job store.

To ensure that the job can be restarted if necessary, the delete will not happen until after the job’s run
method has completed.

Parameters
fileStoreID (Union[FileID, str]) – the File Store ID of the file to be deleted.

Return type
None

logToMaster(text, level=20)
Send a logging message to the leader. The message will also be logged by the worker at the same level.

Parameters
• text (str) – The string to log.

• level (int) – The logging level.

Return type
None

abstract startCommit(jobState=False)
Update the status of the job on the disk.

May start an asynchronous process. Call waitForCommit() to wait on that process.

Parameters
jobState (bool) – If True, commit the state of the FileStore’s job, and file deletes. Other-
wise, commit only file creates/updates.

Return type
None

160 Chapter 18. job.fileStore API

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

abstract waitForCommit()

Blocks while startCommit is running.

This function is called by this job’s successor to ensure that it does not begin modifying the job store until
after this job has finished doing so.

Might be called when startCommit is never called on a particular instance, in which case it does not block.

Return type
bool

Returns
Always returns True

abstract classmethod shutdown(shutdown_info)
Shutdown the filestore on this node.

This is intended to be called on batch system shutdown.

Parameters
shutdown_info (Any) – The implementation-specific shutdown information, for shutting
down the file store and removing all its state and all job local temp directories from the node.

Return type
None

class toil.fileStores.FileID(fileStoreID, size, executable=False)
A small wrapper around Python’s builtin string class.

It is used to represent a file’s ID in the file store, and has a size attribute that is the file’s size in bytes. This object
is returned by importFile and writeGlobalFile.

Calls into the file store can use bare strings; size will be queried from the job store if unavailable in the ID.

Parameters
• fileStoreID (str) –

• size (int) –

• executable (bool) –

• args (Any) –

Return type
FileID

__init__(fileStoreID, size, executable=False)

Parameters
• fileStoreID (str) –

• size (int) –

• executable (bool) –

Return type
None

pack()

Pack the FileID into a string so it can be passed through external code.

Return type
str

161

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

classmethod unpack(packedFileStoreID)

Unpack the result of pack() into a FileID object.

Parameters
packedFileStoreID (str) –

Return type
FileID

162 Chapter 18. job.fileStore API

https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

NINETEEN

BATCH SYSTEM API

The batch system interface is used by Toil to abstract over different ways of running batches of jobs, for exam-
ple Slurm, GridEngine, Mesos, Parasol and a single node. The toil.batchSystems.abstractBatchSystem.
AbstractBatchSystem API is implemented to run jobs using a given job management system, e.g. Mesos.

19.1 Batch System Enivronmental Variables

Environmental variables allow passing of scheduler specific parameters.

For SLURM there are two environment variables - the first applies to all jobs, while the second defined the partition to
use for parallel jobs:

export TOIL_SLURM_ARGS="-t 1:00:00 -q fatq"
export TOIL_SLURM_PE='multicore'

For TORQUE there are two environment variables - one for everything but the resource requirements, and another -
for resources requirements (without the -l prefix):

export TOIL_TORQUE_ARGS="-q fatq"
export TOIL_TORQUE_REQS="walltime=1:00:00"

For GridEngine (SGE, UGE), there is an additional environmental variable to define the parallel environment for run-
ning multicore jobs:

export TOIL_GRIDENGINE_PE='smp'
export TOIL_GRIDENGINE_ARGS='-q batch.q'

For HTCondor, additional parameters can be included in the submit file passed to condor_submit:

export TOIL_HTCONDOR_PARAMS='requirements = TARGET.has_sse4_2 == true; accounting_group␣
→˓= test'

The environment variable is parsed as a semicolon-separated string of parameter = value pairs.

163

http://www.softpanorama.org/HPC/Grid_engine/parallel_environment.shtml#Important_details

Toil Documentation, Release 5.11.0

19.2 Batch System API

class toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

An abstract base class to represent the interface the batch system must provide to Toil.

abstract classmethod supportsAutoDeployment()

Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

Return type
bool

abstract classmethod supportsWorkerCleanup()

Indicates whether this batch system invokes BatchSystemSupport.workerCleanup() after the last job
for a particular workflow invocation finishes. Note that the term worker refers to an entire node, not just a
worker process. A worker process may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The batch system is said to shut down
after the last worker process terminates.

Return type
bool

setUserScript(userScript)
Set the user script for this workflow. This method must be called before the first job is issued to this batch
system, and only if supportsAutoDeployment() returns True, otherwise it will raise an exception.

Parameters
userScript (Resource) – the resource object representing the user script or module and
the modules it depends on.

Return type
None

set_message_bus(message_bus)
Give the batch system an opportunity to connect directly to the message bus, so that it can send informational
messages about the jobs it is running to other Toil components.

Parameters
message_bus (MessageBus) –

Return type
None

abstract issueBatchJob(jobDesc, job_environment=None)
Issues a job with the specified command to the batch system and returns a unique jobID.

Parameters
• jobDesc (JobDescription) – a toil.job.JobDescription

• job_environment (Optional[Dict[str, str]]) – a collection of job-specific environ-
ment variables to be set on the worker.

Return type
int

Returns
a unique jobID that can be used to reference the newly issued job

164 Chapter 19. Batch System API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

abstract killBatchJobs(jobIDs)
Kills the given job IDs. After returning, the killed jobs will not appear in the results of getRunningBatchJo-
bIDs. The killed job will not be returned from getUpdatedBatchJob.

Parameters
jobIDs (List[int]) – list of IDs of jobs to kill

Return type
None

abstract getIssuedBatchJobIDs()

Gets all currently issued jobs

Return type
List[int]

Returns
A list of jobs (as jobIDs) currently issued (may be running, or may be waiting to be run).
Despite the result being a list, the ordering should not be depended upon.

abstract getRunningBatchJobIDs()

Gets a map of jobs as jobIDs that are currently running (not just waiting) and how long they have been
running, in seconds.

Return type
Dict[int, float]

Returns
dictionary with currently running jobID keys and how many seconds they have been running
as the value

abstract getUpdatedBatchJob(maxWait)
Returns information about job that has updated its status (i.e. ceased running, either successfully or with
an error). Each such job will be returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they may cause None to be returned earlier
than maxWait.

Parameters
maxWait (int) – the number of seconds to block, waiting for a result

Return type
Optional[UpdatedBatchJobInfo]

Returns
If a result is available, returns UpdatedBatchJobInfo. Otherwise it returns None. wallTime is
the number of seconds (a strictly positive float) in wall-clock time the job ran for, or None if
this batch system does not support tracking wall time.

getSchedulingStatusMessage()

Get a log message fragment for the user about anything that might be going wrong in the batch system, if
available.

If no useful message is available, return None.

This can be used to report what resource is the limiting factor when scheduling jobs, for example. If the
leader thinks the workflow is stuck, the message can be displayed to the user to help them diagnose why it
might be stuck.

Return type
Optional[str]

19.2. Batch System API 165

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Returns
User-directed message about scheduling state.

abstract shutdown()

Called at the completion of a toil invocation. Should cleanly terminate all worker threads.

Return type
None

setEnv(name, value=None)
Set an environment variable for the worker process before it is launched.

The worker process will typically inherit the environment of the machine it is running on but this method
makes it possible to override specific variables in that inherited environment before the worker is launched.
Note that this mechanism is different to the one used by the worker internally to set up the environment of
a job. A call to this method affects all jobs issued after this method returns. Note to implementors: This
means that you would typically need to copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

Parameters
• name (str) –

• value (Optional[str]) –

Return type
None

classmethod add_options(parser)
If this batch system provides any command line options, add them to the given parser.

Parameters
parser (Union[ArgumentParser, _ArgumentGroup]) –

Return type
None

classmethod setOptions(setOption)
Process command line or configuration options relevant to this batch system.

Parameters
setOption (OptionSetter) – A function with signature setOption(option_name, pars-
ing_function=None, check_function=None, default=None, env=None) returning nothing,
used to update run configuration as a side effect.

Return type
None

getWorkerContexts()

Get a list of picklable context manager objects to wrap worker work in, in order.

Can be used to ask the Toil worker to do things in-process (such as configuring environment variables,
hot-deploying user scripts, or cleaning up a node) that would otherwise require a wrapping “executor”
process.

Return type
List[AbstractContextManager[Any]]

166 Chapter 19. Batch System API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any

CHAPTER

TWENTY

JOB.SERVICE API

The Service class allows databases and servers to be spawned within a Toil workflow.

class Job.Service(memory=None, cores=None, disk=None, accelerators=None, preemptible=None,
unitName=None)

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

__init__(memory=None, cores=None, disk=None, accelerators=None, preemptible=None,
unitName=None)

Memory, core and disk requirements are specified identically to as in toil.job.Job.__init__().

abstract start(job)
Start the service.

Parameters
job (Job) – The underlying host job that the service is being run in. Can be used to register
deferred functions, or to access the fileStore for creating temporary files.

Return type
Any

Returns
An object describing how to access the service. The object must be pickleable and will be
used by jobs to access the service (see toil.job.Job.addService()).

abstract stop(job)
Stops the service. Function can block until complete.

Parameters
job (Job) – The underlying host job that the service is being run in. Can be used to register
deferred functions, or to access the fileStore for creating temporary files.

Return type
None

check()

Checks the service is still running.

Raises
exceptions.RuntimeError – If the service failed, this will cause the service job to be
labeled failed.

Return type
bool

167

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Returns
True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should
raise a RuntimeError, not return False!

168 Chapter 20. Job.Service API

CHAPTER

TWENTYONE

EXCEPTIONS API

Toil specific exceptions.

exception toil.job.JobException(message)
General job exception.

Parameters
message (str) –

Return type
None

__init__(message)

Parameters
message (str) –

Return type
None

exception toil.job.JobGraphDeadlockException(string)
An exception raised in the event that a workflow contains an unresolvable dependency, such as a cycle. See
toil.job.Job.checkJobGraphForDeadlocks().

__init__(string)

exception toil.jobStores.abstractJobStore.ConcurrentFileModificationException(jobStoreFileID)

Indicates that the file was attempted to be modified by multiple processes at once.

Parameters
jobStoreFileID (FileID) –

__init__(jobStoreFileID)

Parameters
jobStoreFileID (FileID) – the ID of the file that was modified by multiple workers or
processes concurrently

exception toil.jobStores.abstractJobStore.JobStoreExistsException(locator)
Indicates that the specified job store already exists.

Parameters
locator (str) –

__init__(locator)

Parameters
• locator (str) – The location of the job store

169

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• locator –

exception toil.jobStores.abstractJobStore.NoSuchFileException(jobStoreFileID,
customName=None, *extra)

Indicates that the specified file does not exist.

Parameters
• jobStoreFileID (FileID) –

• customName (Optional[str]) –

• extra (Any) –

__init__(jobStoreFileID, customName=None, *extra)

Parameters
• jobStoreFileID (FileID) – the ID of the file that was mistakenly assumed to exist

• customName (Optional[str]) – optionally, an alternate name for the nonexistent file

• extra (Any) – optional extra information to add to the error message

• extra –

exception toil.jobStores.abstractJobStore.NoSuchJobException(jobStoreID)

Indicates that the specified job does not exist.

Parameters
jobStoreID (FileID) –

__init__(jobStoreID)

Parameters
• jobStoreID (FileID) – the jobStoreID that was mistakenly assumed to exist

• jobStoreID –

exception toil.jobStores.abstractJobStore.NoSuchJobStoreException(locator)
Indicates that the specified job store does not exist.

Parameters
locator (str) –

__init__(locator)

Parameters
• locator (str) – The location of the job store

• locator –

170 Chapter 21. Exceptions API

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

TWENTYTWO

RUNNING TESTS

Test make targets, invoked as $ make <target>, subject to which environment variables are set (see Running Inte-
gration Tests).

TARGET DESCRIPTION
test Invokes all tests.
integra-
tion_test

Invokes only the integration tests.

test_offline Skips building the Docker appliance and only invokes tests that have no docker dependencies.
integra-
tion_test_local

Makes integration tests easier to debug locally by running the integration tests serially and doesn’t
redirect output. This makes it appears on the terminal as expected.

Before running tests for the first time, initialize your virtual environment following the steps in Building from Source.

Run all tests (including slow tests):

$ make test

Run only quick tests (as of Jul 25, 2018, this was ~ 20 minutes):

$ export TOIL_TEST_QUICK=True; make test

Run an individual test with:

$ make test tests=src/toil/test/sort/sortTest.py::SortTest::testSort

The default value for tests is "src" which includes all tests in the src/ subdirectory of the project root. Tests that
require a particular feature will be skipped implicitly. If you want to explicitly skip tests that depend on a currently
installed feature, use

$ make test tests="-m 'not aws' src"

This will run only the tests that don’t depend on the aws extra, even if that extra is currently installed. Note the
distinction between the terms feature and extra. Every extra is a feature but there are features that are not extras, such
as the gridengine and parasol features. To skip tests involving both the parasol feature and the aws extra, use the
following:

$ make test tests="-m 'not aws and not parasol' src"

171

Toil Documentation, Release 5.11.0

22.1 Running Tests with pytest

Often it is simpler to use pytest directly, instead of calling the make wrapper. This usually works as expected, but some
tests need some manual preparation. To run a specific test with pytest, use the following:

python -m pytest src/toil/test/sort/sortTest.py::SortTest::testSort

For more information, see the pytest documentation.

22.2 Running Integration Tests

These tests are generally only run using in our CI workflow due to their resource requirements and cost. However, they
can be made available for local testing:

• Running tests that make use of Docker (e.g. autoscaling tests and Docker tests) require an appliance image to be
hosted. First, make sure you have gone through the set up found in Using Docker with Quay. Then to build and
host the appliance image run the make target push_docker.

$ make push_docker

• Running integration tests require activation via an environment variable as well as exporting information relevant
to the desired tests. Enable the integration tests:

$ export TOIL_TEST_INTEGRATIVE=True

• Finally, set the environment variables for keyname and desired zone:

$ export TOIL_X_KEYNAME=[Your Keyname]
$ export TOIL_X_ZONE=[Desired Zone]

Where X is one of our currently supported cloud providers (GCE, AWS).

• See the above sections for guidance on running tests.

22.3 Test Environment Variables

TOIL_TEST_TEMP An absolute path to a directory where Toil tests will write their temporary files. Defaults to
the system’s standard temporary directory.

TOIL_TEST_INTEGRATIVEIf True, this allows the integration tests to run. Only valid when running the tests from the
source directory via make test or make test_parallel.

TOIL_AWS_KEYNAMEAn AWS keyname (see Preparing your AWS environment), which is required to run the AWS
tests.

TOIL_GOOGLE_PROJECTIDA Google Cloud account projectID (see Running in Google Compute Engine (GCE)), which
is required to to run the Google Cloud tests.

TOIL_TEST_QUICKIf True, long running tests are skipped.

Partial install and failing tests
Some tests may fail with an ImportError if the required extras are not installed. Install Toil with all of the extras do
prevent such errors.

172 Chapter 22. Running Tests

https://docs.pytest.org/en/latest/
https://docs.python.org/2/library/tempfile.html#tempfile.gettempdir

Toil Documentation, Release 5.11.0

22.4 Using Docker with Quay

Docker is needed for some of the tests. Follow the appropriate installation instructions for your system on their website
to get started.

When running make test you might still get the following error:

$ make test
Please set TOIL_DOCKER_REGISTRY, e.g. to quay.io/USER.

To solve, make an account with Quay and specify it like so:

$ TOIL_DOCKER_REGISTRY=quay.io/USER make test

where USER is your Quay username.

For convenience you may want to add this variable to your bashrc by running

$ echo 'export TOIL_DOCKER_REGISTRY=quay.io/USER' >> $HOME/.bashrc

22.5 Running Mesos Tests

If you’re running Toil’s Mesos tests, be sure to create the virtualenv with --system-site-packages to include the
Mesos Python bindings. Verify this by activating the virtualenv and running pip list | grep mesos. On macOS,
this may come up empty. To fix it, run the following:

for i in /usr/local/lib/python2.7/site-packages/*mesos*; do ln -snf $i venv/lib/python2.
→˓7/site-packages/; done

22.4. Using Docker with Quay 173

https://www.docker.com/products/docker
https://quay.io/

Toil Documentation, Release 5.11.0

174 Chapter 22. Running Tests

CHAPTER

TWENTYTHREE

DEVELOPING WITH DOCKER

To develop on features reliant on the Toil Appliance (the docker image toil uses for AWS autoscaling), you should
consider setting up a personal registry on Quay or Docker Hub. Because the Toil Appliance images are tagged with
the Git commit they are based on and because only commits on our master branch trigger an appliance build on Quay,
as soon as a developer makes a commit or dirties the working copy they will no longer be able to rely on Toil to
automatically detect the proper Toil Appliance image. Instead, developers wishing to test any appliance changes in
autoscaling should build and push their own appliance image to a personal Docker registry. This is described in the
next section.

23.1 Making Your Own Toil Docker Image

Note! Toil checks if the docker image specified by TOIL_APPLIANCE_SELF exists prior to launching by using the
docker v2 schema. This should be valid for any major docker repository, but there is an option to override this if desired
using the option: -\-forceDockerAppliance.

Here is a general workflow (similar instructions apply when using Docker Hub):

1. Make some changes to the provisioner of your local version of Toil

2. Go to the location where you installed the Toil source code and run

$ make docker

to automatically build a docker image that can now be uploaded to your personal Quay account. If you have not
installed Toil source code yet see Building from Source.

3. If it’s not already you will need Docker installed and need to log into Quay. Also you will want to make sure that
your Quay account is public.

4. Set the environment variable TOIL_DOCKER_REGISTRY to your Quay account. If you find yourself doing this
often you may want to add

export TOIL_DOCKER_REGISTRY=quay.io/<MY_QUAY_USERNAME>

to your .bashrc or equivalent.

5. Now you can run

$ make push_docker

which will upload the docker image to your Quay account. Take note of the image’s tag for the next step.

6. Finally you will need to tell Toil from where to pull the Appliance image you’ve created (it uses the Toil release
you have installed by default). To do this set the environment variable TOIL_APPLIANCE_SELF to the url of your
image. For more info see Environment Variables.

175

https://quay.io/
https://hub.docker.com/
https://quay.io/
https://docs.quay.io/solution/getting-started.html

Toil Documentation, Release 5.11.0

7. Now you can launch your cluster! For more information see Running a Workflow with Autoscaling.

23.2 Running a Cluster Locally

The Toil Appliance container can also be useful as a test environment since it can simulate a Toil cluster locally. An
important caveat for this is autoscaling, since autoscaling will only work on an EC2 instance and cannot (at this time)
be run on a local machine.

To spin up a local cluster, start by using the following Docker run command to launch a Toil leader container:

docker run \
--entrypoint=mesos-master \
--net=host \
-d \
--name=leader \
--volume=/home/jobStoreParentDir:/jobStoreParentDir \
quay.io/ucsc_cgl/toil:3.6.0 \
--registry=in_memory \
--ip=127.0.0.1 \
--port=5050 \
--allocation_interval=500ms

A couple notes on this command: the -d flag tells Docker to run in daemon mode so the container will run in the
background. To verify that the container is running you can run docker ps to see all containers. If you want to run
your own container rather than the official UCSC container you can simply replace the quay.io/ucsc_cgl/toil:3.
6.0 parameter with your own container name.

Also note that we are not mounting the job store directory itself, but rather the location where the job store will be
written. Due to complications with running Docker on MacOS, I recommend only mounting directories within your
home directory. The next command will launch the Toil worker container with similar parameters:

docker run \
--entrypoint=mesos-slave \
--net=host \
-d \
--name=worker \
--volume=/home/jobStoreParentDir:/jobStoreParentDir \
quay.io/ucsc_cgl/toil:3.6.0 \
--work_dir=/var/lib/mesos \
--master=127.0.0.1:5050 \
--ip=127.0.0.1 \
—-attributes=preemptable:False \
--resources=cpus:2

Note here that we are specifying 2 CPUs and a non-preemptable worker. We can easily change either or both of these
in a logical way. To change the number of cores we can change the 2 to whatever number you like, and to change the
worker to be preemptable we change preemptable:False to preemptable:True. Also note that the same volume
is mounted into the worker. This is needed since both the leader and worker write and read from the job store. Now
that your cluster is running, you can run

docker exec -it leader bash

to get a shell in your leader ‘node’. You can also replace the leader parameter with worker to get shell access in your
worker.

176 Chapter 23. Developing with Docker

Toil Documentation, Release 5.11.0

Docker-in-Docker issues
If you want to run Docker inside this Docker cluster (Dockerized tools, perhaps), you should also mount in the Docker
socket via -v /var/run/docker.sock:/var/run/docker.sock. This will give the Docker client inside the Toil
Appliance access to the Docker engine on the host. Client/engine version mismatches have been known to cause
issues, so we recommend using Docker version 1.12.3 on the host to be compatible with the Docker client installed in
the Appliance. Finally, be careful where you write files inside the Toil Appliance - ‘child’ Docker containers launched
in the Appliance will actually be siblings to the Appliance since the Docker engine is located on the host. This means
that the ‘child’ container can only mount in files from the Appliance if the files are located in a directory that was
originally mounted into the Appliance from the host - that way the files are accessible to the sibling container. Note: if
Docker can’t find the file/directory on the host it will silently fail and mount in an empty directory.

23.2. Running a Cluster Locally 177

Toil Documentation, Release 5.11.0

178 Chapter 23. Developing with Docker

CHAPTER

TWENTYFOUR

MAINTAINER’S GUIDELINES

In general, as developers and maintainers of the code, we adhere to the following guidelines:

• We strive to never break the build on master. All development should be done on branches, in either the main
Toil repository or in developers’ forks.

• Pull requests should be used for any and all changes (except truly trivial ones).

• Pull requests should be in response to issues. If you find yourself making a pull request without an issue, you
should create the issue first.

24.1 Naming Conventions

• Commit messages should be great. Most importantly, they must:

– Have a short subject line. If in need of more space, drop down two lines and write a body to explain what
is changing and why it has to change.

– Write the subject line as a command: Destroy all humans, not All humans destroyed.

– Reference the issue being fixed in a Github-parseable format, such as (resolves #1234) at the end of the
subject line, or This will fix #1234. somewhere in the body. If no single commit on its own fixes the issue,
the cross-reference must appear in the pull request title or body instead.

• Branches in the main Toil repository must start with issues/, followed by the issue number (or numbers,
separated by a dash), followed by a short, lowercase, hyphenated description of the change. (There can be many
open pull requests with their associated branches at any given point in time and this convention ensures that we
can easily identify branches.)

Say there is an issue numbered #123 titled Foo does not work. The branch name would be issues/123-fix-foo
and the title of the commit would be Fix foo in case of bar (resolves #123).

24.2 Pull Requests

• All pull requests must be reviewed by a person other than the request’s author. Review the PR by following the
Reviewing Pull Requests checklist.

• Modified pull requests must be re-reviewed before merging. Note that Github does not enforce this!
• Merge pull requests by following the Merging Pull Requests checklist.

• When merging a pull request, make sure to update the Draft Changelog on the Github wiki, which we will use
to produce the changelog for the next release. The PR template tells you to do this, so don’t forget. New entries
should go at the bottom.

179

https://chris.beams.io/posts/git-commit/#seven-rules
https://github.com/DataBiosphere/toil/wiki/Draft-Changelog

Toil Documentation, Release 5.11.0

• Pull requests will not be merged unless CI tests pass. Gitlab tests are only run on code in the main Toil repository
on some branch, so it is the responsibility of the approving reviewer to make sure that pull requests from outside
repositories are copied to branches in the main repository. This can be accomplished with (from a Toil clone):

./contrib/admin/test-pr theirusername their-branch issues/123-fix-description-here

This must be repeated every time the PR submitter updates their PR, after checking to see that the update is not
malicious.

If there is no issue corresponding to the PR, after which the branch can be named, the reviewer of the PR should
first create the issue.

Developers who have push access to the main Toil repository are encouraged to make their pull requests from
within the repository, to avoid this step.

• Prefer using “Squash and marge” when merging pull requests to master especially when the PR contains a “single
unit” of work (i.e. if one were to rewrite the PR from scratch with all the fixes included, they would have one
commit for the entire PR). This makes the commit history on master more readable and easier to debug in case
of a breakage.

When squashing a PR from multiple authors, please add Co-authored-by to give credit to all contributing authors.

See Issue #2816 for more details.

24.3 Publishing a Release

These are the steps to take to publish a Toil release:

• Determine the release version X.Y.Z. This should follow semantic versioning; if user-workflow-breaking changes
are made, X should be incremented, and Y and Z should be zero. If non-breaking changes are made but new
functionality is added, X should remain the same as the last release, Y should be incremented, and Z should be
zero. If only patches are released, X and Y should be the same as the last release and Z should be incremented.

• If it does not exist already, create a release branch in the Toil repo named X.Y.x, where x is a literal lower-case
“x”. For patch releases, find the existing branch and make sure it is up to date with the patch commits that are to
be released. They may be cherry-picked over from master.

• On the release branch, edit version_template.py in the root of the repository. Find the line that looks like
this (slightly different for patch releases):

baseVersion = 'X.Y.0a1'

Make it look like this instead:

baseVersion = 'X.Y.Z'

Commit your change to the branch.

• Tag the current state of the release branch as releases/X.Y.Z.

• Make the Github release here, referencing that tag. For a non-patch release, fill in the description with the
changelog from the wiki page, which you should clear. For a patch release, just describe the patch.

• For a non-patch release, set up the main branch so that development builds will declare themselves to be alpha
versions of what the next release will probably be. Edit version_template.py in the root of the repository on
the main branch to set baseVersion like this:

180 Chapter 24. Maintainer’s Guidelines

https://github.blog/2018-01-29-commit-together-with-co-authors/
https://github.com/DataBiosphere/toil/issues/2816
https://semver.org/
https://trunkbaseddevelopment.com/branch-for-release/
https://github.com/DataBiosphere/toil/releases/new
https://github.com/DataBiosphere/toil/wiki/Draft-Changelog

Toil Documentation, Release 5.11.0

baseVersion = 'X.Y+1.0a1'

Make sure to replace X and Y+1 with actual numbers.

24.4 Using Git Hooks

In the contrib/hooks directory, there are two scripts, mypy-after-commit.py and mypy-before-push.py, that
can be set up as Git hooks to make sure you don’t accidentally push commits that would immediately fail type-checking.
These are supposed to eliminate the need to run make mypy constantly. You can install them into your Git working
copy like this

ln -rs ./contrib/hooks/mypy-after-commit.py .git/hooks/post-commit
ln -rs ./contrib/hooks/mypy-before-push.py .git/hooks/pre-push

After you make a commit, the post-commit script will start type-checking it, and if it takes too long re-launch the
process in the background. When you push, the pre-push script will see if the commit you are pushing type-checked
successfully, and if it hasn’t been type-checked but is currently checked out, it will be type-checked. If type-checking
fails, the push will be aborted.

Type-checking will only be performed if you are in a Toil development virtual environment. If you aren’t, the scripts
won’t do anything.

To bypass or override pre-push hook, if it is wrong or if you need to push something that doesn’t typecheck, you can
git push --no-verify. If the scripts get confused about whether a commit actually typechecks, you can clear out
the type-checking result cache, which is in /var/run/user/<your UID>/.mypy_toil_result_cache on Linux
and in .mypy_toil_result_cache in the Toil repo on Mac.

To uninstall the scripts, delete .git/hooks/post-commit and .git/hooks/pre-push.

24.5 Adding Retries to a Function

See toil.lib.retry .

retry() can be used to decorate any function based on the list of errors one wishes to retry on.

This list of errors can contain normal Exception objects, and/or RetryCondition objects wrapping Exceptions to include
additional conditions.

For example, retrying on a one Exception (HTTPError):

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError])
def update_my_wallpaper():

return get('https://www.deviantart.com/')

Or:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError, ValueError])
(continues on next page)

24.4. Using Git Hooks 181

https://github.com/DataBiosphere/toil/blob/master/src/toil/lib/retry.py

Toil Documentation, Release 5.11.0

(continued from previous page)

def update_my_wallpaper():
return get('https://www.deviantart.com/')

The examples above will retry for the default interval on any errors specified the “errors=” arg list.

To retry on specifically 500/502/503/504 errors, you could specify an ErrorCondition object instead, for example:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
ErrorCondition(

error=HTTPError,
error_codes=[500, 502, 503, 504]

)])
def update_my_wallpaper():

return requests.get('https://www.deviantart.com/')

To retry on specifically errors containing the phrase “NotFound”:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
ErrorCondition(

error=HTTPError,
error_message_must_include="NotFound"

)])
def update_my_wallpaper():

return requests.get('https://www.deviantart.com/')

To retry on all HTTPError errors EXCEPT an HTTPError containing the phrase “NotFound”:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
HTTPError,
ErrorCondition(

error=HTTPError,
error_message_must_include="NotFound",
retry_on_this_condition=False

)])
def update_my_wallpaper():

return requests.get('https://www.deviantart.com/')

To retry on boto3’s specific status errors, an example of the implementation is:

import boto3
from botocore.exceptions import ClientError

@retry(errors=[
ErrorCondition(

(continues on next page)

182 Chapter 24. Maintainer’s Guidelines

Toil Documentation, Release 5.11.0

(continued from previous page)

error=ClientError,
boto_error_codes=["BucketNotFound"]

)])
def boto_bucket(bucket_name):

boto_session = boto3.session.Session()
s3_resource = boto_session.resource('s3')
return s3_resource.Bucket(bucket_name)

Any combination of these will also work, provided the codes are matched to the correct exceptions. A ValueError will
not return a 404, for example.

The retry function as a decorator should make retrying functions easier and clearer. It also encourages smaller inde-
pendent functions, as opposed to lumping many different things that may need to be retried on different conditions in
the same function.

The ErrorCondition object tries to take some of the heavy lifting of writing specific retry conditions and boil it down
to an API that covers all common use-cases without the user having to write any new bespoke functions.

Use-cases covered currently:

1. Retrying on a normal error, like a KeyError.

2. Retrying on HTTP error codes (use ErrorCondition).

3. Retrying on boto’s specific status errors, like “BucketNotFound” (use ErrorCondition).

4. Retrying when an error message contains a certain phrase (use ErrorCondition).

5. Explicitly NOT retrying on a condition (use ErrorCondition).

If new functionality is needed, it’s currently best practice in Toil to add functionality to the ErrorCondition itself rather
than making a new custom retry method.

24.5. Adding Retries to a Function 183

Toil Documentation, Release 5.11.0

184 Chapter 24. Maintainer’s Guidelines

CHAPTER

TWENTYFIVE

PULL REQUEST CHECKLISTS

This document contains checklists for dealing with PRs. More general PR information is available at Pull Requests.

25.1 Reviewing Pull Requests

This checklist is to be kept in sync with the checklist in the pull request template.

When reviewing a PR, do the following:

• Make sure it is coming from issues/XXXX-fix-the-thing in the Toil repo, or from an external repo.
– If it is coming from an external repo, make sure to pull it in for CI with:

contrib/admin/test-pr otheruser theirbranchname issues/XXXX-fix-the-thing

– If there is no associated issue, create one.

• Read through the code changes. Make sure that it doesn’t have:
– Addition of trailing whitespace.

– New variable or member names in camelCase that want to be in snake_case.

– New functions without type hints.

– New functions or classes without informative docstrings.

– Changes to semantics not reflected in the relevant docstrings.

– New or changed command line options for Toil workflows that are not reflected in docs/running/
cliOptions.rst

– New features without tests.

• Comment on the lines of code where problems exist with a review comment. You can shift-click the line numbers
in the diff to select multiple lines.

• Finish the review with an overall description of your opinion.

185

https://github.com/DataBiosphere/toil/issues/new
https://docs.python.org/3/library/typing.html

Toil Documentation, Release 5.11.0

25.2 Merging Pull Requests

This checklist is to be kept in sync with the checklist in the pull request template.

When merging a PR, do the following:

• Make sure the PR passes tests.

• Make sure the PR has been reviewed since its last modification. If not, review it.

• Merge with the Github “Squash and merge” feature.
– If there are multiple authors’ commits, add Co-authored-by to give credit to all contributing

authors.
• Copy its recommended changelog entry to the Draft Changelog.

• Append the issue number in parentheses to the changelog entry.

186 Chapter 25. Pull Request Checklists

https://github.blog/2018-01-29-commit-together-with-co-authors/
https://github.com/DataBiosphere/toil/wiki/Draft-Changelog

CHAPTER

TWENTYSIX

TOIL ARCHITECTURE

The following diagram layouts out the software architecture of Toil.

Fig. 1: Figure 1: The basic components of Toil’s architecture.

These components are described below:
• the leader:

The leader is responsible for deciding which jobs should be run. To do this it traverses the job graph.
Currently this is a single threaded process, but we make aggressive steps to prevent it becoming a
bottleneck (see Read-only Leader described below).

• the job-store:
Handles all files shared between the components. Files in the job-store are the means by which the
state of the workflow is maintained. Each job is backed by a file in the job store, and atomic updates
to this state are used to ensure the workflow can always be resumed upon failure. The job-store can
also store all user files, allowing them to be shared between jobs. The job-store is defined by the
AbstractJobStore class. Multiple implementations of this class allow Toil to support different back-
end file stores, e.g.: S3, network file systems, Google file store, etc.

187

Toil Documentation, Release 5.11.0

• workers:
The workers are temporary processes responsible for running jobs, one at a time per worker. Each
worker process is invoked with a job argument that it is responsible for running. The worker monitors
this job and reports back success or failure to the leader by editing the job’s state in the file-store. If the
job defines successor jobs the worker may choose to immediately run them (see Job Chaining below).

• the batch-system:
Responsible for scheduling the jobs given to it by the leader, creating a worker command for each
job. The batch-system is defined by the AbstractBatchSystem class. Toil uses multiple existing
batch systems to schedule jobs, including Apache Mesos, GridEngine and a multi-process single node
implementation that allows workflows to be run without any of these frameworks. Toil can therefore
fairly easily be made to run a workflow using an existing cluster.

• the node provisioner:
Creates worker nodes in which the batch system schedules workers. It is defined by the
AbstractProvisioner class.

• the statistics and logging monitor:
Monitors logging and statistics produced by the workers and reports them. Uses the job-store to gather
this information.

26.1 Jobs and JobDescriptions

As noted in Job Basics, a job is the atomic unit of work in a Toil workflow. User scripts inherit from the Job class to
define units of work. These jobs are pickled and stored in the job-store by the leader, and are retrieved and un-pickled
by the worker when they are scheduled to run.

During scheduling, Toil does not work with the actual Job objects. Instead, JobDescription objects are used to store
all the information that the Toil Leader ever needs to know about the Job. This includes requirements information,
dependency information, commands to issue, etc.

Internally, the JobDescription object is referenced by its jobStoreID, which is often not human readable. However, the
Job and JobDescription objects contain several human-readable names that are useful for logging and identification:

job-
Name

Name of the kind of job this is. This may be used in job store IDs and logging. Also used to let the cluster
scaler learn a model for how long the job will take. Defaults to the job class’s name if no real user-defined
name is available.
For a FunctionWrappingJob, the jobName is replaced by the wrapped function’s name.
For a CWL workflow, the jobName is the class name of the internal job that is running the CWL workflow,
such as "CWLJob".

unit-
Name

Name of this instance of this kind of job. If set by the user, it will appear with the jobName in logging.
For a CWL workflow, the unitName is set to a descriptive name that includes the CWL file name and the ID
in the file if set.

dis-
play-
Name

A human-readable name to identify this particular job instance. Used as an identifier of the job class in the
stats report. Defaults to the job class’s name if no real user-defined name is available.
For a CWL workflow, the displayName is the absolute workflow URI.

188 Chapter 26. Toil Architecture

Toil Documentation, Release 5.11.0

26.2 Optimizations

Toil implements lots of optimizations designed for scalability. Here we detail some of the key optimizations.

26.2.1 Read-only leader

The leader process is currently implemented as a single thread. Most of the leader’s tasks revolve around processing
the state of jobs, each stored as a file within the job-store. To minimise the load on this thread, each worker does as
much work as possible to manage the state of the job it is running. As a result, with a couple of minor exceptions,
the leader process never needs to write or update the state of a job within the job-store. For example, when a job is
complete and has no further successors the responsible worker deletes the job from the job-store, marking it complete.
The leader then only has to check for the existence of the file when it receives a signal from the batch-system to know
that the job is complete. This off-loading of state management is orthogonal to future parallelization of the leader.

26.2.2 Job chaining

The scheduling of successor jobs is partially managed by the worker, reducing the number of individual jobs the leader
needs to process. Currently this is very simple: if the there is a single next successor job to run and its resources fit
within the resources of the current job and closely match the resources of the current job then the job is run immediately
on the worker without returning to the leader. Further extensions of this strategy are possible, but for many workflows
which define a series of serial successors (e.g. map sequencing reads, post-process mapped reads, etc.) this pattern is
very effective at reducing leader workload.

26.2.3 Preemptable node support

Critical to running at large-scale is dealing with intermittent node failures. Toil is therefore designed to always be
resumable providing the job-store does not become corrupt. This robustness allows Toil to run on preemptible nodes,
which are only available when others are not willing to pay more to use them. Designing workflows that divide into
many short individual jobs that can use preemptable nodes allows for workflows to be efficiently scheduled and executed.

26.2.4 Caching

Running bioinformatic pipelines often require the passing of large datasets between jobs. Toil caches the results from
jobs such that child jobs running on the same node can directly use the same file objects, thereby eliminating the need
for an intermediary transfer to the job store. Caching also reduces the burden on the local disks, because multiple jobs
can share a single file. The resulting drop in I/O allows pipelines to run faster, and, by the sharing of files, allows users
to run more jobs in parallel by reducing overall disk requirements.

To demonstrate the efficiency of caching, we ran an experimental internal pipeline on 3 samples from the TCGA Lung
Squamous Carcinoma (LUSC) dataset. The pipeline takes the tumor and normal exome fastqs, and the tumor rna fastq
and input, and predicts MHC presented neoepitopes in the patient that are potential targets for T-cell based immunother-
apies. The pipeline was run individually on the samples on c3.8xlarge machines on AWS (60GB RAM,600GB SSD
storage, 32 cores). The pipeline aligns the data to hg19-based references, predicts MHC haplotypes using PHLAT, calls
mutations using 2 callers (MuTect and RADIA) and annotates them using SnpEff, then predicts MHC:peptide binding
using the IEDB suite of tools before running an in-house rank boosting algorithm on the final calls.

To optimize time taken, The pipeline is written such that mutations are called on a per-chromosome basis from the
whole-exome bams and are merged into a complete vcf. Running mutect in parallel on whole exome bams requires
each mutect job to download the complete Tumor and Normal Bams to their working directories – An operation that
quickly fills the disk and limits the parallelizability of jobs. The script was run in Toil, with and without caching, and
Figure 2 shows that the workflow finishes faster in the cached case while using less disk on average than the uncached

26.2. Optimizations 189

Toil Documentation, Release 5.11.0

run. We believe that benefits of caching arising from file transfers will be much higher on magnetic disk-based storage
systems as compared to the SSD systems we tested this on.

26.3 Toil support for Common Workflow Language

The CWL document and input document are loaded using the ‘cwltool.load_tool’ module. This performs normalization
and URI expansion (for example, relative file references are turned into absolute file URIs), validates the document
against the CWL schema, initializes Python objects corresponding to major document elements (command line tools,
workflows, workflow steps), and performs static type checking that sources and sinks have compatible types.

Input files referenced by the CWL document and input document are imported into the Toil file store. CWL documents
may use any URI scheme supported by Toil file store, including local files and object storage.

The ‘location’ field of File references are updated to reflect the import token returned by the Toil file store.

For directory inputs, the directory listing is stored in Directory object. Each individual files is imported into Toil file
store.

An initial workflow Job is created from the toplevel CWL document. Then, control passes to the Toil engine which
schedules the initial workflow job to run.

When the toplevel workflow job runs, it traverses the CWL workflow and creates a toil job for each step. The dependency
graph is expressed by making downstream jobs children of upstream jobs, and initializing the child jobs with an input
object containing the promises of output from upstream jobs.

Because Toil jobs have a single output, but CWL permits steps to have multiple output parameters that may feed into
multiple other steps, the input to a CWLJob is expressed with an “indirect dictionary”. This is a dictionary of input
parameters, where each entry value is a tuple of a promise and a promise key. When the job runs, the indirect dictionary
is turned into a concrete input object by resolving each promise into its actual value (which is always a dict), and then
looking up the promise key to get the actual value for the the input parameter.

If a workflow step specifies a scatter, then a scatter job is created and connected into the workflow graph as described
above. When the scatter step runs, it creates child jobs for each parameterizations of the scatter. A gather job is added
as a follow-on to gather the outputs into arrays.

When running a command line tool, it first creates output and temporary directories under the Toil local temp dir. It
runs the command line tool using the single_job_executor from CWLTool, providing a Toil-specific constructor for
filesystem access, and overriding the default PathMapper to use ToilPathMapper.

The ToilPathMapper keeps track of a file’s symbolic identifier (the Toil FileID), its local path on the host (the value
returned by readGlobalFile) and the the location of the file inside the Docker container.

After executing single_job_executor from CWLTool, it gets back the output object and status. If the underlying job
failed, raise an exception. Files from the output object are added to the file store using writeGlobalFile and the ‘location’
field of File references are updated to reflect the token returned by the Toil file store.

When the workflow completes, it returns an indirect dictionary linking to the outputs of the job steps that contribute to
the final output. This is the value returned by toil.start() or toil.restart(). This is resolved to get the final output object.
The files in this object are exported from the file store to ‘outdir’ on the host file system, and the ‘location’ field of File
references are updated to reflect the final exported location of the output files.

190 Chapter 26. Toil Architecture

Toil Documentation, Release 5.11.0

Fig. 2: Figure 2: Efficiency gain from caching. The lower half of each plot describes the disk used by the pipeline
recorded every 10 minutes over the duration of the pipeline, and the upper half shows the corresponding stage of the
pipeline that is being processed. Since jobs requesting the same file shared the same inode, the effective load on the
disk is considerably lower than in the uncached case where every job downloads a personal copy of every file it needs.
We see that in all cases, the uncached run uses almost 300-400GB more that the cached run in the resource heavy
mutation calling step. We also see a benefit in terms of wall time for each stage since we eliminate the time taken for
file transfers.

26.3. Toil support for Common Workflow Language 191

Toil Documentation, Release 5.11.0

192 Chapter 26. Toil Architecture

CHAPTER

TWENTYSEVEN

MINIMUM AWS IAM PERMISSIONS

Toil requires at least the following permissions in an IAM role to operate on a cluster. These are added by default when
launching a cluster. However, ensure that they are present if creating a custom IAM role when launching a cluster with
the --awsEc2ProfileArn parameter.

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"ec2:*",
"s3:*",
"sdb:*",
"iam:PassRole"

],
"Resource": "*"

}
]

}

193

Toil Documentation, Release 5.11.0

194 Chapter 27. Minimum AWS IAM permissions

CHAPTER

TWENTYEIGHT

AUTO-DEPLOYMENT

If you want to run your workflow in a distributed environment, on multiple worker machines, either in the cloud or
on a bare-metal cluster, your script needs to be made available to those other machines. If your script imports other
modules, those modules also need to be made available on the workers. Toil can automatically do that for you, with a
little help on your part. We call this feature auto-deployment of a workflow.

Let’s first examine various scenarios of auto-deploying a workflow, which, as we’ll see shortly cannot be auto-deployed.
Lastly, we’ll deal with the issue of declaring Toil as a dependency of a workflow that is packaged as a setuptools
distribution.

Toil can be easily deployed to a remote host. First, assuming you’ve followed our Preparing your AWS environment
section to install Toil and use it to create a remote leader node on (in this example) AWS, you can now log into this into
using Ssh-Cluster Command and once on the remote host, create and activate a virtualenv (noting to make sure to use
the --system-site-packages option!):

$ virtualenv --system-site-packages venv
$. venv/bin/activate

Note the --system-site-packages option, which ensures that globally-installed packages are accessible inside the
virtualenv. Do not (re)install Toil after this! The --system-site-packages option has already transferred Toil and
the dependencies from your local installation of Toil for you.

From here, you can install a project and its dependencies:

$ tree
.

util
__init__.py
sort

__init__.py
quick.py

workflow
__init__.py
main.py

3 directories, 5 files
$ pip install matplotlib
$ cp -R workflow util venv/lib/python2.7/site-packages

Ideally, your project would have a setup.py file (see setuptools) which streamlines the installation process:

$ tree
.

(continues on next page)

195

http://setuptools.readthedocs.io/en/latest/index.html

Toil Documentation, Release 5.11.0

(continued from previous page)

util
__init__.py
sort

__init__.py
quick.py

workflow
__init__.py
main.py

setup.py

3 directories, 6 files
$ pip install .

Or, if your project has been published to PyPI:

$ pip install my-project

In each case, we have created a virtualenv with the --system-site-packages flag in the venv subdirectory then
installed the matplotlib distribution from PyPI along with the two packages that our project consists of. (Again, both
Python and Toil are assumed to be present on the leader and all worker nodes.)

We can now run our workflow:

$ python main.py --batchSystem=mesos ...

Important: If workflow’s external dependencies contain native code (i.e. are not pure Python) then they must be
manually installed on each worker.

Warning: Neither python setup.py develop nor pip install -e . can be used in this process as, instead
of copying the source files, they create .egg-link files that Toil can’t auto-deploy. Similarly, python setup.py
install doesn’t work either as it installs the project as a Python .egg which is also not currently supported by
Toil (though it could be in the future).

Also note that using the --single-version-externally-managed flag with setup.py will prevent the instal-
lation of your package as an .egg. It will also disable the automatic installation of your project’s dependencies.

28.1 Auto Deployment with Sibling Modules

This scenario applies if the user script imports modules that are its siblings:

$ cd my_project
$ ls
userScript.py utilities.py
$./userScript.py --batchSystem=mesos ...

Here userScript.py imports additional functionality from utilities.py. Toil detects that userScript.py has
sibling modules and copies them to the workers, alongside the user script. Note that sibling modules will be auto-
deployed regardless of whether they are actually imported by the user script–all .py files residing in the same directory
as the user script will automatically be auto-deployed.

196 Chapter 28. Auto-Deployment

https://github.com/BD2KGenomics/toil/issues/1367

Toil Documentation, Release 5.11.0

Sibling modules are a suitable method of organizing the source code of reasonably complicated workflows.

28.2 Auto-Deploying a Package Hierarchy

Recall that in Python, a package is a directory containing one or more .py files—one of which must be called
__init__.py—and optionally other packages. For more involved workflows that contain a significant amount of
code, this is the recommended way of organizing the source code. Because we use a package hierarchy, we can’t really
refer to the user script as such, we call it the user module instead. It is merely one of the modules in the package hierar-
chy. We need to inform Toil that we want to use a package hierarchy by invoking Python’s -m option. That enables Toil
to identify the entire set of modules belonging to the workflow and copy all of them to each worker. Note that while
using the -m option is optional in the scenarios above, it is mandatory in this one.

The following shell session illustrates this:

$ cd my_project
$ tree
.

utils
__init__.py
sort

__init__.py
quick.py

workflow
__init__.py
main.py

3 directories, 5 files
$ python -m workflow.main --batchSystem=mesos ...

Here the user module main.py does not reside in the current directory, but is part of a package called util, in a
subdirectory of the current directory. Additional functionality is in a separate module called util.sort.quick which
corresponds to util/sort/quick.py. Because we invoke the user module via python -m workflow.main, Toil
can determine the root directory of the hierarchy–my_project in this case–and copy all Python modules underneath
it to each worker. The -m option is documented here

When -m is passed, Python adds the current working directory to sys.path, the list of root directories to be considered
when resolving a module name like workflow.main. Without that added convenience we’d have to run the workflow
as PYTHONPATH="$PWD" python -m workflow.main. This also means that Toil can detect the root directory of the
user module’s package hierarchy even if it isn’t the current working directory. In other words we could do this:

$ cd my_project
$ export PYTHONPATH="$PWD"
$ cd /some/other/dir
$ python -m workflow.main --batchSystem=mesos ...

Also note that the root directory itself must not be package, i.e. must not contain an __init__.py.

28.2. Auto-Deploying a Package Hierarchy 197

https://docs.python.org/2/tutorial/modules.html#packages
https://docs.python.org/2/using/cmdline.html#cmdoption-m

Toil Documentation, Release 5.11.0

28.3 Relying on Shared Filesystems

Bare-metal clusters typically mount a shared file system like NFS on each node. If every node has that file system
mounted at the same path, you can place your project on that shared filesystem and run your user script from there.
Additionally, you can clone the Toil source tree into a directory on that shared file system and you won’t even need
to install Toil on every worker. Be sure to add both your project directory and the Toil clone to PYTHONPATH. Toil
replicates PYTHONPATH from the leader to every worker.

Using a shared filesystem
Toil currently only supports a tempdir set to a local, non-shared directory.

28.3.1 Toil Appliance

The term Toil Appliance refers to the Mesos Docker image that Toil uses to simulate the machines in the virtual mesos
cluster. It’s easily deployed, only needs Docker, and allows for workflows to be run in single-machine mode and for
clusters of VMs to be provisioned. To specify a different image, see the Toil Environment Variables section. For more
information on the Toil Appliance, see the Running in AWS section.

198 Chapter 28. Auto-Deployment

CHAPTER

TWENTYNINE

ENVIRONMENT VARIABLES

There are several environment variables that affect the way Toil runs.

TOIL_CHECK_ENV A flag that determines whether Toil will try to refer back to a Python virtual environment in which it is installed when composing commands that may be run on other hosts. If set to True, if Toil is installed in the current virtual environment, it will use absolute paths to its own executables (and the virtual environment must thus be available on at the same path on all nodes). Otherwise, Toil internal commands such as _toil_worker will be resolved according to the PATH on the node where they are executed. This setting can be useful in a shared HPC environment, where users may have their own Toil installations in virtual environments.
TOIL_WORKDIR An absolute path to a directory where Toil will write its temporary files. This directory must exist on each worker node and may be set to a different value on each worker. The --workDir command line option overrides this. When using the Toil docker container, such as on Kubernetes, this defaults to /var/lib/toil. When using Toil autoscaling with Mesos, this is somewhere inside the Mesos sandbox. In all other cases, the system’s standard temporary directory is used.
TOIL_WORKDIR_OVERRIDE An absolute path to a directory where Toil will write its temporary files. This overrides TOIL_WORKDIR and the --workDir command line option.
TOIL_COORDINATION_DIR An absolute path to a directory where Toil will write its lock files. This directory must exist on each worker node and may be set to a different value on each worker. The --coordinationDir command line option overrides this.
TOIL_COORDINATION_DIR_OVERRIDE An absolute path to a directory where Toil will write its lock files. This overrides TOIL_COORDINATION_DIR and the --coordinationDir command line option.
TOIL_BATCH_LOGS_DIR A directory to save batch system logs into, where the leader can access them. The --batchLogsDir option overrides this. Only works for grid engine batch systems such as gridengine, htcondor, torque, slurm, and lsf.
TOIL_KUBERNETES_HOST_PATH A path on Kubernetes hosts that will be mounted as the Toil work directory in the workers, to allow for shared caching. Will be created if it doesn’t already exist.
TOIL_KUBERNETES_OWNER A name prefix for easy identification of Kubernetes jobs. If not set, Toil will use the current user name.
TOIL_KUBERNETES_SERVICE_ACCOUNT A service account name to apply when creating Kubernetes pods.
TOIL_KUBERNETES_POD_TIMEOUT Seconds to wait for a scheduled Kubernetes pod to start running.
KUBE_WATCH_ENABLED A boolean variable that allows for users to utilize kubernetes watch stream feature instead of polling for running jobs. Default value is set to False.
TOIL_TES_ENDPOINT URL to the TES server to run against when using the tes batch system.
TOIL_TES_USER Username to use with HTTP Basic Authentication to log into the TES server.
TOIL_TES_PASSWORD Password to use with HTTP Basic Authentication to log into the TES server.
TOIL_TES_BEARER_TOKEN Token to use to authenticate to the TES server.
TOIL_APPLIANCE_SELF The fully qualified reference for the Toil Appliance you wish to use, in the form REPO/IMAGE:TAG. quay.io/ucsc_cgl/toil:3.6.0 and cket/toil:3.5.0 are both examples of valid options. Note that since Docker defaults to Dockerhub repos, only quay.io repos need to specify their registry.
TOIL_DOCKER_REGISTRY The URL of the registry of the Toil Appliance image you wish to use. Docker will use Dockerhub by default, but the quay.io registry is also very popular and easily specifiable by setting this option to quay.io.
TOIL_DOCKER_NAME The name of the Toil Appliance image you wish to use. Generally this is simply toil but this option is provided to override this, since the image can be built with arbitrary names.
TOIL_AWS_SECRET_NAME For the Kubernetes batch system, the name of a Kubernetes secret which contains a credentials file granting access to AWS resources. Will be mounted as ~/.aws inside Kubernetes-managed Toil containers. Enables the AWSJobStore to be used with the Kubernetes batch system, if the credentials allow access to S3 and SimpleDB.
TOIL_AWS_ZONE Zone to use when using AWS. Also determines region. Overrides TOIL_AWS_REGION.
TOIL_AWS_REGION Region to use when using AWS.
TOIL_AWS_AMI ID of the AMI to use in node provisioning. If in doubt, don’t set this variable.
TOIL_AWS_NODE_DEBUG Determines whether to preserve nodes that have failed health checks. If set to True, nodes that fail EC2 health checks won’t immediately be terminated so they can be examined and the cause of failure determined. If any EC2 nodes are left behind in this manner, the security group will also be left behind by necessity as it cannot be deleted until all associated nodes have been terminated.
TOIL_AWS_BATCH_QUEUE Name or ARN of an AWS Batch Queue to use with the AWS Batch batch system.
TOIL_AWS_BATCH_JOB_ROLE_ARN ARN of an IAM role to run AWS Batch jobs as with the AWS Batch batch system. If the jobs are not run with an IAM role or on machines that have access to S3 and SimpleDB, the AWS job store will not be usable.
TOIL_GOOGLE_PROJECTID The Google project ID to use when generating Google job store names for tests or CWL workflows.
TOIL_SLURM_ARGS Arguments for sbatch for the slurm batch system. Do not pass CPU or memory specifications here. Instead, define resource requirements for the job. There is no default value for this variable. If neither --export nor --export-file is in the argument list, --export=ALL will be provided.
TOIL_SLURM_PE Name of the slurm partition to use for parallel jobs. There is no default value for this variable.
TOIL_GRIDENGINE_ARGS Arguments for qsub for the gridengine batch system. Do not pass CPU or memory specifications here. Instead, define resource requirements for the job. There is no default value for this variable.
TOIL_GRIDENGINE_PE Parallel environment arguments for qsub and for the gridengine batch system. There is no default value for this variable.
TOIL_TORQUE_ARGS Arguments for qsub for the Torque batch system. Do not pass CPU or memory specifications here. Instead, define extra parameters for the job such as queue. Example: -q medium Use TOIL_TORQUE_REQS to pass extra values for the -l resource requirements parameter. There is no default value for this variable.
TOIL_TORQUE_REQS Arguments for the resource requirements for Torque batch system. Do not pass CPU or memory specifications here. Instead, define extra resource requirements as a string that goes after the -l argument to qsub. Example: walltime=2:00:00,file=50gb There is no default value for this variable.
TOIL_LSF_ARGS Additional arguments for the LSF’s bsub command. Instead, define extra parameters for the job such as queue. Example: -q medium. There is no default value for this variable.
TOIL_HTCONDOR_PARAMS Additional parameters to include in the HTCondor submit file passed to condor_submit. Do not pass CPU or memory specifications here. Instead define extra parameters which may be required by HTCondor. This variable is parsed as a semicolon-separated string of parameter = value pairs. Example: requirements = TARGET.has_sse4_2 == true; accounting_group = test. There is no default value for this variable.
TOIL_CUSTOM_DOCKER_INIT_COMMAND Any custom bash command to run in the Toil docker container prior to running the Toil services. Can be used for any custom initialization in the worker and/or primary nodes such as private docker docker authentication. Example for AWS ECR: pip install awscli && eval $(aws ecr get-login --no-include-email --region us-east-1).
TOIL_CUSTOM_INIT_COMMAND Any custom bash command to run prior to starting the Toil appliance. Can be used for any custom initialization in the worker and/or primary nodes such as private docker authentication for the Toil appliance itself (i.e. from TOIL_APPLIANCE_SELF).

continues on next page

199

https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir

Toil Documentation, Release 5.11.0

Table 1 – continued from previous page
TOIL_S3_HOST the IP address or hostname to use for connecting to S3. Example: TOIL_S3_HOST=127.0.0.1
TOIL_S3_PORT a port number to use for connecting to S3. Example: TOIL_S3_PORT=9001
TOIL_S3_USE_SSL enable or disable the usage of SSL for connecting to S3 (True by default). Example: TOIL_S3_USE_SSL=False
TOIL_WES_BROKER_URL An optional broker URL to use to communicate between the WES server and Celery task queue. If unset, amqp://guest:guest@localhost:5672// is used.
TOIL_WES_JOB_STORE_TYPE Type of job store to use by default for workflows run via the WES server. Can be file, aws, or google.
TOIL_OWNER_TAG This will tag cloud resources with a tag reading: “Owner: $TOIL_OWNER_TAG”. This is used internally at UCSC to stop a bot we have that terminates untagged resources.
TOIL_AWS_PROFILE The name of an AWS profile to run TOIL with.
TOIL_AWS_TAGS This will tag cloud resources with any arbitrary tags given in a JSON format. These are overwritten in favor of CLI options when using launch cluster. For information on valid AWS tags, see AWS Tags.
SINGULARITY_DOCKER_HUB_MIRROR An http or https URL for the Singularity wrapper in the Toil Docker container to use as a mirror for Docker Hub.
OMP_NUM_THREADS The number of cores set for OpenMP applications in the workers. If not set, Toil will use the number of job threads.
GUNICORN_CMD_ARGS Specify additional Gunicorn configurations for the Toil WES server. See Gunicorn settings.

200 Chapter 29. Environment Variables

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.gunicorn.org/en/stable/settings.html#settings

CHAPTER

THIRTY

API REFERENCE

This page contains auto-generated API reference documentation1.

30.1 toil

30.1.1 Subpackages

toil.batchSystems

Subpackages

toil.batchSystems.mesos

Subpackages

toil.batchSystems.mesos.test

Package Contents

Classes

ExceptionalThread A thread whose join() method re-raises exceptions raised
during run(). While join() is

MesosTestSupport Mixin for test cases that need a running Mesos master
and agent on the local host.

1 Created with sphinx-autoapi

201

https://github.com/readthedocs/sphinx-autoapi

Toil Documentation, Release 5.11.0

Functions

retry([intervals, infinite_retries, errors, ...]) Retry a function if it fails with any Exception defined in
"errors".

cpu_count() Get the rounded-up integer number of whole CPUs avail-
able.

Attributes

log

toil.batchSystems.mesos.test.retry(intervals=None, infinite_retries=False, errors=None,
log_message=None, prepare=None)

Retry a function if it fails with any Exception defined in “errors”.

Does so every x seconds, where x is defined by a list of numbers (ints or floats) in “intervals”. Also accepts
ErrorCondition events for more detailed retry attempts.

Parameters
• intervals (Optional[List]) – A list of times in seconds we keep retrying until returning

failure. Defaults to retrying with the following exponential back-off before failing: 1s, 1s,
2s, 4s, 8s, 16s

• infinite_retries (bool) – If this is True, reset the intervals when they run out. Defaults
to: False.

• errors (Optional[Sequence[Union[ErrorCondition, Type[Exception]]]]) – A
list of exceptions OR ErrorCondition objects to catch and retry on. ErrorCondition objects
describe more detailed error event conditions than a plain error. An ErrorCondition specifies:
- Exception (required) - Error codes that must match to be retried (optional; defaults to not
checking) - A string that must be in the error message to be retried (optional; defaults to not
checking) - A bool that can be set to False to always error on this condition.

If not specified, this will default to a generic Exception.

• log_message (Optional[Tuple[Callable, str]]) – Optional tuple of (“log/print
function()”, “message string”) that will precede each attempt.

• prepare (Optional[List[Callable]]) – Optional list of functions to call, with the func-
tion’s arguments, between retries, to reset state.

Returns
The result of the wrapped function or raise.

Return type
Callable[[Any], Any]

class toil.batchSystems.mesos.test.ExceptionalThread(group=None, target=None, name=None,
args=(), kwargs=None, *, daemon=None)

Bases: threading.Thread

202 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/threading.html#threading.Thread

Toil Documentation, Release 5.11.0

ExceptionalThreadThread

A thread whose join() method re-raises exceptions raised during run(). While join() is idempotent, the exception
is only during the first invocation of join() that successfully joined the thread. If join() times out, no exception
will be re reraised even though an exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

exc_info

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from
the args and kwargs arguments, respectively.

Return type
None

tryRun()

Return type
None

join(*args, **kwargs)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

30.1. toil 203

Toil Documentation, Release 5.11.0

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

Parameters
• args (Optional[float]) –

• kwargs (Optional[float]) –

Return type
None

toil.batchSystems.mesos.test.cpu_count()

Get the rounded-up integer number of whole CPUs available.

Counts hyperthreads as CPUs.

Uses the system’s actual CPU count, or the current v1 cgroup’s quota per period, if the quota is set.

Ignores the cgroup’s cpu shares value, because it’s extremely difficult to interpret. See https://github.com/
kubernetes/kubernetes/issues/81021.

Caches result for efficiency.

Returns
Integer count of available CPUs, minimum 1.

Return type
int

toil.batchSystems.mesos.test.log

class toil.batchSystems.mesos.test.MesosTestSupport

Mixin for test cases that need a running Mesos master and agent on the local host.

class MesosThread(numCores)
Bases: toil.lib.threading.ExceptionalThread

ExceptionalThread MesosThreadThread

A thread whose join() method re-raises exceptions raised during run(). While join() is idempotent, the
exception is only during the first invocation of join() that successfully joined the thread. If join() times out,
no exception will be re reraised even though an exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

204 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/kubernetes/kubernetes/issues/81021
https://github.com/kubernetes/kubernetes/issues/81021
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

lock

abstract mesosCommand()

tryRun()

findMesosBinary(names)

class MesosMasterThread(numCores)
Bases: MesosTestSupport.MesosThread

ExceptionalThread MesosThreadThread MesosMasterThread

A thread whose join() method re-raises exceptions raised during run(). While join() is idempotent, the
exception is only during the first invocation of join() that successfully joined the thread. If join() times out,
no exception will be re reraised even though an exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):

(continues on next page)

30.1. toil 205

Toil Documentation, Release 5.11.0

(continued from previous page)

... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

mesosCommand()

class MesosAgentThread(numCores)
Bases: MesosTestSupport.MesosThread

ExceptionalThread MesosThreadThread MesosAgentThread

A thread whose join() method re-raises exceptions raised during run(). While join() is idempotent, the
exception is only during the first invocation of join() that successfully joined the thread. If join() times out,
no exception will be re reraised even though an exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

mesosCommand()

wait_for_master()

206 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Submodules

toil.batchSystems.mesos.batchSystem

Module Contents

Classes

MesosBatchSystem A Toil batch system implementation that uses Apache
Mesos to distribute toil jobs as Mesos

Attributes

log

toil.batchSystems.mesos.batchSystem.log

class toil.batchSystems.mesos.batchSystem.MesosBatchSystem(config, maxCores, maxMemory,
maxDisk)

Bases: toil.batchSystems.local_support.BatchSystemLocalSupport, toil.batchSystems.
abstractBatchSystem.AbstractScalableBatchSystem , pymesos.Scheduler

ABC AbstractBatchSystem

AbstractScalableBatchSystem

BatchSystemSupport

MesosBatchSystem

BatchSystemLocalSupport

A Toil batch system implementation that uses Apache Mesos to distribute toil jobs as Mesos tasks over a cluster of
agent nodes. A Mesos framework consists of a scheduler and an executor. This class acts as the scheduler and is
typically run on the master node that also runs the Mesos master process with which the scheduler communicates
via a driver component. The executor is implemented in a separate class. It is run on each agent node and
communicates with the Mesos agent process via another driver object. The scheduler may also be run on a
separate node from the master, which we then call somewhat ambiguously the driver node.

class ExecutorInfo(nodeAddress, agentId, nodeInfo, lastSeen)

userScript

Type
toil.resource.Resource

classmethod supportsAutoDeployment()

Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

30.1. toil 207

Toil Documentation, Release 5.11.0

classmethod supportsWorkerCleanup()

Indicates whether this batch system invokes BatchSystemSupport.workerCleanup() after the last job
for a particular workflow invocation finishes. Note that the term worker refers to an entire node, not just a
worker process. A worker process may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The batch system is said to shut down
after the last worker process terminates.

setUserScript(userScript)
Set the user script for this workflow. This method must be called before the first job is issued to this batch
system, and only if supportsAutoDeployment() returns True, otherwise it will raise an exception.

Parameters
userScript – the resource object representing the user script or module and the modules it
depends on.

ignoreNode(nodeAddress)
Stop sending jobs to this node. Used in autoscaling when the autoscaler is ready to terminate a node, but
jobs are still running. This allows the node to be terminated after the current jobs have finished.

Parameters
nodeAddress – IP address of node to ignore.

unignoreNode(nodeAddress)
Stop ignoring this address, presumably after a node with this address has been terminated. This allows for
the possibility of a new node having the same address as a terminated one.

issueBatchJob(jobNode, job_environment=None)
Issues the following command returning a unique jobID. Command is the string to run, memory is an int
giving the number of bytes the job needs to run in and cores is the number of cpus needed for the job and
error-file is the path of the file to place any std-err/std-out in.

Parameters
• jobNode (toil.job.JobDescription) –

• job_environment (Optional[Dict[str, str]]) –

killBatchJobs(jobIDs)
Kills the given job IDs. After returning, the killed jobs will not appear in the results of getRunningBatchJo-
bIDs. The killed job will not be returned from getUpdatedBatchJob.

Parameters
jobIDs – list of IDs of jobs to kill

getIssuedBatchJobIDs()

Gets all currently issued jobs

Returns
A list of jobs (as jobIDs) currently issued (may be running, or may be waiting to be run).
Despite the result being a list, the ordering should not be depended upon.

getRunningBatchJobIDs()

Gets a map of jobs as jobIDs that are currently running (not just waiting) and how long they have been
running, in seconds.

Returns
dictionary with currently running jobID keys and how many seconds they have been running
as the value

208 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

getUpdatedBatchJob(maxWait)
Returns information about job that has updated its status (i.e. ceased running, either successfully or with
an error). Each such job will be returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they may cause None to be returned earlier
than maxWait.

Parameters
maxWait – the number of seconds to block, waiting for a result

Returns
If a result is available, returns UpdatedBatchJobInfo. Otherwise it returns None. wallTime is
the number of seconds (a strictly positive float) in wall-clock time the job ran for, or None if
this batch system does not support tracking wall time.

nodeInUse(nodeIP)
Can be used to determine if a worker node is running any tasks. If the node is doesn’t exist, this function
should simply return False.

Parameters
nodeIP (str) – The worker nodes private IP address

Returns
True if the worker node has been issued any tasks, else False

Return type
bool

getWaitDuration()

Gets the period of time to wait (floating point, in seconds) between checking for missing/overlong jobs.

shutdown()

Called at the completion of a toil invocation. Should cleanly terminate all worker threads.

Return type
None

registered(driver, frameworkId, masterInfo)
Invoked when the scheduler successfully registers with a Mesos master

resourceOffers(driver, offers)
Invoked when resources have been offered to this framework.

statusUpdate(driver, update)
Invoked when the status of a task has changed (e.g., a agent is lost and so the task is lost, a task finishes and
an executor sends a status update saying so, etc). Note that returning from this callback _acknowledges_
receipt of this status update! If for whatever reason the scheduler aborts during this callback (or the process
exits) another status update will be delivered (note, however, that this is currently not true if the agent
sending the status update is lost/fails during that time).

frameworkMessage(driver, executorId, agentId, message)
Invoked when an executor sends a message.

getNodes(preemptible=None, timeout=None)

Return all nodes that match:
• preemptible status (None includes all)

• timeout period (seen within the last # seconds, or None for all)

30.1. toil 209

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Parameters
• preemptible (Optional[bool]) –

• timeout (Optional[int]) –

Return type
Dict[str, toil.batchSystems.abstractBatchSystem.NodeInfo]

reregistered(driver, masterInfo)
Invoked when the scheduler re-registers with a newly elected Mesos master.

executorLost(driver, executorId, agentId, status)
Invoked when an executor has exited/terminated abnormally.

classmethod get_default_mesos_endpoint()

Get the default IP/hostname and port that we will look for Mesos at.

Return type
str

classmethod add_options(parser)
If this batch system provides any command line options, add them to the given parser.

Parameters
parser (Union[argparse.ArgumentParser, argparse._ArgumentGroup]) –

Return type
None

classmethod setOptions(setOption)
Process command line or configuration options relevant to this batch system.

Parameters
setOption (toil.batchSystems.options.OptionSetter) – A function with signa-
ture setOption(option_name, parsing_function=None, check_function=None, default=None,
env=None) returning nothing, used to update run configuration as a side effect.

toil.batchSystems.mesos.conftest

Module Contents

toil.batchSystems.mesos.conftest.collect_ignore = []

toil.batchSystems.mesos.executor

Module Contents

Classes

MesosExecutor Part of Toil's Mesos framework, runs on a Mesos agent.
A Toil job is passed to it via the

210 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

Functions

main()

Attributes

log

toil.batchSystems.mesos.executor.log

class toil.batchSystems.mesos.executor.MesosExecutor

Bases: pymesos.Executor

MesosExecutor

Part of Toil’s Mesos framework, runs on a Mesos agent. A Toil job is passed to it via the task.data field, and
launched via call(toil.command).

registered(driver, executorInfo, frameworkInfo, agentInfo)
Invoked once the executor driver has been able to successfully connect with Mesos.

reregistered(driver, agentInfo)
Invoked when the executor re-registers with a restarted agent.

disconnected(driver)
Invoked when the executor becomes “disconnected” from the agent (e.g., the agent is being restarted due
to an upgrade).

killTask(driver, taskId)
Kill parent task process and all its spawned children

shutdown(driver)

error(driver, message)
Invoked when a fatal error has occurred with the executor and/or executor driver.

launchTask(driver, task)
Invoked by SchedulerDriver when a Mesos task should be launched by this executor

frameworkMessage(driver, message)
Invoked when a framework message has arrived for this executor.

toil.batchSystems.mesos.executor.main()

30.1. toil 211

Toil Documentation, Release 5.11.0

Package Contents

Classes

Shape Represents a job or a node's "shape", in terms of the di-
mensions of memory, cores, disk and

JobQueue

MesosShape Represents a job or a node's "shape", in terms of the di-
mensions of memory, cores, disk and

Attributes

TaskData

ToilJob

class toil.batchSystems.mesos.Shape(wallTime, memory, cores, disk, preemptible)
Represents a job or a node’s “shape”, in terms of the dimensions of memory, cores, disk and wall-time allocation.

The wallTime attribute stores the number of seconds of a node allocation, e.g. 3600 for AWS. FIXME: and for
jobs?

The memory and disk attributes store the number of bytes required by a job (or provided by a node) in RAM or
on disk (SSD or HDD), respectively.

Parameters
• wallTime (Union[int, float]) –

• memory (int) –

• cores (Union[int, float]) –

• disk (int) –

• preemptible (bool) –

__eq__(other)
Return self==value.

Parameters
other (Any) –

Return type
bool

greater_than(other)

Parameters
other (Any) –

Return type
bool

212 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

__gt__(other)
Return self>value.

Parameters
other (Any) –

Return type
bool

__repr__()

Return repr(self).

Return type
str

__str__()

Return str(self).

Return type
str

__hash__()

Return hash(self).

Return type
int

toil.batchSystems.mesos.TaskData

class toil.batchSystems.mesos.JobQueue

insertJob(job, jobType)

jobIDs()

nextJobOfType(jobType)

typeEmpty(jobType)

class toil.batchSystems.mesos.MesosShape(wallTime, memory, cores, disk, preemptible)
Bases: toil.provisioners.abstractProvisioner.Shape

MesosShapeShape

Represents a job or a node’s “shape”, in terms of the dimensions of memory, cores, disk and wall-time allocation.

The wallTime attribute stores the number of seconds of a node allocation, e.g. 3600 for AWS. FIXME: and for
jobs?

The memory and disk attributes store the number of bytes required by a job (or provided by a node) in RAM or
on disk (SSD or HDD), respectively.

Parameters

30.1. toil 213

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

• wallTime (Union[int, float]) –

• memory (int) –

• cores (Union[int, float]) –

• disk (int) –

• preemptible (bool) –

__gt__(other)
Inverted. Returns True if self is less than other, else returns False.

This is because jobTypes are sorted in decreasing order, and this was done to give expensive jobs priority.

toil.batchSystems.mesos.ToilJob

Submodules

toil.batchSystems.abstractBatchSystem

Module Contents

Classes

BatchJobExitReason Enum where members are also (and must be) ints
UpdatedBatchJobInfo Typed version of namedtuple.
WorkerCleanupInfo Typed version of namedtuple.
AbstractBatchSystem An abstract base class to represent the interface the batch

system must provide to Toil.
BatchSystemSupport Partial implementation of AbstractBatchSystem, support

methods.
NodeInfo The coresUsed attribute is a floating point value between

0 (all cores idle) and 1 (all cores
AbstractScalableBatchSystem A batch system that supports a variable number of

worker nodes. Used by :class:`toil.
ResourcePool Represents an integral amount of a resource (such as

memory bytes).
ResourceSet Represents a collection of distinct resources (such as ac-

celerators).

Attributes

logger

EXIT_STATUS_UNAVAILABLE_VALUE

toil.batchSystems.abstractBatchSystem.logger

toil.batchSystems.abstractBatchSystem.EXIT_STATUS_UNAVAILABLE_VALUE = 255

214 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

class toil.batchSystems.abstractBatchSystem.BatchJobExitReason

Bases: enum.IntEnum

BatchJobExitReasonIntEnumEnum

Enum where members are also (and must be) ints

FINISHED: int = 1

Successfully finished.

FAILED: int = 2

Job finished, but failed.

LOST: int = 3

Preemptable failure (job’s executing host went away).

KILLED: int = 4

Job killed before finishing.

ERROR: int = 5

Internal error.

MEMLIMIT: int = 6

Job hit batch system imposed memory limit.

class toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo

Bases: NamedTuple

NamedTuple UpdatedBatchJobInfo

Typed version of namedtuple.

Usage in Python versions >= 3.6:

class Employee(NamedTuple):
name: str
id: int

This is equivalent to:

Employee = collections.namedtuple('Employee', ['name', 'id'])

30.1. toil 215

https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

The resulting class has extra __annotations__ and _field_types attributes, giving an ordered dict mapping field
names to types. __annotations__ should be preferred, while _field_types is kept to maintain pre PEP 526 compat-
ibility. (The field names are in the _fields attribute, which is part of the namedtuple API.) Alternative equivalent
keyword syntax is also accepted:

Employee = NamedTuple('Employee', name=str, id=int)

In Python versions <= 3.5 use:

Employee = NamedTuple('Employee', [('name', str), ('id', int)])

jobID: int

exitStatus: int

The exit status (integer value) of the job. 0 implies successful.

EXIT_STATUS_UNAVAILABLE_VALUE is used when the exit status is not available (e.g. job is lost).

exitReason: Optional[BatchJobExitReason]

wallTime: Union[float, int, None]

class toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo

Bases: NamedTuple

NamedTuple WorkerCleanupInfo

Typed version of namedtuple.

Usage in Python versions >= 3.6:

class Employee(NamedTuple):
name: str
id: int

This is equivalent to:

Employee = collections.namedtuple('Employee', ['name', 'id'])

The resulting class has extra __annotations__ and _field_types attributes, giving an ordered dict mapping field
names to types. __annotations__ should be preferred, while _field_types is kept to maintain pre PEP 526 compat-
ibility. (The field names are in the _fields attribute, which is part of the namedtuple API.) Alternative equivalent
keyword syntax is also accepted:

Employee = NamedTuple('Employee', name=str, id=int)

In Python versions <= 3.5 use:

Employee = NamedTuple('Employee', [('name', str), ('id', int)])

216 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

work_dir: Optional[str]

Work directory path (where the cache would go) if specified by user

coordination_dir: Optional[str]

Coordination directory path (where lock files would go) if specified by user

workflow_id: str

Used to identify files specific to this workflow

clean_work_dir: str

When to clean up the work and coordination directories for a job (‘always’, ‘onSuccess’, ‘onError’, ‘never’)

class toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

Bases: abc.ABC

ABC AbstractBatchSystem

An abstract base class to represent the interface the batch system must provide to Toil.

abstract classmethod supportsAutoDeployment()

Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

Return type
bool

abstract classmethod supportsWorkerCleanup()

Indicates whether this batch system invokes BatchSystemSupport.workerCleanup() after the last job
for a particular workflow invocation finishes. Note that the term worker refers to an entire node, not just a
worker process. A worker process may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The batch system is said to shut down
after the last worker process terminates.

Return type
bool

abstract setUserScript(userScript)
Set the user script for this workflow. This method must be called before the first job is issued to this batch
system, and only if supportsAutoDeployment() returns True, otherwise it will raise an exception.

Parameters
userScript (toil.resource.Resource) – the resource object representing the user script
or module and the modules it depends on.

Return type
None

set_message_bus(message_bus)
Give the batch system an opportunity to connect directly to the message bus, so that it can send informational
messages about the jobs it is running to other Toil components.

30.1. toil 217

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Parameters
message_bus (toil.bus.MessageBus) –

Return type
None

abstract issueBatchJob(jobDesc, job_environment=None)
Issues a job with the specified command to the batch system and returns a unique jobID.

Parameters
• jobDesc (toil.job.JobDescription) – a toil.job.JobDescription

• job_environment (Optional[Dict[str, str]]) – a collection of job-specific envi-
ronment variables to be set on the worker.

Returns
a unique jobID that can be used to reference the newly issued job

Return type
int

abstract killBatchJobs(jobIDs)
Kills the given job IDs. After returning, the killed jobs will not appear in the results of getRunningBatchJo-
bIDs. The killed job will not be returned from getUpdatedBatchJob.

Parameters
jobIDs (List[int]) – list of IDs of jobs to kill

Return type
None

abstract getIssuedBatchJobIDs()

Gets all currently issued jobs

Returns
A list of jobs (as jobIDs) currently issued (may be running, or may be waiting to be run).
Despite the result being a list, the ordering should not be depended upon.

Return type
List[int]

abstract getRunningBatchJobIDs()

Gets a map of jobs as jobIDs that are currently running (not just waiting) and how long they have been
running, in seconds.

Returns
dictionary with currently running jobID keys and how many seconds they have been running
as the value

Return type
Dict[int, float]

abstract getUpdatedBatchJob(maxWait)
Returns information about job that has updated its status (i.e. ceased running, either successfully or with
an error). Each such job will be returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they may cause None to be returned earlier
than maxWait.

Parameters
maxWait (int) – the number of seconds to block, waiting for a result

218 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Returns
If a result is available, returns UpdatedBatchJobInfo. Otherwise it returns None. wallTime is
the number of seconds (a strictly positive float) in wall-clock time the job ran for, or None if
this batch system does not support tracking wall time.

Return type
Optional[UpdatedBatchJobInfo]

getSchedulingStatusMessage()

Get a log message fragment for the user about anything that might be going wrong in the batch system, if
available.

If no useful message is available, return None.

This can be used to report what resource is the limiting factor when scheduling jobs, for example. If the
leader thinks the workflow is stuck, the message can be displayed to the user to help them diagnose why it
might be stuck.

Returns
User-directed message about scheduling state.

Return type
Optional[str]

abstract shutdown()

Called at the completion of a toil invocation. Should cleanly terminate all worker threads.

Return type
None

abstract setEnv(name, value=None)
Set an environment variable for the worker process before it is launched.

The worker process will typically inherit the environment of the machine it is running on but this method
makes it possible to override specific variables in that inherited environment before the worker is launched.
Note that this mechanism is different to the one used by the worker internally to set up the environment of
a job. A call to this method affects all jobs issued after this method returns. Note to implementors: This
means that you would typically need to copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

Parameters
• name (str) –

• value (Optional[str]) –

Return type
None

classmethod add_options(parser)
If this batch system provides any command line options, add them to the given parser.

Parameters
parser (Union[argparse.ArgumentParser, argparse._ArgumentGroup]) –

Return type
None

classmethod setOptions(setOption)
Process command line or configuration options relevant to this batch system.

30.1. toil 219

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

Parameters
setOption (toil.batchSystems.options.OptionSetter) – A function with signa-
ture setOption(option_name, parsing_function=None, check_function=None, default=None,
env=None) returning nothing, used to update run configuration as a side effect.

Return type
None

getWorkerContexts()

Get a list of picklable context manager objects to wrap worker work in, in order.

Can be used to ask the Toil worker to do things in-process (such as configuring environment variables,
hot-deploying user scripts, or cleaning up a node) that would otherwise require a wrapping “executor”
process.

Return type
List[ContextManager[Any]]

class toil.batchSystems.abstractBatchSystem.BatchSystemSupport(config, maxCores, maxMemory,
maxDisk)

Bases: AbstractBatchSystem

ABC AbstractBatchSystem BatchSystemSupport

Partial implementation of AbstractBatchSystem, support methods.

Parameters
• config (toil.common.Config) –

• maxCores (float) –

• maxMemory (int) –

• maxDisk (int) –

check_resource_request(requirer)
Check resource request is not greater than that available or allowed.

Parameters
• requirer (toil.job.Requirer) – Object whose requirements are being checked

• job_name (str) – Name of the job being checked, for generating a useful error report.

• detail (str) – Batch-system-specific message to include in the error.

Raises
InsufficientSystemResources – raised when a resource is requested in an amount
greater than allowed

Return type
None

220 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

setEnv(name, value=None)
Set an environment variable for the worker process before it is launched. The worker process will typically
inherit the environment of the machine it is running on but this method makes it possible to override specific
variables in that inherited environment before the worker is launched. Note that this mechanism is different
to the one used by the worker internally to set up the environment of a job. A call to this method affects all
jobs issued after this method returns. Note to implementors: This means that you would typically need to
copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

Parameters
• name (str) – the environment variable to be set on the worker.

• value (Optional[str]) – if given, the environment variable given by name will be set
to this value.

Return type
None

if None, the variable’s current value will be used as the value on the worker

Raises
RuntimeError – if value is None and the name cannot be found in the environment

Parameters
• name (str) –

• value (Optional[str]) –

Return type
None

set_message_bus(message_bus)
Give the batch system an opportunity to connect directly to the message bus, so that it can send informational
messages about the jobs it is running to other Toil components.

Parameters
message_bus (toil.bus.MessageBus) –

Return type
None

get_batch_logs_dir()

Get the directory where the backing batch system should save its logs.

Only really makes sense if the backing batch system actually saves logs to a filesystem; Kubernetes for
example does not. Ought to be a directory shared between the leader and the workers, if the backing batch
system writes logs onto the worker’s view of the filesystem, like many HPC schedulers do.

Return type
str

format_std_out_err_path(toil_job_id, cluster_job_id, std)
Format path for batch system standard output/error and other files generated by the batch system itself.

Files will be written to the batch logs directory (–batchLogsDir, defaulting to the Toil work directory) with
names containing both the Toil and batch system job IDs, for ease of debugging job failures.

Param
int toil_job_id : The unique id that Toil gives a job.

30.1. toil 221

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Param
cluster_job_id : What the cluster, for example, GridEngine, uses as its internal job id.

Param
string std : The provenance of the stream (for example: ‘err’ for ‘stderr’ or ‘out’ for ‘stdout’)

Return type
string : Formatted filename; however if self.config.noStdOutErr is true, returns ‘/dev/null’ or
equivalent.

Parameters
• toil_job_id (int) –

• cluster_job_id (str) –

• std (str) –

format_std_out_err_glob(toil_job_id)
Get a glob string that will match all file paths generated by format_std_out_err_path for a job.

Parameters
toil_job_id (int) –

Return type
str

static workerCleanup(info)
Cleans up the worker node on batch system shutdown. Also see supportsWorkerCleanup().

Parameters
info (WorkerCleanupInfo) – A named tuple consisting of all the relevant information for
cleaning up the worker.

Return type
None

class toil.batchSystems.abstractBatchSystem.NodeInfo(coresUsed, memoryUsed, coresTotal,
memoryTotal, requestedCores,
requestedMemory, workers)

The coresUsed attribute is a floating point value between 0 (all cores idle) and 1 (all cores busy), reflecting the
CPU load of the node.

The memoryUsed attribute is a floating point value between 0 (no memory used) and 1 (all memory used),
reflecting the memory pressure on the node.

The coresTotal and memoryTotal attributes are the node’s resources, not just the used resources

The requestedCores and requestedMemory attributes are all the resources that Toil Jobs have reserved on the
node, regardless of whether the resources are actually being used by the Jobs.

The workers attribute is an integer reflecting the number of workers currently active workers on the node.

Parameters
• coresUsed (float) –

• memoryUsed (float) –

• coresTotal (float) –

• memoryTotal (int) –

• requestedCores (float) –

222 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

• requestedMemory (int) –

• workers (int) –

class toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem

Bases: AbstractBatchSystem

ABC AbstractBatchSystem AbstractScalableBatchSystem

A batch system that supports a variable number of worker nodes. Used by toil. provisioners.
clusterScaler.ClusterScaler to scale the number of worker nodes in the cluster up or down depending
on overall load.

abstract getNodes(preemptible=None, timeout=600)
Returns a dictionary mapping node identifiers of preemptible or non-preemptible nodes to NodeInfo objects,
one for each node.

Parameters
• preemptible (Optional[bool]) – If True (False) only (non-)preemptible nodes will be

returned. If None, all nodes will be returned.

• timeout (int) –

Return type
Dict[str, NodeInfo]

abstract nodeInUse(nodeIP)
Can be used to determine if a worker node is running any tasks. If the node is doesn’t exist, this function
should simply return False.

Parameters
nodeIP (str) – The worker nodes private IP address

Returns
True if the worker node has been issued any tasks, else False

Return type
bool

abstract ignoreNode(nodeAddress)
Stop sending jobs to this node. Used in autoscaling when the autoscaler is ready to terminate a node, but
jobs are still running. This allows the node to be terminated after the current jobs have finished.

Parameters
nodeAddress (str) – IP address of node to ignore.

Return type
None

abstract unignoreNode(nodeAddress)
Stop ignoring this address, presumably after a node with this address has been terminated. This allows for
the possibility of a new node having the same address as a terminated one.

30.1. toil 223

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
nodeAddress (str) –

Return type
None

exception toil.batchSystems.abstractBatchSystem.InsufficientSystemResources(requirer,
resource,
available=None,
batch_system=None,
source=None,
details=[])

Bases: Exception

InsufficientSystemResources

Common base class for all non-exit exceptions.

Parameters
• requirer (toil.job.Requirer) –

• resource (str) –

• available (Optional[toil.job.ParsedRequirement]) –

• batch_system (Optional[str]) –

• source (Optional[str]) –

• details (List[str]) –

__str__()

Explain the exception.

Return type
str

exception toil.batchSystems.abstractBatchSystem.AcquisitionTimeoutException(resource,
requested,
available)

Bases: Exception

AcquisitionTimeoutException

To be raised when a resource request times out.

224 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

Parameters
• resource (str) –

• requested (Union[int, float, Set[int]]) –

• available (Union[int, float, Set[int]]) –

class toil.batchSystems.abstractBatchSystem.ResourcePool(initial_value, resource_type, timeout=5)
Represents an integral amount of a resource (such as memory bytes). Amounts can be acquired immediately or
with a timeout, and released. Provides a context manager to do something with an amount of resource acquired.

Parameters
• initial_value (int) –

• resource_type (str) –

• timeout (float) –

acquireNow(amount)
Reserve the given amount of the given resource. Returns True if successful and False if this is not possible
immediately.

Parameters
amount (int) –

Return type
bool

acquire(amount)
Reserve the given amount of the given resource. Raises AcquisitionTimeoutException if this is not possible
in under self.timeout time.

Parameters
amount (int) –

Return type
None

release(amount)

Parameters
amount (int) –

Return type
None

__str__()

Return str(self).

Return type
str

__repr__()

Return repr(self).

Return type
str

acquisitionOf(amount)

Parameters
amount (int) –

30.1. toil 225

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Return type
Iterator[None]

class toil.batchSystems.abstractBatchSystem.ResourceSet(initial_value, resource_type, timeout=5)
Represents a collection of distinct resources (such as accelerators). Subsets can be acquired immediately or with
a timeout, and released. Provides a context manager to do something with a set of of resources acquired.

Parameters
• initial_value (Set[int]) –

• resource_type (str) –

• timeout (float) –

acquireNow(subset)
Reserve the given amount of the given resource. Returns True if successful and False if this is not possible
immediately.

Parameters
subset (Set[int]) –

Return type
bool

acquire(subset)
Reserve the given amount of the given resource. Raises AcquisitionTimeoutException if this is not possible
in under self.timeout time.

Parameters
subset (Set[int]) –

Return type
None

release(subset)

Parameters
subset (Set[int]) –

Return type
None

get_free_snapshot()

Get a snapshot of what items are free right now. May be stale as soon as you get it, but you will need some
kind of hint to try and do an acquire.

Return type
Set[int]

__str__()

Return str(self).

Return type
str

__repr__()

Return repr(self).

Return type
str

226 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

acquisitionOf(subset)

Parameters
subset (Set[int]) –

Return type
Iterator[None]

toil.batchSystems.abstractGridEngineBatchSystem

Module Contents

Classes

AbstractGridEngineBatchSystem A partial implementation of BatchSystemSupport for
batch systems run on a

Attributes

logger

JobTuple

toil.batchSystems.abstractGridEngineBatchSystem.logger

toil.batchSystems.abstractGridEngineBatchSystem.JobTuple

class toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem(config,
max-
Cores,
maxMem-
ory,
maxDisk)

Bases: toil.batchSystems.cleanup_support.BatchSystemCleanupSupport

ABC AbstractBatchSystem BatchSystemSupport AbstractGridEngineBatchSystemBatchSystemCleanupSupportBatchSystemLocalSupport

A partial implementation of BatchSystemSupport for batch systems run on a standard HPC cluster. By default
auto-deployment is not implemented.

class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)
Bases: threading.Thread

30.1. toil 227

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#threading.Thread

Toil Documentation, Release 5.11.0

Thread Worker

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways to specify the activity: by
passing a callable object to the constructor, or by overriding the run() method in a subclass.

Parameters
• newJobsQueue (queue.Queue) –

• updatedJobsQueue (queue.Queue) –

• killQueue (queue.Queue) –

• killedJobsQueue (queue.Queue) –

• boss (AbstractGridEngineBatchSystem) –

getBatchSystemID(jobID)

Get batch system-specific job ID

Note: for the moment this is the only consistent way to cleanly get the batch system job ID
Parameters
jobID (int) – Toil BatchSystem numerical job ID

Return type
str

forgetJob(jobID)

Remove jobID passed
Parameters
jobID (int) – toil job ID

Return type
None

createJobs(newJob)
Create a new job with the given attributes.

Implementation-specific; called by AbstractGridEngineWorker.run()
Parameters
newJob (JobTuple) –

Return type
bool

killJobs()

Kill any running jobs within worker

checkOnJobs()

Check and update status of all running jobs.

Respects statePollingWait and will return cached results if not within time period to talk with the
scheduler.

228 Chapter 30. API Reference

https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

run()

Run any new jobs

abstract coalesce_job_exit_codes(batch_job_id_list)
Returns exit codes for a list of jobs.

Called by AbstractGridEngineWorker.checkOnJobs().

This is an optional part of the interface. It should raise NotImplementedError if not actually imple-
mented for a particular scheduler.

Parameters
batch_job_id_list (string) – List of batch system job ID

Return type
list

abstract prepareSubmission(cpu, memory, jobID, command, jobName, job_environment=None,
gpus=None)

Preparation in putting together a command-line string for submitting to batch system (via submitJob().)
Param

int cpu
Param

int memory
Param

int jobID: Toil job ID
Param

string subLine: the command line string to be called
Param

string jobName: the name of the Toil job, to provide metadata to batch systems if desired
Param

dict job_environment: the environment variables to be set on the worker
Return type

List[str]
Parameters

• cpu (int) –
• memory (int) –
• jobID (int) –
• command (str) –
• jobName (str) –
• job_environment (Optional[Dict[str, str]]) –
• gpus (Optional[int]) –

abstract submitJob(subLine)
Wrapper routine for submitting the actual command-line call, then processing the output to get the
batch system job ID

Param
string subLine: the literal command line string to be called

Return type
string: batch system job ID, which will be stored internally

abstract getRunningJobIDs()

Get a list of running job IDs. Implementation-specific; called by boss AbstractGridEngineBatchSys-
tem implementation via AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

Return type
list

30.1. toil 229

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Toil Documentation, Release 5.11.0

abstract killJob(jobID)

Kill specific job with the Toil job ID. Implementation-specific; called by AbstractGri-
dEngineWorker.killJobs()

Parameters
jobID (string) – Toil job ID

abstract getJobExitCode(batchJobID)

Returns job exit code or an instance of abstractBatchSystem.BatchJobExitReason. if some-
thing else happened other than the job exiting. Implementation-specific; called by AbstractGri-
dEngineWorker.checkOnJobs()

Parameters
batchjobID (string) – batch system job ID

Return type
int|toil.batchSystems.abstractBatchSystem.BatchJobExitReason: exit code int or
BatchJobExitReason if something else happened other than job exiting.

classmethod supportsWorkerCleanup()

Indicates whether this batch system invokes BatchSystemSupport.workerCleanup() after the last job
for a particular workflow invocation finishes. Note that the term worker refers to an entire node, not just a
worker process. A worker process may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The batch system is said to shut down
after the last worker process terminates.

classmethod supportsAutoDeployment()

Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

issueBatchJob(jobDesc, job_environment=None)
Issues a job with the specified command to the batch system and returns a unique jobID.

Parameters
• jobDesc – a toil.job.JobDescription

• job_environment (Optional[Dict[str, str]]) – a collection of job-specific envi-
ronment variables to be set on the worker.

Returns
a unique jobID that can be used to reference the newly issued job

killBatchJobs(jobIDs)
Kills the given jobs, represented as Job ids, then checks they are dead by checking they are not in the list
of issued jobs.

getIssuedBatchJobIDs()

Gets the list of issued jobs

getRunningBatchJobIDs()

Retrieve running job IDs from local and batch scheduler.

Respects statePollingWait and will return cached results if not within time period to talk with the scheduler.

getUpdatedBatchJob(maxWait)
Returns information about job that has updated its status (i.e. ceased running, either successfully or with
an error). Each such job will be returned exactly once.

230 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Does not return info for jobs killed by killBatchJobs, although they may cause None to be returned earlier
than maxWait.

Parameters
maxWait – the number of seconds to block, waiting for a result

Returns
If a result is available, returns UpdatedBatchJobInfo. Otherwise it returns None. wallTime is
the number of seconds (a strictly positive float) in wall-clock time the job ran for, or None if
this batch system does not support tracking wall time.

shutdown()

Signals worker to shutdown (via sentinel) then cleanly joins the thread

Return type
None

setEnv(name, value=None)
Set an environment variable for the worker process before it is launched. The worker process will typically
inherit the environment of the machine it is running on but this method makes it possible to override specific
variables in that inherited environment before the worker is launched. Note that this mechanism is different
to the one used by the worker internally to set up the environment of a job. A call to this method affects all
jobs issued after this method returns. Note to implementors: This means that you would typically need to
copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

Parameters
• name – the environment variable to be set on the worker.

• value – if given, the environment variable given by name will be set to this value.

if None, the variable’s current value will be used as the value on the worker

Raises
RuntimeError – if value is None and the name cannot be found in the environment

classmethod getWaitDuration()

sleepSeconds(sleeptime=1)
Helper function to drop on all state-querying functions to avoid over-querying.

with_retries(operation, *args, **kwargs)
Call operation with args and kwargs. If one of the calls to an SGE command fails, sleep and try again for
a set number of times.

toil.batchSystems.awsBatch

Batch system for running Toil workflows on AWS Batch.

Useful with the AWS job store.

AWS Batch has no means for scheduling based on disk usage, so the backing machines need to have “enough” disk and
other constraints need to guarantee that disk does not fill.

Assumes that an AWS Batch Queue name or ARN is already provided.

Handles creating and destroying a JobDefinition for the workflow run.

Additional containers should be launched with Singularity, not Docker.

30.1. toil 231

https://docs.python.org/3/library/exceptions.html#RuntimeError

Toil Documentation, Release 5.11.0

Module Contents

Classes

AWSBatchBatchSystem Adds cleanup support when the last running job leaves a
node, for batch

Attributes

logger

STATE_TO_EXIT_REASON

MAX_POLL_COUNT

MIN_REQUESTABLE_MIB

MIN_REQUESTABLE_CORES

toil.batchSystems.awsBatch.logger

toil.batchSystems.awsBatch.STATE_TO_EXIT_REASON: Dict[str,
toil.batchSystems.abstractBatchSystem.BatchJobExitReason]

toil.batchSystems.awsBatch.MAX_POLL_COUNT = 100

toil.batchSystems.awsBatch.MIN_REQUESTABLE_MIB = 4

toil.batchSystems.awsBatch.MIN_REQUESTABLE_CORES = 1

class toil.batchSystems.awsBatch.AWSBatchBatchSystem(config, maxCores, maxMemory, maxDisk)
Bases: toil.batchSystems.cleanup_support.BatchSystemCleanupSupport

ABC AbstractBatchSystem AWSBatchBatchSystemBatchSystemCleanupSupportBatchSystemSupport BatchSystemLocalSupport

Adds cleanup support when the last running job leaves a node, for batch systems that can’t provide it using the
backing scheduler.

Parameters
• config (toil.common.Config) –

• maxCores (float) –

• maxMemory (int) –

• maxDisk (int) –

232 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

classmethod supportsAutoDeployment()

Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

Return type
bool

setUserScript(user_script)
Set the user script for this workflow. This method must be called before the first job is issued to this batch
system, and only if supportsAutoDeployment() returns True, otherwise it will raise an exception.

Parameters
• userScript – the resource object representing the user script or module and the modules

it depends on.

• user_script (toil.resource.Resource) –

Return type
None

issueBatchJob(job_desc, job_environment=None)
Issues a job with the specified command to the batch system and returns a unique jobID.

Parameters
• jobDesc – a toil.job.JobDescription

• job_environment (Optional[Dict[str, str]]) – a collection of job-specific envi-
ronment variables to be set on the worker.

• job_desc (toil.job.JobDescription) –

Returns
a unique jobID that can be used to reference the newly issued job

Return type
int

getUpdatedBatchJob(maxWait)
Returns information about job that has updated its status (i.e. ceased running, either successfully or with
an error). Each such job will be returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they may cause None to be returned earlier
than maxWait.

Parameters
maxWait (int) – the number of seconds to block, waiting for a result

Returns
If a result is available, returns UpdatedBatchJobInfo. Otherwise it returns None. wallTime is
the number of seconds (a strictly positive float) in wall-clock time the job ran for, or None if
this batch system does not support tracking wall time.

Return type
Optional[toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo]

shutdown()

Called at the completion of a toil invocation. Should cleanly terminate all worker threads.

30.1. toil 233

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Return type
None

getIssuedBatchJobIDs()

Gets all currently issued jobs

Returns
A list of jobs (as jobIDs) currently issued (may be running, or may be waiting to be run).
Despite the result being a list, the ordering should not be depended upon.

Return type
List[int]

getRunningBatchJobIDs()

Gets a map of jobs as jobIDs that are currently running (not just waiting) and how long they have been
running, in seconds.

Returns
dictionary with currently running jobID keys and how many seconds they have been running
as the value

Return type
Dict[int, float]

killBatchJobs(job_ids)
Kills the given job IDs. After returning, the killed jobs will not appear in the results of getRunningBatchJo-
bIDs. The killed job will not be returned from getUpdatedBatchJob.

Parameters
• jobIDs – list of IDs of jobs to kill

• job_ids (List[int]) –

Return type
None

classmethod add_options(parser)
If this batch system provides any command line options, add them to the given parser.

Parameters
parser (Union[argparse.ArgumentParser, argparse._ArgumentGroup]) –

Return type
None

classmethod setOptions(setOption)
Process command line or configuration options relevant to this batch system.

Parameters
setOption (toil.batchSystems.options.OptionSetter) – A function with signa-
ture setOption(option_name, parsing_function=None, check_function=None, default=None,
env=None) returning nothing, used to update run configuration as a side effect.

Return type
None

234 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

toil.batchSystems.cleanup_support

Module Contents

Classes

BatchSystemCleanupSupport Adds cleanup support when the last running job leaves a
node, for batch

WorkerCleanupContext Context manager used by
BatchSystemCleanupSupport to implement

Attributes

logger

toil.batchSystems.cleanup_support.logger

class toil.batchSystems.cleanup_support.BatchSystemCleanupSupport(config, maxCores,
maxMemory, maxDisk)

Bases: toil.batchSystems.local_support.BatchSystemLocalSupport

ABC AbstractBatchSystem BatchSystemSupport BatchSystemCleanupSupportBatchSystemLocalSupport

Adds cleanup support when the last running job leaves a node, for batch systems that can’t provide it using the
backing scheduler.

Parameters
• config (toil.common.Config) –

• maxCores (float) –

• maxMemory (int) –

• maxDisk (int) –

classmethod supportsWorkerCleanup()

Indicates whether this batch system invokes BatchSystemSupport.workerCleanup() after the last job
for a particular workflow invocation finishes. Note that the term worker refers to an entire node, not just a
worker process. A worker process may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The batch system is said to shut down
after the last worker process terminates.

Return type
bool

30.1. toil 235

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

getWorkerContexts()

Get a list of picklable context manager objects to wrap worker work in, in order.

Can be used to ask the Toil worker to do things in-process (such as configuring environment variables,
hot-deploying user scripts, or cleaning up a node) that would otherwise require a wrapping “executor”
process.

Return type
List[ContextManager[Any]]

class toil.batchSystems.cleanup_support.WorkerCleanupContext(workerCleanupInfo)
Context manager used by BatchSystemCleanupSupport to implement cleanup on a node after the last worker
is done working.

Gets wrapped around the worker’s work.

Parameters
workerCleanupInfo (toil.batchSystems.abstractBatchSystem.
WorkerCleanupInfo) –

__enter__()

Return type
None

__exit__(type, value, traceback)

Parameters
• type (Optional[Type[BaseException]]) –

• value (Optional[BaseException]) –

• traceback (Optional[types.TracebackType]) –

Return type
None

toil.batchSystems.contained_executor

Executor for running inside a container.

Useful for Kubernetes and TES batch systems.

Module Contents

Functions

pack_job(job_desc[, user_script, environment]) Create a command that, when run, will execute the given
job.

executor() Main function of the _toil_contained_executor entry-
point.

236 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/types.html#types.TracebackType

Toil Documentation, Release 5.11.0

Attributes

logger

toil.batchSystems.contained_executor.logger

toil.batchSystems.contained_executor.pack_job(job_desc, user_script=None, environment=None)
Create a command that, when run, will execute the given job.

Parameters
• job_desc (toil.job.JobDescription) – Job description for the job to run.

• user_script (Optional[toil.resource.Resource]) – User script that will be loaded
before the job is run.

• environment (Optional[Dict[str, str]]) – Environment variable dict that will be
applied before

Return type
List[str]

the job is run.

Returns
Command to run the job, as an argument list that can be run

Parameters
• job_desc (toil.job.JobDescription) –

• user_script (Optional[toil.resource.Resource]) –

• environment (Optional[Dict[str, str]]) –

Return type
List[str]

inside the Toil appliance container.

toil.batchSystems.contained_executor.executor()

Main function of the _toil_contained_executor entrypoint.

Runs inside the Toil container.

Responsible for setting up the user script and running the command for the job (which may in turn invoke the
Toil worker entrypoint).

Return type
None

30.1. toil 237

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.batchSystems.gridengine

Module Contents

Classes

GridEngineBatchSystem A partial implementation of BatchSystemSupport for
batch systems run on a

Attributes

logger

toil.batchSystems.gridengine.logger

class toil.batchSystems.gridengine.GridEngineBatchSystem(config, maxCores, maxMemory, maxDisk)
Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

ABC AbstractBatchSystem BatchSystemSupport AbstractGridEngineBatchSystem GridEngineBatchSystemBatchSystemCleanupSupportBatchSystemLocalSupport

A partial implementation of BatchSystemSupport for batch systems run on a standard HPC cluster. By default
auto-deployment is not implemented.

class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)
Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.
Worker

Thread Worker

Grid Engine-specific AbstractGridEngineWorker methods

Parameters
• newJobsQueue (queue.Queue) –

• updatedJobsQueue (queue.Queue) –

• killQueue (queue.Queue) –

• killedJobsQueue (queue.Queue) –

238 Chapter 30. API Reference

https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue

Toil Documentation, Release 5.11.0

• boss (AbstractGridEngineBatchSystem) –

getRunningJobIDs()

Get a list of running job IDs. Implementation-specific; called by boss AbstractGridEngineBatchSys-
tem implementation via AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

Return type
list

killJob(jobID)

Kill specific job with the Toil job ID. Implementation-specific; called by AbstractGri-
dEngineWorker.killJobs()

Parameters
jobID (string) – Toil job ID

prepareSubmission(cpu, memory, jobID, command, jobName, job_environment=None, gpus=None)
Preparation in putting together a command-line string for submitting to batch system (via submitJob().)

Param
int cpu

Param
int memory

Param
int jobID: Toil job ID

Param
string subLine: the command line string to be called

Param
string jobName: the name of the Toil job, to provide metadata to batch systems if desired

Param
dict job_environment: the environment variables to be set on the worker

Return type
List[str]

Parameters
• cpu (int) –
• memory (int) –
• jobID (int) –
• command (str) –
• jobName (str) –
• job_environment (Optional[Dict[str, str]]) –
• gpus (Optional[int]) –

submitJob(subLine)
Wrapper routine for submitting the actual command-line call, then processing the output to get the
batch system job ID

Param
string subLine: the literal command line string to be called

Return type
string: batch system job ID, which will be stored internally

getJobExitCode(sgeJobID)

Get job exist code, checking both qstat and qacct. Return None if still running. Higher level should
retry on CalledProcessErrorStderr, for the case the job has finished and qacct result is stale.

prepareQsub(cpu, mem, jobID, job_environment=None)
Parameters

• cpu (int) –
• mem (int) –
• jobID (int) –

30.1. toil 239

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

• job_environment (Optional[Dict[str, str]]) –
Return type

List[str]

classmethod getWaitDuration()

toil.batchSystems.htcondor

Module Contents

Classes

HTCondorBatchSystem A partial implementation of BatchSystemSupport for
batch systems run on a

Attributes

logger

JobTuple

schedd_lock

toil.batchSystems.htcondor.logger

toil.batchSystems.htcondor.JobTuple

toil.batchSystems.htcondor.schedd_lock

class toil.batchSystems.htcondor.HTCondorBatchSystem(config, maxCores, maxMemory, maxDisk)
Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

ABC AbstractBatchSystem BatchSystemSupport AbstractGridEngineBatchSystem HTCondorBatchSystemBatchSystemCleanupSupportBatchSystemLocalSupport

A partial implementation of BatchSystemSupport for batch systems run on a standard HPC cluster. By default
auto-deployment is not implemented.

class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)
Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.
Worker

240 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Thread Worker

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways to specify the activity: by
passing a callable object to the constructor, or by overriding the run() method in a subclass.

Parameters
• newJobsQueue (queue.Queue) –

• updatedJobsQueue (queue.Queue) –

• killQueue (queue.Queue) –

• killedJobsQueue (queue.Queue) –

• boss (AbstractGridEngineBatchSystem) –

createJobs(newJob)
Create a new job with the given attributes.

Implementation-specific; called by AbstractGridEngineWorker.run()
Parameters
newJob (JobTuple) –

Return type
bool

prepareSubmission(cpu, memory, disk, jobID, jobName, command, environment)
Preparation in putting together a command-line string for submitting to batch system (via submitJob().)

Param
int cpu

Param
int memory

Param
int jobID: Toil job ID

Param
string subLine: the command line string to be called

Param
string jobName: the name of the Toil job, to provide metadata to batch systems if desired

Param
dict job_environment: the environment variables to be set on the worker

Return type
List[str]

Parameters
• cpu (int) –
• memory (int) –
• disk (int) –
• jobID (int) –
• jobName (str) –

30.1. toil 241

https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• command (str) –
• environment (Dict[str, str]) –

submitJob(submitObj)
Wrapper routine for submitting the actual command-line call, then processing the output to get the
batch system job ID

Param
string subLine: the literal command line string to be called

Return type
string: batch system job ID, which will be stored internally

getRunningJobIDs()

Get a list of running job IDs. Implementation-specific; called by boss AbstractGridEngineBatchSys-
tem implementation via AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

Return type
list

killJob(jobID)

Kill specific job with the Toil job ID. Implementation-specific; called by AbstractGri-
dEngineWorker.killJobs()

Parameters
jobID (string) – Toil job ID

getJobExitCode(batchJobID)

Returns job exit code or an instance of abstractBatchSystem.BatchJobExitReason. if some-
thing else happened other than the job exiting. Implementation-specific; called by AbstractGri-
dEngineWorker.checkOnJobs()

Parameters
batchjobID (string) – batch system job ID

Return type
int|toil.batchSystems.abstractBatchSystem.BatchJobExitReason: exit code int or
BatchJobExitReason if something else happened other than job exiting.

connectSchedd()

Connect to HTCondor Schedd and yield a Schedd object.

You can only use it inside the context. Handles locking to make sure that only one thread is trying to
do this at a time.

duplicate_quotes(value)
Escape a string by doubling up all single and double quotes.

This is used for arguments we pass to htcondor that need to be inside both double and single quote
enclosures.

Parameters
value (str) –

Return type
str

getEnvString(overrides)
Build an environment string that a HTCondor Submit object can use.

For examples of valid strings, see: http://research.cs.wisc.edu/htcondor/manual/current/condor_
submit.html#man-condor-submit-environment

Parameters
overrides (Dict[str, str]) –

Return type
str

242 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html#man-condor-submit-environment
http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html#man-condor-submit-environment
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

issueBatchJob(jobNode, job_environment=None)
Issues a job with the specified command to the batch system and returns a unique jobID.

Parameters
• jobDesc – a toil.job.JobDescription

• job_environment (Optional[Dict[str, str]]) – a collection of job-specific envi-
ronment variables to be set on the worker.

Returns
a unique jobID that can be used to reference the newly issued job

toil.batchSystems.kubernetes

Batch system for running Toil workflows on Kubernetes.

Ony useful with network-based job stores, like AWSJobStore.

Within non-privileged Kubernetes containers, additional Docker containers cannot yet be launched. That functionality
will need to wait for user-mode Docker

Module Contents

Classes

KubernetesBatchSystem Adds cleanup support when the last running job leaves a
node, for batch

Functions

is_retryable_kubernetes_error(e) A function that determines whether or not Toil should
retry or stop given

Attributes

logger

retryable_kubernetes_errors

KeyValuesList

toil.batchSystems.kubernetes.logger

toil.batchSystems.kubernetes.retryable_kubernetes_errors: List[Union[Type[Exception],
toil.lib.retry.ErrorCondition]]

30.1. toil 243

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

toil.batchSystems.kubernetes.is_retryable_kubernetes_error(e)
A function that determines whether or not Toil should retry or stop given exceptions thrown by Kubernetes.

Parameters
e (Exception) –

Return type
bool

toil.batchSystems.kubernetes.KeyValuesList

class toil.batchSystems.kubernetes.KubernetesBatchSystem(config, maxCores, maxMemory, maxDisk)
Bases: toil.batchSystems.cleanup_support.BatchSystemCleanupSupport

ABC AbstractBatchSystem BatchSystemSupport BatchSystemCleanupSupport KubernetesBatchSystemBatchSystemLocalSupport

Adds cleanup support when the last running job leaves a node, for batch systems that can’t provide it using the
backing scheduler.

Parameters
• config (toil.common.Config) –

• maxCores (int) –

• maxMemory (int) –

• maxDisk (int) –

class DecoratorWrapper(to_wrap, decorator)
Class to wrap an object so all its methods are decorated.

Parameters
• to_wrap (Any) –

• decorator (Callable[[Callable[P, Any]], Callable[P, Any]]) –

P

__getattr__(name)
Get a member as if we are actually the wrapped object. If it looks callable, we will decorate it.

Parameters
name (str) –

Return type
Any

class Placement

Internal format for pod placement constraints and preferences.

required_labels: KeyValuesList = []

Labels which are required to be present (with these values).

desired_labels: KeyValuesList = []

Labels which are optional, but preferred to be present (with these values).

244 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

prohibited_labels: KeyValuesList = []

Labels which are not allowed to be present (with these values).

tolerated_taints: KeyValuesList = []

Taints which are allowed to be present (with these values).

set_preemptible(preemptible)
Add constraints for a job being preemptible or not.

Preemptible jobs will be able to run on preemptible or non-preemptible nodes, and will prefer pre-
emptible nodes if available.

Non-preemptible jobs will not be allowed to run on nodes that are marked as preemptible.

Understands the labeling scheme used by EKS, and the taint scheme used by GCE. The Toil-managed
Kubernetes setup will mimic at least one of these.

Parameters
preemptible (bool) –

Return type
None

apply(pod_spec)
Set affinity and/or tolerations fields on pod_spec, so that it runs on the right kind of nodes for
the constraints we represent.

Parameters
pod_spec (kubernetes.client.V1PodSpec) –

Return type
None

class KubernetesConfig

Bases: Protocol

Generic Protocol KubernetesConfig

Type-enforcing protocol for Toil configs that have the extra Kubernetes batch system fields.

TODO: Until MyPY lets protocols inherit form non-protocols, we will have to let the fact that this also has
to be a Config just be manually enforced.

kubernetes_host_path: Optional[str]

kubernetes_owner: str

kubernetes_service_account: Optional[str]

kubernetes_pod_timeout: float

ItemT

CovItemT

P

30.1. toil 245

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

R

OptionType

classmethod supportsAutoDeployment()

Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

Return type
bool

setUserScript(userScript)
Set the user script for this workflow. This method must be called before the first job is issued to this batch
system, and only if supportsAutoDeployment() returns True, otherwise it will raise an exception.

Parameters
userScript (toil.resource.Resource) – the resource object representing the user script
or module and the modules it depends on.

Return type
None

issueBatchJob(job_desc, job_environment=None)
Issues a job with the specified command to the batch system and returns a unique jobID.

Parameters
• jobDesc – a toil.job.JobDescription

• job_environment (Optional[Dict[str, str]]) – a collection of job-specific envi-
ronment variables to be set on the worker.

• job_desc (toil.job.JobDescription) –

Returns
a unique jobID that can be used to reference the newly issued job

Return type
int

getUpdatedBatchJob(maxWait)
Returns information about job that has updated its status (i.e. ceased running, either successfully or with
an error). Each such job will be returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they may cause None to be returned earlier
than maxWait.

Parameters
maxWait (float) – the number of seconds to block, waiting for a result

Returns
If a result is available, returns UpdatedBatchJobInfo. Otherwise it returns None. wallTime is
the number of seconds (a strictly positive float) in wall-clock time the job ran for, or None if
this batch system does not support tracking wall time.

Return type
Optional[toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo]

246 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

shutdown()

Called at the completion of a toil invocation. Should cleanly terminate all worker threads.

Return type
None

getIssuedBatchJobIDs()

Gets all currently issued jobs

Returns
A list of jobs (as jobIDs) currently issued (may be running, or may be waiting to be run).
Despite the result being a list, the ordering should not be depended upon.

Return type
List[int]

getRunningBatchJobIDs()

Gets a map of jobs as jobIDs that are currently running (not just waiting) and how long they have been
running, in seconds.

Returns
dictionary with currently running jobID keys and how many seconds they have been running
as the value

Return type
Dict[int, float]

killBatchJobs(jobIDs)
Kills the given job IDs. After returning, the killed jobs will not appear in the results of getRunningBatchJo-
bIDs. The killed job will not be returned from getUpdatedBatchJob.

Parameters
jobIDs (List[int]) – list of IDs of jobs to kill

Return type
None

classmethod get_default_kubernetes_owner()

Get the default Kubernetes-acceptable username string to tack onto jobs.

Return type
str

classmethod add_options(parser)
If this batch system provides any command line options, add them to the given parser.

Parameters
parser (Union[argparse.ArgumentParser, argparse._ArgumentGroup]) –

Return type
None

classmethod setOptions(setOption)
Process command line or configuration options relevant to this batch system.

Parameters
setOption (toil.batchSystems.options.OptionSetter) – A function with signa-
ture setOption(option_name, parsing_function=None, check_function=None, default=None,
env=None) returning nothing, used to update run configuration as a side effect.

Return type
None

30.1. toil 247

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

toil.batchSystems.local_support

Module Contents

Classes

BatchSystemLocalSupport Adds a local queue for helper jobs, useful for CWL &
others.

Attributes

logger

toil.batchSystems.local_support.logger

class toil.batchSystems.local_support.BatchSystemLocalSupport(config, maxCores, maxMemory,
maxDisk)

Bases: toil.batchSystems.abstractBatchSystem.BatchSystemSupport

ABC AbstractBatchSystem BatchSystemSupport BatchSystemLocalSupport

Adds a local queue for helper jobs, useful for CWL & others.

Parameters
• config (toil.common.Config) –

• maxCores (float) –

• maxMemory (int) –

• maxDisk (int) –

handleLocalJob(jobDesc)
To be called by issueBatchJobs.

Returns the jobID if the jobDesc has been submitted to the local queue, otherwise returns None

Parameters
jobDesc (toil.job.JobDescription) –

Return type
Optional[int]

killLocalJobs(jobIDs)
Will kill all local jobs that match the provided jobIDs.

To be called by killBatchJobs.

248 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Parameters
jobIDs (List[int]) –

Return type
None

getIssuedLocalJobIDs()

To be called by getIssuedBatchJobIDs.

Return type
List[int]

getRunningLocalJobIDs()

To be called by getRunningBatchJobIDs().

Return type
Dict[int, float]

getUpdatedLocalJob(maxWait)
To be called by getUpdatedBatchJob().

Parameters
maxWait (int) –

Return type
Optional[toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo]

getNextJobID()

Must be used to get job IDs so that the local and batch jobs do not conflict.

Return type
int

shutdownLocal()

To be called from shutdown().

Return type
None

toil.batchSystems.lsf

Module Contents

Classes

LSFBatchSystem A partial implementation of BatchSystemSupport for
batch systems run on a

30.1. toil 249

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Attributes

logger

toil.batchSystems.lsf.logger

class toil.batchSystems.lsf.LSFBatchSystem(config, maxCores, maxMemory, maxDisk)
Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

ABC AbstractBatchSystem BatchSystemSupport AbstractGridEngineBatchSystem LSFBatchSystemBatchSystemCleanupSupportBatchSystemLocalSupport

A partial implementation of BatchSystemSupport for batch systems run on a standard HPC cluster. By default
auto-deployment is not implemented.

class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)
Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.
Worker

Thread Worker

LSF specific AbstractGridEngineWorker methods.

Parameters
• newJobsQueue (queue.Queue) –

• updatedJobsQueue (queue.Queue) –

• killQueue (queue.Queue) –

• killedJobsQueue (queue.Queue) –

• boss (AbstractGridEngineBatchSystem) –

getRunningJobIDs()

Get a list of running job IDs. Implementation-specific; called by boss AbstractGridEngineBatchSys-
tem implementation via AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

Return type
list

fallbackRunningJobIDs(currentjobs)

250 Chapter 30. API Reference

https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/stdtypes.html#list

Toil Documentation, Release 5.11.0

killJob(jobID)

Kill specific job with the Toil job ID. Implementation-specific; called by AbstractGri-
dEngineWorker.killJobs()

Parameters
jobID (string) – Toil job ID

prepareSubmission(cpu, memory, jobID, command, jobName, job_environment=None, gpus=None)
Preparation in putting together a command-line string for submitting to batch system (via submitJob().)

Param
int cpu

Param
int memory

Param
int jobID: Toil job ID

Param
string subLine: the command line string to be called

Param
string jobName: the name of the Toil job, to provide metadata to batch systems if desired

Param
dict job_environment: the environment variables to be set on the worker

Return type
List[str]

Parameters
• cpu (int) –
• memory (int) –
• jobID (int) –
• command (str) –
• jobName (str) –
• job_environment (Optional[Dict[str, str]]) –
• gpus (Optional[int]) –

submitJob(subLine)
Wrapper routine for submitting the actual command-line call, then processing the output to get the
batch system job ID

Param
string subLine: the literal command line string to be called

Return type
string: batch system job ID, which will be stored internally

coalesce_job_exit_codes(batch_job_id_list)
Returns exit codes for a list of jobs.

Called by AbstractGridEngineWorker.checkOnJobs().

This is an optional part of the interface. It should raise NotImplementedError if not actually imple-
mented for a particular scheduler.

Parameters
batch_job_id_list (string) – List of batch system job ID

Return type
list

getJobExitCode(lsfJobID)

Returns job exit code or an instance of abstractBatchSystem.BatchJobExitReason. if some-
thing else happened other than the job exiting. Implementation-specific; called by AbstractGri-
dEngineWorker.checkOnJobs()

30.1. toil 251

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Toil Documentation, Release 5.11.0

Parameters
batchjobID (string) – batch system job ID

Return type
int|toil.batchSystems.abstractBatchSystem.BatchJobExitReason: exit code int or
BatchJobExitReason if something else happened other than job exiting.

parse_bjobs_record(bjobs_record, job)
Helper functions for getJobExitCode and to parse the bjobs status record

Parameters
• bjobs_record (dict) –
• job (int) –

Return type
Union[int, None]

getJobExitCodeBACCT(job)

fallbackGetJobExitCode(job)

prepareBsub(cpu, mem, jobID)

Make a bsub commandline to execute.
params:

cpu: number of cores needed mem: number of bytes of memory needed jobID: ID number of the
job

Parameters
• cpu (int) –
• mem (int) –
• jobID (int) –

Return type
List[str]

parseBjobs(bjobs_output_str)
Parse records from bjobs json type output

Params bjobs_output_str
stdout of bjobs json type output

parseMaxMem(jobID)

Parse the maximum memory from job.
Parameters
jobID – ID number of the job

getWaitDuration()

We give LSF a second to catch its breath (in seconds)

toil.batchSystems.lsfHelper

Module Contents

252 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Functions

find(basedir, string) walk basedir and return all files matching string
find_first_match (basedir, string) return the first file that matches string starting from

basedir
get_conf_file(filename, env)

apply_conf_file(fn, conf_filename)

per_core_reserve_from_stream(stream)

get_lsf_units_from_stream(stream)

tokenize_conf_stream(conf_handle) convert the key=val pairs in a LSF config stream to tuples
of tokens

apply_bparams(fn) apply fn to each line of bparams, returning the result
apply_lsadmin(fn) apply fn to each line of lsadmin, returning the result
get_lsf_units([resource]) check if we can find LSF_UNITS_FOR_LIMITS in

lsadmin and lsf.conf
parse_mem_and_cmd_from_output(output) Use regex to find "MAX MEM" and "Command" inside

of an output.
get_lsf_version() Get current LSF version
check_lsf_json_output_supported() Check if the current LSF system supports bjobs json out-

put.
parse_memory(mem) Parse memory parameter.
per_core_reservation() returns True if the cluster is configured for reservations

to be per core,

Attributes

LSB_PARAMS_FILENAME

LSF_CONF_FILENAME

LSF_CONF_ENV

DEFAULT_LSF_UNITS

DEFAULT_RESOURCE_UNITS

LSF_JSON_OUTPUT_MIN_VERSION

logger

toil.batchSystems.lsfHelper.LSB_PARAMS_FILENAME = 'lsb.params'

toil.batchSystems.lsfHelper.LSF_CONF_FILENAME = 'lsf.conf'

toil.batchSystems.lsfHelper.LSF_CONF_ENV = ['LSF_CONFDIR', 'LSF_ENVDIR']

30.1. toil 253

Toil Documentation, Release 5.11.0

toil.batchSystems.lsfHelper.DEFAULT_LSF_UNITS = 'KB'

toil.batchSystems.lsfHelper.DEFAULT_RESOURCE_UNITS = 'MB'

toil.batchSystems.lsfHelper.LSF_JSON_OUTPUT_MIN_VERSION = '10.1.0.2'

toil.batchSystems.lsfHelper.logger

toil.batchSystems.lsfHelper.find(basedir, string)
walk basedir and return all files matching string

toil.batchSystems.lsfHelper.find_first_match(basedir, string)
return the first file that matches string starting from basedir

toil.batchSystems.lsfHelper.get_conf_file(filename, env)

toil.batchSystems.lsfHelper.apply_conf_file(fn, conf_filename)

toil.batchSystems.lsfHelper.per_core_reserve_from_stream(stream)

toil.batchSystems.lsfHelper.get_lsf_units_from_stream(stream)

toil.batchSystems.lsfHelper.tokenize_conf_stream(conf_handle)
convert the key=val pairs in a LSF config stream to tuples of tokens

toil.batchSystems.lsfHelper.apply_bparams(fn)
apply fn to each line of bparams, returning the result

toil.batchSystems.lsfHelper.apply_lsadmin(fn)
apply fn to each line of lsadmin, returning the result

toil.batchSystems.lsfHelper.get_lsf_units(resource=False)
check if we can find LSF_UNITS_FOR_LIMITS in lsadmin and lsf.conf files, preferring the value in bparams,
then lsadmin, then the lsf.conf file

Parameters
resource (bool) –

Return type
str

toil.batchSystems.lsfHelper.parse_mem_and_cmd_from_output(output)
Use regex to find “MAX MEM” and “Command” inside of an output.

Parameters
output (str) –

toil.batchSystems.lsfHelper.get_lsf_version()

Get current LSF version

toil.batchSystems.lsfHelper.check_lsf_json_output_supported()

Check if the current LSF system supports bjobs json output.

toil.batchSystems.lsfHelper.parse_memory(mem)

Parse memory parameter.

Parameters
mem (float) –

Return type
str

254 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.batchSystems.lsfHelper.per_core_reservation()

returns True if the cluster is configured for reservations to be per core, False if it is per job

toil.batchSystems.options

Module Contents

Classes

OptionSetter Protocol for the setOption function we get to let us set
up CLI options for

Functions

set_batchsystem_options(batch_system,
set_option)

Call set_option for all the options for the given named
batch system, or

add_all_batchsystem_options(parser)

set_batchsystem_config_defaults(config) Set default and environment-based options for builtin
batch systems. This

Attributes

logger

toil.batchSystems.options.logger

class toil.batchSystems.options.OptionSetter

Bases: Protocol

Generic Protocol OptionSetter

Protocol for the setOption function we get to let us set up CLI options for each batch system.

Actual functionality is defined in the Config class.

OptionType

30.1. toil 255

Toil Documentation, Release 5.11.0

__call__(option_name, parsing_function=None, check_function=None, default=None, env=None,
old_names=None)

Parameters
• option_name (str) –

• parsing_function (Optional[Callable[[Any], OptionType]]) –

• check_function (Optional[Callable[[OptionType], Union[None, bool]]])
–

• default (Optional[OptionType]) –

• env (Optional[List[str]]) –

• old_names (Optional[List[str]]) –

Return type
bool

toil.batchSystems.options.set_batchsystem_options(batch_system, set_option)
Call set_option for all the options for the given named batch system, or all batch systems if no name is provided.

Parameters
• batch_system (Optional[str]) –

• set_option (OptionSetter) –

Return type
None

toil.batchSystems.options.add_all_batchsystem_options(parser)

Parameters
parser (Union[argparse.ArgumentParser, argparse._ArgumentGroup]) –

Return type
None

toil.batchSystems.options.set_batchsystem_config_defaults(config)
Set default and environment-based options for builtin batch systems. This is required if a Config object is not
constructed from an Options object.

Return type
None

toil.batchSystems.parasol

Module Contents

Classes

ParasolBatchSystem The interface for Parasol.

256 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

Attributes

logger

toil.batchSystems.parasol.logger

class toil.batchSystems.parasol.ParasolBatchSystem(config, maxCores, maxMemory, maxDisk)
Bases: toil.batchSystems.abstractBatchSystem.BatchSystemSupport

ABC AbstractBatchSystem BatchSystemSupport ParasolBatchSystem

The interface for Parasol.

parasolOutputPattern

runningPattern

classmethod supportsWorkerCleanup()

Indicates whether this batch system invokes BatchSystemSupport.workerCleanup() after the last job
for a particular workflow invocation finishes. Note that the term worker refers to an entire node, not just a
worker process. A worker process may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The batch system is said to shut down
after the last worker process terminates.

classmethod supportsAutoDeployment()

Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

issueBatchJob(jobDesc, job_environment=None)
Issue parasol with job commands.

Parameters
job_environment (Optional[Dict[str, str]]) –

setEnv(name, value=None)
Set an environment variable for the worker process before it is launched. The worker process will typically
inherit the environment of the machine it is running on but this method makes it possible to override specific
variables in that inherited environment before the worker is launched. Note that this mechanism is different
to the one used by the worker internally to set up the environment of a job. A call to this method affects all
jobs issued after this method returns. Note to implementors: This means that you would typically need to
copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

Parameters
• name – the environment variable to be set on the worker.

• value – if given, the environment variable given by name will be set to this value.

30.1. toil 257

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

if None, the variable’s current value will be used as the value on the worker

Raises
RuntimeError – if value is None and the name cannot be found in the environment

killBatchJobs(jobIDs)
Kills the given jobs, represented as Job ids, then checks they are dead by checking they are not in the list
of issued jobs.

getJobIDsForResultsFile(resultsFile)
Get all queued and running jobs for a results file.

getIssuedBatchJobIDs()

Gets the list of jobs issued to parasol in all results files, but not including jobs created by other users.

getRunningBatchJobIDs()

Returns map of running jobIDs and the time they have been running.

getUpdatedBatchJob(maxWait)
Returns information about job that has updated its status (i.e. ceased running, either successfully or with
an error). Each such job will be returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they may cause None to be returned earlier
than maxWait.

Parameters
maxWait – the number of seconds to block, waiting for a result

Returns
If a result is available, returns UpdatedBatchJobInfo. Otherwise it returns None. wallTime is
the number of seconds (a strictly positive float) in wall-clock time the job ran for, or None if
this batch system does not support tracking wall time.

updatedJobWorker()

We use the parasol results to update the status of jobs, adding them to the list of updated jobs.

Results have the following structure.. (thanks Mark D!)

int status; Job status - wait() return format. 0 is good.
char host; Machine job ran on.
char jobId; Job queuing system job ID
char exe; Job executable file (no path)
int usrTicks; ‘User’ CPU time in ticks.
int sysTicks; ‘System’ CPU time in ticks.
unsigned submitTime; Job submission time in seconds since 1/1/1970
unsigned startTime; Job start time in seconds since 1/1/1970
unsigned endTime; Job end time in seconds since 1/1/1970
char user; User who ran job
char errFile; Location of stderr file on host

Plus you finally have the command name.

shutdown()

Called at the completion of a toil invocation. Should cleanly terminate all worker threads.

Return type
None

258 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError

Toil Documentation, Release 5.11.0

classmethod add_options(parser)
If this batch system provides any command line options, add them to the given parser.

Parameters
parser (Union[argparse.ArgumentParser, argparse._ArgumentGroup]) –

Return type
None

classmethod setOptions(setOption)
Process command line or configuration options relevant to this batch system.

Parameters
setOption (toil.batchSystems.options.OptionSetter) – A function with signa-
ture setOption(option_name, parsing_function=None, check_function=None, default=None,
env=None) returning nothing, used to update run configuration as a side effect.

toil.batchSystems.registry

Module Contents

Functions

aws_batch_batch_system_factory()

gridengine_batch_system_factory()

parasol_batch_system_factory()

lsf_batch_system_factory()

single_machine_batch_system_factory()

mesos_batch_system_factory()

slurm_batch_system_factory()

tes_batch_system_factory()

torque_batch_system_factory()

htcondor_batch_system_factory()

kubernetes_batch_system_factory()

addBatchSystemFactory(key, batchSystemFactory) Adds a batch system to the registry for workflow-
supplied batch systems.

save_batch_system_plugin_state() Return a snapshot of the plugin registry that can be re-
stored to remove

restore_batch_system_plugin_state(snapshot) Restore the batch system registry state to a snapshot from

30.1. toil 259

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

Attributes

logger

BATCH_SYSTEM_FACTORY_REGISTRY

BATCH_SYSTEMS

DEFAULT_BATCH_SYSTEM

toil.batchSystems.registry.logger

toil.batchSystems.registry.aws_batch_batch_system_factory()

toil.batchSystems.registry.gridengine_batch_system_factory()

toil.batchSystems.registry.parasol_batch_system_factory()

toil.batchSystems.registry.lsf_batch_system_factory()

toil.batchSystems.registry.single_machine_batch_system_factory()

toil.batchSystems.registry.mesos_batch_system_factory()

toil.batchSystems.registry.slurm_batch_system_factory()

toil.batchSystems.registry.tes_batch_system_factory()

toil.batchSystems.registry.torque_batch_system_factory()

toil.batchSystems.registry.htcondor_batch_system_factory()

toil.batchSystems.registry.kubernetes_batch_system_factory()

toil.batchSystems.registry.BATCH_SYSTEM_FACTORY_REGISTRY: Dict[str, Callable[[],
Type[toil.batchSystems.abstractBatchSystem.AbstractBatchSystem]]]

toil.batchSystems.registry.BATCH_SYSTEMS

toil.batchSystems.registry.DEFAULT_BATCH_SYSTEM = 'single_machine'

toil.batchSystems.registry.addBatchSystemFactory(key, batchSystemFactory)
Adds a batch system to the registry for workflow-supplied batch systems.

Parameters
• key (str) –

• batchSystemFactory (Callable[[], Type[toil.batchSystems.
abstractBatchSystem.AbstractBatchSystem]]) –

toil.batchSystems.registry.save_batch_system_plugin_state()

Return a snapshot of the plugin registry that can be restored to remove added plugins. Useful for testing the
plugin system in-process with other tests.

Return type
Tuple[List[str], Dict[str, Callable[[], Type[toil.batchSystems.abstractBatchSystem.AbstractBatchSystem]]]]

260 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.batchSystems.registry.restore_batch_system_plugin_state(snapshot)
Restore the batch system registry state to a snapshot from save_batch_system_plugin_state().

Parameters
snapshot (Tuple[List[str], Dict[str, Callable[[], Type[toil.
batchSystems.abstractBatchSystem.AbstractBatchSystem]]]]) –

toil.batchSystems.singleMachine

Module Contents

Classes

SingleMachineBatchSystem The interface for running jobs on a single machine, runs
all the jobs you

Info Record for a running job.

Attributes

logger

toil.batchSystems.singleMachine.logger

class toil.batchSystems.singleMachine.SingleMachineBatchSystem(config, maxCores, maxMemory,
maxDisk, max_jobs=None)

Bases: toil.batchSystems.abstractBatchSystem.BatchSystemSupport

ABC AbstractBatchSystem BatchSystemSupport SingleMachineBatchSystem

The interface for running jobs on a single machine, runs all the jobs you give it as they come in, but in parallel.

Uses a single “daddy” thread to manage a fleet of child processes.

Communication with the daddy thread happens via two queues: one queue of jobs waiting to be run (the input
queue), and one queue of jobs that are finished/stopped and need to be returned by getUpdatedBatchJob (the
output queue).

When the batch system is shut down, the daddy thread is stopped.

If running in debug-worker mode, jobs are run immediately as they are sent to the batch system, in the sending
thread, and the daddy thread is not run. But the queues are still used.

Parameters
• config (toil.common.Config) –

• maxCores (float) –

30.1. toil 261

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

• maxMemory (int) –

• maxDisk (int) –

• max_jobs (Optional[int]) –

numCores

minCores = 0.1

The minimal fractional CPU. Tasks with a smaller core requirement will be rounded up to this value.

physicalMemory

classmethod supportsAutoDeployment()

Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

classmethod supportsWorkerCleanup()

Indicates whether this batch system invokes BatchSystemSupport.workerCleanup() after the last job
for a particular workflow invocation finishes. Note that the term worker refers to an entire node, not just a
worker process. A worker process may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The batch system is said to shut down
after the last worker process terminates.

daddy()

Be the “daddy” thread.

Our job is to look at jobs from the input queue.

If a job fits in the available resources, we allocate resources for it and kick off a child process.

We also check on our children.

When a child finishes, we reap it, release its resources, and put its information in the output queue.

getSchedulingStatusMessage()

Get a log message fragment for the user about anything that might be going wrong in the batch system, if
available.

If no useful message is available, return None.

This can be used to report what resource is the limiting factor when scheduling jobs, for example. If the
leader thinks the workflow is stuck, the message can be displayed to the user to help them diagnose why it
might be stuck.

Returns
User-directed message about scheduling state.

check_resource_request(requirer)
Check resource request is not greater than that available or allowed.

Parameters
• requirer (toil.job.Requirer) – Object whose requirements are being checked

• job_name (str) – Name of the job being checked, for generating a useful error report.

• detail (str) – Batch-system-specific message to include in the error.

262 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Raises
InsufficientSystemResources – raised when a resource is requested in an amount
greater than allowed

Return type
None

issueBatchJob(jobDesc, job_environment=None)
Adds the command and resources to a queue to be run.

Parameters
• jobDesc (toil.job.JobDescription) –

• job_environment (Optional[Dict[str, str]]) –

Return type
int

killBatchJobs(jobIDs)
Kills jobs by ID.

Parameters
jobIDs (List[int]) –

Return type
None

getIssuedBatchJobIDs()

Just returns all the jobs that have been run, but not yet returned as updated.

Return type
List[int]

getRunningBatchJobIDs()

Gets a map of jobs as jobIDs that are currently running (not just waiting) and how long they have been
running, in seconds.

Returns
dictionary with currently running jobID keys and how many seconds they have been running
as the value

Return type
Dict[int, float]

shutdown()

Terminate cleanly and join daddy thread.

Return type
None

getUpdatedBatchJob(maxWait)
Returns a tuple of a no-longer-running job, the return value of its process, and its runtime, or None.

Parameters
maxWait (int) –

Return type
Optional[toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo]

30.1. toil 263

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

classmethod add_options(parser)
If this batch system provides any command line options, add them to the given parser.

Parameters
parser (Union[argparse.ArgumentParser, argparse._ArgumentGroup]) –

Return type
None

classmethod setOptions(setOption)
Process command line or configuration options relevant to this batch system.

Parameters
setOption (toil.batchSystems.options.OptionSetter) – A function with signa-
ture setOption(option_name, parsing_function=None, check_function=None, default=None,
env=None) returning nothing, used to update run configuration as a side effect.

class toil.batchSystems.singleMachine.Info(startTime, popen, resources, killIntended)
Record for a running job.

Stores the start time of the job, the Popen object representing its child (or None), the tuple of (coreFractions,
memory, disk) it is using (or None), and whether the job is supposed to be being killed.

toil.batchSystems.slurm

Module Contents

Classes

SlurmBatchSystem A partial implementation of BatchSystemSupport for
batch systems run on a

Attributes

logger

toil.batchSystems.slurm.logger

class toil.batchSystems.slurm.SlurmBatchSystem(config, maxCores, maxMemory, maxDisk)
Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

ABC AbstractBatchSystem BatchSystemSupport AbstractGridEngineBatchSystem SlurmBatchSystemBatchSystemCleanupSupportBatchSystemLocalSupport

A partial implementation of BatchSystemSupport for batch systems run on a standard HPC cluster. By default
auto-deployment is not implemented.

264 Chapter 30. API Reference

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)
Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.
Worker

Thread Worker

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways to specify the activity: by
passing a callable object to the constructor, or by overriding the run() method in a subclass.

Parameters
• newJobsQueue (queue.Queue) –

• updatedJobsQueue (queue.Queue) –

• killQueue (queue.Queue) –

• killedJobsQueue (queue.Queue) –

• boss (AbstractGridEngineBatchSystem) –

getRunningJobIDs()

Get a list of running job IDs. Implementation-specific; called by boss AbstractGridEngineBatchSys-
tem implementation via AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

Return type
list

killJob(jobID)

Kill specific job with the Toil job ID. Implementation-specific; called by AbstractGri-
dEngineWorker.killJobs()

Parameters
jobID (string) – Toil job ID

prepareSubmission(cpu, memory, jobID, command, jobName, job_environment=None, gpus=None)
Preparation in putting together a command-line string for submitting to batch system (via submitJob().)

Param
int cpu

Param
int memory

Param
int jobID: Toil job ID

Param
string subLine: the command line string to be called

Param
string jobName: the name of the Toil job, to provide metadata to batch systems if desired

Param
dict job_environment: the environment variables to be set on the worker

30.1. toil 265

https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/stdtypes.html#list

Toil Documentation, Release 5.11.0

Return type
List[str]

Parameters
• cpu (int) –
• memory (int) –
• jobID (int) –
• command (str) –
• jobName (str) –
• job_environment (Optional[Dict[str, str]]) –
• gpus (Optional[int]) –

submitJob(subLine)
Wrapper routine for submitting the actual command-line call, then processing the output to get the
batch system job ID

Param
string subLine: the literal command line string to be called

Return type
string: batch system job ID, which will be stored internally

coalesce_job_exit_codes(batch_job_id_list)
Collect all job exit codes in a single call. :param batch_job_id_list: list of Job ID strings, where each
string has the form “<job>[.<task>]”. :return: list of job exit codes, associated with the list of job IDs.

Parameters
batch_job_id_list (list) –

Return type
list

getJobExitCode(batchJobID)

Get job exit code for given batch job ID. :param batchJobID: string of the form “<job>[.<task>]”.
:return: integer job exit code.

Parameters
batchJobID (str) –

Return type
int

prepareSbatch(cpu, mem, jobID, jobName, job_environment, gpus)
Parameters

• cpu (int) –
• mem (int) –
• jobID (int) –
• jobName (str) –
• job_environment (Optional[Dict[str, str]]) –
• gpus (Optional[int]) –

Return type
List[str]

parse_elapsed(elapsed)

OptionType

classmethod add_options(parser)
If this batch system provides any command line options, add them to the given parser.

Parameters
parser (Union[argparse.ArgumentParser, argparse._ArgumentGroup]) –

266 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

classmethod setOptions(setOption)
Process command line or configuration options relevant to this batch system.

Parameters
setOption (toil.batchSystems.options.OptionSetter) – A function with signa-
ture setOption(option_name, parsing_function=None, check_function=None, default=None,
env=None) returning nothing, used to update run configuration as a side effect.

Return type
None

toil.batchSystems.tes

Batch system for running Toil workflows on GA4GH TES.

Useful with network-based job stores when the TES server provides tasks with credentials, and filesystem-based job
stores when the TES server lets tasks mount the job store.

Additional containers should be launched with Singularity, not Docker.

Module Contents

Classes

TESBatchSystem Adds cleanup support when the last running job leaves a
node, for batch

Attributes

logger

STATE_TO_EXIT_REASON

toil.batchSystems.tes.logger

toil.batchSystems.tes.STATE_TO_EXIT_REASON: Dict[str,
toil.batchSystems.abstractBatchSystem.BatchJobExitReason]

class toil.batchSystems.tes.TESBatchSystem(config, maxCores, maxMemory, maxDisk)
Bases: toil.batchSystems.cleanup_support.BatchSystemCleanupSupport

ABC AbstractBatchSystem BatchSystemSupport BatchSystemCleanupSupport TESBatchSystemBatchSystemLocalSupport

Adds cleanup support when the last running job leaves a node, for batch systems that can’t provide it using the
backing scheduler.

30.1. toil 267

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
• config (toil.common.Config) –

• maxCores (float) –

• maxMemory (int) –

• maxDisk (int) –

classmethod supportsAutoDeployment()

Whether this batch system supports auto-deployment of the user script itself.

If it does, the setUserScript() can be invoked to set the resource object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

Return type
bool

classmethod get_default_tes_endpoint()

Get the default TES endpoint URL to use.

(unless overridden by an option or environment variable)

Return type
str

setUserScript(user_script)
Set the user script for this workflow. This method must be called before the first job is issued to this batch
system, and only if supportsAutoDeployment() returns True, otherwise it will raise an exception.

Parameters
• userScript – the resource object representing the user script or module and the modules

it depends on.

• user_script (toil.resource.Resource) –

Return type
None

issueBatchJob(job_desc, job_environment=None)
Issues a job with the specified command to the batch system and returns a unique jobID.

Parameters
• jobDesc – a toil.job.JobDescription

• job_environment (Optional[Dict[str, str]]) – a collection of job-specific envi-
ronment variables to be set on the worker.

• job_desc (toil.job.JobDescription) –

Returns
a unique jobID that can be used to reference the newly issued job

Return type
int

getUpdatedBatchJob(maxWait)
Returns information about job that has updated its status (i.e. ceased running, either successfully or with
an error). Each such job will be returned exactly once.

268 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Does not return info for jobs killed by killBatchJobs, although they may cause None to be returned earlier
than maxWait.

Parameters
maxWait (int) – the number of seconds to block, waiting for a result

Returns
If a result is available, returns UpdatedBatchJobInfo. Otherwise it returns None. wallTime is
the number of seconds (a strictly positive float) in wall-clock time the job ran for, or None if
this batch system does not support tracking wall time.

Return type
Optional[toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo]

shutdown()

Called at the completion of a toil invocation. Should cleanly terminate all worker threads.

Return type
None

getIssuedBatchJobIDs()

Gets all currently issued jobs

Returns
A list of jobs (as jobIDs) currently issued (may be running, or may be waiting to be run).
Despite the result being a list, the ordering should not be depended upon.

Return type
List[int]

getRunningBatchJobIDs()

Gets a map of jobs as jobIDs that are currently running (not just waiting) and how long they have been
running, in seconds.

Returns
dictionary with currently running jobID keys and how many seconds they have been running
as the value

Return type
Dict[int, float]

killBatchJobs(job_ids)
Kills the given job IDs. After returning, the killed jobs will not appear in the results of getRunningBatchJo-
bIDs. The killed job will not be returned from getUpdatedBatchJob.

Parameters
• jobIDs – list of IDs of jobs to kill

• job_ids (List[int]) –

Return type
None

classmethod add_options(parser)
If this batch system provides any command line options, add them to the given parser.

Parameters
parser (Union[argparse.ArgumentParser, argparse._ArgumentGroup]) –

Return type
None

30.1. toil 269

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

classmethod setOptions(setOption)
Process command line or configuration options relevant to this batch system.

Parameters
setOption (toil.batchSystems.options.OptionSetter) – A function with signa-
ture setOption(option_name, parsing_function=None, check_function=None, default=None,
env=None) returning nothing, used to update run configuration as a side effect.

Return type
None

toil.batchSystems.torque

Module Contents

Classes

TorqueBatchSystem A partial implementation of BatchSystemSupport for
batch systems run on a

Attributes

logger

toil.batchSystems.torque.logger

class toil.batchSystems.torque.TorqueBatchSystem(config, maxCores, maxMemory, maxDisk)
Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

ABC AbstractBatchSystem BatchSystemSupport AbstractGridEngineBatchSystem TorqueBatchSystemBatchSystemCleanupSupportBatchSystemLocalSupport

A partial implementation of BatchSystemSupport for batch systems run on a standard HPC cluster. By default
auto-deployment is not implemented.

class Worker(newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss)
Bases: toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.
Worker

270 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Thread Worker

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways to specify the activity: by
passing a callable object to the constructor, or by overriding the run() method in a subclass.

getRunningJobIDs()

Get a list of running job IDs. Implementation-specific; called by boss AbstractGridEngineBatchSys-
tem implementation via AbstractGridEngineBatchSystem.getRunningBatchJobIDs()

Return type
list

getUpdatedBatchJob(maxWait)

killJob(jobID)

Kill specific job with the Toil job ID. Implementation-specific; called by AbstractGri-
dEngineWorker.killJobs()

Parameters
jobID (string) – Toil job ID

prepareSubmission(cpu, memory, jobID, command, jobName, job_environment=None, gpus=None)
Preparation in putting together a command-line string for submitting to batch system (via submitJob().)

Param
int cpu

Param
int memory

Param
int jobID: Toil job ID

Param
string subLine: the command line string to be called

Param
string jobName: the name of the Toil job, to provide metadata to batch systems if desired

Param
dict job_environment: the environment variables to be set on the worker

Return type
List[str]

Parameters
• cpu (int) –
• memory (int) –
• jobID (int) –
• command (str) –
• jobName (str) –
• job_environment (Optional[Dict[str, str]]) –
• gpus (Optional[int]) –

30.1. toil 271

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

submitJob(subLine)
Wrapper routine for submitting the actual command-line call, then processing the output to get the
batch system job ID

Param
string subLine: the literal command line string to be called

Return type
string: batch system job ID, which will be stored internally

getJobExitCode(torqueJobID)

Returns job exit code or an instance of abstractBatchSystem.BatchJobExitReason. if some-
thing else happened other than the job exiting. Implementation-specific; called by AbstractGri-
dEngineWorker.checkOnJobs()

Parameters
batchjobID (string) – batch system job ID

Return type
int|toil.batchSystems.abstractBatchSystem.BatchJobExitReason: exit code int or
BatchJobExitReason if something else happened other than job exiting.

prepareQsub(cpu, mem, jobID, job_environment)
Parameters

• cpu (int) –
• mem (int) –
• jobID (int) –
• job_environment (Optional[Dict[str, str]]) –

Return type
List[str]

generateTorqueWrapper(command, jobID)

A very simple script generator that just wraps the command given; for now this goes to default tempdir

Package Contents

exception toil.batchSystems.DeadlockException(msg)
Bases: Exception

DeadlockException

Exception thrown by the Leader or BatchSystem when a deadlock is encountered due to insufficient resources to
run the workflow

__str__()

Stringify the exception, including the message.

272 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

toil.cwl

Submodules

toil.cwl.conftest

Module Contents

toil.cwl.conftest.collect_ignore = []

toil.cwl.cwltoil

Implemented support for Common Workflow Language (CWL) for Toil.

Module Contents

30.1. toil 273

Toil Documentation, Release 5.11.0

Classes

UnresolvedDict Tag to indicate a dict contains promises that must be re-
solved.

SkipNull Internal sentinel object.
Conditional Object holding conditional expression until we are ready

to evaluate it.
ResolveSource Apply linkMerge and pickValue operators to values com-

ing into a port.
StepValueFrom A workflow step input which has a valueFrom expression

attached to it.
DefaultWithSource A workflow step input that has both a source and a default

value.
JustAValue A simple value masquerading as a 'resolve'-able object.
ToilPathMapper Keeps track of files in a Toil way.
ToilSingleJobExecutor A SingleJobExecutor that does not assume it is at the top

level of the workflow.
ToilTool Mixin to hook Toil into a cwltool tool type.
ToilCommandLineTool Subclass the cwltool command line tool to provide the

custom ToilPathMapper.
ToilExpressionTool Subclass the cwltool expression tool to provide the cus-

tom ToilPathMapper.
ToilFsAccess Custom filesystem access class which handles toil file-

store references.
CWLNamedJob Base class for all CWL jobs that do user work, to give

them useful names.
ResolveIndirect Helper Job.
CWLJobWrapper Wrap a CWL job that uses dynamic resources require-

ment.
CWLJob Execute a CWL tool using cwl-

tool.executors.SingleJobExecutor.
CWLScatter Implement workflow scatter step.
CWLGather Follows on to a scatter Job.
SelfJob Fake job object to facilitate implementation of CWL-

Workflow.run().
CWLWorkflow Toil Job to convert a CWL workflow graph into a Toil

job graph.

274 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Functions

cwltoil_was_removed() Complain about deprecated entrypoint.
filter_skip_null(name, value) Recursively filter out SkipNull objects from 'value'.
ensure_no_collisions(directory[, dir_description]) Make sure no items in the given CWL Directory have the

same name.
resolve_dict_w_promises(dict_w_promises[,
file_store])

Resolve a dictionary of promises evaluate expressions to
produce the actual values.

simplify_list(maybe_list) Turn a length one list loaded by cwltool into a scalar.
toil_make_tool(toolpath_object, loadingContext) Emit custom ToilCommandLineTools.
check_directory_dict_invariants(contents) Make sure a directory structure dict makes sense.

Throws an error
decode_directory(dir_path) Decode a directory from a "toildir:" path to a directory

(or a file in it).
encode_directory(contents) Encode a directory from a "toildir:" path to a directory

(or a file in it).
toil_get_file(file_store, index, existing,
file_store_id)

Set up the given file or directory from the Toil jobstore
at a file URI

write_file(writeFunc, index, existing, file_uri) Write a file into the Toil jobstore.
path_to_loc(obj) Make a path into a location.
import_files(import_function, fs_access, fileindex,
...)

Prepare all files and directories.

upload_directory(directory_metadata, direc-
tory_contents)

Upload a Directory object.

upload_file(uploadfunc, fileindex, existing,
file_metadata)

Update a file object so that the location is a reference to
the toil file store.

writeGlobalFileWrapper(file_store, fileuri) Wrap writeGlobalFile to accept file:// URIs.
remove_empty_listings(rec)

toilStageFiles(toil, cwljob, outdir[, destBucket]) Copy input files out of the global file store and update
location and path.

get_container_engine(runtime_context)

makeJob(tool, jobobj, runtime_context, parent_name,
...)

Create the correct Toil Job object for the CWL tool.

remove_pickle_problems(obj) Doc_loader does not pickle correctly, causing Toil er-
rors, remove from objects.

visitSteps(cmdline_tool, op) Iterate over a CWL Process object, running the op on
each tool description

rm_unprocessed_secondary_files(job_params)

filtered_secondary_files(unfiltered_secondary_files)Remove unprocessed secondary files.
scan_for_unsupported_requirements(tool[, ...]) Scan the given CWL tool for any unsupported optional

features.
determine_load_listing(tool) Determine the directory.listing feature in CWL.
generate_default_job_store(batch_system_name,
...)

Choose a default job store appropriate to the requested
batch system and

main([args, stdout]) Run the main loop for toil-cwl-runner.
find_default_container(args, builder) Find the default constructor by consulting a Toil.options

object.

30.1. toil 275

file://

Toil Documentation, Release 5.11.0

Attributes

logger

DEFAULT_TMPDIR

DEFAULT_TMPDIR_PREFIX

DirectoryContents

ProcessType

usage_message

toil.cwl.cwltoil.logger

toil.cwl.cwltoil.DEFAULT_TMPDIR

toil.cwl.cwltoil.DEFAULT_TMPDIR_PREFIX

toil.cwl.cwltoil.cwltoil_was_removed()

Complain about deprecated entrypoint.

Return type
None

class toil.cwl.cwltoil.UnresolvedDict

Bases: Dict[Any, Any]

Dict UnresolvedDict

Tag to indicate a dict contains promises that must be resolved.

class toil.cwl.cwltoil.SkipNull

Internal sentinel object.

Indicates a null value produced by each port of a skipped conditional step. The CWL 1.2 specification calls for
treating this the exactly the same as a null value.

toil.cwl.cwltoil.filter_skip_null(name, value)
Recursively filter out SkipNull objects from ‘value’.

Parameters
• name (str) – Name of port producing this value. Only used when we find an unhandled

null from a conditional step and we print out a warning. The name allows the user to better
localize which step/port was responsible for the unhandled null.

• value (Any) – port output value object

276 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
Any

toil.cwl.cwltoil.ensure_no_collisions(directory, dir_description=None)
Make sure no items in the given CWL Directory have the same name.

If any do, raise a WorkflowException about a “File staging conflict”.

Does not recurse into subdirectories.

Parameters
• directory (cwltool.utils.DirectoryType) –

• dir_description (Optional[str]) –

Return type
None

class toil.cwl.cwltoil.Conditional(expression=None, outputs=None, requirements=None,
container_engine='docker')

Object holding conditional expression until we are ready to evaluate it.

Evaluation occurs at the moment the encloses step is ready to run.

Parameters
• expression (Optional[str]) –

• outputs (Union[Dict[str, cwltool.utils.CWLOutputType], None]) –

• requirements (Optional[List[cwltool.utils.CWLObjectType]]) –

• container_engine (str) –

is_false(job)
Determine if expression evaluates to False given completed step inputs.

Parameters
job (cwltool.utils.CWLObjectType) – job output object

Returns
bool

Return type
bool

skipped_outputs()

Generate a dict of SkipNull objects corresponding to the output structure.

Return type
Dict[str, SkipNull]

class toil.cwl.cwltoil.ResolveSource(name, input, source_key, promises)
Apply linkMerge and pickValue operators to values coming into a port.

Parameters
• name (str) –

• input (Dict[str, cwltool.utils.CWLObjectType]) –

• source_key (str) –

• promises (Dict[str, toil.job.Job]) –

30.1. toil 277

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

promise_tuples: Union[List[Tuple[str, toil.job.Promise]], Tuple[str,
toil.job.Promise]]

__repr__()

Allow for debug printing.

Return type
str

resolve()

First apply linkMerge then pickValue if either present.

Return type
Any

link_merge(values)
Apply linkMerge operator to values object.

Parameters
values (cwltool.utils.CWLObjectType) – result of step

Return type
Union[List[cwltool.utils.CWLOutputType], cwltool.utils.CWLOutputType]

pick_value(values)
Apply pickValue operator to values object.

Parameters
values (Union[List[Union[str, SkipNull]], Any]) – Intended to be a list, but other
types will be returned without modification.

Returns
Return type

Any

class toil.cwl.cwltoil.StepValueFrom(expr, source, req, container_engine)
A workflow step input which has a valueFrom expression attached to it.

The valueFrom expression will be evaluated to produce the actual input object for the step.

Parameters
• expr (str) –

• source (Any) –

• req (List[cwltool.utils.CWLObjectType]) –

• container_engine (str) –

eval_prep(step_inputs, file_store)
Resolve the contents of any file in a set of inputs.

The inputs must be associated with the StepValueFrom object’s self.source.

Called when loadContents is specified.

Parameters
• step_inputs (cwltool.utils.CWLObjectType) – Workflow step inputs.

• file_store (toil.fileStores.abstractFileStore.AbstractFileStore) – A
toil file store, needed to resolve toilfile:// paths.

278 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
None

resolve()

Resolve the promise in the valueFrom expression’s context.

Returns
object that will serve as expression context

Return type
Any

do_eval(inputs)
Evaluate the valueFrom expression with the given input object.

Parameters
inputs (cwltool.utils.CWLObjectType) –

Returns
object

Return type
Any

class toil.cwl.cwltoil.DefaultWithSource(default, source)
A workflow step input that has both a source and a default value.

Parameters
• default (Any) –

• source (Any) –

resolve()

Determine the final input value when the time is right.

(when the source can be resolved)

Returns
dict

Return type
Any

class toil.cwl.cwltoil.JustAValue(val)
A simple value masquerading as a ‘resolve’-able object.

Parameters
val (Any) –

resolve()

Return the value.

Return type
Any

toil.cwl.cwltoil.resolve_dict_w_promises(dict_w_promises, file_store=None)
Resolve a dictionary of promises evaluate expressions to produce the actual values.

Parameters
• dict_w_promises (Union[UnresolvedDict, cwltool.utils.CWLObjectType,
Dict[str, Union[str, StepValueFrom]]]) – input dict for these values

30.1. toil 279

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• file_store (Optional[toil.fileStores.abstractFileStore.
AbstractFileStore]) –

Returns
dictionary of actual values

Return type
cwltool.utils.CWLObjectType

toil.cwl.cwltoil.simplify_list(maybe_list)
Turn a length one list loaded by cwltool into a scalar.

Anything else is passed as-is, by reference.

Parameters
maybe_list (Any) –

Return type
Any

class toil.cwl.cwltoil.ToilPathMapper(referenced_files, basedir, stagedir, separateDirs=True,
get_file=None, stage_listing=False, streaming_allowed=True)

Bases: cwltool.pathmapper.PathMapper

ToilPathMapper

Keeps track of files in a Toil way.

Maps between the symbolic identifier of a file (the Toil FileID), its local path on the host (the value returned by
readGlobalFile) and the location of the file inside the software container.

Parameters
• referenced_files (List[cwltool.utils.CWLObjectType]) –

• basedir (str) –

• stagedir (str) –

• separateDirs (bool) –

• get_file (Union[Any, None]) –

• stage_listing (bool) –

• streaming_allowed (bool) –

visit(obj, stagedir, basedir, copy=False, staged=False)
Iterate over a CWL object, resolving File and Directory path references.

This is called on each File or Directory CWL object. The Files and Directories all have “location” fields.
For the Files, these are from upload_file(), and for the Directories, these are from upload_directory(), with
their children being assigned locations based on listing the Directories using ToilFsAccess.

Parameters
• obj (cwltool.utils.CWLObjectType) – The CWL File or Directory to process

280 Chapter 30. API Reference

https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/pathmapper/index.html#cwltool.pathmapper.PathMapper
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

• stagedir (str) – The base path for target paths to be generated under,

• basedir (str) –

• copy (bool) –

• staged (bool) –

Return type
None

except when a File or Directory has an overriding parent directory in dirname

Parameters
• basedir (str) – The directory from which relative paths should be

• obj (cwltool.utils.CWLObjectType) –

• stagedir (str) –

• copy (bool) –

• staged (bool) –

Return type
None

resolved; used as the base directory for the StdFsAccess that generated the listing being processed.

Parameters
• copy (bool) – If set, use writable types for Files and Directories.

• staged (bool) – Starts as True at the top of the recursion. Set to False

• obj (cwltool.utils.CWLObjectType) –

• stagedir (str) –

• basedir (str) –

Return type
None

when entering a directory that we can actually download, so we don’t stage files and subdirectories sepa-
rately from the directory as a whole. Controls the staged flag on generated mappings, and therefore whether
files and directories are actually placed at their mapped-to target locations. If stage_listing is True, we will
leave this True throughout and stage everything.

Produces one MapperEnt for every unique location for a File or Directory. These MapperEnt objects are in-
structions to cwltool’s stage_files function: https://github.com/common-workflow-language/cwltool/blob/
a3e3a5720f7b0131fa4f9c0b3f73b62a347278a6/cwltool/process.py#L254

The MapperEnt has fields:

resolved: An absolute local path anywhere on the filesystem where the file/directory can be found, or the
contents of a file to populate it with if type is CreateWritableFile or CreateFile. Or, a URI understood by
the StdFsAccess in use (for example, toilfile:).

target: An absolute path under stagedir that the file or directory will then be placed at by cwltool. Except
if a File or Directory has a dirname field, giving its parent path, that is used instead.

type: One of:

30.1. toil 281

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/common-workflow-language/cwltool/blob/a3e3a5720f7b0131fa4f9c0b3f73b62a347278a6/cwltool/process.py#L254
https://github.com/common-workflow-language/cwltool/blob/a3e3a5720f7b0131fa4f9c0b3f73b62a347278a6/cwltool/process.py#L254

Toil Documentation, Release 5.11.0

File: cwltool will copy or link the file from resolved to target, if possible.

CreateFile: cwltool will create the file at target, treating resolved as the contents.

WritableFile: cwltool will copy the file from resolved to target, making it writable.

CreateWritableFile: cwltool will create the file at target, treating resolved as the contents, and
make it writable.

Directory: cwltool will copy or link the directory from resolved to target, if possible. Otherwise,
cwltool will make the directory at target if resolved starts with “_:”. Otherwise it will do nothing.

WritableDirectory: cwltool will copy the directory from resolved to target, if possible. Otherwise,
cwltool will make the directory at target if resolved starts with “_:”. Otherwise it will do nothing.

staged: if set to False, cwltool will not make or copy anything for this entry

class toil.cwl.cwltoil.ToilSingleJobExecutor

Bases: cwltool.executors.SingleJobExecutor

ToilSingleJobExecutor

A SingleJobExecutor that does not assume it is at the top level of the workflow.

We need this because otherwise every job thinks it is top level and tries to discover secondary files, which may
exist when they haven’t actually been passed at the top level and thus aren’t supposed to be visible.

run_jobs(process, job_order_object, logger, runtime_context)
run_jobs from SingleJobExecutor, but not in a top level runtime context.

Parameters
• process (cwltool.process.Process) –

• job_order_object (cwltool.utils.CWLObjectType) –

• logger (logging.Logger) –

• runtime_context (cwltool.context.RuntimeContext) –

Return type
None

class toil.cwl.cwltoil.ToilTool

Mixin to hook Toil into a cwltool tool type.

make_path_mapper(reffiles, stagedir, runtimeContext, separateDirs)
Create the appropriate PathMapper for the situation.

Parameters
• reffiles (List[Any]) –

• stagedir (str) –

• runtimeContext (cwltool.context.RuntimeContext) –

282 Chapter 30. API Reference

https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/executors/index.html#cwltool.executors.SingleJobExecutor
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process
https://docs.python.org/3/library/logging.html#logging.Logger
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext
https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext

Toil Documentation, Release 5.11.0

• separateDirs (bool) –

Return type
cwltool.pathmapper.PathMapper

__str__()

Return string representation of this tool type.

Return type
str

class toil.cwl.cwltoil.ToilCommandLineTool

Bases: ToilTool, cwltool.command_line_tool.CommandLineTool

ToilCommandLineToolToilTool

Subclass the cwltool command line tool to provide the custom ToilPathMapper.

class toil.cwl.cwltoil.ToilExpressionTool

Bases: ToilTool, cwltool.command_line_tool.ExpressionTool

ToilExpressionToolToilTool

Subclass the cwltool expression tool to provide the custom ToilPathMapper.

toil.cwl.cwltoil.toil_make_tool(toolpath_object, loadingContext)
Emit custom ToilCommandLineTools.

This factory function is meant to be passed to cwltool.load_tool().

Parameters
• toolpath_object (ruamel.yaml.comments.CommentedMap) –

• loadingContext (cwltool.context.LoadingContext) –

Return type
cwltool.process.Process

toil.cwl.cwltoil.DirectoryContents

toil.cwl.cwltoil.check_directory_dict_invariants(contents)
Make sure a directory structure dict makes sense. Throws an error otherwise.

Currently just checks to make sure no empty-string keys exist.

30.1. toil 283

https://docs.python.org/3/library/functions.html#bool
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/pathmapper/index.html#cwltool.pathmapper.PathMapper
https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/command_line_tool/index.html#cwltool.command_line_tool.CommandLineTool
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/command_line_tool/index.html#cwltool.command_line_tool.ExpressionTool
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.LoadingContext
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process

Toil Documentation, Release 5.11.0

Parameters
contents (DirectoryContents) –

Return type
None

toil.cwl.cwltoil.decode_directory(dir_path)
Decode a directory from a “toildir:” path to a directory (or a file in it).

Returns the decoded directory dict, the remaining part of the path (which may be None), and the deduplication
key string that uniquely identifies the directory.

Parameters
dir_path (str) –

Return type
Tuple[DirectoryContents, Optional[str], str]

toil.cwl.cwltoil.encode_directory(contents)
Encode a directory from a “toildir:” path to a directory (or a file in it).

Takes the directory dict, which is a dict from name to URI for a file or dict for a subdirectory.

Parameters
contents (DirectoryContents) –

Return type
str

class toil.cwl.cwltoil.ToilFsAccess(basedir, file_store=None)
Bases: cwltool.stdfsaccess.StdFsAccess

ToilFsAccess

Custom filesystem access class which handles toil filestore references.

Normal file paths will be resolved relative to basedir, but ‘toilfile:’ and ‘toildir:’ URIs will be fulfilled from the
Toil file store.

Also supports URLs supported by Toil job store implementations.

Parameters
• basedir (str) –

• file_store (Optional[toil.fileStores.abstractFileStore.
AbstractFileStore]) –

glob(pattern)

Parameters
pattern (str) –

Return type
List[str]

284 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

open(fn, mode)

Parameters
• fn (str) –

• mode (str) –

Return type
IO[Any]

exists(path)
Test for file existence.

Parameters
path (str) –

Return type
bool

size(path)

Parameters
path (str) –

Return type
int

isfile(fn)

Parameters
fn (str) –

Return type
bool

isdir(fn)

Parameters
fn (str) –

Return type
bool

listdir(fn)

Parameters
fn (str) –

Return type
List[str]

join(path, *paths)

Parameters
• path (str) –

• paths (str) –

Return type
str

30.1. toil 285

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

realpath(fn)

Parameters
fn (str) –

Return type
str

toil.cwl.cwltoil.toil_get_file(file_store, index, existing, file_store_id, streamable=False,
streaming_allowed=True, pipe_threads=None)

Set up the given file or directory from the Toil jobstore at a file URI where it can be accessed locally.

Run as part of the tool setup, inside jobs on the workers. Also used as part of reorganizing files to get them
uploaded at the end of a tool.

Parameters
• file_store (toil.fileStores.abstractFileStore.AbstractFileStore) – The

Toil file store to download from.

• index (Dict[str, str]) – Maps from downloaded file path back to input Toil URI.

• existing (Dict[str, str]) – Maps from file_store_id URI to downloaded file path.

• file_store_id (str) – The URI for the file to download.

• streamable (bool) – If the file is has ‘streamable’ flag set

• streaming_allowed (bool) – If streaming is allowed

• pipe_threads (Optional[List[Tuple[threading.Thread, int]]]) – List of
threads responsible for streaming the data

Return type
str

and open file descriptors corresponding to those files. Caller is responsible to close the file descriptors (to break
the pipes) and join the threads

toil.cwl.cwltoil.write_file(writeFunc, index, existing, file_uri)
Write a file into the Toil jobstore.

‘existing’ is a set of files retrieved as inputs from toil_get_file. This ensures they are mapped back as the same
name if passed through.

Returns a toil uri path to the object.

Parameters
• writeFunc (Callable[[str], toil.fileStores.FileID]) –

• index (Dict[str, str]) –

• existing (Dict[str, str]) –

• file_uri (str) –

Return type
str

toil.cwl.cwltoil.path_to_loc(obj)
Make a path into a location.

(If a CWL object has a “path” and not a “location”)

286 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
obj (cwltool.utils.CWLObjectType) –

Return type
None

toil.cwl.cwltoil.import_files(import_function, fs_access, fileindex, existing, cwl_object,
skip_broken=False, bypass_file_store=False)

Prepare all files and directories.

Will be executed from the leader or worker in the context of the given CWL tool, order, or output object to be
used on the workers. Make sure their sizes are set and import all the files.

Recurses inside directories using the fs_access to find files to upload and subdirectory structure to encode, even
if their listings are not set or not recursive.

Preserves any listing fields.

If a file cannot be found (like if it is an optional secondary file that doesn’t exist), fails, unless skip_broken is set,
in which case it leaves the location it was supposed to have been at.

Also does some miscelaneous normalization.

Parameters
• import_function (Callable[[str], toil.fileStores.FileID]) – The function

used to upload a URI and get a

• fs_access (cwltool.stdfsaccess.StdFsAccess) –

• fileindex (Dict[str, str]) –

• existing (Dict[str, str]) –

• cwl_object (Optional[cwltool.utils.CWLObjectType]) –

• skip_broken (bool) –

• bypass_file_store (bool) –

Return type
None

Toil FileID for it.

Parameters
• fs_access (cwltool.stdfsaccess.StdFsAccess) – the CWL FS access object we use

to access the filesystem

• import_function (Callable[[str], toil.fileStores.FileID]) –

• fileindex (Dict[str, str]) –

• existing (Dict[str, str]) –

• cwl_object (Optional[cwltool.utils.CWLObjectType]) –

• skip_broken (bool) –

• bypass_file_store (bool) –

Return type
None

to find files to import. Needs to support the URI schemes used.

Parameters

30.1. toil 287

https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

• fileindex (Dict[str, str]) – Forward map to fill in from file URI to Toil storage

• import_function (Callable[[str], toil.fileStores.FileID]) –

• fs_access (cwltool.stdfsaccess.StdFsAccess) –

• existing (Dict[str, str]) –

• cwl_object (Optional[cwltool.utils.CWLObjectType]) –

• skip_broken (bool) –

• bypass_file_store (bool) –

Return type
None

location, used by write_file to deduplicate writes.

Parameters
• existing (Dict[str, str]) – Reverse map to fill in from Toil storage location to file

• import_function (Callable[[str], toil.fileStores.FileID]) –

• fs_access (cwltool.stdfsaccess.StdFsAccess) –

• fileindex (Dict[str, str]) –

• cwl_object (Optional[cwltool.utils.CWLObjectType]) –

• skip_broken (bool) –

• bypass_file_store (bool) –

Return type
None

URI. Not read from.

Parameters
• cwl_object (Optional[cwltool.utils.CWLObjectType]) – CWL tool (or workflow

order) we are importing files for

• skip_broken (bool) – If True, when files can’t be imported because they e.g.

• import_function (Callable[[str], toil.fileStores.FileID]) –

• fs_access (cwltool.stdfsaccess.StdFsAccess) –

• fileindex (Dict[str, str]) –

• existing (Dict[str, str]) –

• bypass_file_store (bool) –

Return type
None

don’t exist, leave their locations alone rather than failing with an error.

Parameters
• bypass_file_store (bool) – If True, leave file:// URIs in place instead of

• import_function (Callable[[str], toil.fileStores.FileID]) –

• fs_access (cwltool.stdfsaccess.StdFsAccess) –

288 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
file://
https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/stdfsaccess/index.html#cwltool.stdfsaccess.StdFsAccess

Toil Documentation, Release 5.11.0

• fileindex (Dict[str, str]) –

• existing (Dict[str, str]) –

• cwl_object (Optional[cwltool.utils.CWLObjectType]) –

• skip_broken (bool) –

Return type
None

importing files and directories.

toil.cwl.cwltoil.upload_directory(directory_metadata, directory_contents, skip_broken=False)
Upload a Directory object.

Ignores the listing (which may not be recursive and isn’t safe or efficient to touch), and instead uses direc-
tory_contents, which is a recursive dict structure from filename to file URI or subdirectory contents dict.

Makes sure the directory actually exists, and rewrites its location to be something we can use on another machine.

We can’t rely on the directory’s listing as visible to the next tool as a complete recursive description of the files
we will need to present to the tool, since some tools require it to be cleared or single-level but still expect to see
its contents in the filesystem.

Parameters
• directory_metadata (cwltool.utils.CWLObjectType) –

• directory_contents (DirectoryContents) –

• skip_broken (bool) –

Return type
None

toil.cwl.cwltoil.upload_file(uploadfunc, fileindex, existing, file_metadata, skip_broken=False)
Update a file object so that the location is a reference to the toil file store.

Write the file object to the file store if necessary.

Parameters
• uploadfunc (Callable[[str], toil.fileStores.FileID]) –

• fileindex (Dict[str, str]) –

• existing (Dict[str, str]) –

• file_metadata (cwltool.utils.CWLObjectType) –

• skip_broken (bool) –

Return type
None

toil.cwl.cwltoil.writeGlobalFileWrapper(file_store, fileuri)
Wrap writeGlobalFile to accept file:// URIs.

Parameters
• file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

• fileuri (str) –

Return type
toil.fileStores.FileID

30.1. toil 289

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
file://
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.cwl.cwltoil.remove_empty_listings(rec)

Parameters
rec (cwltool.utils.CWLObjectType) –

Return type
None

class toil.cwl.cwltoil.CWLNamedJob(cores=1, memory='1GiB', disk='1MiB', accelerators=None,
tool_id=None, parent_name=None, subjob_name=None, local=None)

Bases: toil.job.Job

CWLNamedJobJob

Base class for all CWL jobs that do user work, to give them useful names.

Parameters
• cores (Union[float, None]) –

• memory (Union[int, str, None]) –

• disk (Union[int, str, None]) –

• accelerators (Optional[List[toil.job.AcceleratorRequirement]]) –

• tool_id (Optional[str]) –

• parent_name (Optional[str]) –

• subjob_name (Optional[str]) –

• local (Optional[bool]) –

class toil.cwl.cwltoil.ResolveIndirect(cwljob, parent_name=None)
Bases: CWLNamedJob

CWLNamedJob ResolveIndirectJob

Helper Job.

Accepts an unresolved dict (containing promises) and produces a dictionary of actual values.

Parameters
• cwljob (toil.job.Promised[cwltool.utils.CWLObjectType]) –

• parent_name (Optional[str]) –

290 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

run(file_store)
Evaluate the promises and return their values.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
cwltool.utils.CWLObjectType

toil.cwl.cwltoil.toilStageFiles(toil, cwljob, outdir, destBucket=None)
Copy input files out of the global file store and update location and path.

Parameters
• destBucket (Union[str, None]) – If set, export to this base URL instead of to the local

filesystem.

• toil (toil.common.Toil) –

• cwljob (Union[cwltool.utils.CWLObjectType, List[cwltool.utils.
CWLObjectType]]) –

• outdir (str) –

Return type
None

class toil.cwl.cwltoil.CWLJobWrapper(tool, cwljob, runtime_context, parent_name, conditional=None)
Bases: CWLNamedJob

CWLJobWrapperCWLNamedJobJob

Wrap a CWL job that uses dynamic resources requirement.

When executed, this creates a new child job which has the correct resource requirement set.

Parameters
• tool (cwltool.process.Process) –

• cwljob (cwltool.utils.CWLObjectType) –

• runtime_context (cwltool.context.RuntimeContext) –

• parent_name (Optional[str]) –

• conditional (Union[Conditional, None]) –

run(file_store)
Create a child job with the correct resource requirements set.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
Any

30.1. toil 291

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

class toil.cwl.cwltoil.CWLJob(tool, cwljob, runtime_context, parent_name=None, conditional=None)
Bases: CWLNamedJob

CWLJobCWLNamedJobJob

Execute a CWL tool using cwltool.executors.SingleJobExecutor.

Parameters
• tool (cwltool.process.Process) –

• cwljob (cwltool.utils.CWLObjectType) –

• runtime_context (cwltool.context.RuntimeContext) –

• parent_name (Optional[str]) –

• conditional (Union[Conditional, None]) –

required_env_vars(cwljob)
Yield environment variables from EnvVarRequirement.

Parameters
cwljob (Any) –

Return type
Iterator[Tuple[str, str]]

populate_env_vars(cwljob)
Prepare environment variables necessary at runtime for the job.

Env vars specified in the CWL “requirements” section should already be loaded in
self.cwltool.requirements, however those specified with “EnvVarRequirement” take precedence and
are only populated here. Therefore, this not only returns a dictionary with all evaluated “EnvVarRequire-
ment” env vars, but checks self.cwltool.requirements for any env vars with the same name and replaces
their value with that found in the “EnvVarRequirement” env var if it exists.

Parameters
cwljob (cwltool.utils.CWLObjectType) –

Return type
Dict[str, str]

run(file_store)
Execute the CWL document.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
Any

toil.cwl.cwltoil.get_container_engine(runtime_context)

Parameters
runtime_context (cwltool.context.RuntimeContext) –

292 Chapter 30. API Reference

https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext

Toil Documentation, Release 5.11.0

Return type
str

toil.cwl.cwltoil.makeJob(tool, jobobj, runtime_context, parent_name, conditional)
Create the correct Toil Job object for the CWL tool.

Types: workflow, job, or job wrapper for dynamic resource requirements.

Returns
“wfjob, followOn” if the input tool is a workflow, and “job, job” otherwise

Parameters
• tool (cwltool.process.Process) –

• jobobj (cwltool.utils.CWLObjectType) –

• runtime_context (cwltool.context.RuntimeContext) –

• parent_name (Optional[str]) –

• conditional (Union[Conditional, None]) –

Return type
Union[Tuple[CWLWorkflow, ResolveIndirect], Tuple[CWLJob, CWLJob], Tu-
ple[CWLJobWrapper, CWLJobWrapper]]

class toil.cwl.cwltoil.CWLScatter(step, cwljob, runtime_context, parent_name, conditional)
Bases: toil.job.Job

CWLScatterJob

Implement workflow scatter step.

When run, this creates a child job for each parameterization of the scatter.

Parameters
• step (cwltool.workflow.WorkflowStep) –

• cwljob (cwltool.utils.CWLObjectType) –

• runtime_context (cwltool.context.RuntimeContext) –

• parent_name (Optional[str]) –

• conditional (Union[Conditional, None]) –

flat_crossproduct_scatter(joborder, scatter_keys, outputs, postScatterEval)
Cartesian product of the inputs, then flattened.

Parameters
• joborder (cwltool.utils.CWLObjectType) –

• scatter_keys (List[str]) –

• outputs (List[toil.job.Promised[cwltool.utils.CWLObjectType]]) –

30.1. toil 293

https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext
https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/workflow/index.html#cwltool.workflow.WorkflowStep
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• postScatterEval (Callable[[cwltool.utils.CWLObjectType], cwltool.
utils.CWLObjectType]) –

Return type
None

nested_crossproduct_scatter(joborder, scatter_keys, postScatterEval)
Cartesian product of the inputs.

Parameters
• joborder (cwltool.utils.CWLObjectType) –

• scatter_keys (List[str]) –

• postScatterEval (Callable[[cwltool.utils.CWLObjectType], cwltool.
utils.CWLObjectType]) –

Return type
List[toil.job.Promised[cwltool.utils.CWLObjectType]]

run(file_store)
Generate the follow on scatter jobs.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
List[toil.job.Promised[cwltool.utils.CWLObjectType]]

class toil.cwl.cwltoil.CWLGather(step, outputs)
Bases: toil.job.Job

CWLGatherJob

Follows on to a scatter Job.

This gathers the outputs of each job in the scatter into an array for each output parameter.

Parameters
• step (cwltool.workflow.WorkflowStep) –

• outputs (toil.job.Promised[Union[cwltool.utils.CWLObjectType,
List[cwltool.utils.CWLObjectType]]]) –

static extract(obj, k)
Extract the given key from the obj.

If the object is a list, extract it from all members of the list.

Parameters
• obj (Union[cwltool.utils.CWLObjectType, List[cwltool.utils.
CWLObjectType]]) –

294 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/workflow/index.html#cwltool.workflow.WorkflowStep

Toil Documentation, Release 5.11.0

• k (str) –

Return type
Union[cwltool.utils.CWLOutputType, List[cwltool.utils.CWLObjectType]]

run(file_store)
Gather all the outputs of the scatter.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
Dict[str, Any]

class toil.cwl.cwltoil.SelfJob(j, v)
Bases: toil.job.Job

Job SelfJob

Fake job object to facilitate implementation of CWLWorkflow.run().

Parameters
• j (CWLWorkflow) –

• v (cwltool.utils.CWLObjectType) –

rv(*path)
Return our properties dictionary.

Parameters
path (Any) –

Return type
Any

addChild(c)
Add a child to our workflow.

Parameters
c (toil.job.Job) –

Return type
Any

hasChild(c)
Check if the given child is in our workflow.

Parameters
c (toil.job.Job) –

Return type
Any

30.1. toil 295

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.cwl.cwltoil.ProcessType

toil.cwl.cwltoil.remove_pickle_problems(obj)
Doc_loader does not pickle correctly, causing Toil errors, remove from objects.

Parameters
obj (ProcessType) –

Return type
ProcessType

class toil.cwl.cwltoil.CWLWorkflow(cwlwf, cwljob, runtime_context, parent_name=None,
conditional=None)

Bases: CWLNamedJob

CWLNamedJob CWLWorkflowJob

Toil Job to convert a CWL workflow graph into a Toil job graph.

The Toil job graph will include the appropriate dependencies.

Parameters
• cwlwf (cwltool.workflow.Workflow) –

• cwljob (cwltool.utils.CWLObjectType) –

• runtime_context (cwltool.context.RuntimeContext) –

• parent_name (Optional[str]) –

• conditional (Union[Conditional, None]) –

run(file_store)
Convert a CWL Workflow graph into a Toil job graph.

Always runs on the leader, because the batch system knows to schedule it as a local job.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
Union[UnresolvedDict, Dict[str, SkipNull]]

toil.cwl.cwltoil.visitSteps(cmdline_tool, op)
Iterate over a CWL Process object, running the op on each tool description CWL object.

Parameters
• cmdline_tool (cwltool.process.Process) –

• op (Callable[[ruamel.yaml.comments.CommentedMap], None]) –

Return type
None

296 Chapter 30. API Reference

https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/workflow/index.html#cwltool.workflow.Workflow
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/context/index.html#cwltool.context.RuntimeContext
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process

Toil Documentation, Release 5.11.0

toil.cwl.cwltoil.rm_unprocessed_secondary_files(job_params)

Parameters
job_params (Any) –

Return type
None

toil.cwl.cwltoil.filtered_secondary_files(unfiltered_secondary_files)
Remove unprocessed secondary files.

Interpolated strings and optional inputs in secondary files were added to CWL in version 1.1.

The CWL libraries we call do successfully resolve the interpolated strings, but add the resolved fields to the list
of unresolved fields so we remove them here after the fact.

We keep secondary files using the ‘toildir:’, or ‘_:’ protocols, or using the ‘file:’ protocol and indicating files
or directories that actually exist. The ‘required’ logic seems to be handled deeper in cwltool.builder.Builder(),
and correctly determines which files should be imported. Therefore we remove the files here and if this file is
SUPPOSED to exist, it will still give the appropriate file does not exist error, but just a bit further down the track.

Parameters
unfiltered_secondary_files (cwltool.utils.CWLObjectType) –

Return type
List[cwltool.utils.CWLObjectType]

toil.cwl.cwltoil.scan_for_unsupported_requirements(tool, bypass_file_store=False)
Scan the given CWL tool for any unsupported optional features.

If it has them, raise an informative UnsupportedRequirement.

Parameters
• tool (cwltool.process.Process) – The CWL tool to check for unsupported require-

ments.

• bypass_file_store (bool) – True if the Toil file store is not being used to

Return type
None

transport files between nodes, and raw origin node file:// URIs are exposed to tools instead.

toil.cwl.cwltoil.determine_load_listing(tool)
Determine the directory.listing feature in CWL.

In CWL, any input directory can have a DIRECTORY_NAME.listing (where DIRECTORY_NAME is any vari-
able name) set to one of the following three options:

no_listing: DIRECTORY_NAME.listing will be undefined.
e.g. inputs.DIRECTORY_NAME.listing == unspecified

shallow_listing: DIRECTORY_NAME.listing will return a list one level
deep of DIRECTORY_NAME’s contents.

e.g. inputs.DIRECTORY_NAME.listing == [items in directory]
inputs.DIRECTORY_NAME.listing[0].listing == undefined in-
puts.DIRECTORY_NAME.listing.length == # of items in directory

deep_listing: DIRECTORY_NAME.listing will return a list of the entire

30.1. toil 297

https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process
https://docs.python.org/3/library/functions.html#bool
file://

Toil Documentation, Release 5.11.0

contents of DIRECTORY_NAME.

e.g. inputs.DIRECTORY_NAME.listing == [items in directory]
inputs.DIRECTORY_NAME.listing[0].listing == [items

in subdirectory if it exists and is the first item listed]

inputs.DIRECTORY_NAME.listing.length == # of items in directory

See: https://www.commonwl.org/v1.1/CommandLineTool.html#LoadListingRequirement
https://www.commonwl.org/v1.1/CommandLineTool.html#LoadListingEnum

DIRECTORY_NAME.listing should be determined first from loadListing. If that’s not specified, from Load-
ListingRequirement. Else, default to “no_listing” if unspecified.

Parameters
tool (cwltool.process.Process) – ToilCommandLineTool

Return str
One of ‘no_listing’, ‘shallow_listing’, or ‘deep_listing’.

Return type
typing_extensions.Literal[no_listing, shallow_listing, deep_listing]

exception toil.cwl.cwltoil.NoAvailableJobStoreException

Bases: Exception

NoAvailableJobStoreException

Indicates that no job store name is available.

toil.cwl.cwltoil.generate_default_job_store(batch_system_name, provisioner_name, local_directory)
Choose a default job store appropriate to the requested batch system and provisioner, and installed modules.
Raises an error if no good default is available and the user must choose manually.

Parameters
• batch_system_name (Optional[str]) – Registry name of the batch system the user has

requested, if any. If no name has been requested, should be None.

• provisioner_name (Optional[str]) – Name of the provisioner the user has requested,
if any. Recognized provisioners include ‘aws’ and ‘gce’. None indicates that no provisioner
is in use.

• local_directory (str) – Path to a nonexistent local directory suitable for use as a file job
store.

Return str
Job store specifier for a usable job store.

Return type
str

298 Chapter 30. API Reference

https://www.commonwl.org/v1.1/CommandLineTool.html#LoadListingRequirement
https://www.commonwl.org/v1.1/CommandLineTool.html#LoadListingEnum
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/process/index.html#cwltool.process.Process
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.cwl.cwltoil.usage_message

toil.cwl.cwltoil.main(args=None, stdout=sys.stdout)
Run the main loop for toil-cwl-runner.

Parameters
• args (Optional[List[str]]) –

• stdout (TextIO) –

Return type
int

toil.cwl.cwltoil.find_default_container(args, builder)
Find the default constructor by consulting a Toil.options object.

Parameters
• args (argparse.Namespace) –

• builder (cwltool.builder.Builder) –

Return type
Optional[str]

toil.cwl.utils

Utility functions used for Toil’s CWL interpreter.

Module Contents

Functions

visit_top_cwl_class(rec, classes, op) Apply the given operation to all top-level CWL objects
with the given named CWL class.

visit_cwl_class_and_reduce(rec, classes,
op_down, op_up)

Apply the given operations to all CWL objects with the
given named CWL class.

download_structure(file_store, index, existing, ...) Download nested dictionary from the Toil file store to a
local path.

30.1. toil 299

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/builder/index.html#cwltool.builder.Builder
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Attributes

logger

CWL_UNSUPPORTED_REQUIREMENT_EXIT_CODE

CWL_UNSUPPORTED_REQUIREMENT_EXCEPTION

DownReturnType

UpReturnType

DirectoryStructure

toil.cwl.utils.logger

toil.cwl.utils.CWL_UNSUPPORTED_REQUIREMENT_EXIT_CODE = 33

exception toil.cwl.utils.CWLUnsupportedException

Bases: Exception

CWLUnsupportedException

Fallback exception.

toil.cwl.utils.CWL_UNSUPPORTED_REQUIREMENT_EXCEPTION:
Union[Type[cwltool.errors.UnsupportedRequirement], Type[CWLUnsupportedException]]

toil.cwl.utils.visit_top_cwl_class(rec, classes, op)
Apply the given operation to all top-level CWL objects with the given named CWL class.

Like cwltool’s visit_class but doesn’t look inside any object visited.

Parameters
• rec (Any) –

• classes (Iterable[str]) –

• op (Callable[[Any], Any]) –

Return type
None

toil.cwl.utils.DownReturnType

toil.cwl.utils.UpReturnType

300 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://cwltool.readthedocs.io/en/latest/autoapi/cwltool/errors/index.html#cwltool.errors.UnsupportedRequirement
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.cwl.utils.visit_cwl_class_and_reduce(rec, classes, op_down, op_up)
Apply the given operations to all CWL objects with the given named CWL class.

Applies the down operation top-down, and the up operation bottom-up, and passes the down operation’s result
and a list of the up operation results for all child keys (flattening across lists and collapsing nodes of non-matching
classes) to the up operation.

Returns
The flattened list of up operation results from all calls.

Parameters
• rec (Any) –

• classes (Iterable[str]) –

• op_down (Callable[[Any], DownReturnType]) –

• op_up (Callable[[Any, DownReturnType, List[UpReturnType]],
UpReturnType]) –

Return type
List[UpReturnType]

toil.cwl.utils.DirectoryStructure

toil.cwl.utils.download_structure(file_store, index, existing, dir_dict, into_dir)
Download nested dictionary from the Toil file store to a local path.

Parameters
• file_store (toil.fileStores.abstractFileStore.AbstractFileStore) – The

Toil file store to download from.

• index (Dict[str, str]) – Maps from downloaded file path back to input Toil URI.

• existing (Dict[str, str]) – Maps from file_store_id URI to downloaded file path.

• dir_dict (DirectoryStructure) – a dict from string to string (for files) or dict (for

• into_dir (str) –

Return type
None

subdirectories) describing a directory structure.

Parameters
• into_dir (str) – The directory to download the top-level dict’s files

• file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

• index (Dict[str, str]) –

• existing (Dict[str, str]) –

• dir_dict (DirectoryStructure) –

Return type
None

into.

30.1. toil 301

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Package Contents

Functions

check_cwltool_version() Check if the installed cwltool version matches Toil's ex-
pected version. A

Attributes

cwltool_version

logger

exception toil.cwl.InvalidVersion

Bases: Exception

Common base class for all non-exit exceptions.

toil.cwl.cwltool_version = '3.1.20230425144158'

toil.cwl.logger

toil.cwl.check_cwltool_version()

Check if the installed cwltool version matches Toil’s expected version. A warning is printed if the versions differ.

Return type
None

toil.fileStores

Submodules

toil.fileStores.abstractFileStore

Module Contents

Classes

AbstractFileStore Interface used to allow user code run by Toil to read and
write files.

302 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

Attributes

logger

toil.fileStores.abstractFileStore.logger

class toil.fileStores.abstractFileStore.AbstractFileStore(jobStore, jobDesc, file_store_dir,
waitForPreviousCommit)

Bases: abc.ABC

ABC AbstractFileStore

Interface used to allow user code run by Toil to read and write files.

Also provides the interface to other Toil facilities used by user code, including:

• normal (non-real-time) logging

• finding the correct temporary directory for scratch work

• importing and exporting files into and out of the workflow

Stores user files in the jobStore, but keeps them separate from actual jobs.

May implement caching.

Passed as argument to the toil.job.Job.run() method.

Access to files is only permitted inside the context manager provided by toil.fileStores.
abstractFileStore.AbstractFileStore.open().

Also responsible for committing completed jobs back to the job store with an update operation, and allowing that
commit operation to be waited for.

Parameters
• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

• jobDesc (toil.job.JobDescription) –

• file_store_dir (str) –

• waitForPreviousCommit (Callable[[], Any]) –

static createFileStore(jobStore, jobDesc, file_store_dir, waitForPreviousCommit, caching)
Create a concreate FileStore.

Parameters
• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

• jobDesc (toil.job.JobDescription) –

• file_store_dir (str) –

30.1. toil 303

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• waitForPreviousCommit (Callable[[], Any]) –

• caching (Optional[bool]) –

Return type
Union[toil.fileStores.nonCachingFileStore.NonCachingFileStore,
toil.fileStores.cachingFileStore.CachingFileStore]

static shutdownFileStore(workflowID, config_work_dir, config_coordination_dir)
Carry out any necessary filestore-specific cleanup.

This is a destructive operation and it is important to ensure that there are no other running processes on the
system that are modifying or using the file store for this workflow.

This is the intended to be the last call to the file store in a Toil run, called by the batch system cleanup
function upon batch system shutdown.

Parameters
• workflowID (str) – The workflow ID for this invocation of the workflow

• config_work_dir (Optional[str]) – The path to the work directory in the Toil Config.

• config_coordination_dir (Optional[str]) – The path to the coordination directory
in the Toil Config.

Return type
None

open(job)
Create the context manager around tasks prior and after a job has been run.

File operations are only permitted inside the context manager.

Implementations must only yield from within with super().open(job):.

Parameters
job (toil.job.Job) – The job instance of the toil job to run.

Return type
Generator[None, None, None]

getLocalTempDir()

Get a new local temporary directory in which to write files.

The directory will only persist for the duration of the job.

Returns
The absolute path to a new local temporary directory. This directory will exist for the duration
of the job only, and is guaranteed to be deleted once the job terminates, removing all files it
contains recursively.

Return type
str

getLocalTempFile(suffix=None, prefix=None)
Get a new local temporary file that will persist for the duration of the job.

Parameters
• suffix (Optional[str]) – If not None, the file name will end with this string. Other-

wise, default value “.tmp” will be used

• prefix (Optional[str]) – If not None, the file name will start with this string. Other-
wise, default value “tmp” will be used

304 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Returns
The absolute path to a local temporary file. This file will exist for the duration of the job only,
and is guaranteed to be deleted once the job terminates.

Return type
str

getLocalTempFileName(suffix=None, prefix=None)
Get a valid name for a new local file. Don’t actually create a file at the path.

Parameters
• suffix (Optional[str]) – If not None, the file name will end with this string. Other-

wise, default value “.tmp” will be used

• prefix (Optional[str]) – If not None, the file name will start with this string. Other-
wise, default value “tmp” will be used

Returns
Path to valid file

Return type
str

abstract writeGlobalFile(localFileName, cleanup=False)
Upload a file (as a path) to the job store.

If the file is in a FileStore-managed temporary directory (i.e. from toil.fileStores.
abstractFileStore.AbstractFileStore.getLocalTempDir()), it will become a local copy
of the file, eligible for deletion by toil.fileStores.abstractFileStore.AbstractFileStore.
deleteLocalFile().

If an executable file on the local filesystem is uploaded, its executability will be preserved when it is down-
loaded again.

Parameters
• localFileName (str) – The path to the local file to upload. The last path component

(basename of the file) will remain associated with the file in the file store, if supported by
the backing JobStore, so that the file can be searched for by name or name glob.

• cleanup (bool) – if True then the copy of the global file will be deleted once the job and
all its successors have completed running. If not the global file must be deleted manually.

Returns
an ID that can be used to retrieve the file.

Return type
toil.fileStores.FileID

writeGlobalFileStream(cleanup=False, basename=None, encoding=None, errors=None)
Similar to writeGlobalFile, but allows the writing of a stream to the job store. The yielded file handle does
not need to and should not be closed explicitly.

Parameters
• encoding (Optional[str]) – The name of the encoding used to decode the file. Encod-

ings are the same as for decode(). Defaults to None which represents binary mode.

• errors (Optional[str]) – Specifies how encoding errors are to be handled. Errors are
the same as for open(). Defaults to ‘strict’ when an encoding is specified.

30.1. toil 305

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• cleanup (bool) – is as in toil.fileStores.abstractFileStore.
AbstractFileStore.writeGlobalFile().

• basename (Optional[str]) – If supported by the backing JobStore, use the given file
basename so that when searching the job store with a query matching that basename, the
file will be detected.

Returns
A context manager yielding a tuple of 1) a file handle which can be written to and 2) the
toil.fileStores.FileID of the resulting file in the job store.

Return type
Iterator[Tuple[toil.lib.io.WriteWatchingStream, toil.fileStores.FileID]]

logAccess(fileStoreID, destination=None)
Record that the given file was read by the job.

(to be announced if the job fails)

If destination is not None, it gives the path that the file was downloaded to. Otherwise, assumes that the
file was streamed.

Must be called by readGlobalFile() and readGlobalFileStream() implementations.

Parameters
• fileStoreID (Union[toil.fileStores.FileID, str]) –

• destination (Union[str, None]) –

Return type
None

abstract readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=False, symlink=False)
Make the file associated with fileStoreID available locally.

If mutable is True, then a copy of the file will be created locally so that the original is not modified and
does not change the file for other jobs. If mutable is False, then a link can be created to the file, saving disk
resources. The file that is downloaded will be executable if and only if it was originally uploaded from an
executable file on the local filesystem.

If a user path is specified, it is used as the destination. If a user path isn’t specified, the file is stored in the
local temp directory with an encoded name.

The destination file must not be deleted by the user; it can only be deleted through deleteLocalFile.

Implementations must call logAccess() to report the download.

Parameters
• fileStoreID (str) – job store id for the file

• userPath (Optional[str]) – a path to the name of file to which the global file will be
copied or hard-linked (see below).

• cache (bool) – Described in toil.fileStores.CachingFileStore.
readGlobalFile()

• mutable (bool) – Described in toil.fileStores.CachingFileStore.
readGlobalFile()

• symlink (bool) – True if caller can accept symlink, False if caller can only accept a normal
file or hardlink

306 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Returns
An absolute path to a local, temporary copy of the file keyed by fileStoreID.

Return type
str

abstract readGlobalFileStream(fileStoreID, encoding=None, errors=None)
Read a stream from the job store; similar to readGlobalFile.

The yielded file handle does not need to and should not be closed explicitly.

Parameters
• encoding (Optional[str]) – the name of the encoding used to decode the file. Encod-

ings are the same as for decode(). Defaults to None which represents binary mode.

• errors (Optional[str]) – an optional string that specifies how encoding errors are to
be handled. Errors are the same as for open(). Defaults to ‘strict’ when an encoding is
specified.

• fileStoreID (str) –

Return type
ContextManager[Union[IO[bytes], IO[str]]]

Implementations must call logAccess() to report the download.

Returns
a context manager yielding a file handle which can be read from.

Parameters
• fileStoreID (str) –

• encoding (Optional[str]) –

• errors (Optional[str]) –

Return type
ContextManager[Union[IO[bytes], IO[str]]]

getGlobalFileSize(fileStoreID)

Get the size of the file pointed to by the given ID, in bytes.

If a FileID or something else with a non-None ‘size’ field, gets that.

Otherwise, asks the job store to poll the file’s size.

Note that the job store may overestimate the file’s size, for example if it is encrypted and had to be augmented
with an IV or other encryption framing.

Parameters
fileStoreID (Union[toil.fileStores.FileID, str]) – File ID for the file

Returns
File’s size in bytes, as stored in the job store

Return type
int

abstract deleteLocalFile(fileStoreID)

Delete local copies of files associated with the provided job store ID.

Raises an OSError with an errno of errno.ENOENT if no such local copies exist. Thus, cannot be called
multiple times in succession.

30.1. toil 307

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

The files deleted are all those previously read from this file ID via readGlobalFile by the current job into
the job’s file-store-provided temp directory, plus the file that was written to create the given file ID, if it
was written by the current job from the job’s file-store-provided temp directory.

Parameters
fileStoreID (Union[toil.fileStores.FileID, str]) – File Store ID of the file to be
deleted.

Return type
None

abstract deleteGlobalFile(fileStoreID)

Delete local files and then permanently deletes them from the job store.

To ensure that the job can be restarted if necessary, the delete will not happen until after the job’s run
method has completed.

Parameters
fileStoreID (Union[toil.fileStores.FileID, str]) – the File Store ID of the file
to be deleted.

Return type
None

importFile(srcUrl, sharedFileName=None)

Parameters
• srcUrl (str) –

• sharedFileName (Optional[str]) –

Return type
Optional[toil.fileStores.FileID]

import_file(src_uri, shared_file_name=None)

Parameters
• src_uri (str) –

• shared_file_name (Optional[str]) –

Return type
Optional[toil.fileStores.FileID]

exportFile(jobStoreFileID, dstUrl)

Parameters
• jobStoreFileID (toil.fileStores.FileID) –

• dstUrl (str) –

Return type
None

abstract export_file(file_id, dst_uri)

Parameters
• file_id (toil.fileStores.FileID) –

• dst_uri (str) –

308 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
None

logToMaster(text, level=logging.INFO)

Send a logging message to the leader. The message will also be logged by the worker at the same level.

Parameters
• text (str) – The string to log.

• level (int) – The logging level.

Return type
None

abstract startCommit(jobState=False)
Update the status of the job on the disk.

May start an asynchronous process. Call waitForCommit() to wait on that process.

Parameters
jobState (bool) – If True, commit the state of the FileStore’s job, and file deletes. Other-
wise, commit only file creates/updates.

Return type
None

abstract waitForCommit()

Blocks while startCommit is running.

This function is called by this job’s successor to ensure that it does not begin modifying the job store until
after this job has finished doing so.

Might be called when startCommit is never called on a particular instance, in which case it does not block.

Returns
Always returns True

Return type
bool

abstract classmethod shutdown(shutdown_info)
Shutdown the filestore on this node.

This is intended to be called on batch system shutdown.

Parameters
shutdown_info (Any) – The implementation-specific shutdown information, for shutting
down the file store and removing all its state and all job local temp directories from the node.

Return type
None

30.1. toil 309

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

toil.fileStores.cachingFileStore

Module Contents

Classes

CachingFileStore A cache-enabled file store.

Attributes

logger

SQLITE_TIMEOUT_SECS

toil.fileStores.cachingFileStore.logger

toil.fileStores.cachingFileStore.SQLITE_TIMEOUT_SECS = 60.0

exception toil.fileStores.cachingFileStore.CacheError(message)
Bases: Exception

CacheError

Error Raised if the user attempts to add a non-local file to cache

exception toil.fileStores.cachingFileStore.CacheUnbalancedError

Bases: CacheError

CacheError CacheUnbalancedError

Raised if file store can’t free enough space for caching

message = 'Unable unable to free enough space for caching. This error frequently
arises due to jobs using...'

310 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

exception toil.fileStores.cachingFileStore.IllegalDeletionCacheError(deletedFile)
Bases: CacheError

CacheError IllegalDeletionCacheError

Error raised if the caching code discovers a file that represents a reference to a cached file to have gone missing.

This can be a big problem if a hard link is moved, because then the cache will be unable to evict the file it links
to.

Remember that files read with readGlobalFile may not be deleted by the user and need to be deleted with delete-
LocalFile.

exception toil.fileStores.cachingFileStore.InvalidSourceCacheError(message)
Bases: CacheError

CacheError InvalidSourceCacheError

Error raised if the user attempts to add a non-local file to cache

class toil.fileStores.cachingFileStore.CachingFileStore(jobStore, jobDesc, file_store_dir,
waitForPreviousCommit)

Bases: toil.fileStores.abstractFileStore.AbstractFileStore

ABC AbstractFileStore CachingFileStore

A cache-enabled file store.

Provides files that are read out as symlinks or hard links into a cache directory for the node, if permitted by the
workflow.

Also attempts to write files back to the backing JobStore asynchronously, after quickly taking them into the cache.
Writes are only required to finish when the job’s actual state after running is committed back to the job store.

Internaly, manages caching using a database. Each node has its own database, shared between all the workers on
the node. The database contains several tables:

30.1. toil 311

Toil Documentation, Release 5.11.0

files contains one entry for each file in the cache. Each entry knows the path to its data on disk. It also knows its
global file ID, its state, and its owning worker PID. If the owning worker dies, another worker will pick it up. It
also knows its size.

File states are:

• “cached”: happily stored in the cache. Reads can happen immediately. Owner is null. May be adopted and
moved to state “deleting” by anyone, if it has no outstanding immutable references.

• “downloading”: in the process of being saved to the cache by a non-null owner. Reads must wait for the
state to become “cached”. If the worker dies, goes to state “deleting”, because we don’t know if it was fully
downloaded or if anyone still needs it. No references can be created to a “downloading” file except by the
worker responsible for downloading it.

• “uploadable”: stored in the cache and ready to be written to the job store by a non-null owner. Transitions
to “uploading” when a (thread of) the owning worker process picks it up and begins uploading it, to free
cache space or to commit a completed job. If the worker dies, goes to state “cached”, because it may have
outstanding immutable references from the dead-but-not-cleaned-up job that was going to write it.

• “uploading”: stored in the cache and being written to the job store by a non-null owner. Transitions to
“cached” when successfully uploaded. If the worker dies, goes to state “cached”, because it may have
outstanding immutable references from the dead-but-not-cleaned-up job that was writing it.

• “deleting”: in the process of being removed from the cache by a non-null owner. Will eventually be removed
from the database.

refs contains one entry for each outstanding reference to a cached file (hard link, symlink, or full copy). The
table name is refs instead of references because references is an SQL reserved word. It remembers what job ID
has the reference, and the path the reference is at. References have three states:

• “immutable”: represents a hardlink or symlink to a file in the cache. Dedicates the file’s size in bytes of
the job’s disk requirement to the cache, to be used to cache this file or to keep around other files without
references. May be upgraded to “copying” if the link can’t actually be created.

• “copying”: records that a file in the cache is in the process of being copied to a path. Will be upgraded to
a mutable reference eventually.

• “mutable”: records that a file from the cache was copied to a certain path. Exist only to support deleteLo-
calFile’s API. Only files with only mutable references (or no references) are eligible for eviction.

jobs contains one entry for each job currently running. It keeps track of the job’s ID, the worker that is supposed
to be running the job, the job’s disk requirement, and the job’s local temp dir path that will need to be cleaned
up. When workers check for jobs whose workers have died, they null out the old worker, and grab ownership of
and clean up jobs and their references until the null-worker jobs are gone.

properties contains key, value pairs for tracking total space available, and whether caching is free for this run.

Parameters
• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

• jobDesc (toil.job.JobDescription) –

• file_store_dir (str) –

• waitForPreviousCommit (Callable[[], Any]) –

getCacheLimit()

Return the total number of bytes to which the cache is limited.

If no limit is available, raises an error.

312 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

getCacheUsed()

Return the total number of bytes used in the cache.

If no value is available, raises an error.

getCacheExtraJobSpace()

Return the total number of bytes of disk space requested by jobs running against this cache but not yet used.

We can get into a situation where the jobs on the node take up all its space, but then they want to write to
or read from the cache. So when that happens, we need to debit space from them somehow. . .

If no value is available, raises an error.

getCacheAvailable()

Return the total number of free bytes available for caching, or, if negative, the total number of bytes of
cached files that need to be evicted to free up enough space for all the currently scheduled jobs.

If no value is available, raises an error.

getSpaceUsableForJobs()

Return the total number of bytes that are not taken up by job requirements, ignoring files and file usage.
We can’t ever run more jobs than we actually have room for, even with caching.

If not retrievable, raises an error.

getCacheUnusedJobRequirement()

Return the total number of bytes of disk space requested by the current job and not used by files the job is
using in the cache.

Mutable references don’t count, but immutable/uploading ones do.

If no value is available, raises an error.

adjustCacheLimit(newTotalBytes)
Adjust the total cache size limit to the given number of bytes.

fileIsCached(fileID)

Return true if the given file is currently cached, and false otherwise.

Note that this can’t really be relied upon because a file may go cached -> deleting after you look at it. If
you need to do something with the file you need to do it in a transaction.

getFileReaderCount(fileID)

Return the number of current outstanding reads of the given file.

Counts mutable references too.

cachingIsFree()

Return true if files can be cached for free, without taking up space. Return false otherwise.

This will be true when working with certain job stores in certain configurations, most notably the FileJob-
Store.

open(job)
This context manager decorated method allows cache-specific operations to be conducted before and after
the execution of a job in worker.py

Parameters
job (toil.job.Job) –

Return type
Generator[None, None, None]

30.1. toil 313

Toil Documentation, Release 5.11.0

writeGlobalFile(localFileName, cleanup=False, executable=False)
Creates a file in the jobstore and returns a FileID reference.

readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=False, symlink=False)
Make the file associated with fileStoreID available locally.

If mutable is True, then a copy of the file will be created locally so that the original is not modified and
does not change the file for other jobs. If mutable is False, then a link can be created to the file, saving disk
resources. The file that is downloaded will be executable if and only if it was originally uploaded from an
executable file on the local filesystem.

If a user path is specified, it is used as the destination. If a user path isn’t specified, the file is stored in the
local temp directory with an encoded name.

The destination file must not be deleted by the user; it can only be deleted through deleteLocalFile.

Implementations must call logAccess() to report the download.

Parameters
• fileStoreID – job store id for the file

• userPath – a path to the name of file to which the global file will be copied or hard-linked
(see below).

• cache – Described in toil.fileStores.CachingFileStore.readGlobalFile()

• mutable – Described in toil.fileStores.CachingFileStore.readGlobalFile()

• symlink – True if caller can accept symlink, False if caller can only accept a normal file
or hardlink

Returns
An absolute path to a local, temporary copy of the file keyed by fileStoreID.

readGlobalFileStream(fileStoreID, encoding=None, errors=None)
Read a stream from the job store; similar to readGlobalFile.

The yielded file handle does not need to and should not be closed explicitly.

Parameters
• encoding – the name of the encoding used to decode the file. Encodings are the same as

for decode(). Defaults to None which represents binary mode.

• errors – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Implementations must call logAccess() to report the download.

Returns
a context manager yielding a file handle which can be read from.

deleteLocalFile(fileStoreID)

Delete local copies of files associated with the provided job store ID.

Raises an OSError with an errno of errno.ENOENT if no such local copies exist. Thus, cannot be called
multiple times in succession.

The files deleted are all those previously read from this file ID via readGlobalFile by the current job into
the job’s file-store-provided temp directory, plus the file that was written to create the given file ID, if it
was written by the current job from the job’s file-store-provided temp directory.

Parameters
fileStoreID – File Store ID of the file to be deleted.

314 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

deleteGlobalFile(fileStoreID)

Delete local files and then permanently deletes them from the job store.

To ensure that the job can be restarted if necessary, the delete will not happen until after the job’s run
method has completed.

Parameters
fileStoreID – the File Store ID of the file to be deleted.

exportFile(jobStoreFileID, dstUrl)

Parameters
• jobStoreFileID (toil.fileStores.FileID) –

• dstUrl (str) –

Return type
None

export_file(file_id, dst_uri)

Parameters
• file_id (toil.fileStores.FileID) –

• dst_uri (str) –

Return type
None

waitForCommit()

Blocks while startCommit is running.

This function is called by this job’s successor to ensure that it does not begin modifying the job store until
after this job has finished doing so.

Might be called when startCommit is never called on a particular instance, in which case it does not block.

Returns
Always returns True

Return type
bool

startCommit(jobState=False)
Update the status of the job on the disk.

May start an asynchronous process. Call waitForCommit() to wait on that process.

Parameters
jobState – If True, commit the state of the FileStore’s job, and file deletes. Otherwise,
commit only file creates/updates.

startCommitThread(jobState)
Run in a thread to actually commit the current job.

classmethod shutdown(shutdown_info)

Parameters
shutdown_info (Tuple[str, str]) – Tuple of the coordination directory (where the
cache database is) and the cache directory (where the cached data is).

30.1. toil 315

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
None

Job local temp directories will be removed due to their appearance in the database.

__del__()

Cleanup function that is run when destroying the class instance that ensures that all the file writing threads
exit.

toil.fileStores.nonCachingFileStore

Module Contents

Classes

NonCachingFileStore Interface used to allow user code run by Toil to read and
write files.

Attributes

logger

toil.fileStores.nonCachingFileStore.logger: logging.Logger

class toil.fileStores.nonCachingFileStore.NonCachingFileStore(jobStore, jobDesc, file_store_dir,
waitForPreviousCommit)

Bases: toil.fileStores.abstractFileStore.AbstractFileStore

ABC AbstractFileStore NonCachingFileStore

Interface used to allow user code run by Toil to read and write files.

Also provides the interface to other Toil facilities used by user code, including:

• normal (non-real-time) logging

• finding the correct temporary directory for scratch work

• importing and exporting files into and out of the workflow

Stores user files in the jobStore, but keeps them separate from actual jobs.

May implement caching.

Passed as argument to the toil.job.Job.run() method.

316 Chapter 30. API Reference

https://docs.python.org/3/library/logging.html#logging.Logger

Toil Documentation, Release 5.11.0

Access to files is only permitted inside the context manager provided by toil.fileStores.
abstractFileStore.AbstractFileStore.open().

Also responsible for committing completed jobs back to the job store with an update operation, and allowing that
commit operation to be waited for.

Parameters
• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

• jobDesc (toil.job.JobDescription) –

• file_store_dir (str) –

• waitForPreviousCommit (Callable[[], Any]) –

static check_for_coordination_corruption(coordination_dir)
Make sure the coordination directory hasn’t been deleted unexpectedly.

Slurm has been known to delete XDG_RUNTIME_DIR out from under processes it was promised to, so it
is possible that in certain misconfigured environments the coordination directory and everything in it could
go away unexpectedly. We are going to regularly make sure that the things we think should exist actually
exist, and we are going to abort if they do not.

Parameters
coordination_dir (Optional[str]) –

Return type
None

check_for_state_corruption()

Make sure state tracking information hasn’t been deleted unexpectedly.

Return type
None

open(job)
Create the context manager around tasks prior and after a job has been run.

File operations are only permitted inside the context manager.

Implementations must only yield from within with super().open(job):.

Parameters
job (toil.job.Job) – The job instance of the toil job to run.

Return type
Generator[None, None, None]

writeGlobalFile(localFileName, cleanup=False)
Upload a file (as a path) to the job store.

If the file is in a FileStore-managed temporary directory (i.e. from toil.fileStores.
abstractFileStore.AbstractFileStore.getLocalTempDir()), it will become a local copy
of the file, eligible for deletion by toil.fileStores.abstractFileStore.AbstractFileStore.
deleteLocalFile().

If an executable file on the local filesystem is uploaded, its executability will be preserved when it is down-
loaded again.

Parameters

30.1. toil 317

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• localFileName (str) – The path to the local file to upload. The last path component
(basename of the file) will remain associated with the file in the file store, if supported by
the backing JobStore, so that the file can be searched for by name or name glob.

• cleanup (bool) – if True then the copy of the global file will be deleted once the job and
all its successors have completed running. If not the global file must be deleted manually.

Returns
an ID that can be used to retrieve the file.

Return type
toil.fileStores.FileID

readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=False, symlink=False)
Make the file associated with fileStoreID available locally.

If mutable is True, then a copy of the file will be created locally so that the original is not modified and
does not change the file for other jobs. If mutable is False, then a link can be created to the file, saving disk
resources. The file that is downloaded will be executable if and only if it was originally uploaded from an
executable file on the local filesystem.

If a user path is specified, it is used as the destination. If a user path isn’t specified, the file is stored in the
local temp directory with an encoded name.

The destination file must not be deleted by the user; it can only be deleted through deleteLocalFile.

Implementations must call logAccess() to report the download.

Parameters
• fileStoreID (str) – job store id for the file

• userPath (Optional[str]) – a path to the name of file to which the global file will be
copied or hard-linked (see below).

• cache (bool) – Described in toil.fileStores.CachingFileStore.
readGlobalFile()

• mutable (bool) – Described in toil.fileStores.CachingFileStore.
readGlobalFile()

• symlink (bool) – True if caller can accept symlink, False if caller can only accept a normal
file or hardlink

Returns
An absolute path to a local, temporary copy of the file keyed by fileStoreID.

Return type
str

readGlobalFileStream(fileStoreID, encoding=None, errors=None)
Read a stream from the job store; similar to readGlobalFile.

The yielded file handle does not need to and should not be closed explicitly.

Parameters
• encoding (Optional[str]) – the name of the encoding used to decode the file. Encod-

ings are the same as for decode(). Defaults to None which represents binary mode.

• errors (Optional[str]) – an optional string that specifies how encoding errors are to
be handled. Errors are the same as for open(). Defaults to ‘strict’ when an encoding is
specified.

318 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• fileStoreID (str) –

Return type
Iterator[Union[IO[bytes], IO[str]]]

Implementations must call logAccess() to report the download.

Returns
a context manager yielding a file handle which can be read from.

Parameters
• fileStoreID (str) –

• encoding (Optional[str]) –

• errors (Optional[str]) –

Return type
Iterator[Union[IO[bytes], IO[str]]]

exportFile(jobStoreFileID, dstUrl)

Parameters
• jobStoreFileID (toil.fileStores.FileID) –

• dstUrl (str) –

Return type
None

export_file(file_id, dst_uri)

Parameters
• file_id (toil.fileStores.FileID) –

• dst_uri (str) –

Return type
None

deleteLocalFile(fileStoreID)

Delete local copies of files associated with the provided job store ID.

Raises an OSError with an errno of errno.ENOENT if no such local copies exist. Thus, cannot be called
multiple times in succession.

The files deleted are all those previously read from this file ID via readGlobalFile by the current job into
the job’s file-store-provided temp directory, plus the file that was written to create the given file ID, if it
was written by the current job from the job’s file-store-provided temp directory.

Parameters
fileStoreID (str) – File Store ID of the file to be deleted.

Return type
None

deleteGlobalFile(fileStoreID)

Delete local files and then permanently deletes them from the job store.

To ensure that the job can be restarted if necessary, the delete will not happen until after the job’s run
method has completed.

30.1. toil 319

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
fileStoreID (str) – the File Store ID of the file to be deleted.

Return type
None

waitForCommit()

Blocks while startCommit is running.

This function is called by this job’s successor to ensure that it does not begin modifying the job store until
after this job has finished doing so.

Might be called when startCommit is never called on a particular instance, in which case it does not block.

Returns
Always returns True

Return type
bool

startCommit(jobState=False)
Update the status of the job on the disk.

May start an asynchronous process. Call waitForCommit() to wait on that process.

Parameters
jobState (bool) – If True, commit the state of the FileStore’s job, and file deletes. Other-
wise, commit only file creates/updates.

Return type
None

__del__()

Cleanup function that is run when destroying the class instance. Nothing to do since there are no async
write events.

Return type
None

classmethod shutdown(shutdown_info)

Parameters
shutdown_info (str) – The coordination directory.

Return type
None

Package Contents

Classes

FileID A small wrapper around Python's builtin string class.

class toil.fileStores.FileID(fileStoreID, size, executable=False)
Bases: str

320 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

FileID

A small wrapper around Python’s builtin string class.

It is used to represent a file’s ID in the file store, and has a size attribute that is the file’s size in bytes. This object
is returned by importFile and writeGlobalFile.

Calls into the file store can use bare strings; size will be queried from the job store if unavailable in the ID.

Parameters
• fileStoreID (str) –

• size (int) –

• executable (bool) –

pack()

Pack the FileID into a string so it can be passed through external code.

Return type
str

classmethod forPath(fileStoreID, filePath)

Parameters
• fileStoreID (str) –

• filePath (str) –

Return type
FileID

classmethod unpack(packedFileStoreID)

Unpack the result of pack() into a FileID object.

Parameters
packedFileStoreID (str) –

Return type
FileID

toil.jobStores

Subpackages

toil.jobStores.aws

Submodules

toil.jobStores.aws.jobStore

30.1. toil 321

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Module Contents

Classes

AWSJobStore A job store that uses Amazon's S3 for file storage and
SimpleDB for storing job info and

Attributes

boto3_session

s3_boto3_resource

s3_boto3_client

logger

CONSISTENCY_TICKS

CONSISTENCY_TIME

aRepr

custom_repr

toil.jobStores.aws.jobStore.boto3_session

toil.jobStores.aws.jobStore.s3_boto3_resource

toil.jobStores.aws.jobStore.s3_boto3_client

toil.jobStores.aws.jobStore.logger

toil.jobStores.aws.jobStore.CONSISTENCY_TICKS = 5

toil.jobStores.aws.jobStore.CONSISTENCY_TIME = 1

exception toil.jobStores.aws.jobStore.ChecksumError

Bases: Exception

ChecksumError

Raised when a download from AWS does not contain the correct data.

322 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

class toil.jobStores.aws.jobStore.AWSJobStore(locator, partSize=50 << 20)
Bases: toil.jobStores.abstractJobStore.AbstractJobStore

ABC AbstractJobStore AWSJobStore

A job store that uses Amazon’s S3 for file storage and SimpleDB for storing job info and enforcing strong con-
sistency on the S3 file storage. There will be SDB domains for jobs and files and a versioned S3 bucket for file
contents. Job objects are pickled, compressed, partitioned into chunks of 1024 bytes and each chunk is stored as
a an attribute of the SDB item representing the job. UUIDs are used to identify jobs and files.

Parameters
• locator (str) –

• partSize (int) –

class FileInfo(fileID, ownerID, encrypted, version=None, content=None, numContentChunks=0,
checksum=None)

Bases: toil.jobStores.aws.utils.SDBHelper

FileInfoSDBHelper

Represents a file in this job store.

property fileID

property ownerID

property version

property previousVersion

property content

property checksum

outer

Type
AWSJobStore

classmethod create(ownerID)

30.1. toil 323

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

classmethod presenceIndicator()

The key that is guaranteed to be present in the return value of binaryToAttributes(). Assuming that
binaryToAttributes() is used with SDB’s PutAttributes, the return value of this method could be used
to detect the presence/absence of an item in SDB.

classmethod exists(jobStoreFileID)

classmethod load(jobStoreFileID)

classmethod loadOrCreate(jobStoreFileID, ownerID, encrypted)

classmethod loadOrFail(jobStoreFileID, customName=None)
Return type

AWSJobStore.FileInfo
Returns

an instance of this class representing the file with the given ID
Raises
NoSuchFileException – if given file does not exist

classmethod fromItem(item)

Convert an SDB item to an instance of this class.

toItem()

Convert this instance to an attribute dictionary suitable for SDB put_attributes().
Return type

(dict,int)
Returns

the attributes dict and an integer specifying the the number of chunk attributes in the dic-
tionary that are used for storing inlined content.

static maxInlinedSize()

save()

upload(localFilePath, calculateChecksum=True)

uploadStream(multipart=True, allowInlining=True, encoding=None, errors=None)
Context manager that gives out a binary or text mode upload stream to upload data.

copyFrom(srcObj)
Copies contents of source key into this file.

Parameters
srcObj (S3.Object) – The key (object) that will be copied from

copyTo(dstObj)
Copies contents of this file to the given key.

Parameters
dstObj (S3.Object) – The key (object) to copy this file’s content to

download(localFilePath, verifyChecksum=True)

downloadStream(verifyChecksum=True, encoding=None, errors=None)
Context manager that gives out a download stream to download data.

delete()

324 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

getSize()

Return the size of the referenced item in bytes.

__repr__()

Return repr(self).

property sseKeyPath

bucketNameRe

minBucketNameLen = 3

maxBucketNameLen = 63

maxNameLen = 10

nameSeparator = '--'

jobsPerBatchInsert = 25

itemsPerBatchDelete = 25

sharedFileOwnerID

statsFileOwnerID

readStatsFileOwnerID

versionings

initialize(config)
Initialize this job store.

Create the physical storage for this job store, allocate a workflow ID and persist the given Toil configuration
to the store.

Parameters
config – the Toil configuration to initialize this job store with. The given configuration will
be updated with the newly allocated workflow ID.

Raises
JobStoreExistsException – if the physical storage for this job store already exists

resume()

Connect this instance to the physical storage it represents and load the Toil configuration into the
AbstractJobStore.config attribute.

Raises
NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

batch()

If supported by the batch system, calls to create() with this context manager active will be performed in a
batch after the context manager is released.

assign_job_id(job_description)
Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created or
updated.

30.1. toil 325

Toil Documentation, Release 5.11.0

Parameters
job_description (toil.job.JobDescription) – The JobDescription to give an ID to

create_job(job_description)
Writes the given JobDescription to the job store. The job must have an ID assigned already.

Must call jobDescription.pre_update_hook()

Returns
The JobDescription passed.

Return type
toil.job.JobDescription

job_exists(job_id)
Indicates whether a description of the job with the specified jobStoreID exists in the job store

Return type
bool

jobs()

Best effort attempt to return iterator on JobDescriptions for all jobs in the store. The iterator may not return
all jobs and may also contain orphaned jobs that have already finished successfully and should not be rerun.
To guarantee you get any and all jobs that can be run instead construct a more expensive ToilState object

Returns
Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may
contain invalid jobs

Return type
Iterator[toil.job.jobDescription]

load_job(job_id)
Loads the description of the job referenced by the given ID, assigns it the job store’s config, and returns it.

May declare the job to have failed (see toil.job.JobDescription.setupJobAfterFailure()) if
there is evidence of a failed update attempt.

Parameters
job_id – the ID of the job to load

Raises
NoSuchJobException – if there is no job with the given ID

update_job(job_description)
Persists changes to the state of the given JobDescription in this store atomically.

Must call jobDescription.pre_update_hook()

Parameters
job (toil.job.JobDescription) – the job to write to this job store

delete_job(job_id)
Removes the JobDescription from the store atomically. You may not then subsequently call load(), write(),
update(), etc. with the same jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job will succeed silently.

Parameters
job_id (str) – the ID of the job to delete from this job store

326 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

get_empty_file_store_id(jobStoreID=None, cleanup=False, basename=None)
Creates an empty file in the job store and returns its ID. Call to fileExists(getEmptyFileStoreID(jobStoreID))
will return True.

Parameters
• job_id (str) – the id of a job, or None. If specified, the may be associated with that job

in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (str) – If supported by the implementation, use the given file basename so that
when searching the job store with a query matching that basename, the file will be detected.

Returns
a jobStoreFileID that references the newly created file and can be used to reference the file in
the future.

Return type
str

classmethod get_size(url)
Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

Parameters
src_uri – URL that points to a file or object in the storage mechanism of a supported URL
scheme e.g. a blob in an AWS s3 bucket.

write_file(local_path, job_id=None, cleanup=False)
Takes a file (as a path) and places it in this job store. Returns an ID that can be used to retrieve the file at
a later time. The file is written in a atomic manner. It will not appear in the jobStore until the write has
successfully completed.

Parameters
• local_path (str) – the path to the local file that will be uploaded to the job store. The

last path component (basename of the file) will remain associated with the file in the file
store, if supported, so that the file can be searched for by name or name glob.

• job_id (str) – the id of a job, or None. If specified, the may be associated with that job
in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

Returns
an ID referencing the newly created file and can be used to read the file in the future.

Return type
str

30.1. toil 327

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

write_file_stream(job_id=None, cleanup=False, basename=None, encoding=None, errors=None)
Similar to writeFile, but returns a context manager yielding a tuple of 1) a file handle which can be written
to and 2) the ID of the resulting file in the job store. The yielded file handle does not need to and should
not be closed explicitly. The file is written in a atomic manner. It will not appear in the jobStore until the
write has successfully completed.

Parameters
• job_id (str) – the id of a job, or None. If specified, the may be associated with that job

in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (str) – If supported by the implementation, use the given file basename so that
when searching the job store with a query matching that basename, the file will be detected.

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

Returns
a context manager yielding a file handle which can be written to and an ID that references the
newly created file and can be used to read the file in the future.

Return type
Iterator[Tuple[IO[bytes], str]]

write_shared_file_stream(shared_file_name, encrypted=None, encoding=None, errors=None)
Returns a context manager yielding a writable file handle to the global file referenced by the given name.
File will be created in an atomic manner.

Parameters
• shared_file_name (str) – A file name matching AbstractJobStore.fileNameRegex,

unique within this job store

• encrypted (bool) – True if the file must be encrypted, None if it may be encrypted or
False if it must be stored in the clear.

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

328 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Returns
a context manager yielding a writable file handle

Return type
Iterator[IO[bytes]]

update_file(file_id, local_path)
Replaces the existing version of a file in the job store.

Throws an exception if the file does not exist.

Parameters
• file_id – the ID of the file in the job store to be updated

• local_path – the local path to a file that will overwrite the current version in the job store

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchFileException – if the specified file does not exist

update_file_stream(file_id, encoding=None, errors=None)
Replaces the existing version of a file in the job store. Similar to writeFile, but returns a context manager
yielding a file handle which can be written to. The yielded file handle does not need to and should not be
closed explicitly.

Parameters
• file_id (str) – the ID of the file in the job store to be updated

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchFileException – if the specified file does not exist

file_exists(file_id)
Determine whether a file exists in this job store.

Parameters
file_id – an ID referencing the file to be checked

get_file_size(file_id)
Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of file sizes, since the encrypted file may
have been padded to the nearest block, augmented with an initialization vector, etc.

Parameters
file_id (str) – an ID referencing the file to be checked

Return type
int

30.1. toil 329

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

read_file(file_id, local_path, symlink=False)
Copies or hard links the file referenced by jobStoreFileID to the given local file path. The version will
be consistent with the last copy of the file written/updated. If the file in the job store is later modified
via updateFile or updateFileStream, it is implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not appear in the local file system until the
copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

Parameters
• file_id (str) – ID of the file to be copied

• local_path (str) – the local path indicating where to place the contents of the given file
in the job store

• symlink (bool) – whether the reader can tolerate a symlink. If set to true, the job store
may create a symlink instead of a full copy of the file or a hard link.

read_file_stream(file_id, encoding=None, errors=None)
Similar to readFile, but returns a context manager yielding a file handle which can be read from. The
yielded file handle does not need to and should not be closed explicitly.

Parameters
• file_id (str) – ID of the file to get a readable file handle for

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Returns
a context manager yielding a file handle which can be read from

Return type
Iterator[Union[IO[bytes], IO[str]]]

read_shared_file_stream(shared_file_name, encoding=None, errors=None)
Returns a context manager yielding a readable file handle to the global file referenced by the given name.

Parameters
• shared_file_name (str) – A file name matching AbstractJobStore.fileNameRegex,

unique within this job store

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Returns
a context manager yielding a readable file handle

Return type
Iterator[IO[bytes]]

330 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

Toil Documentation, Release 5.11.0

delete_file(file_id)
Deletes the file with the given ID from this job store. This operation is idempotent, i.e. deleting a file twice
or deleting a non-existent file will succeed silently.

Parameters
file_id (str) – ID of the file to delete

write_logs(msg)
Stores a message as a log in the jobstore.

Parameters
msg (str) – the string to be written

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

read_logs(callback, read_all=False)
Reads logs accumulated by the write_logs() method. For each log this method calls the given callback
function with the message as an argument (rather than returning logs directly, this method must be supplied
with a callback which will process log messages).

Only unread logs will be read unless the read_all parameter is set.

Parameters
• callback (Callable) – a function to be applied to each of the stats file handles found

• read_all (bool) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Returns
the number of stats files processed

Return type
int

get_public_url(jobStoreFileID)

Returns a publicly accessible URL to the given file in the job store. The returned URL may expire as early
as 1h after its been returned. Throw an exception if the file does not exist.

Parameters
file_name (str) – the jobStoreFileID of the file to generate a URL for

Raises
NoSuchFileException – if the specified file does not exist in this job store

Return type
str

get_shared_public_url(shared_file_name)
Differs from getPublicUrl() in that this method is for generating URLs for shared files written by
writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL starts with ‘http:’,
‘https:’ or ‘file:’. The returned URL may expire as early as 1h after its been returned. Throw an exception
if the file does not exist.

30.1. toil 331

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
shared_file_name (str) – The name of the shared file to generate a publically accessible
url for.

Raises
NoSuchFileException – raised if the specified file does not exist in the store

Return type
str

destroy()

The inverse of initialize(), this method deletes the physical storage represented by this instance. While
not being atomic, this method is at least idempotent, as a means to counteract potential issues with eventual
consistency exhibited by the underlying storage mechanisms. This means that if the method fails (raises
an exception), it may (and should be) invoked again. If the underlying storage mechanism is eventually
consistent, even a successful invocation is not an ironclad guarantee that the physical storage vanished
completely and immediately. A successful invocation only guarantees that the deletion will eventually
happen. It is therefore recommended to not immediately reuse the same job store location for a new Toil
workflow.

toil.jobStores.aws.jobStore.aRepr

toil.jobStores.aws.jobStore.custom_repr

exception toil.jobStores.aws.jobStore.BucketLocationConflictException(bucketRegion)
Bases: Exception

BucketLocationConflictException

Common base class for all non-exit exceptions.

toil.jobStores.aws.utils

Module Contents

Classes

SDBHelper A mixin with methods for storing limited amounts of bi-
nary data in an SDB item

332 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

Functions

fileSizeAndTime(localFilePath)

uploadFromPath (localFilePath, resource, bucket-
Name, fileID)

Uploads a file to s3, using multipart uploading if appli-
cable

uploadFile(readable, resource, bucketName, fileID[,
...])

Upload a readable object to s3, using multipart upload-
ing if applicable.

copyKeyMultipart(resource, srcBucketName, srcK-
eyName, ...)

Copies a key from a source key to a destination key in
multiple parts. Note that if the

monkeyPatchSdbConnection(sdb)
type sdb

SDBConnection

sdb_unavailable(e)

no_such_sdb_domain(e)

retryable_ssl_error(e)

retryable_sdb_errors(e)

retry_sdb([delays, timeout, predicate])

Attributes

logger

DIAL_SPECIFIC_REGION_CONFIG

toil.jobStores.aws.utils.logger

toil.jobStores.aws.utils.DIAL_SPECIFIC_REGION_CONFIG

class toil.jobStores.aws.utils.SDBHelper

A mixin with methods for storing limited amounts of binary data in an SDB item

>>> import os
>>> H=SDBHelper
>>> H.presenceIndicator()
u'numChunks'
>>> H.binaryToAttributes(None)['numChunks']
0
>>> H.attributesToBinary({u'numChunks': 0})
(None, 0)
>>> H.binaryToAttributes(b'')
{u'000': b'VQ==', u'numChunks': 1}
>>> H.attributesToBinary({u'numChunks': 1, u'000': b'VQ=='})
(b'', 1)

30.1. toil 333

Toil Documentation, Release 5.11.0

Good pseudo-random data is very likely smaller than its bzip2ed form. Subtract 1 for the type character, i.e ‘C’
or ‘U’, with which the string is prefixed. We should get one full chunk:

>>> s = os.urandom(H.maxRawValueSize-1)
>>> d = H.binaryToAttributes(s)
>>> len(d), len(d['000'])
(2, 1024)
>>> H.attributesToBinary(d) == (s, 1)
True

One byte more and we should overflow four bytes into the second chunk, two bytes for base64-encoding the
additional character and two bytes for base64-padding to the next quartet.

>>> s += s[0:1]
>>> d = H.binaryToAttributes(s)
>>> len(d), len(d['000']), len(d['001'])
(3, 1024, 4)
>>> H.attributesToBinary(d) == (s, 2)
True

maxAttributesPerItem = 256

maxValueSize = 1024

maxRawValueSize

classmethod maxBinarySize(extraReservedChunks=0)

classmethod binaryToAttributes(binary)
Turn a bytestring, or None, into SimpleDB attributes.

classmethod presenceIndicator()

The key that is guaranteed to be present in the return value of binaryToAttributes(). Assuming that bina-
ryToAttributes() is used with SDB’s PutAttributes, the return value of this method could be used to detect
the presence/absence of an item in SDB.

classmethod attributesToBinary(attributes)

Return type
(str|None,int)

Returns
the binary data and the number of chunks it was composed from

toil.jobStores.aws.utils.fileSizeAndTime(localFilePath)

toil.jobStores.aws.utils.uploadFromPath(localFilePath, resource, bucketName, fileID, headerArgs=None,
partSize=50 << 20)

Uploads a file to s3, using multipart uploading if applicable

Parameters
• localFilePath (str) – Path of the file to upload to s3

• resource (S3.Resource) – boto3 resource

• bucketName (str) – name of the bucket to upload to

• fileID (str) – the name of the file to upload to

334 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• headerArgs (dict) – http headers to use when uploading - generally used for encryption
purposes

• partSize (int) – max size of each part in the multipart upload, in bytes

Returns
version of the newly uploaded file

toil.jobStores.aws.utils.uploadFile(readable, resource, bucketName, fileID, headerArgs=None,
partSize=50 << 20)

Upload a readable object to s3, using multipart uploading if applicable. :param readable: a readable stream or
a file path to upload to s3 :param S3.Resource resource: boto3 resource :param str bucketName: name of the
bucket to upload to :param str fileID: the name of the file to upload to :param dict headerArgs: http headers to
use when uploading - generally used for encryption purposes :param int partSize: max size of each part in the
multipart upload, in bytes :return: version of the newly uploaded file

Parameters
• bucketName (str) –

• fileID (str) –

• headerArgs (Optional[dict]) –

• partSize (int) –

exception toil.jobStores.aws.utils.ServerSideCopyProhibitedError

Bases: RuntimeError

ServerSideCopyProhibitedError

Raised when AWS refuses to perform a server-side copy between S3 keys, and insists that you pay to download
and upload the data yourself instead.

toil.jobStores.aws.utils.copyKeyMultipart(resource, srcBucketName, srcKeyName, srcKeyVersion,
dstBucketName, dstKeyName, sseAlgorithm=None,
sseKey=None, copySourceSseAlgorithm=None,
copySourceSseKey=None)

Copies a key from a source key to a destination key in multiple parts. Note that if the destination key exists it
will be overwritten implicitly, and if it does not exist a new key will be created. If the destination bucket does
not exist an error will be raised.

This function will always do a fast, server-side copy, at least until/unless <https://github.com/boto/boto3/issues/
3270> is fixed. In some situations, a fast, server-side copy is not actually possible. For example, when residing
in an AWS VPC with an S3 VPC Endpoint configured, copying from a bucket in another region to a bucket in
your own region cannot be performed server-side. This is because the VPC Endpoint S3 API servers refuse to
perform server-side copies between regions, the source region’s API servers refuse to initiate the copy and refer
you to the destination bucket’s region’s API servers, and the VPC routing tables are configured to redirect all
access to the current region’s S3 API servers to the S3 Endpoint API servers instead.

If a fast server-side copy is not actually possible, a ServerSideCopyProhibitedError will be raised.

Parameters

30.1. toil 335

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://github.com/boto/boto3/issues/3270
https://github.com/boto/boto3/issues/3270

Toil Documentation, Release 5.11.0

• resource (mypy_boto3_s3.S3ServiceResource) – boto3 resource

• srcBucketName (str) – The name of the bucket to be copied from.

• srcKeyName (str) – The name of the key to be copied from.

• srcKeyVersion (str) – The version of the key to be copied from.

• dstBucketName (str) – The name of the destination bucket for the copy.

• dstKeyName (str) – The name of the destination key that will be created or overwritten.

• sseAlgorithm (str) – Server-side encryption algorithm for the destination.

• sseKey (str) – Server-side encryption key for the destination.

• copySourceSseAlgorithm (str) – Server-side encryption algorithm for the source.

• copySourceSseKey (str) – Server-side encryption key for the source.

Return type
str

Returns
The version of the copied file (or None if versioning is not enabled for dstBucket).

toil.jobStores.aws.utils.monkeyPatchSdbConnection(sdb)

toil.jobStores.aws.utils.sdb_unavailable(e)

toil.jobStores.aws.utils.no_such_sdb_domain(e)

toil.jobStores.aws.utils.retryable_ssl_error(e)

toil.jobStores.aws.utils.retryable_sdb_errors(e)

toil.jobStores.aws.utils.retry_sdb(delays=DEFAULT_DELAYS, timeout=DEFAULT_TIMEOUT,
predicate=retryable_sdb_errors)

Submodules

toil.jobStores.abstractJobStore

Module Contents

Classes

AbstractJobStore Represents the physical storage for the jobs and files in a
Toil workflow.

JobStoreSupport A mostly fake JobStore to access URLs not really asso-
ciated with real job

336 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Attributes

logger

toil.jobStores.abstractJobStore.logger

exception toil.jobStores.abstractJobStore.ProxyConnectionError

Bases: BaseException

Dummy class.

exception toil.jobStores.abstractJobStore.InvalidImportExportUrlException(url)
Bases: Exception

InvalidImportExportUrlException

Common base class for all non-exit exceptions.

Parameters
url (urllib.parse.ParseResult) –

exception toil.jobStores.abstractJobStore.UnimplementedURLException(url, operation)
Bases: RuntimeError

UnimplementedURLException

Unspecified run-time error.

Parameters
• url (urllib.parse.ParseResult) –

• operation (str) –

exception toil.jobStores.abstractJobStore.NoSuchJobException(jobStoreID)

Bases: Exception

30.1. toil 337

https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

NoSuchJobException

Indicates that the specified job does not exist.

Parameters
jobStoreID (toil.fileStores.FileID) –

exception toil.jobStores.abstractJobStore.ConcurrentFileModificationException(jobStoreFileID)

Bases: Exception

ConcurrentFileModificationException

Indicates that the file was attempted to be modified by multiple processes at once.

Parameters
jobStoreFileID (toil.fileStores.FileID) –

exception toil.jobStores.abstractJobStore.NoSuchFileException(jobStoreFileID,
customName=None, *extra)

Bases: Exception

NoSuchFileException

Indicates that the specified file does not exist.

Parameters
• jobStoreFileID (toil.fileStores.FileID) –

• customName (Optional[str]) –

• extra (Any) –

exception toil.jobStores.abstractJobStore.NoSuchJobStoreException(locator)
Bases: Exception

338 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

NoSuchJobStoreException

Indicates that the specified job store does not exist.

Parameters
locator (str) –

exception toil.jobStores.abstractJobStore.JobStoreExistsException(locator)
Bases: Exception

JobStoreExistsException

Indicates that the specified job store already exists.

Parameters
locator (str) –

class toil.jobStores.abstractJobStore.AbstractJobStore(locator)
Bases: abc.ABC

ABC AbstractJobStore

Represents the physical storage for the jobs and files in a Toil workflow.

JobStores are responsible for storing toil.job.JobDescription (which relate jobs to each other) and files.

Actual toil.job.Job objects are stored in files, referenced by JobDescriptions. All the non-file CRUD methods
the JobStore provides deal in JobDescriptions and not full, executable Jobs.

To actually get ahold of a toil.job.Job, use toil.job.Job.loadJob() with a JobStore and the relevant
JobDescription.

Parameters
locator (str) –

property config: toil.common.Config

Return the Toil configuration associated with this job store.

30.1. toil 339

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
toil.common.Config

property locator: str

Get the locator that defines the job store, which can be used to connect to it.

Return type
str

rootJobStoreIDFileName = 'rootJobStoreID'

publicUrlExpiration

sharedFileNameRegex

initialize(config)
Initialize this job store.

Create the physical storage for this job store, allocate a workflow ID and persist the given Toil configuration
to the store.

Parameters
config (toil.common.Config) – the Toil configuration to initialize this job store with. The
given configuration will be updated with the newly allocated workflow ID.

Raises
JobStoreExistsException – if the physical storage for this job store already exists

Return type
None

writeConfig()

Return type
None

write_config()

Persists the value of the AbstractJobStore.config attribute to the job store, so that it can be retrieved
later by other instances of this class.

Return type
None

resume()

Connect this instance to the physical storage it represents and load the Toil configuration into the
AbstractJobStore.config attribute.

Raises
NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

Return type
None

setRootJob(rootJobStoreID)

Set the root job of the workflow backed by this job store.

Parameters
rootJobStoreID (toil.fileStores.FileID) –

Return type
None

340 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

set_root_job(job_id)
Set the root job of the workflow backed by this job store.

Parameters
job_id (toil.fileStores.FileID) – The ID of the job to set as root

Return type
None

loadRootJob()

Return type
toil.job.JobDescription

load_root_job()

Loads the JobDescription for the root job in the current job store.

Raises
toil.job.JobException – If no root job is set or if the root job doesn’t exist in this job
store

Returns
The root job.

Return type
toil.job.JobDescription

createRootJob(desc)

Parameters
desc (toil.job.JobDescription) –

Return type
toil.job.JobDescription

create_root_job(job_description)
Create the given JobDescription and set it as the root job in this job store.

Parameters
job_description (toil.job.JobDescription) – JobDescription to save and make the
root job.

Return type
toil.job.JobDescription

getRootJobReturnValue()

Return type
Any

get_root_job_return_value()

Parse the return value from the root job.

Raises an exception if the root job hasn’t fulfilled its promise yet.

Return type
Any

importFile(srcUrl: str, sharedFileName: str, hardlink: bool = False, symlink: bool = True)→ None

30.1. toil 341

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.11.0

importFile(srcUrl: str, sharedFileName: None = None, hardlink: bool = False, symlink: bool = True)→
toil.fileStores.FileID

import_file(src_uri: str, shared_file_name: str, hardlink: bool = False, symlink: bool = True)→ None
import_file(src_uri: str, shared_file_name: None = None, hardlink: bool = False, symlink: bool = True)

→ toil.fileStores.FileID
Imports the file at the given URL into job store. The ID of the newly imported file is returned. If the name
of a shared file name is provided, the file will be imported as such and None is returned. If an executable
file on the local filesystem is uploaded, its executability will be preserved when it is downloaded.

Currently supported schemes are:

• ‘s3’ for objects in Amazon S3
e.g. s3://bucket/key

• ‘file’ for local files
e.g. file:///local/file/path

• ‘http’
e.g. http://someurl.com/path

• ‘gs’
e.g. gs://bucket/file

Parameters
• src_uri (str) – URL that points to a file or object in the storage mechanism of a supported

URL scheme e.g. a blob in an AWS s3 bucket. It must be a file, not a directory or prefix.

• shared_file_name (str) – Optional name to assign to the imported file within the job
store

Returns
The jobStoreFileID of the imported file or None if shared_file_name was given

Return type
toil.fileStores.FileID or None

exportFile(jobStoreFileID, dstUrl)

Parameters
• jobStoreFileID (toil.fileStores.FileID) –

• dstUrl (str) –

Return type
None

export_file(file_id, dst_uri)
Exports file to destination pointed at by the destination URL. The exported file will be executable if and
only if it was originally uploaded from an executable file on the local filesystem.

Refer to AbstractJobStore.import_file() documentation for currently supported URL schemes.

Note that the helper method _exportFile is used to read from the source and write to destination. To imple-
ment any optimizations that circumvent this, the _exportFile method should be overridden by subclasses of
AbstractJobStore.

Parameters
• file_id (str) – The id of the file in the job store that should be exported.

342 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
file:///local/file/path
http://someurl.com/path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• dst_uri (str) – URL that points to a file or object in the storage mechanism of a supported
URL scheme e.g. a blob in an AWS s3 bucket.

Return type
None

classmethod list_url(src_uri)
List the directory at the given URL. Returned path components can be joined with ‘/’ onto the passed URL
to form new URLs. Those that end in ‘/’ correspond to directories. The provided URL may or may not end
with ‘/’.

Currently supported schemes are:

• ‘s3’ for objects in Amazon S3
e.g. s3://bucket/prefix/

• ‘file’ for local files
e.g. file:///local/dir/path/

Parameters
src_uri (str) – URL that points to a directory or prefix in the storage mechanism of a
supported URL scheme e.g. a prefix in an AWS s3 bucket.

Returns
A list of URL components in the given directory, already URL-encoded.

Return type
List[str]

classmethod get_is_directory(src_uri)
Return True if the thing at the given URL is a directory, and False if it is a file. The URL may or may not
end in ‘/’.

Parameters
src_uri (str) –

Return type
bool

classmethod read_from_url(src_uri, writable)
Read the given URL and write its content into the given writable stream.

Returns
The size of the file in bytes and whether the executable permission bit is set

Return type
Tuple[int, bool]

Parameters
• src_uri (str) –

• writable (IO[bytes]) –

classmethod getSize(url)

Parameters
url (urllib.parse.ParseResult) –

Return type
None

30.1. toil 343

https://docs.python.org/3/library/stdtypes.html#str
file:///local/dir/path/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult

Toil Documentation, Release 5.11.0

abstract classmethod get_size(src_uri)
Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

Parameters
src_uri (urllib.parse.ParseResult) – URL that points to a file or object in the storage
mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.

Return type
None

abstract destroy()

The inverse of initialize(), this method deletes the physical storage represented by this instance. While
not being atomic, this method is at least idempotent, as a means to counteract potential issues with eventual
consistency exhibited by the underlying storage mechanisms. This means that if the method fails (raises
an exception), it may (and should be) invoked again. If the underlying storage mechanism is eventually
consistent, even a successful invocation is not an ironclad guarantee that the physical storage vanished
completely and immediately. A successful invocation only guarantees that the deletion will eventually
happen. It is therefore recommended to not immediately reuse the same job store location for a new Toil
workflow.

Return type
None

getEnv()

Return type
Dict[str, str]

get_env()

Returns a dictionary of environment variables that this job store requires to be set in order to function
properly on a worker.

Return type
dict[str,str]

clean(jobCache=None)
Function to cleanup the state of a job store after a restart.

Fixes jobs that might have been partially updated. Resets the try counts and removes jobs that are not
successors of the current root job.

Parameters
jobCache (Optional[Dict[Union[str, toil.job.TemporaryID], toil.job.
JobDescription]]) – if a value it must be a dict from job ID keys to JobDescription object
values. Jobs will be loaded from the cache (which can be downloaded from the job store in a
batch) instead of piecemeal when recursed into.

Return type
toil.job.JobDescription

assignID(jobDescription)

Parameters
jobDescription (toil.job.JobDescription) –

Return type
None

344 Chapter 30. API Reference

https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

abstract assign_job_id(job_description)
Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created or
updated.

Parameters
job_description (toil.job.JobDescription) – The JobDescription to give an ID to

Return type
None

batch()

If supported by the batch system, calls to create() with this context manager active will be performed in a
batch after the context manager is released.

Return type
Iterator[None]

create(jobDescription)

Parameters
jobDescription (toil.job.JobDescription) –

Return type
toil.job.JobDescription

abstract create_job(job_description)
Writes the given JobDescription to the job store. The job must have an ID assigned already.

Must call jobDescription.pre_update_hook()

Returns
The JobDescription passed.

Return type
toil.job.JobDescription

Parameters
job_description (toil.job.JobDescription) –

exists(jobStoreID)

Parameters
jobStoreID (str) –

Return type
bool

abstract job_exists(job_id)
Indicates whether a description of the job with the specified jobStoreID exists in the job store

Return type
bool

Parameters
job_id (str) –

getPublicUrl(fileName)

Parameters
fileName (str) –

30.1. toil 345

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
str

abstract get_public_url(file_name)
Returns a publicly accessible URL to the given file in the job store. The returned URL may expire as early
as 1h after its been returned. Throw an exception if the file does not exist.

Parameters
file_name (str) – the jobStoreFileID of the file to generate a URL for

Raises
NoSuchFileException – if the specified file does not exist in this job store

Return type
str

getSharedPublicUrl(sharedFileName)

Parameters
sharedFileName (str) –

Return type
str

abstract get_shared_public_url(shared_file_name)
Differs from getPublicUrl() in that this method is for generating URLs for shared files written by
writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL starts with ‘http:’,
‘https:’ or ‘file:’. The returned URL may expire as early as 1h after its been returned. Throw an exception
if the file does not exist.

Parameters
shared_file_name (str) – The name of the shared file to generate a publically accessible
url for.

Raises
NoSuchFileException – raised if the specified file does not exist in the store

Return type
str

load(jobStoreID)

Parameters
jobStoreID (str) –

Return type
toil.job.JobDescription

abstract load_job(job_id)
Loads the description of the job referenced by the given ID, assigns it the job store’s config, and returns it.

May declare the job to have failed (see toil.job.JobDescription.setupJobAfterFailure()) if
there is evidence of a failed update attempt.

Parameters
job_id (str) – the ID of the job to load

Raises
NoSuchJobException – if there is no job with the given ID

346 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
toil.job.JobDescription

update(jobDescription)

Parameters
jobDescription (toil.job.JobDescription) –

Return type
None

abstract update_job(job_description)
Persists changes to the state of the given JobDescription in this store atomically.

Must call jobDescription.pre_update_hook()

Parameters
• job (toil.job.JobDescription) – the job to write to this job store

• job_description (toil.job.JobDescription) –

Return type
None

delete(jobStoreID)

Parameters
jobStoreID (str) –

Return type
None

abstract delete_job(job_id)
Removes the JobDescription from the store atomically. You may not then subsequently call load(), write(),
update(), etc. with the same jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job will succeed silently.

Parameters
job_id (str) – the ID of the job to delete from this job store

Return type
None

abstract jobs()

Best effort attempt to return iterator on JobDescriptions for all jobs in the store. The iterator may not return
all jobs and may also contain orphaned jobs that have already finished successfully and should not be rerun.
To guarantee you get any and all jobs that can be run instead construct a more expensive ToilState object

Returns
Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may
contain invalid jobs

Return type
Iterator[toil.job.jobDescription]

writeFile(localFilePath, jobStoreID=None, cleanup=False)

Parameters
• localFilePath (str) –

• jobStoreID (Optional[str]) –

30.1. toil 347

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• cleanup (bool) –

Return type
str

abstract write_file(local_path, job_id=None, cleanup=False)
Takes a file (as a path) and places it in this job store. Returns an ID that can be used to retrieve the file at
a later time. The file is written in a atomic manner. It will not appear in the jobStore until the write has
successfully completed.

Parameters
• local_path (str) – the path to the local file that will be uploaded to the job store. The

last path component (basename of the file) will remain associated with the file in the file
store, if supported, so that the file can be searched for by name or name glob.

• job_id (str) – the id of a job, or None. If specified, the may be associated with that job
in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

Return type
str

FIXME: some implementations may not raise this

Returns
an ID referencing the newly created file and can be used to read the file in the future.

Return type
str

Parameters
• local_path (str) –

• job_id (Optional[str]) –

• cleanup (bool) –

writeFileStream(jobStoreID=None, cleanup=False, basename=None, encoding=None, errors=None)

Parameters
• jobStoreID (Optional[str]) –

• cleanup (bool) –

• basename (Optional[str]) –

• encoding (Optional[str]) –

• errors (Optional[str]) –

Return type
ContextManager[Tuple[IO[bytes], str]]

348 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

abstract write_file_stream(job_id=None, cleanup=False, basename=None, encoding=None,
errors=None)

Similar to writeFile, but returns a context manager yielding a tuple of 1) a file handle which can be written
to and 2) the ID of the resulting file in the job store. The yielded file handle does not need to and should
not be closed explicitly. The file is written in a atomic manner. It will not appear in the jobStore until the
write has successfully completed.

Parameters
• job_id (str) – the id of a job, or None. If specified, the may be associated with that job

in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (str) – If supported by the implementation, use the given file basename so that
when searching the job store with a query matching that basename, the file will be detected.

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

Return type
Iterator[Tuple[IO[bytes], str]]

FIXME: some implementations may not raise this

Returns
a context manager yielding a file handle which can be written to and an ID that references the
newly created file and can be used to read the file in the future.

Return type
Iterator[Tuple[IO[bytes], str]]

Parameters
• job_id (Optional[str]) –

• cleanup (bool) –

• basename (Optional[str]) –

• encoding (Optional[str]) –

• errors (Optional[str]) –

getEmptyFileStoreID(jobStoreID=None, cleanup=False, basename=None)

Parameters
• jobStoreID (Optional[str]) –

• cleanup (bool) –

• basename (Optional[str]) –

30.1. toil 349

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
str

abstract get_empty_file_store_id(job_id=None, cleanup=False, basename=None)
Creates an empty file in the job store and returns its ID. Call to fileExists(getEmptyFileStoreID(jobStoreID))
will return True.

Parameters
• job_id (str) – the id of a job, or None. If specified, the may be associated with that job

in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (str) – If supported by the implementation, use the given file basename so that
when searching the job store with a query matching that basename, the file will be detected.

Returns
a jobStoreFileID that references the newly created file and can be used to reference the file in
the future.

Return type
str

readFile(jobStoreFileID, localFilePath, symlink=False)

Parameters
• jobStoreFileID (str) –

• localFilePath (str) –

• symlink (bool) –

Return type
None

abstract read_file(file_id, local_path, symlink=False)
Copies or hard links the file referenced by jobStoreFileID to the given local file path. The version will
be consistent with the last copy of the file written/updated. If the file in the job store is later modified
via updateFile or updateFileStream, it is implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not appear in the local file system until the
copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

Parameters
• file_id (str) – ID of the file to be copied

• local_path (str) – the local path indicating where to place the contents of the given file
in the job store

• symlink (bool) – whether the reader can tolerate a symlink. If set to true, the job store
may create a symlink instead of a full copy of the file or a hard link.

Return type
None

350 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

readFileStream(jobStoreFileID, encoding=None, errors=None)

Parameters
• jobStoreFileID (str) –

• encoding (Optional[str]) –

• errors (Optional[str]) –

Return type
Union[ContextManager[IO[bytes]], ContextManager[IO[str]]]

read_file_stream(file_id: Union[toil.fileStores.FileID, str], encoding: Literal[None] = None, errors:
Optional[str] = None)→ ContextManager[IO[bytes]]

read_file_stream(file_id: Union[toil.fileStores.FileID, str], encoding: str, errors: Optional[str] = None)
→ ContextManager[IO[str]]

Similar to readFile, but returns a context manager yielding a file handle which can be read from. The
yielded file handle does not need to and should not be closed explicitly.

Parameters
• file_id (str) – ID of the file to get a readable file handle for

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Returns
a context manager yielding a file handle which can be read from

Return type
Iterator[Union[IO[bytes], IO[str]]]

deleteFile(jobStoreFileID)

Parameters
jobStoreFileID (str) –

Return type
None

abstract delete_file(file_id)
Deletes the file with the given ID from this job store. This operation is idempotent, i.e. deleting a file twice
or deleting a non-existent file will succeed silently.

Parameters
file_id (str) – ID of the file to delete

Return type
None

fileExists(jobStoreFileID)

Determine whether a file exists in this job store.

Parameters
jobStoreFileID (str) –

Return type
bool

30.1. toil 351

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

abstract file_exists(file_id)
Determine whether a file exists in this job store.

Parameters
file_id (str) – an ID referencing the file to be checked

Return type
bool

getFileSize(jobStoreFileID)

Get the size of the given file in bytes.

Parameters
jobStoreFileID (str) –

Return type
int

abstract get_file_size(file_id)
Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of file sizes, since the encrypted file may
have been padded to the nearest block, augmented with an initialization vector, etc.

Parameters
file_id (str) – an ID referencing the file to be checked

Return type
int

updateFile(jobStoreFileID, localFilePath)
Replaces the existing version of a file in the job store.

Parameters
• jobStoreFileID (str) –

• localFilePath (str) –

Return type
None

abstract update_file(file_id, local_path)
Replaces the existing version of a file in the job store.

Throws an exception if the file does not exist.

Parameters
• file_id (str) – the ID of the file in the job store to be updated

• local_path (str) – the local path to a file that will overwrite the current version in the
job store

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchFileException – if the specified file does not exist

Return type
None

352 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

updateFileStream(jobStoreFileID, encoding=None, errors=None)

Parameters
• jobStoreFileID (str) –

• encoding (Optional[str]) –

• errors (Optional[str]) –

Return type
ContextManager[IO[Any]]

abstract update_file_stream(file_id, encoding=None, errors=None)
Replaces the existing version of a file in the job store. Similar to writeFile, but returns a context manager
yielding a file handle which can be written to. The yielded file handle does not need to and should not be
closed explicitly.

Parameters
• file_id (str) – the ID of the file in the job store to be updated

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchFileException – if the specified file does not exist

Return type
Iterator[IO[Any]]

writeSharedFileStream(sharedFileName, isProtected=None, encoding=None, errors=None)

Parameters
• sharedFileName (str) –

• isProtected (Optional[bool]) –

• encoding (Optional[str]) –

• errors (Optional[str]) –

Return type
ContextManager[IO[bytes]]

abstract write_shared_file_stream(shared_file_name, encrypted=None, encoding=None,
errors=None)

Returns a context manager yielding a writable file handle to the global file referenced by the given name.
File will be created in an atomic manner.

Parameters
• shared_file_name (str) – A file name matching AbstractJobStore.fileNameRegex,

unique within this job store

• encrypted (bool) – True if the file must be encrypted, None if it may be encrypted or
False if it must be stored in the clear.

30.1. toil 353

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Returns
a context manager yielding a writable file handle

Return type
Iterator[IO[bytes]]

readSharedFileStream(sharedFileName, encoding=None, errors=None)

Parameters
• sharedFileName (str) –

• encoding (Optional[str]) –

• errors (Optional[str]) –

Return type
ContextManager[IO[bytes]]

abstract read_shared_file_stream(shared_file_name, encoding=None, errors=None)
Returns a context manager yielding a readable file handle to the global file referenced by the given name.

Parameters
• shared_file_name (str) – A file name matching AbstractJobStore.fileNameRegex,

unique within this job store

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Returns
a context manager yielding a readable file handle

Return type
Iterator[IO[bytes]]

writeStatsAndLogging(statsAndLoggingString)

Parameters
statsAndLoggingString (str) –

Return type
None

abstract write_logs(msg)
Stores a message as a log in the jobstore.

Parameters
msg (str) – the string to be written

354 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Return type
None

readStatsAndLogging(callback, readAll=False)

Parameters
• callback (Callable[Ellipsis, Any]) –

• readAll (bool) –

Return type
int

abstract read_logs(callback, read_all=False)
Reads logs accumulated by the write_logs() method. For each log this method calls the given callback
function with the message as an argument (rather than returning logs directly, this method must be supplied
with a callback which will process log messages).

Only unread logs will be read unless the read_all parameter is set.

Parameters
• callback (Callable) – a function to be applied to each of the stats file handles found

• read_all (bool) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Returns
the number of stats files processed

Return type
int

write_leader_pid()

Write the pid of this process to a file in the job store.

Overwriting the current contents of pid.log is a feature, not a bug of this method. Other methods will rely
on always having the most current pid available. So far there is no reason to store any old pids.

Return type
None

read_leader_pid()

Read the pid of the leader process to a file in the job store.

Raises
NoSuchFileException – If the PID file doesn’t exist.

Return type
int

write_leader_node_id()

Write the leader node id to the job store. This should only be called by the leader.

30.1. toil 355

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Return type
None

read_leader_node_id()

Read the leader node id stored in the job store.

Raises
NoSuchFileException – If the node ID file doesn’t exist.

Return type
str

write_kill_flag(kill=False)
Write a file inside the job store that serves as a kill flag.

The initialized file contains the characters “NO”. This should only be changed when the user runs the “toil
kill” command.

Changing this file to a “YES” triggers a kill of the leader process. The workers are expected to be cleaned
up by the leader.

Parameters
kill (bool) –

Return type
None

read_kill_flag()

Read the kill flag from the job store, and return True if the leader has been killed. False otherwise.

Return type
bool

default_caching()

Jobstore’s preference as to whether it likes caching or doesn’t care about it. Some jobstores benefit from
caching, however on some local configurations it can be flaky.

see https://github.com/DataBiosphere/toil/issues/4218

Return type
bool

class toil.jobStores.abstractJobStore.JobStoreSupport(locator)
Bases: AbstractJobStore

ABC AbstractJobStore JobStoreSupport

A mostly fake JobStore to access URLs not really associated with real job stores.

Parameters
locator (str) –

356 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://github.com/DataBiosphere/toil/issues/4218
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

classmethod get_size(url)
Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

Parameters
• src_uri – URL that points to a file or object in the storage mechanism of a supported

URL scheme e.g. a blob in an AWS s3 bucket.

• url (urllib.parse.ParseResult) –

Return type
Optional[int]

toil.jobStores.conftest

Module Contents

toil.jobStores.conftest.collect_ignore = []

toil.jobStores.fileJobStore

Module Contents

Classes

FileJobStore A job store that uses a directory on a locally attached file
system. To be compatible with

Attributes

logger

toil.jobStores.fileJobStore.logger

class toil.jobStores.fileJobStore.FileJobStore(path, fanOut=1000)
Bases: toil.jobStores.abstractJobStore.AbstractJobStore

ABC AbstractJobStore FileJobStore

A job store that uses a directory on a locally attached file system. To be compatible with distributed batch systems,
that file system must be shared by all worker nodes.

Parameters

30.1. toil 357

https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

• path (str) –

• fanOut (int) –

validDirs = 'abcdefghijklmnopqrstuvwxyz0123456789'

validDirsSet

JOB_DIR_PREFIX = 'instance-'

JOB_NAME_DIR_PREFIX = 'kind-'

BUFFER_SIZE = 10485760

default_caching()

Jobstore’s preference as to whether it likes caching or doesn’t care about it. Some jobstores benefit from
caching, however on some local configurations it can be flaky.

see https://github.com/DataBiosphere/toil/issues/4218

Return type
bool

__repr__()

Return repr(self).

initialize(config)
Initialize this job store.

Create the physical storage for this job store, allocate a workflow ID and persist the given Toil configuration
to the store.

Parameters
config – the Toil configuration to initialize this job store with. The given configuration will
be updated with the newly allocated workflow ID.

Raises
JobStoreExistsException – if the physical storage for this job store already exists

resume()

Connect this instance to the physical storage it represents and load the Toil configuration into the
AbstractJobStore.config attribute.

Raises
NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

destroy()

The inverse of initialize(), this method deletes the physical storage represented by this instance. While
not being atomic, this method is at least idempotent, as a means to counteract potential issues with eventual
consistency exhibited by the underlying storage mechanisms. This means that if the method fails (raises
an exception), it may (and should be) invoked again. If the underlying storage mechanism is eventually
consistent, even a successful invocation is not an ironclad guarantee that the physical storage vanished
completely and immediately. A successful invocation only guarantees that the deletion will eventually
happen. It is therefore recommended to not immediately reuse the same job store location for a new Toil
workflow.

assign_job_id(job_description)
Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created or
updated.

358 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://github.com/DataBiosphere/toil/issues/4218
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Parameters
job_description (toil.job.JobDescription) – The JobDescription to give an ID to

create_job(job_description)
Writes the given JobDescription to the job store. The job must have an ID assigned already.

Must call jobDescription.pre_update_hook()

Returns
The JobDescription passed.

Return type
toil.job.JobDescription

batch()

If supported by the batch system, calls to create() with this context manager active will be performed in a
batch after the context manager is released.

job_exists(job_id)
Indicates whether a description of the job with the specified jobStoreID exists in the job store

Return type
bool

get_public_url(jobStoreFileID)

Returns a publicly accessible URL to the given file in the job store. The returned URL may expire as early
as 1h after its been returned. Throw an exception if the file does not exist.

Parameters
file_name (str) – the jobStoreFileID of the file to generate a URL for

Raises
NoSuchFileException – if the specified file does not exist in this job store

Return type
str

get_shared_public_url(sharedFileName)
Differs from getPublicUrl() in that this method is for generating URLs for shared files written by
writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL starts with ‘http:’,
‘https:’ or ‘file:’. The returned URL may expire as early as 1h after its been returned. Throw an exception
if the file does not exist.

Parameters
shared_file_name (str) – The name of the shared file to generate a publically accessible
url for.

Raises
NoSuchFileException – raised if the specified file does not exist in the store

Return type
str

load_job(job_id)
Loads the description of the job referenced by the given ID, assigns it the job store’s config, and returns it.

May declare the job to have failed (see toil.job.JobDescription.setupJobAfterFailure()) if
there is evidence of a failed update attempt.

30.1. toil 359

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
job_id – the ID of the job to load

Raises
NoSuchJobException – if there is no job with the given ID

update_job(job)
Persists changes to the state of the given JobDescription in this store atomically.

Must call jobDescription.pre_update_hook()

Parameters
job (toil.job.JobDescription) – the job to write to this job store

delete_job(job_id)
Removes the JobDescription from the store atomically. You may not then subsequently call load(), write(),
update(), etc. with the same jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job will succeed silently.

Parameters
job_id (str) – the ID of the job to delete from this job store

jobs()

Best effort attempt to return iterator on JobDescriptions for all jobs in the store. The iterator may not return
all jobs and may also contain orphaned jobs that have already finished successfully and should not be rerun.
To guarantee you get any and all jobs that can be run instead construct a more expensive ToilState object

Returns
Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may
contain invalid jobs

Return type
Iterator[toil.job.jobDescription]

optional_hard_copy(hardlink)

classmethod get_size(url)
Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

Parameters
src_uri – URL that points to a file or object in the storage mechanism of a supported URL
scheme e.g. a blob in an AWS s3 bucket.

write_file(local_path, job_id=None, cleanup=False)
Takes a file (as a path) and places it in this job store. Returns an ID that can be used to retrieve the file at
a later time. The file is written in a atomic manner. It will not appear in the jobStore until the write has
successfully completed.

Parameters
• local_path (str) – the path to the local file that will be uploaded to the job store. The

last path component (basename of the file) will remain associated with the file in the file
store, if supported, so that the file can be searched for by name or name glob.

• job_id (str) – the id of a job, or None. If specified, the may be associated with that job
in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

360 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

Returns
an ID referencing the newly created file and can be used to read the file in the future.

Return type
str

write_file_stream(job_id=None, cleanup=False, basename=None, encoding=None, errors=None)
Similar to writeFile, but returns a context manager yielding a tuple of 1) a file handle which can be written
to and 2) the ID of the resulting file in the job store. The yielded file handle does not need to and should
not be closed explicitly. The file is written in a atomic manner. It will not appear in the jobStore until the
write has successfully completed.

Parameters
• job_id (str) – the id of a job, or None. If specified, the may be associated with that job

in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (str) – If supported by the implementation, use the given file basename so that
when searching the job store with a query matching that basename, the file will be detected.

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

Returns
a context manager yielding a file handle which can be written to and an ID that references the
newly created file and can be used to read the file in the future.

Return type
Iterator[Tuple[IO[bytes], str]]

get_empty_file_store_id(jobStoreID=None, cleanup=False, basename=None)
Creates an empty file in the job store and returns its ID. Call to fileExists(getEmptyFileStoreID(jobStoreID))
will return True.

Parameters
• job_id (str) – the id of a job, or None. If specified, the may be associated with that job

in a job-store-specific way. This may influence the returned ID.

30.1. toil 361

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (str) – If supported by the implementation, use the given file basename so that
when searching the job store with a query matching that basename, the file will be detected.

Returns
a jobStoreFileID that references the newly created file and can be used to reference the file in
the future.

Return type
str

update_file(file_id, local_path)
Replaces the existing version of a file in the job store.

Throws an exception if the file does not exist.

Parameters
• file_id – the ID of the file in the job store to be updated

• local_path – the local path to a file that will overwrite the current version in the job store

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchFileException – if the specified file does not exist

read_file(file_id, local_path, symlink=False)
Copies or hard links the file referenced by jobStoreFileID to the given local file path. The version will
be consistent with the last copy of the file written/updated. If the file in the job store is later modified
via updateFile or updateFileStream, it is implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not appear in the local file system until the
copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

Parameters
• file_id (str) – ID of the file to be copied

• local_path (str) – the local path indicating where to place the contents of the given file
in the job store

• symlink (bool) – whether the reader can tolerate a symlink. If set to true, the job store
may create a symlink instead of a full copy of the file or a hard link.

delete_file(file_id)
Deletes the file with the given ID from this job store. This operation is idempotent, i.e. deleting a file twice
or deleting a non-existent file will succeed silently.

Parameters
file_id (str) – ID of the file to delete

file_exists(file_id)
Determine whether a file exists in this job store.

362 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
file_id – an ID referencing the file to be checked

get_file_size(file_id)
Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of file sizes, since the encrypted file may
have been padded to the nearest block, augmented with an initialization vector, etc.

Parameters
file_id (str) – an ID referencing the file to be checked

Return type
int

update_file_stream(file_id, encoding=None, errors=None)
Replaces the existing version of a file in the job store. Similar to writeFile, but returns a context manager
yielding a file handle which can be written to. The yielded file handle does not need to and should not be
closed explicitly.

Parameters
• file_id (str) – the ID of the file in the job store to be updated

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchFileException – if the specified file does not exist

read_file_stream(file_id: Union[str, toil.fileStores.FileID], encoding: Literal[None] = None, errors:
Optional[str] = None)→ Iterator[IO[bytes]]

read_file_stream(file_id: Union[str, toil.fileStores.FileID], encoding: str, errors: Optional[str] = None)
→ Iterator[IO[str]]

read_file_stream(file_id: Union[str, toil.fileStores.FileID], encoding: Optional[str] = None, errors:
Optional[str] = None)→ Union[Iterator[IO[bytes]], Iterator[IO[str]]]

Similar to readFile, but returns a context manager yielding a file handle which can be read from. The
yielded file handle does not need to and should not be closed explicitly.

Parameters
• file_id (str) – ID of the file to get a readable file handle for

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Returns
a context manager yielding a file handle which can be read from

Return type
Iterator[Union[IO[bytes], IO[str]]]

30.1. toil 363

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

write_shared_file_stream(shared_file_name, encrypted=None, encoding=None, errors=None)
Returns a context manager yielding a writable file handle to the global file referenced by the given name.
File will be created in an atomic manner.

Parameters
• shared_file_name (str) – A file name matching AbstractJobStore.fileNameRegex,

unique within this job store

• encrypted (bool) – True if the file must be encrypted, None if it may be encrypted or
False if it must be stored in the clear.

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Returns
a context manager yielding a writable file handle

Return type
Iterator[IO[bytes]]

read_shared_file_stream(shared_file_name, encoding=None, errors=None)
Returns a context manager yielding a readable file handle to the global file referenced by the given name.

Parameters
• shared_file_name (str) – A file name matching AbstractJobStore.fileNameRegex,

unique within this job store

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Returns
a context manager yielding a readable file handle

Return type
Iterator[IO[bytes]]

write_logs(msg)
Stores a message as a log in the jobstore.

Parameters
msg (str) – the string to be written

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

read_logs(callback, read_all=False)
Reads logs accumulated by the write_logs() method. For each log this method calls the given callback
function with the message as an argument (rather than returning logs directly, this method must be supplied
with a callback which will process log messages).

364 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Only unread logs will be read unless the read_all parameter is set.

Parameters
• callback (Callable) – a function to be applied to each of the stats file handles found

• read_all (bool) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Returns
the number of stats files processed

Return type
int

toil.jobStores.googleJobStore

Module Contents

Classes

GoogleJobStore Represents the physical storage for the jobs and files in a
Toil workflow.

Functions

google_retry_predicate(e) necessary because under heavy load google may throw
google_retry(f) This decorator retries the wrapped function if google

throws any angry service

Attributes

log

GOOGLE_STORAGE

MAX_BATCH_SIZE

toil.jobStores.googleJobStore.log

toil.jobStores.googleJobStore.GOOGLE_STORAGE = 'gs'

toil.jobStores.googleJobStore.MAX_BATCH_SIZE = 1000

30.1. toil 365

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

toil.jobStores.googleJobStore.google_retry_predicate(e)

necessary because under heavy load google may throw
TooManyRequests: 429 The project exceeded the rate limit for creating and deleting buckets.

or numerous other server errors which need to be retried.

toil.jobStores.googleJobStore.google_retry(f)
This decorator retries the wrapped function if google throws any angry service errors.

It should wrap any function that makes use of the Google Client API

class toil.jobStores.googleJobStore.GoogleJobStore(locator)
Bases: toil.jobStores.abstractJobStore.AbstractJobStore

ABC AbstractJobStore GoogleJobStore

Represents the physical storage for the jobs and files in a Toil workflow.

JobStores are responsible for storing toil.job.JobDescription (which relate jobs to each other) and files.

Actual toil.job.Job objects are stored in files, referenced by JobDescriptions. All the non-file CRUD methods
the JobStore provides deal in JobDescriptions and not full, executable Jobs.

To actually get ahold of a toil.job.Job, use toil.job.Job.loadJob() with a JobStore and the relevant
JobDescription.

Parameters
locator (str) –

nodeServiceAccountJson = '/root/service_account.json'

initialize(config=None)
Initialize this job store.

Create the physical storage for this job store, allocate a workflow ID and persist the given Toil configuration
to the store.

Parameters
config – the Toil configuration to initialize this job store with. The given configuration will
be updated with the newly allocated workflow ID.

Raises
JobStoreExistsException – if the physical storage for this job store already exists

resume()

Connect this instance to the physical storage it represents and load the Toil configuration into the
AbstractJobStore.config attribute.

Raises
NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

366 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

destroy()

The inverse of initialize(), this method deletes the physical storage represented by this instance. While
not being atomic, this method is at least idempotent, as a means to counteract potential issues with eventual
consistency exhibited by the underlying storage mechanisms. This means that if the method fails (raises
an exception), it may (and should be) invoked again. If the underlying storage mechanism is eventually
consistent, even a successful invocation is not an ironclad guarantee that the physical storage vanished
completely and immediately. A successful invocation only guarantees that the deletion will eventually
happen. It is therefore recommended to not immediately reuse the same job store location for a new Toil
workflow.

assign_job_id(job_description)
Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created or
updated.

Parameters
job_description (toil.job.JobDescription) – The JobDescription to give an ID to

batch()

If supported by the batch system, calls to create() with this context manager active will be performed in a
batch after the context manager is released.

create_job(job_description)
Writes the given JobDescription to the job store. The job must have an ID assigned already.

Must call jobDescription.pre_update_hook()

Returns
The JobDescription passed.

Return type
toil.job.JobDescription

job_exists(job_id)
Indicates whether a description of the job with the specified jobStoreID exists in the job store

Return type
bool

get_public_url(fileName)
Returns a publicly accessible URL to the given file in the job store. The returned URL may expire as early
as 1h after its been returned. Throw an exception if the file does not exist.

Parameters
file_name (str) – the jobStoreFileID of the file to generate a URL for

Raises
NoSuchFileException – if the specified file does not exist in this job store

Return type
str

get_shared_public_url(sharedFileName)
Differs from getPublicUrl() in that this method is for generating URLs for shared files written by
writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL starts with ‘http:’,
‘https:’ or ‘file:’. The returned URL may expire as early as 1h after its been returned. Throw an exception
if the file does not exist.

30.1. toil 367

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
shared_file_name (str) – The name of the shared file to generate a publically accessible
url for.

Raises
NoSuchFileException – raised if the specified file does not exist in the store

Return type
str

load_job(job_id)
Loads the description of the job referenced by the given ID, assigns it the job store’s config, and returns it.

May declare the job to have failed (see toil.job.JobDescription.setupJobAfterFailure()) if
there is evidence of a failed update attempt.

Parameters
job_id – the ID of the job to load

Raises
NoSuchJobException – if there is no job with the given ID

update_job(job)
Persists changes to the state of the given JobDescription in this store atomically.

Must call jobDescription.pre_update_hook()

Parameters
job (toil.job.JobDescription) – the job to write to this job store

delete_job(job_id)
Removes the JobDescription from the store atomically. You may not then subsequently call load(), write(),
update(), etc. with the same jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job will succeed silently.

Parameters
job_id (str) – the ID of the job to delete from this job store

get_env()

Return a dict of environment variables to send out to the workers so they can load the job store.

jobs()

Best effort attempt to return iterator on JobDescriptions for all jobs in the store. The iterator may not return
all jobs and may also contain orphaned jobs that have already finished successfully and should not be rerun.
To guarantee you get any and all jobs that can be run instead construct a more expensive ToilState object

Returns
Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may
contain invalid jobs

Return type
Iterator[toil.job.jobDescription]

write_file(local_path, job_id=None, cleanup=False)
Takes a file (as a path) and places it in this job store. Returns an ID that can be used to retrieve the file at
a later time. The file is written in a atomic manner. It will not appear in the jobStore until the write has
successfully completed.

Parameters

368 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• local_path (str) – the path to the local file that will be uploaded to the job store. The
last path component (basename of the file) will remain associated with the file in the file
store, if supported, so that the file can be searched for by name or name glob.

• job_id (str) – the id of a job, or None. If specified, the may be associated with that job
in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

Returns
an ID referencing the newly created file and can be used to read the file in the future.

Return type
str

write_file_stream(job_id=None, cleanup=False, basename=None, encoding=None, errors=None)
Similar to writeFile, but returns a context manager yielding a tuple of 1) a file handle which can be written
to and 2) the ID of the resulting file in the job store. The yielded file handle does not need to and should
not be closed explicitly. The file is written in a atomic manner. It will not appear in the jobStore until the
write has successfully completed.

Parameters
• job_id (str) – the id of a job, or None. If specified, the may be associated with that job

in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (str) – If supported by the implementation, use the given file basename so that
when searching the job store with a query matching that basename, the file will be detected.

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

Returns
a context manager yielding a file handle which can be written to and an ID that references the
newly created file and can be used to read the file in the future.

30.1. toil 369

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
Iterator[Tuple[IO[bytes], str]]

get_empty_file_store_id(jobStoreID=None, cleanup=False, basename=None)
Creates an empty file in the job store and returns its ID. Call to fileExists(getEmptyFileStoreID(jobStoreID))
will return True.

Parameters
• job_id (str) – the id of a job, or None. If specified, the may be associated with that job

in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (str) – If supported by the implementation, use the given file basename so that
when searching the job store with a query matching that basename, the file will be detected.

Returns
a jobStoreFileID that references the newly created file and can be used to reference the file in
the future.

Return type
str

read_file(file_id, local_path, symlink=False)
Copies or hard links the file referenced by jobStoreFileID to the given local file path. The version will
be consistent with the last copy of the file written/updated. If the file in the job store is later modified
via updateFile or updateFileStream, it is implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not appear in the local file system until the
copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

Parameters
• file_id (str) – ID of the file to be copied

• local_path (str) – the local path indicating where to place the contents of the given file
in the job store

• symlink (bool) – whether the reader can tolerate a symlink. If set to true, the job store
may create a symlink instead of a full copy of the file or a hard link.

read_file_stream(file_id, encoding=None, errors=None)
Similar to readFile, but returns a context manager yielding a file handle which can be read from. The
yielded file handle does not need to and should not be closed explicitly.

Parameters
• file_id (str) – ID of the file to get a readable file handle for

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Returns
a context manager yielding a file handle which can be read from

370 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
Iterator[Union[IO[bytes], IO[str]]]

delete_file(file_id)
Deletes the file with the given ID from this job store. This operation is idempotent, i.e. deleting a file twice
or deleting a non-existent file will succeed silently.

Parameters
file_id (str) – ID of the file to delete

file_exists(file_id)
Determine whether a file exists in this job store.

Parameters
file_id – an ID referencing the file to be checked

get_file_size(file_id)
Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of file sizes, since the encrypted file may
have been padded to the nearest block, augmented with an initialization vector, etc.

Parameters
file_id (str) – an ID referencing the file to be checked

Return type
int

update_file(file_id, local_path)
Replaces the existing version of a file in the job store.

Throws an exception if the file does not exist.

Parameters
• file_id – the ID of the file in the job store to be updated

• local_path – the local path to a file that will overwrite the current version in the job store

Raises
• ConcurrentFileModificationException – if the file was modified concurrently dur-

ing an invocation of this method

• NoSuchFileException – if the specified file does not exist

update_file_stream(file_id, encoding=None, errors=None)
Replaces the existing version of a file in the job store. Similar to writeFile, but returns a context manager
yielding a file handle which can be written to. The yielded file handle does not need to and should not be
closed explicitly.

Parameters
• file_id (str) – the ID of the file in the job store to be updated

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises

30.1. toil 371

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• ConcurrentFileModificationException – if the file was modified concurrently dur-
ing an invocation of this method

• NoSuchFileException – if the specified file does not exist

write_shared_file_stream(shared_file_name, encrypted=True, encoding=None, errors=None)
Returns a context manager yielding a writable file handle to the global file referenced by the given name.
File will be created in an atomic manner.

Parameters
• shared_file_name (str) – A file name matching AbstractJobStore.fileNameRegex,

unique within this job store

• encrypted (bool) – True if the file must be encrypted, None if it may be encrypted or
False if it must be stored in the clear.

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Returns
a context manager yielding a writable file handle

Return type
Iterator[IO[bytes]]

read_shared_file_stream(shared_file_name, isProtected=True, encoding=None, errors=None)
Returns a context manager yielding a readable file handle to the global file referenced by the given name.

Parameters
• shared_file_name (str) – A file name matching AbstractJobStore.fileNameRegex,

unique within this job store

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Returns
a context manager yielding a readable file handle

Return type
Iterator[IO[bytes]]

classmethod get_size(url)
Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

Parameters
src_uri – URL that points to a file or object in the storage mechanism of a supported URL
scheme e.g. a blob in an AWS s3 bucket.

write_logs(msg)
Stores a message as a log in the jobstore.

372 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

Toil Documentation, Release 5.11.0

Parameters
msg (str) – the string to be written

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Return type
None

read_logs(callback, read_all=False)
Reads logs accumulated by the write_logs() method. For each log this method calls the given callback
function with the message as an argument (rather than returning logs directly, this method must be supplied
with a callback which will process log messages).

Only unread logs will be read unless the read_all parameter is set.

Parameters
• callback (Callable) – a function to be applied to each of the stats file handles found

• read_all (bool) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

Raises
ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

Returns
the number of stats files processed

Return type
int

toil.jobStores.utils

Module Contents

Classes

WritablePipe An object-oriented wrapper for os.pipe. Clients should
subclass it, implement

ReadablePipe An object-oriented wrapper for os.pipe. Clients should
subclass it, implement

ReadableTransformingPipe A pipe which is constructed around a readable stream,
and which provides a

30.1. toil 373

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Functions

generate_locator(job_store_type[, lo-
cal_suggestion, ...])

Generate a random locator for a job store of the given
type. Raises an

Attributes

log

toil.jobStores.utils.log

class toil.jobStores.utils.WritablePipe(encoding=None, errors=None)
Bases: abc.ABC

ABC WritablePipe

An object-oriented wrapper for os.pipe. Clients should subclass it, implement readFrom() to consume the
readable end of the pipe, then instantiate the class as a context manager to get the writable end. See the example
below.

>>> import sys, shutil
>>> class MyPipe(WritablePipe):
... def readFrom(self, readable):
... shutil.copyfileobj(codecs.getreader('utf-8')(readable), sys.stdout)
>>> with MyPipe() as writable:
... _ = writable.write('Hello, world!\n'.encode('utf-8'))
Hello, world!

Each instance of this class creates a thread and invokes the readFrom method in that thread. The thread will be
join()ed upon normal exit from the context manager, i.e. the body of the with statement. If an exception occurs,
the thread will not be joined but a well-behaved readFrom() implementation will terminate shortly thereafter
due to the pipe having been closed.

Now, exceptions in the reader thread will be reraised in the main thread:

>>> class MyPipe(WritablePipe):
... def readFrom(self, readable):
... raise RuntimeError('Hello, world!')
>>> with MyPipe() as writable:
... pass
Traceback (most recent call last):
...
RuntimeError: Hello, world!

374 Chapter 30. API Reference

https://docs.python.org/3/library/abc.html#abc.ABC

Toil Documentation, Release 5.11.0

More complicated, less illustrative tests:

Same as above, but proving that handles are closed:

>>> x = os.dup(0); os.close(x)
>>> class MyPipe(WritablePipe):
... def readFrom(self, readable):
... raise RuntimeError('Hello, world!')
>>> with MyPipe() as writable:
... pass
Traceback (most recent call last):
...
RuntimeError: Hello, world!
>>> y = os.dup(0); os.close(y); x == y
True

Exceptions in the body of the with statement aren’t masked, and handles are closed:

>>> x = os.dup(0); os.close(x)
>>> class MyPipe(WritablePipe):
... def readFrom(self, readable):
... pass
>>> with MyPipe() as writable:
... raise RuntimeError('Hello, world!')
Traceback (most recent call last):
...
RuntimeError: Hello, world!
>>> y = os.dup(0); os.close(y); x == y
True

abstract readFrom(readable)
Implement this method to read data from the pipe. This method should support both binary and text mode
output.

Parameters
readable (file) – the file object representing the readable end of the pipe. Do not

explicitly invoke the close() method of the object, that will be done automatically.

__enter__()

__exit__(exc_type, exc_val, exc_tb)

class toil.jobStores.utils.ReadablePipe(encoding=None, errors=None)
Bases: abc.ABC

ABC ReadablePipe

An object-oriented wrapper for os.pipe. Clients should subclass it, implement writeTo() to place data into the
writable end of the pipe, then instantiate the class as a context manager to get the writable end. See the example

30.1. toil 375

https://docs.python.org/3/library/abc.html#abc.ABC

Toil Documentation, Release 5.11.0

below.

>>> import sys, shutil
>>> class MyPipe(ReadablePipe):
... def writeTo(self, writable):
... writable.write('Hello, world!\n'.encode('utf-8'))
>>> with MyPipe() as readable:
... shutil.copyfileobj(codecs.getreader('utf-8')(readable), sys.stdout)
Hello, world!

Each instance of this class creates a thread and invokes the writeTo()method in that thread. The thread will be
join()ed upon normal exit from the context manager, i.e. the body of the with statement. If an exception occurs,
the thread will not be joined but a well-behaved writeTo() implementation will terminate shortly thereafter due
to the pipe having been closed.

Now, exceptions in the reader thread will be reraised in the main thread:

>>> class MyPipe(ReadablePipe):
... def writeTo(self, writable):
... raise RuntimeError('Hello, world!')
>>> with MyPipe() as readable:
... pass
Traceback (most recent call last):
...
RuntimeError: Hello, world!

More complicated, less illustrative tests:

Same as above, but proving that handles are closed:

>>> x = os.dup(0); os.close(x)
>>> class MyPipe(ReadablePipe):
... def writeTo(self, writable):
... raise RuntimeError('Hello, world!')
>>> with MyPipe() as readable:
... pass
Traceback (most recent call last):
...
RuntimeError: Hello, world!
>>> y = os.dup(0); os.close(y); x == y
True

Exceptions in the body of the with statement aren’t masked, and handles are closed:

>>> x = os.dup(0); os.close(x)
>>> class MyPipe(ReadablePipe):
... def writeTo(self, writable):
... pass
>>> with MyPipe() as readable:
... raise RuntimeError('Hello, world!')
Traceback (most recent call last):
...
RuntimeError: Hello, world!
>>> y = os.dup(0); os.close(y); x == y
True

376 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

abstract writeTo(writable)
Implement this method to write data from the pipe. This method should support both binary and text mode
input.

Parameters
writable (file) – the file object representing the writable end of the pipe. Do not

explicitly invoke the close() method of the object, that will be done automatically.

__enter__()

__exit__(exc_type, exc_val, exc_tb)

class toil.jobStores.utils.ReadableTransformingPipe(source, encoding=None, errors=None)
Bases: ReadablePipe

ABC ReadablePipe ReadableTransformingPipe

A pipe which is constructed around a readable stream, and which provides a context manager that gives a readable
stream.

Useful as a base class for pipes which have to transform or otherwise visit bytes that flow through them, instead
of just consuming or producing data.

Clients should subclass it and implement transform(), like so:

>>> import sys, shutil
>>> class MyPipe(ReadableTransformingPipe):
... def transform(self, readable, writable):
... writable.write(readable.read().decode('utf-8').upper().encode('utf-8'))
>>> class SourcePipe(ReadablePipe):
... def writeTo(self, writable):
... writable.write('Hello, world!\n'.encode('utf-8'))
>>> with SourcePipe() as source:
... with MyPipe(source) as transformed:
... shutil.copyfileobj(codecs.getreader('utf-8')(transformed), sys.stdout)
HELLO, WORLD!

The transform() method runs in its own thread, and should move data chunk by chunk instead of all at once.
It should finish normally if it encounters either an EOF on the readable, or a BrokenPipeError on the writable.
This means that it should make sure to actually catch a BrokenPipeError when writing.

See also: toil.lib.misc.WriteWatchingStream.

abstract transform(readable, writable)
Implement this method to ship data through the pipe.

Parameters
• readable (file) – the input stream file object to transform.

• writable (file) – the file object representing the writable end of the pipe. Do not

30.1. toil 377

https://docs.python.org/3/library/exceptions.html#BrokenPipeError
https://docs.python.org/3/library/exceptions.html#BrokenPipeError

Toil Documentation, Release 5.11.0

explicitly invoke the close() method of the object, that will be done automatically.

writeTo(writable)
Implement this method to write data from the pipe. This method should support both binary and text mode
input.

Parameters
writable (file) – the file object representing the writable end of the pipe. Do not

explicitly invoke the close() method of the object, that will be done automatically.

exception toil.jobStores.utils.JobStoreUnavailableException

Bases: RuntimeError

JobStoreUnavailableException

Raised when a particular type of job store is requested but can’t be used.

toil.jobStores.utils.generate_locator(job_store_type, local_suggestion=None, decoration=None)
Generate a random locator for a job store of the given type. Raises an JobStoreUnavailableException if that job
store cannot be used.

Parameters
• job_store_type (str) – Registry name of the job store to use.

• local_suggestion (Optional[str]) – Path to a nonexistent local directory suitable for

• decoration (Optional[str]) –

Return type
str

use as a file job store. :param decoration: Extra string to add to the job store locator, if convenient.

Return str
Job store locator for a usable job store.

Parameters
• job_store_type (str) –

• local_suggestion (Optional[str]) –

• decoration (Optional[str]) –

Return type
str

378 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.lib

Subpackages

toil.lib.aws

Submodules

toil.lib.aws.ami

Module Contents

Functions

get_flatcar_ami(ec2_client[, architecture]) Retrieve the flatcar AMI image to use as the base for all
Toil autoscaling instances.

flatcar_release_feed_amis(region[, architecture,
source])

Yield AMI IDs for the given architecture from the Flatcar
release feed.

feed_flatcar_ami_release(ec2_client[, architec-
ture, ...])

Check a Flatcar release feed for the latest flatcar AMI.

aws_marketplace_flatcar_ami_search (ec2_client[,
...])

Query AWS for all AMI names matching 'Flatcar-stable-
*' and return the most recent one.

Attributes

logger

toil.lib.aws.ami.logger

toil.lib.aws.ami.get_flatcar_ami(ec2_client, architecture='amd64')
Retrieve the flatcar AMI image to use as the base for all Toil autoscaling instances.

AMI must be available to the user on AWS (attempting to launch will return a 403 otherwise).

Priority is:
1. User specified AMI via TOIL_AWS_AMI

2. Official AMI from stable.release.flatcar-linux.net

3. Search the AWS Marketplace

If all of these sources fail, we raise an error to complain.

Parameters
• ec2_client (botocore.client.BaseClient) – Boto3 EC2 Client

• architecture (str) – The architecture type for the new AWS machine. Can be either
amd64 or arm64

Return type
str

30.1. toil 379

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.lib.aws.ami.flatcar_release_feed_amis(region, architecture='amd64', source='stable')
Yield AMI IDs for the given architecture from the Flatcar release feed.

Parameters
• source (str) – can be set to a Flatcar release channel (‘stable’, ‘beta’, or ‘alpha’), ‘archive’

to check the Internet Archive for a feed, and ‘toil’ to check if the Toil project has put up a
feed.

• region (str) –

• architecture (str) –

Return type
Iterator[str]

Retries if the release feed cannot be fetched. If the release feed has a permanent error, yields nothing. If some
entries in the release feed are unparseable, yields the others.

toil.lib.aws.ami.feed_flatcar_ami_release(ec2_client, architecture='amd64', source='stable')
Check a Flatcar release feed for the latest flatcar AMI.

Verify it’s on AWS.

Parameters
• ec2_client (botocore.client.BaseClient) – Boto3 EC2 Client

• architecture (str) – The architecture type for the new AWS machine. Can be either
amd64 or arm64

• source (str) – can be set to a Flatcar release channel (‘stable’, ‘beta’, or ‘alpha’), ‘archive’
to check the Internet Archive for a feed, and ‘toil’ to check if the Toil project has put up a
feed.

Return type
Optional[str]

toil.lib.aws.ami.aws_marketplace_flatcar_ami_search(ec2_client, architecture='amd64')
Query AWS for all AMI names matching ‘Flatcar-stable-*’ and return the most recent one.

Parameters
• ec2_client (botocore.client.BaseClient) –

• architecture (str) –

Return type
Optional[str]

toil.lib.aws.iam

Module Contents

380 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Functions

init_action_collection() Initialization of an action collection, an action collection
contains allowed Actions and NotActions

add_to_action_collection(a, b) Combines two action collections
policy_permissions_allow(given_permissions[,
...])

Check whether given set of actions are a subset of an-
other given set of actions, returns true if they are

permission_matches_any(perm, list_perms) Takes a permission and checks whether it's contained
within a list of given permissions

get_actions_from_policy_document(policy_doc) Given a policy document, go through each statement and
create an AllowedActionCollection representing the

allowed_actions_attached(iam, attached_policies) Go through all attached policy documents and create an
AllowedActionCollection representing granted permis-
sions.

allowed_actions_roles(iam, policy_names,
role_name)

Returns a dictionary containing a list of all aws actions
allowed for a given role.

allowed_actions_users(iam, policy_names,
user_name)

Gets all allowed actions for a user given by user_name,
returns a dictionary, keyed by resource,

get_policy_permissions(region) Returns an action collection containing lists of all per-
mission grant patterns keyed by resource

get_aws_account_num() Returns AWS account num

Attributes

logger

CLUSTER_LAUNCHING_PERMISSIONS

AllowedActionCollection

toil.lib.aws.iam.logger

toil.lib.aws.iam.CLUSTER_LAUNCHING_PERMISSIONS = ['iam:CreateRole',
'iam:CreateInstanceProfile', 'iam:TagInstanceProfile', 'iam:DeleteRole',...

toil.lib.aws.iam.AllowedActionCollection

toil.lib.aws.iam.init_action_collection()

Initialization of an action collection, an action collection contains allowed Actions and NotActions by resource,
these are patterns containing wildcards, an Action explicitly allows a matched pattern, eg ec2:* will explicitly
allow all ec2 permissions

A NotAction will explicitly allow all actions that don’t match a specific pattern eg iam:* allows all non iam
actions

Return type
AllowedActionCollection

toil.lib.aws.iam.add_to_action_collection(a, b)
Combines two action collections

Parameters

30.1. toil 381

Toil Documentation, Release 5.11.0

• a (AllowedActionCollection) –

• b (AllowedActionCollection) –

Return type
AllowedActionCollection

toil.lib.aws.iam.policy_permissions_allow(given_permissions, required_permissions=[])
Check whether given set of actions are a subset of another given set of actions, returns true if they are otherwise
false and prints a warning.

Parameters
• required_permissions (List[str]) – Dictionary containing actions required, keyed by

resource

• given_permissions (AllowedActionCollection) – Set of actions that are granted to a
user or role

Return type
bool

toil.lib.aws.iam.permission_matches_any(perm, list_perms)
Takes a permission and checks whether it’s contained within a list of given permissions Returns True if it is
otherwise False

Parameters
• perm (str) – Permission to check in string form

• list_perms (List[str]) – Permission list to check against

Return type
bool

toil.lib.aws.iam.get_actions_from_policy_document(policy_doc)
Given a policy document, go through each statement and create an AllowedActionCollection representing the
permissions granted in the policy document.

Parameters
policy_doc (Dict[str, Any]) – A policy document to examine

Return type
AllowedActionCollection

toil.lib.aws.iam.allowed_actions_attached(iam, attached_policies)
Go through all attached policy documents and create an AllowedActionCollection representing granted permis-
sions.

Parameters
• iam (mypy_boto3_iam.IAMClient) – IAM client to use

• attached_policies (List[mypy_boto3_iam.type_defs.
AttachedPolicyTypeDef]) – Attached policies

Return type
AllowedActionCollection

toil.lib.aws.iam.allowed_actions_roles(iam, policy_names, role_name)
Returns a dictionary containing a list of all aws actions allowed for a given role. This dictionary is keyed by
resource and gives a list of policies allowed on that resource.

Parameters

382 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• iam (mypy_boto3_iam.IAMClient) – IAM client to use

• policy_names (List[str]) – Name of policy document associated with a role

• role_name (str) – Name of role to get associated policies

Return type
AllowedActionCollection

toil.lib.aws.iam.allowed_actions_users(iam, policy_names, user_name)
Gets all allowed actions for a user given by user_name, returns a dictionary, keyed by resource, with a list of
permissions allowed for each given resource.

Parameters
• iam (mypy_boto3_iam.IAMClient) – IAM client to use

• policy_names (List[str]) – Name of policy document associated with a user

• user_name (str) – Name of user to get associated policies

Return type
AllowedActionCollection

toil.lib.aws.iam.get_policy_permissions(region)
Returns an action collection containing lists of all permission grant patterns keyed by resource that they are
allowed upon. Requires AWS credentials to be associated with a user or assumed role.

Parameters
• zone – AWS zone to connect to

• region (str) –

Return type
AllowedActionCollection

toil.lib.aws.iam.get_aws_account_num()

Returns AWS account num

Return type
Optional[str]

toil.lib.aws.session

Module Contents

Classes

AWSConnectionManager Class that represents a connection to AWS. Caches Boto
3 and Boto 2 objects

30.1. toil 383

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Functions

establish_boto3_session([region_name]) Get a Boto 3 session usable by the current thread.
client(service_name[, region_name, endpoint_url,
config])

Get a Boto 3 client for a particular AWS service, usable
by the current thread.

resource(service_name[, region_name, endpoint_url]) Get a Boto 3 resource for a particular AWS service, us-
able by the current thread.

Attributes

logger

toil.lib.aws.session.logger

class toil.lib.aws.session.AWSConnectionManager

Class that represents a connection to AWS. Caches Boto 3 and Boto 2 objects by region.

Access to any kind of item goes through the particular method for the thing you want (session, resource, service,
Boto2 Context), and then you pass the region you want to work in, and possibly the type of thing you want, as
arguments.

This class is intended to eventually enable multi-region clusters, where connections to multiple regions may need
to be managed in the same provisioner.

We also support None for a region, in which case no region will be passed to Boto/Boto3. The caller is responsible
for implementing e.g. TOIL_AWS_REGION support.

Since connection objects may not be thread safe (see <https://boto3.amazonaws.com/v1/documentation/api/1.14.
31/guide/session.html#multithreading-or-multiprocessing-with-sessions>), one is created for each thread that
calls the relevant lookup method.

session(region)
Get the Boto3 Session to use for the given region.

Parameters
region (Optional[str]) –

Return type
boto3.session.Session

resource(region, service_name, endpoint_url=None)
Get the Boto3 Resource to use with the given service (like ‘ec2’) in the given region.

Parameters
• endpoint_url (Optional[str]) – AWS endpoint URL to use for the client. If not spec-

ified, a default is used.

• region (Optional[str]) –

• service_name (str) –

Return type
boto3.resources.base.ServiceResource

384 Chapter 30. API Reference

https://boto3.amazonaws.com/v1/documentation/api/1.14.31/guide/session.html#multithreading-or-multiprocessing-with-sessions
https://boto3.amazonaws.com/v1/documentation/api/1.14.31/guide/session.html#multithreading-or-multiprocessing-with-sessions
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

client(region, service_name, endpoint_url=None, config=None)
Get the Boto3 Client to use with the given service (like ‘ec2’) in the given region.

Parameters
• endpoint_url (Optional[str]) – AWS endpoint URL to use for the client. If not spec-

ified, a default is used.

• config (Optional[botocore.client.Config]) – Custom configuration to use for the
client.

• region (Optional[str]) –

• service_name (str) –

Return type
botocore.client.BaseClient

boto2(region, service_name)
Get the connected boto2 connection for the given region and service.

Parameters
• region (Optional[str]) –

• service_name (str) –

Return type
boto.connection.AWSAuthConnection

toil.lib.aws.session.establish_boto3_session(region_name=None)
Get a Boto 3 session usable by the current thread.

This function may not always establish a new session; it can be memoized.

Parameters
region_name (Optional[str]) –

Return type
boto3.Session

toil.lib.aws.session.client(service_name, region_name=None, endpoint_url=None, config=None)
Get a Boto 3 client for a particular AWS service, usable by the current thread.

Global alternative to AWSConnectionManager.

Parameters
• service_name (str) –

• region_name (Optional[str]) –

• endpoint_url (Optional[str]) –

• config (Optional[botocore.client.Config]) –

Return type
botocore.client.BaseClient

toil.lib.aws.session.resource(service_name, region_name=None, endpoint_url=None)
Get a Boto 3 resource for a particular AWS service, usable by the current thread.

Global alternative to AWSConnectionManager.

Parameters

30.1. toil 385

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• service_name (str) –

• region_name (Optional[str]) –

• endpoint_url (Optional[str]) –

Return type
boto3.resources.base.ServiceResource

toil.lib.aws.utils

Module Contents

Functions

delete_iam_role(role_name[, region, quiet])

delete_iam_instance_profile(instance_profile_name[,
...])
delete_sdb_domain(sdb_domain_name[, region,
quiet])
connection_reset(e) Return true if an error is a connection reset error.
retryable_s3_errors(e) Return true if this is an error from S3 that looks like we

ought to retry our request.
retry_s3([delays, timeout, predicate]) Retry iterator of context managers specifically for S3 op-

erations.
delete_s3_bucket(s3_resource, bucket[, quiet]) Delete the given S3 bucket.
create_s3_bucket(s3_resource, bucket_name, re-
gion)

Create an AWS S3 bucket, using the given Boto3 S3 ses-
sion, with the

enable_public_objects(bucket_name) Enable a bucket to contain objects which are public.
get_bucket_region(bucket_name[, endpoint_url,
...])

Get the AWS region name associated with the given S3
bucket.

region_to_bucket_location(region)

bucket_location_to_region(location)

get_object_for_url(url[, existing]) Extracts a key (object) from a given parsed s3:// URL.
list_objects_for_url(url) Extracts a key (object) from a given parsed s3:// URL.

The URL will be
flatten_tags(tags) Convert tags from a key to value dict into a list of 'Key':

xxx, 'Value': xxx dicts.

386 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Attributes

BotoServerError

logger

THROTTLED_ERROR_CODES

toil.lib.aws.utils.BotoServerError

toil.lib.aws.utils.logger

toil.lib.aws.utils.THROTTLED_ERROR_CODES = ['Throttling', 'ThrottlingException',
'ThrottledException', 'RequestThrottledException',...

toil.lib.aws.utils.delete_iam_role(role_name, region=None, quiet=True)

Parameters
• role_name (str) –

• region (Optional[str]) –

• quiet (bool) –

Return type
None

toil.lib.aws.utils.delete_iam_instance_profile(instance_profile_name, region=None, quiet=True)

Parameters
• instance_profile_name (str) –

• region (Optional[str]) –

• quiet (bool) –

Return type
None

toil.lib.aws.utils.delete_sdb_domain(sdb_domain_name, region=None, quiet=True)

Parameters
• sdb_domain_name (str) –

• region (Optional[str]) –

• quiet (bool) –

Return type
None

toil.lib.aws.utils.connection_reset(e)
Return true if an error is a connection reset error.

Parameters
e (Exception) –

30.1. toil 387

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

Return type
bool

toil.lib.aws.utils.retryable_s3_errors(e)
Return true if this is an error from S3 that looks like we ought to retry our request.

Parameters
e (Exception) –

Return type
bool

toil.lib.aws.utils.retry_s3(delays=DEFAULT_DELAYS, timeout=DEFAULT_TIMEOUT,
predicate=retryable_s3_errors)

Retry iterator of context managers specifically for S3 operations.

Parameters
• delays (Iterable[float]) –

• timeout (float) –

• predicate (Callable[[Exception], bool]) –

Return type
Iterator[ContextManager[None]]

toil.lib.aws.utils.delete_s3_bucket(s3_resource, bucket, quiet=True)
Delete the given S3 bucket.

Parameters
• s3_resource (mypy_boto3_s3.S3ServiceResource) –

• bucket (str) –

• quiet (bool) –

Return type
None

toil.lib.aws.utils.create_s3_bucket(s3_resource, bucket_name, region)
Create an AWS S3 bucket, using the given Boto3 S3 session, with the given name, in the given region.

Supports the us-east-1 region, where bucket creation is special.

ALL S3 bucket creation should use this function.

Parameters
• s3_resource (mypy_boto3_s3.S3ServiceResource) –

• bucket_name (str) –

• region (Union[mypy_boto3_s3.literals.BucketLocationConstraintType,
Literal[us-east-1]]) –

Return type
mypy_boto3_s3.service_resource.Bucket

toil.lib.aws.utils.enable_public_objects(bucket_name)
Enable a bucket to contain objects which are public.

This adjusts the bucket’s Public Access Block setting to not block all public access, and also adjusts the bucket’s
Object Ownership setting to a setting which enables object ACLs.

388 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Does not touch the account’s Public Access Block setting, which can also interfere here. That is probably best
left to the account administrator.

This configuration used to be the default, and is what most of Toil’s code is written to expect, but it was changed so
that new buckets default to the more restrictive setting <https://aws.amazon.com/about-aws/whats-new/2022/12/
amazon-s3-automatically-enable-block-public-access-disable-access-control-lists-buckets-april-2023/>, with
the expectation that people would write IAM policies for the buckets to allow public access if needed. Toil
expects to be able to make arbitrary objects in arbitrary places public, and naming them all in an IAM policy
would be a very awkward way to do it. So we restore the old behavior.

Parameters
bucket_name (str) –

Return type
None

toil.lib.aws.utils.get_bucket_region(bucket_name, endpoint_url=None, only_strategies=None)
Get the AWS region name associated with the given S3 bucket.

Takes an optional S3 API URL override.

Parameters
• only_strategies (Optional[Set[int]]) – For testing, use only strategies with 1-based

numbers in this set.

• bucket_name (str) –

• endpoint_url (Optional[str]) –

Return type
str

toil.lib.aws.utils.region_to_bucket_location(region)

Parameters
region (str) –

Return type
str

toil.lib.aws.utils.bucket_location_to_region(location)

Parameters
location (Optional[str]) –

Return type
str

toil.lib.aws.utils.get_object_for_url(url, existing=None)
Extracts a key (object) from a given parsed s3:// URL.

Parameters
• existing (bool) – If True, key is expected to exist. If False, key is expected not to exists

and it will be created. If None, the key will be created if it doesn’t exist.

• url (urllib.parse.ParseResult) –

Return type
mypy_boto3_s3.service_resource.Object

30.1. toil 389

https://aws.amazon.com/about-aws/whats-new/2022/12/amazon-s3-automatically-enable-block-public-access-disable-access-control-lists-buckets-april-2023/
https://aws.amazon.com/about-aws/whats-new/2022/12/amazon-s3-automatically-enable-block-public-access-disable-access-control-lists-buckets-april-2023/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult

Toil Documentation, Release 5.11.0

toil.lib.aws.utils.list_objects_for_url(url)
Extracts a key (object) from a given parsed s3:// URL. The URL will be supplemented with a trailing slash if it
is missing.

Parameters
url (urllib.parse.ParseResult) –

Return type
List[str]

toil.lib.aws.utils.flatten_tags(tags)
Convert tags from a key to value dict into a list of ‘Key’: xxx, ‘Value’: xxx dicts.

Parameters
tags (Dict[str, str]) –

Return type
List[Dict[str, str]]

Package Contents

Functions

get_current_aws_region() Return the AWS region that the currently configured
AWS zone (see

get_aws_zone_from_environment() Get the AWS zone from TOIL_AWS_ZONE if set.
get_aws_zone_from_metadata() Get the AWS zone from instance metadata, if on EC2

and the boto module is
get_aws_zone_from_boto() Get the AWS zone from the Boto config file, if it is con-

figured and the
get_aws_zone_from_environment_region() Pick an AWS zone in the region defined by

TOIL_AWS_REGION, if it is set.
get_current_aws_zone() Get the currently configured or occupied AWS zone to

use.
zone_to_region(zone) Get a region (e.g. us-west-2) from a zone (e.g. us-west-

1c).
running_on_ec2() Return True if we are currently running on EC2, and

false otherwise.
running_on_ecs() Return True if we are currently running on Amazon ECS,

and false otherwise.
build_tag_dict_from_env([environment])

Attributes

logger

toil.lib.aws.logger

390 Chapter 30. API Reference

https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.lib.aws.get_current_aws_region()

Return the AWS region that the currently configured AWS zone (see get_current_aws_zone()) is in.

Return type
Optional[str]

toil.lib.aws.get_aws_zone_from_environment()

Get the AWS zone from TOIL_AWS_ZONE if set.

Return type
Optional[str]

toil.lib.aws.get_aws_zone_from_metadata()

Get the AWS zone from instance metadata, if on EC2 and the boto module is available. Otherwise, gets the AWS
zone from ECS task metadata, if on ECS.

Return type
Optional[str]

toil.lib.aws.get_aws_zone_from_boto()

Get the AWS zone from the Boto config file, if it is configured and the boto module is available.

Return type
Optional[str]

toil.lib.aws.get_aws_zone_from_environment_region()

Pick an AWS zone in the region defined by TOIL_AWS_REGION, if it is set.

Return type
Optional[str]

toil.lib.aws.get_current_aws_zone()

Get the currently configured or occupied AWS zone to use.

Reports the TOIL_AWS_ZONE environment variable if set.

Otherwise, if we have boto and are running on EC2, or if we are on ECS, reports the zone we are running in.

Otherwise, if we have the TOIL_AWS_REGION variable set, chooses a zone in that region.

Finally, if we have boto2, and a default region is configured in Boto 2, chooses a zone in that region.

Returns None if no method can produce a zone to use.

Return type
Optional[str]

toil.lib.aws.zone_to_region(zone)
Get a region (e.g. us-west-2) from a zone (e.g. us-west-1c).

Parameters
zone (str) –

Return type
str

toil.lib.aws.running_on_ec2()

Return True if we are currently running on EC2, and false otherwise.

Return type
bool

30.1. toil 391

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

toil.lib.aws.running_on_ecs()

Return True if we are currently running on Amazon ECS, and false otherwise.

Return type
bool

toil.lib.aws.build_tag_dict_from_env(environment=os.environ)

Parameters
environment (MutableMapping[str, str]) –

Return type
Dict[str, str]

toil.lib.encryption

Submodules

toil.lib.encryption.conftest

Module Contents

toil.lib.encryption.conftest.collect_ignore = []

Submodules

toil.lib.accelerators

Accelerator (i.e. GPU) utilities for Toil

Module Contents

Functions

have_working_nvidia_smi() Return True if the nvidia-smi binary, from nvidia's
CUDA userspace

have_working_nvidia_docker_runtime() Return True if Docker exists and can handle an "nvidia"
runtime and the "--gpus" option.

count_nvidia_gpus() Return the number of nvidia GPUs seen by nvidia-smi,
or 0 if it is not working.

get_individual_local_accelerators() Determine all the local accelerators available. Report
each with count 1,

get_restrictive_environment_for_local_accelerators(...)Get environment variables which can be applied to a pro-
cess to restrict it

toil.lib.accelerators.have_working_nvidia_smi()

Return True if the nvidia-smi binary, from nvidia’s CUDA userspace utilities, is installed and can be run success-
fully.

TODO: This isn’t quite the same as the check that cwltool uses to decide if it can fulfill a CUDARequirement.

392 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
bool

toil.lib.accelerators.have_working_nvidia_docker_runtime()

Return True if Docker exists and can handle an “nvidia” runtime and the “–gpus” option.

Return type
bool

toil.lib.accelerators.count_nvidia_gpus()

Return the number of nvidia GPUs seen by nvidia-smi, or 0 if it is not working.

Return type
int

toil.lib.accelerators.get_individual_local_accelerators()

Determine all the local accelerators available. Report each with count 1, in the order of the number that can be
used to assign them.

TODO: How will numbers work with multiple types of accelerator? We need an accelerator assignment API.

Return type
List[toil.job.AcceleratorRequirement]

toil.lib.accelerators.get_restrictive_environment_for_local_accelerators(accelerator_numbers)
Get environment variables which can be applied to a process to restrict it to using only the given accelerator
numbers.

The numbers are in the space of accelerators returned by get_individual_local_accelerators().

Parameters
accelerator_numbers (Set[int]) –

Return type
Dict[str, str]

toil.lib.bioio

Module Contents

Functions

system(command) A convenience wrapper around subprocess.check_call
that logs the command before passing it

getLogLevelString([logger])

setLoggingFromOptions(options)

getTempFile([suffix, rootDir])

toil.lib.bioio.system(command)
A convenience wrapper around subprocess.check_call that logs the command before passing it on. The command
can be either a string or a sequence of strings. If it is a string shell=True will be passed to subprocess.check_call.
:type command: str | sequence[string]

30.1. toil 393

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.lib.bioio.getLogLevelString(logger=None)

toil.lib.bioio.setLoggingFromOptions(options)

toil.lib.bioio.getTempFile(suffix='', rootDir=None)

toil.lib.compatibility

Module Contents

Functions

deprecated(new_function_name)

compat_bytes(s)

compat_bytes_recursive(data) Convert a tree of objects over bytes to objects over
strings.

toil.lib.compatibility.deprecated(new_function_name)

Parameters
new_function_name (str) –

Return type
Callable[Ellipsis, Any]

toil.lib.compatibility.compat_bytes(s)

Parameters
s (Union[bytes, str]) –

Return type
str

toil.lib.compatibility.compat_bytes_recursive(data)
Convert a tree of objects over bytes to objects over strings.

Parameters
data (Any) –

Return type
Any

toil.lib.conversions

Conversion utilities for mapping memory, disk, core declarations from strings to numbers and vice versa. Also contains
general conversion functions

394 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Module Contents

Functions

bytes_in_unit([unit])

convert_units(num, src_unit[, dst_unit]) Returns a float representing the converted input in
dst_units.

parse_memory_string(string) Given a string representation of some memory (i.e.
'1024 Mib'), return the

human2bytes(string) Given a string representation of some memory (i.e.
'1024 Mib'), return the

bytes2human(n) Return a binary value as a human readable string with
units.

b_to_mib(n) Convert a number from bytes to mibibytes.
mib_to_b(n) Convert a number from mibibytes to bytes.
hms_duration_to_seconds(hms) Parses a given time string in hours:minutes:seconds,

Attributes

BINARY_PREFIXES

DECIMAL_PREFIXES

VALID_PREFIXES

toil.lib.conversions.BINARY_PREFIXES = ['ki', 'mi', 'gi', 'ti', 'pi', 'ei', 'kib', 'mib',
'gib', 'tib', 'pib', 'eib']

toil.lib.conversions.DECIMAL_PREFIXES = ['b', 'k', 'm', 'g', 't', 'p', 'e', 'kb', 'mb',
'gb', 'tb', 'pb', 'eb']

toil.lib.conversions.VALID_PREFIXES

toil.lib.conversions.bytes_in_unit(unit='B')

Parameters
unit (str) –

Return type
int

toil.lib.conversions.convert_units(num, src_unit, dst_unit='B')
Returns a float representing the converted input in dst_units.

Parameters
• num (float) –

• src_unit (str) –

• dst_unit (str) –

30.1. toil 395

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
float

toil.lib.conversions.parse_memory_string(string)
Given a string representation of some memory (i.e. ‘1024 Mib’), return the number and unit.

Parameters
string (str) –

Return type
Tuple[float, str]

toil.lib.conversions.human2bytes(string)
Given a string representation of some memory (i.e. ‘1024 Mib’), return the integer number of bytes.

Parameters
string (str) –

Return type
int

toil.lib.conversions.bytes2human(n)
Return a binary value as a human readable string with units.

Parameters
n (SupportsInt) –

Return type
str

toil.lib.conversions.b_to_mib(n)
Convert a number from bytes to mibibytes.

Parameters
n (Union[int, float]) –

Return type
float

toil.lib.conversions.mib_to_b(n)
Convert a number from mibibytes to bytes.

Parameters
n (Union[int, float]) –

Return type
float

toil.lib.conversions.hms_duration_to_seconds(hms)
Parses a given time string in hours:minutes:seconds, returns an equivalent total seconds value

Parameters
hms (str) –

Return type
float

396 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

toil.lib.docker

Module Contents

Functions

dockerCheckOutput(*args, **kwargs)

dockerCall(*args, **kwargs)

subprocessDockerCall(*args, **kwargs)

apiDockerCall(job, image[, parameters, deferParam,
...])

A toil wrapper for the python docker API.

dockerKill(container_name[, gentleKill, remove,
timeout])

Immediately kills a container. Equivalent to "docker
kill":

dockerStop(container_name[, remove]) Gracefully kills a container. Equivalent to "docker stop":
containerIsRunning(container_name[, timeout]) Checks whether the container is running or not.
getContainerName(job) Create a random string including the job name, and re-

turn it. Name will

Attributes

logger

FORGO

STOP

RM

toil.lib.docker.logger

toil.lib.docker.FORGO = 0

toil.lib.docker.STOP = 1

toil.lib.docker.RM = 2

toil.lib.docker.dockerCheckOutput(*args, **kwargs)

toil.lib.docker.dockerCall(*args, **kwargs)

toil.lib.docker.subprocessDockerCall(*args, **kwargs)

toil.lib.docker.apiDockerCall(job, image, parameters=None, deferParam=None, volumes=None,
working_dir=None, containerName=None, entrypoint=None, detach=False,
log_config=None, auto_remove=None, remove=False, user=None,
environment=None, stdout=None, stderr=False, stream=False,
demux=False, streamfile=None, timeout=365 * 24 * 60 * 60, **kwargs)

30.1. toil 397

Toil Documentation, Release 5.11.0

A toil wrapper for the python docker API.

Docker API Docs: https://docker-py.readthedocs.io/en/stable/index.html Docker API Code: https://github.com/
docker/docker-py

This implements docker’s python API within toil so that calls are run as jobs, with the intention that
failed/orphaned docker jobs be handled appropriately.

Example of using dockerCall in toil to index a FASTA file with SAMtools: def toil_job(job):

working_dir = job.fileStore.getLocalTempDir() path = job.fileStore.readGlobalFile(ref_id,

os.path.join(working_dir, ‘ref.fasta’)

parameters = [‘faidx’, path] apiDockerCall(job,

image=’quay.io/ucgc_cgl/samtools:latest’, working_dir=working_dir, parame-
ters=parameters)

Note that when run with detach=False, or with detach=True and stdout=True or stderr=True, this is a blocking
call. When run with detach=True and without output capture, the container is started and returned without
waiting for it to finish.

Parameters
• job (toil.Job.job) – The Job instance for the calling function.

• image (str) – Name of the Docker image to be used. (e.g.
‘quay.io/ucsc_cgl/samtools:latest’)

• parameters (list[str]) – A list of string elements. If there are multiple elements, these
will be joined with spaces. This handling of multiple elements provides backwards compati-
bility with previous versions which called docker using subprocess.check_call(). **If list of
lists: list[list[str]], then treat as successive commands chained with pipe.

• working_dir (str) – The working directory.

• deferParam (int) – Action to take on the container upon job completion. FORGO (0)
leaves the container untouched and running. STOP (1) Sends SIGTERM, then SIGKILL if
necessary to the container. RM (2) Immediately send SIGKILL to the container. This is the
default behavior if deferParam is set to None.

• name (str) – The name/ID of the container.

• entrypoint (str) – Prepends commands sent to the container. See: https://docker-py.
readthedocs.io/en/stable/containers.html

• detach (bool) – Run the container in detached mode. (equivalent to ‘-d’)

• stdout (bool) – Return logs from STDOUT when detach=False (default: True). Block
and capture stdout to a file when detach=True (default: False). Output capture defaults to
output.log, and can be specified with the “streamfile” kwarg.

• stderr (bool) – Return logs from STDERR when detach=False (default: False). Block
and capture stderr to a file when detach=True (default: False). Output capture defaults to
output.log, and can be specified with the “streamfile” kwarg.

• stream (bool) – If True and detach=False, return a log generator instead of a string. Ignored
if detach=True. (default: False).

• demux (bool) – Similar to demux in container.exec_run(). If True and detach=False, returns
a tuple of (stdout, stderr). If stream=True, returns a log generator with tuples of (stdout,
stderr). Ignored if detach=True. (default: False).

398 Chapter 30. API Reference

https://docker-py.readthedocs.io/en/stable/index.html
https://github.com/docker/docker-py
https://github.com/docker/docker-py
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docker-py.readthedocs.io/en/stable/containers.html
https://docker-py.readthedocs.io/en/stable/containers.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

• streamfile (str) – Collect container output to this file if detach=True and stderr and/or
stdout are True. Defaults to “output.log”.

• log_config (dict) – Specify the logs to return from the container. See: https://docker-py.
readthedocs.io/en/stable/containers.html

• remove (bool) – Remove the container on exit or not.

• user (str) – The container will be run with the privileges of the user specified. Can be an
actual name, such as ‘root’ or ‘lifeisaboutfishtacos’, or it can be the uid or gid of the user (‘0’
is root; ‘1000’ is an example of a less privileged uid or gid), or a complement of the uid:gid
(RECOMMENDED), such as ‘0:0’ (root user : root group) or ‘1000:1000’ (some other user
: some other user group).

• environment – Allows one to set environment variables inside of the container, such as:

• timeout (int) – Use the given timeout in seconds for interactions with the Docker daemon.
Note that the underlying docker module is not always able to abort ongoing reads and writes
in order to respect the timeout. Defaults to 1 year (i.e. wait essentially indefinitely).

• kwargs – Additional keyword arguments supplied to the docker API’s run command. The list
is 75 keywords total, for examples and full documentation see: https://docker-py.readthedocs.
io/en/stable/containers.html

Returns
Returns the standard output/standard error text, as requested, when detach=False. Returns the
underlying docker.models.containers.Container object from the Docker API when detach=True.

toil.lib.docker.dockerKill(container_name, gentleKill=False, remove=False, timeout=365 * 24 * 60 * 60)
Immediately kills a container. Equivalent to “docker kill”: https://docs.docker.com/engine/reference/
commandline/kill/

Parameters
• container_name (str) – Name of the container being killed.

• gentleKill (bool) – If True, trigger a graceful shutdown.

• remove (bool) – If True, remove the container after it exits.

• timeout (int) – Use the given timeout in seconds for interactions with the Docker daemon.
Note that the underlying docker module is not always able to abort ongoing reads and writes
in order to respect the timeout. Defaults to 1 year (i.e. wait essentially indefinitely).

Return type
None

toil.lib.docker.dockerStop(container_name, remove=False)
Gracefully kills a container. Equivalent to “docker stop”: https://docs.docker.com/engine/reference/
commandline/stop/

Parameters
• container_name (str) – Name of the container being stopped.

• remove (bool) – If True, remove the container after it exits.

Return type
None

toil.lib.docker.containerIsRunning(container_name, timeout=365 * 24 * 60 * 60)
Checks whether the container is running or not.

Parameters

30.1. toil 399

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docker-py.readthedocs.io/en/stable/containers.html
https://docker-py.readthedocs.io/en/stable/containers.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docker-py.readthedocs.io/en/stable/containers.html
https://docker-py.readthedocs.io/en/stable/containers.html
https://docs.docker.com/engine/reference/commandline/kill/
https://docs.docker.com/engine/reference/commandline/kill/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.docker.com/engine/reference/commandline/stop/
https://docs.docker.com/engine/reference/commandline/stop/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

• container_name (str) – Name of the container being checked.

• timeout (int) – Use the given timeout in seconds for interactions with the Docker daemon.
Note that the underlying docker module is not always able to abort ongoing reads and writes
in order to respect the timeout. Defaults to 1 year (i.e. wait essentially indefinitely).

Returns
True if status is ‘running’, False if status is anything else,

and None if the container does not exist.

toil.lib.docker.getContainerName(job)
Create a random string including the job name, and return it. Name will match [a-zA-Z0-9][a-zA-Z0-9_.-]

toil.lib.ec2

Module Contents

Functions

not_found(e)

inconsistencies_detected(e)

retry_ec2([t, retry_for, retry_while])

wait_transition(resource, from_states, to_state[,
...])

Wait until the specified EC2 resource (instance, image,
volume, ...) transitions from any

wait_instances_running(ec2, instances) Wait until no instance in the given iterable is 'pending'.
Yield every instance that

wait_spot_requests_active(ec2, requests[, time-
out, ...])

Wait until no spot request in the given iterator is in the
'open' state or, optionally,

create_spot_instances(ec2, price, image_id, spec[,
...])

Create instances on the spot market.

create_ondemand_instances(ec2, image_id, spec[,
...])

Requests the RunInstances EC2 API call but accounts for
the race between recently created

prune(bushy) Prune entries in the given dict with false-y values.
wait_until_instance_profile_arn_exists(...)

create_instances(ec2_resource, image_id,
key_name, ...)

Replaces create_ondemand_instances. Uses boto3 and
returns a list of Boto3 instance dicts.

create_launch_template(ec2_client, tem-
plate_name, ...)

Creates a launch template with the given name for
launching instances with the given parameters.

create_auto_scaling_group(autoscaling_client,
...[, ...])

Create a new Auto Scaling Group with the given name
(which is also its

400 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Attributes

a_short_time

a_long_time

logger

INCONSISTENCY_ERRORS

iam_client

toil.lib.ec2.a_short_time = 5

toil.lib.ec2.a_long_time

toil.lib.ec2.logger

exception toil.lib.ec2.UserError(message=None, cause=None)
Bases: RuntimeError

UserError

Unspecified run-time error.

toil.lib.ec2.not_found(e)

toil.lib.ec2.inconsistencies_detected(e)

toil.lib.ec2.INCONSISTENCY_ERRORS

toil.lib.ec2.retry_ec2(t=a_short_time, retry_for=10 * a_short_time, retry_while=not_found)

exception toil.lib.ec2.UnexpectedResourceState(resource, to_state, state)
Bases: Exception

UnexpectedResourceState

Common base class for all non-exit exceptions.

30.1. toil 401

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

toil.lib.ec2.wait_transition(resource, from_states, to_state, state_getter=attrgetter('state'))
Wait until the specified EC2 resource (instance, image, volume, . . .) transitions from any of the given ‘from’
states to the specified ‘to’ state. If the instance is found in a state other that the to state or any of the from states,
an exception will be thrown.

Parameters
• resource – the resource to monitor

• from_states – a set of states that the resource is expected to be in before the transition
occurs

• to_state – the state of the resource when this method returns

toil.lib.ec2.wait_instances_running(ec2, instances)
Wait until no instance in the given iterable is ‘pending’. Yield every instance that entered the running state as
soon as it does.

Parameters
• ec2 (boto.ec2.connection.EC2Connection) – the EC2 connection to use for making

requests

• instances (Iterable[Boto2Instance]) – the instances to wait on

Return type
Iterable[Boto2Instance]

toil.lib.ec2.wait_spot_requests_active(ec2, requests, timeout=None, tentative=False)
Wait until no spot request in the given iterator is in the ‘open’ state or, optionally, a timeout occurs. Yield spot
requests as soon as they leave the ‘open’ state.

Parameters
• requests (Iterable[boto.ec2.spotinstancerequest.SpotInstanceRequest]) –

The requests to wait on.

• timeout (float) – Maximum time in seconds to spend waiting or None to wait forever. If
a

• tentative (bool) –

Return type
Iterable[List[boto.ec2.spotinstancerequest.SpotInstanceRequest]]

timeout occurs, the remaining open requests will be cancelled.

Parameters
• tentative (bool) – if True, give up on a spot request at the earliest indication of it

• requests (Iterable[boto.ec2.spotinstancerequest.SpotInstanceRequest]) –

• timeout (float) –

Return type
Iterable[List[boto.ec2.spotinstancerequest.SpotInstanceRequest]]

not being fulfilled immediately

toil.lib.ec2.create_spot_instances(ec2, price, image_id, spec, num_instances=1, timeout=None,
tentative=False, tags=None)

Create instances on the spot market.

402 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

Return type
Iterable[List[boto.ec2.instance.Instance]]

toil.lib.ec2.create_ondemand_instances(ec2, image_id, spec, num_instances=1)
Requests the RunInstances EC2 API call but accounts for the race between recently created instance profiles,
IAM roles and an instance creation that refers to them.

Return type
List[Boto2Instance]

toil.lib.ec2.prune(bushy)
Prune entries in the given dict with false-y values. Boto3 may not like None and instead wants no key.

Parameters
bushy (dict) –

Return type
dict

toil.lib.ec2.iam_client

toil.lib.ec2.wait_until_instance_profile_arn_exists(instance_profile_arn)

Parameters
instance_profile_arn (str) –

toil.lib.ec2.create_instances(ec2_resource, image_id, key_name, instance_type, num_instances=1,
security_group_ids=None, user_data=None, block_device_map=None,
instance_profile_arn=None, placement_az=None, subnet_id=None,
tags=None)

Replaces create_ondemand_instances. Uses boto3 and returns a list of Boto3 instance dicts.

See “create_instances” (returns a list of ec2.Instance objects):
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.
ServiceResource.create_instances

Not to be confused with “run_instances” (same input args; returns a dictionary):
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.run_
instances

Tags, if given, are applied to the instances, and all volumes.

Parameters
• ec2_resource (boto3.resources.base.ServiceResource) –

• image_id (str) –

• key_name (str) –

• instance_type (str) –

• num_instances (int) –

• security_group_ids (Optional[List]) –

• user_data (Optional[Union[str, bytes]]) –

• block_device_map (Optional[List[Dict]]) –

• instance_profile_arn (Optional[str]) –

• placement_az (Optional[str]) –

• subnet_id (str) –

30.1. toil 403

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.ServiceResource.create_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.ServiceResource.create_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.run_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.run_instances
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• tags (Optional[Dict[str, str]]) –

Return type
List[dict]

toil.lib.ec2.create_launch_template(ec2_client, template_name, image_id, key_name, instance_type,
security_group_ids=None, user_data=None,
block_device_map=None, instance_profile_arn=None,
placement_az=None, subnet_id=None, tags=None)

Creates a launch template with the given name for launching instances with the given parameters.

We only ever use the default version of any launch template.

Internally calls https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html?
highlight=create_launch_template#EC2.Client.create_launch_template

Parameters
• tags (Optional[Dict[str, str]]) – Tags, if given, are applied to the template itself,

all instances, and all volumes.

• user_data (Optional[Union[str, bytes]]) – non-base64-encoded user data to pass
to the instances.

• ec2_client (botocore.client.BaseClient) –

• template_name (str) –

• image_id (str) –

• key_name (str) –

• instance_type (str) –

• security_group_ids (Optional[List]) –

• block_device_map (Optional[List[Dict]]) –

• instance_profile_arn (Optional[str]) –

• placement_az (Optional[str]) –

• subnet_id (Optional[str]) –

Returns
the ID of the launch template.

Return type
str

toil.lib.ec2.create_auto_scaling_group(autoscaling_client, asg_name, launch_template_ids, vpc_subnets,
min_size, max_size, instance_types=None, spot_bid=None,
spot_cheapest=False, tags=None)

Create a new Auto Scaling Group with the given name (which is also its unique identifier).

Parameters
• autoscaling_client (botocore.client.BaseClient) – Boto3 client for autoscaling.

• asg_name (str) – Unique name for the autoscaling group.

• launch_template_ids (Dict[str, str]) – ID of the launch template to make instances
from, for each instance type.

• vpc_subnets (List[str]) – One or more subnet IDs to place instances in the group into.
Determine the availability zone(s) instances will launch into.

404 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html?highlight=create_launch_template#EC2.Client.create_launch_template
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html?highlight=create_launch_template#EC2.Client.create_launch_template
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• min_size (int) – Minimum number of instances to have in the group at all times.

• max_size (int) – Maximum number of instances to allow in the group at any time.

• instance_types (Optional[List[str]]) – Use a pool over the given instance types,
instead of the type given in the launch template. For on-demand groups, this is a prioritized
list. For spot groups, we let AWS balance according to spot_strategy. Must be 20 types or
shorter.

• spot_bid (Optional[float]) – If set, the ASG will be a spot market ASG. Bid is in
dollars per instance hour. All instance types in the group are bid on equivalently.

• spot_cheapest (bool) – If true, use the cheapest spot instances available out of in-
stance_types, instead of the spot instances that minimize eviction probability.

• tags (Optional[Dict[str, str]]) – Tags to apply to the ASG only. Tags for the in-
stances should be added to the launch template instead.

Return type
None

The default version of the launch template is used.

toil.lib.ec2nodes

Module Contents

Classes

InstanceType

Functions

isNumber(s) Determines if a unicode string (that may include com-
mas) is a number.

parseStorage(storageData) Parses EC2 JSON storage param string into a number.
parseMemory(memAttribute) Returns EC2 'memory' string as a float.
fetchEC2Index(filename) Downloads and writes the AWS Billing JSON to a file

using the AWS pricing API.
fetchEC2InstanceDict(awsBillingJson, region) Takes a JSON and returns a list of InstanceType objects

representing EC2 instance params.
updateStaticEC2Instances() Generates a new python file of fetchable EC2 Instances

by region with current prices and specs.

30.1. toil 405

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Attributes

logger

dirname

EC2Regions

toil.lib.ec2nodes.logger

toil.lib.ec2nodes.dirname

toil.lib.ec2nodes.EC2Regions

class toil.lib.ec2nodes.InstanceType(name, cores, memory, disks, disk_capacity, architecture)

Parameters
• name (str) –

• cores (int) –

• memory (float) –

• disks (float) –

• disk_capacity (float) –

• architecture (str) –

__slots__ = ('name', 'cores', 'memory', 'disks', 'disk_capacity', 'architecture')

__str__()

Return str(self).

Return type
str

__eq__(other)
Return self==value.

Parameters
other (object) –

Return type
bool

toil.lib.ec2nodes.isNumber(s)
Determines if a unicode string (that may include commas) is a number.

Parameters
s (str) – Any unicode string.

Returns
True if s represents a number, False otherwise.

Return type
bool

406 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

toil.lib.ec2nodes.parseStorage(storageData)
Parses EC2 JSON storage param string into a number.

Examples:
“2 x 160 SSD” “3 x 2000 HDD” “EBS only” “1 x 410” “8 x 1.9 NVMe SSD” “900 GB NVMe SSD”

Parameters
storageData (str) – EC2 JSON storage param string.

Returns
Two floats representing: (# of disks), and (disk_capacity in GiB of each disk).

Return type
Union[List[int], Tuple[Union[int, float], float]]

toil.lib.ec2nodes.parseMemory(memAttribute)
Returns EC2 ‘memory’ string as a float.

Format should always be ‘#’ GiB (example: ‘244 GiB’ or ‘1,952 GiB’). Amazon loves to put commas in their
numbers, so we have to accommodate that. If the syntax ever changes, this will raise.

Parameters
memAttribute (str) – EC2 JSON memory param string.

Returns
A float representing memory in GiB.

Return type
float

toil.lib.ec2nodes.fetchEC2Index(filename)
Downloads and writes the AWS Billing JSON to a file using the AWS pricing API.

See: https://aws.amazon.com/blogs/aws/new-aws-price-list-api/

Returns
A dict of InstanceType objects, where the key is the string: aws instance name (example:
‘t2.micro’), and the value is an InstanceType object representing that aws instance name.

Parameters
filename (str) –

Return type
None

toil.lib.ec2nodes.fetchEC2InstanceDict(awsBillingJson, region)
Takes a JSON and returns a list of InstanceType objects representing EC2 instance params.

Parameters
• region (str) –

• awsBillingJson (Dict[str, Any]) –

Returns
Return type

Dict[str, InstanceType]

toil.lib.ec2nodes.updateStaticEC2Instances()

Generates a new python file of fetchable EC2 Instances by region with current prices and specs.

Takes a few (~3+) minutes to run (you’ll need decent internet).

30.1. toil 407

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://aws.amazon.com/blogs/aws/new-aws-price-list-api/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Returns
Nothing. Writes a new ‘generatedEC2Lists.py’ file.

Return type
None

toil.lib.exceptions

Module Contents

Classes

panic The Python idiom for reraising a primary exception fails
when the except block raises a

Functions

raise_(exc_type, exc_value, traceback)

class toil.lib.exceptions.panic(log=None)
The Python idiom for reraising a primary exception fails when the except block raises a secondary exception,
e.g. while trying to cleanup. In that case the original exception is lost and the secondary exception is reraised.
The solution seems to be to save the primary exception info as returned from sys.exc_info() and then reraise that.

This is a contextmanager that should be used like this

try:
do something that can fail

except:
with panic(log):

do cleanup that can also fail

If a logging logger is passed to panic(), any secondary Exception raised within the with block will be logged.
Otherwise those exceptions are swallowed. At the end of the with block the primary exception will be reraised.

__enter__()

__exit__(*exc_info)

toil.lib.exceptions.raise_(exc_type, exc_value, traceback)

Return type
None

408 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.lib.expando

Module Contents

Classes

Expando Pass inital attributes to the constructor:
MagicExpando Use MagicExpando for chained attribute access.

class toil.lib.expando.Expando(*args, **kwargs)
Bases: dict

Expando

Pass inital attributes to the constructor:

>>> o = Expando(foo=42)
>>> o.foo
42

Dynamically create new attributes:

>>> o.bar = 'hi'
>>> o.bar
'hi'

Expando is a dictionary:

>>> isinstance(o,dict)
True
>>> o['foo']
42

Works great with JSON:

>>> import json
>>> s='{"foo":42}'
>>> o = json.loads(s,object_hook=Expando)
>>> o.foo
42
>>> o.bar = 'hi'
>>> o.bar
'hi'

And since Expando is a dict, it serializes back to JSON just fine:

30.1. toil 409

https://docs.python.org/3/library/stdtypes.html#dict

Toil Documentation, Release 5.11.0

>>> json.dumps(o, sort_keys=True)
'{"bar": "hi", "foo": 42}'

Attributes can be deleted, too:

>>> o = Expando(foo=42)
>>> o.foo
42
>>> del o.foo
>>> o.foo
Traceback (most recent call last):
...
AttributeError: 'Expando' object has no attribute 'foo'
>>> o['foo']
Traceback (most recent call last):
...
KeyError: 'foo'

>>> del o.foo
Traceback (most recent call last):
...
AttributeError: foo

And copied:

>>> o = Expando(foo=42)
>>> p = o.copy()
>>> isinstance(p,Expando)
True
>>> o == p
True
>>> o is p
False

Same with MagicExpando . . .

>>> o = MagicExpando()
>>> o.foo.bar = 42
>>> p = o.copy()
>>> isinstance(p,MagicExpando)
True
>>> o == p
True
>>> o is p
False

. . . but the copy is shallow:

>>> o.foo is p.foo
True

copy()

D.copy() -> a shallow copy of D

410 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

class toil.lib.expando.MagicExpando(*args, **kwargs)
Bases: Expando

Expando MagicExpando

Use MagicExpando for chained attribute access.

The first time a missing attribute is accessed, it will be set to a new child MagicExpando.

>>> o=MagicExpando()
>>> o.foo = 42
>>> o
{'foo': 42}
>>> o.bar.hello = 'hi'
>>> o.bar
{'hello': 'hi'}

__getattribute__(name)
Return getattr(self, name).

Parameters
name (str) –

toil.lib.generatedEC2Lists

Module Contents

toil.lib.generatedEC2Lists.E2Instances

toil.lib.generatedEC2Lists.regionDict

toil.lib.generatedEC2Lists.ec2InstancesByRegion

toil.lib.humanize

Module Contents

Functions

bytes2human(n) Convert n bytes into a human readable string.
human2bytes(s) Attempts to guess the string format based on default

symbols

30.1. toil 411

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Attributes

logger

toil.lib.humanize.logger

toil.lib.humanize.bytes2human(n)
Convert n bytes into a human readable string.

Parameters
n (SupportsInt) –

Return type
str

toil.lib.humanize.human2bytes(s)
Attempts to guess the string format based on default symbols set and return the corresponding bytes as an integer.

When unable to recognize the format ValueError is raised.

Parameters
s (str) –

Return type
int

toil.lib.io

Module Contents

Classes

WriteWatchingStream A stream wrapping class that calls any functions passed
to onWrite() with the number of bytes written for every
write.

412 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Functions

robust_rmtree(path) Robustly tries to delete paths.
atomic_tmp_file(final_path) Return a tmp file name to use with atomic_install. This

will be in the
atomic_install(tmp_path, final_path) atomic install of tmp_path as final_path
AtomicFileCreate(final_path[, keep]) Context manager to create a temporary file. Entering re-

turns path to
atomic_copy(src_path, dest_path[, executable]) Copy a file using posix atomic creations semantics.
atomic_copyobj(src_fh, dest_path[, length, exe-
cutable])

Copy an open file using posix atomic creations seman-
tics.

make_public_dir([in_directory]) Try to make a random directory name with length 4 that
doesn't exist, with the given prefix.

try_path (path) Try to use the given path. Return it if it exists or can be
made,

Attributes

logger

toil.lib.io.logger

toil.lib.io.robust_rmtree(path)
Robustly tries to delete paths.

Continues silently if the path to be removed is already gone, or if it goes away while this function is executing.

May raise an error if a path changes between file and directory while the function is executing, or if a permission
error is encountered.

Parameters
path (Union[str, bytes]) –

Return type
None

toil.lib.io.atomic_tmp_file(final_path)
Return a tmp file name to use with atomic_install. This will be in the same directory as final_path. The temporary
file will have the same extension as finalPath. It the final path is in /dev (/dev/null, /dev/stdout), it is returned
unchanged and atomic_tmp_install will do nothing.

Parameters
final_path (str) –

Return type
str

toil.lib.io.atomic_install(tmp_path, final_path)
atomic install of tmp_path as final_path

Return type
None

30.1. toil 413

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.lib.io.AtomicFileCreate(final_path, keep=False)
Context manager to create a temporary file. Entering returns path to the temporary file in the same directory as
finalPath. If the code in context succeeds, the file renamed to its actually name. If an error occurs, the file is not
installed and is removed unless keep is specified.

Parameters
• final_path (str) –

• keep (bool) –

Return type
Iterator[str]

toil.lib.io.atomic_copy(src_path, dest_path, executable=None)
Copy a file using posix atomic creations semantics.

Parameters
• src_path (str) –

• dest_path (str) –

• executable (Optional[bool]) –

Return type
None

toil.lib.io.atomic_copyobj(src_fh, dest_path, length=16384, executable=False)
Copy an open file using posix atomic creations semantics.

Parameters
• src_fh (io.BytesIO) –

• dest_path (str) –

• length (int) –

• executable (bool) –

Return type
None

toil.lib.io.make_public_dir(in_directory=None)
Try to make a random directory name with length 4 that doesn’t exist, with the given prefix. Otherwise, try length
5, length 6, etc, up to a max of 32 (len of uuid4 with dashes replaced). This function’s purpose is mostly to avoid
having long file names when generating directories. If somehow this fails, which should be incredibly unlikely,
default to a normal uuid4, which was our old default.

Parameters
in_directory (Optional[str]) –

Return type
str

toil.lib.io.try_path(path)
Try to use the given path. Return it if it exists or can be made, and we can make things within it, or None
otherwise.

Parameters
path (str) –

414 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/io.html#io.BytesIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
Optional[str]

class toil.lib.io.WriteWatchingStream(backingStream)

A stream wrapping class that calls any functions passed to onWrite() with the number of bytes written for every
write.

Not seekable.

Parameters
backingStream (IO[Any]) –

onWrite(listener)
Call the given listener with the number of bytes written on every write.

Parameters
listener (Callable[[int], None]) –

Return type
None

write(data)
Write the given data to the file.

writelines(datas)
Write each string from the given iterable, without newlines.

flush()

Flush the backing stream.

close()

Close the backing stream.

toil.lib.iterables

Module Contents

Classes

concat A literal iterable to combine sequence literals (lists, set)
with generators or list comprehensions.

Functions

flatten(iterables) Flatten an iterable, except for string elements.

30.1. toil 415

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Attributes

IT

toil.lib.iterables.IT

toil.lib.iterables.flatten(iterables)
Flatten an iterable, except for string elements.

Parameters
iterables (Iterable[IT]) –

Return type
Iterator[IT]

class toil.lib.iterables.concat(*args)
A literal iterable to combine sequence literals (lists, set) with generators or list comprehensions.

Instead of

>>> [-1] + [x * 2 for x in range(3)] + [-1]
[-1, 0, 2, 4, -1]

you can write

>>> list(concat(-1, (x * 2 for x in range(3)), -1))
[-1, 0, 2, 4, -1]

This is slightly shorter (not counting the list constructor) and does not involve array construction or concatenation.

Note that concat() flattens (or chains) all iterable arguments into a single result iterable:

>>> list(concat(1, range(2, 4), 4))
[1, 2, 3, 4]

It only does so one level deep. If you need to recursively flatten a data structure, check out crush().

If you want to prevent that flattening for an iterable argument, wrap it in concat():

>>> list(concat(1, concat(range(2, 4)), 4))
[1, range(2, 4), 4]

Some more example.

>>> list(concat()) # empty concat
[]
>>> list(concat(1)) # non-iterable
[1]
>>> list(concat(concat())) # empty iterable
[]
>>> list(concat(concat(1))) # singleton iterable
[1]
>>> list(concat(1, concat(2), 3)) # flattened iterable
[1, 2, 3]
>>> list(concat(1, [2], 3)) # flattened iterable

(continues on next page)

416 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

(continued from previous page)

[1, 2, 3]
>>> list(concat(1, concat([2]), 3)) # protecting an iterable from being␣
→˓flattened
[1, [2], 3]
>>> list(concat(1, concat([2], 3), 4)) # protection only works with a single␣
→˓argument
[1, 2, 3, 4]
>>> list(concat(1, 2, concat(3, 4), 5, 6))
[1, 2, 3, 4, 5, 6]
>>> list(concat(1, 2, concat([3, 4]), 5, 6))
[1, 2, [3, 4], 5, 6]

Note that while strings are technically iterable, concat() does not flatten them.

>>> list(concat('ab'))
['ab']
>>> list(concat(concat('ab')))
['ab']

Parameters
args (Any) –

__iter__()

Return type
Iterator[Any]

toil.lib.memoize

Module Contents

Functions

sync_memoize(f) Like memoize, but guarantees that decorated function is
only called once, even when multiple

parse_iso_utc(s) Parses an ISO time with a hard-coded Z for zulu-time
(UTC) at the end. Other timezones are

strict_bool(s) Variant of bool() that only accepts two possible string
values.

30.1. toil 417

Toil Documentation, Release 5.11.0

Attributes

memoize Memoize a function result based on its parameters using
this decorator.

MAT

MRT

toil.lib.memoize.memoize

Memoize a function result based on its parameters using this decorator.

For example, this can be used in place of lazy initialization. If the decorating function is invoked by multiple
threads, the decorated function may be called more than once with the same arguments.

toil.lib.memoize.MAT

toil.lib.memoize.MRT

toil.lib.memoize.sync_memoize(f)
Like memoize, but guarantees that decorated function is only called once, even when multiple threads are calling
the decorating function with multiple parameters.

Parameters
f (Callable[[MAT], MRT]) –

Return type
Callable[[MAT], MRT]

toil.lib.memoize.parse_iso_utc(s)
Parses an ISO time with a hard-coded Z for zulu-time (UTC) at the end. Other timezones are not supported.
Returns a timezone-naive datetime object.

Parameters
s (str) – The ISO-formatted time

Returns
A timezone-naive datetime object

Return type
datetime.datetime

>>> parse_iso_utc('2016-04-27T00:28:04.000Z')
datetime.datetime(2016, 4, 27, 0, 28, 4)
>>> parse_iso_utc('2016-04-27T00:28:04Z')
datetime.datetime(2016, 4, 27, 0, 28, 4)
>>> parse_iso_utc('2016-04-27T00:28:04X')
Traceback (most recent call last):
...
ValueError: Not a valid ISO datetime in UTC: 2016-04-27T00:28:04X

toil.lib.memoize.strict_bool(s)
Variant of bool() that only accepts two possible string values.

Parameters
s (str) –

418 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
bool

toil.lib.misc

Module Contents

Functions

get_public_ip() Get the IP that this machine uses to contact the internet.
get_user_name() Get the current user name, or a suitable substitute string

if the user name
utc_now() Return a datetime in the UTC timezone corresponding

to right now.
unix_now_ms() Return the current time in milliseconds since the Unix

epoch.
slow_down(seconds) Toil jobs that have completed are not allowed to have

taken 0 seconds, but
printq(msg, quiet)

truncExpBackoff ()

call_command(cmd, *args[, input, timeout, useCLo-
cale, ...])

Simplified calling of external commands.

Attributes

logger

toil.lib.misc.logger

toil.lib.misc.get_public_ip()

Get the IP that this machine uses to contact the internet.

If behind a NAT, this will still be this computer’s IP, and not the router’s.

Return type
str

toil.lib.misc.get_user_name()

Get the current user name, or a suitable substitute string if the user name is not available.

Return type
str

toil.lib.misc.utc_now()

Return a datetime in the UTC timezone corresponding to right now.

Return type
datetime.datetime

30.1. toil 419

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime

Toil Documentation, Release 5.11.0

toil.lib.misc.unix_now_ms()

Return the current time in milliseconds since the Unix epoch.

Return type
float

toil.lib.misc.slow_down(seconds)
Toil jobs that have completed are not allowed to have taken 0 seconds, but Kubernetes timestamps round things
to the nearest second. It is possible in some batch systems for a pod to have identical start and end timestamps.

This function takes a possibly 0 job length in seconds and enforces a minimum length to satisfy Toil.

Parameters
seconds (float) – Timestamp difference

Returns
seconds, or a small positive number if seconds is 0

Return type
float

toil.lib.misc.printq(msg, quiet)

Parameters
• msg (str) –

• quiet (bool) –

Return type
None

toil.lib.misc.truncExpBackoff()

Return type
Iterator[float]

exception toil.lib.misc.CalledProcessErrorStderr(returncode, cmd, output=None, stderr=None)
Bases: subprocess.CalledProcessError

CalledProcessError CalledProcessErrorStderrSubprocessError

Version of CalledProcessError that include stderr in the error message if it is set

__str__()

Return str(self).

Return type
str

toil.lib.misc.call_command(cmd, *args, input=None, timeout=None, useCLocale=True, env=None,
quiet=False)

Simplified calling of external commands.

If the process fails, CalledProcessErrorStderr is raised.

420 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

The captured stderr is always printed, regardless of if an exception occurs, so it can be logged.

Always logs the command at debug log level.

Parameters
• quiet (Optional[bool]) – If True, do not log the command output. If False (the default),

do log the command output at debug log level.

• useCLocale (bool) – If True, C locale is forced, to prevent failures that can occur in some
batch systems when using UTF-8 locale.

• cmd (List[str]) –

• args (str) –

• input (Optional[str]) –

• timeout (Optional[float]) –

• env (Optional[Dict[str, str]]) –

Returns
Command standard output, decoded as utf-8.

Return type
str

toil.lib.objects

Module Contents

Classes

InnerClass Note that this is EXPERIMENTAL code.

class toil.lib.objects.InnerClass(inner_class)
Note that this is EXPERIMENTAL code.

A nested class (the inner class) decorated with this will have an additional attribute called ‘outer’ referencing the
instance of the nesting class (the outer class) that was used to create the inner class. The outer instance does not
need to be passed to the inner class’s constructor, it will be set magically. Shamelessly stolen from

http://stackoverflow.com/questions/2278426/inner-classes-how-can-i-get-the-outer-class-object-at-construction-time#
answer-2278595.

with names made more descriptive (I hope) and added caching of the BoundInner classes.

Caveat: Within the inner class, self.__class__ will not be the inner class but a dynamically created subclass
thereof. It’s name will be the same as that of the inner class, but its __module__ will be different. There will
be one such dynamic subclass per inner class and instance of outer class, if that outer class instance created any
instances of inner the class.

>>> class Outer(object):
... def new_inner(self):
... # self is an instance of the outer class
... inner = self.Inner()
... # the inner instance's 'outer' attribute is set to the outer instance

(continues on next page)

30.1. toil 421

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://stackoverflow.com/questions/2278426/inner-classes-how-can-i-get-the-outer-class-object-at-construction-time#answer-2278595
http://stackoverflow.com/questions/2278426/inner-classes-how-can-i-get-the-outer-class-object-at-construction-time#answer-2278595

Toil Documentation, Release 5.11.0

(continued from previous page)

... assert inner.outer is self

... return inner

... @InnerClass

... class Inner(object):

... def get_outer(self):

... return self.outer

... @classmethod

... def new_inner(cls):

... return cls()
>>> o = Outer()
>>> i = o.new_inner()
>>> i
<toil.lib.objects.Inner...> bound to <toil.lib.objects.Outer object at ...>

>>> i.get_outer()
<toil.lib.objects.Outer object at ...>

Now with inheritance for both inner and outer:

>>> class DerivedOuter(Outer):
... def new_inner(self):
... return self.DerivedInner()
... @InnerClass
... class DerivedInner(Outer.Inner):
... def get_outer(self):
... assert super(DerivedOuter.DerivedInner, self).get_outer() == self.
→˓outer
... return self.outer
>>> derived_outer = DerivedOuter()
>>> derived_inner = derived_outer.new_inner()
>>> derived_inner
<toil.lib.objects...> bound to <toil.lib.objects.DerivedOuter object at ...>

>>> derived_inner.get_outer()
<toil.lib.objects.DerivedOuter object at ...>

Test a static references: >>> Outer.Inner # doctest: +ELLIPSIS <class ‘toil.lib.objects. . . Inner’> >>> Derived-
Outer.Inner # doctest: +ELLIPSIS <class ‘toil.lib.objects. . . Inner’> >>> DerivedOuter.DerivedInner #doctest:
+ELLIPSIS <class ‘toil.lib.objects. . .DerivedInner’>

Can’t decorate top-level classes. Unfortunately, this is detected when the instance is created, not when the class
is defined. >>> @InnerClass . . . class Foo(object): . . . pass >>> Foo() Traceback (most recent call last): . . .
RuntimeError: Inner classes must be nested in another class.

All inner instances should refer to a single outer instance: >>> o = Outer() >>> o.new_inner().outer == o ==
o.new_inner().outer True

All inner instances should be of the same class . . . >>> o.new_inner().__class__ == o.new_inner().__class__
True

. . . but that class isn’t the inner class . . . >>> o.new_inner().__class__ != Outer.Inner True

. . . but a subclass of the inner class. >>> isinstance(o.new_inner(), Outer.Inner) True

Static and class methods, e.g. should work, too

422 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

>>> o.Inner.new_inner().outer == o
True

__get__(instance, owner)

__call__(**kwargs)

toil.lib.resources

Module Contents

Functions

get_total_cpu_time_and_memory_usage() Gives the total cpu time of itself and all its children, and
the maximum RSS memory usage of

get_total_cpu_time() Gives the total cpu time, including the children.
glob(glob_pattern, directoryname) Walks through a directory and its subdirectories looking

for files matching

toil.lib.resources.get_total_cpu_time_and_memory_usage()

Gives the total cpu time of itself and all its children, and the maximum RSS memory usage of itself and its single
largest child.

Return type
Tuple[float, int]

toil.lib.resources.get_total_cpu_time()

Gives the total cpu time, including the children.

Return type
float

toil.lib.resources.glob(glob_pattern, directoryname)
Walks through a directory and its subdirectories looking for files matching the glob_pattern and returns a list=[].

Parameters
• directoryname (str) – Any accessible folder name on the filesystem.

• glob_pattern (str) – A string like “*.txt”, which would find all text files.

Returns
A list=[] of absolute filepaths matching the glob pattern.

Return type
List[str]

30.1. toil 423

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.lib.retry

This file holds the retry() decorator function and RetryCondition object.

retry() can be used to decorate any function based on the list of errors one wishes to retry on.

This list of errors can contain normal Exception objects, and/or RetryCondition objects wrapping Exceptions to include
additional conditions.

For example, retrying on a one Exception (HTTPError):

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError])
def update_my_wallpaper():

return get('https://www.deviantart.com/')

Or:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError, ValueError])
def update_my_wallpaper():

return get('https://www.deviantart.com/')

The examples above will retry for the default interval on any errors specified the “errors=” arg list.

To retry on specifically 500/502/503/504 errors, you could specify an ErrorCondition object instead, for example:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
ErrorCondition(

error=HTTPError,
error_codes=[500, 502, 503, 504]

)])
def update_my_wallpaper():

return requests.get('https://www.deviantart.com/')

To retry on specifically errors containing the phrase “NotFound”:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
ErrorCondition(

error=HTTPError,
error_message_must_include="NotFound"

)])
def update_my_wallpaper():

return requests.get('https://www.deviantart.com/')

To retry on all HTTPError errors EXCEPT an HTTPError containing the phrase “NotFound”:

424 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
HTTPError,
ErrorCondition(

error=HTTPError,
error_message_must_include="NotFound",
retry_on_this_condition=False

)])
def update_my_wallpaper():

return requests.get('https://www.deviantart.com/')

To retry on boto3’s specific status errors, an example of the implementation is:

import boto3
from botocore.exceptions import ClientError

@retry(errors=[
ErrorCondition(

error=ClientError,
boto_error_codes=["BucketNotFound"]

)])
def boto_bucket(bucket_name):

boto_session = boto3.session.Session()
s3_resource = boto_session.resource('s3')
return s3_resource.Bucket(bucket_name)

Any combination of these will also work, provided the codes are matched to the correct exceptions. A ValueError will
not return a 404, for example.

The retry function as a decorator should make retrying functions easier and clearer It also encourages smaller indepen-
dent functions, as opposed to lumping many different things that may need to be retried on different conditions in the
same function.

The ErrorCondition object tries to take some of the heavy lifting of writing specific retry conditions and boil it down
to an API that covers all common use-cases without the user having to write any new bespoke functions.

Use-cases covered currently:

1. Retrying on a normal error, like a KeyError.

2. Retrying on HTTP error codes (use ErrorCondition).

3. Retrying on boto 3’s specific status errors, like “BucketNotFound” (use ErrorCondition).

4. Retrying when an error message contains a certain phrase (use ErrorCondition).

5. Explicitly NOT retrying on a condition (use ErrorCondition).

If new functionality is needed, it’s currently best practice in Toil to add functionality to the ErrorCondition itself rather
than making a new custom retry method.

30.1. toil 425

Toil Documentation, Release 5.11.0

Module Contents

Classes

ErrorCondition A wrapper describing an error condition.

Functions

retry([intervals, infinite_retries, errors, ...]) Retry a function if it fails with any Exception defined in
"errors".

return_status_code(e)

get_error_code(e) Get the error code name from a Boto 2 or 3 error, or
compatible types.

get_error_message(e) Get the error message string from a Boto 2 or 3 error, or
compatible types.

get_error_status(e) Get the HTTP status code from a compatible source.
get_error_body(e) Get the body from a Boto 2 or 3 error, or compatible

types.
meets_error_message_condition(e, er-
ror_message)
meets_error_code_condition(e, error_codes) These are expected to be normal HTTP error codes, like

404 or 500.
meets_boto_error_code_condition(e,
boto_error_codes)

These are expected to be AWS's custom error aliases, like
'BucketNotFound' or 'AccessDenied'.

error_meets_conditions(e, error_conditions)

old_retry([delays, timeout, predicate]) Deprecated.

Attributes

SUPPORTED_HTTP_ERRORS

kubernetes

botocore

logger

DEFAULT_DELAYS

DEFAULT_TIMEOUT

retry_flaky_test

toil.lib.retry.SUPPORTED_HTTP_ERRORS

426 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.lib.retry.kubernetes

toil.lib.retry.botocore

toil.lib.retry.logger

class toil.lib.retry.ErrorCondition(error=None, error_codes=None, boto_error_codes=None,
error_message_must_include=None, retry_on_this_condition=True)

A wrapper describing an error condition.

ErrorCondition events may be used to define errors in more detail to determine whether to retry.

Parameters
• error (Optional[Any]) –

• error_codes (List[int]) –

• boto_error_codes (List[str]) –

• error_message_must_include (str) –

• retry_on_this_condition (bool) –

toil.lib.retry.retry(intervals=None, infinite_retries=False, errors=None, log_message=None,
prepare=None)

Retry a function if it fails with any Exception defined in “errors”.

Does so every x seconds, where x is defined by a list of numbers (ints or floats) in “intervals”. Also accepts
ErrorCondition events for more detailed retry attempts.

Parameters
• intervals (Optional[List]) – A list of times in seconds we keep retrying until returning

failure. Defaults to retrying with the following exponential back-off before failing: 1s, 1s,
2s, 4s, 8s, 16s

• infinite_retries (bool) – If this is True, reset the intervals when they run out. Defaults
to: False.

• errors (Optional[Sequence[Union[ErrorCondition, Type[Exception]]]]) – A
list of exceptions OR ErrorCondition objects to catch and retry on. ErrorCondition objects
describe more detailed error event conditions than a plain error. An ErrorCondition specifies:
- Exception (required) - Error codes that must match to be retried (optional; defaults to not
checking) - A string that must be in the error message to be retried (optional; defaults to not
checking) - A bool that can be set to False to always error on this condition.

If not specified, this will default to a generic Exception.

• log_message (Optional[Tuple[Callable, str]]) – Optional tuple of (“log/print
function()”, “message string”) that will precede each attempt.

• prepare (Optional[List[Callable]]) – Optional list of functions to call, with the func-
tion’s arguments, between retries, to reset state.

Returns
The result of the wrapped function or raise.

Return type
Callable[[Any], Any]

toil.lib.retry.return_status_code(e)

30.1. toil 427

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.lib.retry.get_error_code(e)
Get the error code name from a Boto 2 or 3 error, or compatible types.

Returns empty string for other errors.

Parameters
e (Exception) –

Return type
str

toil.lib.retry.get_error_message(e)
Get the error message string from a Boto 2 or 3 error, or compatible types.

Note that error message conditions also check more than this; this function does not fall back to the traceback
for incompatible types.

Parameters
e (Exception) –

Return type
str

toil.lib.retry.get_error_status(e)
Get the HTTP status code from a compatible source.

Such as a Boto 2 or 3 error, kubernetes.client.rest.ApiException, http.client.HTTPException, url-
lib3.exceptions.HTTPError, requests.exceptions.HTTPError, urllib.error.HTTPError, or compatible type

Returns 0 from other errors.

Parameters
e (Exception) –

Return type
int

toil.lib.retry.get_error_body(e)
Get the body from a Boto 2 or 3 error, or compatible types.

Returns the code and message if the error does not have a body.

Parameters
e (Exception) –

Return type
str

toil.lib.retry.meets_error_message_condition(e, error_message)

Parameters
• e (Exception) –

• error_message (Optional[str]) –

toil.lib.retry.meets_error_code_condition(e, error_codes)
These are expected to be normal HTTP error codes, like 404 or 500.

Parameters
• e (Exception) –

• error_codes (Optional[List[int]]) –

428 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

toil.lib.retry.meets_boto_error_code_condition(e, boto_error_codes)
These are expected to be AWS’s custom error aliases, like ‘BucketNotFound’ or ‘AccessDenied’.

Parameters
• e (Exception) –

• boto_error_codes (Optional[List[str]]) –

toil.lib.retry.error_meets_conditions(e, error_conditions)

toil.lib.retry.DEFAULT_DELAYS = (0, 1, 1, 4, 16, 64)

toil.lib.retry.DEFAULT_TIMEOUT = 300

toil.lib.retry.old_retry(delays=DEFAULT_DELAYS, timeout=DEFAULT_TIMEOUT, predicate=lambda e:
...)

Deprecated.

Retry an operation while the failure matches a given predicate and until a given timeout expires, waiting a given
amount of time in between attempts. This function is a generator that yields contextmanagers. See doctests
below for example usage.

Parameters
• delays (Iterable[float]) – an interable yielding the time in seconds to wait before each

retried attempt, the last element of the iterable will be repeated.

• timeout (float) – a overall timeout that should not be exceeded for all attempts together.
This is a best-effort mechanism only and it won’t abort an ongoing attempt, even if the timeout
expires during that attempt.

• predicate (Callable[[Exception],bool]) – a unary callable returning True if another
attempt should be made to recover from the given exception. The default value for this
parameter will prevent any retries!

Returns
a generator yielding context managers, one per attempt

Return type
Iterator

Retry for a limited amount of time:

>>> true = lambda _:True
>>> false = lambda _:False
>>> i = 0
>>> for attempt in old_retry(delays=[0], timeout=.1, predicate=true):
... with attempt:
... i += 1
... raise RuntimeError('foo')
Traceback (most recent call last):
...
RuntimeError: foo
>>> i > 1
True

If timeout is 0, do exactly one attempt:

30.1. toil 429

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

>>> i = 0
>>> for attempt in old_retry(timeout=0):
... with attempt:
... i += 1
... raise RuntimeError('foo')
Traceback (most recent call last):
...
RuntimeError: foo
>>> i
1

Don’t retry on success:

>>> i = 0
>>> for attempt in old_retry(delays=[0], timeout=.1, predicate=true):
... with attempt:
... i += 1
>>> i
1

Don’t retry on unless predicate returns True:

>>> i = 0
>>> for attempt in old_retry(delays=[0], timeout=.1, predicate=false):
... with attempt:
... i += 1
... raise RuntimeError('foo')
Traceback (most recent call last):
...
RuntimeError: foo
>>> i
1

toil.lib.retry.retry_flaky_test

toil.lib.threading

Module Contents

Classes

ExceptionalThread A thread whose join() method re-raises exceptions raised
during run(). While join() is

LastProcessStandingArena Class that lets a bunch of processes detect and elect a last
process

430 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Functions

cpu_count() Get the rounded-up integer number of whole CPUs avail-
able.

collect_process_name_garbage() Delete all the process names that point to files that don't
exist anymore

destroy_all_process_names() Delete all our process name files because our process is
going away.

get_process_name(base_dir) Return the name of the current process. Like a PID but
visible between

process_name_exists(base_dir, name) Return true if the process named by the given name (from
process_name) exists, and false otherwise.

global_mutex(base_dir, mutex) Context manager that locks a mutex. The mutex is iden-
tified by the given

Attributes

logger

current_process_name_lock

current_process_name_for

toil.lib.threading.logger

class toil.lib.threading.ExceptionalThread(group=None, target=None, name=None, args=(),
kwargs=None, *, daemon=None)

Bases: threading.Thread

ExceptionalThreadThread

A thread whose join() method re-raises exceptions raised during run(). While join() is idempotent, the exception
is only during the first invocation of join() that successfully joined the thread. If join() times out, no exception
will be re reraised even though an exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):

(continues on next page)

30.1. toil 431

https://docs.python.org/3/library/threading.html#threading.Thread

Toil Documentation, Release 5.11.0

(continued from previous page)

...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

exc_info

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from
the args and kwargs arguments, respectively.

Return type
None

tryRun()

Return type
None

join(*args, **kwargs)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

Parameters
• args (Optional[float]) –

• kwargs (Optional[float]) –

Return type
None

432 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

toil.lib.threading.cpu_count()

Get the rounded-up integer number of whole CPUs available.

Counts hyperthreads as CPUs.

Uses the system’s actual CPU count, or the current v1 cgroup’s quota per period, if the quota is set.

Ignores the cgroup’s cpu shares value, because it’s extremely difficult to interpret. See https://github.com/
kubernetes/kubernetes/issues/81021.

Caches result for efficiency.

Returns
Integer count of available CPUs, minimum 1.

Return type
int

toil.lib.threading.current_process_name_lock

toil.lib.threading.current_process_name_for: Dict[str, str]

toil.lib.threading.collect_process_name_garbage()

Delete all the process names that point to files that don’t exist anymore (because the work directory was temporary
and got cleaned up). This is known to happen during the tests, which get their own temp directories.

Caller must hold current_process_name_lock.

Return type
None

toil.lib.threading.destroy_all_process_names()

Delete all our process name files because our process is going away.

We let all our FDs get closed by the process death.

We assume there is nobody else using the system during exit to race with.

Return type
None

toil.lib.threading.get_process_name(base_dir)
Return the name of the current process. Like a PID but visible between containers on what to Toil appears to be
a node.

Parameters
base_dir (str) – Base directory to work in. Defines the shared namespace.

Returns
Process’s assigned name

Return type
str

toil.lib.threading.process_name_exists(base_dir, name)
Return true if the process named by the given name (from process_name) exists, and false otherwise.

Can see across container boundaries using the given node workflow directory.

Parameters
• base_dir (str) – Base directory to work in. Defines the shared namespace.

• name (str) – Process’s name to poll

30.1. toil 433

https://github.com/kubernetes/kubernetes/issues/81021
https://github.com/kubernetes/kubernetes/issues/81021
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Returns
True if the named process is still alive, and False otherwise.

Return type
bool

toil.lib.threading.global_mutex(base_dir, mutex)
Context manager that locks a mutex. The mutex is identified by the given name, and scoped to the given direc-
tory. Works across all containers that have access to the given diectory. Mutexes held by dead processes are
automatically released.

Only works between processes, NOT between threads.

Parameters
• base_dir (str) – Base directory to work in. Defines the shared namespace.

• mutex (str) – Mutex to lock. Must be a permissible path component.

Return type
Iterator[None]

class toil.lib.threading.LastProcessStandingArena(base_dir, name)
Class that lets a bunch of processes detect and elect a last process standing.

Process enter and leave (sometimes due to sudden existence failure). We guarantee that the last process to leave,
if it leaves properly, will get a chance to do some cleanup. If new processes try to enter during the cleanup, they
will be delayed until after the cleanup has happened and the previous “last” process has finished leaving.

The user is responsible for making sure you always leave if you enter! Consider using a try/finally; this class is
not a context manager.

Parameters
• base_dir (str) –

• name (str) –

enter()

This process is entering the arena. If cleanup is in progress, blocks until it is finished.

You may not enter the arena again before leaving it.

Return type
None

leave()

This process is leaving the arena. If this process happens to be the last process standing, yields something,
with other processes blocked from joining the arena until the loop body completes and the process has
finished leaving. Otherwise, does not yield anything.

Should be used in a loop:

for _ in arena.leave():
If we get here, we were the last process. Do the cleanup pass

Return type
Iterator[bool]

434 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

toil.lib.throttle

Module Contents

Classes

LocalThrottle A thread-safe rate limiter that throttles each thread inde-
pendently. Can be used as a

throttle A context manager for ensuring that the execution of its
body takes at least a given amount

class toil.lib.throttle.LocalThrottle(min_interval)
A thread-safe rate limiter that throttles each thread independently. Can be used as a function or method decorator
or as a simple object, via its .throttle() method.

The use as a decorator is deprecated in favor of throttle().

Parameters
min_interval (int) –

throttle(wait=True)
If the wait parameter is True, this method returns True after suspending the current thread as necessary to
ensure that no less than the configured minimum interval has passed since the last invocation of this method
in the current thread returned True.

If the wait parameter is False, this method immediatly returns True (if at least the configured minimum
interval has passed since the last time this method returned True in the current thread) or False otherwise.

Parameters
wait (bool) –

Return type
bool

__call__(function)

class toil.lib.throttle.throttle(min_interval)
A context manager for ensuring that the execution of its body takes at least a given amount of time, sleeping if
necessary. It is a simpler version of LocalThrottle if used as a decorator.

Ensures that body takes at least the given amount of time.

>>> start = time.time()
>>> with throttle(1):
... pass
>>> 1 <= time.time() - start <= 1.1
True

Ditto when used as a decorator.

>>> @throttle(1)
... def f():
... pass
>>> start = time.time()
>>> f()

(continues on next page)

30.1. toil 435

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

(continued from previous page)

>>> 1 <= time.time() - start <= 1.1
True

If the body takes longer by itself, don’t throttle.

>>> start = time.time()
>>> with throttle(1):
... time.sleep(2)
>>> 2 <= time.time() - start <= 2.1
True

Ditto when used as a decorator.

>>> @throttle(1)
... def f():
... time.sleep(2)
>>> start = time.time()
>>> f()
>>> 2 <= time.time() - start <= 2.1
True

If an exception occurs, don’t throttle.

>>> start = time.time()
>>> try:
... with throttle(1):
... raise ValueError('foo')
... except ValueError:
... end = time.time()
... raise
Traceback (most recent call last):
...
ValueError: foo
>>> 0 <= end - start <= 0.1
True

Ditto when used as a decorator.

>>> @throttle(1)
... def f():
... raise ValueError('foo')
>>> start = time.time()
>>> try:
... f()
... except ValueError:
... end = time.time()
... raise
Traceback (most recent call last):
...
ValueError: foo
>>> 0 <= end - start <= 0.1
True

436 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Parameters
min_interval (Union[int, float]) –

__enter__()

__exit__(exc_type, exc_val, exc_tb)

__call__(function)

toil.provisioners

Subpackages

toil.provisioners.aws

Submodules

toil.provisioners.aws.awsProvisioner

Module Contents

Classes

AWSProvisioner Interface for provisioning worker nodes to use in a Toil
cluster.

Functions

awsRetryPredicate(e)

expectedShutdownErrors(e) Matches errors that we expect to occur during shutdown,
and which indicate

awsRetry(f) This decorator retries the wrapped function if aws throws
unexpected errors

awsFilterImpairedNodes(nodes, ec2)

Attributes

logger

toil.provisioners.aws.awsProvisioner.logger

toil.provisioners.aws.awsProvisioner.awsRetryPredicate(e)

30.1. toil 437

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

toil.provisioners.aws.awsProvisioner.expectedShutdownErrors(e)
Matches errors that we expect to occur during shutdown, and which indicate that we need to wait or try again.

Should not match any errors which indicate that an operation is impossible or unnecessary (such as errors result-
ing from a thing not existing to be deleted).

Parameters
e (Exception) –

Return type
bool

toil.provisioners.aws.awsProvisioner.awsRetry(f)
This decorator retries the wrapped function if aws throws unexpected errors errors. It should wrap any function
that makes use of boto

toil.provisioners.aws.awsProvisioner.awsFilterImpairedNodes(nodes, ec2)

exception toil.provisioners.aws.awsProvisioner.InvalidClusterStateException

Bases: Exception

InvalidClusterStateException

Common base class for all non-exit exceptions.

class toil.provisioners.aws.awsProvisioner.AWSProvisioner(clusterName, clusterType, zone,
nodeStorage, nodeStorageOverrides,
sseKey)

Bases: toil.provisioners.abstractProvisioner.AbstractProvisioner

ABC AbstractProvisioner AWSProvisioner

Interface for provisioning worker nodes to use in a Toil cluster.

supportedClusterTypes()

Get all the cluster types that this provisioner implementation supports.

createClusterSettings()

Create a new set of cluster settings for a cluster to be deployed into AWS.

readClusterSettings()

Reads the cluster settings from the instance metadata, which assumes the instance is the leader.

438 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

launchCluster(leaderNodeType, leaderStorage, owner, keyName, botoPath, userTags, vpcSubnet,
awsEc2ProfileArn, awsEc2ExtraSecurityGroupIds, **kwargs)

Starts a single leader node and populates this class with the leader’s metadata.

Parameters
• leaderNodeType (str) – An AWS instance type, like “t2.medium”, for example.

• leaderStorage (int) – An integer number of gigabytes to provide the leader instance
with.

• owner (str) – Resources will be tagged with this owner string.

• keyName (str) – The ssh key to use to access the leader node.

• botoPath (str) – The path to the boto credentials directory.

• userTags (Optional[dict]) – Optionally provided user tags to put on the cluster.

• vpcSubnet (Optional[str]) – Optionally specify the VPC subnet for the leader.

• awsEc2ProfileArn (Optional[str]) – Optionally provide the profile ARN.

• awsEc2ExtraSecurityGroupIds (Optional[list]) – Optionally provide additional
security group IDs.

Returns
None

toil_service_env_options()

Set AWS tags in user docker container

Return type
str

getKubernetesAutoscalerSetupCommands(values)
Get the Bash commands necessary to configure the Kubernetes Cluster Autoscaler for AWS.

Parameters
values (Dict[str, str]) –

Return type
str

getKubernetesCloudProvider()

Use the “aws” Kubernetes cloud provider when setting up Kubernetes.

Return type
Optional[str]

getNodeShape(instance_type, preemptible=False)
Get the Shape for the given instance type (e.g. ‘t2.medium’).

Parameters
instance_type (str) –

Return type
toil.provisioners.abstractProvisioner.Shape

static retryPredicate(e)
Return true if the exception e should be retried by the cluster scaler. For example, should return true if the
exception was due to exceeding an API rate limit. The error will be retried with exponential backoff.

30.1. toil 439

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
e – exception raised during execution of setNodeCount

Returns
boolean indicating whether the exception e should be retried

destroyCluster()

Terminate instances and delete the profile and security group.

Return type
None

terminateNodes(nodes)
Terminate the nodes represented by given Node objects

Parameters
nodes (List[toil.provisioners.node.Node]) – list of Node objects

Return type
None

addNodes(nodeTypes, numNodes, preemptible, spotBid=None)
Used to add worker nodes to the cluster

Parameters
• numNodes – The number of nodes to add

• preemptible – whether or not the nodes will be preemptible

• spotBid – The bid for preemptible nodes if applicable (this can be set in config, also).

• nodeTypes (Set[str]) –

Returns
number of nodes successfully added

Return type
int

addManagedNodes(nodeTypes, minNodes, maxNodes, preemptible, spotBid=None)
Add a group of managed nodes of the given type, up to the given maximum. The nodes will automatically
be launched and terminated depending on cluster load.

Raises ManagedNodesNotSupportedException if the provisioner implementation or cluster configuration
can’t have managed nodes.

Parameters
• minNodes – The minimum number of nodes to scale to

• maxNodes – The maximum number of nodes to scale to

• preemptible – whether or not the nodes will be preemptible

• spotBid – The bid for preemptible nodes if applicable (this can be set in config, also).

• nodeTypes (Set[str]) –

Return type
None

440 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

getProvisionedWorkers(instance_type=None, preemptible=None)
Gets all nodes, optionally of the given instance type or preemptability, from the provisioner. Includes both
static and autoscaled nodes.

Parameters
• preemptible (Optional[bool]) – Boolean value to restrict to preemptible nodes or

non-preemptible nodes

• instance_type (Optional[str]) –

Returns
list of Node objects

Return type
List[toil.provisioners.node.Node]

getLeader(wait=False)
Get the leader for the cluster as a Toil Node object.

Return type
toil.provisioners.node.Node

full_policy(resource)
Produce a dict describing the JSON form of a full-access-granting AWS IAM policy for the service with
the given name (e.g. ‘s3’).

Parameters
resource (str) –

Return type
dict

kubernetes_policy()

Get the Kubernetes policy grants not provided by the full grants on EC2 and IAM. See <https://github.com/
DataBiosphere/toil/wiki/Manual-Autoscaling-Kubernetes-Setup#leader-policy> and <https://github.com/
DataBiosphere/toil/wiki/Manual-Autoscaling-Kubernetes-Setup#worker-policy>.

These are mostly needed to support Kubernetes’ AWS CloudProvider, and some are for the Kubernetes
Cluster Autoscaler’s AWS integration.

Some of these are really only needed on the leader.

Return type
dict

Package Contents

30.1. toil 441

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/DataBiosphere/toil/wiki/Manual-Autoscaling-Kubernetes-Setup#leader-policy
https://github.com/DataBiosphere/toil/wiki/Manual-Autoscaling-Kubernetes-Setup#leader-policy
https://github.com/DataBiosphere/toil/wiki/Manual-Autoscaling-Kubernetes-Setup#worker-policy
https://github.com/DataBiosphere/toil/wiki/Manual-Autoscaling-Kubernetes-Setup#worker-policy
https://docs.python.org/3/library/stdtypes.html#dict

Toil Documentation, Release 5.11.0

Functions

get_aws_zone_from_boto() Get the AWS zone from the Boto config file, if it is con-
figured and the

get_aws_zone_from_environment() Get the AWS zone from TOIL_AWS_ZONE if set.
get_aws_zone_from_environment_region() Pick an AWS zone in the region defined by

TOIL_AWS_REGION, if it is set.
get_aws_zone_from_metadata() Get the AWS zone from instance metadata, if on EC2

and the boto module is
running_on_ec2() Return True if we are currently running on EC2, and

false otherwise.
zone_to_region(zone) Get a region (e.g. us-west-2) from a zone (e.g. us-west-

1c).
get_aws_zone_from_spot_market(spotBid, node-
Type, ...)

If a spot bid, node type, and Boto2 EC2 connection are
specified, picks a

get_best_aws_zone([spotBid, nodeType, boto2_ec2,
...])

Get the right AWS zone to use.

choose_spot_zone(zones, bid, spot_history) Returns the zone to put the spot request based on, in or-
der of priority:

optimize_spot_bid(boto2_ec2, instance_type,
spot_bid, ...)

Check whether the bid is in line with history and makes
an effort to place

Attributes

logger

ZoneTuple

toil.provisioners.aws.get_aws_zone_from_boto()

Get the AWS zone from the Boto config file, if it is configured and the boto module is available.

Return type
Optional[str]

toil.provisioners.aws.get_aws_zone_from_environment()

Get the AWS zone from TOIL_AWS_ZONE if set.

Return type
Optional[str]

toil.provisioners.aws.get_aws_zone_from_environment_region()

Pick an AWS zone in the region defined by TOIL_AWS_REGION, if it is set.

Return type
Optional[str]

toil.provisioners.aws.get_aws_zone_from_metadata()

Get the AWS zone from instance metadata, if on EC2 and the boto module is available. Otherwise, gets the AWS
zone from ECS task metadata, if on ECS.

Return type
Optional[str]

442 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.provisioners.aws.running_on_ec2()

Return True if we are currently running on EC2, and false otherwise.

Return type
bool

toil.provisioners.aws.zone_to_region(zone)
Get a region (e.g. us-west-2) from a zone (e.g. us-west-1c).

Parameters
zone (str) –

Return type
str

toil.provisioners.aws.logger

toil.provisioners.aws.ZoneTuple

toil.provisioners.aws.get_aws_zone_from_spot_market(spotBid, nodeType, boto2_ec2, zone_options)
If a spot bid, node type, and Boto2 EC2 connection are specified, picks a zone where instances are easy to buy
from the zones in the region of the Boto2 connection. These parameters must always be specified together, or
not at all.

In this case, zone_options can be used to restrict to a subset of the zones in the region.

Parameters
• spotBid (Optional[float]) –

• nodeType (Optional[str]) –

• boto2_ec2 (Optional[boto.connection.AWSAuthConnection]) –

• zone_options (Optional[List[str]]) –

Return type
Optional[str]

toil.provisioners.aws.get_best_aws_zone(spotBid=None, nodeType=None, boto2_ec2=None,
zone_options=None)

Get the right AWS zone to use.

Reports the TOIL_AWS_ZONE environment variable if set.

Otherwise, if we are running on EC2 or ECS, reports the zone we are running in.

Otherwise, if a spot bid, node type, and Boto2 EC2 connection are specified, picks a zone where instances are
easy to buy from the zones in the region of the Boto2 connection. These parameters must always be specified
together, or not at all.

In this case, zone_options can be used to restrict to a subset of the zones in the region.

Otherwise, if we have the TOIL_AWS_REGION variable set, chooses a zone in that region.

Finally, if a default region is configured in Boto 2, chooses a zone in that region.

Returns None if no method can produce a zone to use.

Parameters
• spotBid (Optional[float]) –

• nodeType (Optional[str]) –

30.1. toil 443

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• boto2_ec2 (Optional[boto.connection.AWSAuthConnection]) –

• zone_options (Optional[List[str]]) –

Return type
Optional[str]

toil.provisioners.aws.choose_spot_zone(zones, bid, spot_history)
Returns the zone to put the spot request based on, in order of priority:

1) zones with prices currently under the bid

2) zones with the most stable price

Returns
the name of the selected zone

Parameters
• zones (List[str]) –

• bid (float) –

• spot_history (List[boto.ec2.spotpricehistory.SpotPriceHistory]) –

Return type
str

>>> from collections import namedtuple
>>> FauxHistory = namedtuple('FauxHistory', ['price', 'availability_zone'])
>>> zones = ['us-west-2a', 'us-west-2b']
>>> spot_history = [FauxHistory(0.1, 'us-west-2a'), ␣
→˓FauxHistory(0.2, 'us-west-2a'), FauxHistory(0.3, 'us-west-
→˓2b'), FauxHistory(0.6, 'us-west-2b')]
>>> choose_spot_zone(zones, 0.15, spot_history)
'us-west-2a'

>>> spot_history=[FauxHistory(0.3, 'us-west-2a'), ␣
→˓FauxHistory(0.2, 'us-west-2a'), FauxHistory(0.1, 'us-west-2b
→˓'), FauxHistory(0.6, 'us-west-2b')]
>>> choose_spot_zone(zones, 0.15, spot_history)
'us-west-2b'

>>> spot_history=[FauxHistory(0.1, 'us-west-2a'), ␣
→˓FauxHistory(0.7, 'us-west-2a'), FauxHistory(0.1, 'us-west-2b
→˓'), FauxHistory(0.6, 'us-west-2b')]
>>> choose_spot_zone(zones, 0.15, spot_history)
'us-west-2b'

toil.provisioners.aws.optimize_spot_bid(boto2_ec2, instance_type, spot_bid, zone_options)
Check whether the bid is in line with history and makes an effort to place the instance in a sensible zone.

Parameters
zone_options (List[str]) – The collection of allowed zones to consider, within

the region associated with the Boto2 connection.

444 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Submodules

toil.provisioners.abstractProvisioner

Module Contents

Classes

Shape Represents a job or a node's "shape", in terms of the di-
mensions of memory, cores, disk and

AbstractProvisioner Interface for provisioning worker nodes to use in a Toil
cluster.

Attributes

a_short_time

logger

toil.provisioners.abstractProvisioner.a_short_time = 5

toil.provisioners.abstractProvisioner.logger

exception toil.provisioners.abstractProvisioner.ManagedNodesNotSupportedException

Bases: RuntimeError

ManagedNodesNotSupportedException

Raised when attempting to add managed nodes (which autoscale up and down by themselves, without the provi-
sioner doing the work) to a provisioner that does not support them.

Polling with this and try/except is the Right Way to check if managed nodes are available from a provisioner.

class toil.provisioners.abstractProvisioner.Shape(wallTime, memory, cores, disk, preemptible)
Represents a job or a node’s “shape”, in terms of the dimensions of memory, cores, disk and wall-time allocation.

The wallTime attribute stores the number of seconds of a node allocation, e.g. 3600 for AWS. FIXME: and for
jobs?

The memory and disk attributes store the number of bytes required by a job (or provided by a node) in RAM or
on disk (SSD or HDD), respectively.

Parameters
• wallTime (Union[int, float]) –

30.1. toil 445

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

• memory (int) –

• cores (Union[int, float]) –

• disk (int) –

• preemptible (bool) –

__eq__(other)
Return self==value.

Parameters
other (Any) –

Return type
bool

greater_than(other)

Parameters
other (Any) –

Return type
bool

__gt__(other)
Return self>value.

Parameters
other (Any) –

Return type
bool

__repr__()

Return repr(self).

Return type
str

__str__()

Return str(self).

Return type
str

__hash__()

Return hash(self).

Return type
int

class toil.provisioners.abstractProvisioner.AbstractProvisioner(clusterName=None,
clusterType='mesos',
zone=None, nodeStorage=50,
nodeStorageOverrides=None)

Bases: abc.ABC

446 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/abc.html#abc.ABC

Toil Documentation, Release 5.11.0

ABC AbstractProvisioner

Interface for provisioning worker nodes to use in a Toil cluster.

Parameters
• clusterName (Optional[str]) –

• clusterType (Optional[str]) –

• zone (Optional[str]) –

• nodeStorage (int) –

• nodeStorageOverrides (Optional[List[str]]) –

class InstanceConfiguration

Allows defining the initial setup for an instance and then turning it into an Ignition configuration for instance
user data.

addFile(path, filesystem='root', mode='0755', contents='', append=False)
Make a file on the instance with the given filesystem, mode, and contents.

See the storage.files section: https://github.com/kinvolk/ignition/blob/flatcar-master/doc/
configuration-v2_2.md

Parameters
• path (str) –
• filesystem (str) –
• mode (Union[str, int]) –
• contents (str) –
• append (bool) –

addUnit(name, enabled=True, contents='')
Make a systemd unit on the instance with the given name (including .service), and content. Units will
be enabled by default.
Unit logs can be investigated with:

systemctl status whatever.service
or:

journalctl -xe

Parameters
• name (str) –
• enabled (bool) –
• contents (str) –

addSSHRSAKey(keyData)
Authorize the given bare, encoded RSA key (without “ssh-rsa”).

Parameters
keyData (str) –

toIgnitionConfig()

Return an Ignition configuration describing the desired config.

30.1. toil 447

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/kinvolk/ignition/blob/flatcar-master/doc/configuration-v2_2.md
https://github.com/kinvolk/ignition/blob/flatcar-master/doc/configuration-v2_2.md
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
str

LEADER_HOME_DIR = '/root/'

cloud: str

abstract supportedClusterTypes()

Get all the cluster types that this provisioner implementation supports.

Return type
Set[str]

abstract createClusterSettings()

Initialize class for a new cluster, to be deployed, when running outside the cloud.

abstract readClusterSettings()

Initialize class from an existing cluster. This method assumes that the instance we are running on is the
leader.

Implementations must call _setLeaderWorkerAuthentication().

setAutoscaledNodeTypes(nodeTypes)
Set node types, shapes and spot bids for Toil-managed autoscaling. :param nodeTypes: A list of node types,
as parsed with parse_node_types.

Parameters
nodeTypes (List[Tuple[Set[str], Optional[float]]]) –

hasAutoscaledNodeTypes()

Check if node types have been configured on the provisioner (via setAutoscaledNodeTypes).

Returns
True if node types are configured for autoscaling, and false otherwise.

Return type
bool

getAutoscaledInstanceShapes()

Get all the node shapes and their named instance types that the Toil autoscaler should manage.

Return type
Dict[Shape, str]

static retryPredicate(e)
Return true if the exception e should be retried by the cluster scaler. For example, should return true if the
exception was due to exceeding an API rate limit. The error will be retried with exponential backoff.

Parameters
e – exception raised during execution of setNodeCount

Returns
boolean indicating whether the exception e should be retried

abstract launchCluster(*args, **kwargs)
Initialize a cluster and create a leader node.

Implementations must call _setLeaderWorkerAuthentication() with the leader so that workers can be
launched.

Parameters

448 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• leaderNodeType – The leader instance.

• leaderStorage – The amount of disk to allocate to the leader in gigabytes.

• owner – Tag identifying the owner of the instances.

abstract addNodes(nodeTypes, numNodes, preemptible, spotBid=None)
Used to add worker nodes to the cluster

Parameters
• numNodes (int) – The number of nodes to add

• preemptible (bool) – whether or not the nodes will be preemptible

• spotBid (Optional[float]) – The bid for preemptible nodes if applicable (this can be
set in config, also).

• nodeTypes (Set[str]) –

Returns
number of nodes successfully added

Return type
int

addManagedNodes(nodeTypes, minNodes, maxNodes, preemptible, spotBid=None)
Add a group of managed nodes of the given type, up to the given maximum. The nodes will automatically
be launched and terminated depending on cluster load.

Raises ManagedNodesNotSupportedException if the provisioner implementation or cluster configuration
can’t have managed nodes.

Parameters
• minNodes – The minimum number of nodes to scale to

• maxNodes – The maximum number of nodes to scale to

• preemptible – whether or not the nodes will be preemptible

• spotBid – The bid for preemptible nodes if applicable (this can be set in config, also).

• nodeTypes (Set[str]) –

Return type
None

abstract terminateNodes(nodes)
Terminate the nodes represented by given Node objects

Parameters
nodes (List[toil.provisioners.node.Node]) – list of Node objects

Return type
None

abstract getLeader()

Returns
The leader node.

abstract getProvisionedWorkers(instance_type=None, preemptible=None)
Gets all nodes, optionally of the given instance type or preemptability, from the provisioner. Includes both
static and autoscaled nodes.

30.1. toil 449

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
• preemptible (Optional[bool]) – Boolean value to restrict to preemptible nodes or

non-preemptible nodes

• instance_type (Optional[str]) –

Returns
list of Node objects

Return type
List[toil.provisioners.node.Node]

abstract getNodeShape(instance_type, preemptible=False)
The shape of a preemptible or non-preemptible node managed by this provisioner. The node shape defines
key properties of a machine, such as its number of cores or the time between billing intervals.

Parameters
instance_type (str) – Instance type name to return the shape of.

Return type
Shape

abstract destroyCluster()

Terminates all nodes in the specified cluster and cleans up all resources associated with the cluster. :param
clusterName: identifier of the cluster to terminate.

Return type
None

getBaseInstanceConfiguration()

Get the base configuration for both leader and worker instances for all cluster types.

Return type
InstanceConfiguration

addVolumesService(config)
Add a service to prepare and mount local scratch volumes.

Parameters
config (InstanceConfiguration) –

addNodeExporterService(config)
Add the node exporter service for Prometheus to an instance configuration.

Parameters
config (InstanceConfiguration) –

toil_service_env_options()

Return type
str

add_toil_service(config, role, keyPath=None, preemptible=False)
Add the Toil leader or worker service to an instance configuration.

Will run Mesos master or agent as appropriate in Mesos clusters. For Kubernetes clusters, will just sleep
to provide a place to shell into on the leader, and shouldn’t run on the worker.

Parameters
• role (str) – Should be ‘leader’ or ‘worker’. Will not work for ‘worker’ until leader cre-

dentials have been collected.

450 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• keyPath (str) – path on the node to a server-side encryption key that will be added to the
node after it starts. The service will wait until the key is present before starting.

• preemptible (bool) – Whether a worker should identify itself as preemptible or not to
the scheduler.

• config (InstanceConfiguration) –

getKubernetesValues(architecture='amd64')
Returns a dict of Kubernetes component versions and paths for formatting into Kubernetes-related tem-
plates.

Parameters
architecture (str) –

addKubernetesServices(config, architecture='amd64')
Add installing Kubernetes and Kubeadm and setting up the Kubelet to run when configured to an instance
configuration. The same process applies to leaders and workers.

Parameters
• config (InstanceConfiguration) –

• architecture (str) –

abstract getKubernetesAutoscalerSetupCommands(values)
Return Bash commands that set up the Kubernetes cluster autoscaler for provisioning from the environment
supported by this provisioner.

Should only be implemented if Kubernetes clusters are supported.

Parameters
values (Dict[str, str]) – Contains definitions of cluster variables, like AU-
TOSCALER_VERSION and CLUSTER_NAME.

Returns
Bash snippet

Return type
str

getKubernetesCloudProvider()

Return the Kubernetes cloud provider (for example, ‘aws’), to pass to the kubelets in a Kubernetes cluster
provisioned using this provisioner.

Defaults to None if not overridden, in which case no cloud provider integration will be used.

Returns
Cloud provider name, or None

Return type
Optional[str]

addKubernetesLeader(config)
Add services to configure as a Kubernetes leader, if Kubernetes is already set to be installed.

Parameters
config (InstanceConfiguration) –

addKubernetesWorker(config, authVars, preemptible=False)
Add services to configure as a Kubernetes worker, if Kubernetes is already set to be installed.

30.1. toil 451

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Authenticate back to the leader using the JOIN_TOKEN, JOIN_CERT_HASH, and JOIN_ENDPOINT set
in the given authentication data dict.

Parameters
• config (InstanceConfiguration) – The configuration to add services to

• authVars (Dict[str, str]) – Dict with authentication info

• preemptible (bool) – Whether the worker should be labeled as preemptible or not

toil.provisioners.clusterScaler

Module Contents

Classes

BinPackedFit If jobShapes is a set of tasks with run requirements
(mem/disk/cpu), and nodeShapes is a sorted

NodeReservation The amount of resources that we expect to be available
on a given node at each point in time.

ClusterScaler

ScalerThread A thread that automatically scales the number of either
preemptible or non-preemptible worker

ClusterStats

Functions

adjustEndingReservationForJob(reservation, job-
Shape, ...)

Add a job to an ending reservation that ends at wallTime.

split(nodeShape, jobShape, wallTime) Partition a node allocation into two to fit the job.
binPacking(nodeShapes, jobShapes, goalTime) Using the given node shape bins, pack the given job

shapes into nodes to

452 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Attributes

logger

EVICTION_THRESHOLD

RESERVE_SMALL_LIMIT

RESERVE_SMALL_AMOUNT

RESERVE_BREAKPOINTS

RESERVE_FRACTIONS

OS_SIZE

FailedConstraint

toil.provisioners.clusterScaler.logger

toil.provisioners.clusterScaler.EVICTION_THRESHOLD

toil.provisioners.clusterScaler.RESERVE_SMALL_LIMIT

toil.provisioners.clusterScaler.RESERVE_SMALL_AMOUNT

toil.provisioners.clusterScaler.RESERVE_BREAKPOINTS: List[Union[int, float]]

toil.provisioners.clusterScaler.RESERVE_FRACTIONS = [0.25, 0.2, 0.1, 0.06, 0.02]

toil.provisioners.clusterScaler.OS_SIZE

toil.provisioners.clusterScaler.FailedConstraint

class toil.provisioners.clusterScaler.BinPackedFit(nodeShapes, targetTime=defaultTargetTime)
If jobShapes is a set of tasks with run requirements (mem/disk/cpu), and nodeShapes is a sorted list of available
computers to run these jobs on, this function attempts to return a dictionary representing the minimum set of
computerNode computers needed to run the tasks in jobShapes.

Uses a first fit decreasing (FFD) bin packing like algorithm to calculate an approximate minimum number of
nodes that will fit the given list of jobs. BinPackingFit assumes the ordered list, nodeShapes, is ordered for
“node preference” outside of BinPackingFit beforehand. So when virtually “creating” nodes, the first node within
nodeShapes that fits the job is the one that’s added.

Parameters
• nodeShapes (list) – The properties of an atomic node allocation, in terms of wall-time,

memory, cores, disk, and whether it is preemptible or not.

• targetTime (float) – The time before which all jobs should at least be started.

Returns
The minimum number of minimal node allocations estimated to be required to run all the jobs in
jobShapes.

30.1. toil 453

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

nodeReservations: Dict[toil.provisioners.abstractProvisioner.Shape,
List[NodeReservation]]

binPack(jobShapes)
Pack a list of jobShapes into the fewest nodes reasonable.

Can be run multiple times.

Returns any distinct Shapes that did not fit, mapping to reasons they did not fit.

Parameters
jobShapes (List[toil.provisioners.abstractProvisioner.Shape]) –

Return type
Dict[toil.provisioners.abstractProvisioner.Shape, List[FailedConstraint]]

addJobShape(jobShape)
Add the job to the first node reservation in which it will fit. (This is the bin-packing aspect).

Returns the job shape again, and a list of failed constraints, if it did not fit.

Parameters
jobShape (toil.provisioners.abstractProvisioner.Shape) –

Return type
Optional[Tuple[toil.provisioners.abstractProvisioner.Shape, List[FailedConstraint]]]

getRequiredNodes()

Return a dict from node shape to number of nodes required to run the packed jobs.

Return type
Dict[toil.provisioners.abstractProvisioner.Shape, int]

class toil.provisioners.clusterScaler.NodeReservation(shape)
The amount of resources that we expect to be available on a given node at each point in time.

To represent the resources available in a reservation, we represent a reservation as a linked list of NodeReserva-
tions, each giving the resources free within a single timeslice.

Parameters
shape (toil.provisioners.abstractProvisioner.Shape) –

__str__()

Return str(self).

Return type
str

get_failed_constraints(job_shape)
Check if a job shape’s resource requirements will fit within this allocation.

If the job does not fit, returns the failing constraints: the resources that can’t be accomodated, and the limits
that were hit.

If the job does fit, returns an empty list.

Must always agree with fits()! This codepath is slower and used for diagnosis.

Parameters
job_shape (toil.provisioners.abstractProvisioner.Shape) –

Return type
List[FailedConstraint]

454 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

fits(jobShape)
Check if a job shape’s resource requirements will fit within this allocation.

Parameters
jobShape (toil.provisioners.abstractProvisioner.Shape) –

Return type
bool

shapes()

Get all time-slice shapes, in order, from this reservation on.

Return type
List[toil.provisioners.abstractProvisioner.Shape]

subtract(jobShape)
Subtract the resources necessary to run a jobShape from the reservation.

Parameters
jobShape (toil.provisioners.abstractProvisioner.Shape) –

Return type
None

attemptToAddJob(jobShape, nodeShape, targetTime)
Attempt to pack a job into this reservation timeslice and/or the reservations after it.

jobShape is the Shape of the job requirements, nodeShape is the Shape of the node this is a reservation for,
and targetTime is the maximum time to wait before starting this job.

Parameters
• jobShape (toil.provisioners.abstractProvisioner.Shape) –

• nodeShape (toil.provisioners.abstractProvisioner.Shape) –

• targetTime (float) –

Return type
bool

toil.provisioners.clusterScaler.adjustEndingReservationForJob(reservation, jobShape, wallTime)
Add a job to an ending reservation that ends at wallTime.

(splitting the reservation if the job doesn’t fill the entire timeslice)

Parameters
• reservation (NodeReservation) –

• jobShape (toil.provisioners.abstractProvisioner.Shape) –

• wallTime (float) –

Return type
None

toil.provisioners.clusterScaler.split(nodeShape, jobShape, wallTime)
Partition a node allocation into two to fit the job.

Returning the modified shape of the node and a new node reservation for the extra time that the job didn’t fill.

Parameters
• nodeShape (toil.provisioners.abstractProvisioner.Shape) –

30.1. toil 455

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

• jobShape (toil.provisioners.abstractProvisioner.Shape) –

• wallTime (float) –

Return type
Tuple[toil.provisioners.abstractProvisioner.Shape, NodeReservation]

toil.provisioners.clusterScaler.binPacking(nodeShapes, jobShapes, goalTime)
Using the given node shape bins, pack the given job shapes into nodes to get them done in the given amount of
time.

Returns a dict saying how many of each node will be needed, a dict from job shapes that could not fit to reasons
why.

Parameters
• nodeShapes (List[toil.provisioners.abstractProvisioner.Shape]) –

• jobShapes (List[toil.provisioners.abstractProvisioner.Shape]) –

• goalTime (float) –

Return type
Tuple[Dict[toil.provisioners.abstractProvisioner.Shape, int], Dict[toil.provisioners.abstractProvisioner.Shape,
List[FailedConstraint]]]

class toil.provisioners.clusterScaler.ClusterScaler(provisioner, leader, config)

Parameters
• provisioner (toil.provisioners.abstractProvisioner.
AbstractProvisioner) –

• leader (toil.leader.Leader) –

• config (toil.common.Config) –

getAverageRuntime(jobName, service=False)

Parameters
• jobName (str) –

• service (bool) –

Return type
float

addCompletedJob(job, wallTime)
Adds the shape of a completed job to the queue, allowing the scalar to use the last N completed jobs in
factoring how many nodes are required in the cluster. :param toil.job.JobDescription job: The description
of the completed job :param int wallTime: The wall-time taken to complete the job in seconds.

Parameters
• job (toil.job.JobDescription) –

• wallTime (int) –

Return type
None

456 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

setStaticNodes(nodes, preemptible)
Used to track statically provisioned nodes. This method must be called before any auto-scaled nodes are
provisioned.

These nodes are treated differently than auto-scaled nodes in that they should not be automatically termi-
nated.

Parameters
• nodes (List[toil.provisioners.node.Node]) – list of Node objects

• preemptible (bool) –

Return type
None

getStaticNodes(preemptible)
Returns nodes set in setStaticNodes().

Parameters
preemptible (bool) –

Returns
Statically provisioned nodes.

Return type
Dict[str, toil.provisioners.node.Node]

smoothEstimate(nodeShape, estimatedNodeCount)
Smooth out fluctuations in the estimate for this node compared to previous runs.

Returns an integer.

Parameters
• nodeShape (toil.provisioners.abstractProvisioner.Shape) –

• estimatedNodeCount (int) –

Return type
int

getEstimatedNodeCounts(queuedJobShapes, currentNodeCounts)
Given the resource requirements of queued jobs and the current size of the cluster.

Returns a dict mapping from nodeShape to the number of nodes we want in the cluster right now, and a dict
from job shapes that are too big to run on any node to reasons why.

Parameters
• queuedJobShapes (List[toil.provisioners.abstractProvisioner.Shape]) –

• currentNodeCounts (Dict[toil.provisioners.abstractProvisioner.Shape,
int]) –

Return type
Tuple[Dict[toil.provisioners.abstractProvisioner.Shape, int],
Dict[toil.provisioners.abstractProvisioner.Shape, List[FailedConstraint]]]

updateClusterSize(estimatedNodeCounts)
Given the desired and current size of the cluster, attempts to launch/remove instances to get to the desired
size.

Also attempts to remove ignored nodes that were marked for graceful removal.

30.1. toil 457

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Returns the new size of the cluster.

Parameters
estimatedNodeCounts (Dict[toil.provisioners.abstractProvisioner.Shape,
int]) –

Return type
Dict[toil.provisioners.abstractProvisioner.Shape, int]

setNodeCount(instance_type, numNodes, preemptible=False, force=False)
Attempt to grow or shrink the number of preemptible or non-preemptible worker nodes in the cluster to the
given value, or as close a value as possible, and, after performing the necessary additions or removals of
worker nodes, return the resulting number of preemptible or non-preemptible nodes currently in the cluster.

Parameters
• instance_type (str) – The instance type to add or remove.

• numNodes (int) – Desired size of the cluster

• preemptible (bool) – whether the added nodes will be preemptible, i.e. whether they
may be removed spontaneously by the underlying platform at any time.

• force (bool) – If False, the provisioner is allowed to deviate from the given number of
nodes. For example, when downsizing a cluster, a provisioner might leave nodes running
if they have active jobs running on them.

Returns
the number of worker nodes in the cluster after making the necessary adjustments. This value
should be, but is not guaranteed to be, close or equal to the numNodes argument. It represents
the closest possible approximation of the actual cluster size at the time this method returns.

Return type
int

filter_out_static_nodes(nodes, preemptible=False)

Parameters
• nodes (Dict[toil.provisioners.node.Node, toil.batchSystems.
abstractBatchSystem.NodeInfo]) –

• preemptible (bool) –

Return type
List[Tuple[toil.provisioners.node.Node, toil.batchSystems.abstractBatchSystem.NodeInfo]]

getNodes(preemptible=None)
Returns a dictionary mapping node identifiers of preemptible or non-preemptible nodes to NodeInfo objects,
one for each node.

This method is the definitive source on nodes in cluster, & is responsible for consolidating cluster state
between the provisioner & batch system.

Parameters
preemptible (bool) – If True (False) only (non-)preemptible nodes will be returned. If
None, all nodes will be returned.

Return type
Dict[toil.provisioners.node.Node, toil.batchSystems.abstractBatchSystem.NodeInfo]

458 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

shutDown()

Return type
None

exception toil.provisioners.clusterScaler.JobTooBigError(job=None, shape=None,
constraints=None)

Bases: Exception

JobTooBigError

Raised in the scaler thread when a job cannot fit in any available node type and is likely to lock up the workflow.

Parameters
• job (Optional[toil.job.JobDescription]) –

• shape (Optional[toil.provisioners.abstractProvisioner.Shape]) –

• constraints (Optional[List[FailedConstraint]]) –

__str__()

Stringify the exception, including the message.

Return type
str

class toil.provisioners.clusterScaler.ScalerThread(provisioner, leader, config,
stop_on_exception=False)

Bases: toil.lib.threading.ExceptionalThread

ExceptionalThread ScalerThreadThread

A thread that automatically scales the number of either preemptible or non-preemptible worker nodes according
to the resource requirements of the queued jobs.

The scaling calculation is essentially as follows: start with 0 estimated worker nodes. For each queued job, check
if we expect it can be scheduled into a worker node before a certain time (currently one hour). Otherwise, attempt
to add a single new node of the smallest type that can fit that job.

At each scaling decision point a comparison between the current, C, and newly estimated number of nodes is
made. If the absolute difference is less than beta * C then no change is made, else the size of the cluster is
adapted. The beta factor is an inertia parameter that prevents continual fluctuations in the number of nodes.

Parameters

30.1. toil 459

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• provisioner (toil.provisioners.abstractProvisioner.
AbstractProvisioner) –

• leader (toil.leader.Leader) –

• config (toil.common.Config) –

• stop_on_exception (bool) –

check()

Attempt to join any existing scaler threads that may have died or finished.

This insures any exceptions raised in the threads are propagated in a timely fashion.

Return type
None

shutdown()

Shutdown the cluster.

Return type
None

addCompletedJob(job, wallTime)

Parameters
• job (toil.job.JobDescription) –

• wallTime (int) –

Return type
None

tryRun()

Return type
None

class toil.provisioners.clusterScaler.ClusterStats(path, batchSystem, clusterName)

Parameters
• path (str) –

• batchSystem (toil.batchSystems.abstractBatchSystem.
AbstractBatchSystem) –

• clusterName (Optional[str]) –

shutDownStats()

Return type
None

startStats(preemptible)

Parameters
preemptible (bool) –

Return type
None

460 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

checkStats()

Return type
None

toil.provisioners.gceProvisioner

Module Contents

Classes

GCEProvisioner Implements a Google Compute Engine Provisioner us-
ing libcloud.

Attributes

logger

toil.provisioners.gceProvisioner.logger

class toil.provisioners.gceProvisioner.GCEProvisioner(clusterName, clusterType, zone, nodeStorage,
nodeStorageOverrides, sseKey)

Bases: toil.provisioners.abstractProvisioner.AbstractProvisioner

ABC AbstractProvisioner GCEProvisioner

Implements a Google Compute Engine Provisioner using libcloud.

NODE_BOTO_PATH = '/root/.boto'

SOURCE_IMAGE = b'projects/kinvolk-public/global/images/family/flatcar-stable'

DEFAULT_TASK_COMPLETION_TIMEOUT = 180

supportedClusterTypes()

Get all the cluster types that this provisioner implementation supports.

createClusterSettings()

Initialize class for a new cluster, to be deployed, when running outside the cloud.

readClusterSettings()

Read the cluster settings from the instance, which should be the leader. See https://cloud.google.com/
compute/docs/storing-retrieving-metadata for details about reading the metadata.

30.1. toil 461

https://cloud.google.com/compute/docs/storing-retrieving-metadata
https://cloud.google.com/compute/docs/storing-retrieving-metadata

Toil Documentation, Release 5.11.0

launchCluster(leaderNodeType, leaderStorage, owner, **kwargs)
In addition to the parameters inherited from the abstractProvisioner, the Google launchCluster takes the
following parameters: keyName: The key used to communicate with instances botoPath: Boto credentials
for reading an AWS jobStore (optional). network: a network (optional) vpcSubnet: A subnet (optional).
use_private_ip: even though a public ip exists, ignore it (optional)

getNodeShape(instance_type, preemptible=False)
The shape of a preemptible or non-preemptible node managed by this provisioner. The node shape defines
key properties of a machine, such as its number of cores or the time between billing intervals.

Parameters
instance_type (str) – Instance type name to return the shape of.

Return type
Shape

static retryPredicate(e)
Not used by GCE

destroyCluster()

Try a few times to terminate all of the instances in the group.

Return type
None

terminateNodes(nodes)
Terminate the nodes represented by given Node objects

Parameters
nodes – list of Node objects

addNodes(nodeTypes, numNodes, preemptible, spotBid=None)
Used to add worker nodes to the cluster

Parameters
• numNodes – The number of nodes to add

• preemptible – whether or not the nodes will be preemptible

• spotBid – The bid for preemptible nodes if applicable (this can be set in config, also).

• nodeTypes (Set[str]) –

Returns
number of nodes successfully added

Return type
int

getProvisionedWorkers(instance_type=None, preemptible=None)
Gets all nodes, optionally of the given instance type or preemptability, from the provisioner. Includes both
static and autoscaled nodes.

Parameters
• preemptible (Optional[bool]) – Boolean value to restrict to preemptible nodes or

non-preemptible nodes

• instance_type (Optional[str]) –

Returns
list of Node objects

462 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

getLeader()

Returns
The leader node.

ex_create_multiple_nodes(base_name, size, image, number, location=None, ex_network='default',
ex_subnetwork=None, ex_tags=None, ex_metadata=None,
ignore_errors=True, use_existing_disk=True, poll_interval=2,
external_ip='ephemeral', ex_disk_type='pd-standard',
ex_disk_auto_delete=True, ex_service_accounts=None,
timeout=DEFAULT_TASK_COMPLETION_TIMEOUT, description=None,
ex_can_ip_forward=None, ex_disks_gce_struct=None,
ex_nic_gce_struct=None, ex_on_host_maintenance=None,
ex_automatic_restart=None, ex_image_family=None, ex_preemptible=None)

Monkey patch to gce.py in libcloud to allow disk and images to be specified. Also changed name to a uuid
below. The prefix ‘wp’ identifies preemptible nodes and ‘wn’ non-preemptible nodes.

toil.provisioners.node

Module Contents

Classes

Node

Attributes

a_short_time

logger

toil.provisioners.node.a_short_time = 5

toil.provisioners.node.logger

class toil.provisioners.node.Node(publicIP, privateIP, name, launchTime, nodeType, preemptible,
tags=None, use_private_ip=None)

maxWaitTime

__str__()

Return str(self).

__repr__()

Return repr(self).

__hash__()

Return hash(self).

30.1. toil 463

Toil Documentation, Release 5.11.0

remainingBillingInterval()

If the node has a launch time, this function returns a floating point value between 0 and 1.0 representing how
far we are into the current billing cycle for the given instance. If the return value is .25, we are one quarter
into the billing cycle, with three quarters remaining before we will be charged again for that instance.

Assumes a billing cycle of one hour.

Returns
Float from 0 -> 1.0 representing percentage of pre-paid time left in cycle.

Return type
float

waitForNode(role, keyName='core')

copySshKeys(keyName)
Copy authorized_keys file to the core user from the keyName user.

injectFile(fromFile, toFile, role)
rysnc a file to the container with the given role

extractFile(fromFile, toFile, role)
rysnc a file from the container with the given role

sshAppliance(*args, **kwargs)

Parameters
• args – arguments to execute in the appliance

• kwargs – tty=bool tells docker whether or not to create a TTY shell for interactive SSHing.
The default value is False. Input=string is passed as input to the Popen call.

sshInstance(*args, **kwargs)
Run a command on the instance. Returns the binary output of the command.

coreSSH(*args, **kwargs)
If strict=False, strict host key checking will be temporarily disabled. This is provided as a convenience for
internal/automated functions and ought to be set to True whenever feasible, or whenever the user is directly
interacting with a resource (e.g. rsync-cluster or ssh-cluster). Assumed to be False by default.

kwargs: input, tty, appliance, collectStdout, sshOptions, strict

Parameters
input (bytes) – UTF-8 encoded input bytes to send to the command

coreRsync(args, applianceName='toil_leader', **kwargs)

Package Contents

Functions

cluster_factory(provisioner[, clusterName, ...]) Find and instantiate the appropriate provisioner instance
to make clusters in the given cloud.

add_provisioner_options(parser)

parse_node_types(node_type_specs) Parse a specification for zero or more node types.
check_valid_node_types(provisioner, node_types) Raises if an invalid nodeType is specified for aws or gce.

464 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytes

Toil Documentation, Release 5.11.0

Attributes

logger

toil.provisioners.logger

toil.provisioners.cluster_factory(provisioner, clusterName=None, clusterType='mesos', zone=None,
nodeStorage=50, nodeStorageOverrides=None, sseKey=None)

Find and instantiate the appropriate provisioner instance to make clusters in the given cloud.

Raises ClusterTypeNotSupportedException if the given provisioner does not implement clusters of the given
type.

Parameters
• provisioner (str) – The cloud type of the cluster.

• clusterName (Optional[str]) – The name of the cluster.

• clusterType (str) – The type of cluster: ‘mesos’ or ‘kubernetes’.

• zone (Optional[str]) – The cloud zone

• nodeStorage (int) –

• nodeStorageOverrides (Optional[List[str]]) –

• sseKey (Optional[str]) –

Returns
A cluster object for the the cloud type.

Return type
Union[aws.awsProvisioner.AWSProvisioner, gceProvisioner.GCEProvisioner]

toil.provisioners.add_provisioner_options(parser)

Parameters
parser (argparse.ArgumentParser) –

Return type
None

toil.provisioners.parse_node_types(node_type_specs)
Parse a specification for zero or more node types.

Takes a comma-separated list of node types. Each node type is a slash-separated list of at least one instance type
name (like ‘m5a.large’ for AWS), and an optional bid in dollars after a colon.

Raises ValueError if a node type cannot be parsed.

Inputs should look something like this:

>>> parse_node_types('c5.4xlarge/c5a.4xlarge:0.42,t2.large')
[({'c5.4xlarge', 'c5a.4xlarge'}, 0.42), ({'t2.large'}, None)]

Parameters
node_type_specs (Optional[str]) – A string defining node types

30.1. toil 465

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Returns
a list of node types, where each type is the set of instance types, and the float bid, or None.

Return type
List[Tuple[Set[str], Optional[float]]]

toil.provisioners.check_valid_node_types(provisioner, node_types)
Raises if an invalid nodeType is specified for aws or gce.

Parameters
• provisioner (str) – ‘aws’ or ‘gce’ to specify which cloud provisioner used.

• node_types (List[Tuple[Set[str], Optional[float]]]) – A list of node types.
Example: [({‘t2.micro’}, None), ({‘t2.medium’}, 0.5)]

Returns
Nothing. Raises if any instance type in the node type isn’t real.

exception toil.provisioners.NoSuchClusterException(cluster_name)
Bases: Exception

NoSuchClusterException

Indicates that the specified cluster does not exist.

exception toil.provisioners.ClusterTypeNotSupportedException(provisioner_class, cluster_type)
Bases: Exception

ClusterTypeNotSupportedException

Indicates that a provisioner does not support a given cluster type.

exception toil.provisioners.ClusterCombinationNotSupportedException(provisioner_class,
cluster_type, architecture,
reason=None)

Bases: Exception

466 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

ClusterCombinationNotSupportedException

Indicates that a provisioner does not support making a given type of cluster with a given architecture.

Parameters
• provisioner_class (Type) –

• cluster_type (str) –

• architecture (str) –

• reason (Optional[str]) –

toil.server

Subpackages

toil.server.api_spec

toil.server.cli

Submodules

toil.server.cli.wes_cwl_runner

Module Contents

Classes

WESClientWithWorkflowEngineParameters A modified version of the WESClient from the wes-
service package that

30.1. toil 467

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Functions

generate_attachment_path_names(paths) Take in a list of path names and return a list of names
with the common path

get_deps_from_cwltool(cwl_file[, input_file]) Return a list of dependencies of the given workflow from
cwltool.

submit_run(client, cwl_file[, input_file, en-
gine_options])

Given a CWL file, its input files, and an optional list of
engine options,

poll_run(client, run_id) Return True if the given workflow run is in a finished
state.

print_logs_and_exit(client, run_id) Fetch the workflow logs from the WES server, print the
results, then exit

main()

Attributes

logger

toil.server.cli.wes_cwl_runner.logger

toil.server.cli.wes_cwl_runner.generate_attachment_path_names(paths)
Take in a list of path names and return a list of names with the common path name stripped out, while preserving
the input order. This guarantees that there are no relative paths that traverse up.

For example, for the following CWL workflow where “hello.yaml” references a file “message.txt”,

~/toil/workflows/hello.cwl ~/toil/input_files/hello.yaml ~/toil/input_files/message.txt

This may be run with the command:
toil-wes-cwl-runner hello.cwl ../input_files/hello.yaml

Where “message.txt” is resolved to “../input_files/message.txt”.

We’d send the workflow file as “workflows/hello.cwl”, and send the inputs as “input_files/hello.yaml” and “in-
put_files/message.txt”.

Parameters
paths (List[str]) – A list of absolute or relative path names. Relative paths are interpreted
as relative to the current working directory.

Returns
The common path name and a list of minimal path names.

Return type
Tuple[str, List[str]]

class toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters(endpoint,
auth=None)

Bases: wes_client.util.WESClient

468 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

WESClientWithWorkflowEngineParameters

A modified version of the WESClient from the wes-service package that includes workflow_engine_parameters
support.

TODO: Propose a PR in wes-service to include workflow_engine_params.

Parameters
• endpoint (str) –

• auth (Optional[Tuple[str, str]]) –

get_version(extension, workflow_file)
Determines the version of a .py, .wdl, or .cwl file.

Parameters
• extension (str) –

• workflow_file (str) –

Return type
str

parse_params(workflow_params_file)
Parse the CWL input file into a dictionary to be attached to the body of the WES run request.

Parameters
workflow_params_file (str) – The URL or path to the CWL input file.

Return type
Dict[str, Any]

modify_param_paths(base_dir, workflow_params)
Modify the file paths in the input workflow parameters to be relative to base_dir.

Parameters
• base_dir (str) – The base directory to make the file paths relative to. This should be the

common ancestor of all attached files, which will become the root of the execution folder.

• workflow_params (Dict[str, Any]) – A dict containing the workflow parameters.

Return type
None

build_wes_request(workflow_file, workflow_params_file, attachments,
workflow_engine_parameters=None)

Build the workflow run request to submit to WES.

Parameters
• workflow_file (str) – The path or URL to the CWL workflow document. Only file://

URL supported at the moment.

30.1. toil 469

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
file://

Toil Documentation, Release 5.11.0

• workflow_params_file (Optional[str]) – The path or URL to the CWL input file.

• attachments (Optional[List[str]]) – A list of local paths to files that will be up-
loaded to the server.

• workflow_engine_parameters (Optional[List[str]]) – A list of engine parame-
ters to set along with this workflow run.

Returns
A dictionary of parameters as the body of the request, and an iterable for the pairs of filename
and file contents to upload to the server.

Return type
Tuple[Dict[str, str], Iterable[Tuple[str, Tuple[str, io.BytesIO]]]]

run_with_engine_options(workflow_file, workflow_params_file, attachments,
workflow_engine_parameters)

Composes and sends a post request that signals the WES server to run a workflow.

Parameters
• workflow_file (str) – The path to the CWL workflow document.

• workflow_params_file (Optional[str]) – The path to the CWL input file.

• attachments (Optional[List[str]]) – A list of local paths to files that will be up-
loaded to the server.

• workflow_engine_parameters (Optional[List[str]]) – A list of engine parame-
ters to set along with this workflow run.

Returns
The body of the post result as a dictionary.

Return type
Dict[str, Any]

toil.server.cli.wes_cwl_runner.get_deps_from_cwltool(cwl_file, input_file=None)
Return a list of dependencies of the given workflow from cwltool.

Parameters
• cwl_file (str) – The CWL file.

• input_file (Optional[str]) – Omit to get the dependencies from the CWL file. If set,
this returns the dependencies from the input file.

Return type
List[str]

toil.server.cli.wes_cwl_runner.submit_run(client, cwl_file, input_file=None, engine_options=None)
Given a CWL file, its input files, and an optional list of engine options, submit the CWL workflow to the WES
server via the WES client.

This function also attempts to find the attachments from the CWL workflow and its input file, and attach them to
the WES run request.

Parameters
• client (WESClientWithWorkflowEngineParameters) – The WES client.

• cwl_file (str) – The path to the CWL workflow document.

• input_file (Optional[str]) – The path to the CWL input file.

470 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#io.BytesIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• engine_options (Optional[List[str]]) – A list of engine parameters to set along with
this workflow run.

Return type
str

toil.server.cli.wes_cwl_runner.poll_run(client, run_id)
Return True if the given workflow run is in a finished state.

Parameters
• client (WESClientWithWorkflowEngineParameters) –

• run_id (str) –

Return type
bool

toil.server.cli.wes_cwl_runner.print_logs_and_exit(client, run_id)
Fetch the workflow logs from the WES server, print the results, then exit the program with the same exit code as
the workflow run.

Parameters
• client (WESClientWithWorkflowEngineParameters) – The WES client.

• run_id (str) – The run_id of the target workflow.

Return type
None

toil.server.cli.wes_cwl_runner.main()

Return type
None

toil.server.wes

Submodules

toil.server.wes.abstract_backend

Module Contents

Classes

WESBackend A class to represent a GA4GH Workflow Execution Ser-
vice (WES) API backend.

30.1. toil 471

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Functions

handle_errors(func) This decorator catches errors from the wrapped function
and returns a JSON

Attributes

logger

TaskLog

toil.server.wes.abstract_backend.logger

toil.server.wes.abstract_backend.TaskLog

exception toil.server.wes.abstract_backend.VersionNotImplementedException(wf_type,
version=None, sup-
ported_versions=None)

Bases: Exception

VersionNotImplementedException

Raised when the requested workflow version is not implemented.

Parameters
• wf_type (str) –

• version (Optional[str]) –

• supported_versions (Optional[List[str]]) –

exception toil.server.wes.abstract_backend.MalformedRequestException(message)
Bases: Exception

MalformedRequestException

Raised when the request is malformed.

472 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

Parameters
message (str) –

exception toil.server.wes.abstract_backend.WorkflowNotFoundException

Bases: Exception

WorkflowNotFoundException

Raised when the requested run ID is not found.

exception toil.server.wes.abstract_backend.WorkflowConflictException(run_id)
Bases: Exception

WorkflowConflictException

Raised when the requested workflow is not in the expected state.

Parameters
run_id (str) –

exception toil.server.wes.abstract_backend.OperationForbidden(message)
Bases: Exception

OperationForbidden

Raised when the request is forbidden.

Parameters
message (str) –

exception toil.server.wes.abstract_backend.WorkflowExecutionException(message)
Bases: Exception

30.1. toil 473

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

WorkflowExecutionException

Raised when an internal error occurred during the execution of the workflow.

Parameters
message (str) –

toil.server.wes.abstract_backend.handle_errors(func)
This decorator catches errors from the wrapped function and returns a JSON formatted error message with the
appropriate status code defined by the GA4GH WES spec.

Parameters
func (Callable[Ellipsis, Any]) –

Return type
Callable[Ellipsis, Any]

class toil.server.wes.abstract_backend.WESBackend(options)
A class to represent a GA4GH Workflow Execution Service (WES) API backend. Intended to be inherited.
Subclasses should implement all abstract methods to handle user requests when they hit different endpoints.

Parameters
options (List[str]) –

resolve_operation_id(operation_id)
Map an operationId defined in the OpenAPI or swagger yaml file to a function.

Parameters
operation_id (str) – The operation ID defined in the specification.

Returns
A function that should be called when the given endpoint is reached.

Return type
Any

abstract get_service_info()

Get information about the Workflow Execution Service.

GET /service-info

Return type
Dict[str, Any]

abstract list_runs(page_size=None, page_token=None)
List the workflow runs.

GET /runs

Parameters
• page_size (Optional[int]) –

• page_token (Optional[str]) –

474 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
Dict[str, Any]

abstract run_workflow()

Run a workflow. This endpoint creates a new workflow run and returns a RunId to monitor its progress.

POST /runs

Return type
Dict[str, str]

abstract get_run_log(run_id)
Get detailed info about a workflow run.

GET /runs/{run_id}

Parameters
run_id (str) –

Return type
Dict[str, Any]

abstract cancel_run(run_id)
Cancel a running workflow.

POST /runs/{run_id}/cancel

Parameters
run_id (str) –

Return type
Dict[str, str]

abstract get_run_status(run_id)
Get quick status info about a workflow run, returning a simple result with the overall state of the workflow
run.

GET /runs/{run_id}/status

Parameters
run_id (str) –

Return type
Dict[str, str]

static log_for_run(run_id, message)

Parameters
• run_id (Optional[str]) –

• message (str) –

Return type
None

static secure_path(path)

Parameters
path (str) –

Return type
str

30.1. toil 475

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

collect_attachments(run_id, temp_dir)
Collect attachments from the current request by staging uploaded files to temp_dir, and return the temp_dir
and parsed body of the request.

Parameters
• run_id (Optional[str]) – The run ID for logging.

• temp_dir (Optional[str]) – The directory where uploaded files should be staged. If
None, a temporary directory is created.

Return type
Tuple[str, Dict[str, Any]]

toil.server.wes.amazon_wes_utils

Module Contents

Classes

WorkflowPlan These functions pass around dicts of a certain type, with
data and files keys.

DataDict Under data, there can be:
FilesDict Under files, there can be:

Functions

parse_workflow_zip_file(file, workflow_type) Processes a workflow zip bundle
parse_workflow_manifest_file(manifest_file) Reads a MANIFEST.json file for a workflow zip bundle
workflow_manifest_url_to_path (url[, par-
ent_dir])

Interpret a possibly-relative parsed URL, relative to the
given parent directory.

task_filter(task, job_status) AGC requires task names to be annotated with an AWS
Batch job ID that they

Attributes

logger

NOTICE

toil.server.wes.amazon_wes_utils.logger

toil.server.wes.amazon_wes_utils.NOTICE = Multiline-String

"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
"""

476 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

class toil.server.wes.amazon_wes_utils.WorkflowPlan

Bases: TypedDict

TypedDict WorkflowPlan

These functions pass around dicts of a certain type, with data and files keys.

data: DataDict

files: FilesDict

class toil.server.wes.amazon_wes_utils.DataDict

Bases: TypedDict

DataDictTypedDict

Under data, there can be: * workflowUrl (required if no workflowSource): URL to main workflow code.

workflowUrl: str

class toil.server.wes.amazon_wes_utils.FilesDict

Bases: TypedDict

FilesDictTypedDict

Under files, there can be: * workflowSource (required if no workflowUrl): Open binary-mode file for the main
workflow code. * workflowInputFiles: List of open binary-mode file for input files. Expected to be JSONs. *
workflowOptions: Open binary-mode file for a JSON of options sent along with the workflow. * workflowDe-
pendencies: Open binary-mode file for the zip the workflow came in, if any.

workflowSource: IO[bytes]

workflowInputFiles: List[IO[bytes]]

workflowOptions: IO[bytes]

30.1. toil 477

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Toil Documentation, Release 5.11.0

workflowDependencies: IO[bytes]

toil.server.wes.amazon_wes_utils.parse_workflow_zip_file(file, workflow_type)
Processes a workflow zip bundle

Parameters
• file (str) – String or Path-like path to a workflow.zip file

• workflow_type (str) – String, extension of workflow to expect (e.g. “wdl”)

Return type
dict of data and files

If the zip only contains a single file, that file is set as workflowSource

If the zip contains multiple files with a MANIFEST.json file, the MANIFEST is used to determine appropriate
data and file arguments. (See: parse_workflow_manifest_file())

If the zip contains multiple files without a MANIFEST.json file:
• a main workflow file with an extension matching the workflow_type is expected and will be set as

workflowSource

• optionally, if inputs*.json files are found in the root level of the zip, they will be set as workflowIn-
puts(_d)* in the order they are found

• optionally, if an options.json file is found in the root level of the zip, it will be set as workflowOptions

If the zip contains multiple files, the original zip is set as workflowDependencies

toil.server.wes.amazon_wes_utils.parse_workflow_manifest_file(manifest_file)
Reads a MANIFEST.json file for a workflow zip bundle

Parameters
manifest_file (str) – String or Path-like path to a MANIFEST.json file

Return type
dict of data and files

MANIFEST.json is expected to be formatted like: .. code-block:: json

{
“mainWorkflowURL”: “relpath/to/workflow”, “inputFileURLs”: [

“relpath/to/input-file-1”, “relpath/to/input-file-2”, . . .

], “optionsFileURL” “relpath/to/option-file

}

The mainWorkflowURL property that provides a relative file path in the zip to a workflow file, which will be set
as workflowSource

The inputFileURLs property is optional and provides a list of relative file paths in the zip to input.json files. The
list is assumed to be in the order the inputs should be applied - e.g. higher list index is higher priority. If present,
it will be used to set workflowInputs(_d) arguments.

The optionsFileURL property is optional and provides a relative file path in the zip to an options.json file. If
present, it will be used to set workflowOptions.

toil.server.wes.amazon_wes_utils.workflow_manifest_url_to_path(url, parent_dir=None)
Interpret a possibly-relative parsed URL, relative to the given parent directory.

Parameters

478 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• url (urllib.parse.ParseResult) –

• parent_dir (Optional[str]) –

Return type
str

toil.server.wes.amazon_wes_utils.task_filter(task, job_status)
AGC requires task names to be annotated with an AWS Batch job ID that they were run under. If it encounters
an un-annotated task name, it will crash. See <https://github.com/aws/amazon-genomics-cli/issues/494>.

This encodes the AWSBatchJobID annotation, from the AmazonBatchBatchSystem, into the task name of the
given task, and returns the modified task. If no such annotation is available, the task is censored and None is
returned.

Parameters
• task (toil.server.wes.abstract_backend.TaskLog) –

• job_status (toil.bus.JobStatus) –

Return type
Optional[toil.server.wes.abstract_backend.TaskLog]

toil.server.wes.tasks

Module Contents

Classes

ToilWorkflowRunner A class to represent a workflow runner to run the re-
quested workflow.

TaskRunner Abstraction over the Celery API. Runs our run_wes task
and allows canceling it.

MultiprocessingTaskRunner Version of TaskRunner that just runs tasks with Multi-
processing.

Functions

run_wes_task(base_scratch_dir, state_store_url, ...) Run a requested workflow.
cancel_run(task_id) Send a SIGTERM signal to the process that is running

task_id.

30.1. toil 479

https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/aws/amazon-genomics-cli/issues/494

Toil Documentation, Release 5.11.0

Attributes

logger

WAIT_FOR_DEATH_TIMEOUT

run_wes

toil.server.wes.tasks.logger

toil.server.wes.tasks.WAIT_FOR_DEATH_TIMEOUT = 20

class toil.server.wes.tasks.ToilWorkflowRunner(base_scratch_dir, state_store_url, workflow_id,
request, engine_options)

A class to represent a workflow runner to run the requested workflow.

Responsible for parsing the user request into a shell command, executing that command, and collecting the
outputs of the resulting workflow run.

Parameters
• base_scratch_dir (str) –

• state_store_url (str) –

• workflow_id (str) –

• request (Dict[str, Any]) –

• engine_options (List[str]) –

write_scratch_file(filename, contents)
Write a file to the scratch directory.

Parameters
• filename (str) –

• contents (str) –

Return type
None

get_state()

Return type
str

write_workflow(src_url)
Fetch the workflow file from its source and write it to a destination file.

Parameters
src_url (str) –

Return type
str

480 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

sort_options(workflow_engine_parameters=None)
Sort the command line arguments in the order that can be recognized by the workflow execution engine.

Parameters
workflow_engine_parameters (Optional[Dict[str, Optional[str]]]) – User-
specified parameters for this

Return type
List[str]

particular workflow. Keys are command-line options, and values are option arguments, or None for options
that are flags.

initialize_run()

Write workflow and input files and construct a list of shell commands to be executed. Return that list of
shell commands that should be executed in order to complete this workflow run.

Return type
List[str]

call_cmd(cmd, cwd)
Calls a command with Popen. Writes stdout, stderr, and the command to separate files.

Parameters
• cmd (Union[List[str], str]) –

• cwd (str) –

Return type
subprocess.Popen[bytes]

run()

Construct a command to run a the requested workflow with the options, run it, and deposit the outputs in
the output directory.

Return type
None

write_output_files()

Fetch all the files that this workflow generated and output information about them to outputs.json.

Return type
None

toil.server.wes.tasks.run_wes_task(base_scratch_dir, state_store_url, workflow_id, request,
engine_options)

Run a requested workflow.

Parameters
• base_scratch_dir (str) – Directory where the workflow’s scratch dir will live, under the

workflow’s ID.

• state_store_url (str) – URL/path at which the server and Celery task communicate
about workflow state.

• workflow_id (str) – ID of the workflow run.

• request (Dict[str, Any]) –

• engine_options (List[str]) –

30.1. toil 481

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Returns
the state of the workflow run.

Return type
str

toil.server.wes.tasks.run_wes

toil.server.wes.tasks.cancel_run(task_id)
Send a SIGTERM signal to the process that is running task_id.

Parameters
task_id (str) –

Return type
None

class toil.server.wes.tasks.TaskRunner

Abstraction over the Celery API. Runs our run_wes task and allows canceling it.

We can swap this out in the server to allow testing without Celery.

static run(args, task_id)
Run the given task args with the given ID on Celery.

Parameters
• args (Tuple[str, str, str, Dict[str, Any], List[str]]) –

• task_id (str) –

Return type
None

static cancel(task_id)
Cancel the task with the given ID on Celery.

Parameters
task_id (str) –

Return type
None

static is_ok(task_id)
Make sure that the task running system is working for the given task. If the task system has detected an
internal failure, return False.

Parameters
task_id (str) –

Return type
bool

class toil.server.wes.tasks.MultiprocessingTaskRunner

Bases: TaskRunner

482 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

MultiprocessingTaskRunnerTaskRunner

Version of TaskRunner that just runs tasks with Multiprocessing.

Can’t use threading because there’s no way to send a cancel signal or exception to a Python thread, if loops in
the task (i.e. ToilWorkflowRunner) don’t poll for it.

static set_up_and_run_task(output_path, args)
Set up logging for the process into the given file and then call run_wes_task with the given arguments.

If the process finishes successfully, it will clean up the log, but if the process crashes, the caller must clean
up the log.

Parameters
• output_path (str) –

• args (Tuple[str, str, str, Dict[str, Any], List[str]]) –

Return type
None

classmethod run(args, task_id)
Run the given task args with the given ID.

Parameters
• args (Tuple[str, str, str, Dict[str, Any], List[str]]) –

• task_id (str) –

Return type
None

classmethod cancel(task_id)
Cancel the task with the given ID.

Parameters
task_id (str) –

Return type
None

classmethod is_ok(task_id)
Make sure that the task running system is working for the given task. If the task system has detected an
internal failure, return False.

Parameters
task_id (str) –

Return type
bool

30.1. toil 483

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

toil.server.wes.toil_backend

Module Contents

Classes

ToilWorkflow

ToilBackend WES backend implemented for Toil to run CWL, WDL,
or Toil workflows. This

Attributes

logger

toil.server.wes.toil_backend.logger

class toil.server.wes.toil_backend.ToilWorkflow(base_work_dir, state_store_url, run_id)

Parameters
• base_work_dir (str) –

• state_store_url (str) –

• run_id (str) –

fetch_state(key: str, default: str)→ str
fetch_state(key: str, default: None = None)→ Optional[str]

Return the contents of the given key in the workflow’s state store. If the key does not exist, the default value
is returned.

fetch_scratch(filename)
Get a context manager for either a stream for the given file from the workflow’s scratch directory, or None
if it isn’t there.

Parameters
filename (str) –

Return type
Generator[Optional[TextIO], None, None]

exists()

Return True if the workflow run exists.

Return type
bool

get_state()

Return the state of the current run.

Return type
str

484 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

check_on_run(task_runner)
Check to make sure nothing has gone wrong in the task runner for this workflow. If something has, log,
and fail the workflow with an error.

Parameters
task_runner (Type[toil.server.wes.tasks.TaskRunner]) –

Return type
None

set_up_run()

Set up necessary directories for the run.

Return type
None

clean_up()

Clean directory and files related to the run.

Return type
None

queue_run(task_runner, request, options)
This workflow should be ready to run. Hand this to the task system.

Parameters
• task_runner (Type[toil.server.wes.tasks.TaskRunner]) –

• request (Dict[str, Any]) –

• options (List[str]) –

Return type
None

get_output_files()

Return a collection of output files that this workflow generated.

Return type
Any

get_stdout_path()

Return the path to the standard output log, relative to the run’s scratch_dir, or None if it doesn’t exist.

Return type
Optional[str]

get_stderr_path()

Return the path to the standard output log, relative to the run’s scratch_dir, or None if it doesn’t exist.

Return type
Optional[str]

get_messages_path()

Return the path to the bus message log, relative to the run’s scratch_dir, or None if it doesn’t exist.

Return type
Optional[str]

30.1. toil 485

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

get_task_logs(filter_function=None)
Return all the task log objects for the individual tasks in the workflow.

Task names will be the job_type values from issued/completed/failed messages, with annotations from
JobAnnotationMessage messages if available.

Parameters
filter_function (Optional[Callable[[toil.server.wes.abstract_backend.
TaskLog, toil.bus.JobStatus], Optional[toil.server.wes.
abstract_backend.TaskLog]]]) – If set, will be called with each task log and its
job annotations. Returns a modified copy of the task log to actually report, or None if the
task log should be omitted.

Return type
List[Dict[str, Union[str, int, None]]]

class toil.server.wes.toil_backend.ToilBackend(work_dir, state_store, options, dest_bucket_base,
bypass_celery=False, wes_dialect='standard')

Bases: toil.server.wes.abstract_backend.WESBackend

ToilBackendWESBackend

WES backend implemented for Toil to run CWL, WDL, or Toil workflows. This class is responsible for validating
and executing submitted workflows.

Parameters
• work_dir (str) –

• state_store (Optional[str]) –

• options (List[str]) –

• dest_bucket_base (Optional[str]) –

• bypass_celery (bool) –

• wes_dialect (str) –

get_runs()

A generator of a list of run ids and their state.

Return type
Generator[Tuple[str, str], None, None]

get_state(run_id)
Return the state of the workflow run with the given run ID. May raise an error if the workflow does not
exist.

Parameters
run_id (str) –

Return type
str

486 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

get_service_info()

Get information about the Workflow Execution Service.

Return type
Dict[str, Any]

list_runs(page_size=None, page_token=None)
List the workflow runs.

Parameters
• page_size (Optional[int]) –

• page_token (Optional[str]) –

Return type
Dict[str, Any]

run_workflow()

Run a workflow.

Return type
Dict[str, str]

get_run_log(run_id)
Get detailed info about a workflow run.

Parameters
run_id (str) –

Return type
Dict[str, Any]

cancel_run(run_id)
Cancel a running workflow.

Parameters
run_id (str) –

Return type
Dict[str, str]

get_run_status(run_id)
Get quick status info about a workflow run, returning a simple result with the overall state of the workflow
run.

Parameters
run_id (str) –

Return type
Dict[str, str]

get_stdout(run_id)
Get the stdout of a workflow run as a static file.

Parameters
run_id (str) –

Return type
Any

30.1. toil 487

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

get_stderr(run_id)
Get the stderr of a workflow run as a static file.

Parameters
run_id (str) –

Return type
Any

get_health()

Return successfully if the server is healthy.

Return type
werkzeug.wrappers.response.Response

get_homepage()

Provide a sensible result for / other than 404.

Return type
werkzeug.wrappers.response.Response

Submodules

toil.server.app

Module Contents

Functions

parser_with_server_options()

create_app(args) Create a "connexion.FlaskApp" instance with Toil server
configurations.

start_server(args) Start a Toil server.

Attributes

logger

toil.server.app.logger

toil.server.app.parser_with_server_options()

Return type
argparse.ArgumentParser

toil.server.app.create_app(args)
Create a “connexion.FlaskApp” instance with Toil server configurations.

Parameters
args (argparse.Namespace) –

488 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace

Toil Documentation, Release 5.11.0

Return type
connexion.FlaskApp

toil.server.app.start_server(args)
Start a Toil server.

Parameters
args (argparse.Namespace) –

Return type
None

toil.server.celery_app

Module Contents

Functions

create_celery_app()

Attributes

celery

toil.server.celery_app.create_celery_app()

Return type
celery.Celery

toil.server.celery_app.celery

toil.server.utils

Module Contents

Classes

MemoryStateCache An in-memory place to store workflow state.
AbstractStateStore A place for the WES server to keep its state: the set of

workflows that
MemoryStateStore An in-memory place to store workflow state, for testing.
FileStateStore A place to store workflow state that uses a POSIX-

compatible file system.
S3StateStore A place to store workflow state that uses an S3-

compatible object store.
WorkflowStateStore Slice of a state store for the state of a particular workflow.
WorkflowStateMachine Class for managing the WES workflow state machine.

30.1. toil 489

https://docs.python.org/3/library/argparse.html#argparse.Namespace

Toil Documentation, Release 5.11.0

Functions

get_iso_time() Return the current time in ISO 8601 format.
link_file(src, dest) Create a link to a file from src to dest.
download_file_from_internet(src, dest[, con-
tent_type])

Download a file from the Internet and write it to dest.

download_file_from_s3(src, dest[, content_type]) Download a file from Amazon S3 and write it to dest.
get_file_class(path) Return the type of the file as a human readable string.
safe_read_file(file) Safely read a file by acquiring a shared lock to prevent

other processes
safe_write_file(file, s) Safely write to a file by acquiring an exclusive lock to

prevent other
connect_to_state_store(url) Connect to a place to store state for workflows, defined

by a URL.
connect_to_workflow_state_store(url, work-
flow_id)

Connect to a place to store state for the given workflow,
in the state

Attributes

HAVE_S3

logger

state_store_cache

TERMINAL_STATES

MAX_CANCELING_SECONDS

toil.server.utils.HAVE_S3 = True

toil.server.utils.logger

toil.server.utils.get_iso_time()

Return the current time in ISO 8601 format.

Return type
str

toil.server.utils.link_file(src, dest)
Create a link to a file from src to dest.

Parameters
• src (str) –

• dest (str) –

Return type
None

490 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.server.utils.download_file_from_internet(src, dest, content_type=None)
Download a file from the Internet and write it to dest.

Parameters
• src (str) –

• dest (str) –

• content_type (Optional[str]) –

Return type
None

toil.server.utils.download_file_from_s3(src, dest, content_type=None)
Download a file from Amazon S3 and write it to dest.

Parameters
• src (str) –

• dest (str) –

• content_type (Optional[str]) –

Return type
None

toil.server.utils.get_file_class(path)
Return the type of the file as a human readable string.

Parameters
path (str) –

Return type
str

toil.server.utils.safe_read_file(file)
Safely read a file by acquiring a shared lock to prevent other processes from writing to it while reading.

Parameters
file (str) –

Return type
Optional[str]

toil.server.utils.safe_write_file(file, s)
Safely write to a file by acquiring an exclusive lock to prevent other processes from reading and writing to it
while writing.

Parameters
• file (str) –

• s (str) –

Return type
None

class toil.server.utils.MemoryStateCache

An in-memory place to store workflow state.

30.1. toil 491

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

get(workflow_id, key)
Get a key value from memory.

Parameters
• workflow_id (str) –

• key (str) –

Return type
Optional[str]

set(workflow_id, key, value)
Set or clear a key value in memory.

Parameters
• workflow_id (str) –

• key (str) –

• value (Optional[str]) –

Return type
None

class toil.server.utils.AbstractStateStore

A place for the WES server to keep its state: the set of workflows that exist and whether they are done or not.

This is a key-value store, with keys namespaced by workflow ID. Concurrent access from multiple threads or
processes is safe and globally consistent.

Keys and workflow IDs are restricted to [-a-zA-Z0-9_], because backends may use them as path or URL com-
ponents.

Key values are either a string, or None if the key is not set.

Workflow existence isn’t a thing; nonexistent workflows just have None for all keys.

Note that we don’t yet have a cleanup operation: things are stored permanently. Even clearing all the keys may
leave data behind.

Also handles storage for a local cache, with a separate key namespace (not a read/write-through cache).

TODO: Can we replace this with just using a JobStore eventually, when AWSJobStore no longer needs Sim-
pleDB?

abstract get(workflow_id, key)
Get the value of the given key for the given workflow, or None if the key is not set for the workflow.

Parameters
• workflow_id (str) –

• key (str) –

Return type
Optional[str]

abstract set(workflow_id, key, value)
Set the value of the given key for the given workflow. If the value is None, clear the key.

Parameters
• workflow_id (str) –

492 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• key (str) –

• value (Optional[str]) –

Return type
None

read_cache(workflow_id, key)
Read a value from a local cache, without checking the actual backend.

Parameters
• workflow_id (str) –

• key (str) –

Return type
Optional[str]

write_cache(workflow_id, key, value)
Write a value to a local cache, without modifying the actual backend.

Parameters
• workflow_id (str) –

• key (str) –

• value (Optional[str]) –

Return type
None

class toil.server.utils.MemoryStateStore

Bases: MemoryStateCache, AbstractStateStore

AbstractStateStore

MemoryStateStore

MemoryStateCache

An in-memory place to store workflow state, for testing.

Inherits from MemoryStateCache first to provide implementations for AbstractStateStore.

class toil.server.utils.FileStateStore(url)
Bases: AbstractStateStore

30.1. toil 493

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

AbstractStateStore FileStateStore

A place to store workflow state that uses a POSIX-compatible file system.

Parameters
url (str) –

get(workflow_id, key)
Get a key value from the filesystem.

Parameters
• workflow_id (str) –

• key (str) –

Return type
Optional[str]

set(workflow_id, key, value)
Set or clear a key value on the filesystem.

Parameters
• workflow_id (str) –

• key (str) –

• value (Optional[str]) –

Return type
None

class toil.server.utils.S3StateStore(url)
Bases: AbstractStateStore

AbstractStateStore S3StateStore

A place to store workflow state that uses an S3-compatible object store.

Parameters
url (str) –

get(workflow_id, key)
Get a key value from S3.

Parameters

494 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• workflow_id (str) –

• key (str) –

Return type
Optional[str]

set(workflow_id, key, value)
Set or clear a key value on S3.

Parameters
• workflow_id (str) –

• key (str) –

• value (Optional[str]) –

Return type
None

toil.server.utils.state_store_cache: Dict[str, AbstractStateStore]

toil.server.utils.connect_to_state_store(url)
Connect to a place to store state for workflows, defined by a URL.

URL may be a local file path or URL or an S3 URL.

Parameters
url (str) –

Return type
AbstractStateStore

class toil.server.utils.WorkflowStateStore(state_store, workflow_id)
Slice of a state store for the state of a particular workflow.

Parameters
• state_store (AbstractStateStore) –

• workflow_id (str) –

get(key)
Get the given item of workflow state.

Parameters
key (str) –

Return type
Optional[str]

set(key, value)
Set the given item of workflow state.

Parameters
• key (str) –

• value (Optional[str]) –

Return type
None

30.1. toil 495

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

read_cache(key)
Read a value from a local cache, without checking the actual backend.

Parameters
key (str) –

Return type
Optional[str]

write_cache(key, value)
Write a value to a local cache, without modifying the actual backend.

Parameters
• key (str) –

• value (Optional[str]) –

Return type
None

toil.server.utils.connect_to_workflow_state_store(url, workflow_id)
Connect to a place to store state for the given workflow, in the state store defined by the given URL.

Parameters
• url (str) – A URL that can be used for connect_to_state_store()

• workflow_id (str) –

Return type
WorkflowStateStore

toil.server.utils.TERMINAL_STATES

toil.server.utils.MAX_CANCELING_SECONDS = 30

class toil.server.utils.WorkflowStateMachine(store)
Class for managing the WES workflow state machine.

This is the authority on the WES “state” of a workflow. You need one to read or change the state.

Guaranteeing that only certain transitions can be observed is possible but not worth it. Instead, we just let updates
clobber each other and grab and cache the first terminal state we see forever. If it becomes important that clients
never see e.g. CANCELED -> COMPLETE or COMPLETE -> SYSTEM_ERROR, we can implement a real
distributed state machine here.

We do handle making sure that tasks don’t get stuck in CANCELING.

State can be:

“UNKNOWN” “QUEUED” “INITIALIZING” “RUNNING” “PAUSED” “COMPLETE” “EXECU-
TOR_ERROR” “SYSTEM_ERROR” “CANCELED” “CANCELING”

Uses the state store’s local cache to prevent needing to read things we’ve seen already.

Parameters
store (WorkflowStateStore) –

send_enqueue()

Send an enqueue message that would move from UNKNOWN to QUEUED.

Return type
None

496 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

send_initialize()

Send an initialize message that would move from QUEUED to INITIALIZING.

Return type
None

send_run()

Send a run message that would move from INITIALIZING to RUNNING.

Return type
None

send_cancel()

Send a cancel message that would move to CANCELING from any non-terminal state.

Return type
None

send_canceled()

Send a canceled message that would move to CANCELED from CANCELLING.

Return type
None

send_complete()

Send a complete message that would move from RUNNING to COMPLETE.

Return type
None

send_executor_error()

Send an executor_error message that would move from QUEUED, INITIALIZING, or RUNNING to EX-
ECUTOR_ERROR.

Return type
None

send_system_error()

Send a system_error message that would move from QUEUED, INITIALIZING,
or RUNNING to SYSTEM_ERROR.

Return type
None

get_current_state()

Get the current state of the workflow.

Return type
str

30.1. toil 497

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.server.wsgi_app

Module Contents

Classes

GunicornApplication An entry point to integrate a Gunicorn WSGI server in
Python. To start a

Functions

run_app(app[, options]) Run a Gunicorn WSGI server.

class toil.server.wsgi_app.GunicornApplication(app, options=None)
Bases: gunicorn.app.base.BaseApplication

GunicornApplication

An entry point to integrate a Gunicorn WSGI server in Python. To start a WSGI application with callable app,
run the following code:

WSGIApplication(app, options={
. . .

}).run()

For more details, see: https://docs.gunicorn.org/en/latest/custom.html

Parameters
• app (object) –

• options (Optional[Dict[str, Any]]) –

init(*args)

Parameters
args (Any) –

Return type
None

load_config()

Return type
None

498 Chapter 30. API Reference

https://docs.gunicorn.org/en/latest/custom.html
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

load()

Return type
object

toil.server.wsgi_app.run_app(app, options=None)
Run a Gunicorn WSGI server.

Parameters
• app (object) –

• options (Optional[Dict[str, Any]]) –

Return type
None

toil.test

Base testing class for Toil.

Subpackages

toil.test.batchSystems

Submodules

toil.test.batchSystems.batchSystemTest

Module Contents

30.1. toil 499

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Classes

BatchSystemPluginTest Class for testing batch system plugin functionality.
hidden Hide abstract base class from unittest's test case loader
KubernetesBatchSystemTest Tests against the Kubernetes batch system
KubernetesBatchSystemBenchTest Kubernetes batch system unit tests that don't need to ac-

tually talk to a cluster.
TESBatchSystemTest Tests against the TES batch system
AWSBatchBatchSystemTest Tests against the AWS Batch batch system
MesosBatchSystemTest Tests against the Mesos batch system
SingleMachineBatchSystemTest Tests against the single-machine batch system
MaxCoresSingleMachineBatchSystemTest This test ensures that single machine batch system

doesn't exceed the configured number
Service Abstract class used to define the interface to a service.
ParasolBatchSystemTest Tests the Parasol batch system
GridEngineBatchSystemTest Tests against the GridEngine batch system
SlurmBatchSystemTest Tests against the Slurm batch system
LSFBatchSystemTest Tests against the LSF batch system
TorqueBatchSystemTest Tests against the Torque batch system
HTCondorBatchSystemTest Tests against the HTCondor batch system
SingleMachineBatchSystemJobTest Tests Toil workflow against the SingleMachine batch

system
MesosBatchSystemJobTest Tests Toil workflow against the Mesos batch system

Functions

write_temp_file(s, temp_dir) Dump a string into a temp file and return its path.
parentJob(job, cmd)

childJob(job, cmd)

grandChildJob(job, cmd)

greatGrandChild(cmd)

measureConcurrency(filepath[, sleep_time]) Run in parallel to determine the number of concurrent
tasks.

count(delta, file_path) Increments counter file and returns the max number of
times the file

getCounters(path)

resetCounters(path)

get_omp_threads()

500 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Attributes

logger

numCores

preemptible

defaultRequirements

toil.test.batchSystems.batchSystemTest.logger

toil.test.batchSystems.batchSystemTest.numCores = 2

toil.test.batchSystems.batchSystemTest.preemptible = False

toil.test.batchSystems.batchSystemTest.defaultRequirements

class toil.test.batchSystems.batchSystemTest.BatchSystemPluginTest(methodName='runTest')
Bases: toil.test.ToilTest

BatchSystemPluginTestToilTestTestCase

Class for testing batch system plugin functionality.

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

testAddBatchSystemFactory()

class toil.test.batchSystems.batchSystemTest.hidden

Hide abstract base class from unittest’s test case loader

http://stackoverflow.com/questions/1323455/python-unit-test-with-base-and-sub-class#answer-25695512

class AbstractBatchSystemTest(methodName='runTest')
Bases: toil.test.ToilTest

AbstractBatchSystemTestToilTestTestCase

30.1. toil 501

http://stackoverflow.com/questions/1323455/python-unit-test-with-base-and-sub-class#answer-25695512

Toil Documentation, Release 5.11.0

A base test case with generic tests that every batch system should pass.

Cannot assume that the batch system actually executes commands on the local machine/filesystem.

abstract createBatchSystem()

Return type
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

supportsWallTime()

classmethod createConfig()

Returns a dummy config for the batch system tests. We need a workflowID to be set up since we are
running tests without setting up a jobstore. This is the class version to be used when an instance is not
available.

Return type
toil.common.Config

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

get_max_startup_seconds()

Get the number of seconds this test ought to wait for the first job to run. Some batch systems may need
time to scale up.

Return type
int

test_available_cores()

test_run_jobs()

test_set_env()

test_set_job_env()

Test the mechanism for setting per-job environment variables to batch system jobs.

testCheckResourceRequest()

testScalableBatchSystem()

class AbstractBatchSystemJobTest(methodName='runTest')
Bases: toil.test.ToilTest

AbstractBatchSystemJobTestToilTestTestCase

An abstract base class for batch system tests that use a full Toil workflow rather than using the batch system
directly.

502 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

cpuCount

allocatedCores

sleepTime = 5

abstract getBatchSystemName()

Return type
(str, AbstractBatchSystem)

getOptions(tempDir)
Configures options for Toil workflow and makes job store. :param str tempDir: path to test directory
:return: Toil options object

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

testJobConcurrency()

Tests that the batch system is allocating core resources properly for concurrent tasks.

test_omp_threads()

Test if the OMP_NUM_THREADS env var is set correctly based on jobs.cores.

class AbstractGridEngineBatchSystemTest(methodName='runTest')
Bases: hidden.AbstractBatchSystemTest

AbstractBatchSystemTest AbstractGridEngineBatchSystemTestToilTestTestCase

An abstract class to reduce redundancy between Grid Engine, Slurm, and other similar batch systems

class toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemTest(methodName='runTest')
Bases: hidden

AbstractBatchSystemTest KubernetesBatchSystemTestToilTestTestCase

Tests against the Kubernetes batch system

supportsWallTime()

createBatchSystem()

30.1. toil 503

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

class toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemBenchTest(methodName='runTest')
Bases: toil.test.ToilTest

KubernetesBatchSystemBenchTestToilTestTestCase

Kubernetes batch system unit tests that don’t need to actually talk to a cluster.

test_preemptability_constraints()

Make sure we generate the right preemptability constraints.

test_label_constraints()

Make sure we generate the right preemptability constraints.

class toil.test.batchSystems.batchSystemTest.TESBatchSystemTest(methodName='runTest')
Bases: hidden

AbstractBatchSystemTest TESBatchSystemTestToilTestTestCase

Tests against the TES batch system

supportsWallTime()

createBatchSystem()

class toil.test.batchSystems.batchSystemTest.AWSBatchBatchSystemTest(methodName='runTest')
Bases: hidden

AWSBatchBatchSystemTestAbstractBatchSystemTestToilTestTestCase

Tests against the AWS Batch batch system

supportsWallTime()

createBatchSystem()

get_max_startup_seconds()

Get the number of seconds this test ought to wait for the first job to run. Some batch systems may need
time to scale up.

504 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Return type
int

class toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest(methodName='runTest')
Bases: hidden, toil.batchSystems.mesos.test.MesosTestSupport

AbstractBatchSystemTest

MesosBatchSystemTest

ToilTest

MesosTestSupport

TestCase

Tests against the Mesos batch system

classmethod createConfig()

needs to set mesos_endpoint to localhost for testing since the default is now the private IP address

supportsWallTime()

createBatchSystem()

tearDown()

Hook method for deconstructing the test fixture after testing it.

testIgnoreNode()

toil.test.batchSystems.batchSystemTest.write_temp_file(s, temp_dir)
Dump a string into a temp file and return its path.

Parameters
• s (str) –

• temp_dir (str) –

Return type
str

class toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemTest(methodName='runTest')
Bases: hidden

AbstractBatchSystemTest SingleMachineBatchSystemTestToilTestTestCase

Tests against the single-machine batch system

supportsWallTime()

Return type
bool

30.1. toil 505

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

createBatchSystem()

Return type
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

testProcessEscape(hide=False)
Test to make sure that child processes and their descendants go away when the Toil workflow stops.

If hide is true, will try and hide the child processes to make them hard to stop.

Parameters
hide (bool) –

Return type
None

testHidingProcessEscape()

Test to make sure that child processes and their descendants go away when the Toil workflow stops, even if
the job process stops and leaves children.

class toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest(methodName='runTest')
Bases: toil.test.ToilTest

MaxCoresSingleMachineBatchSystemTestToilTestTestCase

This test ensures that single machine batch system doesn’t exceed the configured number cores

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

Return type
None

setUp()

Hook method for setting up the test fixture before exercising it.

Return type
None

tearDown()

Hook method for deconstructing the test fixture after testing it.

Return type
None

scriptCommand()

Return type
str

test()

testServices()

506 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.test.batchSystems.batchSystemTest.parentJob(job, cmd)

toil.test.batchSystems.batchSystemTest.childJob(job, cmd)

toil.test.batchSystems.batchSystemTest.grandChildJob(job, cmd)

toil.test.batchSystems.batchSystemTest.greatGrandChild(cmd)

class toil.test.batchSystems.batchSystemTest.Service(cmd)
Bases: toil.job.Job.Service

Requirer Service

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

start(fileStore)
Start the service.

Parameters
job – The underlying host job that the service is being run in. Can be used to register deferred
functions, or to access the fileStore for creating temporary files.

Returns
An object describing how to access the service. The object must be pickleable and will be
used by jobs to access the service (see toil.job.Job.addService()).

check()

Checks the service is still running.

Raises
exceptions.RuntimeError – If the service failed, this will cause the service job to be
labeled failed.

Returns
True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should
raise a RuntimeError, not return False!

stop(fileStore)
Stops the service. Function can block until complete.

Parameters
job – The underlying host job that the service is being run in. Can be used to register deferred
functions, or to access the fileStore for creating temporary files.

30.1. toil 507

Toil Documentation, Release 5.11.0

class toil.test.batchSystems.batchSystemTest.ParasolBatchSystemTest(methodName='runTest')
Bases: hidden, toil.test.batchSystems.parasolTestSupport.ParasolTestSupport

AbstractBatchSystemTest

ParasolBatchSystemTest

ToilTest

ParasolTestSupport

TestCase

Tests the Parasol batch system

supportsWallTime()

createBatchSystem()

Return type
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

tearDown()

Hook method for deconstructing the test fixture after testing it.

testBatchResourceLimits()

class toil.test.batchSystems.batchSystemTest.GridEngineBatchSystemTest(methodName='runTest')
Bases: hidden

AbstractBatchSystemTest AbstractGridEngineBatchSystemTestToilTest GridEngineBatchSystemTestTestCase

Tests against the GridEngine batch system

createBatchSystem()

Return type
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

tearDown()

Hook method for deconstructing the test fixture after testing it.

class toil.test.batchSystems.batchSystemTest.SlurmBatchSystemTest(methodName='runTest')
Bases: hidden

AbstractBatchSystemTest AbstractGridEngineBatchSystemTestToilTest SlurmBatchSystemTestTestCase

Tests against the Slurm batch system

508 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

createBatchSystem()

Return type
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

tearDown()

Hook method for deconstructing the test fixture after testing it.

class toil.test.batchSystems.batchSystemTest.LSFBatchSystemTest(methodName='runTest')
Bases: hidden

AbstractBatchSystemTest AbstractGridEngineBatchSystemTestToilTest LSFBatchSystemTestTestCase

Tests against the LSF batch system

createBatchSystem()

Return type
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

class toil.test.batchSystems.batchSystemTest.TorqueBatchSystemTest(methodName='runTest')
Bases: hidden

AbstractBatchSystemTest AbstractGridEngineBatchSystemTestToilTest TorqueBatchSystemTestTestCase

Tests against the Torque batch system

createBatchSystem()

Return type
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

tearDown()

Hook method for deconstructing the test fixture after testing it.

class toil.test.batchSystems.batchSystemTest.HTCondorBatchSystemTest(methodName='runTest')
Bases: hidden

AbstractBatchSystemTest AbstractGridEngineBatchSystemTestToilTest HTCondorBatchSystemTestTestCase

Tests against the HTCondor batch system

30.1. toil 509

Toil Documentation, Release 5.11.0

createBatchSystem()

Return type
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

tearDown()

Hook method for deconstructing the test fixture after testing it.

class toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemJobTest(methodName='runTest')
Bases: hidden

AbstractBatchSystemJobTest SingleMachineBatchSystemJobTestToilTestTestCase

Tests Toil workflow against the SingleMachine batch system

getBatchSystemName()

Return type
(str, AbstractBatchSystem)

testConcurrencyWithDisk()

Tests that the batch system is allocating disk resources properly

testNestedResourcesDoNotBlock()

Resources are requested in the order Memory > Cpu > Disk. Test that unavailability of cpus for one job
that is scheduled does not block another job that can run.

class toil.test.batchSystems.batchSystemTest.MesosBatchSystemJobTest(methodName='runTest')
Bases: hidden, toil.batchSystems.mesos.test.MesosTestSupport

AbstractBatchSystemJobTest

MesosBatchSystemJobTest

ToilTest

MesosTestSupport

TestCase

Tests Toil workflow against the Mesos batch system

getOptions(tempDir)
Configures options for Toil workflow and makes job store. :param str tempDir: path to test directory :return:
Toil options object

getBatchSystemName()

Return type
(str, AbstractBatchSystem)

tearDown()

Hook method for deconstructing the test fixture after testing it.

510 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.test.batchSystems.batchSystemTest.measureConcurrency(filepath, sleep_time=10)
Run in parallel to determine the number of concurrent tasks. This code was copied from
toil.batchSystemTestMaxCoresSingleMachineBatchSystemTest :param str filepath: path to counter file
:param int sleep_time: number of seconds to sleep before counting down :return int max concurrency value:

toil.test.batchSystems.batchSystemTest.count(delta, file_path)
Increments counter file and returns the max number of times the file has been modified. Counter data must be in
the form: concurrent tasks, max concurrent tasks (counter should be initialized to 0,0)

Parameters
• delta (int) – increment value

• file_path (str) – path to shared counter file

Return int max concurrent tasks
toil.test.batchSystems.batchSystemTest.getCounters(path)

toil.test.batchSystems.batchSystemTest.resetCounters(path)

toil.test.batchSystems.batchSystemTest.get_omp_threads()

Return type
str

toil.test.batchSystems.parasolTestSupport

Module Contents

Classes

ParasolTestSupport For test cases that need a running Parasol leader and
worker on the local host

Attributes

log

toil.test.batchSystems.parasolTestSupport.log

class toil.test.batchSystems.parasolTestSupport.ParasolTestSupport

For test cases that need a running Parasol leader and worker on the local host

class ParasolThread

Bases: threading.Thread

30.1. toil 511

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/threading.html#threading.Thread

Toil Documentation, Release 5.11.0

ParasolThreadThread

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways to specify the activity: by
passing a callable object to the constructor, or by overriding the run() method in a subclass.

lock

abstract parasolCommand()

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments
taken from the args and kwargs arguments, respectively.

class ParasolLeaderThread

Bases: ParasolTestSupport.ParasolThread

ParasolLeaderThreadParasolThreadThread

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways to specify the activity: by
passing a callable object to the constructor, or by overriding the run() method in a subclass.

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments
taken from the args and kwargs arguments, respectively.

parasolCommand()

class ParasolWorkerThread

Bases: ParasolTestSupport.ParasolThread

512 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

ParasolThread ParasolWorkerThreadThread

A class that represents a thread of control.

This class can be safely subclassed in a limited fashion. There are two ways to specify the activity: by
passing a callable object to the constructor, or by overriding the run() method in a subclass.

parasolCommand()

toil.test.batchSystems.test_lsf_helper

lsfHelper.py shouldn’t need a batch system and so the unit tests here should aim to run on any system.

Module Contents

Classes

LSFHelperTest A common base class for Toil tests.

class toil.test.batchSystems.test_lsf_helper.LSFHelperTest(methodName='runTest')
Bases: toil.test.ToilTest

LSFHelperTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

test_parse_mem_and_cmd_from_output()

30.1. toil 513

Toil Documentation, Release 5.11.0

toil.test.batchSystems.test_slurm

Module Contents

Classes

FakeBatchSystem Class that implements a minimal Batch System, needed
to create a Worker (see below).

SlurmTest Class for unit-testing SlurmBatchSystem

Functions

call_sacct(args, **_) The arguments passed to call_command when executing
sacct are:

call_scontrol(args, **_) The arguments passed to call_command when executing
scontrol are:

call_sacct_raises(*_) Fake that the sacct command fails by raising a Called-
ProcessErrorStderr

toil.test.batchSystems.test_slurm.call_sacct(args, **_)
The arguments passed to call_command when executing sacct are: [‘sacct’, ‘-n’, ‘-j’, ‘<comma-separated list
of job-ids>’, ‘–format’, ‘JobIDRaw,State,ExitCode’, ‘-P’, ‘-S’, ‘1970-01-01’] The multi-line output is something
like:

1234|COMPLETED|0:0 1234.batch|COMPLETED|0:0 1235|PENDING|0:0 1236|FAILED|0:2
1236.extern|COMPLETED|0:0

Return type
str

toil.test.batchSystems.test_slurm.call_scontrol(args, **_)
The arguments passed to call_command when executing scontrol are: [‘scontrol’, ‘show’, ‘job’] or [‘scontrol’,
‘show’, ‘job’, ‘<job-id>’]

Return type
str

toil.test.batchSystems.test_slurm.call_sacct_raises(*_)
Fake that the sacct command fails by raising a CalledProcessErrorStderr

class toil.test.batchSystems.test_slurm.FakeBatchSystem

Class that implements a minimal Batch System, needed to create a Worker (see below).

getWaitDuration()

class toil.test.batchSystems.test_slurm.SlurmTest(methodName='runTest')
Bases: toil.test.ToilTest

514 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

SlurmTestToilTestTestCase

Class for unit-testing SlurmBatchSystem

setUp()

Hook method for setting up the test fixture before exercising it.

test_getJobDetailsFromSacct_one_exists()

test_getJobDetailsFromSacct_one_not_exists()

test_getJobDetailsFromSacct_many_all_exist()

test_getJobDetailsFromSacct_many_some_exist()

test_getJobDetailsFromSacct_many_none_exist()

test_getJobDetailsFromScontrol_one_exists()

test_getJobDetailsFromScontrol_one_not_exists()

Asking for the job details of a single job that scontrol doesn’t know about should raise an exception.

test_getJobDetailsFromScontrol_many_all_exist()

test_getJobDetailsFromScontrol_many_some_exist()

test_getJobDetailsFromScontrol_many_none_exist()

test_getJobExitCode_job_exists()

test_getJobExitCode_job_not_exists()

test_getJobExitCode_sacct_raises_job_exists()

This test forces the use of scontrol to get job information, by letting sacct raise an exception.

test_getJobExitCode_sacct_raises_job_not_exists()

This test forces the use of scontrol to get job information, by letting sacct raise an exception. Next, scontrol
should also raise because it doesn’t know the job.

test_coalesce_job_exit_codes_one_exists()

test_coalesce_job_exit_codes_one_not_exists()

test_coalesce_job_exit_codes_many_all_exist()

test_coalesce_job_exit_codes_some_exists()

test_coalesce_job_exit_codes_sacct_raises_job_exists()

This test forces the use of scontrol to get job information, by letting sacct raise an exception.

test_coalesce_job_exit_codes_sacct_raises_job_not_exists()

This test forces the use of scontrol to get job information, by letting sacct raise an exception. Next, scontrol
should also raise because it doesn’t know the job.

30.1. toil 515

Toil Documentation, Release 5.11.0

toil.test.cwl

Submodules

toil.test.cwl.conftest

Module Contents

toil.test.cwl.conftest.collect_ignore = ['spec']

toil.test.cwl.cwlTest

Module Contents

Classes

CWLWorkflowTest CWL tests included in Toil that don't involve the whole
CWL conformance

CWLv10Test Run the CWL 1.0 conformance tests in various environ-
ments.

CWLv11Test Run the CWL 1.1 conformance tests in various environ-
ments.

CWLv12Test Run the CWL 1.2 conformance tests in various environ-
ments.

CWLOnARMTest Run the CWL 1.2 conformance tests on ARM specifi-
cally.

516 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Functions

run_conformance_tests(workDir, yml[, runner,
caching, ...])

Run the CWL conformance tests.

test_workflow_echo_string_scatter_stderr_log_dir(tmp_path)

test_log_dir_echo_no_output(tmp_path)

test_log_dir_echo_stderr(tmp_path)

test_filename_conflict_resolution(tmp_path)

test_filename_conflict_detection(tmp_path) Make sure we don't just stage files over each other when
using a container.

test_filename_conflict_detection_at_root(tmp_path)Make sure we don't just stage files over each other.
test_pick_value_with_one_null_value(caplog) Make sure toil-cwl-runner does not false log a warning

when pickValue is
test_usage_message() This is purely to ensure a (more) helpful error message

is printed if a user does
test_workflow_echo_string()

test_workflow_echo_string_scatter_capture_stdout()

test_visit_top_cwl_class()

test_visit_cwl_class_and_reduce()

test_download_structure(tmp_path) Make sure that download_structure makes the right calls
to what it thinks is the file store.

Attributes

pkg_root

log

CONFORMANCE_TEST_TIMEOUT

toil.test.cwl.cwlTest.pkg_root

toil.test.cwl.cwlTest.log

toil.test.cwl.cwlTest.CONFORMANCE_TEST_TIMEOUT = 3600

toil.test.cwl.cwlTest.run_conformance_tests(workDir, yml, runner=None, caching=False,
batchSystem=None, selected_tests=None,
selected_tags=None, skipped_tests=None,
extra_args=None, must_support_all_features=False,
junit_file=None)

Run the CWL conformance tests.

30.1. toil 517

Toil Documentation, Release 5.11.0

Parameters
• workDir (str) – Directory to run tests in.

• yml (str) – CWL test list YML to run tests from.

• runner (Optional[str]) – If set, use this cwl runner instead of the default toil-cwl-runner.

• caching (bool) – If True, use Toil file store caching.

• batchSystem (str) – If set, use this batch system instead of the default single_machine.

• selected_tests (str) – If set, use this description of test numbers to run (comma-
separated numbers or ranges)

• selected_tags (str) – As an alternative to selected_tests, run tests with the given tags.

• skipped_tests (str) – Comma-separated string labels of tests to skip.

• extra_args (Optional[List[str]]) – Provide these extra arguments to runner for each
test.

• must_support_all_features (bool) – If set, fail if some CWL optional features are un-
supported.

• junit_file (Optional[str]) – JUnit XML file to write test info to.

class toil.test.cwl.cwlTest.CWLWorkflowTest(methodName='runTest')
Bases: toil.test.ToilTest

CWLWorkflowTestToilTestTestCase

CWL tests included in Toil that don’t involve the whole CWL conformance test suite. Tests Toil-specific functions
like URL types supported for inputs.

setUp()

Runs anew before each test to create farm fresh temp dirs.

tearDown()

Clean up outputs.

revsort(cwl_filename, tester_fn)

revsort_no_checksum(cwl_filename, tester_fn)

download(inputs, tester_fn)

load_contents(inputs, tester_fn)

download_directory(inputs, tester_fn)

download_subdirectory(inputs, tester_fn)

test_mpi()

518 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

test_s3_as_secondary_file()

test_run_revsort()

test_run_revsort_nochecksum()

test_run_revsort2()

test_run_revsort_debug_worker()

test_run_colon_output()

test_download_s3()

test_download_http()

test_download_https()

test_download_file()

test_download_directory_s3()

test_download_directory_file()

test_download_subdirectory_s3()

test_download_subdirectory_file()

test_load_contents_s3()

test_load_contents_http()

test_load_contents_https()

test_load_contents_file()

test_bioconda()

test_biocontainers()

test_cuda()

test_restart()

Enable restarts with toil-cwl-runner – run failing test, re-run correct test. Only implemented for single
machine.

test_streamable()

Test that a file with ‘streamable’=True is a named pipe. This is a CWL1.2 feature.

class toil.test.cwl.cwlTest.CWLv10Test(methodName='runTest')
Bases: toil.test.ToilTest

CWLv10TestToilTestTestCase

Run the CWL 1.0 conformance tests in various environments.

30.1. toil 519

Toil Documentation, Release 5.11.0

setUp()

Runs anew before each test to create farm fresh temp dirs.

tearDown()

Clean up outputs.

test_run_conformance_with_caching()

test_run_conformance(batchSystem=None, caching=False, selected_tests=None)

test_lsf_cwl_conformance(**kwargs)

test_slurm_cwl_conformance(**kwargs)

test_torque_cwl_conformance(**kwargs)

test_gridengine_cwl_conformance(**kwargs)

test_mesos_cwl_conformance(**kwargs)

test_parasol_cwl_conformance(**kwargs)

test_kubernetes_cwl_conformance(**kwargs)

test_lsf_cwl_conformance_with_caching()

test_slurm_cwl_conformance_with_caching()

test_torque_cwl_conformance_with_caching()

test_gridengine_cwl_conformance_with_caching()

test_mesos_cwl_conformance_with_caching()

test_parasol_cwl_conformance_with_caching()

test_kubernetes_cwl_conformance_with_caching()

class toil.test.cwl.cwlTest.CWLv11Test(methodName='runTest')
Bases: toil.test.ToilTest

CWLv11TestToilTestTestCase

Run the CWL 1.1 conformance tests in various environments.

classmethod setUpClass()

Runs anew before each test.

tearDown()

Clean up outputs.

test_run_conformance(**kwargs)

520 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

test_run_conformance_with_caching()

test_kubernetes_cwl_conformance(**kwargs)

test_kubernetes_cwl_conformance_with_caching()

class toil.test.cwl.cwlTest.CWLv12Test(methodName='runTest')
Bases: toil.test.ToilTest

CWLv12TestToilTestTestCase

Run the CWL 1.2 conformance tests in various environments.

classmethod setUpClass()

Runs anew before each test.

tearDown()

Clean up outputs.

test_run_conformance(**kwargs)

test_run_conformance_with_caching()

test_run_conformance_with_in_place_update()

Make sure that with –bypass-file-store we properly support in place update on a single node, and that this
doesn’t break any other features.

test_kubernetes_cwl_conformance(**kwargs)

test_kubernetes_cwl_conformance_with_caching()

test_wes_server_cwl_conformance()

Run the CWL conformance tests via WES. TOIL_WES_ENDPOINT must be specified. If the WES server
requires authentication, set TOIL_WES_USER and TOIL_WES_PASSWORD.

To run manually:

TOIL_WES_ENDPOINT=http://localhost:8080 TOIL_WES_USER=test
TOIL_WES_PASSWORD=password python -m pytest src/toil/test/cwl/cwlTest.py::CWLv12Test::test_wes_server_cwl_conformance
-vv –log-level INFO –log-cli-level INFO

class toil.test.cwl.cwlTest.CWLOnARMTest(methodName)
Bases: toil.test.provisioners.clusterTest.AbstractClusterTest

AbstractClusterTest CWLOnARMTestToilTestTestCase

Run the CWL 1.2 conformance tests on ARM specifically.

30.1. toil 521

Toil Documentation, Release 5.11.0

setUp()

Set up for the test. Must be overridden to call this method and set self.jobStore.

test_cwl_on_arm()

toil.test.cwl.cwlTest.test_workflow_echo_string_scatter_stderr_log_dir(tmp_path)

Parameters
tmp_path (pathlib.Path) –

toil.test.cwl.cwlTest.test_log_dir_echo_no_output(tmp_path)

Parameters
tmp_path (pathlib.Path) –

Return type
None

toil.test.cwl.cwlTest.test_log_dir_echo_stderr(tmp_path)

Parameters
tmp_path (pathlib.Path) –

Return type
None

toil.test.cwl.cwlTest.test_filename_conflict_resolution(tmp_path)

Parameters
tmp_path (pathlib.Path) –

toil.test.cwl.cwlTest.test_filename_conflict_detection(tmp_path)
Make sure we don’t just stage files over each other when using a container.

Parameters
tmp_path (pathlib.Path) –

toil.test.cwl.cwlTest.test_filename_conflict_detection_at_root(tmp_path)
Make sure we don’t just stage files over each other.

Specifically, when using a container and the files are at the root of the work dir.

Parameters
tmp_path (pathlib.Path) –

toil.test.cwl.cwlTest.test_pick_value_with_one_null_value(caplog)
Make sure toil-cwl-runner does not false log a warning when pickValue is used but outputSource only contains
one null value. See: #3991.

toil.test.cwl.cwlTest.test_usage_message()

This is purely to ensure a (more) helpful error message is printed if a user does not order their positional args
correctly [cwl, cwl-job (json/yml/yaml), jobstore].

toil.test.cwl.cwlTest.test_workflow_echo_string()

toil.test.cwl.cwlTest.test_workflow_echo_string_scatter_capture_stdout()

toil.test.cwl.cwlTest.test_visit_top_cwl_class()

toil.test.cwl.cwlTest.test_visit_cwl_class_and_reduce()

522 Chapter 30. API Reference

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Toil Documentation, Release 5.11.0

toil.test.cwl.cwlTest.test_download_structure(tmp_path)
Make sure that download_structure makes the right calls to what it thinks is the file store.

Return type
None

toil.test.docs

Submodules

toil.test.docs.scriptsTest

Module Contents

Classes

ToilDocumentationTest Tests for scripts in the toil tutorials.

Attributes

pkg_root

toil.test.docs.scriptsTest.pkg_root

class toil.test.docs.scriptsTest.ToilDocumentationTest(methodName='runTest')
Bases: toil.test.ToilTest

TestCase ToilTest ToilDocumentationTest

Tests for scripts in the toil tutorials.

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

tearDown()

Hook method for deconstructing the test fixture after testing it.

Return type
None

checkExitCode(script)

30.1. toil 523

Toil Documentation, Release 5.11.0

checkExpectedOut(script, expectedOutput)

checkExpectedPattern(script, expectedPattern)

testCwlexample()

testDiscoverfiles()

testDynamic()

testEncapsulation()

testEncapsulation2()

testHelloworld()

testInvokeworkflow()

testInvokeworkflow2()

testJobFunctions()

testManaging()

testManaging2()

testMultiplejobs()

testMultiplejobs2()

testMultiplejobs3()

testPromises2()

testQuickstart()

testRequirements()

testArguments()

testDocker()

testPromises()

testServices()

testStaging()

toil.test.jobStores

Submodules

toil.test.jobStores.jobStoreTest

Module Contents

524 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Classes

AbstractJobStoreTest Hide abstract base class from unittest's test case loader
AbstractEncryptedJobStoreTest

FileJobStoreTest A common base class for Toil tests.
GoogleJobStoreTest A common base class for Toil tests.
AWSJobStoreTest A common base class for Toil tests.
InvalidAWSJobStoreTest A common base class for Toil tests.
EncryptedAWSJobStoreTest A common base class for Toil tests.
StubHttpRequestHandler Simple HTTP request handler with GET and HEAD

commands.

Functions

google_retry(x)

tearDownModule()

Attributes

logger

toil.test.jobStores.jobStoreTest.google_retry(x)

toil.test.jobStores.jobStoreTest.logger

toil.test.jobStores.jobStoreTest.tearDownModule()

class toil.test.jobStores.jobStoreTest.AbstractJobStoreTest

Hide abstract base class from unittest’s test case loader

http://stackoverflow.com/questions/1323455/python-unit-test-with-base-and-sub-class#answer-25695512

class Test(methodName='runTest')
Bases: toil.test.ToilTest

TestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

30.1. toil 525

http://stackoverflow.com/questions/1323455/python-unit-test-with-base-and-sub-class#answer-25695512

Toil Documentation, Release 5.11.0

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of
a directory where you want temporary test files be placed. The directory will be created if it doesn’t
exist. The path may be relative in which case it will be assumed to be relative to the project root. If
TOIL_TEST_TEMP is not defined, temporary files and directories will be created in the system’s default
location for such files and any temporary files or directories left over from tests will be removed automati-
cally removed during tear down. Otherwise, left-over files will not be removed.

externalStoreCache

mpTestPartSize

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

testInitialState()

Ensure proper handling of nonexistant files.

testJobCreation()

Test creation of a job.

Does the job exist in the jobstore it is supposed to be in? Are its attributes what is expected?

testConfigEquality()

Ensure that the command line configurations are successfully loaded and stored.

In setUp() self.jobstore1 is created and initialized. In this test, after creating newJobStore, .resume()
will look for a previously instantiated job store and load its config options. This is expected to be equal
but not the same object.

testJobLoadEquality()

Tests that a job created via one JobStore instance can be loaded from another.

testChildLoadingEquality()

Test that loading a child job operates as expected.

testPersistantFilesToDelete()

Make sure that updating a job carries over filesToDelete.

The following demonstrates the job update pattern, where files to be deleted are referenced in
“filesToDelete” array, which is persisted to disk first. If things go wrong during the update, this list of
files to delete is used to remove the unneeded files.

testUpdateBehavior()

Tests the proper behavior during updating jobs.

testJobDeletions()

Tests the consequences of deleting jobs.

testSharedFiles()

Tests the sharing of files.

testReadWriteSharedFilesTextMode()

Checks if text mode is compatible for shared file streams.

526 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

testReadWriteFileStreamTextMode()

Checks if text mode is compatible for file streams.

testPerJobFiles()

Tests the behavior of files on jobs.

testStatsAndLogging()

Tests behavior of reading and writting stats and logging.

testWriteLogFiles()

Test writing log files.

testBatchCreate()

Test creation of many jobs.

testGrowingAndShrinkingJob()

Make sure jobs update correctly if they grow/shrink.

classmethod cleanUpExternalStores()

classmethod makeImportExportTests()

testImportHttpFile()

Test importing a file over HTTP.

testImportFtpFile()

Test importing a file over FTP

testFileDeletion()

Intended to cover the batch deletion of items in the AWSJobStore, but it doesn’t hurt running it on the
other job stores.

testMultipartUploads()

This test is meant to cover multi-part uploads in the AWSJobStore but it doesn’t hurt running it against
the other job stores as well.

testZeroLengthFiles()

Test reading and writing of empty files.

testLargeFile()

Test the reading and writing of large files.

fetch_url(url)
Fetch the given URL. Throw an error if it cannot be fetched in a reasonable number of attempts.

Parameters
url (str) –

Return type
None

assertUrl(url)

testCleanCache()

testPartialReadFromStream()

Test whether readFileStream will deadlock on a partial read.

testDestructionOfCorruptedJobStore()

30.1. toil 527

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

testDestructionIdempotence()

testEmptyFileStoreIDIsReadable()

Simply creates an empty fileStoreID and attempts to read from it.

class toil.test.jobStores.jobStoreTest.AbstractEncryptedJobStoreTest

class Test(methodName='runTest')
Bases: AbstractJobStoreTest

TestToilTestTestCase

A test of job stores that use encryption

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

testEncrypted()

Create an encrypted file. Read it in encrypted mode then try with encryption off to ensure that it fails.

class toil.test.jobStores.jobStoreTest.FileJobStoreTest(methodName='runTest')
Bases: AbstractJobStoreTest

FileJobStoreTestTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

testPreserveFileName()

Check that the fileID ends with the given file name.

528 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

test_jobstore_init_preserves_symlink_path()

Test that if we provide a fileJobStore with a symlink to a directory, it doesn’t de-reference it.

test_jobstore_does_not_leak_symlinks()

Test that if we link imports into the FileJobStore, we can’t get hardlinks to symlinks.

test_file_link_imports()

Test that imported files are symlinked when when expected

class toil.test.jobStores.jobStoreTest.GoogleJobStoreTest(methodName='runTest')
Bases: AbstractJobStoreTest

GoogleJobStoreTestTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

projectID

headers

class toil.test.jobStores.jobStoreTest.AWSJobStoreTest(methodName='runTest')
Bases: AbstractJobStoreTest

AWSJobStoreTestTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

30.1. toil 529

Toil Documentation, Release 5.11.0

testSDBDomainsDeletedOnFailedJobstoreBucketCreation()

This test ensures that SDB domains bound to a jobstore are deleted if the jobstore bucket failed to be created.
We simulate a failed jobstore bucket creation by using a bucket in a different region with the same name.

testInlinedFiles()

testOverlargeJob()

testMultiThreadImportFile()

Tests that importFile is thread-safe.

Return type
None

class toil.test.jobStores.jobStoreTest.InvalidAWSJobStoreTest(methodName='runTest')
Bases: toil.test.ToilTest

InvalidAWSJobStoreTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

testInvalidJobStoreName()

class toil.test.jobStores.jobStoreTest.EncryptedAWSJobStoreTest(methodName='runTest')
Bases: AWSJobStoreTest, AbstractEncryptedJobStoreTest

AWSJobStoreTest

EncryptedAWSJobStoreTestTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and

530 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

class toil.test.jobStores.jobStoreTest.StubHttpRequestHandler(*args, directory=None, **kwargs)
Bases: http.server.SimpleHTTPRequestHandler

BaseHTTPRequestHandler SimpleHTTPRequestHandlerStreamRequestHandlerBaseRequestHandler StubHttpRequestHandler

Simple HTTP request handler with GET and HEAD commands.

This serves files from the current directory and any of its subdirectories. The MIME type for files is determined
by calling the .guess_type() method.

The GET and HEAD requests are identical except that the HEAD request omits the actual contents of the file.

fileContents = 'A good programmer looks both ways before crossing a one-way street'

do_GET()

Serve a GET request.

toil.test.lib

Subpackages

toil.test.lib.aws

Submodules

toil.test.lib.aws.test_iam

Module Contents

Classes

IAMTest Check that given permissions and associated functions
perform correctly

30.1. toil 531

https://docs.python.org/3/library/http.server.html#http.server.SimpleHTTPRequestHandler

Toil Documentation, Release 5.11.0

Attributes

logger

toil.test.lib.aws.test_iam.logger

class toil.test.lib.aws.test_iam.IAMTest(methodName='runTest')
Bases: toil.test.ToilTest

IAMTestToilTestTestCase

Check that given permissions and associated functions perform correctly

test_permissions_iam()

test_negative_permissions_iam()

test_wildcard_handling()

toil.test.lib.aws.test_s3

Module Contents

Classes

S3Test Confirm the workarounds for us-east-1.

Attributes

logger

toil.test.lib.aws.test_s3.logger

class toil.test.lib.aws.test_s3.S3Test(methodName='runTest')
Bases: toil.test.ToilTest

532 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

S3TestToilTestTestCase

Confirm the workarounds for us-east-1.

s3_resource: Optional[mypy_boto3_s3.S3ServiceResource]

bucket: Optional[mypy_boto3_s3.service_resource.Bucket]

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

Return type
None

test_create_bucket()

Test bucket creation for us-east-1.

Return type
None

test_get_bucket_location_public_bucket()

Test getting buket location for a bucket we don’t own.

Return type
None

classmethod tearDownClass()

Hook method for deconstructing the class fixture after running all tests in the class.

Return type
None

toil.test.lib.aws.test_utils

Module Contents

Classes

TagGenerationTest Test for tag generation from environment variables

30.1. toil 533

Toil Documentation, Release 5.11.0

Attributes

logger

toil.test.lib.aws.test_utils.logger

class toil.test.lib.aws.test_utils.TagGenerationTest(methodName='runTest')
Bases: toil.test.ToilTest

TagGenerationTestToilTestTestCase

Test for tag generation from environment variables

test_build_tag()

test_empty_aws_tags()

test_incorrect_json_object()

test_incorrect_json_emoji()

test_build_tag_with_tags()

Submodules

toil.test.lib.dockerTest

Module Contents

Classes

DockerTest Tests dockerCall and ensures no containers are left
around.

534 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Attributes

logger

toil.test.lib.dockerTest.logger

class toil.test.lib.dockerTest.DockerTest(methodName='runTest')
Bases: toil.test.ToilTest

DockerTestToilTestTestCase

Tests dockerCall and ensures no containers are left around. When running tests you may optionally set the
TOIL_TEST_TEMP environment variable to the path of a directory where you want temporary test files be
placed. The directory will be created if it doesn’t exist. The path may be relative in which case it will be assumed
to be relative to the project root. If TOIL_TEST_TEMP is not defined, temporary files and directories will be
created in the system’s default location for such files and any temporary files or directories left over from tests
will be removed automatically removed during tear down. Otherwise, left-over files will not be removed.

setUp()

Hook method for setting up the test fixture before exercising it.

testDockerClean(caching=False, detached=True, rm=True, deferParam=None)
Run the test container that creates a file in the work dir, and sleeps for 5 minutes. Ensure that the calling
job gets SIGKILLed after a minute, leaving behind the spooky/ghost/zombie container. Ensure that the
container is killed on batch system shutdown (through the deferParam mechanism).

testDockerClean_CRx_FORGO()

testDockerClean_CRx_STOP()

testDockerClean_CRx_RM()

testDockerClean_CRx_None()

testDockerClean_CxD_FORGO()

testDockerClean_CxD_STOP()

testDockerClean_CxD_RM()

testDockerClean_CxD_None()

testDockerClean_Cxx_FORGO()

testDockerClean_Cxx_STOP()

testDockerClean_Cxx_RM()

30.1. toil 535

Toil Documentation, Release 5.11.0

testDockerClean_Cxx_None()

testDockerClean_xRx_FORGO()

testDockerClean_xRx_STOP()

testDockerClean_xRx_RM()

testDockerClean_xRx_None()

testDockerClean_xxD_FORGO()

testDockerClean_xxD_STOP()

testDockerClean_xxD_RM()

testDockerClean_xxD_None()

testDockerClean_xxx_FORGO()

testDockerClean_xxx_STOP()

testDockerClean_xxx_RM()

testDockerClean_xxx_None()

testDockerPipeChain(caching=False)

Test for piping API for dockerCall(). Using this API (activated when list of argument
lists is given as parameters), commands a piped together into a chain. ex: parameters=[
[‘printf’, ‘x

y

‘], [‘wc’, ‘-l’]] should execute:
printf ‘x

y

‘ | wc -l

testDockerPipeChainErrorDetection(caching=False)
By default, executing cmd1 | cmd2 | . . . | cmdN, will only return an error if cmdN fails. This can lead to all
manor of errors being silently missed. This tests to make sure that the piping API for dockerCall() throws
an exception if non-last commands in the chain fail.

testNonCachingDockerChain()

testNonCachingDockerChainErrorDetection()

testDockerLogs(stream=False, demux=False)
Test for the different log outputs when deatch=False.

testDockerLogs_Stream()

testDockerLogs_Demux()

testDockerLogs_Demux_Stream()

536 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.test.lib.test_conversions

Module Contents

Classes

ConversionTest A common base class for Toil tests.

Attributes

logger

toil.test.lib.test_conversions.logger

class toil.test.lib.test_conversions.ConversionTest(methodName='runTest')
Bases: toil.test.ToilTest

ConversionTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

test_convert()

test_human2bytes()

test_hms_duration_to_seconds()

30.1. toil 537

Toil Documentation, Release 5.11.0

toil.test.lib.test_ec2

Module Contents

Classes

FlatcarFeedTest Test accessing the FLatcar AMI release feed, indepen-
dent of the AWS API

AMITest A common base class for Toil tests.

Attributes

logger

toil.test.lib.test_ec2.logger

class toil.test.lib.test_ec2.FlatcarFeedTest(methodName='runTest')
Bases: toil.test.ToilTest

FlatcarFeedTestToilTestTestCase

Test accessing the FLatcar AMI release feed, independent of the AWS API

test_parse_archive_feed()

Make sure we can get a Flatcar release from the Internet Archive.

test_parse_beta_feed()

Make sure we can get a Flatcar release from the beta channel.

test_parse_stable_feed()

Make sure we can get a Flatcar release from the stable channel.

test_bypass_stable_feed()

Make sure we can either get or safely not get a Flatcar release from the stable channel.

class toil.test.lib.test_ec2.AMITest(methodName='runTest')
Bases: toil.test.ToilTest

538 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

AMITestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

test_fetch_flatcar()

test_fetch_arm_flatcar()

Test flatcar AMI finder architecture parameter.

toil.test.lib.test_misc

Module Contents

Classes

UserNameAvailableTest Make sure we can get user names when they are avail-
able.

UserNameUnvailableTest Make sure we can get something for a user name when
user names are not

UserNameVeryBrokenTest Make sure we can get something for a user name when
user name fetching is

Attributes

logger

toil.test.lib.test_misc.logger

30.1. toil 539

Toil Documentation, Release 5.11.0

class toil.test.lib.test_misc.UserNameAvailableTest(methodName='runTest')
Bases: toil.test.ToilTest

TestCase ToilTest UserNameAvailableTest

Make sure we can get user names when they are available.

test_get_user_name()

class toil.test.lib.test_misc.UserNameUnvailableTest(methodName='runTest')
Bases: toil.test.ToilTest

TestCase ToilTest UserNameUnvailableTest

Make sure we can get something for a user name when user names are not available.

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

test_get_user_name()

class toil.test.lib.test_misc.UserNameVeryBrokenTest(methodName='runTest')
Bases: toil.test.ToilTest

TestCase ToilTest UserNameVeryBrokenTest

Make sure we can get something for a user name when user name fetching is broken in ways we did not expect.

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

540 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

test_get_user_name()

toil.test.mesos

Submodules

toil.test.mesos.MesosDataStructuresTest

Module Contents

Classes

DataStructuresTest A common base class for Toil tests.

class toil.test.mesos.MesosDataStructuresTest.DataStructuresTest(methodName='runTest')
Bases: toil.test.ToilTest

DataStructuresTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

testJobQueue(testJobs=1000)
The mesos JobQueue sorts MesosShape objects by requirement and this test ensures that that sorting is
what is expected: non-preemptible jobs groups first, with priority given to large jobs.

toil.test.mesos.helloWorld

A simple user script for Toil

30.1. toil 541

Toil Documentation, Release 5.11.0

Module Contents

Functions

hello_world(job)

hello_world_child(job, hw)

main()

Attributes

childMessage

parentMessage

toil.test.mesos.helloWorld.childMessage = 'The child job is now running!'

toil.test.mesos.helloWorld.parentMessage = 'The parent job is now running!'

toil.test.mesos.helloWorld.hello_world(job)

toil.test.mesos.helloWorld.hello_world_child(job, hw)

toil.test.mesos.helloWorld.main()

toil.test.mesos.stress

Module Contents

Classes

LongTestJob Class represents a unit of work in toil.
LongTestFollowOn Class represents a unit of work in toil.
HelloWorldJob Class represents a unit of work in toil.
HelloWorldFollowOn Class represents a unit of work in toil.

542 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Functions

touchFile(fileStore)

main(numJobs)

toil.test.mesos.stress.touchFile(fileStore)

class toil.test.mesos.stress.LongTestJob(numJobs)
Bases: toil.job.Job

Job LongTestJob

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

class toil.test.mesos.stress.LongTestFollowOn

Bases: toil.job.Job

Job LongTestFollowOn

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

30.1. toil 543

Toil Documentation, Release 5.11.0

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

class toil.test.mesos.stress.HelloWorldJob(i)
Bases: toil.job.Job

HelloWorldJobJob

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

class toil.test.mesos.stress.HelloWorldFollowOn(i)
Bases: toil.job.Job

HelloWorldFollowOnJob

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

toil.test.mesos.stress.main(numJobs)

544 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.test.provisioners

Subpackages

toil.test.provisioners.aws

Submodules

toil.test.provisioners.aws.awsProvisionerTest

Module Contents

Classes

AWSProvisionerBenchTest Tests for the AWS provisioner that don't actually provi-
sion anything.

AbstractAWSAutoscaleTest A common base class for Toil tests.
AWSAutoscaleTest A common base class for Toil tests.
AWSStaticAutoscaleTest Runs the tests on a statically provisioned cluster with au-

toscaling enabled.
AWSManagedAutoscaleTest Runs the tests on a self-scaling Kubernetes cluster.
AWSAutoscaleTestMultipleNodeTypes A common base class for Toil tests.
AWSRestartTest This test insures autoscaling works on a restarted Toil

run.
PreemptibleDeficitCompensationTest A common base class for Toil tests.

Attributes

log

toil.test.provisioners.aws.awsProvisionerTest.log

class toil.test.provisioners.aws.awsProvisionerTest.AWSProvisionerBenchTest(methodName='runTest')
Bases: toil.test.ToilTest

AWSProvisionerBenchTestToilTestTestCase

Tests for the AWS provisioner that don’t actually provision anything.

test_AMI_finding()

30.1. toil 545

Toil Documentation, Release 5.11.0

test_read_write_global_files()

Make sure the _write_file_to_cloud() and _read_file_from_cloud() functions of the AWS provisioner work
as intended.

class toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest(methodName)
Bases: toil.test.provisioners.clusterTest.AbstractClusterTest

AbstractAWSAutoscaleTestAbstractClusterTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

script()

Return the full path to the user script on the leader.

data(filename)
Return the full path to the data file with the given name on the leader.

rsyncUtil(src, dest)

getRootVolID()

putScript(content)
Helper method for _getScript to inject a script file at the configured script path, from text.

Parameters
content (str) –

class toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest(name)
Bases: AbstractAWSAutoscaleTest

AWSAutoscaleTestAbstractAWSAutoscaleTestAbstractClusterTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP

546 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

setUp()

Set up for the test. Must be overridden to call this method and set self.jobStore.

launchCluster()

getRootVolID()

Adds in test to check that EBS volume is build with adequate size. Otherwise is functionally equivalent to
parent. :return: volumeID

testAutoScale()

testSpotAutoScale()

testSpotAutoScaleBalancingTypes()

class toil.test.provisioners.aws.awsProvisionerTest.AWSStaticAutoscaleTest(name)
Bases: AWSAutoscaleTest

AWSAutoscaleTest AWSStaticAutoscaleTestAbstractAWSAutoscaleTestAbstractClusterTestToilTestTestCase

Runs the tests on a statically provisioned cluster with autoscaling enabled.

launchCluster()

class toil.test.provisioners.aws.awsProvisionerTest.AWSManagedAutoscaleTest(name)
Bases: AWSAutoscaleTest

AWSAutoscaleTest AWSManagedAutoscaleTestAbstractAWSAutoscaleTestAbstractClusterTestToilTestTestCase

Runs the tests on a self-scaling Kubernetes cluster.

launchCluster()

class toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTestMultipleNodeTypes(name)
Bases: AbstractAWSAutoscaleTest

AWSAutoscaleTestMultipleNodeTypesAbstractAWSAutoscaleTestAbstractClusterTestToilTestTestCase

A common base class for Toil tests.

30.1. toil 547

Toil Documentation, Release 5.11.0

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

setUp()

Set up for the test. Must be overridden to call this method and set self.jobStore.

testAutoScale()

class toil.test.provisioners.aws.awsProvisionerTest.AWSRestartTest(name)
Bases: AbstractAWSAutoscaleTest

AWSRestartTestAbstractAWSAutoscaleTestAbstractClusterTestToilTestTestCase

This test insures autoscaling works on a restarted Toil run.

setUp()

Set up for the test. Must be overridden to call this method and set self.jobStore.

testAutoScaledCluster()

class toil.test.provisioners.aws.awsProvisionerTest.PreemptibleDeficitCompensationTest(name)
Bases: AbstractAWSAutoscaleTest

AbstractAWSAutoscaleTest PreemptibleDeficitCompensationTestAbstractClusterTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

setUp()

Set up for the test. Must be overridden to call this method and set self.jobStore.

test()

548 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Submodules

toil.test.provisioners.clusterScalerTest

Module Contents

Classes

BinPackingTest A common base class for Toil tests.
ClusterScalerTest A common base class for Toil tests.
ScalerThreadTest A common base class for Toil tests.
MockBatchSystemAndProvisioner Mimics a leader, job batcher, provisioner and scalable

batch system.

Attributes

logger

c4_8xlarge_preemptible

c4_8xlarge

r3_8xlarge

r5_2xlarge

r5_4xlarge

t2_micro

toil.test.provisioners.clusterScalerTest.logger

toil.test.provisioners.clusterScalerTest.c4_8xlarge_preemptible

toil.test.provisioners.clusterScalerTest.c4_8xlarge

toil.test.provisioners.clusterScalerTest.r3_8xlarge

toil.test.provisioners.clusterScalerTest.r5_2xlarge

toil.test.provisioners.clusterScalerTest.r5_4xlarge

toil.test.provisioners.clusterScalerTest.t2_micro

class toil.test.provisioners.clusterScalerTest.BinPackingTest(methodName='runTest')
Bases: toil.test.ToilTest

30.1. toil 549

Toil Documentation, Release 5.11.0

BinPackingTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

setUp()

Hook method for setting up the test fixture before exercising it.

testPackingOneShape()

Pack one shape and check that the resulting reservations look sane.

testSorting()

Test that sorting is correct: preemptible, then memory, then cores, then disk, then wallTime.

testAddingInitialNode()

Pack one shape when no nodes are available and confirm that we fit one node properly.

testLowTargetTime()

Test that a low targetTime (0) parallelizes jobs aggressively (1000 queued jobs require 1000 nodes).

Ideally, low targetTime means: Start quickly and maximize parallelization after the cpu/disk/mem have
been packed.

Disk/cpu/mem packing is prioritized first, so we set job resource reqs so that each t2.micro (1 cpu/8G
disk/1G RAM) can only run one job at a time with its resources.

Each job is parametrized to take 300 seconds, so (the minimum of) 1 of them should fit into each node’s 0
second window, so we expect 1000 nodes.

testHighTargetTime()

Test that a high targetTime (3600 seconds) maximizes packing within the targetTime.

Ideally, high targetTime means: Maximize packing within the targetTime after the cpu/disk/mem have been
packed.

Disk/cpu/mem packing is prioritized first, so we set job resource reqs so that each t2.micro (1 cpu/8G
disk/1G RAM) can only run one job at a time with its resources.

Each job is parametrized to take 300 seconds, so 12 of them should fit into each node’s 3600 second window.
1000/12 = 83.33, so we expect 84 nodes.

testZeroResourceJobs()

Test that jobs requiring zero cpu/disk/mem pack first, regardless of targetTime.

Disk/cpu/mem packing is prioritized first, so we set job resource reqs so that each t2.micro (1 cpu/8G
disk/1G RAM) can run a seemingly infinite number of jobs with its resources.

550 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Since all jobs should pack cpu/disk/mem-wise on a t2.micro, we expect only one t2.micro to be provisioned.
If we raise this, as in testLowTargetTime, it will launch 1000 t2.micros.

testLongRunningJobs()

Test that jobs with long run times (especially service jobs) are aggressively parallelized.

This is important, because services are one case where the degree of parallelization really, really matters.
If you have multiple services, they may all need to be running simultaneously before any real work can be
done.

Despite setting globalTargetTime=3600, this should launch 1000 t2.micros because each job’s estimated
runtime (30000 seconds) extends well beyond 3600 seconds.

run1000JobsOnMicros(jobCores, jobMem, jobDisk, jobTime, globalTargetTime)
Test packing 1000 jobs on t2.micros. Depending on the targetTime and resources, these should pack dif-
ferently.

testPathologicalCase()

Test a pathological case where only one node can be requested to fit months’ worth of jobs.

If the reservation is extended to fit a long job, and the bin-packer naively searches through all the reservation
slices to find the first slice that fits, it will happily assign the first slot that fits the job, even if that slot occurs
days in the future.

testJobTooLargeForAllNodes()

If a job is too large for all node types, the scaler should print a warning, but definitely not crash.

class toil.test.provisioners.clusterScalerTest.ClusterScalerTest(methodName='runTest')
Bases: toil.test.ToilTest

ClusterScalerTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

setUp()

Hook method for setting up the test fixture before exercising it.

testRounding()

Test to make sure the ClusterScaler’s rounding rounds properly.

testMaxNodes()

Set the scaler to be very aggressive, give it a ton of jobs, and make sure it doesn’t go over maxNodes.

30.1. toil 551

Toil Documentation, Release 5.11.0

testMinNodes()

Without any jobs queued, the scaler should still estimate “minNodes” nodes.

testPreemptibleDeficitResponse()

When a preemptible deficit was detected by a previous run of the loop, the scaler should add non-
preemptible nodes to compensate in proportion to preemptibleCompensation.

testPreemptibleDeficitIsSet()

Make sure that updateClusterSize sets the preemptible deficit if it can’t launch preemptible nodes properly.
That way, the deficit can be communicated to the next run of estimateNodeCount.

testNoLaunchingIfDeltaAlreadyMet()

Check that the scaler doesn’t try to launch “0” more instances if the delta was able to be met by unignoring
nodes.

testBetaInertia()

test_overhead_accounting_large()

If a node has a certain raw memory or disk capacity, that won’t all be available when it actually comes up;
some disk and memory will be used by the OS, and the backing scheduler (Mesos, Kubernetes, etc.).

Make sure this overhead is accounted for for large nodes.

test_overhead_accounting_small()

If a node has a certain raw memory or disk capacity, that won’t all be available when it actually comes up;
some disk and memory will be used by the OS, and the backing scheduler (Mesos, Kubernetes, etc.).

Make sure this overhead is accounted for for small nodes.

test_overhead_accounting_observed()

If a node has a certain raw memory or disk capacity, that won’t all be available when it actually comes up;
some disk and memory will be used by the OS, and the backing scheduler (Mesos, Kubernetes, etc.).

Make sure this overhead is accounted for so that real-world observed failures cannot happen again.

class toil.test.provisioners.clusterScalerTest.ScalerThreadTest(methodName='runTest')
Bases: toil.test.ToilTest

ScalerThreadTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

552 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

testClusterScaling()

Test scaling for a batch of non-preemptible jobs and no preemptible jobs (makes debugging easier).

testClusterScalingMultipleNodeTypes()

testClusterScalingWithPreemptibleJobs()

Test scaling simultaneously for a batch of preemptible and non-preemptible jobs.

class toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner(config,
secondsPerJob)

Bases: toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem , toil.
provisioners.abstractProvisioner.AbstractProvisioner

ABC

AbstractBatchSystem

AbstractProvisioner

AbstractScalableBatchSystem

MockBatchSystemAndProvisioner

Mimics a leader, job batcher, provisioner and scalable batch system.

start()

shutDown()

nodeInUse(nodeIP)
Can be used to determine if a worker node is running any tasks. If the node is doesn’t exist, this function
should simply return False.

Parameters
nodeIP – The worker nodes private IP address

Returns
True if the worker node has been issued any tasks, else False

ignoreNode(nodeAddress)
Stop sending jobs to this node. Used in autoscaling when the autoscaler is ready to terminate a node, but
jobs are still running. This allows the node to be terminated after the current jobs have finished.

Parameters
nodeAddress – IP address of node to ignore.

unignoreNode(nodeAddress)
Stop ignoring this address, presumably after a node with this address has been terminated. This allows for
the possibility of a new node having the same address as a terminated one.

supportedClusterTypes()

Get all the cluster types that this provisioner implementation supports.

createClusterSettings()

Initialize class for a new cluster, to be deployed, when running outside the cloud.

readClusterSettings()

Initialize class from an existing cluster. This method assumes that the instance we are running on is the
leader.

30.1. toil 553

Toil Documentation, Release 5.11.0

Implementations must call _setLeaderWorkerAuthentication().

setAutoscaledNodeTypes(node_types)
Set node types, shapes and spot bids for Toil-managed autoscaling. :param nodeTypes: A list of node types,
as parsed with parse_node_types.

Parameters
node_types (List[Tuple[Set[toil.provisioners.abstractProvisioner.
Shape], Optional[float]]]) –

getProvisionedWorkers(instance_type=None, preemptible=None)
Returns a list of Node objects, each representing a worker node in the cluster

Parameters
preemptible – If True only return preemptible nodes else return non-preemptible nodes

Returns
list of Node

terminateNodes(nodes)
Terminate the nodes represented by given Node objects

Parameters
nodes – list of Node objects

remainingBillingInterval(node)

addJob(jobShape, preemptible=False)
Add a job to the job queue

getNumberOfJobsIssued(preemptible=None)

getJobs()

getNodes(preemptible=False, timeout=600)
Returns a dictionary mapping node identifiers of preemptible or non-preemptible nodes to NodeInfo objects,
one for each node.

Parameters
• preemptible (Optional[bool]) – If True (False) only (non-)preemptible nodes will be

returned. If None, all nodes will be returned.

• timeout (int) –

addNodes(nodeTypes, numNodes, preemptible)
Used to add worker nodes to the cluster

Parameters
• numNodes – The number of nodes to add

• preemptible – whether or not the nodes will be preemptible

• spotBid – The bid for preemptible nodes if applicable (this can be set in config, also).

• nodeTypes (Set[str]) –

Returns
number of nodes successfully added

Return type
int

554 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

getNodeShape(nodeType, preemptible=False)
The shape of a preemptible or non-preemptible node managed by this provisioner. The node shape defines
key properties of a machine, such as its number of cores or the time between billing intervals.

Parameters
instance_type (str) – Instance type name to return the shape of.

Return type
Shape

getWorkersInCluster(nodeShape)

launchCluster(leaderNodeType, keyName, userTags=None, vpcSubnet=None, leaderStorage=50,
nodeStorage=50, botoPath=None, **kwargs)

Initialize a cluster and create a leader node.

Implementations must call _setLeaderWorkerAuthentication() with the leader so that workers can be
launched.

Parameters
• leaderNodeType – The leader instance.

• leaderStorage – The amount of disk to allocate to the leader in gigabytes.

• owner – Tag identifying the owner of the instances.

destroyCluster()

Terminates all nodes in the specified cluster and cleans up all resources associated with the cluster. :param
clusterName: identifier of the cluster to terminate.

Return type
None

getLeader()

Returns
The leader node.

getNumberOfNodes(nodeType=None, preemptible=None)

toil.test.provisioners.clusterTest

Module Contents

Classes

AbstractClusterTest A common base class for Toil tests.

30.1. toil 555

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Attributes

log

toil.test.provisioners.clusterTest.log

class toil.test.provisioners.clusterTest.AbstractClusterTest(methodName)
Bases: toil.test.ToilTest

AbstractClusterTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

python()

Return the full path to the venv Python on the leader.

pip()

Return the full path to the venv pip on the leader.

destroyCluster()

Destroy the cluster we built, if it exists.

Succeeds if the cluster does not currently exist.

Return type
None

setUp()

Set up for the test. Must be overridden to call this method and set self.jobStore.

tearDown()

Hook method for deconstructing the test fixture after testing it.

sshUtil(command)
Run the given command on the cluster. Raise subprocess.CalledProcessError if it fails.

createClusterUtil(args=None)

launchCluster()

556 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.test.provisioners.gceProvisionerTest

Module Contents

Classes

AbstractGCEAutoscaleTest A common base class for Toil tests.
GCEAutoscaleTest A common base class for Toil tests.
GCEStaticAutoscaleTest Runs the tests on a statically provisioned cluster with au-

toscaling enabled.
GCEAutoscaleTestMultipleNodeTypes A common base class for Toil tests.
GCERestartTest This test insures autoscaling works on a restarted Toil

run

Attributes

log

toil.test.provisioners.gceProvisionerTest.log

class toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest(methodName)
Bases: toil.test.ToilTest

AbstractGCEAutoscaleTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

projectID

sshUtil(command)

rsyncUtil(src, dest)

destroyClusterUtil()

30.1. toil 557

Toil Documentation, Release 5.11.0

createClusterUtil(args=None)

cleanJobStoreUtil()

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

launchCluster()

class toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTest(name)
Bases: AbstractGCEAutoscaleTest

AbstractGCEAutoscaleTest GCEAutoscaleTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

setUp()

Hook method for setting up the test fixture before exercising it.

launchCluster()

testAutoScale()

testSpotAutoScale()

class toil.test.provisioners.gceProvisionerTest.GCEStaticAutoscaleTest(name)
Bases: GCEAutoscaleTest

AbstractGCEAutoscaleTest GCEAutoscaleTestToilTest GCEStaticAutoscaleTestTestCase

Runs the tests on a statically provisioned cluster with autoscaling enabled.

launchCluster()

558 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

class toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTestMultipleNodeTypes(name)
Bases: AbstractGCEAutoscaleTest

AbstractGCEAutoscaleTest GCEAutoscaleTestMultipleNodeTypesToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

setUp()

Hook method for setting up the test fixture before exercising it.

testAutoScale()

class toil.test.provisioners.gceProvisionerTest.GCERestartTest(name)
Bases: AbstractGCEAutoscaleTest

AbstractGCEAutoscaleTest GCERestartTestToilTestTestCase

This test insures autoscaling works on a restarted Toil run

setUp()

Hook method for setting up the test fixture before exercising it.

testAutoScaledCluster()

toil.test.provisioners.provisionerTest

Module Contents

Classes

ProvisionerTest A common base class for Toil tests.

30.1. toil 559

Toil Documentation, Release 5.11.0

Attributes

log

toil.test.provisioners.provisionerTest.log

class toil.test.provisioners.provisionerTest.ProvisionerTest(methodName='runTest')
Bases: toil.test.ToilTest

ProvisionerTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

test_node_type_parsing()

Return type
None

toil.test.provisioners.restartScript

Module Contents

Functions

f0(job)

560 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Attributes

parser

toil.test.provisioners.restartScript.f0(job)

toil.test.provisioners.restartScript.parser

toil.test.server

Submodules

toil.test.server.serverTest

Module Contents

Classes

ToilServerUtilsTest Tests for the utility functions used by the Toil server.
hidden

FileStateStoreTest Test file-based state storage.
FileStateStoreURLTest Test file-based state storage using URLs instead of local

paths.
BucketUsingTest Base class for tests that need a bucket.
AWSStateStoreTest Test AWS-based state storage.
AbstractToilWESServerTest Class for server tests that provides a self.app in testing

mode.
ToilWESServerBenchTest Tests for Toil's Workflow Execution Service API that

don't run workflows.
ToilWESServerWorkflowTest Tests of the WES server running workflows.
ToilWESServerCeleryWorkflowTest End-to-end workflow-running tests against Celery.
ToilWESServerCeleryS3StateWorkflowTest Test the server with Celery and state stored in S3.

Attributes

logger

toil.test.server.serverTest.logger

class toil.test.server.serverTest.ToilServerUtilsTest(methodName='runTest')
Bases: toil.test.ToilTest

30.1. toil 561

Toil Documentation, Release 5.11.0

TestCase ToilTest ToilServerUtilsTest

Tests for the utility functions used by the Toil server.

test_workflow_canceling_recovery()

Make sure that a workflow in CANCELING state will be recovered to a terminal state eventually even if
the workflow runner Celery task goes away without flipping the state.

class toil.test.server.serverTest.hidden

class AbstractStateStoreTest(methodName='runTest')
Bases: toil.test.ToilTest

AbstractStateStoreTestToilTestTestCase

Basic tests for state stores.

abstract get_state_store()

Make a state store to test, on a single fixed URL.
Return type

AbstractStateStore

test_state_store()

Make sure that the state store under test can store and load keys.
Return type

None

class toil.test.server.serverTest.FileStateStoreTest(methodName='runTest')
Bases: hidden

AbstractStateStoreTest FileStateStoreTestToilTestTestCase

Test file-based state storage.

setUp()

Hook method for setting up the test fixture before exercising it.

562 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Return type
None

get_state_store()

Make a state store to test, on a single fixed local path.

Return type
AbstractStateStore

class toil.test.server.serverTest.FileStateStoreURLTest(methodName='runTest')
Bases: hidden

AbstractStateStoreTest FileStateStoreURLTestToilTestTestCase

Test file-based state storage using URLs instead of local paths.

setUp()

Hook method for setting up the test fixture before exercising it.

Return type
None

get_state_store()

Make a state store to test, on a single fixed URL.

Return type
AbstractStateStore

class toil.test.server.serverTest.BucketUsingTest(methodName='runTest')
Bases: toil.test.ToilTest

BucketUsingTestToilTestTestCase

Base class for tests that need a bucket.

region: Optional[str]

s3_resource: Optional[mypy_boto3_s3.S3ServiceResource]

bucket: Optional[mypy_boto3_s3.service_resource.Bucket]

bucket_name: Optional[str]

classmethod setUpClass()

Set up the class with a single pre-existing AWS bucket for all tests.

30.1. toil 563

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
None

classmethod tearDownClass()

Hook method for deconstructing the class fixture after running all tests in the class.

Return type
None

class toil.test.server.serverTest.AWSStateStoreTest(methodName='runTest')
Bases: hidden, BucketUsingTest

AWSStateStoreTest

AbstractStateStoreTest

BucketUsingTest

ToilTestTestCase

Test AWS-based state storage.

bucket_path = 'prefix/of/keys'

get_state_store()

Make a state store to test, on a single fixed URL.

Return type
AbstractStateStore

test_state_store_paths()

Make sure that the S3 state store puts things in the right places.

We don’t really care about the exact internal structure, but we do care about actually being under the path
we are supposed to use.

Return type
None

class toil.test.server.serverTest.AbstractToilWESServerTest(*args, **kwargs)
Bases: toil.test.ToilTest

AbstractToilWESServerTestToilTestTestCase

Class for server tests that provides a self.app in testing mode.

setUp()

Hook method for setting up the test fixture before exercising it.

564 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Return type
None

tearDown()

Hook method for deconstructing the test fixture after testing it.

Return type
None

class toil.test.server.serverTest.ToilWESServerBenchTest(*args, **kwargs)
Bases: AbstractToilWESServerTest

AbstractToilWESServerTest ToilWESServerBenchTestToilTestTestCase

Tests for Toil’s Workflow Execution Service API that don’t run workflows.

test_home()

Test the homepage endpoint.

Return type
None

test_health()

Test the health check endpoint.

Return type
None

test_get_service_info()

Test the GET /service-info endpoint.

Return type
None

class toil.test.server.serverTest.ToilWESServerWorkflowTest(*args, **kwargs)
Bases: AbstractToilWESServerTest

AbstractToilWESServerTest ToilWESServerWorkflowTestToilTestTestCase

Tests of the WES server running workflows.

run_zip_workflow(zip_path, include_message=True, include_params=True)
We have several zip file tests; this submits a zip file and makes sure it ran OK.

If include_message is set to False, don’t send a “message” argument in workflow_params. If in-
clude_params is also set to False, don’t send workflow_params at all.

Parameters

30.1. toil 565

Toil Documentation, Release 5.11.0

• zip_path (str) –

• include_message (bool) –

• include_params (bool) –

Return type
None

test_run_workflow_relative_url_no_attachments_fails()

Test run example CWL workflow from relative workflow URL but with no attachments.

Return type
None

test_run_workflow_relative_url()

Test run example CWL workflow from relative workflow URL.

Return type
None

test_run_workflow_https_url()

Test run example CWL workflow from the Internet.

Return type
None

test_run_workflow_single_file_zip()

Test run example CWL workflow from single-file ZIP.

Return type
None

test_run_workflow_multi_file_zip()

Test run example CWL workflow from multi-file ZIP.

Return type
None

test_run_workflow_manifest_zip()

Test run example CWL workflow from ZIP with manifest.

Return type
None

test_run_workflow_inputs_zip()

Test run example CWL workflow from ZIP without manifest but with inputs.

Return type
None

test_run_workflow_manifest_and_inputs_zip()

Test run example CWL workflow from ZIP with manifest and inputs.

Return type
None

test_run_workflow_no_params_zip()

Test run example CWL workflow from ZIP without workflow_params.

Return type
None

566 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

test_run_and_cancel_workflows()

Run two workflows, cancel one of them, and make sure they all exist.

Return type
None

class toil.test.server.serverTest.ToilWESServerCeleryWorkflowTest(*args, **kwargs)
Bases: ToilWESServerWorkflowTest

AbstractToilWESServerTest ToilWESServerWorkflowTestToilTestTestCase ToilWESServerCeleryWorkflowTest

End-to-end workflow-running tests against Celery.

class toil.test.server.serverTest.ToilWESServerCeleryS3StateWorkflowTest(*args, **kwargs)
Bases: ToilWESServerWorkflowTest, BucketUsingTest

AbstractToilWESServerTest ToilWESServerWorkflowTest

ToilTest

BucketUsingTest

ToilWESServerCeleryS3StateWorkflowTestTestCase

Test the server with Celery and state stored in S3.

setUp()

Hook method for setting up the test fixture before exercising it.

Return type
None

toil.test.sort

Submodules

toil.test.sort.restart_sort

A demonstration of toil. Sorts the lines of a file into ascending order by doing a parallel merge sort. This is an
intentionally buggy version that doesn’t include restart() for testing purposes.

30.1. toil 567

Toil Documentation, Release 5.11.0

Module Contents

Functions

setup(job, inputFile, N, downCheckpoints, options) Sets up the sort.
down(job, inputFileStoreID, N, path, downCheckpoints,
...)

Input is a file, a subdivision size N, and a path in the
hierarchy of jobs.

up(job, inputFileID1, inputFileID2, path, options[, ...]) Merges the two files and places them in the output.
sort(file) Sorts the given file.
merge(fileHandle1, fileHandle2, outputFileHandle) Merges together two files maintaining sorted order.
copySubRangeOfFile(inputFile, fileStart, fileEnd) Copies the range (in bytes) between fileStart and fileEnd

to the given
getMidPoint(file, fileStart, fileEnd) Finds the point in the file to split.
makeFileToSort(fileName[, lines, lineLen])

main([options])

Attributes

defaultLines

defaultLineLen

sortMemory

toil.test.sort.restart_sort.defaultLines = 1000

toil.test.sort.restart_sort.defaultLineLen = 50

toil.test.sort.restart_sort.sortMemory = '600M'

toil.test.sort.restart_sort.setup(job, inputFile, N, downCheckpoints, options)
Sets up the sort. Returns the FileID of the sorted file

toil.test.sort.restart_sort.down(job, inputFileStoreID, N, path, downCheckpoints, options,
memory=sortMemory)

Input is a file, a subdivision size N, and a path in the hierarchy of jobs. If the range is larger than a threshold N
the range is divided recursively and a follow on job is then created which merges back the results else the file is
sorted and placed in the output.

toil.test.sort.restart_sort.up(job, inputFileID1, inputFileID2, path, options, memory=sortMemory)
Merges the two files and places them in the output.

toil.test.sort.restart_sort.sort(file)
Sorts the given file.

toil.test.sort.restart_sort.merge(fileHandle1, fileHandle2, outputFileHandle)
Merges together two files maintaining sorted order.

All handles must be text-mode streams.

568 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.test.sort.restart_sort.copySubRangeOfFile(inputFile, fileStart, fileEnd)
Copies the range (in bytes) between fileStart and fileEnd to the given output file handle.

toil.test.sort.restart_sort.getMidPoint(file, fileStart, fileEnd)
Finds the point in the file to split. Returns an int i such that fileStart <= i < fileEnd

toil.test.sort.restart_sort.makeFileToSort(fileName, lines=defaultLines, lineLen=defaultLineLen)

toil.test.sort.restart_sort.main(options=None)

toil.test.sort.sort

A demonstration of toil. Sorts the lines of a file into ascending order by doing a parallel merge sort.

Module Contents

Functions

setup(job, inputFile, N, downCheckpoints, options) Sets up the sort.
down(job, inputFileStoreID, N, path, downCheckpoints,
...)

Input is a file, a subdivision size N, and a path in the
hierarchy of jobs.

up(job, inputFileID1, inputFileID2, path, options[, ...]) Merges the two files and places them in the output.
sort(file) Sorts the given file.
merge(fileHandle1, fileHandle2, outputFileHandle) Merges together two files maintaining sorted order.
copySubRangeOfFile(inputFile, fileStart, fileEnd) Copies the range (in bytes) between fileStart and fileEnd

to the given
getMidPoint(file, fileStart, fileEnd) Finds the point in the file to split.
makeFileToSort(fileName[, lines, lineLen])

main([options])

Attributes

defaultLines

defaultLineLen

sortMemory

toil.test.sort.sort.defaultLines = 1000

toil.test.sort.sort.defaultLineLen = 50

toil.test.sort.sort.sortMemory = '600M'

toil.test.sort.sort.setup(job, inputFile, N, downCheckpoints, options)
Sets up the sort. Returns the FileID of the sorted file

30.1. toil 569

Toil Documentation, Release 5.11.0

toil.test.sort.sort.down(job, inputFileStoreID, N, path, downCheckpoints, options, memory=sortMemory)
Input is a file, a subdivision size N, and a path in the hierarchy of jobs. If the range is larger than a threshold N
the range is divided recursively and a follow on job is then created which merges back the results else the file is
sorted and placed in the output.

toil.test.sort.sort.up(job, inputFileID1, inputFileID2, path, options, memory=sortMemory)
Merges the two files and places them in the output.

toil.test.sort.sort.sort(file)
Sorts the given file.

toil.test.sort.sort.merge(fileHandle1, fileHandle2, outputFileHandle)
Merges together two files maintaining sorted order.

All handles must be text-mode streams.

toil.test.sort.sort.copySubRangeOfFile(inputFile, fileStart, fileEnd)
Copies the range (in bytes) between fileStart and fileEnd to the given output file handle.

toil.test.sort.sort.getMidPoint(file, fileStart, fileEnd)
Finds the point in the file to split. Returns an int i such that fileStart <= i < fileEnd

toil.test.sort.sort.makeFileToSort(fileName, lines=defaultLines, lineLen=defaultLineLen)

toil.test.sort.sort.main(options=None)

toil.test.sort.sortTest

Module Contents

Classes

SortTest Tests Toil by sorting a file in parallel on various combi-
nations of job stores and batch

Functions

runMain(options) make sure the output file is deleted every time main is
run

Attributes

logger

defaultLineLen

defaultLines

defaultN

570 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.test.sort.sortTest.logger

toil.test.sort.sortTest.defaultLineLen

toil.test.sort.sortTest.defaultLines

toil.test.sort.sortTest.defaultN

toil.test.sort.sortTest.runMain(options)
make sure the output file is deleted every time main is run

class toil.test.sort.sortTest.SortTest(methodName='runTest')
Bases: toil.test.ToilTest, toil.batchSystems.mesos.test.MesosTestSupport, toil.test.
batchSystems.parasolTestSupport.ParasolTestSupport

MesosTestSupport

SortTestParasolTestSupport

ToilTestTestCase

Tests Toil by sorting a file in parallel on various combinations of job stores and batch systems.

testNo = 5

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

testAwsSingle()

testAwsMesos()

testFileMesos()

testGoogleSingle()

testGoogleMesos()

testFileSingle()

testFileSingleNonCaching()

testFileSingleCheckpoints()

testFileSingle10000()

30.1. toil 571

Toil Documentation, Release 5.11.0

testFileGridEngine()

testFileTorqueEngine()

testFileParasol()

testSort()

testMerge()

testCopySubRangeOfFile()

testGetMidPoint()

toil.test.src

Submodules

toil.test.src.autoDeploymentTest

Module Contents

Classes

AutoDeploymentTest Tests various auto-deployment scenarios. Using the ap-
pliance, i.e. a docker container,

Attributes

logger

toil.test.src.autoDeploymentTest.logger

class toil.test.src.autoDeploymentTest.AutoDeploymentTest(methodName='runTest')
Bases: toil.test.ApplianceTestSupport

ApplianceTestSupport AutoDeploymentTestToilTestTestCase

Tests various auto-deployment scenarios. Using the appliance, i.e. a docker container, for these tests allows for
running worker processes on the same node as the leader process while keeping their file systems separate from
each other and the leader process. Separate file systems are crucial to prove that auto-deployment does its job.

sitePackages

572 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

setUp()

Hook method for setting up the test fixture before exercising it.

testRestart()

Test whether auto-deployment works on restart.

testSplitRootPackages()

Test whether auto-deployment works with a virtualenv in which jobs are defined in completely separate
branches of the package hierarchy. Initially, auto-deployment did deploy the entire virtualenv but jobs
could only be defined in one branch of the package hierarchy. We define a branch as the maximum set of
fully qualified package paths that share the same first component. IOW, a.b and a.c are in the same branch,
while a.b and d.c are not.

testUserTypesInJobFunctionArgs()

Test encapsulated, function-wrapping jobs where the function arguments reference user-defined types.

Mainly written to cover https://github.com/BD2KGenomics/toil/issues/1259 but then also revealed https:
//github.com/BD2KGenomics/toil/issues/1278.

testDeferralWithConcurrentEncapsulation()

Ensure that the following DAG succeeds:

Root (W1)

Deferring (W2) Encapsulating (W3)

Encapsulated (W3) Follow-on (W6)

Dummy 1 (W4) Dummy 2 (W5)
Last (W6)

The Wn numbers denote the worker processes that a particular job is run in. Deferring adds a deferred
function and then runs for a long time. The deferred function will be present in the cache state for the
duration of Deferred. Follow-on is the generic Job instance that’s added by encapsulating a job. It runs on
the same worker node but in a separate worker process, as the first job in that worker. Because . . .

1) it is the first job in its worker process (the user script has not been made available on the sys.path by a
previous job in that worker) and

2) it shares the cache state with the Deferring job and

3) it is an instance of Job (and so does not introduce the user script to sys.path itself),

. . . it might cause problems with deserializing a defered function defined in the user script.

Encapsulated has two children to ensure that Follow-on is run in a separate worker.

testDeferralWithFailureAndEncapsulation()

Ensure that the following DAG succeeds:

Root (W1)

30.1. toil 573

https://github.com/BD2KGenomics/toil/issues/1259
https://github.com/BD2KGenomics/toil/issues/1278
https://github.com/BD2KGenomics/toil/issues/1278

Toil Documentation, Release 5.11.0

Deferring (W2) Encapsulating (W3)

Encapsulated (W3) Follow-on (W7)

Dummy (W4) Dummy (W5) Trigger
(W6)

Trigger causes Deferring to crash. Follow-on runs next, detects Deferring’s left-overs and runs the deferred
function. Follow-on is an instance of Job and the first job in its worker process. This test ensures that despite
these circumstances, the user script is loaded before the deferred functions defined in it are being run.

Encapsulated has two children to ensure that Follow-on is run in a new worker. That’s the only way to
guarantee that the user script has not been loaded yet, which would cause the test to succeed coincidentally.
We want to test that auto-deploying and loading of the user script are done properly before deferred functions
are being run and before any jobs have been executed by that worker.

toil.test.src.busTest

Module Contents

Classes

MessageBusTest A common base class for Toil tests.

Functions

failing_job_fn(job) This function is guaranteed to fail.

Attributes

logger

toil.test.src.busTest.logger

class toil.test.src.busTest.MessageBusTest(methodName='runTest')
Bases: toil.test.ToilTest

574 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

MessageBusTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

test_enum_ints_in_file()

Make sure writing bus messages to files works with enums.

Return type
None

test_cross_thread_messaging()

Make sure message bus works across threads.

Return type
None

test_restart_without_bus_path()

Test the ability to restart a workflow when the message bus path used by the previous attempt is gone.

Return type
None

toil.test.src.busTest.failing_job_fn(job)
This function is guaranteed to fail.

Parameters
job (toil.job.Job) –

Return type
None

toil.test.src.checkpointTest

Module Contents

30.1. toil 575

Toil Documentation, Release 5.11.0

Classes

CheckpointTest A common base class for Toil tests.
CheckRetryCount Fail N times, succeed on the next try.
AlwaysFail Class represents a unit of work in toil.
CheckpointFailsFirstTime Class represents a unit of work in toil.
FailOnce Fail the first time the workflow is run, but succeed there-

after.

class toil.test.src.checkpointTest.CheckpointTest(methodName='runTest')
Bases: toil.test.ToilTest

CheckpointTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

testCheckpointNotRetried()

A checkpoint job should not be retried if the workflow has a retryCount of 0.

testCheckpointRetriedOnce()

A checkpoint job should be retried exactly once if the workflow has a retryCount of 1.

testCheckpointedRestartSucceeds()

A checkpointed job should succeed on restart of a failed run if its child job succeeds.

class toil.test.src.checkpointTest.CheckRetryCount(numFailuresBeforeSuccess)
Bases: toil.job.Job

CheckRetryCountJob

Fail N times, succeed on the next try.

576 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

getNumRetries(fileStore)
Mark a retry in the fileStore, and return the number of retries so far.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

class toil.test.src.checkpointTest.AlwaysFail(memory=None, cores=None, disk=None,
accelerators=None, preemptible=None,
preemptable=None, unitName='', checkpoint=False,
displayName='', descriptionClass=None, local=None)

Bases: toil.job.Job

AlwaysFailJob

Class represents a unit of work in toil.

Parameters
• memory (Optional[ParseableIndivisibleResource]) –

• cores (Optional[ParseableDivisibleResource]) –

• disk (Optional[ParseableIndivisibleResource]) –

• accelerators (Optional[ParseableAcceleratorRequirement]) –

• preemptible (Optional[ParseableFlag]) –

• preemptable (Optional[ParseableFlag]) –

• unitName (Optional[str]) –

• checkpoint (Optional[bool]) –

• displayName (Optional[str]) –

• descriptionClass (Optional[type]) –

• local (Optional[bool]) –

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

30.1. toil 577

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

class toil.test.src.checkpointTest.CheckpointFailsFirstTime

Bases: toil.job.Job

CheckpointFailsFirstTimeJob

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

class toil.test.src.checkpointTest.FailOnce(memory=None, cores=None, disk=None,
accelerators=None, preemptible=None,
preemptable=None, unitName='', checkpoint=False,
displayName='', descriptionClass=None, local=None)

Bases: toil.job.Job

FailOnceJob

Fail the first time the workflow is run, but succeed thereafter.

Parameters
• memory (Optional[ParseableIndivisibleResource]) –

• cores (Optional[ParseableDivisibleResource]) –

• disk (Optional[ParseableIndivisibleResource]) –

• accelerators (Optional[ParseableAcceleratorRequirement]) –

• preemptible (Optional[ParseableFlag]) –

• preemptable (Optional[ParseableFlag]) –

• unitName (Optional[str]) –

578 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• checkpoint (Optional[bool]) –

• displayName (Optional[str]) –

• descriptionClass (Optional[type]) –

• local (Optional[bool]) –

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

toil.test.src.deferredFunctionTest

Module Contents

Classes

DeferredFunctionTest Test the deferred function system.

Attributes

logger

toil.test.src.deferredFunctionTest.logger

class toil.test.src.deferredFunctionTest.DeferredFunctionTest(methodName='runTest')
Bases: toil.test.ToilTest

DeferredFunctionTestToilTestTestCase

Test the deferred function system.

jobStoreType = 'file'

setUp()

Hook method for setting up the test fixture before exercising it.

30.1. toil 579

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

testDeferredFunctionRunsWithMethod()

Refer docstring in _testDeferredFunctionRuns. Test with Method

testDeferredFunctionRunsWithClassMethod()

Refer docstring in _testDeferredFunctionRuns. Test with Class Method

testDeferredFunctionRunsWithLambda()

Refer docstring in _testDeferredFunctionRuns. Test with Lambda

testDeferredFunctionRunsWithFailures()

Create 2 non local filesto use as flags. Create a job that registers a function that deletes one non local file.
If that file exists, the job SIGKILLs itself. If it doesn’t exist, the job registers a second deferred function to
delete the second non local file and exits normally.

Initially the first file exists, so the job should SIGKILL itself and neither deferred function will run (in fact,
the second should not even be registered). On the restart, the first deferred function should run and the first
file should not exist, but the second one should. We assert the presence of the second, then register the
second deferred function and exit normally. At the end of the test, neither file should exist.

Incidentally, this also tests for multiple registered deferred functions, and the case where a deferred function
fails (since the first file doesn’t exist on the retry).

testNewJobsCanHandleOtherJobDeaths()

Create 2 non-local files and then create 2 jobs. The first job registers a deferred job to delete the second
non-local file, deletes the first non-local file and then kills itself. The second job waits for the first file to be
deleted, then sleeps for a few seconds and then spawns a child. the child of the second does nothing. How-
ever starting it should handle the untimely demise of the first job and run the registered deferred function
that deletes the first file. We assert the absence of the two files at the end of the run.

testBatchSystemCleanupCanHandleWorkerDeaths()

Create some non-local files. Create a job that registers a deferred function to delete the file and then kills
its worker.

Assert that the file is missing after the pipeline fails, because we’re using a single-machine batch system
and the leader’s batch system cleanup will find and run the deferred function.

toil.test.src.dockerCheckTest

Module Contents

Classes

DockerCheckTest Tests checking whether a docker image exists or not.

class toil.test.src.dockerCheckTest.DockerCheckTest(methodName='runTest')
Bases: toil.test.ToilTest

580 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

DockerCheckTestToilTestTestCase

Tests checking whether a docker image exists or not.

testOfficialUbuntuRepo()

Image exists. This should pass.

testBroadDockerRepo()

Image exists. This should pass.

testBroadDockerRepoBadTag()

Bad tag. This should raise.

testNonexistentRepo()

Bad image. This should raise.

testToilQuayRepo()

Image exists. Should pass.

testBadQuayRepoNTag()

Bad repo and tag. This should raise.

testBadQuayRepo()

Bad repo. This should raise.

testBadQuayTag()

Bad tag. This should raise.

testGoogleRepo()

Image exists. Should pass.

testBadGoogleRepo()

Bad repo and tag. This should raise.

testApplianceParser()

Test that a specified appliance is parsed correctly.

toil.test.src.fileStoreTest

Module Contents

30.1. toil 581

Toil Documentation, Release 5.11.0

Classes

hidden Hiding the abstract test classes from the Unittest loader
so it can be inherited in different

NonCachingFileStoreTestWithFileJobStore Abstract tests for the the various functions in
CachingFileStoreTestWithFileJobStore Abstract tests for the the various cache-related functions

in
NonCachingFileStoreTestWithAwsJobStore Abstract tests for the the various functions in
CachingFileStoreTestWithAwsJobStore Abstract tests for the the various cache-related functions

in
NonCachingFileStoreTestWithGoogleJobStore Abstract tests for the the various functions in
CachingFileStoreTestWithGoogleJobStore Abstract tests for the the various cache-related functions

in

Attributes

testingIsAutomatic

logger

toil.test.src.fileStoreTest.testingIsAutomatic = True

toil.test.src.fileStoreTest.logger

class toil.test.src.fileStoreTest.hidden

Hiding the abstract test classes from the Unittest loader so it can be inherited in different test suites for the different
job stores.

class AbstractFileStoreTest(methodName='runTest')
Bases: toil.test.ToilTest

AbstractFileStoreTestToilTestTestCase

An abstract base class for testing the various general functions described in
:class:toil.fileStores.abstractFileStore.AbstractFileStore

jobStoreType

setUp()

Hook method for setting up the test fixture before exercising it.

create_file(content, executable=False)

582 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

testToilIsNotBroken()

Runs a simple DAG to test if if any features other that caching were broken.

testFileStoreLogging()

Write a couple of files to the jobstore. Delete a couple of them. Read back written and locally deleted
files.

testFileStoreOperations()

Write a couple of files to the jobstore. Delete a couple of them. Read back written and locally deleted
files.

testWriteReadGlobalFilePermissions()

Ensures that uploaded files preserve their file permissions when they are downloaded again. This
function checks that a written executable file maintains its executability after being read.

testWriteExportFileCompatibility()

Ensures that files created in a job preserve their executable permissions when they are exported from
the leader.

testImportReadFileCompatibility()

Ensures that files imported to the leader preserve their executable permissions when they are read by
the fileStore.

testReadWriteFileStreamTextMode()

Checks if text mode is compatible with file streams.

class AbstractNonCachingFileStoreTest(methodName='runTest')
Bases: hidden.AbstractFileStoreTest

AbstractFileStoreTest AbstractNonCachingFileStoreTestToilTestTestCase

Abstract tests for the the various functions in :class:toil.fileStores.nonCachingFileStore.NonCachingFileStore.
These tests are general enough that they can also be used for :class:toil.fileStores.CachingFileStore.

setUp()

Hook method for setting up the test fixture before exercising it.

class AbstractCachingFileStoreTest(methodName='runTest')
Bases: hidden.AbstractFileStoreTest

AbstractCachingFileStoreTestAbstractFileStoreTestToilTestTestCase

Abstract tests for the the various cache-related functions in :class:toil.fileStores.cachingFileStore.CachingFileStore.

setUp()

Hook method for setting up the test fixture before exercising it.

30.1. toil 583

Toil Documentation, Release 5.11.0

testExtremeCacheSetup()

Try to create the cache with bad worker active and then have 10 child jobs try to run in the chain. This
tests whether the cache is created properly even when the job crashes randomly.

testCacheEvictionPartialEvict()

Ensure the cache eviction happens as expected. Two files (20MB and 30MB) are written sequentially
into the job store in separate jobs. The cache max is force set to 50MB. A Third Job requests 10MB
of disk requiring eviction of the 1st file. Ensure that the behavior is as expected.

testCacheEvictionTotalEvict()

Ensure the cache eviction happens as expected. Two files (20MB and 30MB) are written sequentially
into the job store in separate jobs. The cache max is force set to 50MB. A Third Job requests 10MB
of disk requiring eviction of the 1st file. Ensure that the behavior is as expected.

testCacheEvictionFailCase()

Ensure the cache eviction happens as expected. Two files (20MB and 30MB) are written sequentially
into the job store in separate jobs. The cache max is force set to 50MB. A Third Job requests 10MB
of disk requiring eviction of the 1st file. Ensure that the behavior is as expected.

testAsyncWriteWithCaching()

Ensure the Async Writing of files happens as expected. The first Job forcefully modifies the cache size
to 1GB. The second asks for 1GB of disk and writes a 900MB file into cache then rewrites it to the job
store triggering an async write since the two unique jobstore IDs point to the same local file. Also, the
second write is not cached since the first was written to cache, and there “isn’t enough space” to cache
the second. Imediately assert that the second write isn’t cached, and is being asynchronously written
to the job store.

Attempting to get the file from the jobstore should not fail.

testWriteNonLocalFileToJobStore()

Write a file not in localTempDir to the job store. Such a file should not be cached. Ensure the file is
not cached.

testWriteLocalFileToJobStore()

Write a file from the localTempDir to the job store. Such a file will be cached by default. Ensure the
file is cached.

testReadCacheMissFileFromJobStoreWithoutCachingReadFile()

Read a file from the file store that does not have a corresponding cached copy. Do not cache the read
file. Ensure the number of links on the file are appropriate.

testReadCacheMissFileFromJobStoreWithCachingReadFile()

Read a file from the file store that does not have a corresponding cached copy. Cache the read file.
Ensure the number of links on the file are appropriate.

testReadCachHitFileFromJobStore()

Read a file from the file store that has a corresponding cached copy. Ensure the number of links on the
file are appropriate.

testMultipleJobsReadSameCacheHitGlobalFile()

Write a local file to the job store (hence adding a copy to cache), then have 10 jobs read it. Assert
cached file size never goes up, assert unused job required disk space is always:

(a multiple of job reqs) - (number of current file readers * filesize).
At the end, assert the cache shows unused job-required space = 0.

584 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

testMultipleJobsReadSameCacheMissGlobalFile()

Write a non-local file to the job store(hence no cached copy), then have 10 jobs read it. Assert cached
file size never goes up, assert unused job required disk space is always:

(a multiple of job reqs) - (number of current file readers * filesize).
At the end, assert the cache shows unused job-required space = 0.

testFileStoreExportFile()

testReturnFileSizes()

Write a couple of files to the jobstore. Delete a couple of them. Read back written and locally deleted
files. Ensure that after every step that the cache is in a valid state.

testReturnFileSizesWithBadWorker()

Write a couple of files to the jobstore. Delete a couple of them. Read back written and locally deleted
files. Ensure that after every step that the cache is in a valid state.

testControlledFailedWorkerRetry()

Conduct a couple of job store operations. Then die. Ensure that the restarted job is tracking values in
the cache state file appropriately.

testRemoveLocalMutablyReadFile()

If a mutably read file is deleted by the user, it is ok.

testRemoveLocalImmutablyReadFile()

If an immutably read file is deleted by the user, it is not ok.

testDeleteLocalFile()

Test the deletion capabilities of deleteLocalFile

testSimultaneousReadsUncachedStream()

Test many simultaneous read attempts on a file created via a stream directly to the job store.

class toil.test.src.fileStoreTest.NonCachingFileStoreTestWithFileJobStore(methodName='runTest')
Bases: hidden

AbstractFileStoreTest AbstractNonCachingFileStoreTestToilTest NonCachingFileStoreTestWithFileJobStoreTestCase

Abstract tests for the the various functions in :class:toil.fileStores.nonCachingFileStore.NonCachingFileStore.
These tests are general enough that they can also be used for :class:toil.fileStores.CachingFileStore.

jobStoreType = 'file'

class toil.test.src.fileStoreTest.CachingFileStoreTestWithFileJobStore(methodName='runTest')
Bases: hidden

AbstractCachingFileStoreTest CachingFileStoreTestWithFileJobStoreAbstractFileStoreTestToilTestTestCase

30.1. toil 585

Toil Documentation, Release 5.11.0

Abstract tests for the the various cache-related functions in :class:toil.fileStores.cachingFileStore.CachingFileStore.

jobStoreType = 'file'

class toil.test.src.fileStoreTest.NonCachingFileStoreTestWithAwsJobStore(methodName='runTest')
Bases: hidden

AbstractFileStoreTest AbstractNonCachingFileStoreTestToilTest NonCachingFileStoreTestWithAwsJobStoreTestCase

Abstract tests for the the various functions in :class:toil.fileStores.nonCachingFileStore.NonCachingFileStore.
These tests are general enough that they can also be used for :class:toil.fileStores.CachingFileStore.

jobStoreType = 'aws'

class toil.test.src.fileStoreTest.CachingFileStoreTestWithAwsJobStore(methodName='runTest')
Bases: hidden

AbstractCachingFileStoreTest CachingFileStoreTestWithAwsJobStoreAbstractFileStoreTestToilTestTestCase

Abstract tests for the the various cache-related functions in :class:toil.fileStores.cachingFileStore.CachingFileStore.

jobStoreType = 'aws'

class toil.test.src.fileStoreTest.NonCachingFileStoreTestWithGoogleJobStore(methodName='runTest')
Bases: hidden

AbstractFileStoreTest AbstractNonCachingFileStoreTestToilTest NonCachingFileStoreTestWithGoogleJobStoreTestCase

Abstract tests for the the various functions in :class:toil.fileStores.nonCachingFileStore.NonCachingFileStore.
These tests are general enough that they can also be used for :class:toil.fileStores.CachingFileStore.

jobStoreType = 'google'

class toil.test.src.fileStoreTest.CachingFileStoreTestWithGoogleJobStore(methodName='runTest')
Bases: hidden

586 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

AbstractCachingFileStoreTest CachingFileStoreTestWithGoogleJobStoreAbstractFileStoreTestToilTestTestCase

Abstract tests for the the various cache-related functions in :class:toil.fileStores.cachingFileStore.CachingFileStore.

jobStoreType = 'google'

toil.test.src.helloWorldTest

Module Contents

Classes

HelloWorldTest A common base class for Toil tests.
HelloWorld Class represents a unit of work in toil.
FollowOn Class represents a unit of work in toil.

Functions

childFn(job)

class toil.test.src.helloWorldTest.HelloWorldTest(methodName='runTest')
Bases: toil.test.ToilTest

HelloWorldTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

30.1. toil 587

Toil Documentation, Release 5.11.0

testHelloWorld()

class toil.test.src.helloWorldTest.HelloWorld

Bases: toil.job.Job

HelloWorldJob

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

toil.test.src.helloWorldTest.childFn(job)

class toil.test.src.helloWorldTest.FollowOn(fileId)
Bases: toil.job.Job

FollowOnJob

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

588 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.test.src.importExportFileTest

Module Contents

Classes

ImportExportFileTest A common base class for Toil tests.
RestartingJob Class represents a unit of work in toil.

class toil.test.src.importExportFileTest.ImportExportFileTest(methodName='runTest')
Bases: toil.test.ToilTest

ImportExportFileTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

setUp()

Hook method for setting up the test fixture before exercising it.

create_file(content, executable=False)

test_import_export_restart_true()

test_import_export_restart_false()

test_basic_import_export()

Ensures that uploaded files preserve their file permissions when they are downloaded again. This function
checks that an imported executable file maintains its executability after being exported.

class toil.test.src.importExportFileTest.RestartingJob(msg_portion_file_id, trigger_file_id,
message_portion_2)

Bases: toil.job.Job

30.1. toil 589

Toil Documentation, Release 5.11.0

Job RestartingJob

Class represents a unit of work in toil.

run(file_store)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

toil.test.src.jobDescriptionTest

Module Contents

Classes

JobDescriptionTest A common base class for Toil tests.

class toil.test.src.jobDescriptionTest.JobDescriptionTest(methodName='runTest')
Bases: toil.test.ToilTest

JobDescriptionTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

590 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

testJobDescription()

Tests the public interface of a JobDescription.

testJobDescriptionSequencing()

toil.test.src.jobEncapsulationTest

Module Contents

Classes

JobEncapsulationTest Tests testing the EncapsulationJob class.

Functions

noOp()

encapsulatedJobFn(job, string, outFile)

class toil.test.src.jobEncapsulationTest.JobEncapsulationTest(methodName='runTest')
Bases: toil.test.ToilTest

JobEncapsulationTestToilTestTestCase

Tests testing the EncapsulationJob class.

testEncapsulation()

Tests the Job.encapsulation method, which uses the EncapsulationJob class.

testAddChildEncapsulate()

Make sure that the encapsulate child does not have two parents with unique roots.

toil.test.src.jobEncapsulationTest.noOp()

toil.test.src.jobEncapsulationTest.encapsulatedJobFn(job, string, outFile)

30.1. toil 591

Toil Documentation, Release 5.11.0

toil.test.src.jobFileStoreTest

Module Contents

Classes

JobFileStoreTest Tests testing the methods defined in
:class:toil.fileStores.abstractFileStore.AbstractFileStore.

Functions

fileTestJob(job, inputFileStoreIDs, testStrings, ...) Test job exercises toil.fileStores.abstractFileStore.AbstractFileStore
functions

simpleFileStoreJob(job)

fileStoreChild(job, testID1, testID2)

Attributes

logger

PREFIX_LENGTH

fileStoreString

streamingFileStoreString

toil.test.src.jobFileStoreTest.logger

toil.test.src.jobFileStoreTest.PREFIX_LENGTH = 200

class toil.test.src.jobFileStoreTest.JobFileStoreTest(methodName='runTest')
Bases: toil.test.ToilTest

JobFileStoreTestToilTestTestCase

Tests testing the methods defined in :class:toil.fileStores.abstractFileStore.AbstractFileStore.

testCachingFileStore()

592 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

testNonCachingFileStore()

testJobFileStore()

Tests case that about half the files are cached

testJobFileStoreWithBadWorker()

Tests case that about half the files are cached and the worker is randomly failing.

toil.test.src.jobFileStoreTest.fileTestJob(job, inputFileStoreIDs, testStrings, chainLength)
Test job exercises toil.fileStores.abstractFileStore.AbstractFileStore functions

toil.test.src.jobFileStoreTest.fileStoreString = 'Testing writeGlobalFile'

toil.test.src.jobFileStoreTest.streamingFileStoreString = 'Testing writeGlobalFileStream'

toil.test.src.jobFileStoreTest.simpleFileStoreJob(job)

toil.test.src.jobFileStoreTest.fileStoreChild(job, testID1, testID2)

toil.test.src.jobServiceTest

Module Contents

Classes

JobServiceTest Tests testing the Job.Service class
PerfectServiceTest Tests testing the Job.Service class
ToyService Abstract class used to define the interface to a service.
ToySerializableService Abstract class used to define the interface to a service.

Functions

serviceTest(job, outFile, messageInt) Creates one service and one accessing job, which com-
municate with two files to establish

serviceTestRecursive(job, outFile, messages) Creates a chain of services and accessing jobs, each
paired together.

serviceTestParallelRecursive(job, outFiles,
messageBundles)

Creates multiple chains of services and accessing jobs.

serviceAccessor(job, communicationFiles, outFile,
randInt)

Writes a random integer iinto the inJobStoreFileID file,
then tries 10 times reading

fnTest(strings, outputFile) Function concatenates the strings together and writes
them to the output file

30.1. toil 593

Toil Documentation, Release 5.11.0

Attributes

logger

toil.test.src.jobServiceTest.logger

class toil.test.src.jobServiceTest.JobServiceTest(methodName='runTest')
Bases: toil.test.ToilTest

JobServiceTestToilTestTestCase

Tests testing the Job.Service class

testServiceSerialization()

Tests that a service can receive a promise without producing a serialization error.

testService(checkpoint=False)
Tests the creation of a Job.Service with random failures of the worker.

testServiceDeadlock()

Creates a job with more services than maxServices, checks that deadlock is detected.

testServiceWithCheckpoints()

Tests the creation of a Job.Service with random failures of the worker, making the root job use checkpointing
to restart the subtree.

testServiceRecursive(checkpoint=True)
Tests the creation of a Job.Service, creating a chain of services and accessing jobs. Randomly fails the
worker.

testServiceParallelRecursive(checkpoint=True)
Tests the creation of a Job.Service, creating parallel chains of services and accessing jobs. Randomly fails
the worker.

runToil(rootJob, retryCount=1, badWorker=0.5, badWorkedFailInterval=0.1, maxServiceJobs=sys.maxsize,
deadlockWait=60)

class toil.test.src.jobServiceTest.PerfectServiceTest(methodName='runTest')
Bases: JobServiceTest

JobServiceTest PerfectServiceTestToilTestTestCase

594 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Tests testing the Job.Service class

runToil(rootJob, retryCount=1, badWorker=0, badWorkedFailInterval=1000, maxServiceJobs=sys.maxsize,
deadlockWait=60)

Let us run all the tests in the other service test class, but without worker failures.

toil.test.src.jobServiceTest.serviceTest(job, outFile, messageInt)
Creates one service and one accessing job, which communicate with two files to establish that both run concur-
rently.

toil.test.src.jobServiceTest.serviceTestRecursive(job, outFile, messages)
Creates a chain of services and accessing jobs, each paired together.

toil.test.src.jobServiceTest.serviceTestParallelRecursive(job, outFiles, messageBundles)
Creates multiple chains of services and accessing jobs.

class toil.test.src.jobServiceTest.ToyService(messageInt, *args, **kwargs)
Bases: toil.job.Job.Service

Requirer Service ToyService

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

start(job)
Start the service.

Parameters
job – The underlying host job that the service is being run in. Can be used to register deferred
functions, or to access the fileStore for creating temporary files.

Returns
An object describing how to access the service. The object must be pickleable and will be
used by jobs to access the service (see toil.job.Job.addService()).

stop(job)
Stops the service. Function can block until complete.

Parameters
job – The underlying host job that the service is being run in. Can be used to register deferred
functions, or to access the fileStore for creating temporary files.

check()

Checks the service is still running.

Raises
exceptions.RuntimeError – If the service failed, this will cause the service job to be
labeled failed.

30.1. toil 595

Toil Documentation, Release 5.11.0

Returns
True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should
raise a RuntimeError, not return False!

static serviceWorker(jobStore, terminate, error, inJobStoreID, outJobStoreID, messageInt)

toil.test.src.jobServiceTest.serviceAccessor(job, communicationFiles, outFile, randInt)
Writes a random integer iinto the inJobStoreFileID file, then tries 10 times reading from outJobStoreFileID to
get a pair of integers, the first equal to i the second written into the outputFile.

class toil.test.src.jobServiceTest.ToySerializableService(messageInt, *args, **kwargs)
Bases: toil.job.Job.Service

Requirer Service ToySerializableService

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

start(job)
Start the service.

Parameters
job – The underlying host job that the service is being run in. Can be used to register deferred
functions, or to access the fileStore for creating temporary files.

Returns
An object describing how to access the service. The object must be pickleable and will be
used by jobs to access the service (see toil.job.Job.addService()).

stop(job)
Stops the service. Function can block until complete.

Parameters
job – The underlying host job that the service is being run in. Can be used to register deferred
functions, or to access the fileStore for creating temporary files.

check()

Checks the service is still running.

Raises
exceptions.RuntimeError – If the service failed, this will cause the service job to be
labeled failed.

Returns
True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should
raise a RuntimeError, not return False!

596 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.test.src.jobServiceTest.fnTest(strings, outputFile)
Function concatenates the strings together and writes them to the output file

toil.test.src.jobTest

Module Contents

Classes

JobTest Tests the job class.
TrivialService Abstract class used to define the interface to a service.

Functions

simpleJobFn(job, value)

fn1Test(string, outputFile) Function appends the next character after the last char-
acter in the given

fn2Test(pStrings, s, outputFile) Function concatenates the strings in pStrings and s, in
that order, and writes the result to

trivialParent(job)

parent(job)

diamond(job)

child(job)

errorChild(job)

Attributes

logger

toil.test.src.jobTest.logger

class toil.test.src.jobTest.JobTest(methodName='runTest')
Bases: toil.test.ToilTest

30.1. toil 597

Toil Documentation, Release 5.11.0

JobTestToilTestTestCase

Tests the job class.

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

testStatic()

Create a DAG of jobs non-dynamically and run it. DAG is:

A -> F -—— B -> D

——- C -> E

Follow on is marked by ->

testStatic2()

Create a DAG of jobs non-dynamically and run it. DAG is:

A -> F -—— B -> D

——- C -> E

Follow on is marked by ->

testTrivialDAGConsistency()

testDAGConsistency()

testSiblingDAGConsistency()

Slightly more complex case. The stranded job’s predecessors are siblings instead of parent/child.

testDeadlockDetection()

Randomly generate job graphs with various types of cycle in them and check they cause an exception
properly. Also check that multiple roots causes a deadlock exception.

testNewCheckpointIsLeafVertexNonRootCase()

Test for issue #1465: Detection of checkpoint jobs that are not leaf vertices identifies leaf vertices incorrectly

Test verification of new checkpoint jobs being leaf verticies, starting with the following baseline workflow:

Parent

Child # Checkpoint=True

testNewCheckpointIsLeafVertexRootCase()

Test for issue #1466: Detection of checkpoint jobs that are not leaf vertices
omits the workflow root job

598 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Test verification of a new checkpoint job being leaf vertex, starting with a baseline workflow of a single,
root job:

Root # Checkpoint=True

runNewCheckpointIsLeafVertexTest(createWorkflowFn)
Test verification that a checkpoint job is a leaf vertex using both valid and invalid cases.

Parameters
createWorkflowFn – function to create and new workflow and return a tuple of:

0) the workflow root job

1) a checkpoint job to test within the workflow

runCheckpointVertexTest(workflowRootJob, checkpointJob, checkpointJobService=None,
checkpointJobChild=None, checkpointJobFollowOn=None,
expectedException=None)

Modifies the checkpoint job according to the given parameters then runs the workflow, checking for the
expected exception, if any.

testEvaluatingRandomDAG()

Randomly generate test input then check that the job graph can be run successfully, using the existence of
promises to validate the run.

static getRandomEdge(nodeNumber)

static makeRandomDAG(nodeNumber)
Makes a random dag with “nodeNumber” nodes in which all nodes are connected. Return value is list of
edges, each of form (a, b), where a and b are integers >= 0 < nodeNumber referring to nodes and the edge
is from a to b.

static getAdjacencyList(nodeNumber, edges)
Make adjacency list representation of edges

reachable(node, adjacencyList, followOnAdjacencyList=None)
Find the set of nodes reachable from this node (including the node). Return is a set of integers.

addRandomFollowOnEdges(childAdjacencyList)
Adds random follow on edges to the graph, represented as an adjacency list. The follow on edges are
returned as a set and their augmented edges are added to the adjacency list.

makeJobGraph(nodeNumber, childEdges, followOnEdges, outPath, addServices=True)
Converts a DAG into a job graph. childEdges and followOnEdges are the lists of child and followOn edges.

isAcyclic(adjacencyList)
Returns true if there are any cycles in the graph, which is represented as an adjacency list.

toil.test.src.jobTest.simpleJobFn(job, value)

toil.test.src.jobTest.fn1Test(string, outputFile)
Function appends the next character after the last character in the given string to the string, writes the string to a
file, and returns it. For example, if string is “AB”, we will write and return “ABC”.

toil.test.src.jobTest.fn2Test(pStrings, s, outputFile)
Function concatenates the strings in pStrings and s, in that order, and writes the result to the output file. Returns
s.

toil.test.src.jobTest.trivialParent(job)

30.1. toil 599

Toil Documentation, Release 5.11.0

toil.test.src.jobTest.parent(job)

toil.test.src.jobTest.diamond(job)

toil.test.src.jobTest.child(job)

toil.test.src.jobTest.errorChild(job)

class toil.test.src.jobTest.TrivialService(message, *args, **kwargs)
Bases: toil.job.Job.Service

Requirer Service TrivialService

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

start(job)
Start the service.

Parameters
job – The underlying host job that the service is being run in. Can be used to register deferred
functions, or to access the fileStore for creating temporary files.

Returns
An object describing how to access the service. The object must be pickleable and will be
used by jobs to access the service (see toil.job.Job.addService()).

stop(job)
Stops the service. Function can block until complete.

Parameters
job – The underlying host job that the service is being run in. Can be used to register deferred
functions, or to access the fileStore for creating temporary files.

check()

Checks the service is still running.

Raises
exceptions.RuntimeError – If the service failed, this will cause the service job to be
labeled failed.

Returns
True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should
raise a RuntimeError, not return False!

600 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.test.src.miscTests

Module Contents

Classes

MiscTests This class contains miscellaneous tests that don't have
enough content to be their own test

TestPanic A common base class for Toil tests.

Attributes

log

toil.test.src.miscTests.log

class toil.test.src.miscTests.MiscTests(methodName='runTest')
Bases: toil.test.ToilTest

MiscTestsToilTestTestCase

This class contains miscellaneous tests that don’t have enough content to be their own test file, and that don’t
logically fit in with any of the other test suites.

setUp()

Hook method for setting up the test fixture before exercising it.

testIDStability()

testGetSizeOfDirectoryWorks()

A test to make sure toil.common.getDirSizeRecursively does not underestimate the amount of disk space
needed.

Disk space allocation varies from system to system. The computed value should always be equal to or
slightly greater than the creation value. This test generates a number of random directories and randomly
sized files to test this using getDirSizeRecursively.

test_atomic_install()

test_atomic_install_dev()

test_atomic_context_ok()

test_atomic_context_error()

30.1. toil 601

Toil Documentation, Release 5.11.0

test_call_command_ok()

test_call_command_err()

class toil.test.src.miscTests.TestPanic(methodName='runTest')
Bases: toil.test.ToilTest

TestCase ToilTest TestPanic

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

test_panic_by_hand()

test_panic()

test_panic_with_secondary()

test_nested_panic()

try_and_panic_by_hand()

try_and_panic()

try_and_panic_with_secondary()

try_and_nested_panic_with_secondary()

toil.test.src.promisedRequirementTest

Module Contents

Classes

hidden Hide abstract base class from unittest's test case loader.
SingleMachinePromisedRequirementsTest Tests against the SingleMachine batch system
MesosPromisedRequirementsTest Tests against the Mesos batch system

602 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Functions

maxConcurrency(job, cpuCount, filename, coresPer-
Job)

Returns the max number of concurrent tasks when using
a PromisedRequirement instance

getOne()

getThirtyTwoMb()

logDiskUsage(job, funcName[, sleep]) Logs the job's disk usage to master and sleeps for speci-
fied amount of time.

Attributes

log

toil.test.src.promisedRequirementTest.log

class toil.test.src.promisedRequirementTest.hidden

Hide abstract base class from unittest’s test case loader.

http://stackoverflow.com/questions/1323455/python-unit-test-with-base-and-sub-class#answer-25695512

class AbstractPromisedRequirementsTest(methodName='runTest')
Bases: toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest

AbstractBatchSystemJobTest AbstractPromisedRequirementsTestToilTestTestCase

An abstract base class for testing Toil workflows with promised requirements.

testConcurrencyDynamic()

Asserts that promised core resources are allocated properly using a dynamic Toil workflow

testConcurrencyStatic()

Asserts that promised core resources are allocated properly using a static DAG

getOptions(tempDir, caching=True)
Configures options for Toil workflow and makes job store. :param str tempDir: path to test directory
:return: Toil options object

getCounterPath(tempDir)
Returns path to a counter file :param str tempDir: path to test directory :return: path to counter file

testPromisesWithJobStoreFileObjects(caching=True)
Check whether FileID objects are being pickled properly when used as return values of functions.
Then ensure that lambdas of promised FileID objects can be used to describe the requirements of a
subsequent job. This type of operation will be used commonly in Toil scripts. :return: None

30.1. toil 603

http://stackoverflow.com/questions/1323455/python-unit-test-with-base-and-sub-class#answer-25695512

Toil Documentation, Release 5.11.0

testPromisesWithNonCachingFileStore()

testPromiseRequirementRaceStatic()

Checks for a race condition when using promised requirements and child job functions.

toil.test.src.promisedRequirementTest.maxConcurrency(job, cpuCount, filename, coresPerJob)
Returns the max number of concurrent tasks when using a PromisedRequirement instance to allocate the number
of cores per job.

Parameters
• cpuCount (int) – number of available cpus

• filename (str) – path to counter file

• coresPerJob (int) – number of cores assigned to each job

Return int max concurrency value
toil.test.src.promisedRequirementTest.getOne()

toil.test.src.promisedRequirementTest.getThirtyTwoMb()

toil.test.src.promisedRequirementTest.logDiskUsage(job, funcName, sleep=0)
Logs the job’s disk usage to master and sleeps for specified amount of time.

Returns
job function’s disk usage

class toil.test.src.promisedRequirementTest.SingleMachinePromisedRequirementsTest(methodName='runTest')
Bases: hidden

AbstractBatchSystemJobTest AbstractPromisedRequirementsTestToilTest SingleMachinePromisedRequirementsTestTestCase

Tests against the SingleMachine batch system

getBatchSystemName()

Return type
(str, AbstractBatchSystem)

tearDown()

Hook method for deconstructing the test fixture after testing it.

class toil.test.src.promisedRequirementTest.MesosPromisedRequirementsTest(methodName='runTest')
Bases: hidden, toil.batchSystems.mesos.test.MesosTestSupport

AbstractBatchSystemJobTest AbstractPromisedRequirementsTestToilTest

MesosPromisedRequirementsTest

MesosTestSupport

TestCase

Tests against the Mesos batch system

604 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

getOptions(tempDir, caching=True)
Configures options for Toil workflow and makes job store. :param str tempDir: path to test directory :return:
Toil options object

getBatchSystemName()

Return type
(str, AbstractBatchSystem)

tearDown()

Hook method for deconstructing the test fixture after testing it.

toil.test.src.promisesTest

Module Contents

Classes

CachedUnpicklingJobStoreTest A common base class for Toil tests.
ChainedIndexedPromisesTest A common base class for Toil tests.
PathIndexingPromiseTest Test support for indexing promises of arbitrarily nested

data structures of lists, dicts and

Functions

parent(job)

child()

a(job)

b(job)

c()

d(job)

e()

class toil.test.src.promisesTest.CachedUnpicklingJobStoreTest(methodName='runTest')
Bases: toil.test.ToilTest

30.1. toil 605

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

CachedUnpicklingJobStoreTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

test()

Runs two identical Toil workflows with different job store paths

toil.test.src.promisesTest.parent(job)

toil.test.src.promisesTest.child()

class toil.test.src.promisesTest.ChainedIndexedPromisesTest(methodName='runTest')
Bases: toil.test.ToilTest

ChainedIndexedPromisesTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

test()

toil.test.src.promisesTest.a(job)

toil.test.src.promisesTest.b(job)

toil.test.src.promisesTest.c()

606 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

class toil.test.src.promisesTest.PathIndexingPromiseTest(methodName='runTest')
Bases: toil.test.ToilTest

PathIndexingPromiseTestToilTestTestCase

Test support for indexing promises of arbitrarily nested data structures of lists, dicts and tuples, or any other
object supporting the __getitem__() protocol.

test()

toil.test.src.promisesTest.d(job)

toil.test.src.promisesTest.e()

toil.test.src.realtimeLoggerTest

Module Contents

Classes

RealtimeLoggerTest A common base class for Toil tests.
MessageDetector Detect the secret message and set a flag.
LogTest Class represents a unit of work in toil.

class toil.test.src.realtimeLoggerTest.RealtimeLoggerTest(methodName='runTest')
Bases: toil.test.ToilTest

RealtimeLoggerTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

30.1. toil 607

Toil Documentation, Release 5.11.0

testRealtimeLogger()

class toil.test.src.realtimeLoggerTest.MessageDetector

Bases: logging.StreamHandler

Filterer Handler StreamHandler MessageDetector

Detect the secret message and set a flag.

emit(record)
Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

class toil.test.src.realtimeLoggerTest.LogTest

Bases: toil.job.Job

Job LogTest

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

608 Chapter 30. API Reference

https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler

Toil Documentation, Release 5.11.0

toil.test.src.regularLogTest

Module Contents

Classes

RegularLogTest A common base class for Toil tests.

Attributes

logger

toil.test.src.regularLogTest.logger

class toil.test.src.regularLogTest.RegularLogTest(methodName='runTest')
Bases: toil.test.ToilTest

RegularLogTestToilTestTestCase

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

setUp()

Hook method for setting up the test fixture before exercising it.

Return type
None

testLogToMaster()

testWriteLogs()

testWriteGzipLogs()

testMultipleLogToMaster()

testRegularLog()

30.1. toil 609

Toil Documentation, Release 5.11.0

toil.test.src.resourceTest

Module Contents

Classes

ResourceTest Test module descriptors and resources derived from
them.

Functions

tempFileContaining(content[, suffix]) Write a file with the given contents, and keep it on disk
as long as the context is active.

toil.test.src.resourceTest.tempFileContaining(content, suffix='')
Write a file with the given contents, and keep it on disk as long as the context is active. :param str content: The
contents of the file. :param str suffix: The extension to use for the temporary file.

class toil.test.src.resourceTest.ResourceTest(methodName='runTest')
Bases: toil.test.ToilTest

ResourceTestToilTestTestCase

Test module descriptors and resources derived from them.

testStandAlone()

testPackage()

testVirtualEnv()

testStandAloneInPackage()

testBuiltIn()

testNonPyStandAlone()

Asserts that Toil enforces the user script to have a .py or .pyc extension because that’s the only way auto-
deployment can re-import the module on a worker. See

https://github.com/BD2KGenomics/toil/issues/631 and https://github.com/BD2KGenomics/toil/issues/
858

610 Chapter 30. API Reference

https://github.com/BD2KGenomics/toil/issues/631
https://github.com/BD2KGenomics/toil/issues/858
https://github.com/BD2KGenomics/toil/issues/858

Toil Documentation, Release 5.11.0

toil.test.src.restartDAGTest

Module Contents

Classes

RestartDAGTest Tests that restarted job DAGs don't run children of jobs
that failed in the first run till the

Functions

passingFn(job[, fileName]) This function is guaranteed to pass as it does nothing out
of the ordinary. If fileName is

failingFn(job, failType, fileName) This function is guaranteed to fail via a raised assertion,
or an os.kill

Attributes

logger

toil.test.src.restartDAGTest.logger

class toil.test.src.restartDAGTest.RestartDAGTest(methodName='runTest')
Bases: toil.test.ToilTest

RestartDAGTestToilTestTestCase

Tests that restarted job DAGs don’t run children of jobs that failed in the first run till the parent completes
successfully in the restart.

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

testRestartedWorkflowSchedulesCorrectJobsOnFailedParent()

testRestartedWorkflowSchedulesCorrectJobsOnKilledParent()

30.1. toil 611

Toil Documentation, Release 5.11.0

toil.test.src.restartDAGTest.passingFn(job, fileName=None)
This function is guaranteed to pass as it does nothing out of the ordinary. If fileName is provided, it will be
created.

Parameters
fileName (str) – The name of a file that must be created if provided.

toil.test.src.restartDAGTest.failingFn(job, failType, fileName)
This function is guaranteed to fail via a raised assertion, or an os.kill

Parameters
• job – Job

• failType (str) – ‘raise’ or ‘kill

• fileName (str) – The name of a file that must be created.

toil.test.src.resumabilityTest

Module Contents

Classes

ResumabilityTest https://github.com/BD2KGenomics/toil/issues/808

Functions

parent(job) Set up a bunch of dummy child jobs, and a bad job that
needs to be

goodChild(job) Does nothing.
badChild(job) Fails the first time it's run, succeeds the second time.

class toil.test.src.resumabilityTest.ResumabilityTest(methodName='runTest')
Bases: toil.test.ToilTest

ResumabilityTestToilTestTestCase

https://github.com/BD2KGenomics/toil/issues/808

test()

Tests that a toil workflow that fails once can be resumed without a NoSuchJobException.

toil.test.src.resumabilityTest.parent(job)
Set up a bunch of dummy child jobs, and a bad job that needs to be restarted as the follow on.

612 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/BD2KGenomics/toil/issues/808
https://github.com/BD2KGenomics/toil/issues/808

Toil Documentation, Release 5.11.0

toil.test.src.resumabilityTest.goodChild(job)
Does nothing.

toil.test.src.resumabilityTest.badChild(job)
Fails the first time it’s run, succeeds the second time.

toil.test.src.retainTempDirTest

Module Contents

Classes

CleanWorkDirTest Tests testing :class:toil.fileStores.abstractFileStore.AbstractFileStore

Functions

tempFileTestJob(job)

tempFileTestErrorJob(job)

class toil.test.src.retainTempDirTest.CleanWorkDirTest(methodName='runTest')
Bases: toil.test.ToilTest

CleanWorkDirTestToilTestTestCase

Tests testing :class:toil.fileStores.abstractFileStore.AbstractFileStore

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

testNever()

testAlways()

testOnErrorWithError()

testOnErrorWithNoError()

testOnSuccessWithError()

30.1. toil 613

Toil Documentation, Release 5.11.0

testOnSuccessWithSuccess()

toil.test.src.retainTempDirTest.tempFileTestJob(job)

toil.test.src.retainTempDirTest.tempFileTestErrorJob(job)

toil.test.src.systemTest

Module Contents

Classes

SystemTest Test various assumptions about the operating system's
behavior.

class toil.test.src.systemTest.SystemTest(methodName='runTest')
Bases: toil.test.ToilTest

SystemTestToilTestTestCase

Test various assumptions about the operating system’s behavior.

testAtomicityOfNonEmptyDirectoryRenames()

toil.test.src.threadingTest

Module Contents

Classes

ThreadingTest Test Toil threading/synchronization tools.

Attributes

log

toil.test.src.threadingTest.log

614 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

class toil.test.src.threadingTest.ThreadingTest(methodName='runTest')
Bases: toil.test.ToilTest

TestCase ToilTest ThreadingTest

Test Toil threading/synchronization tools.

testGlobalMutexOrdering()

testLastProcessStanding()

toil.test.src.toilContextManagerTest

Module Contents

Classes

ToilContextManagerTest A common base class for Toil tests.
HelloWorld Class represents a unit of work in toil.
FollowOn Class represents a unit of work in toil.

Functions

childFn(job)

class toil.test.src.toilContextManagerTest.ToilContextManagerTest(methodName='runTest')
Bases: toil.test.ToilTest

TestCase ToilTest ToilContextManagerTest

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The

30.1. toil 615

Toil Documentation, Release 5.11.0

path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

setUp()

Hook method for setting up the test fixture before exercising it.

tearDown()

Hook method for deconstructing the test fixture after testing it.

testContextManger()

testNoContextManger()

testExportAfterFailedExport()

class toil.test.src.toilContextManagerTest.HelloWorld

Bases: toil.job.Job

HelloWorldJob

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

toil.test.src.toilContextManagerTest.childFn(job)

class toil.test.src.toilContextManagerTest.FollowOn(fileId)
Bases: toil.job.Job

FollowOnJob

Class represents a unit of work in toil.

616 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

toil.test.src.userDefinedJobArgTypeTest

Module Contents

Classes

UserDefinedJobArgTypeTest Test for issue #423 (Toil can't unpickle classes defined in
user scripts) and variants

JobClass Class represents a unit of work in toil.
Foo

Functions

jobFunction(job, level, foo)

main()

class toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest(methodName='runTest')
Bases: toil.test.ToilTest

TestCase ToilTest UserDefinedJobArgTypeTest

Test for issue #423 (Toil can’t unpickle classes defined in user scripts) and variants thereof.

https://github.com/BD2KGenomics/toil/issues/423

setUp()

Hook method for setting up the test fixture before exercising it.

testJobFunction()

Test with first job being a function

30.1. toil 617

https://github.com/BD2KGenomics/toil/issues/423

Toil Documentation, Release 5.11.0

testJobClass()

Test with first job being an instance of a class

testJobFunctionFromMain()

Test with first job being a function defined in __main__

testJobClassFromMain()

Test with first job being an instance of a class defined in __main__

class toil.test.src.userDefinedJobArgTypeTest.JobClass(level, foo)
Bases: toil.job.Job

Job JobClass

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

toil.test.src.userDefinedJobArgTypeTest.jobFunction(job, level, foo)

class toil.test.src.userDefinedJobArgTypeTest.Foo

assertIsCopy()

toil.test.src.userDefinedJobArgTypeTest.main()

toil.test.src.workerTest

Module Contents

Classes

WorkerTests Test miscellaneous units of the worker.

class toil.test.src.workerTest.WorkerTests(methodName='runTest')
Bases: toil.test.ToilTest

618 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

TestCase ToilTest WorkerTests

Test miscellaneous units of the worker.

setUp()

Hook method for setting up the test fixture before exercising it.

testNextChainable()

Make sure chainable/non-chainable jobs are identified correctly.

toil.test.utils

Submodules

toil.test.utils.toilDebugTest

A set of test cases for toilwdl.py

Module Contents

Functions

workflow_debug_jobstore(tmp_path)

testJobStoreContents(workflow_debug_jobstore) Test toilDebugFile.printContentsOfJobStore().
fetchFiles(symLink, jobStoreDir, outputDir) Fn for testFetchJobStoreFiles() and testFetchJobStore-

FilesWSymlinks().
testFetchJobStoreFiles(tmp_path, work-
flow_debug_jobstore)

Test toilDebugFile.fetchJobStoreFiles() without using
symlinks.

testFetchJobStoreFilesWSymlinks(tmp_path, ...) Test toilDebugFile.fetchJobStoreFiles() using symlinks.

Attributes

logger

toil.test.utils.toilDebugTest.logger

toil.test.utils.toilDebugTest.workflow_debug_jobstore(tmp_path)

Parameters
tmp_path (pathlib.Path) –

30.1. toil 619

https://docs.python.org/3/library/pathlib.html#pathlib.Path

Toil Documentation, Release 5.11.0

Return type
str

toil.test.utils.toilDebugTest.testJobStoreContents(workflow_debug_jobstore)
Test toilDebugFile.printContentsOfJobStore().

Runs a workflow that imports ‘B.txt’ and ‘mkFile.py’ into the jobStore. ‘A.txt’, ‘C.txt’, ‘ABC.txt’ are then created.
This checks to make sure these contents are found in the jobStore and printed.

Parameters
workflow_debug_jobstore (str) –

toil.test.utils.toilDebugTest.fetchFiles(symLink, jobStoreDir, outputDir)
Fn for testFetchJobStoreFiles() and testFetchJobStoreFilesWSymlinks().

Runs a workflow that imports ‘B.txt’ and ‘mkFile.py’ into the jobStore. ‘A.txt’, ‘C.txt’, ‘ABC.txt’ are then created.
This test then attempts to get a list of these files and copy them over into our output diectory from the jobStore,
confirm that they are present, and then delete them.

Parameters
jobStoreDir (str) –

toil.test.utils.toilDebugTest.testFetchJobStoreFiles(tmp_path, workflow_debug_jobstore)
Test toilDebugFile.fetchJobStoreFiles() without using symlinks.

Parameters
• tmp_path (pathlib.Path) –

• workflow_debug_jobstore (str) –

Return type
None

toil.test.utils.toilDebugTest.testFetchJobStoreFilesWSymlinks(tmp_path,
workflow_debug_jobstore)

Test toilDebugFile.fetchJobStoreFiles() using symlinks.

Parameters
• tmp_path (pathlib.Path) –

• workflow_debug_jobstore (str) –

Return type
None

toil.test.utils.toilKillTest

Module Contents

Classes

ToilKillTest A set of test cases for "toil kill".
ToilKillTestWithAWSJobStore A set of test cases for "toil kill" using the AWS job store.

620 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Attributes

logger

pkg_root

toil.test.utils.toilKillTest.logger

toil.test.utils.toilKillTest.pkg_root

class toil.test.utils.toilKillTest.ToilKillTest(*args, **kwargs)
Bases: toil.test.ToilTest

TestCase ToilTest ToilKillTest

A set of test cases for “toil kill”.

setUp()

Shared test variables.

tearDown()

Default tearDown for unittest.

test_cwl_toil_kill()

Test “toil kill” on a CWL workflow with a 100 second sleep.

class toil.test.utils.toilKillTest.ToilKillTestWithAWSJobStore(*args, **kwargs)
Bases: ToilKillTest

TestCase ToilTest ToilKillTest ToilKillTestWithAWSJobStore

A set of test cases for “toil kill” using the AWS job store.

30.1. toil 621

Toil Documentation, Release 5.11.0

toil.test.utils.utilsTest

Module Contents

Classes

UtilsTest Tests the utilities that toil ships with, e.g. stats and status,
in conjunction with restart

RunTwoJobsPerWorker Runs child job with same resources as self in an attempt
to chain the jobs on the same worker

Functions

printUnicodeCharacter()

Attributes

pkg_root

logger

toil.test.utils.utilsTest.pkg_root

toil.test.utils.utilsTest.logger

class toil.test.utils.utilsTest.UtilsTest(methodName='runTest')
Bases: toil.test.ToilTest

TestCase ToilTest UtilsTest

Tests the utilities that toil ships with, e.g. stats and status, in conjunction with restart functionality.

property toilMain

property cleanCommand

property statsCommand

setUp()

Hook method for setting up the test fixture before exercising it.

622 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

tearDown()

Hook method for deconstructing the test fixture after testing it.

statusCommand(failIfNotComplete=False)

testAWSProvisionerUtils()

Runs a number of the cluster utilities in sequence.

Launches a cluster with custom tags. Verifies the tags exist. ssh’s into the cluster. Does some weird string
comparisons. Makes certain that TOIL_WORKDIR is set as expected in the ssh’ed cluster. Rsyncs a file
and verifies it exists on the leader. Destroys the cluster.

Returns
testUtilsSort()

Tests the status and stats commands of the toil command line utility using the sort example with the –restart
flag.

testUtilsStatsSort()

Tests the stats commands on a complete run of the stats test.

testUnicodeSupport()

testMultipleJobsPerWorkerStats()

Tests case where multiple jobs are run on 1 worker to ensure that all jobs report back their data

check_status(status, status_fn, seconds=20)

testGetPIDStatus()

Test that ToilStatus.getPIDStatus() behaves as expected.

testGetStatusFailedToilWF()

Test that ToilStatus.getStatus() behaves as expected with a failing Toil workflow. While this workflow could
be called by importing and evoking its main function, doing so would remove the opportunity to test the
‘RUNNING’ functionality of getStatus().

testGetStatusFailedCWLWF()

Test that ToilStatus.getStatus() behaves as expected with a failing CWL workflow.

testGetStatusSuccessfulCWLWF()

Test that ToilStatus.getStatus() behaves as expected with a successful CWL workflow.

testPrintJobLog(mock_print)
Test that ToilStatus.printJobLog() reads the log from a failed command without error.

testRestartAttribute()

Test that the job store is only destroyed when we observe a succcessful workflow run. The following sim-
ulates a failing workflow that attempts to resume without restart(). In this case, the job store should not be
destroyed until restart() is called.

toil.test.utils.utilsTest.printUnicodeCharacter()

class toil.test.utils.utilsTest.RunTwoJobsPerWorker

Bases: toil.job.Job

30.1. toil 623

Toil Documentation, Release 5.11.0

Job RunTwoJobsPerWorker

Runs child job with same resources as self in an attempt to chain the jobs on the same worker

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

toil.test.wdl

Submodules

toil.test.wdl.builtinTest

Module Contents

Classes

WdlStandardLibraryFunctionsTest A set of test cases for toil's wdl functions.
WdlWorkflowsTest A set of test cases for toil's conformance with WDL.
WdlLanguageSpecWorkflowsTest A set of test cases for toil's conformance with the WDL

language specification:
WdlStandardLibraryWorkflowsTest A set of test cases for toil's conformance with the WDL

built-in standard library:

class toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest(methodName='runTest')
Bases: toil.test.ToilTest

TestCase ToilTest WdlStandardLibraryFunctionsTest

A set of test cases for toil’s wdl functions.

624 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

setUp()

Runs anew before each test to create farm fresh temp dirs.

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

tearDown()

Clean up outputs.

testFn_Sub()

Test the wdl built-in functional equivalent of ‘sub()’.

testFn_Ceil()

Test the wdl built-in functional equivalent of ‘ceil()’, which converts a Float value into an Int by rounding
up to the next higher integer

testFn_Floor()

Test the wdl built-in functional equivalent of ‘floor()’, which converts a Float value into an Int by rounding
down to the next lower integer

testFn_ReadLines()

Test the wdl built-in functional equivalent of ‘read_lines()’.

testFn_ReadTsv()

Test the wdl built-in functional equivalent of ‘read_tsv()’.

testFn_ReadJson()

Test the wdl built-in functional equivalent of ‘read_json()’.

testFn_ReadMap()

Test the wdl built-in functional equivalent of ‘read_map()’.

testFn_ReadInt()

Test the wdl built-in functional equivalent of ‘read_int()’.

testFn_ReadString()

Test the wdl built-in functional equivalent of ‘read_string()’.

testFn_ReadFloat()

Test the wdl built-in functional equivalent of ‘read_float()’.

testFn_ReadBoolean()

Test the wdl built-in functional equivalent of ‘read_boolean()’.

testFn_WriteLines()

Test the wdl built-in functional equivalent of ‘write_lines()’.

testFn_WriteTsv()

Test the wdl built-in functional equivalent of ‘write_tsv()’.

testFn_WriteJson()

Test the wdl built-in functional equivalent of ‘write_json()’.

testFn_WriteMap()

Test the wdl built-in functional equivalent of ‘write_map()’.

testFn_Transpose()

Test the wdl built-in functional equivalent of ‘transpose()’.

30.1. toil 625

Toil Documentation, Release 5.11.0

testFn_Length()

Test the WDL ‘length()’ built-in.

testFn_Zip()

Test the wdl built-in functional equivalent of ‘zip()’.

testFn_Cross()

Test the wdl built-in functional equivalent of ‘cross()’.

class toil.test.wdl.builtinTest.WdlWorkflowsTest(methodName='runTest')
Bases: toil.test.ToilTest

TestCase ToilTest WdlWorkflowsTest

A set of test cases for toil’s conformance with WDL.

All tests should include a simple wdl and json file for toil to run that checks the output.

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

check_function(function_name, cases, json_file_name=None, expected_result=None,
expected_exception=None)

Run the given WDL workflow and check its output. The WDL workflow should store its output inside a
‘output.txt’ file that can be compared to expected_result.

If expected_exception is set, this test passes only when both the workflow fails and that the given ex-
pected_exception string is present in standard error.

Parameters
• function_name (str) –

• cases (List[str]) –

• json_file_name (Optional[str]) –

• expected_result (Optional[str]) –

• expected_exception (Optional[str]) –

class toil.test.wdl.builtinTest.WdlLanguageSpecWorkflowsTest(methodName='runTest')
Bases: WdlWorkflowsTest

TestCase ToilTest WdlWorkflowsTest WdlLanguageSpecWorkflowsTest

A set of test cases for toil’s conformance with the WDL language specification:

https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#language-specification

626 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#language-specification

Toil Documentation, Release 5.11.0

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

test_type_pair()

test_v1_declaration()

Basic declaration example modified from the WDL 1.0 spec:

https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md#declarations

class toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest(methodName='runTest')
Bases: WdlWorkflowsTest

TestCase ToilTest WdlWorkflowsTest WdlStandardLibraryWorkflowsTest

A set of test cases for toil’s conformance with the WDL built-in standard library:

https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#standard-library

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

test_sub()

test_size()

test_ceil()

test_floor()

test_round()

test_stdout()

test_read()

Test the set of WDL read functions.

test_write()

Test the set of WDL write functions.

test_range()

test_transpose()

test_length()

test_zip()

test_cross()

test_as_pairs()

test_as_map()

30.1. toil 627

https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md#declarations
https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#standard-library

Toil Documentation, Release 5.11.0

test_keys()

test_collect_by_key()

test_flatten()

toil.test.wdl.conftest

Module Contents

toil.test.wdl.conftest.collect_ignore = []

toil.test.wdl.toilwdlTest

Module Contents

Classes

BaseToilWdlTest Base test class for WDL tests
ToilWdlTest General tests for Toil WDL
ToilWDLLibraryTest Test class for WDL standard functions.
ToilWdlIntegrationTest Test class for WDL tests that need extra workflows and

data downloaded

Functions

compare_runs(output_dir, ref_dir) Takes two directories and compares all of the files be-
tween those two

compare_vcf_files(filepath1, filepath2) Asserts that two .vcf files contain the same variant find-
ings.

class toil.test.wdl.toilwdlTest.BaseToilWdlTest(methodName='runTest')
Bases: toil.test.ToilTest

BaseToilWdlTestToilTestTestCase

Base test class for WDL tests

setUp()

Runs anew before each test to create farm fresh temp dirs.

628 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Return type
None

tearDown()

Hook method for deconstructing the test fixture after testing it.

Return type
None

classmethod setUpClass()

Runs once for all tests.

Return type
None

class toil.test.wdl.toilwdlTest.ToilWdlTest(methodName='runTest')
Bases: BaseToilWdlTest

BaseToilWdlTest ToilWdlTestToilTestTestCase

General tests for Toil WDL

testMD5sum()

Test if toilwdl produces the same outputs as known good outputs for WDL’s GATK tutorial #1.

class toil.test.wdl.toilwdlTest.ToilWDLLibraryTest(methodName='runTest')
Bases: BaseToilWdlTest

BaseToilWdlTest ToilWDLLibraryTestToilTestTestCase

Test class for WDL standard functions.

testFn_SelectFirst()

Test the wdl built-in functional equivalent of ‘select_first()’, which returns the first value in a list that is not
None.

testFn_Size()

Test the wdl built-in functional equivalent of ‘size()’, which returns a file’s size based on the path.

Return type
None

testFn_Basename()

testFn_Glob()

Test the wdl built-in functional equivalent of ‘glob()’, which finds all files with a pattern in a directory.

30.1. toil 629

Toil Documentation, Release 5.11.0

testFn_ParseMemory()

Test the wdl built-in functional equivalent of ‘parse_memory()’, which parses a specified memory input to
an int output.

The input can be a string or an int or a float and may include units such as ‘Gb’ or ‘mib’ as a separate
argument.

testFn_ParseCores()

Test the wdl built-in functional equivalent of ‘parse_cores()’, which parses a specified disk input to an int
output.

The input can be a string or an int.

testFn_ParseDisk()

Test the wdl built-in functional equivalent of ‘parse_disk()’, which parses a specified disk input to an int
output.

The input can be a string or an int or a float and may include units such as ‘Gb’ or ‘mib’ as a separate
argument.

The minimum returned value is 2147483648 bytes.

testPrimitives()

Test if toilwdl correctly interprets some basic declarations.

testCSV()

testTSV()

class toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest(methodName='runTest')
Bases: BaseToilWdlTest

BaseToilWdlTest ToilWdlIntegrationTestToilTestTestCase

Test class for WDL tests that need extra workflows and data downloaded

gatk_data: str

gatk_data_dir: str

encode_data: str

encode_data_dir: str

wdl_data: str

wdl_data_dir: str

classmethod setUpClass()

Runs once for all tests.

Return type
None

630 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

classmethod tearDownClass()

We generate a lot of cruft.

Return type
None

testTut01()

Test if toilwdl produces the same outputs as known good outputs for WDL’s GATK tutorial #1.

testTut02()

Test if toilwdl produces the same outputs as known good outputs for WDL’s GATK tutorial #2.

testTut03()

Test if toilwdl produces the same outputs as known good outputs for WDL’s GATK tutorial #3.

testTut04()

Test if toilwdl produces the same outputs as known good outputs for WDL’s GATK tutorial #4.

testENCODE()

Test if toilwdl produces the same outputs as known good outputs for a short ENCODE run.

testPipe()

Test basic bash input functionality with a pipe.

testJSON()

test_size_large()

Test the wdl built-in functional equivalent of ‘size()’, which returns a file’s size based on the path, on a large
file.

Return type
None

classmethod fetch_and_unzip_from_s3(filename, data, data_dir)

toil.test.wdl.toilwdlTest.compare_runs(output_dir, ref_dir)
Takes two directories and compares all of the files between those two directories, asserting that they match.

• Ignores outputs.txt, which contains a list of the outputs in the folder.

• Compares line by line, unless the file is a .vcf file.

• Ignores potentially date-stamped comments (lines starting with ‘#’).

• Ignores quality scores in .vcf files and only checks that they found the same variants. This is due to assumed
small observed rounding differences between systems.

Parameters
• ref_dir – The first directory to compare (with output_dir).

• output_dir – The second directory to compare (with ref_dir).

toil.test.wdl.toilwdlTest.compare_vcf_files(filepath1, filepath2)
Asserts that two .vcf files contain the same variant findings.

• Ignores potentially date-stamped comments (lines starting with ‘#’).

• Ignores quality scores in .vcf files and only checks that they found the same variants. This is due to assumed
small observed rounding differences between systems.

VCF File Column Contents: 1: #CHROM 2: POS 3: ID 4: REF 5: ALT 6: QUAL 7: FILTER 8: INFO

30.1. toil 631

Toil Documentation, Release 5.11.0

Parameters
• filepath1 – First .vcf file to compare.

• filepath2 – Second .vcf file to compare.

toil.test.wdl.wdltoil_test

Module Contents

Classes

WdlToilTest Version of the old Toil WDL tests that tests the new
MiniWDL-based implementation.

class toil.test.wdl.wdltoil_test.WdlToilTest(methodName='runTest')
Bases: toil.test.wdl.toilwdlTest.ToilWdlTest

BaseToilWdlTest ToilWdlTestToilTestTestCase WdlToilTest

Version of the old Toil WDL tests that tests the new MiniWDL-based implementation.

classmethod setUpClass()

Runs once for all tests.

Return type
None

testMD5sum()

Test if toilwdl produces the same outputs as known good outputs for WDL’s GATK tutorial #1.

test_empty_file_path()

Test if empty File type inputs are protected against

test_miniwdl_self_test()

Test if the MiniWDL self test runs and produces the expected output.

test_giraffe_deepvariant()

Test if Giraffe and CPU DeepVariant run. This could take 25 minutes.

test_giraffe()

Test if Giraffe runs. This could take 12 minutes. Also we scale it down.

632 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Package Contents

Classes

concat A literal iterable to combine sequence literals (lists, set)
with generators or list comprehensions.

ExceptionalThread A thread whose join() method re-raises exceptions raised
during run(). While join() is

ToilTest A common base class for Toil tests.
ApplianceTestSupport A Toil test that runs a user script on a minimal cluster of

appliance containers.

Functions

applianceSelf ([forceDockerAppliance]) Return the fully qualified name of the Docker image to
start Toil appliance containers from.

toilPackageDirPath () Return the absolute path of the directory that corre-
sponds to the top-level toil package.

have_working_nvidia_docker_runtime() Return True if Docker exists and can handle an "nvidia"
runtime and the "--gpus" option.

have_working_nvidia_smi() Return True if the nvidia-smi binary, from nvidia's
CUDA userspace

running_on_ec2() Return True if we are currently running on EC2, and
false otherwise.

cpu_count() Get the rounded-up integer number of whole CPUs avail-
able.

get_temp_file([suffix, rootDir]) Return a string representing a temporary file, that must
be manually deleted.

needs_env_var(var_name[, comment]) Use as a decorator before test classes or methods to run
only if the given

needs_rsync3(test_item) Decorate classes or methods that depend on any features
from rsync version 3.0.0+.

needs_aws_s3(test_item) Use as a decorator before test classes or methods to run
only if AWS S3 is usable.

needs_aws_ec2(test_item) Use as a decorator before test classes or methods to run
only if AWS EC2 is usable.

needs_aws_batch (test_item) Use as a decorator before test classes or methods to run
only if AWS Batch

needs_google(test_item) Use as a decorator before test classes or methods to run
only if Google

needs_gridengine(test_item) Use as a decorator before test classes or methods to run
only if GridEngine is installed.

needs_torque(test_item) Use as a decorator before test classes or methods to run
only if PBS/Torque is installed.

needs_tes(test_item) Use as a decorator before test classes or methods to run
only if TES is available.

needs_kubernetes_installed(test_item) Use as a decorator before test classes or methods to run
only if Kubernetes is installed.

continues on next page

30.1. toil 633

Toil Documentation, Release 5.11.0

Table 1 – continued from previous page
needs_kubernetes(test_item) Use as a decorator before test classes or methods to run

only if Kubernetes is installed and configured.
needs_mesos(test_item) Use as a decorator before test classes or methods to run

only if Mesos is installed.
needs_parasol(test_item) Use as decorator so tests are only run if Parasol is in-

stalled.
needs_slurm(test_item) Use as a decorator before test classes or methods to run

only if Slurm is installed.
needs_htcondor(test_item) Use a decorator before test classes or methods to run only

if the HTCondor is installed.
needs_lsf (test_item) Use as a decorator before test classes or methods to only

run them if LSF is installed.
needs_java(test_item) Use as a test decorator to run only if java is installed.
needs_docker(test_item) Use as a decorator before test classes or methods to only

run them if
needs_singularity(test_item) Use as a decorator before test classes or methods to only

run them if
needs_local_cuda(test_item) Use as a decorator before test classes or methods to only

run them if
needs_docker_cuda(test_item) Use as a decorator before test classes or methods to only

run them if
needs_encryption(test_item) Use as a decorator before test classes or methods to only

run them if PyNaCl is installed
needs_cwl(test_item) Use as a decorator before test classes or methods to only

run them if CWLTool is installed
needs_server(test_item) Use as a decorator before test classes or methods to only

run them if Connexion is installed.
needs_celery_broker(test_item) Use as a decorator before test classes or methods to run

only if RabbitMQ is set up to take Celery jobs.
needs_wes_server(test_item) Use as a decorator before test classes or methods to run

only if a WES
needs_local_appliance(test_item) Use as a decorator before test classes or methods to only

run them if
needs_fetchable_appliance(test_item) Use as a decorator before test classes or methods to only

run them if
integrative(test_item) Use this to decorate integration tests so as to skip them

during regular builds.
slow(test_item) Use this decorator to identify tests that are slow and not

critical.
timeLimit(seconds) http://stackoverflow.com/a/601168
make_tests(generalMethod, targetClass, **kwargs) This method dynamically generates test methods using

the generalMethod as a template. Each

634 Chapter 30. API Reference

http://stackoverflow.com/a/601168

Toil Documentation, Release 5.11.0

Attributes

memoize Memoize a function result based on its parameters using
this decorator.

distVersion

logger

MT

methodNamePartRegex

exception toil.test.ApplianceImageNotFound(origAppliance, url, statusCode)
Bases: docker.errors.ImageNotFound

APIError NotFound

HTTPError

DockerException

ApplianceImageNotFoundImageNotFound

RequestException

Error raised when using TOIL_APPLIANCE_SELF results in an HTTP error.

Parameters
• origAppliance (str) – The full url of the docker image originally specified by the user (or

the default). e.g. “quay.io/ucsc_cgl/toil:latest”

• url (str) – The URL at which the image’s manifest is supposed to appear

• statusCode (int) – the failing HTTP status code returned by the URL

toil.test.applianceSelf(forceDockerAppliance=False)
Return the fully qualified name of the Docker image to start Toil appliance containers from.

The result is determined by the current version of Toil and three environment variables:
TOIL_DOCKER_REGISTRY, TOIL_DOCKER_NAME and TOIL_APPLIANCE_SELF.

TOIL_DOCKER_REGISTRY specifies an account on a publicly hosted docker registry like Quay or Docker Hub.
The default is UCSC’s CGL account on Quay.io where the Toil team publishes the official appliance images.
TOIL_DOCKER_NAME specifies the base name of the image. The default of toil will be adequate in most cases.
TOIL_APPLIANCE_SELF fully qualifies the appliance image, complete with registry, image name and version
tag, overriding both TOIL_DOCKER_NAME and TOIL_DOCKER_REGISTRY` as well as the version tag of the
image. Setting TOIL_APPLIANCE_SELF will not be necessary in most cases.

Parameters
forceDockerAppliance (bool) –

Return type
str

toil.test.toilPackageDirPath()

Return the absolute path of the directory that corresponds to the top-level toil package.

30.1. toil 635

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

The return value is guaranteed to end in ‘/toil’.

Return type
str

toil.test.have_working_nvidia_docker_runtime()

Return True if Docker exists and can handle an “nvidia” runtime and the “–gpus” option.

Return type
bool

toil.test.have_working_nvidia_smi()

Return True if the nvidia-smi binary, from nvidia’s CUDA userspace utilities, is installed and can be run success-
fully.

TODO: This isn’t quite the same as the check that cwltool uses to decide if it can fulfill a CUDARequirement.

Return type
bool

toil.test.running_on_ec2()

Return True if we are currently running on EC2, and false otherwise.

Return type
bool

class toil.test.concat(*args)
A literal iterable to combine sequence literals (lists, set) with generators or list comprehensions.

Instead of

>>> [-1] + [x * 2 for x in range(3)] + [-1]
[-1, 0, 2, 4, -1]

you can write

>>> list(concat(-1, (x * 2 for x in range(3)), -1))
[-1, 0, 2, 4, -1]

This is slightly shorter (not counting the list constructor) and does not involve array construction or concatenation.

Note that concat() flattens (or chains) all iterable arguments into a single result iterable:

>>> list(concat(1, range(2, 4), 4))
[1, 2, 3, 4]

It only does so one level deep. If you need to recursively flatten a data structure, check out crush().

If you want to prevent that flattening for an iterable argument, wrap it in concat():

>>> list(concat(1, concat(range(2, 4)), 4))
[1, range(2, 4), 4]

Some more example.

>>> list(concat()) # empty concat
[]
>>> list(concat(1)) # non-iterable
[1]

(continues on next page)

636 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

(continued from previous page)

>>> list(concat(concat())) # empty iterable
[]
>>> list(concat(concat(1))) # singleton iterable
[1]
>>> list(concat(1, concat(2), 3)) # flattened iterable
[1, 2, 3]
>>> list(concat(1, [2], 3)) # flattened iterable
[1, 2, 3]
>>> list(concat(1, concat([2]), 3)) # protecting an iterable from being␣
→˓flattened
[1, [2], 3]
>>> list(concat(1, concat([2], 3), 4)) # protection only works with a single␣
→˓argument
[1, 2, 3, 4]
>>> list(concat(1, 2, concat(3, 4), 5, 6))
[1, 2, 3, 4, 5, 6]
>>> list(concat(1, 2, concat([3, 4]), 5, 6))
[1, 2, [3, 4], 5, 6]

Note that while strings are technically iterable, concat() does not flatten them.

>>> list(concat('ab'))
['ab']
>>> list(concat(concat('ab')))
['ab']

Parameters
args (Any) –

__iter__()

Return type
Iterator[Any]

toil.test.memoize

Memoize a function result based on its parameters using this decorator.

For example, this can be used in place of lazy initialization. If the decorating function is invoked by multiple
threads, the decorated function may be called more than once with the same arguments.

class toil.test.ExceptionalThread(group=None, target=None, name=None, args=(), kwargs=None, *,
daemon=None)

Bases: threading.Thread

ExceptionalThreadThread

30.1. toil 637

https://docs.python.org/3/library/threading.html#threading.Thread

Toil Documentation, Release 5.11.0

A thread whose join() method re-raises exceptions raised during run(). While join() is idempotent, the exception
is only during the first invocation of join() that successfully joined the thread. If join() times out, no exception
will be re reraised even though an exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

exc_info

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from
the args and kwargs arguments, respectively.

Return type
None

tryRun()

Return type
None

join(*args, **kwargs)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

638 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Parameters
• args (Optional[float]) –

• kwargs (Optional[float]) –

Return type
None

toil.test.cpu_count()

Get the rounded-up integer number of whole CPUs available.

Counts hyperthreads as CPUs.

Uses the system’s actual CPU count, or the current v1 cgroup’s quota per period, if the quota is set.

Ignores the cgroup’s cpu shares value, because it’s extremely difficult to interpret. See https://github.com/
kubernetes/kubernetes/issues/81021.

Caches result for efficiency.

Returns
Integer count of available CPUs, minimum 1.

Return type
int

toil.test.distVersion = '5.11.0'

toil.test.logger

class toil.test.ToilTest(methodName='runTest')
Bases: unittest.TestCase

TestCase ToilTest

A common base class for Toil tests.

Please have every test case directly or indirectly inherit this one.

When running tests you may optionally set the TOIL_TEST_TEMP environment variable to the path of a di-
rectory where you want temporary test files be placed. The directory will be created if it doesn’t exist. The
path may be relative in which case it will be assumed to be relative to the project root. If TOIL_TEST_TEMP
is not defined, temporary files and directories will be created in the system’s default location for such files and
any temporary files or directories left over from tests will be removed automatically removed during tear down.
Otherwise, left-over files will not be removed.

setup_method(method)

Parameters
method (Any) –

Return type
None

30.1. toil 639

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/kubernetes/kubernetes/issues/81021
https://github.com/kubernetes/kubernetes/issues/81021
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/unittest.html#unittest.TestCase

Toil Documentation, Release 5.11.0

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

Return type
None

classmethod tearDownClass()

Hook method for deconstructing the class fixture after running all tests in the class.

Return type
None

setUp()

Hook method for setting up the test fixture before exercising it.

Return type
None

tearDown()

Hook method for deconstructing the test fixture after testing it.

Return type
None

classmethod awsRegion()

Pick an appropriate AWS region.

Use us-west-2 unless running on EC2, in which case use the region in which the instance is located

Return type
str

toil.test.MT

toil.test.get_temp_file(suffix='', rootDir=None)
Return a string representing a temporary file, that must be manually deleted.

Parameters
• suffix (str) –

• rootDir (Optional[str]) –

Return type
str

toil.test.needs_env_var(var_name, comment=None)
Use as a decorator before test classes or methods to run only if the given environment variable is set. Can include
a comment saying what the variable should be set to.

Parameters
• var_name (str) –

• comment (Optional[str]) –

Return type
Callable[[MT], MT]

toil.test.needs_rsync3(test_item)

Decorate classes or methods that depend on any features from rsync version 3.0.0+.

Necessary because utilsTest.testAWSProvisionerUtils() uses option –protect-args which is only avail-
able in rsync 3

640 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_aws_s3(test_item)

Use as a decorator before test classes or methods to run only if AWS S3 is usable.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_aws_ec2(test_item)

Use as a decorator before test classes or methods to run only if AWS EC2 is usable.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_aws_batch(test_item)

Use as a decorator before test classes or methods to run only if AWS Batch is usable.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_google(test_item)

Use as a decorator before test classes or methods to run only if Google Cloud is usable.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_gridengine(test_item)

Use as a decorator before test classes or methods to run only if GridEngine is installed.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_torque(test_item)

Use as a decorator before test classes or methods to run only if PBS/Torque is installed.

Parameters
test_item (MT) –

Return type
MT

30.1. toil 641

Toil Documentation, Release 5.11.0

toil.test.needs_tes(test_item)

Use as a decorator before test classes or methods to run only if TES is available.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_kubernetes_installed(test_item)

Use as a decorator before test classes or methods to run only if Kubernetes is installed.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_kubernetes(test_item)

Use as a decorator before test classes or methods to run only if Kubernetes is installed and configured.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_mesos(test_item)

Use as a decorator before test classes or methods to run only if Mesos is installed.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_parasol(test_item)

Use as decorator so tests are only run if Parasol is installed.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_slurm(test_item)

Use as a decorator before test classes or methods to run only if Slurm is installed.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_htcondor(test_item)

Use a decorator before test classes or methods to run only if the HTCondor is installed.

Parameters
test_item (MT) –

Return type
MT

642 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.test.needs_lsf(test_item)

Use as a decorator before test classes or methods to only run them if LSF is installed.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_java(test_item)

Use as a test decorator to run only if java is installed.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_docker(test_item)

Use as a decorator before test classes or methods to only run them if docker is installed and docker-based tests
are enabled.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_singularity(test_item)

Use as a decorator before test classes or methods to only run them if singularity is installed.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_local_cuda(test_item)

Use as a decorator before test classes or methods to only run them if a CUDA setup legible to cwltool (i.e.
providing userspace nvidia-smi) is present.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_docker_cuda(test_item)

Use as a decorator before test classes or methods to only run them if a CUDA setup is available through Docker.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_encryption(test_item)

Use as a decorator before test classes or methods to only run them if PyNaCl is installed and configured.

Parameters
test_item (MT) –

30.1. toil 643

Toil Documentation, Release 5.11.0

Return type
MT

toil.test.needs_cwl(test_item)

Use as a decorator before test classes or methods to only run them if CWLTool is installed and configured.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_server(test_item)

Use as a decorator before test classes or methods to only run them if Connexion is installed.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_celery_broker(test_item)

Use as a decorator before test classes or methods to run only if RabbitMQ is set up to take Celery jobs.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_wes_server(test_item)

Use as a decorator before test classes or methods to run only if a WES server is available to run against.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_local_appliance(test_item)

Use as a decorator before test classes or methods to only run them if the Toil appliance Docker image is down-
loaded.

Parameters
test_item (MT) –

Return type
MT

toil.test.needs_fetchable_appliance(test_item)

Use as a decorator before test classes or methods to only run them if the Toil appliance Docker image is able to
be downloaded from the Internet.

Parameters
test_item (MT) –

Return type
MT

644 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.test.integrative(test_item)

Use this to decorate integration tests so as to skip them during regular builds.

We define integration tests as A) involving other, non-Toil software components that we develop and/or B) having
a higher cost (time or money). Note that brittleness does not qualify a test for being integrative. Neither does
involvement of external services such as AWS, since that would cover most of Toil’s test.

Parameters
test_item (MT) –

Return type
MT

toil.test.slow(test_item)

Use this decorator to identify tests that are slow and not critical. Skip if TOIL_TEST_QUICK is true.

Parameters
test_item (MT) –

Return type
MT

toil.test.methodNamePartRegex

toil.test.timeLimit(seconds)
http://stackoverflow.com/a/601168 Use to limit the execution time of a function. Raises an exception if the
execution of the function takes more than the specified amount of time.

Parameters
seconds (int) – maximum allowable time, in seconds

Return type
Generator[None, None, None]

>>> import time
>>> with timeLimit(2):
... time.sleep(1)
>>> import time
>>> with timeLimit(1):
... time.sleep(2)
Traceback (most recent call last):

...
RuntimeError: Timed out

toil.test.make_tests(generalMethod, targetClass, **kwargs)
This method dynamically generates test methods using the generalMethod as a template. Each generated function
is the result of a unique combination of parameters applied to the generalMethod. Each of the parameters has a
corresponding string that will be used to name the method. These generated functions are named in the scheme:
test_[generalMethodName]___[firstParamaterName]_[someValueName]__[secondParamaterName]_. . .

The arguments following the generalMethodName should be a series of one or more dictionaries of the form {str
: type, . . . } where the key represents the name of the value. The names will be used to represent the permutation
of values passed for each parameter in the generalMethod.

The generated method names will list the parameters in lexicographic order by parameter name.

Parameters
• generalMethod – A method that will be parameterized with values passed as kwargs. Note

that the generalMethod must be a regular method.

30.1. toil 645

http://stackoverflow.com/a/601168
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

• targetClass – This represents the class to which the generated test methods will be bound.
If no targetClass is specified the class of the generalMethod is assumed the target.

• kwargs – a series of dictionaries defining values, and their respective names where each
keyword is the name of a parameter in generalMethod.

>>> class Foo:
... def has(self, num, letter):
... return num, letter
...
... def hasOne(self, num):
... return num

>>> class Bar(Foo):
... pass

>>> make_tests(Foo.has, Bar, num={'one':1, 'two':2}, letter={'a':'a', 'b':'b'})

>>> b = Bar()

Note that num comes lexicographically before letter and so appears first in the generated method names.

>>> assert b.test_has__letter_a__num_one() == b.has(1, 'a')

>>> assert b.test_has__letter_b__num_one() == b.has(1, 'b')

>>> assert b.test_has__letter_a__num_two() == b.has(2, 'a')

>>> assert b.test_has__letter_b__num_two() == b.has(2, 'b')

>>> f = Foo()

>>> hasattr(f, 'test_has__num_one__letter_a') # should be false because Foo has no␣
→˓test methods
False

class toil.test.ApplianceTestSupport(methodName='runTest')
Bases: ToilTest

ApplianceTestSupportToilTestTestCase

A Toil test that runs a user script on a minimal cluster of appliance containers.

i.e. one leader container and one worker container.

646 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

class Appliance(outer, mounts, cleanMounts=False)
Bases: toil.lib.threading.ExceptionalThread

ApplianceExceptionalThreadThread

A thread whose join() method re-raises exceptions raised during run(). While join() is idempotent, the
exception is only during the first invocation of join() that successfully joined the thread. If join() times out,
no exception will be re reraised even though an exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

Parameters
• outer (ApplianceTestSupport) –

• mounts (Dict[str, str]) –

• cleanMounts (bool) –

lock

__enter__()

Return type
Appliance

__exit__(exc_type, exc_val, exc_tb)
Parameters

• exc_type (Type[BaseException]) –
• exc_val (Exception) –
• exc_tb (Any) –

30.1. toil 647

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

Return type
Literal[False]

tryRun()

Return type
None

runOnAppliance(*args, **kwargs)
Parameters

• args (str) –
• kwargs (Any) –

Return type
None

writeToAppliance(path, contents)
Parameters

• path (str) –
• contents (Any) –

Return type
None

deployScript(path, packagePath, script)
Deploy a Python module on the appliance.

Parameters
• path (str) – the path (absolute or relative to the WORDIR of the appliance container)

to the root of the package hierarchy where the given module should be placed. The given
directory should be on the Python path.

• packagePath (str) – the desired fully qualified module name (dotted form) of the mod-
ule

• script (str|callable) – the contents of the Python module. If a callable is given, its
source code will be extracted. This is a convenience that lets you embed user scripts into
test code as nested function.

Return type
None

class LeaderThread(outer, mounts, cleanMounts=False)
Bases: ApplianceTestSupport.Appliance

Appliance LeaderThreadExceptionalThreadThread

A thread whose join() method re-raises exceptions raised during run(). While join() is idempotent, the
exception is only during the first invocation of join() that successfully joined the thread. If join() times out,
no exception will be re reraised even though an exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()

(continues on next page)

648 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

(continued from previous page)

>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

Parameters
• outer (ApplianceTestSupport) –

• mounts (Dict[str, str]) –

• cleanMounts (bool) –

class WorkerThread(outer, mounts, numCores)
Bases: ApplianceTestSupport.Appliance

Appliance WorkerThreadExceptionalThreadThread

A thread whose join() method re-raises exceptions raised during run(). While join() is idempotent, the
exception is only during the first invocation of join() that successfully joined the thread. If join() times out,
no exception will be re reraised even though an exception might already have occured in run().

When subclassing this thread, override tryRun() instead of run().

>>> def f():
... assert 0
>>> t = ExceptionalThread(target=f)
>>> t.start()
>>> t.join()
Traceback (most recent call last):
...
AssertionError

>>> class MyThread(ExceptionalThread):
... def tryRun(self):
... assert 0
>>> t = MyThread()
>>> t.start()

(continues on next page)

30.1. toil 649

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

(continued from previous page)

>>> t.join()
Traceback (most recent call last):
...
AssertionError

Parameters
• outer (ApplianceTestSupport) –

• mounts (Dict[str, str]) –

• numCores (int) –

toil.utils

Submodules

toil.utils.toilClean

Delete a job store used by a previous Toil workflow invocation.

Module Contents

Functions

main()

Attributes

logger

toil.utils.toilClean.logger

toil.utils.toilClean.main()

Return type
None

650 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

toil.utils.toilDebugFile

Debug tool for copying files contained in a toil jobStore.

Module Contents

Functions

fetchJobStoreFiles(jobStore, options) Takes a list of file names as glob patterns, searches for
these within a

printContentsOfJobStore(jobStorePath[, name-
OfJob])

Fetch a list of all files contained in the jobStore directory
input if

main()

Attributes

logger

toil.utils.toilDebugFile.logger

toil.utils.toilDebugFile.fetchJobStoreFiles(jobStore, options)
Takes a list of file names as glob patterns, searches for these within a given directory, and attempts to take all of
the files found and copy them into options.localFilePath.

Parameters
• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – A fileJob-

Store object.

• options.fetch – List of file glob patterns to search for in the jobStore and copy into op-
tions.localFilePath.

• options.localFilePath – Local directory to copy files into.

• options.jobStore – The path to the jobStore directory.

• options (argparse.Namespace) –

Return type
None

toil.utils.toilDebugFile.printContentsOfJobStore(jobStorePath, nameOfJob=None)
Fetch a list of all files contained in the jobStore directory input if nameOfJob is not declared, otherwise it only
prints out the names of files for that specific job for which it can find a match. Also creates a logFile containing
this same record of job files in the working directory.

Parameters
• jobStorePath (str) – Directory path to recursively look for files.

• nameOfJob (Optional[str]) – Default is None, which prints out all files in the jobStore.

30.1. toil 651

https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
None

If specified, it will print all jobStore files that have been written to the jobStore by that job.

toil.utils.toilDebugFile.main()

Return type
None

toil.utils.toilDebugJob

Debug tool for running a toil job locally.

Module Contents

Functions

main()

Attributes

logger

toil.utils.toilDebugJob.logger

toil.utils.toilDebugJob.main()

Return type
None

toil.utils.toilDestroyCluster

Terminates the specified cluster and associated resources.

Module Contents

Functions

main()

652 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Attributes

logger

toil.utils.toilDestroyCluster.logger

toil.utils.toilDestroyCluster.main()

Return type
None

toil.utils.toilKill

Kills rogue toil processes.

Module Contents

Functions

main()

Attributes

logger

toil.utils.toilKill.logger

toil.utils.toilKill.main()

Return type
None

toil.utils.toilLaunchCluster

Launches a toil leader instance with the specified provisioner.

30.1. toil 653

Toil Documentation, Release 5.11.0

Module Contents

Functions

create_tags_dict(tags)

main()

Attributes

logger

toil.utils.toilLaunchCluster.logger

toil.utils.toilLaunchCluster.create_tags_dict(tags)

Parameters
tags (List[str]) –

Return type
Dict[str, str]

toil.utils.toilLaunchCluster.main()

Return type
None

toil.utils.toilMain

Module Contents

Functions

main()

get_or_die(module, name) Get an object from a module or complain that it is miss-
ing.

loadModules()

printHelp(modules)

printVersion()

toil.utils.toilMain.main()

Return type
None

654 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.utils.toilMain.get_or_die(module, name)
Get an object from a module or complain that it is missing.

Parameters
• module (types.ModuleType) –

• name (str) –

Return type
Any

toil.utils.toilMain.loadModules()

Return type
Dict[str, types.ModuleType]

toil.utils.toilMain.printHelp(modules)

Parameters
modules (Dict[str, types.ModuleType]) –

Return type
None

toil.utils.toilMain.printVersion()

Return type
None

toil.utils.toilRsyncCluster

Rsyncs into the toil appliance container running on the leader of the cluster.

Module Contents

Functions

main()

Attributes

logger

toil.utils.toilRsyncCluster.logger

toil.utils.toilRsyncCluster.main()

Return type
None

30.1. toil 655

https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/types.html#types.ModuleType

Toil Documentation, Release 5.11.0

toil.utils.toilServer

CLI entry for the Toil servers.

Module Contents

Functions

main()

Attributes

logger

toil.utils.toilServer.logger

toil.utils.toilServer.main()

Return type
None

toil.utils.toilSshCluster

SSH into the toil appliance container running on the leader of the cluster.

Module Contents

Functions

main()

Attributes

logger

toil.utils.toilSshCluster.logger

toil.utils.toilSshCluster.main()

Return type
None

656 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.utils.toilStats

Reports statistical data about a given Toil workflow.

Module Contents

Classes

ColumnWidths Convenience object that stores the width of columns for
printing. Helps make things pretty.

Functions

padStr(s[, field]) Pad the beginning of a string with spaces, if necessary.
prettyMemory(k[, field, isBytes]) Given input k as kilobytes, return a nicely formatted

string.
prettyTime(t[, field]) Given input t as seconds, return a nicely formatted string.
reportTime(t, options[, field]) Given t seconds, report back the correct format as string.
reportMemory(k, options[, field, isBytes]) Given k kilobytes, report back the correct format as

string.
reportNumber(n[, field]) Given n an integer, report back the correct format as

string.
sprintTag(key, tag, options[, columnWidths]) Generate a pretty-print ready string from a JTTag().
decorateTitle(title, options) Add a marker to TITLE if the TITLE is sorted on.
decorateSubHeader(title, columnWidths, options) Add a marker to the correct field if the TITLE is sorted

on.
get(tree, name) Return a float value attribute NAME from TREE.
sortJobs(jobTypes, options) Return a jobTypes all sorted.
reportPrettyData(root, worker, job, job_types, op-
tions)

Print the important bits out.

computeColumnWidths(job_types, worker, job, op-
tions)

Return a ColumnWidths() object with the correct max
widths.

updateColumnWidths(tag, cw, options) Update the column width attributes for this tag's fields.
buildElement(element, items, itemName) Create an element for output.
createSummary(element, containingItems, ...)

getStats(jobStore) Collect and return the stats and config data.
processData(config, stats) Collate the stats and report
reportData(tree, options)

add_stats_options(parser)

main() Reports stats on the workflow, use with --stats option to
toil.

30.1. toil 657

Toil Documentation, Release 5.11.0

Attributes

logger

category_choices

sort_category_choices

sort_field_choices

toil.utils.toilStats.logger

class toil.utils.toilStats.ColumnWidths

Convenience object that stores the width of columns for printing. Helps make things pretty.

title(category)
Return the total printed length of this category item.

Parameters
category (str) –

Return type
int

getWidth(category, field)

Parameters
• category (str) –

• field (str) –

Return type
int

setWidth(category, field, width)

Parameters
• category (str) –

• field (str) –

• width (int) –

Return type
None

report()

Return type
None

toil.utils.toilStats.padStr(s, field=None)
Pad the beginning of a string with spaces, if necessary.

Parameters
• s (str) –

658 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• field (Optional[int]) –

Return type
str

toil.utils.toilStats.prettyMemory(k, field=None, isBytes=False)
Given input k as kilobytes, return a nicely formatted string.

Parameters
• k (float) –

• field (Optional[int]) –

• isBytes (bool) –

Return type
str

toil.utils.toilStats.prettyTime(t, field=None)
Given input t as seconds, return a nicely formatted string.

Parameters
• t (float) –

• field (Optional[int]) –

Return type
str

toil.utils.toilStats.reportTime(t, options, field=None)
Given t seconds, report back the correct format as string.

Parameters
• t (float) –

• options (argparse.Namespace) –

• field (Optional[int]) –

Return type
str

toil.utils.toilStats.reportMemory(k, options, field=None, isBytes=False)
Given k kilobytes, report back the correct format as string.

Parameters
• k (float) –

• options (argparse.Namespace) –

• field (Optional[int]) –

• isBytes (bool) –

Return type
str

toil.utils.toilStats.reportNumber(n, field=None)
Given n an integer, report back the correct format as string.

Parameters
• n (float) –

30.1. toil 659

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.11.0

• field (Optional[int]) –

Return type
str

toil.utils.toilStats.sprintTag(key, tag, options, columnWidths=None)
Generate a pretty-print ready string from a JTTag().

Parameters
• key (str) –

• tag (toil.lib.expando.Expando) –

• options (argparse.Namespace) –

• columnWidths (Optional[ColumnWidths]) –

Return type
str

toil.utils.toilStats.decorateTitle(title, options)
Add a marker to TITLE if the TITLE is sorted on.

Parameters
• title (str) –

• options (argparse.Namespace) –

Return type
str

toil.utils.toilStats.decorateSubHeader(title, columnWidths, options)
Add a marker to the correct field if the TITLE is sorted on.

Parameters
• title (str) –

• columnWidths (ColumnWidths) –

• options (argparse.Namespace) –

Return type
str

toil.utils.toilStats.get(tree, name)
Return a float value attribute NAME from TREE.

Parameters
• tree (toil.lib.expando.Expando) –

• name (str) –

Return type
float

toil.utils.toilStats.sortJobs(jobTypes, options)
Return a jobTypes all sorted.

Parameters
• jobTypes (List[Any]) –

• options (argparse.Namespace) –

660 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/argparse.html#argparse.Namespace

Toil Documentation, Release 5.11.0

Return type
List[Any]

toil.utils.toilStats.reportPrettyData(root, worker, job, job_types, options)
Print the important bits out.

Parameters
• root (toil.lib.expando.Expando) –

• worker (List[toil.job.Job]) –

• job (List[toil.job.Job]) –

• job_types (List[Any]) –

• options (argparse.Namespace) –

Return type
str

toil.utils.toilStats.computeColumnWidths(job_types, worker, job, options)
Return a ColumnWidths() object with the correct max widths.

Parameters
• job_types (List[Any]) –

• worker (List[toil.job.Job]) –

• job (List[toil.job.Job]) –

• options (toil.lib.expando.Expando) –

Return type
ColumnWidths

toil.utils.toilStats.updateColumnWidths(tag, cw, options)
Update the column width attributes for this tag’s fields.

Parameters
• tag (toil.lib.expando.Expando) –

• cw (ColumnWidths) –

• options (toil.lib.expando.Expando) –

Return type
None

toil.utils.toilStats.buildElement(element, items, itemName)
Create an element for output.

Parameters
• element (toil.lib.expando.Expando) –

• items (List[toil.job.Job]) –

• itemName (str) –

Return type
toil.lib.expando.Expando

30.1. toil 661

https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.utils.toilStats.createSummary(element, containingItems, containingItemName, getFn)

Parameters
• element (toil.lib.expando.Expando) –

• containingItems (List[toil.job.Job]) –

• containingItemName (str) –

• getFn (Callable[[toil.job.Job], List[Optional[toil.job.Job]]]) –

Return type
None

toil.utils.toilStats.getStats(jobStore)
Collect and return the stats and config data.

Parameters
jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

Return type
toil.lib.expando.Expando

toil.utils.toilStats.processData(config, stats)
Collate the stats and report

Parameters
• config (toil.common.Config) –

• stats (toil.lib.expando.Expando) –

Return type
toil.lib.expando.Expando

toil.utils.toilStats.reportData(tree, options)

Parameters
• tree (toil.lib.expando.Expando) –

• options (argparse.Namespace) –

Return type
None

toil.utils.toilStats.category_choices = ['time', 'clock', 'wait', 'memory']

toil.utils.toilStats.sort_category_choices = ['time', 'clock', 'wait', 'memory', 'alpha',
'count']

toil.utils.toilStats.sort_field_choices = ['min', 'med', 'ave', 'max', 'total']

toil.utils.toilStats.add_stats_options(parser)

Parameters
parser (argparse.ArgumentParser) –

Return type
None

662 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

toil.utils.toilStats.main()

Reports stats on the workflow, use with –stats option to toil.

Return type
None

toil.utils.toilStatus

Tool for reporting on job status.

Module Contents

Classes

ToilStatus Tool for reporting on job status.

Functions

main() Reports the state of a Toil workflow.

Attributes

logger

toil.utils.toilStatus.logger

class toil.utils.toilStatus.ToilStatus(jobStoreName, specifiedJobs=None)
Tool for reporting on job status.

Parameters
• jobStoreName (str) –

• specifiedJobs (Optional[List[str]]) –

print_dot_chart()

Print a dot output graph representing the workflow.

Return type
None

printJobLog()

Takes a list of jobs, finds their log files, and prints them to the terminal.

Return type
None

30.1. toil 663

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

printJobChildren()

Takes a list of jobs, and prints their successors.

Return type
None

printAggregateJobStats(properties, childNumber)
Prints a job’s ID, log file, remaining tries, and other properties.

Parameters
• properties (List[str]) –

• childNumber (int) –

Return type
None

report_on_jobs()

Gathers information about jobs such as its child jobs and status.

Returns jobStats
Pairings of a useful category and a list of jobs which fall into it.

Rtype dict
static getPIDStatus(jobStoreName)

Determine the status of a process with a particular local pid.

Checks to see if a process exists or not.

Returns
A string indicating the status of the PID of the workflow as stored in the jobstore.

Return type
str

Parameters
jobStoreName (str) –

static getStatus(jobStoreName)
Determine the status of a workflow.

If the jobstore does not exist, this returns ‘QUEUED’, assuming it has not been created yet.

Checks for the existence of files created in the toil.Leader.run(). In toil.Leader.run(), if a workflow com-
pletes with failed jobs, ‘failed.log’ is created, otherwise ‘succeeded.log’ is written. If neither of these exist,
the leader is still running jobs.

Returns
A string indicating the status of the workflow. [‘COMPLETED’, ‘RUNNING’, ‘ERROR’,
‘QUEUED’]

Return type
str

Parameters
jobStoreName (str) –

print_bus_messages()

Goes through bus messages, returns a list of tuples which have correspondence between PID on assigned
batch system and

Prints a list of the currently running jobs

664 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
None

fetchRootJob()

Fetches the root job from the jobStore that provides context for all other jobs.

Exactly the same as the jobStore.loadRootJob() function, but with a different exit message if the root job
is not found (indicating the workflow ran successfully to completion and certain stats cannot be gathered
from it meaningfully such as which jobs are left to run).

Raises
JobException – if the root job does not exist.

Return type
toil.job.JobDescription

fetchUserJobs(jobs)
Takes a user input array of jobs, verifies that they are in the jobStore and returns the array of jobsToReport.

Parameters
jobs (list) – A list of jobs to be verified.

Returns jobsToReport
A list of jobs which are verified to be in the jobStore.

Return type
List[toil.job.JobDescription]

traverseJobGraph(rootJob, jobsToReport=None, foundJobStoreIDs=None)
Find all current jobs in the jobStore and return them as an Array.

Parameters
• rootJob (toil.job.JobDescription) – The root job of the workflow.

• jobsToReport (list) – A list of jobNodes to be added to and returned.

• foundJobStoreIDs (set) – A set of jobStoreIDs used to keep track of jobStoreIDs en-
countered in traversal.

Returns jobsToReport
The list of jobs currently in the job graph.

Return type
List[toil.job.JobDescription]

toil.utils.toilStatus.main()

Reports the state of a Toil workflow.

Return type
None

30.1. toil 665

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set

Toil Documentation, Release 5.11.0

toil.utils.toilUpdateEC2Instances

Updates Toil’s internal list of EC2 instance types.

Module Contents

Functions

internet_connection() Returns True if there is an internet connection present,
and False otherwise.

main()

Attributes

logger

toil.utils.toilUpdateEC2Instances.logger

toil.utils.toilUpdateEC2Instances.internet_connection()

Returns True if there is an internet connection present, and False otherwise.

Return type
bool

toil.utils.toilUpdateEC2Instances.main()

Return type
None

toil.wdl

Subpackages

toil.wdl.versions

Submodules

toil.wdl.versions.dev

Module Contents

Classes

AnalyzeDevelopmentWDL AnalyzeWDL implementation for the development ver-
sion using ANTLR4.

666 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Attributes

logger

toil.wdl.versions.dev.logger

class toil.wdl.versions.dev.AnalyzeDevelopmentWDL(wdl_file)
Bases: toil.wdl.versions.v1.AnalyzeV1WDL

AnalyzeDevelopmentWDLAnalyzeV1WDLAnalyzeWDL

AnalyzeWDL implementation for the development version using ANTLR4.

See: https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md
https://github.com/openwdl/wdl/blob/main/versions/development/parsers/antlr4/WdlParser.g4

Parameters
wdl_file (str) –

property version: str

Returns the version of the WDL document as a string.

Return type
str

analyze()

Analyzes the WDL file passed into the constructor and generates the two intermediate data structures:
self.workflows_dictionary and self.tasks_dictionary.

visit_document(ctx)
Similar to version 1.0, except the ‘workflow’ element is included in ctx.document_element().

Parameters
ctx (wdlparse.dev.WdlParser.WdlParser.DocumentContext) –

Return type
None

visit_document_element(ctx)
Similar to version 1.0, except this also contains ‘workflow’.

Parameters
ctx (wdlparse.dev.WdlParser.WdlParser.Document_elementContext) –

Return type
None

30.1. toil 667

https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md
https://github.com/openwdl/wdl/blob/main/versions/development/parsers/antlr4/WdlParser.g4
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

visit_call(ctx)
Similar to version 1.0, except ctx.call_afters() is added.

Parameters
ctx (wdlparse.dev.WdlParser.WdlParser.CallContext) –

Return type
dict

visit_string_expr_part(ctx)
Similar to version 1.0, except ctx.expression_placeholder_option() is removed.

Parameters
ctx (wdlparse.dev.WdlParser.WdlParser.String_expr_partContext) –

Return type
str

visit_wdl_type(ctx)
Similar to version 1.0, except Directory type is added.

Parameters
ctx (wdlparse.dev.WdlParser.WdlParser.Wdl_typeContext) –

Return type
toil.wdl.wdl_types.WDLType

visit_expr_core(expr)
Similar to version 1.0, except struct literal is added.

Parameters
expr (wdlparse.dev.WdlParser.WdlParser.Expr_coreContext) –

Return type
str

toil.wdl.versions.draft2

Module Contents

Classes

AnalyzeDraft2WDL AnalyzeWDL implementation for the draft-2 version.

Attributes

logger

toil.wdl.versions.draft2.logger

668 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

class toil.wdl.versions.draft2.AnalyzeDraft2WDL(wdl_file)
Bases: toil.wdl.wdl_analysis.AnalyzeWDL

AnalyzeDraft2WDLAnalyzeWDL

AnalyzeWDL implementation for the draft-2 version.

Parameters
wdl_file (str) –

property version: str

Returns the version of the WDL document as a string.

Return type
str

analyze()

Analyzes the WDL file passed into the constructor and generates the two intermediate data structures:
self.workflows_dictionary and self.tasks_dictionary.

Returns
Returns nothing.

write_AST(out_dir=None)
Writes a file with the AST for a wdl file in the out_dir.

find_asts(ast_root, name)
Finds an AST node with the given name and the entire subtree under it. A function borrowed from scot-
tfrazer. Thank you Scott Frazer!

Parameters
• ast_root – The WDL AST. The whole thing generally, but really any portion that you

wish to search.

• name – The name of the subtree you’re looking for, like “Task”.

Returns
nodes representing the AST subtrees matching the “name” given.

create_tasks_dict(ast)
Parse each “Task” in the AST. This will create self.tasks_dictionary, where each task name is a key.

Returns
Creates the self.tasks_dictionary necessary for much of the

parser. Returning it is only necessary for unittests.

parse_task(task)
Parses a WDL task AST subtree.

Currently looks at and parses 4 sections: 1. Declarations (e.g. string x = ‘helloworld’) 2. Commandline
(a bash command with dynamic variables inserted) 3. Runtime (docker image; disk; CPU; RAM; etc.) 4.
Outputs (expected return values/files)

30.1. toil 669

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
task – An AST subtree of a WDL “Task”.

Returns
Returns nothing but adds a task to the self.tasks_dictionary

necessary for much of the parser.

parse_task_rawcommand_attributes(code_snippet)

Parameters
code_snippet –

Returns
parse_task_rawcommand(rawcommand_subAST)

Parses the rawcommand section of the WDL task AST subtree.

Task “rawcommands” are divided into many parts. There are 2 types of parts: normal strings, & variables
that can serve as changeable inputs.

The following example command:
‘echo ${variable1} ${variable2} > output_file.txt’

Has 5 parts:
Normal String: ‘echo ‘ Variable Input: variable1 Normal String: ‘ ‘ Variable Input: variable2 Normal
String: ‘ > output_file.txt’

Variables can also have additional conditions, like ‘sep’, which is like the python ‘’.join() function and in
WDL looks like: ${sep=” -V ” GVCFs} and would be translated as: ‘ -V ‘.join(GVCFs).

Parameters
rawcommand_subAST – A subAST representing some bash command.

Returns
A list=[] of tuples=() representing the parts of the command: e.g. [(command_var, com-
mand_type, additional_conditions_list), . . .]

Where: command_var = ‘GVCFs’
command_type = ‘variable’ command_actions = {‘sep’: ‘ -V ‘}

modify_cmd_expr_w_attributes(code_expr, code_attr)

Parameters
• code_expr –

• code_attr –

Returns
parse_task_runtime_key(i)

Parameters
runtime_subAST –

Returns
parse_task_runtime(runtime_subAST)

Parses the runtime section of the WDL task AST subtree.

The task “runtime” section currently supports context fields for a docker container, CPU resources, RAM
resources, and disk resources.

670 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Parameters
runtime_subAST – A subAST representing runtime parameters.

Returns
A list=[] of runtime attributes, for example: runtime_attributes = [(‘docker’,’quay.io/encode-
dcc/map:v1.0’),

(‘cpu’,’2’), (‘memory’,’17.1 GB’), (‘disks’,’local-disk 420 HDD’)]

parse_task_outputs(i)
Parse the WDL output section.

Outputs are like declarations, with a type, name, and value. Examples:

Simple Cases

‘Int num = 7’
var_name: ‘num’ var_type: ‘Int’ var_value: 7

String idea = ‘Lab grown golden eagle burgers.’
var_name: ‘idea’ var_type: ‘String’ var_value: ‘Lab grown golden eagle burgers.’

File ideaFile = ‘goldenEagleStemCellStartUpDisrupt.txt’
var_name: ‘ideaFile’ var_type: ‘File’ var_value: ‘goldenEagleStemCellStartUpDisrupt.txt’

More Abstract Cases

Array[File] allOfMyTerribleIdeas = glob(*.txt)[0]
var_name: ‘allOfMyTerribleIdeas’ var_type**: ‘File’ var_value: [*.txt] var_actions: {‘in-
dex_lookup’: ‘0’, ‘glob’: ‘None’}

**toilwdl.py converts ‘Array[File]’ to ‘ArrayFile’

return
output_array representing outputs generated by the job/task: e.g. x = [(var_name, var_type,
var_value, var_actions), . . .]

translate_wdl_string_to_python_string(some_string)
Parses a string representing a given job’s output filename into something python can read. Replaces
${string}’s with normal variables and the rest with normal strings all concatenated with ‘ + ‘.

Will not work with additional parameters, such as: ${default=”foo” bar} or ${true=”foo” false=”bar”
Boolean baz}

This method expects to be passed only strings with some combination of “${abc}” and “abc” blocks.

Parameters
• job – A list such that: (job priority #, job ID #, Job Skeleton Name, Job Alias)

• some_string – e.g. ‘${sampleName}.vcf’

Returns
output_string, e.g. ‘sampleName + “.vcf”’

create_workflows_dict(ast)
Parse each “Workflow” in the AST. This will create self.workflows_dictionary, where each called job is a
tuple key of the form: (priority#, job#, name, alias).

30.1. toil 671

Toil Documentation, Release 5.11.0

Returns
Creates the self.workflows_dictionary necessary for much of the

parser. Returning it is only necessary for unittests.

parse_workflow(workflow)
Parses a WDL workflow AST subtree.

Returns nothing but creates the self.workflows_dictionary necessary for much of the parser.

Parameters
workflow – An AST subtree of a WDL “Workflow”.

Returns
Returns nothing but adds a workflow to the self.workflows_dictionary necessary for much of
the parser.

parse_workflow_body(i)
Currently looks at and parses 3 sections: 1. Declarations (e.g. String x = ‘helloworld’) 2. Calls (similar to
a python def) 3. Scatter (which expects to map to a Call or multiple Calls) 4. Conditionals

parse_workflow_if(ifAST)

parse_workflow_if_expression(i)

parse_workflow_scatter(scatterAST)

parse_workflow_scatter_item(i)

parse_workflow_scatter_collection(i)

parse_declaration(ast)
Parses a WDL declaration AST subtree into a Python tuple.

Examples:

String my_name String your_name Int two_chains_i_mean_names = 0

Parameters
ast – Some subAST representing a task declaration like: ‘String file_name’

Returns
var_name, var_type, var_value Example:

Input subAST representing: ‘String file_name’ Output: var_name=’file_name’,
var_type=’String’, var_value=None

parse_declaration_name(nameAST)
Required.

Nothing fancy here. Just the name of the workflow function. For example: “rnaseqexample” would be the
following wdl workflow’s name:

workflow rnaseqexample {File y; call a {inputs: y}; call b;} task a {File y} task b {command{“echo
‘ATCG’”}}

Parameters
nameAST –

Returns

672 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

parse_declaration_type(typeAST)
Required.

Currently supported: Types are: Boolean, Float, Int, File, String, Array[subtype],

Pair[subtype, subtype], and Map[subtype, subtype].

OptionalTypes are: Boolean?, Float?, Int?, File?, String?, Array[subtype]?,
Pair[subtype, subtype]?, and Map[subtype, subtype]?.

Python is not typed, so we don’t need typing except to identify type: “File”, which Toil needs to import,
so we recursively travel down to the innermost type which will tell us if the variables are files that need
importing.

For Pair and Map compound types, we recursively travel down the subtypes and store them as attributes of a
WDLType string. This way, the type structure is preserved, which will allow us to import files appropriately.

Parameters
typeAST –

Returns
a WDLType instance

parse_declaration_expressn(expressionAST, es)
Expressions are optional. Workflow declaration valid examples:

File x

or

File x = ‘/x/x.tmp’

Parameters
expressionAST –

Returns
parse_declaration_expressn_logicalnot(exprssn, es)

parse_declaration_expressn_arraymaplookup(lhsAST, rhsAST, es)

Parameters
• lhsAST –

• rhsAST –

• es –

Returns
parse_declaration_expressn_memberaccess(lhsAST, rhsAST, es)

Instead of “Class.variablename”, use “Class.rv(‘variablename’)”.

Parameters
• lhsAST –

• rhsAST –

• es –

Returns

30.1. toil 673

Toil Documentation, Release 5.11.0

parse_declaration_expressn_ternaryif(cond, iftrue, iffalse, es)
Classic if statement. This needs to be rearranged.

In wdl, this looks like: if <condition> then <iftrue> else <iffalse>

In python, this needs to be: <iftrue> if <condition> else <iffalse>

Parameters
• cond –

• iftrue –

• iffalse –

• es –

Returns
parse_declaration_expressn_tupleliteral(values, es)

Same in python. Just a parenthesis enclosed tuple.

Parameters
• values –

• es –

Returns
parse_declaration_expressn_arrayliteral(values, es)

Same in python. Just a square bracket enclosed array.

Parameters
• values –

• es –

Returns
parse_declaration_expressn_operator(lhsAST, rhsAST, es, operator)

Simply joins the left and right hand arguments lhs and rhs with an operator.

Parameters
• lhsAST –

• rhsAST –

• es –

• operator –

Returns
parse_declaration_expressn_fncall(name, params, es)

Parses out cromwell’s built-in function calls.

Some of these are special and need minor adjustments, for example size() requires a fileStore.

Parameters
• name –

• params –

• es –

674 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Returns
parse_declaration_expressn_fncall_normalparams(params)

parse_workflow_call_taskname(i)
Required.

Parameters
i –

Returns
parse_workflow_call_taskalias(i)

Required.

Parameters
i –

Returns
parse_workflow_call_body_declarations(i)

Have not seen this used, so expects to return “[]”.

Parameters
i –

Returns
parse_workflow_call_body_io(i)

Required.

Parameters
i –

Returns
parse_workflow_call_body_io_map(i)

Required.

Parameters
i –

Returns
parse_workflow_call_body(i)

Required.

Parameters
i –

Returns
parse_workflow_call(i)

Parses a WDL workflow call AST subtree to give the variable mappings for that particular job/task “call”.

Parameters
i – WDL workflow job object

Returns
python dictionary of io mappings for that job call

30.1. toil 675

Toil Documentation, Release 5.11.0

toil.wdl.versions.v1

Module Contents

Classes

AnalyzeV1WDL AnalyzeWDL implementation for the 1.0 version using
ANTLR4.

Functions

is_context(ctx, classname) Returns whether an ANTLR4 context object is of the
precise type classname.

Attributes

logger

toil.wdl.versions.v1.logger

toil.wdl.versions.v1.is_context(ctx, classname)
Returns whether an ANTLR4 context object is of the precise type classname.

Parameters
• ctx – An ANTLR4 context object.

• classname (Union[str, tuple]) – The class name(s) as a string or a tuple of strings. If
a tuple is provided, this returns True if the context object matches one of the class names.

Return type
bool

class toil.wdl.versions.v1.AnalyzeV1WDL(wdl_file)
Bases: toil.wdl.wdl_analysis.AnalyzeWDL

AnalyzeV1WDLAnalyzeWDL

AnalyzeWDL implementation for the 1.0 version using ANTLR4.

See: https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md
https://github.com/openwdl/wdl/blob/main/versions/1.0/parsers/antlr4/WdlV1Parser.g4

676 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md
https://github.com/openwdl/wdl/blob/main/versions/1.0/parsers/antlr4/WdlV1Parser.g4

Toil Documentation, Release 5.11.0

Parameters
wdl_file (str) –

property version: str

Returns the version of the WDL document as a string.

Return type
str

analyze()

Analyzes the WDL file passed into the constructor and generates the two intermediate data structures:
self.workflows_dictionary and self.tasks_dictionary.

visit_document(ctx)
Root of tree. Contains version followed by an optional workflow and any number of `document_element`s.

visit_document_element(ctx)
Contains one of the following: ‘import_doc’, ‘struct’, or ‘task’.

visit_workflow(ctx)
Contains an ‘identifier’ and an array of `workflow_element`s.

visit_workflow_input(ctx)
Contains an array of ‘any_decls’, which can be unbound or bound declarations. Example:

input {
String in_str = “twenty” Int in_int

}

Returns a list of tuple=(name, type, expr).

visit_workflow_output(ctx)
Contains an array of ‘bound_decls’ (unbound_decls not allowed). Example:

output {
String out_str = “output”

}

Returns a list of tuple=(name, type, expr).

visit_inner_workflow_element(ctx)
Returns a tuple=(unique_key, dict), where dict contains the contents of the given inner workflow element.

visit_call(ctx)
Pattern: CALL call_name call_alias? call_body? Example WDL syntax: call task_1 {input: arr=arr}

Returns a dict={task, alias, io}.

visit_scatter(ctx)
Pattern: SCATTER LPAREN Identifier In expr RPAREN LBRACE inner_workflow_element* RBRACE
Example WDL syntax: scatter (i in items) { . . . }

Returns a dict={item, collection, body}.

visit_conditional(ctx)
Pattern: IF LPAREN expr RPAREN LBRACE inner_workflow_element* RBRACE Example WDL syntax:
if (condition) { . . . }

Returns a dict={expression, body}.

30.1. toil 677

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

visit_task(ctx)
Root of a task definition. Contains an identifier and an array of `task_element`s.

visit_task_input(ctx)
Contains an array of ‘any_decls’, which can be unbound or bound declarations. Example:

input {
String in_str = “twenty” Int in_int

}

Returns a list of tuple=(name, type, expr)

visit_task_output(ctx)
Contains an array of ‘bound_decls’ (unbound_decls not allowed). Example:

output {
String out_str = read_string(stdout())

}

Returns a list of tuple=(name, type, expr)

visit_task_command(ctx)
Parses the command section of the WDL task.

Contains a string_part plus any number of `expr_with_string`s. The following example command:

‘echo ${var1} ${var2} > output_file.txt’

Has 3 parts:
1. string_part: ‘echo ‘

2. expr_with_string, which has two parts:
• expr_part: ‘var1’

• string_part: ‘ ‘

1. expr_with_string, which has two parts:
• expr_part: ‘var2’

• string_part: ‘ > output_file.txt’

Returns a list=[] of strings representing the parts of the command.
e.g. [string_part, expr_part, string_part, . . .]

visit_task_command_string_part(ctx)
Returns a string representing the string_part.

visit_task_command_expr_with_string(ctx)
Returns a tuple=(expr_part, string_part).

visit_task_command_expr_part(ctx)
Contains the expression inside ${expr}. Same function as self.visit_string_expr_part().

Returns the expression.

678 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

visit_task_runtime(ctx)
Contains an array of `task_runtime_kv`s.

Returns a dict={key: value} where key can be ‘docker’, ‘cpu’, ‘memory’, ‘cores’, or ‘disks’.

visit_any_decls(ctx)
Contains a bound or unbound declaration.

visit_unbound_decls(ctx)
Contains an unbound declaration. E.g.: String in_str.

Returns a tuple=(name, type, expr), where expr is None.

visit_bound_decls(ctx)
Contains a bound declaration. E.g.: String in_str = “some string”.

Returns a tuple=(name, type, expr).

visit_wdl_type(ctx)
Returns a WDLType instance.

visit_primitive_literal(ctx)
Returns the primitive literal as a string.

visit_number(ctx)
Contains an IntLiteral or a FloatLiteral.

visit_string(ctx)
Contains a string_part followed by an array of `string_expr_with_string_part`s.

visit_string_expr_with_string_part(ctx)
Contains a string_expr_part and a string_part.

visit_string_expr_part(ctx)
Contains an array of expression_placeholder_option`s and an `expr.

visit_string_part(ctx)
Returns a string representing the string_part.

visit_expression_placeholder_option(ctx)
Expression placeholder options.

Can match one of the following:
BoolLiteral EQUAL (string | number) DEFAULT EQUAL (string | number) SEP EQUAL (string |
number)

See https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md#expression-placeholder-options

e.g.: ${sep=”, ” array_value} e.g.: ${true=”–yes” false=”–no” boolean_value} e.g.: ${default=”foo” op-
tional_value}

Returns a tuple=(key, value)

visit_expr(ctx)
Expression root.

visit_infix0(ctx)
Expression infix0 (LOR).

visit_lor(ctx)
Logical OR expression.

30.1. toil 679

https://github.com/openwdl/wdl/blob/main/versions/1.0/SPEC.md#expression-placeholder-options

Toil Documentation, Release 5.11.0

visit_infix1(ctx)
Expression infix1 (LAND).

visit_land(ctx)
Logical AND expresion.

visit_infix2(ctx)
Expression infix2 (comparisons).

visit_infix3(ctx)
Expression infix3 (add/subtract).

visit_infix4(ctx)
Expression infix4 (multiply/divide/modulo).

visit_infix5(ctx)
Expression infix5.

visit_expr_core(expr)
Expression core.

visit_apply(ctx)
A function call. Pattern: Identifier LPAREN (expr (COMMA expr)*)? RPAREN

visit_array_literal(ctx)
Pattern: LBRACK (expr (COMMA expr)*)* RBRACK

visit_pair_literal(ctx)
Pattern: LPAREN expr COMMA expr RPAREN

visit_ifthenelse(ctx)
Ternary expression. Pattern: IF expr THEN expr ELSE expr

visit_expression_group(ctx)
Pattern: LPAREN expr RPAREN

visit_at(ctx)
Array or map lookup. Pattern: expr_core LBRACK expr RBRACK

visit_get_name(ctx)
Member access. Pattern: expr_core DOT Identifier

visit_negate(ctx)
Pattern: NOT expr

visit_unarysigned(ctx)
Pattern: (PLUS | MINUS) expr

visit_primitives(ctx)
Expression alias for primitive literal.

680 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Submodules

toil.wdl.toilwdl

Module Contents

Functions

main() A program to run WDL input files using native Toil
scripts.

Attributes

logger

toil.wdl.toilwdl.logger

toil.wdl.toilwdl.main()

A program to run WDL input files using native Toil scripts.

Calls two files, described below, wdl_analysis.py and wdl_synthesis.py:

wdl_analysis reads the wdl and restructures them into 2 intermediate data structures before writing (python
dictionaries):

“wf_dictionary”: containing the parsed workflow information. “tasks_dictionary”: containing the
parsed task information.

wdl_synthesis takes the “wf_dictionary”, “tasks_dictionary”, and the JSON file and uses them to write a native
python script for use with Toil.

Requires a WDL file, and a JSON file. The WDL file contains ordered commands, and the JSON file contains
input values for those commands. To run in Toil, these two files must be parsed, restructured into python dic-
tionaries, and then compiled into a Toil formatted python script. This compiled Toil script is deleted unless the
user specifies: “–dev_mode” as an option.

The WDL parser was auto-generated from the Broad’s current WDL grammar file: https://github.com/
openwdl/wdl/blob/master/parsers/grammar.hgr using Scott Frazer’s Hermes: https://github.com/scottfrazer/
hermes Thank you Scott Frazer!

Currently in alpha testing, and known to work with the Broad’s GATK tutorial set for WDL on their main wdl
site: software.broadinstitute.org/wdl/documentation/topic?name=wdl-tutorials

And ENCODE’s WDL workflow: github.com/ENCODE-DCC/pipeline-container/blob/master/local-
workflows/encode_mapping_workflow.wdl

Additional support to be broadened to include more features soon.

30.1. toil 681

https://github.com/openwdl/wdl/blob/master/parsers/grammar.hgr
https://github.com/openwdl/wdl/blob/master/parsers/grammar.hgr
https://github.com/scottfrazer/hermes
https://github.com/scottfrazer/hermes

Toil Documentation, Release 5.11.0

toil.wdl.utils

Module Contents

Functions

get_version(iterable) Get the version of the WDL document.
get_analyzer(wdl_file) Creates an instance of an AnalyzeWDL implementation

based on the version.
dict_from_JSON(JSON_file) Takes a WDL-mapped json file and creates a dict con-

taining the bindings.
write_mappings(parser[, filename]) Takes an AnalyzeWDL instance and writes the final task

dict and workflow

toil.wdl.utils.get_version(iterable)
Get the version of the WDL document.

Parameters
iterable – An iterable that contains the lines of a WDL document.

Returns
The WDL version used in the workflow.

Return type
str

toil.wdl.utils.get_analyzer(wdl_file)
Creates an instance of an AnalyzeWDL implementation based on the version.

Parameters
wdl_file (str) – The path to the WDL file.

Return type
toil.wdl.wdl_analysis.AnalyzeWDL

toil.wdl.utils.dict_from_JSON(JSON_file)
Takes a WDL-mapped json file and creates a dict containing the bindings.

Parameters
JSON_file (str) – A required JSON file containing WDL variable bindings.

Return type
dict

toil.wdl.utils.write_mappings(parser, filename='mappings.out')
Takes an AnalyzeWDL instance and writes the final task dict and workflow dict to the given file.

Parameters
• parser (toil.wdl.wdl_analysis.AnalyzeWDL) – An AnalyzeWDL instance.

• filename (str) – The name of a file to write to.

Return type
None

682 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.wdl.wdl_analysis

Module Contents

Classes

AnalyzeWDL An interface to analyze a WDL file. Each version corre-
sponds to a subclass that

Attributes

logger

toil.wdl.wdl_analysis.logger

class toil.wdl.wdl_analysis.AnalyzeWDL(wdl_file)
An interface to analyze a WDL file. Each version corresponds to a subclass that restructures the WDL document
into 2 intermediate data structures (python dictionaries):

“workflows_dictionary”: containing the parsed workflow information. “tasks_dictionary”: contain-
ing the parsed task information.

These are then fed into wdl_synthesis.py which uses them to write a native python script for use with Toil.

Requires a WDL file. The WDL file contains ordered commands.

Parameters
wdl_file (str) –

abstract property version: str

Returns the version of the WDL document as a string.

Return type
str

primitive_types

compound_types

analyze()

Analyzes the WDL file passed into the constructor and generates the two intermediate data structures:
self.workflows_dictionary and self.tasks_dictionary.

Returns
Returns nothing.

write_AST(out_dir)
Writes a file with the AST for a wdl file in the out_dir.

create_wdl_primitive_type(key, optional=False)
Returns an instance of WDLType.

Parameters
• key (str) –

30.1. toil 683

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• optional (bool) –

create_wdl_compound_type(key, elements, optional=False)
Returns an instance of WDLCompoundType.

Parameters
• key (str) –

• elements (list) –

• optional (bool) –

toil.wdl.wdl_functions

Module Contents

Classes

WDLJSONEncoder Extended JSONEncoder to support WDL-specific JSON
encoding.

Functions

generate_docker_bashscript_file(temp_dir,
docker_dir, ...)

Creates a bashscript to inject into a docker container for
the job.

process_single_infile(wdl_file, fileStore)

process_infile(f, fileStore) Takes any input and imports the WDLFile into the file-
Store.

sub(input_str, pattern, replace) Given 3 String parameters input, pattern, replace, this
function will

defined(i)

process_single_outfile(wdl_file, fileStore,
workDir, ...)
process_outfile(f, fileStore, workDir, outDir)

abspath_single_file(f, cwd)

abspath_file(f, cwd)

read_single_file(f, tempDir, fileStore[, docker])

read_file(f, tempDir, fileStore[, docker])

process_and_read_file(f, tempDir, fileStore[,
docker])
generate_stdout_file(output, tempDir, fileStore[,
stderr])

Create a stdout (or stderr) file from a string or bytes ob-
ject.

continues on next page

684 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Table 2 – continued from previous page
parse_memory(memory) Parses a string representing memory and returns
parse_cores(cores)

parse_disk(disk)

is_number(s)

size([f, unit, fileStore]) Given a File and a String (optional), returns the size of
the file in Bytes

select_first(values)

combine_dicts(dict1, dict2)

basename(path[, suffix]) https://software.broadinstitute.org/wdl/documentation/
article?id=10554

heredoc_wdl(template[, dictionary, indent])

floor(i) Converts a Float value into an Int by rounding down to
the next lower integer.

ceil(i) Converts a Float value into an Int by rounding up to the
next higher integer.

read_lines(path) Given a file-like object (String, File) as a parameter, this
will read each

read_tsv(path[, delimiter]) Take a tsv filepath and return an array; e.g. [[],[],[]].
read_csv(path) Take a csv filepath and return an array; e.g. [[],[],[]].
read_json(path) The read_json() function takes one parameter, which is

a file-like object
read_map(path) Given a file-like object (String, File) as a parameter, this

will read each
read_int(path) The read_int() function takes a file path which is ex-

pected to contain 1
read_string(path) The read_string() function takes a file path which is ex-

pected to contain 1
read_float(path) The read_float() function takes a file path which is ex-

pected to contain 1
read_boolean(path) The read_boolean() function takes a file path which is

expected to contain 1
write_lines(in_lines[, temp_dir, file_store]) Given something that's compatible with Array[String],

this writes each element
write_tsv(in_tsv[, delimiter, temp_dir, file_store]) Given something that's compatible with Ar-

ray[Array[String]], this writes a TSV
write_json(in_json[, indent, separators, temp_dir, ...]) Given something with any type, this writes the JSON

equivalent to a file. See
write_map(in_map[, temp_dir, file_store]) Given something that's compatible with Map[String,

String], this writes a TSV
wdl_range(num) Given an integer argument, the range function creates an

array of integers of
transpose(in_array) Given a two dimensional array argument, the transpose

function transposes the
length (in_array) Given an Array, the length function returns the number

of elements in the Array
continues on next page

30.1. toil 685

https://software.broadinstitute.org/wdl/documentation/article?id=10554
https://software.broadinstitute.org/wdl/documentation/article?id=10554

Toil Documentation, Release 5.11.0

Table 2 – continued from previous page
wdl_zip(left, right) Return the dot product of the two arrays. If the arrays

have different lengths
cross(left, right) Return the cross product of the two arrays. Array[Y][1]

appears before
as_pairs(in_map) Given a Map, the as_pairs function returns an Array

containing each element
as_map(in_array) Given an Array consisting of Pairs, the as_map function

returns a Map in
keys(in_map) Given a Map, the keys function returns an Array consist-

ing of the keys in
collect_by_key(in_array) Given an Array consisting of Pairs, the collect_by_key

function returns a Map
flatten(in_array) Given an array of arrays, the flatten function concate-

nates all the member

Attributes

logger

toil.wdl.wdl_functions.logger

exception toil.wdl.wdl_functions.WDLRuntimeError(message)
Bases: Exception

WDLRuntimeError

WDL-related run-time error.

class toil.wdl.wdl_functions.WDLJSONEncoder(*, skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True, sort_keys=False,
indent=None, separators=None, default=None)

Bases: json.JSONEncoder

JSONEncoder WDLJSONEncoder

Extended JSONEncoder to support WDL-specific JSON encoding.

686 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/json.html#json.JSONEncoder

Toil Documentation, Release 5.11.0

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base imple-
mentation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

toil.wdl.wdl_functions.generate_docker_bashscript_file(temp_dir, docker_dir, globs, cmd,
job_name)

Creates a bashscript to inject into a docker container for the job.

This script wraps the job command(s) given in a bash script, hard links the outputs and returns an “rc” file
containing the exit code. All of this is done in an effort to parallel the Broad’s cromwell engine, which is the
native WDL runner. As they’ve chosen to write and then run a bashscript for every command, so shall we.

Parameters
• temp_dir – The current directory outside of docker to deposit the bashscript into, which

will be the bind mount that docker loads files from into its own containerized filesys-
tem. This is usually the tempDir created by this individual job using ‘tempDir =
job.fileStore.getLocalTempDir()’.

• docker_dir – The working directory inside of the docker container which is bind mounted
to ‘temp_dir’. By default this is ‘data’.

• globs – A list of expected output files to retrieve as glob patterns that will be returned as
hard links to the current working directory.

• cmd – A bash command to be written into the bash script and run.

• job_name – The job’s name, only used to write in a file name identifying the script as written
for that job. Will be used to call the script later.

Returns
Nothing, but it writes and deposits a bash script in temp_dir intended to be run inside of a docker
container for this job.

toil.wdl.wdl_functions.process_single_infile(wdl_file, fileStore)

Parameters
• wdl_file (toil.wdl.wdl_types.WDLFile) –

• fileStore (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
toil.wdl.wdl_types.WDLFile

toil.wdl.wdl_functions.process_infile(f, fileStore)
Takes any input and imports the WDLFile into the fileStore.

30.1. toil 687

Toil Documentation, Release 5.11.0

This returns the input importing all WDLFile instances to the fileStore. Toil does not preserve a file’s original
name upon import and so the WDLFile also keeps track of this.

Parameters
• f (Any) – A primitive, WDLFile, or a container. A file needs to be a WDLFile instance to

be imported.

• fileStore (toil.fileStores.abstractFileStore.AbstractFileStore) – The file-
Store object that is called to load files into the fileStore.

toil.wdl.wdl_functions.sub(input_str, pattern, replace)
Given 3 String parameters input, pattern, replace, this function will replace any occurrence matching pattern in
input by replace. pattern is expected to be a regular expression. Details of regex evaluation will depend on the
execution engine running the WDL.

WDL syntax: String sub(String, String, String)

Parameters
• input_str (str) –

• pattern (str) –

• replace (str) –

Return type
str

toil.wdl.wdl_functions.defined(i)

toil.wdl.wdl_functions.process_single_outfile(wdl_file, fileStore, workDir, outDir)

Parameters
wdl_file (toil.wdl.wdl_types.WDLFile) –

Return type
toil.wdl.wdl_types.WDLFile

toil.wdl.wdl_functions.process_outfile(f, fileStore, workDir, outDir)

toil.wdl.wdl_functions.abspath_single_file(f, cwd)

Parameters
• f (toil.wdl.wdl_types.WDLFile) –

• cwd (str) –

Return type
toil.wdl.wdl_types.WDLFile

toil.wdl.wdl_functions.abspath_file(f, cwd)

Parameters
• f (Any) –

• cwd (str) –

toil.wdl.wdl_functions.read_single_file(f, tempDir, fileStore, docker=False)

Parameters
f (toil.wdl.wdl_types.WDLFile) –

688 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
str

toil.wdl.wdl_functions.read_file(f, tempDir, fileStore, docker=False)

Parameters
• f (Any) –

• tempDir (str) –

• fileStore (toil.fileStores.abstractFileStore.AbstractFileStore) –

• docker (bool) –

toil.wdl.wdl_functions.process_and_read_file(f, tempDir, fileStore, docker=False)

toil.wdl.wdl_functions.generate_stdout_file(output, tempDir, fileStore, stderr=False)
Create a stdout (or stderr) file from a string or bytes object.

Parameters
• output (str|bytes) – A str or bytes object that holds the stdout/stderr text.

• tempDir (str) – The directory to write the stdout file.

• fileStore – A fileStore object.

• stderr (bool) – If True, a stderr instead of a stdout file is generated.

Returns
The file path to the generated file.

toil.wdl.wdl_functions.parse_memory(memory)
Parses a string representing memory and returns an integer # of bytes.

Parameters
memory –

Returns
toil.wdl.wdl_functions.parse_cores(cores)

toil.wdl.wdl_functions.parse_disk(disk)

toil.wdl.wdl_functions.is_number(s)

toil.wdl.wdl_functions.size(f=None, unit='B', fileStore=None)
Given a File and a String (optional), returns the size of the file in Bytes or in the unit specified by the second
argument.

Supported units are KiloByte (“K”, “KB”), MegaByte (“M”, “MB”), GigaByte (“G”, “GB”), TeraByte (“T”,
“TB”) (powers of 1000) as well as their binary version (https://en.wikipedia.org/wiki/Binary_prefix) “Ki”
(“KiB”), “Mi” (“MiB”), “Gi” (“GiB”), “Ti” (“TiB”) (powers of 1024). Default unit is Bytes (“B”).

WDL syntax: Float size(File, [String]) Varieties: Float size(File?, [String])

Float size(Array[File], [String]) Float size(Array[File?], [String])

Parameters
• f (Optional[Union[str, toil.wdl.wdl_types.WDLFile, List[Union[str,
toil.wdl.wdl_types.WDLFile]]]]) –

• unit (Optional[str]) –

30.1. toil 689

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/Binary_prefix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• fileStore (Optional[toil.fileStores.abstractFileStore.
AbstractFileStore]) –

Return type
float

toil.wdl.wdl_functions.select_first(values)

toil.wdl.wdl_functions.combine_dicts(dict1, dict2)

toil.wdl.wdl_functions.basename(path, suffix=None)
https://software.broadinstitute.org/wdl/documentation/article?id=10554

toil.wdl.wdl_functions.heredoc_wdl(template, dictionary={}, indent='')

toil.wdl.wdl_functions.floor(i)
Converts a Float value into an Int by rounding down to the next lower integer.

Parameters
i (Union[int, float]) –

Return type
int

toil.wdl.wdl_functions.ceil(i)
Converts a Float value into an Int by rounding up to the next higher integer.

Parameters
i (Union[int, float]) –

Return type
int

toil.wdl.wdl_functions.read_lines(path)
Given a file-like object (String, File) as a parameter, this will read each line as a string and return an Array[String]
representation of the lines in the file.

WDL syntax: Array[String] read_lines(String|File)

Parameters
path (str) –

Return type
List[str]

toil.wdl.wdl_functions.read_tsv(path, delimiter='\t')
Take a tsv filepath and return an array; e.g. [[],[],[]].

For example, a file containing:

1 2 3 4 5 6 7 8 9

would return the array: [[‘1’,’2’,’3’], [‘4’,’5’,’6’], [‘7’,’8’,’9’]]

WDL syntax: Array[Array[String]] read_tsv(String|File)

Parameters
• path (str) –

• delimiter (str) –

Return type
List[List[str]]

690 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#float
https://software.broadinstitute.org/wdl/documentation/article?id=10554
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.wdl.wdl_functions.read_csv(path)
Take a csv filepath and return an array; e.g. [[],[],[]].

For example, a file containing:

1,2,3 4,5,6 7,8,9

would return the array: [[‘1’,’2’,’3’], [‘4’,’5’,’6’], [‘7’,’8’,’9’]]

Parameters
path (str) –

Return type
List[List[str]]

toil.wdl.wdl_functions.read_json(path)

The read_json() function takes one parameter, which is a file-like object
(String, File) and returns a data type which matches the data structure in the JSON file. See

https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#mixed-read_jsonstringfile

WDL syntax: mixed read_json(String|File)

Parameters
path (str) –

Return type
Any

toil.wdl.wdl_functions.read_map(path)
Given a file-like object (String, File) as a parameter, this will read each line from a file and expect the line to
have the format col1 col2. In other words, the file-like object must be a two-column TSV file.

WDL syntax: Map[String, String] read_map(String|File)

Parameters
path (str) –

Return type
Dict[str, str]

toil.wdl.wdl_functions.read_int(path)
The read_int() function takes a file path which is expected to contain 1 line with 1 integer on it. This function
returns that integer.

WDL syntax: Int read_int(String|File)

Parameters
path (Union[str, toil.wdl.wdl_types.WDLFile]) –

Return type
int

toil.wdl.wdl_functions.read_string(path)
The read_string() function takes a file path which is expected to contain 1 line with 1 string on it. This function
returns that string.

WDL syntax: String read_string(String|File)

Parameters
path (Union[str, toil.wdl.wdl_types.WDLFile]) –

30.1. toil 691

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#mixed-read_jsonstringfile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
str

toil.wdl.wdl_functions.read_float(path)
The read_float() function takes a file path which is expected to contain 1 line with 1 floating point number on it.
This function returns that float.

WDL syntax: Float read_float(String|File)

Parameters
path (Union[str, toil.wdl.wdl_types.WDLFile]) –

Return type
float

toil.wdl.wdl_functions.read_boolean(path)
The read_boolean() function takes a file path which is expected to contain 1 line with 1 Boolean value (either
“true” or “false” on it). This function returns that Boolean value.

WDL syntax: Boolean read_boolean(String|File)

Parameters
path (Union[str, toil.wdl.wdl_types.WDLFile]) –

Return type
bool

toil.wdl.wdl_functions.write_lines(in_lines, temp_dir=None, file_store=None)

Given something that’s compatible with Array[String], this writes each element to it’s own line on a
file. with newline `

` characters as line separators.

WDL syntax: File write_lines(Array[String])

Parameters
• in_lines (List[str]) –

• temp_dir (Optional[str]) –

• file_store (Optional[toil.fileStores.abstractFileStore.
AbstractFileStore]) –

Return type
str

toil.wdl.wdl_functions.write_tsv(in_tsv, delimiter='\t', temp_dir=None, file_store=None)
Given something that’s compatible with Array[Array[String]], this writes a TSV file of the data structure.

WDL syntax: File write_tsv(Array[Array[String]])

Parameters
• in_tsv (List[List[str]]) –

• delimiter (str) –

• temp_dir (Optional[str]) –

• file_store (Optional[toil.fileStores.abstractFileStore.
AbstractFileStore]) –

692 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
str

toil.wdl.wdl_functions.write_json(in_json, indent=None, separators=(',', ':'), temp_dir=None,
file_store=None)

Given something with any type, this writes the JSON equivalent to a file. See the table in the definition of
https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#mixed-read_jsonstringfile

WDL syntax: File write_json(mixed)

Parameters
• in_json (Any) –

• indent (Union[None, int, str]) –

• separators (Optional[Tuple[str, str]]) –

• temp_dir (Optional[str]) –

• file_store (Optional[toil.fileStores.abstractFileStore.
AbstractFileStore]) –

Return type
str

toil.wdl.wdl_functions.write_map(in_map, temp_dir=None, file_store=None)

Given something that’s compatible with Map[String, String], this writes a TSV
file of the data structure.

WDL syntax: File write_map(Map[String, String])

Parameters
• in_map (Dict[str, str]) –

• temp_dir (Optional[str]) –

• file_store (Optional[toil.fileStores.abstractFileStore.
AbstractFileStore]) –

Return type
str

toil.wdl.wdl_functions.wdl_range(num)

Given an integer argument, the range function creates an array of integers of length equal to the given argument.

WDL syntax: Array[Int] range(Int)

Parameters
num (int) –

Return type
List[int]

toil.wdl.wdl_functions.transpose(in_array)
Given a two dimensional array argument, the transpose function transposes the two dimensional array according
to the standard matrix transpose rules.

WDL syntax: Array[Array[X]] transpose(Array[Array[X]])

Parameters
in_array (List[List[Any]]) –

30.1. toil 693

https://docs.python.org/3/library/stdtypes.html#str
https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#mixed-read_jsonstringfile
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Return type
List[List[Any]]

toil.wdl.wdl_functions.length(in_array)
Given an Array, the length function returns the number of elements in the Array as an Int.

Parameters
in_array (List[Any]) –

Return type
int

toil.wdl.wdl_functions.wdl_zip(left, right)
Return the dot product of the two arrays. If the arrays have different lengths it is an error.

WDL syntax: Array[Pair[X,Y]] zip(Array[X], Array[Y])

Parameters
• left (List[Any]) –

• right (List[Any]) –

Return type
List[toil.wdl.wdl_types.WDLPair]

toil.wdl.wdl_functions.cross(left, right)
Return the cross product of the two arrays. Array[Y][1] appears before Array[X][1] in the output.

WDL syntax: Array[Pair[X,Y]] cross(Array[X], Array[Y])

Parameters
• left (List[Any]) –

• right (List[Any]) –

Return type
List[toil.wdl.wdl_types.WDLPair]

toil.wdl.wdl_functions.as_pairs(in_map)
Given a Map, the as_pairs function returns an Array containing each element in the form of a Pair. The key will
be the left element of the Pair and the value the right element. The order of the the Pairs in the resulting Array
is the same as the order of the key/value pairs in the Map.

WDL syntax: Array[Pair[X,Y]] as_pairs(Map[X,Y])

Parameters
in_map (dict) –

Return type
List[toil.wdl.wdl_types.WDLPair]

toil.wdl.wdl_functions.as_map(in_array)
Given an Array consisting of Pairs, the as_map function returns a Map in which the left elements of the Pairs
are the keys and the right elements the values.

WDL syntax: Map[X,Y] as_map(Array[Pair[X,Y]])

Parameters
in_array (List[toil.wdl.wdl_types.WDLPair]) –

Return type
dict

694 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Toil Documentation, Release 5.11.0

toil.wdl.wdl_functions.keys(in_map)
Given a Map, the keys function returns an Array consisting of the keys in the Map. The order of the keys in the
resulting Array is the same as the order of the Pairs in the Map.

WDL syntax: Array[X] keys(Map[X,Y])

Parameters
in_map (dict) –

Return type
list

toil.wdl.wdl_functions.collect_by_key(in_array)
Given an Array consisting of Pairs, the collect_by_key function returns a Map in which the left elements of the
Pairs are the keys and the right elements the values.

WDL syntax: Map[X,Array[Y]] collect_by_key(Array[Pair[X,Y]])

Parameters
in_array (List[toil.wdl.wdl_types.WDLPair]) –

Return type
dict

toil.wdl.wdl_functions.flatten(in_array)
Given an array of arrays, the flatten function concatenates all the member arrays in the order to appearance to
give the result. It does not deduplicate the elements.

WDL syntax: Array[X] flatten(Array[Array[X]])

Parameters
in_array (List[list]) –

Return type
list

toil.wdl.wdl_synthesis

Module Contents

Classes

SynthesizeWDL SynthesizeWDL takes the "workflows_dictionary" and
"tasks_dictionary" produced by

Attributes

logger

toil.wdl.wdl_synthesis.logger

30.1. toil 695

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Toil Documentation, Release 5.11.0

class toil.wdl.wdl_synthesis.SynthesizeWDL(version, tasks_dictionary, workflows_dictionary,
output_directory, json_dict, docker_user, jobstore=None,
destBucket=None)

SynthesizeWDL takes the “workflows_dictionary” and “tasks_dictionary” produced by wdl_analysis.py and uses
them to write a native python script for use with Toil.

A WDL “workflow” section roughly corresponds to the python “main()” function, where functions are wrapped
as Toil “jobs”, output dependencies specified, and called.

A WDL “task” section corresponds to a unique python function, which will be wrapped as a Toil “job” and
defined outside of the “main()” function that calls it.

Generally this handles breaking sections into their corresponding Toil counterparts.

For example: write the imports, then write all functions defining jobs (which have subsections like: write header,
define variables, read “File” types into the jobstore, docker call, etc.), then write the main and all of its subsec-
tions.

Parameters
• version (str) –

• tasks_dictionary (dict) –

• workflows_dictionary (dict) –

• output_directory (str) –

• json_dict (dict) –

• docker_user (str) –

• jobstore (Optional[str]) –

• destBucket (Optional[str]) –

write_modules()

write_main()

Writes out a huge string representing the main section of the python compiled toil script.

Currently looks at and writes 5 sections: 1. JSON Variables (includes importing and preparing files as
tuples) 2. TSV Variables (includes importing and preparing files as tuples) 3. CSV Variables (includes
importing and preparing files as tuples) 4. Wrapping each WDL “task” function as a toil job 5. List out
children and encapsulated jobs by priority, then start job0.

This should create variable declarations necessary for function calls. Map file paths appropriately and store
them in the toil fileStore so that they are persistent from job to job. Create job wrappers for toil. And finally
write out, and run the jobs in order of priority using the addChild and encapsulate commands provided by
toil.

Returns
giant string containing the main def for the toil script.

write_main_header()

write_main_jobwrappers()

Writes out ‘jobs’ as wrapped toil objects in preparation for calling.

Returns
A string representing this.

write_main_jobwrappers_declaration(declaration)

696 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

write_main_destbucket()

Writes out a loop for exporting outputs to a cloud bucket.

Returns
A string representing this.

fetch_ignoredifs(assignments, breaking_assignment)

fetch_ignoredifs_chain(assignments, breaking_assignment)

write_main_jobwrappers_if(if_statement)

write_main_jobwrappers_scatter(task, assignment)

fetch_scatter_outputs(task)

fetch_scatter_inputs(assigned)

fetch_scatter_inputs_chain(inputs, assigned, ignored_ifs, inputs_list)

write_main_jobwrappers_call(task)

fetch_call_outputs(task)

write_functions()

Writes out a python function for each WDL “task” object.

Returns
a giant string containing the meat of the job defs.

write_scatterfunctions_within_if(ifstatement)

write_scatterfunction(job, scattername)
Writes out a python function for each WDL “scatter” object.

write_scatterfunction_header(scattername)

Returns
write_scatterfunction_outputreturn(scatter_outputs)

Returns
write_scatterfunction_lists(scatter_outputs)

Returns
write_scatterfunction_loop(job, scatter_outputs)

Returns
write_scatter_callwrapper(job, previous_dependency)

write_function(job)
Writes out a python function for each WDL “task” object.

Each python function is a unit of work written out as a string in preparation to being written out to a file.
In WDL, each “job” is called a “task”. Each WDL task is written out in multiple steps:

1: Header and inputs (e.g. ‘def mapping(self, input1, input2)’) 2: Log job name (e.g.
‘job.fileStore.logToMaster(‘initialize_jobs’)’) 3: Create temp dir (e.g. ‘tempDir = file-
Store.getLocalTempDir()’) 4: import filenames and use readGlobalFile() to get files from the

30.1. toil 697

Toil Documentation, Release 5.11.0

jobStore

5: Reformat commandline variables (like converting to ‘ ‘.join(files)). 6: Commandline call using subpro-
cess.Popen(). 7: Write the section returning the outputs. Also logs stats.

Returns
a giant string containing the meat of the job defs for the toil script.

write_function_header(job)
Writes the header that starts each function, for example, this function can write and return:

‘def write_function_header(self, job, job_declaration_array):’

Parameters
• job – A list such that: (job priority #, job ID #, Job Skeleton Name, Job Alias)

• job_declaration_array – A list of all inputs that job requires.

Returns
A string representing this.

json_var(var, task=None, wf=None)

Parameters
• var –

• task –

• wf –

Returns
needs_file_import(var_type)

Check if the given type contains a File type. A return value of True means that the value with this type has
files to import.

Parameters
var_type (toil.wdl.wdl_types.WDLType) –

Return type
bool

write_declaration_type(var_type)
Return a string that preserves the construction of the given WDL type so it can be passed into the compiled
script.

Parameters
var_type (toil.wdl.wdl_types.WDLType) –

write_function_bashscriptline(job)
Writes a function to create a bashscript for injection into the docker container.

Parameters
• job_task_reference – The job referenced in WDL’s Task section.

• job_alias – The actual job name to be written.

Returns
A string writing all of this.

698 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

write_function_dockercall(job)
Writes a string containing the apiDockerCall() that will run the job.

Parameters
• job_task_reference – The name of the job calling docker.

• docker_image – The corresponding name of the docker image. e.g. “ubuntu:latest”

Returns
A string containing the apiDockerCall() that will run the job.

write_function_cmdline(job)
Write a series of commandline variables to be concatenated together eventually and either called with
subprocess.Popen() or with apiDockerCall() if a docker image is called for.

Parameters
job – A list such that: (job priority #, job ID #, Job Skeleton Name, Job Alias)

Returns
A string representing this.

write_function_subprocesspopen()

Write a subprocess.Popen() call for this function and write it out as a string.

Parameters
job – A list such that: (job priority #, job ID #, Job Skeleton Name, Job Alias)

Returns
A string representing this.

write_function_outputreturn(job, docker=False)
Find the output values that this function needs and write them out as a string.

Parameters
• job – A list such that: (job priority #, job ID #, Job Skeleton Name, Job Alias)

• job_task_reference – The name of the job to look up values for.

Returns
A string representing this.

indent(string2indent)
Indent the input string by 4 spaces.

Parameters
string2indent (str) –

Return type
str

needsdocker(job)

Parameters
job –

Returns
write_python_file(module_section, fn_section, main_section, output_file)

Just takes three strings and writes them to output_file.

Parameters

30.1. toil 699

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• module_section – A string of ‘import modules’.

• fn_section – A string of python ‘def functions()’.

• main_section – A string declaring toil options and main’s header.

• job_section – A string import files into toil and declaring jobs.

• output_file – The file to write the compiled toil script to.

toil.wdl.wdl_types

Module Contents

Classes

WDLType Represents a primitive or compound WDL type:
WDLCompoundType Represents a WDL compound type.
WDLStringType Represents a WDL String primitive type.
WDLIntType Represents a WDL Int primitive type.
WDLFloatType Represents a WDL Float primitive type.
WDLBooleanType Represents a WDL Boolean primitive type.
WDLFileType Represents a WDL File primitive type.
WDLArrayType Represents a WDL Array compound type.
WDLPairType Represents a WDL Pair compound type.
WDLMapType Represents a WDL Map compound type.
WDLFile Represents a WDL File.
WDLPair Represents a WDL Pair literal defined at

exception toil.wdl.wdl_types.WDLRuntimeError

Bases: RuntimeError

WDLRuntimeError

Unspecified run-time error.

class toil.wdl.wdl_types.WDLType(optional=False)
Represents a primitive or compound WDL type:

https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#types

Parameters
optional (bool) –

abstract property name: str

Type name as string. Used in display messages / ‘mappings.out’ if dev mode is enabled.

Return type
str

700 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#types
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

property default_value: Optional[str]

Default value if optional.

Return type
Optional[str]

create(value, output=False)
Calls at runtime. Returns an instance of the current type. An error may be raised if the value is not in the
correct format.

Parameters
• value (Any) – a Python object

• output (bool) –

Return type
Any

__eq__(other)
Return self==value.

Parameters
other (Any) –

Return type
bool

__str__()

Return str(self).

Return type
str

__repr__()

Return repr(self).

Return type
str

class toil.wdl.wdl_types.WDLCompoundType(optional=False)
Bases: WDLType, abc.ABC

ABC

WDLCompoundType

WDLType

Represents a WDL compound type.

Parameters
optional (bool) –

30.1. toil 701

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

class toil.wdl.wdl_types.WDLStringType(optional=False)
Bases: WDLType

WDLStringTypeWDLType

Represents a WDL String primitive type.

Parameters
optional (bool) –

property name: str

Type name as string. Used in display messages / ‘mappings.out’ if dev mode is enabled.

Return type
str

property default_value: str

Default value if optional.

Return type
str

class toil.wdl.wdl_types.WDLIntType(optional=False)
Bases: WDLType

WDLIntTypeWDLType

Represents a WDL Int primitive type.

Parameters
optional (bool) –

property name: str

Type name as string. Used in display messages / ‘mappings.out’ if dev mode is enabled.

Return type
str

class toil.wdl.wdl_types.WDLFloatType(optional=False)
Bases: WDLType

702 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

WDLFloatTypeWDLType

Represents a WDL Float primitive type.

Parameters
optional (bool) –

property name: str

Type name as string. Used in display messages / ‘mappings.out’ if dev mode is enabled.

Return type
str

class toil.wdl.wdl_types.WDLBooleanType(optional=False)
Bases: WDLType

WDLBooleanTypeWDLType

Represents a WDL Boolean primitive type.

Parameters
optional (bool) –

property name: str

Type name as string. Used in display messages / ‘mappings.out’ if dev mode is enabled.

Return type
str

class toil.wdl.wdl_types.WDLFileType(optional=False)
Bases: WDLType

WDLFileTypeWDLType

Represents a WDL File primitive type.

Parameters
optional (bool) –

30.1. toil 703

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

property name: str

Type name as string. Used in display messages / ‘mappings.out’ if dev mode is enabled.

Return type
str

property default_value: str

Default value if optional.

Return type
str

class toil.wdl.wdl_types.WDLArrayType(element, optional=False)
Bases: WDLCompoundType

ABC

WDLCompoundType WDLArrayType

WDLType

Represents a WDL Array compound type.

Parameters
• element (WDLType) –

• optional (bool) –

property name: str

Type name as string. Used in display messages / ‘mappings.out’ if dev mode is enabled.

Return type
str

class toil.wdl.wdl_types.WDLPairType(left, right, optional=False)
Bases: WDLCompoundType

ABC

WDLCompoundType WDLPairType

WDLType

Represents a WDL Pair compound type.

Parameters

704 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• left (WDLType) –

• right (WDLType) –

• optional (bool) –

property name: str

Type name as string. Used in display messages / ‘mappings.out’ if dev mode is enabled.

Return type
str

class toil.wdl.wdl_types.WDLMapType(key, value, optional=False)
Bases: WDLCompoundType

ABC

WDLCompoundType WDLMapType

WDLType

Represents a WDL Map compound type.

Parameters
• key (WDLType) –

• value (WDLType) –

• optional (bool) –

property name: str

Type name as string. Used in display messages / ‘mappings.out’ if dev mode is enabled.

Return type
str

class toil.wdl.wdl_types.WDLFile(file_path, file_name=None, imported=False)
Represents a WDL File.

Parameters
• file_path (str) –

• file_name (Optional[str]) –

• imported (bool) –

class toil.wdl.wdl_types.WDLPair(left, right)
Represents a WDL Pair literal defined at https://github.com/openwdl/wdl/blob/main/versions/development/
SPEC.md#pair-literals

Parameters
• left (Any) –

• right (Any) –

30.1. toil 705

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#pair-literals
https://github.com/openwdl/wdl/blob/main/versions/development/SPEC.md#pair-literals

Toil Documentation, Release 5.11.0

to_dict()

Return type
Dict[str, Any]

__eq__(other)
Return self==value.

Parameters
other (Any) –

Return type
Any

__repr__()

Return repr(self).

Return type
str

toil.wdl.wdltoil

Module Contents

Classes

NonDownloadingSize WDL size() implementation that avoids downloading
files.

ToilWDLStdLibBase Standard library implementation for WDL as run on Toil.
ToilWDLStdLibTaskOutputs Standard library implementation for WDL as run on Toil,

with additional
WDLBaseJob Base job class for all WDL-related jobs.
WDLTaskJob Job that runs a WDL task.
WDLWorkflowNodeJob Job that evaluates a WDL workflow node.
WDLCombineBindingsJob Job that collects the results from WDL workflow nodes

and combines their
WDLNamespaceBindingsJob Job that puts a set of bindings into a namespace.
WDLSectionJob Job that can create more graph for a section of the wrok-

flow.
WDLScatterJob Job that evaluates a scatter in a WDL workflow. Runs

the body for each
WDLArrayBindingsJob Job that takes all new bindings created in an array of in-

put environments,
WDLConditionalJob Job that evaluates a conditional in a WDL workflow.
WDLWorkflowJob Job that evaluates an entire WDL workflow.
WDLOutputsJob Job which evaluates an outputs section (such as for a

workflow).
WDLRootJob Job that evaluates an entire WDL workflow, and returns

the workflow outputs

706 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Functions

potential_absolute_uris(uri, path[, importer]) Get potential absolute URIs to check for an imported file.
toil_read_source(uri, path, importer) Implementation of a MiniWDL read_source function

that can use any
combine_bindings(all_bindings) Combine variable bindings from multiple predecessor

tasks into one set for
log_bindings(log_function, message, all_bindings) Log bindings to the console, even if some are still

promises.
get_supertype(types) Get the supertype that can hold values of all the given

types.
for_each_node(root) Iterate over all WDL workflow nodes in the given node,

including inputs,
recursive_dependencies(root) Get the combined workflow_node_dependencies of root

and everything under
pack_toil_uri(file_id, file_basename) Encode a Toil file ID and its source path in a URI that

starts with the scheme in TOIL_URI_SCHEME.
unpack_toil_uri(toil_uri) Unpack a URI made by make_toil_uri to retrieve the

FileID and the basename
evaluate_named_expression(context, name, ...) Evaluate an expression when we know the name of it.
evaluate_decl(node, environment, stdlib) Evaluate the expression of a declaration node, or raise an

error.
evaluate_call_inputs(context, expressions, ...) Evaluate a bunch of expressions with names, and make

them into a fresh set of bindings.
evaluate_defaultable_decl(node, environment,
stdlib)

If the name of the declaration is already defined in the en-
vironment, return its value. Otherwise, return the evalu-
ated expression.

devirtualize_files(environment, stdlib) Make sure all the File values embedded in the given
bindings point to files

virtualize_files(environment, stdlib) Make sure all the File values embedded in the given
bindings point to files

import_files(environment, toil[, path]) Make sure all File values embedded in the given bindings
are imported,

drop_missing_files(environment[, ...]) Make sure all the File values embedded in the given
bindings point to files

get_file_paths_in_bindings(environment) Get the paths of all files in the bindings. Doesn't guaran-
tee that

map_over_typed_files_in_bindings(environment,
transform)

Run all File values embedded in the given bindings
through the given

map_over_files_in_bindings(bindings, transform) Run all File values' types and values embedded in the
given bindings

map_over_typed_files_in_binding(binding,
transform)

Run all File values' types and values embedded in the
given binding's value through the given

map_over_typed_files_in_value(value, trans-
form)

Run all File values embedded in the given value through
the given

main() A Toil workflow to interpret WDL input files.

30.1. toil 707

Toil Documentation, Release 5.11.0

Attributes

logger

WDLBindings

TOIL_URI_SCHEME

toil.wdl.wdltoil.logger

toil.wdl.wdltoil.potential_absolute_uris(uri, path, importer=None)
Get potential absolute URIs to check for an imported file.

Given a URI or bare path, yield in turn all the URIs, with schemes, where we should actually try to find it, given
that we want to search under/against the given paths or URIs, the current directory, and the given importing WDL
document if any.

Parameters
• uri (str) –

• path (List[str]) –

• importer (Optional[WDL.Tree.Document]) –

Return type
Iterator[str]

async toil.wdl.wdltoil.toil_read_source(uri, path, importer)
Implementation of a MiniWDL read_source function that can use any filename or URL supported by Toil.

Needs to be async because MiniWDL will await its result.

Parameters
• uri (str) –

• path (List[str]) –

• importer (Optional[WDL.Tree.Document]) –

Return type
WDL.ReadSourceResult

toil.wdl.wdltoil.WDLBindings

toil.wdl.wdltoil.combine_bindings(all_bindings)
Combine variable bindings from multiple predecessor tasks into one set for the current task.

Parameters
all_bindings (Sequence[WDLBindings]) –

Return type
WDLBindings

toil.wdl.wdltoil.log_bindings(log_function, message, all_bindings)
Log bindings to the console, even if some are still promises.

Parameters

708 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• log_function (Callable[Ellipsis, None]) – Function (like logger.info) to call to log
data

• message (str) – Message to log before the bindings

• all_bindings (Sequence[toil.job.Promised[WDLBindings]]) – A list of bindings
or promises for bindings, to log

Return type
None

toil.wdl.wdltoil.get_supertype(types)
Get the supertype that can hold values of all the given types.

Parameters
types (Sequence[Optional[WDL.Type.Base]]) –

Return type
WDL.Type.Base

toil.wdl.wdltoil.for_each_node(root)
Iterate over all WDL workflow nodes in the given node, including inputs, internal nodes of conditionals and
scatters, and gather nodes.

Parameters
root (WDL.Tree.WorkflowNode) –

Return type
Iterator[WDL.Tree.WorkflowNode]

toil.wdl.wdltoil.recursive_dependencies(root)
Get the combined workflow_node_dependencies of root and everything under it, which are not on anything in
that subtree.

Useful because section nodes can have internal nodes with dependencies not reflected in those of the section
node itself.

Parameters
root (WDL.Tree.WorkflowNode) –

Return type
Set[str]

toil.wdl.wdltoil.TOIL_URI_SCHEME = 'toilfile:'

toil.wdl.wdltoil.pack_toil_uri(file_id, file_basename)
Encode a Toil file ID and its source path in a URI that starts with the scheme in TOIL_URI_SCHEME.

Parameters
• file_id (toil.fileStores.FileID) –

• file_basename (str) –

Return type
str

toil.wdl.wdltoil.unpack_toil_uri(toil_uri)
Unpack a URI made by make_toil_uri to retrieve the FileID and the basename (no path prefix) that the file is
supposed to have.

Parameters
toil_uri (str) –

30.1. toil 709

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
Tuple[toil.fileStores.FileID, str]

class toil.wdl.wdltoil.NonDownloadingSize

Bases: WDL.StdLib._Size

NonDownloadingSize

WDL size() implementation that avoids downloading files.

MiniWDL’s default size() implementation downloads the whole file to get its size. We want to be able to get file
sizes from code running on the leader, where there may not be space to download the whole file. So we override
the fancy class that implements it so that we can handle sizes for FileIDs using the FileID’s stored size info.

class toil.wdl.wdltoil.ToilWDLStdLibBase(file_store)
Bases: WDL.StdLib.Base

ToilWDLStdLibBase

Standard library implementation for WDL as run on Toil.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

class toil.wdl.wdltoil.ToilWDLStdLibTaskOutputs(file_store, stdout_path, stderr_path,
current_directory_override=None)

Bases: ToilWDLStdLibBase, WDL.StdLib.TaskOutputs

ToilWDLStdLibBase ToilWDLStdLibTaskOutputs

Standard library implementation for WDL as run on Toil, with additional functions only allowed in task output
sections.

Parameters
• file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

• stdout_path (str) –

710 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• stderr_path (str) –

• current_directory_override (Optional[str]) –

toil.wdl.wdltoil.evaluate_named_expression(context, name, expected_type, expression, environment,
stdlib)

Evaluate an expression when we know the name of it.

Parameters
• context (Union[WDL.Error.SourceNode, WDL.Error.SourcePosition]) –

• name (str) –

• expected_type (Optional[WDL.Type.Base]) –

• expression (Optional[WDL.Expr.Base]) –

• environment (WDLBindings) –

• stdlib (WDL.StdLib.Base) –

Return type
WDL.Value.Base

toil.wdl.wdltoil.evaluate_decl(node, environment, stdlib)
Evaluate the expression of a declaration node, or raise an error.

Parameters
• node (WDL.Tree.Decl) –

• environment (WDLBindings) –

• stdlib (WDL.StdLib.Base) –

Return type
WDL.Value.Base

toil.wdl.wdltoil.evaluate_call_inputs(context, expressions, environment, stdlib)
Evaluate a bunch of expressions with names, and make them into a fresh set of bindings.

Parameters
• context (Union[WDL.Error.SourceNode, WDL.Error.SourcePosition]) –

• expressions (Dict[str, WDL.Expr.Base]) –

• environment (WDLBindings) –

• stdlib (WDL.StdLib.Base) –

Return type
WDLBindings

toil.wdl.wdltoil.evaluate_defaultable_decl(node, environment, stdlib)
If the name of the declaration is already defined in the environment, return its value. Otherwise, return the
evaluated expression.

Parameters
• node (WDL.Tree.Decl) –

• environment (WDLBindings) –

• stdlib (WDL.StdLib.Base) –

30.1. toil 711

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
WDL.Value.Base

toil.wdl.wdltoil.devirtualize_files(environment, stdlib)
Make sure all the File values embedded in the given bindings point to files that are actually available to command
line commands.

Parameters
• environment (WDLBindings) –

• stdlib (WDL.StdLib.Base) –

Return type
WDLBindings

toil.wdl.wdltoil.virtualize_files(environment, stdlib)
Make sure all the File values embedded in the given bindings point to files that are usable from other machines.

Parameters
• environment (WDLBindings) –

• stdlib (WDL.StdLib.Base) –

Return type
WDLBindings

toil.wdl.wdltoil.import_files(environment, toil, path=None)
Make sure all File values embedded in the given bindings are imported, using the given Toil object.

Parameters
• path (Optional[List[str]]) – If set, try resolving input location relative to the URLs

or directories in this list.

• environment (WDLBindings) –

• toil (toil.common.Toil) –

Return type
WDLBindings

toil.wdl.wdltoil.drop_missing_files(environment, current_directory_override=None)
Make sure all the File values embedded in the given bindings point to files that exist, or are null.

Files must not be virtualized.

Parameters
• environment (WDLBindings) –

• current_directory_override (Optional[str]) –

Return type
WDLBindings

toil.wdl.wdltoil.get_file_paths_in_bindings(environment)
Get the paths of all files in the bindings. Doesn’t guarantee that duplicates are removed.

TODO: Duplicative with WDL.runtime.task._fspaths, except that is internal and supports Direcotry objects.

Parameters
environment (WDLBindings) –

712 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
List[str]

toil.wdl.wdltoil.map_over_typed_files_in_bindings(environment, transform)

Run all File values embedded in the given bindings through the given transformation function.

TODO: Replace with WDL.Value.rewrite_env_paths or WDL.Value.rewrite_files

Parameters
• environment (WDLBindings) –

• transform (Callable[[WDL.Type.Base, str], Optional[str]]) –

Return type
WDLBindings

toil.wdl.wdltoil.map_over_files_in_bindings(bindings, transform)

Run all File values’ types and values embedded in the given bindings through the given transformation function.

TODO: Replace with WDL.Value.rewrite_env_paths or WDL.Value.rewrite_files

Parameters
• bindings (WDLBindings) –

• transform (Callable[[str], Optional[str]]) –

Return type
WDLBindings

toil.wdl.wdltoil.map_over_typed_files_in_binding(binding, transform)

Run all File values’ types and values embedded in the given binding’s value through the given transformation
function.

Parameters
• binding (WDL.Env.Binding[WDL.Value.Base]) –

• transform (Callable[[WDL.Type.Base, str], Optional[str]]) –

Return type
WDL.Env.Binding[WDL.Value.Base]

toil.wdl.wdltoil.map_over_typed_files_in_value(value, transform)

Run all File values embedded in the given value through the given transformation function.

If the transform returns None, the file value is changed to Null.

The transform has access to the type information for the value, so it knows if it may return None, depending on
if the value is optional or not.

The transform is allowed to return None only if the mapping result won’t actually be used, to allow for scans. So
error checking needs to be part of the transform itself.

Parameters
• value (WDL.Value.Base) –

• transform (Callable[[WDL.Type.Base, str], Optional[str]]) –

Return type
WDL.Value.Base

30.1. toil 713

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

class toil.wdl.wdltoil.WDLBaseJob(**kwargs)
Bases: toil.job.Job

Job WDLBaseJob

Base job class for all WDL-related jobs.

Parameters
kwargs (Any) –

run(file_store)
Run a WDL-related job.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
Any

class toil.wdl.wdltoil.WDLTaskJob(task, prev_node_results, task_id, namespace, **kwargs)
Bases: WDLBaseJob

Job WDLBaseJob WDLTaskJob

Job that runs a WDL task.

Responsible for evaluating the input declarations for unspecified inputs, evaluating the runtime section, re-
scheduling if resources are not available, running any command, and evaluating the outputs.

All bindings are in terms of task-internal names.

Parameters
• task (WDL.Tree.Task) –

• prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

• task_id (List[str]) –

• namespace (str) –

• kwargs (Any) –

can_fake_root()

Determie if –fakeroot is likely to work for Singularity.

Return type
bool

714 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

run(file_store)
Actually run the task.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
toil.job.Promised[WDLBindings]

class toil.wdl.wdltoil.WDLWorkflowNodeJob(node, prev_node_results, namespace, **kwargs)
Bases: WDLBaseJob

Job WDLBaseJob WDLWorkflowNodeJob

Job that evaluates a WDL workflow node.

Parameters
• node (WDL.Tree.WorkflowNode) –

• prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

• namespace (str) –

• kwargs (Any) –

run(file_store)
Actually execute the workflow node.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
toil.job.Promised[WDLBindings]

class toil.wdl.wdltoil.WDLCombineBindingsJob(prev_node_results, underlay=None, remove=None,
**kwargs)

Bases: WDLBaseJob

Job WDLBaseJob WDLCombineBindingsJob

Job that collects the results from WDL workflow nodes and combines their environment changes.

Parameters
• prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

• underlay (Optional[toil.job.Promised[WDLBindings]]) –

30.1. toil 715

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• remove (Optional[toil.job.Promised[WDLBindings]]) –

• kwargs (Any) –

run(file_store)
Aggregate incoming results.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
WDLBindings

class toil.wdl.wdltoil.WDLNamespaceBindingsJob(namespace, prev_node_results, **kwargs)
Bases: WDLBaseJob

Job WDLBaseJob WDLNamespaceBindingsJob

Job that puts a set of bindings into a namespace.

Parameters
• namespace (str) –

• prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

• kwargs (Any) –

run(file_store)
Apply the namespace

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
WDLBindings

class toil.wdl.wdltoil.WDLSectionJob(namespace, **kwargs)
Bases: WDLBaseJob

Job WDLBaseJob WDLSectionJob

Job that can create more graph for a section of the wrokflow.

Parameters
• namespace (str) –

716 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• kwargs (Any) –

create_subgraph(nodes, gather_nodes, environment, local_environment=None)
Make a Toil job to evaluate a subgraph inside a workflow or workflow section.

Returns
a child Job that will return the aggregated environment after running all the things in the
section.

Parameters
• gather_nodes (Sequence[WDL.Tree.Gather]) – Names exposed by these will always

be defined with something, even if the code that defines them does not actually run.

• environment (WDLBindings) – Bindings in this environment will be used to evaluate the
subgraph and will be passed through.

• local_environment (Optional[WDLBindings]) – Bindings in this environment will
be used to evaluate the subgraph but will go out of scope at the end of the section.

• nodes (Sequence[WDL.Tree.WorkflowNode]) –

Return type
toil.job.Job

make_gather_bindings(gathers, undefined)
Given a collection of Gathers, create bindings from every identifier gathered, to the given “undefined”
placeholder (which would be Null for a single execution of the body, or an empty array for a completely
unexecuted scatter).

These bindings can be overlaid with bindings from the actual execution, so that references to names defined
in unexecuted code get a proper default undefined value, and not a KeyError at runtime.

The information to do this comes from MiniWDL’s “gathers” system: <https://miniwdl.readthedocs.io/en/
latest/WDL.html#WDL.Tree.WorkflowSection.gathers>

TODO: This approach will scale O(n^2) when run on n nested conditionals, because generating these
bindings for the outer conditional will visit all the bindings from the inner ones.

Parameters
• gathers (Sequence[WDL.Tree.Gather]) –

• undefined (WDL.Value.Base) –

Return type
WDLBindings

class toil.wdl.wdltoil.WDLScatterJob(scatter, prev_node_results, namespace, **kwargs)
Bases: WDLSectionJob

Job WDLBaseJob WDLSectionJob WDLScatterJob

Job that evaluates a scatter in a WDL workflow. Runs the body for each value in an array, and makes arrays of
the new bindings created in each instance of the body. If an instance of the body doesn’t create a binding, it gets
a null value in the corresponding array.

30.1. toil 717

https://miniwdl.readthedocs.io/en/latest/WDL.html#WDL.Tree.WorkflowSection.gathers
https://miniwdl.readthedocs.io/en/latest/WDL.html#WDL.Tree.WorkflowSection.gathers

Toil Documentation, Release 5.11.0

Parameters
• scatter (WDL.Tree.Scatter) –

• prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

• namespace (str) –

• kwargs (Any) –

run(file_store)
Run the scatter.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
toil.job.Promised[WDLBindings]

class toil.wdl.wdltoil.WDLArrayBindingsJob(input_bindings, base_bindings, **kwargs)
Bases: WDLBaseJob

Job WDLBaseJob WDLArrayBindingsJob

Job that takes all new bindings created in an array of input environments, relative to a base environment, and
produces bindings where each new binding name is bound to an array of the values in all the input environments.

Useful for producing the results of a scatter.

Parameters
• input_bindings (Sequence[toil.job.Promised[WDLBindings]]) –

• base_bindings (WDLBindings) –

• kwargs (Any) –

run(file_store)
Actually produce the array-ified bindings now that promised values are available.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
WDLBindings

class toil.wdl.wdltoil.WDLConditionalJob(conditional, prev_node_results, namespace, **kwargs)
Bases: WDLSectionJob

Job WDLBaseJob WDLSectionJob WDLConditionalJob

718 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Job that evaluates a conditional in a WDL workflow.

Parameters
• conditional (WDL.Tree.Conditional) –

• prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

• namespace (str) –

• kwargs (Any) –

run(file_store)
Run the conditional.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
toil.job.Promised[WDLBindings]

class toil.wdl.wdltoil.WDLWorkflowJob(workflow, prev_node_results, workflow_id, namespace, **kwargs)
Bases: WDLSectionJob

Job WDLBaseJob WDLSectionJob WDLWorkflowJob

Job that evaluates an entire WDL workflow.

Parameters
• workflow (WDL.Tree.Workflow) –

• prev_node_results (Sequence[toil.job.Promised[WDLBindings]]) –

• workflow_id (List[str]) –

• namespace (str) –

• kwargs (Any) –

run(file_store)
Run the workflow. Return the result of the workflow.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
toil.job.Promised[WDLBindings]

class toil.wdl.wdltoil.WDLOutputsJob(outputs, bindings, **kwargs)
Bases: WDLBaseJob

30.1. toil 719

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Job WDLBaseJob WDLOutputsJob

Job which evaluates an outputs section (such as for a workflow).

Returns an environment with just the outputs bound, in no namespace.

Parameters
• outputs (List[WDL.Tree.Decl]) –

• bindings (toil.job.Promised[WDLBindings]) –

• kwargs (Any) –

run(file_store)
Make bindings for the outputs.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
WDLBindings

class toil.wdl.wdltoil.WDLRootJob(workflow, inputs, **kwargs)
Bases: WDLSectionJob

Job WDLBaseJob WDLSectionJob WDLRootJob

Job that evaluates an entire WDL workflow, and returns the workflow outputs namespaced with the workflow
name. Inputs may or may not be namespaced with the workflow name; both forms are accepted.

Parameters
• workflow (WDL.Tree.Workflow) –

• inputs (WDLBindings) –

• kwargs (Any) –

run(file_store)
Actually build the subgraph.

Parameters
file_store (toil.fileStores.abstractFileStore.AbstractFileStore) –

Return type
toil.job.Promised[WDLBindings]

720 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

toil.wdl.wdltoil.main()

A Toil workflow to interpret WDL input files.

Return type
None

30.1.2 Submodules

toil.bus

Message types and message bus for leader component coordination.

Historically, the Toil Leader has been organized around functions calling other functions to “handle” different things
happening. Over time, it has become very brittle: exactly the right handling functions need to be called in exactly the
right order, or it gets confused and does the wrong thing.

The MessageBus is meant to let the leader avoid this by more losely coupling its components together, by having them
communicate by sending messages instead of by calling functions.

When events occur (like a job coming back from the batch system with a failed exit status), this will be translated into
a message that will be sent to the bus. Then, all the leader components that need to react to this message in some
way (by, say, decrementing the retry count) would listen for the relevant messages on the bus and react to them. If a
new component needs to be added, it can be plugged into the message bus and receive and react to messages without
interfering with existing components’ ability to react to the same messages.

Eventually, the different aspects of the Leader could become separate objects.

By default, messages stay entirely within the Toil leader process, and are not persisted anywhere, not even in the
JobStore.

The Message Bus also provides an extension point: its messages can be serialized to a file by the leader (see the
–writeMessages option), and they can then be decoded using MessageBus.scan_bus_messages() (as is done in the Toil
WES server backend). By replaying the messages and tracking their effects on job state, you can get an up-to-date view
of the state of the jobs in a workflow. This includes information, such as whether jobs are issued or running, or what
jobs have completely finished, which is not persisted in the JobStore.

The MessageBus instance for the leader process is owned by the Toil leader, but the BatchSystem has an opportunity
to connect to it, and can send (or listen for) messages. Right now the BatchSystem deos not have to send or receive
any messages; the Leader is responsible for polling it via the BatchSystem API and generating the events. But a
BatchSystem implementation may send additional events (like JobAnnotationMessage).

Currently, the MessageBus is implemented using pypubsub, and so messages are always handled in a single Thread,
the Toil leader’s main loop thread. If other components send events, they will be shipped over to that thread inside the
MessageBus. Communication between processes is allowed using MessageBus.connect_output_file() and Message-
Bus.scan_bus_messages().

Module Contents

30.1. toil 721

Toil Documentation, Release 5.11.0

Classes

JobIssuedMessage Produced when a job is issued to run on the batch system.
JobUpdatedMessage Produced when a job is "updated" and ready to have

something happen to it.
JobCompletedMessage Produced when a job is completed, whether successful

or not.
JobFailedMessage Produced when a job is completely failed, and will not

be retried again.
JobMissingMessage Produced when a job goes missing and should be in the

batch system but isn't.
JobAnnotationMessage Produced when extra information (such as an AWS Batch

job ID from the
ExternalBatchIdMessage Produced when using a batch system, links toil assigned

batch ID to
QueueSizeMessage Produced to describe the size of the queue of jobs issued

but not yet
ClusterSizeMessage Produced by the Toil-integrated autoscaler describe the

number of
ClusterDesiredSizeMessage Produced by the Toil-integrated autoscaler to describe

the number of
MessageBus Holds messages that should cause jobs to change their

scheduling states.
MessageBusClient Base class for clients (inboxes and outboxes) of a mes-

sage bus. Handles
MessageInbox A buffered connection to a message bus that lets us re-

ceive messages.
MessageOutbox A connection to a message bus that lets us publish mes-

sages.
MessageBusConnection A two-way connection to a message bus. Buffers incom-

ing messages until you
JobStatus Records the status of a job.

Functions

message_to_bytes(message) Convert a plain-old-data named tuple into a byte string.
bytes_to_message(message_type, data) Convert bytes from message_to_bytes back to a message

of the given type.
replay_message_bus(path) Replay all the messages and work out what they mean

for jobs.
gen_message_bus_path () Return a file path in tmp to store the message bus at.

722 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Attributes

logger

MessageType

toil.bus.logger

class toil.bus.JobIssuedMessage

Bases: NamedTuple

JobIssuedMessageNamedTuple

Produced when a job is issued to run on the batch system.

job_type: str

job_id: str

toil_batch_id: int

class toil.bus.JobUpdatedMessage

Bases: NamedTuple

JobUpdatedMessageNamedTuple

Produced when a job is “updated” and ready to have something happen to it.

job_id: str

result_status: int

class toil.bus.JobCompletedMessage

Bases: NamedTuple

30.1. toil 723

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

JobCompletedMessageNamedTuple

Produced when a job is completed, whether successful or not.

job_type: str

job_id: str

exit_code: int

class toil.bus.JobFailedMessage

Bases: NamedTuple

JobFailedMessageNamedTuple

Produced when a job is completely failed, and will not be retried again.

job_type: str

job_id: str

class toil.bus.JobMissingMessage

Bases: NamedTuple

JobMissingMessageNamedTuple

Produced when a job goes missing and should be in the batch system but isn’t.

job_id: str

class toil.bus.JobAnnotationMessage

Bases: NamedTuple

724 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

JobAnnotationMessageNamedTuple

Produced when extra information (such as an AWS Batch job ID from the AWSBatchBatchSystem) is available
that goes with a job.

job_id: str

annotation_name: str

annotation_value: str

class toil.bus.ExternalBatchIdMessage

Bases: NamedTuple

ExternalBatchIdMessageNamedTuple

Produced when using a batch system, links toil assigned batch ID to Batch system ID (Whatever’s returned by
local implementation, PID, batch ID, etc)

toil_batch_id: int

external_batch_id: str

batch_system: str

class toil.bus.QueueSizeMessage

Bases: NamedTuple

NamedTuple QueueSizeMessage

Produced to describe the size of the queue of jobs issued but not yet completed. Theoretically recoverable from
other messages.

queue_size: int

30.1. toil 725

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

class toil.bus.ClusterSizeMessage

Bases: NamedTuple

ClusterSizeMessageNamedTuple

Produced by the Toil-integrated autoscaler describe the number of instances of a certain type in a cluster.

instance_type: str

current_size: int

class toil.bus.ClusterDesiredSizeMessage

Bases: NamedTuple

ClusterDesiredSizeMessageNamedTuple

Produced by the Toil-integrated autoscaler to describe the number of instances of a certain type that it thinks will
be needed.

instance_type: str

desired_size: int

toil.bus.message_to_bytes(message)
Convert a plain-old-data named tuple into a byte string.

Parameters
message (NamedTuple) –

Return type
bytes

toil.bus.MessageType

toil.bus.bytes_to_message(message_type, data)
Convert bytes from message_to_bytes back to a message of the given type.

Parameters
• message_type (Type[MessageType]) –

• data (bytes) –

Return type
MessageType

726 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Toil Documentation, Release 5.11.0

class toil.bus.MessageBus

Holds messages that should cause jobs to change their scheduling states. Messages are put in and buffered, and
can be taken out and handled as batches when convenient.

All messages are NamedTuple objects of various subtypes.

Message order is guaranteed to be preserved within a type.

MessageType

publish(message)
Put a message onto the bus. Can be called from any thread.

Parameters
message (Any) –

Return type
None

check()

If we are in the owning thread, deliver any messages that are in the queue for us. Must be called every once
in a while in the main thread, possibly through inbox objects.

Return type
None

subscribe(message_type, handler)
Register the given callable to be called when messages of the given type are sent. It will be called with
messages sent after the subscription is created. Returns a subscription object; when the subscription object
is GC’d the subscription will end.

Parameters
• message_type (Type[MessageType]) –

• handler (Callable[[MessageType], Any]) –

Return type
pubsub.core.listener.Listener

connect(wanted_types)
Get a connection object that serves as an inbox for messages of the given types. Messages of those types
will accumulate in the inbox until it is destroyed. You can check for them at any time.

Parameters
wanted_types (List[type]) –

Return type
MessageBusConnection

outbox()

Get a connection object that only allows sending messages.

Return type
MessageOutbox

connect_output_file(file_path)
Send copies of all messages to the given output file.

Returns connection data which must be kept alive for the connection to persist. That data is opaque: the
user is not supposed to look at it or touch it or do anything with it other than store it somewhere or delete
it.

30.1. toil 727

https://docs.python.org/3/library/functions.html#type

Toil Documentation, Release 5.11.0

Parameters
file_path (str) –

Return type
Any

classmethod scan_bus_messages(stream, message_types)
Get an iterator over all messages in the given log stream of the given types, in order. Discard any trailing
partial messages.

Parameters
• stream (IO[bytes]) –

• message_types (List[Type[NamedTuple]]) –

Return type
Iterator[Any]

class toil.bus.MessageBusClient

Base class for clients (inboxes and outboxes) of a message bus. Handles keeping a reference to the message bus.

class toil.bus.MessageInbox

Bases: MessageBusClient

MessageBusClient MessageInbox

A buffered connection to a message bus that lets us receive messages. Buffers incoming messages until you are
ready for them. Does not preserve ordering between messages of different types.

MessageType

count(message_type)
Get the number of pending messages of the given type.

Parameters
message_type (type) –

Return type
int

empty()

Return True if no messages are pending, and false otherwise.

Return type
bool

for_each(message_type)
Loop over all messages currently pending of the given type. Each that is handled without raising an excep-
tion will be removed.

Messages sent while this function is running will not be yielded by the current call.

728 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Parameters
message_type (Type[MessageType]) –

Return type
Iterator[MessageType]

class toil.bus.MessageOutbox

Bases: MessageBusClient

MessageBusClient MessageOutbox

A connection to a message bus that lets us publish messages.

publish(message)
Publish the given message to the connected message bus.

We have this so you don’t need to store both the bus and your connection.

Parameters
message (Any) –

Return type
None

class toil.bus.MessageBusConnection

Bases: MessageInbox, MessageOutbox

MessageBusClient

MessageInbox

MessageOutbox

MessageBusConnection

A two-way connection to a message bus. Buffers incoming messages until you are ready for them, and lets you
send messages.

class toil.bus.JobStatus

Records the status of a job.

job_store_id: str

name: str

exit_code: int

annotations: Dict[str, str]

30.1. toil 729

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil_batch_id: int

external_batch_id: str

batch_system: str

__repr__()

Return repr(self).

Return type
str

toil.bus.replay_message_bus(path)
Replay all the messages and work out what they mean for jobs.

We track the state and name of jobs here, by ID. We would use a list of two items but MyPy can’t understand a
list of items of multiple types, so we need to define a new class.

Returns a dictionary from the job_id to a dataclass, JobStatus. A JobStatus contains information about a job
which we have gathered from the message bus, including the job store id, name of the job the exit code, any
associated annotations, the toil batch id the external batch id, and the batch system on which the job is running.

Parameters
path (str) –

Return type
Dict[str, JobStatus]

toil.bus.gen_message_bus_path()

Return a file path in tmp to store the message bus at. Calling function is responsible for cleaning the generated
file.

Return type
str

toil.common

Module Contents

Classes

Config Class to represent configuration operations for a toil
workflow run.

Toil A context manager that represents a Toil workflow.
ToilMetrics

730 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Functions

parser_with_common_options([provisioner_options,
...])
addOptions(parser[, config, jobstore_as_flag]) Add Toil command line options to a parser.
parseBool(val)

getNodeID() Return unique ID of the current node (host). The result-
ing string will be convertable to a uuid.UUID.

parseSetEnv(l) Parse a list of strings of the form "NAME=VALUE" or
just "NAME" into a dictionary.

iC(minValue[, maxValue]) Returns a function that checks if a given int is in the given
half-open interval.

fC(minValue[, maxValue]) Returns a function that checks if a given float is in the
given half-open interval.

parse_accelerator_list(specs) Parse a string description of one or more accelerator re-
quirements.

cacheDirName(workflowID)
return

Name of the cache directory.

getDirSizeRecursively(dirPath) This method will return the cumulative number of bytes
occupied by the files

getFileSystemSize(dirPath) Return the free space, and total size of the file system
hosting dirPath.

safeUnpickleFromStream(stream)

Attributes

defaultTargetTime

SYS_MAX_SIZE

UUID_LENGTH

logger

JOBSTORE_HELP

toil.common.defaultTargetTime = 1800

toil.common.SYS_MAX_SIZE = 9223372036854775807

toil.common.UUID_LENGTH = 32

toil.common.logger

class toil.common.Config

Class to represent configuration operations for a toil workflow run.

30.1. toil 731

Toil Documentation, Release 5.11.0

logFile: Optional[str]

logRotating: bool

cleanWorkDir: str

max_jobs: int

max_local_jobs: int

run_local_jobs_on_workers: bool

tes_endpoint: str

tes_user: str

tes_password: str

tes_bearer_token: str

jobStore: str

batchSystem: str

batch_logs_dir: Optional[str]

The backing scheduler will be instructed, if possible, to save logs to this directory, where the leader can
read them.

workflowAttemptNumber: int

disableAutoDeployment: bool

workflowID: Optional[str]

This attribute uniquely identifies the job store and therefore the workflow. It is necessary in order to distin-
guish between two consecutive workflows for which self.jobStore is the same, e.g. when a job store name
is reused after a previous run has finished successfully and its job store has been clean up.

prepare_start()

After options are set, prepare for initial start of workflow.

Return type
None

prepare_restart()

Before restart options are set, prepare for a restart of a workflow. Set up any execution-specific parameters
and clear out any stale ones.

Return type
None

setOptions(options)
Creates a config object from the options object.

Parameters
options (argparse.Namespace) –

Return type
None

732 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace

Toil Documentation, Release 5.11.0

__eq__(other)
Return self==value.

Parameters
other (object) –

Return type
bool

__hash__()

Return hash(self).

Return type
int

toil.common.JOBSTORE_HELP = Multiline-String

"""The location of the job store for the workflow. A job store holds␣
→˓persistent information about the jobs, stats, and files in a workflow. If␣
→˓the workflow is run with a distributed batch system, the job store must␣
→˓be accessible by all worker nodes. Depending on the desired job store␣
→˓implementation, the location should be formatted according to one of the␣
→˓following schemes:

file:<path> where <path> points to a directory on the file systen

aws:<region>:<prefix> where <region> is the name of an AWS region like us-
→˓west-2 and <prefix> will be prepended to the names of any top-level AWS␣
→˓resources in use by job store, e.g. S3 buckets.

google:<project_id>:<prefix> TODO: explain

For backwards compatibility, you may also specify ./foo (equivalent to␣
→˓file:./foo or just file:foo) or /bar (equivalent to file:/bar)."""

toil.common.parser_with_common_options(provisioner_options=False, jobstore_option=True)

Parameters
• provisioner_options (bool) –

• jobstore_option (bool) –

Return type
argparse.ArgumentParser

toil.common.addOptions(parser, config=None, jobstore_as_flag=False)
Add Toil command line options to a parser.

Parameters
• config (Optional[Config]) – If specified, take defaults from the given Config.

• jobstore_as_flag (bool) – make the job store option a –jobStore flag instead of a required
jobStore positional argument.

• parser (argparse.ArgumentParser) –

Return type
None

30.1. toil 733

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

toil.common.parseBool(val)

Parameters
val (str) –

Return type
bool

toil.common.getNodeID()

Return unique ID of the current node (host). The resulting string will be convertable to a uuid.UUID.

Tries several methods until success. The returned ID should be identical across calls from different processes on
the same node at least until the next OS reboot.

The last resort method is uuid.getnode() that in some rare OS configurations may return a random ID each
time it is called. However, this method should never be reached on a Linux system, because reading from
/proc/sys/kernel/random/boot_id will be tried prior to that. If uuid.getnode() is reached, it will be called twice,
and exception raised if the values are not identical.

Return type
str

class toil.common.Toil(options)
Bases: ContextManager[Toil]

ABC AbstractContextManager ContextManager Toil

A context manager that represents a Toil workflow.

Specifically the batch system, job store, and its configuration.

Parameters
options (argparse.Namespace) –

config: Config

__enter__()

Derive configuration from the command line options.

Then load the job store and, on restart, consolidate the derived configuration with the one from the previous
invocation of the workflow.

Return type
Toil

__exit__(exc_type, exc_val, exc_tb)
Clean up after a workflow invocation.

Depending on the configuration, delete the job store.

Parameters
• exc_type (Optional[Type[BaseException]]) –

• exc_val (Optional[BaseException]) –

• exc_tb (Optional[types.TracebackType]) –

734 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/types.html#types.TracebackType

Toil Documentation, Release 5.11.0

Return type
Literal[False]

start(rootJob)
Invoke a Toil workflow with the given job as the root for an initial run.

This method must be called in the body of a with Toil(...) as toil: statement. This method should
not be called more than once for a workflow that has not finished.

Parameters
rootJob (toil.job.Job) – The root job of the workflow

Returns
The root job’s return value

Return type
Any

restart()

Restarts a workflow that has been interrupted.

Returns
The root job’s return value

Return type
Any

classmethod getJobStore(locator)
Create an instance of the concrete job store implementation that matches the given locator.

Parameters
locator (str) – The location of the job store to be represent by the instance

Returns
an instance of a concrete subclass of AbstractJobStore

Return type
toil.jobStores.abstractJobStore.AbstractJobStore

static parseLocator(locator)

Parameters
locator (str) –

Return type
Tuple[str, str]

static buildLocator(name, rest)

Parameters
• name (str) –

• rest (str) –

Return type
str

classmethod resumeJobStore(locator)

Parameters
locator (str) –

30.1. toil 735

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
toil.jobStores.abstractJobStore.AbstractJobStore

static createBatchSystem(config)
Create an instance of the batch system specified in the given config.

Parameters
config (Config) – the current configuration

Returns
an instance of a concrete subclass of AbstractBatchSystem

Return type
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

importFile(srcUrl: str, sharedFileName: str, symlink: bool = True)→ None
importFile(srcUrl: str, sharedFileName: None = None, symlink: bool = True)→ toil.fileStores.FileID

import_file(src_uri: str, shared_file_name: str, symlink: bool = True)→ None
import_file(src_uri: str, shared_file_name: None = None, symlink: bool = True)→ toil.fileStores.FileID

Import the file at the given URL into the job store.

See toil.jobStores.abstractJobStore.AbstractJobStore.importFile() for a full description

exportFile(jobStoreFileID, dstUrl)

Parameters
• jobStoreFileID (toil.fileStores.FileID) –

• dstUrl (str) –

Return type
None

export_file(file_id, dst_uri)
Export file to destination pointed at by the destination URL.

See toil.jobStores.abstractJobStore.AbstractJobStore.exportFile() for a full description

Parameters
• file_id (toil.fileStores.FileID) –

• dst_uri (str) –

Return type
None

static normalize_uri(uri, check_existence=False)
Given a URI, if it has no scheme, prepend “file:”.

Parameters
• check_existence (bool) – If set, raise an error if a URI points to a local file that does

not exist.

• uri (str) –

Return type
str

736 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

static getToilWorkDir(configWorkDir=None)
Return a path to a writable directory under which per-workflow directories exist.

This directory is always required to exist on a machine, even if the Toil worker has not run yet. If your
workers and leader have different temp directories, you may need to set TOIL_WORKDIR.

Parameters
configWorkDir (Optional[str]) – Value passed to the program using the –workDir flag

Returns
Path to the Toil work directory, constant across all machines

Return type
str

classmethod get_toil_coordination_dir(config_work_dir, config_coordination_dir)
Return a path to a writable directory, which will be in memory if convenient. Ought to be used for file
locking and coordination.

Parameters
• config_work_dir (Optional[str]) – Value passed to the program using the –workDir

flag

• config_coordination_dir (Optional[str]) – Value passed to the program using the
–coordinationDir flag

Returns
Path to the Toil coordination directory. Ought to be on a POSIX filesystem that allows direc-
tories containing open files to be deleted.

Return type
str

classmethod getLocalWorkflowDir(workflowID, configWorkDir=None)
Return the directory where worker directories and the cache will be located for this workflow on this ma-
chine.

Parameters
• configWorkDir (Optional[str]) – Value passed to the program using the –workDir

flag

• workflowID (str) –

Returns
Path to the local workflow directory on this machine

Return type
str

classmethod get_local_workflow_coordination_dir(workflow_id, config_work_dir,
config_coordination_dir)

Return the directory where coordination files should be located for this workflow on this machine. These
include internal Toil databases and lock files for the machine.

If an in-memory filesystem is available, it is used. Otherwise, the local workflow directory, which may be
on a shared network filesystem, is used.

Parameters
• workflow_id (str) – Unique ID of the current workflow.

30.1. toil 737

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• config_work_dir (Optional[str]) – Value used for the work directory in the current
Toil Config.

• config_coordination_dir (Optional[str]) – Value used for the coordination direc-
tory in the current Toil Config.

Returns
Path to the local workflow coordination directory on this machine.

Return type
str

exception toil.common.ToilRestartException(message)
Bases: Exception

ToilRestartException

Common base class for all non-exit exceptions.

Parameters
message (str) –

exception toil.common.ToilContextManagerException

Bases: Exception

ToilContextManagerException

Common base class for all non-exit exceptions.

class toil.common.ToilMetrics(bus, provisioner=None)

Parameters
• bus (toil.bus.MessageBus) –

• provisioner (Optional[toil.provisioners.abstractProvisioner.
AbstractProvisioner]) –

startDashboard(clusterName, zone)

Parameters
• clusterName (str) –

• zone (str) –

Return type
None

738 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

add_prometheus_data_source()

Return type
None

log(message)

Parameters
message (str) –

Return type
None

logClusterSize(m)

Parameters
m (toil.bus.ClusterSizeMessage) –

Return type
None

logClusterDesiredSize(m)

Parameters
m (toil.bus.ClusterDesiredSizeMessage) –

Return type
None

logQueueSize(m)

Parameters
m (toil.bus.QueueSizeMessage) –

Return type
None

logMissingJob(m)

Parameters
m (toil.bus.JobMissingMessage) –

Return type
None

logIssuedJob(m)

Parameters
m (toil.bus.JobIssuedMessage) –

Return type
None

logFailedJob(m)

Parameters
m (toil.bus.JobFailedMessage) –

Return type
None

30.1. toil 739

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

logCompletedJob(m)

Parameters
m (toil.bus.JobCompletedMessage) –

Return type
None

shutdown()

Return type
None

toil.common.parseSetEnv(l)
Parse a list of strings of the form “NAME=VALUE” or just “NAME” into a dictionary.

Strings of the latter from will result in dictionary entries whose value is None.

>>> parseSetEnv([])
{}
>>> parseSetEnv(['a'])
{'a': None}
>>> parseSetEnv(['a='])
{'a': ''}
>>> parseSetEnv(['a=b'])
{'a': 'b'}
>>> parseSetEnv(['a=a', 'a=b'])
{'a': 'b'}
>>> parseSetEnv(['a=b', 'c=d'])
{'a': 'b', 'c': 'd'}
>>> parseSetEnv(['a=b=c'])
{'a': 'b=c'}
>>> parseSetEnv([''])
Traceback (most recent call last):
...
ValueError: Empty name
>>> parseSetEnv(['=1'])
Traceback (most recent call last):
...
ValueError: Empty name

Parameters
l (List[str]) –

Return type
Dict[str, Optional[str]]

toil.common.iC(minValue, maxValue=SYS_MAX_SIZE)
Returns a function that checks if a given int is in the given half-open interval.

Parameters
• minValue (int) –

• maxValue (int) –

Return type
Callable[[int], bool]

740 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

toil.common.fC(minValue, maxValue=None)
Returns a function that checks if a given float is in the given half-open interval.

Parameters
• minValue (float) –

• maxValue (Optional[float]) –

Return type
Callable[[float], bool]

toil.common.parse_accelerator_list(specs)
Parse a string description of one or more accelerator requirements.

Parameters
specs (Optional[str]) –

Return type
List[toil.job.AcceleratorRequirement]

toil.common.cacheDirName(workflowID)

Returns
Name of the cache directory.

Parameters
workflowID (str) –

Return type
str

toil.common.getDirSizeRecursively(dirPath)
This method will return the cumulative number of bytes occupied by the files on disk in the directory and its
subdirectories.

If the method is unable to access a file or directory (due to insufficient permissions, or due to the file or directory
having been removed while this function was attempting to traverse it), the error will be handled internally, and
a (possibly 0) lower bound on the size of the directory will be returned.

The environment variable ‘BLOCKSIZE’=’512’ is set instead of the much cleaner –block-size=1 because Apple
can’t handle it.

Parameters
dirPath (str) – A valid path to a directory or file.

Returns
Total size, in bytes, of the file or directory at dirPath.

Return type
int

toil.common.getFileSystemSize(dirPath)
Return the free space, and total size of the file system hosting dirPath.

Parameters
dirPath (str) – A valid path to a directory.

Returns
free space and total size of file system

Return type
Tuple[int, int]

30.1. toil 741

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

toil.common.safeUnpickleFromStream(stream)

Parameters
stream (IO[Any]) –

Return type
Any

toil.deferred

Module Contents

Classes

DeferredFunction

>>> from collections import defaultdict

DeferredFunctionManager Implements a deferred function system. Each Toil
worker will have an

Attributes

logger

toil.deferred.logger

class toil.deferred.DeferredFunction

Bases: namedtuple('DeferredFunction', 'function args kwargs name module')

DeferredFunction

>>> from collections import defaultdict
>>> df = DeferredFunction.create(defaultdict, None, {'x':1}, y=2)
>>> df
DeferredFunction(defaultdict, ...)
>>> df.invoke() == defaultdict(None, x=1, y=2)
True

__repr__

742 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

classmethod create(function, *args, **kwargs)
Capture the given callable and arguments as an instance of this class.

Parameters
• function (callable) – The deferred action to take in the form of a function

• args (tuple) – Non-keyword arguments to the function

• kwargs (dict) – Keyword arguments to the function

invoke()

Invoke the captured function with the captured arguments.

__str__()

Return str(self).

class toil.deferred.DeferredFunctionManager(stateDirBase)
Implements a deferred function system. Each Toil worker will have an instance of this class. When a job is
executed, it will happen inside a context manager from this class. If the job registers any “deferred” functions,
they will be executed when the context manager is exited.

If the Python process terminates before properly exiting the context manager and running the deferred functions,
and some other worker process enters or exits the per-job context manager of this class at a later time, or when
the DeferredFunctionManager is shut down on the worker, the earlier job’s deferred functions will be picked up
and run.

Note that deferred function cleanup is on a best-effort basis, and deferred functions may end up getting executed
multiple times.

Internally, deferred functions are serialized into files in the given directory, which are locked by the owning
process.

If that process dies, other processes can detect that the files are able to be locked, and will take them over.

Parameters
stateDirBase (str) –

STATE_DIR_STEM = 'deferred'

PREFIX = 'func'

WIP_SUFFIX = '.tmp'

__del__()

Clean up our state on disk. We assume that the deferred functions we manage have all been executed, and
none are currently recorded.

open()

Yields a single-argument function that allows for deferred functions of type toil.DeferredFunction to
be registered. We use this design so deferred functions can be registered only inside this context manager.

Not thread safe.

classmethod cleanupWorker(stateDirBase)
Called by the batch system when it shuts down the node, after all workers are done, if the batch system
supports worker cleanup. Checks once more for orphaned deferred functions and runs them.

Parameters
stateDirBase (str) –

Return type
None

30.1. toil 743

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.exceptions

Neutral place for exceptions, to break import cycles.

Module Contents

toil.exceptions.logger

exception toil.exceptions.FailedJobsException(job_store, failed_jobs, exit_code=1)
Bases: Exception

FailedJobsException

Common base class for all non-exit exceptions.

Parameters
• job_store (toil.jobStores.abstractJobStore.AbstractJobStore) –

• failed_jobs (List[toil.job.JobDescription]) –

• exit_code (int) –

__str__()

Stringify the exception, including the message.

Return type
str

744 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.job

Module Contents

Classes

TemporaryID Placeholder for a unregistered job ID used by a JobDe-
scription.

AcceleratorRequirement Requirement for one or more computational accelera-
tors, like a GPU or FPGA.

RequirementsDict Typed storage for requirements for a job.
Requirer Base class implementing the storage and presentation of

requirements.
JobDescription Stores all the information that the Toil Leader ever needs

to know about a Job.
ServiceJobDescription A description of a job that hosts a service.
CheckpointJobDescription A description of a job that is a checkpoint.
Job Class represents a unit of work in toil.
FunctionWrappingJob Job used to wrap a function. In its run method the

wrapped function is called.
JobFunctionWrappingJob A job function is a function whose first argument is a

Job
PromisedRequirementFunctionWrappingJob Handles dynamic resource allocation using toil.job.

Promise instances.
PromisedRequirementJobFunctionWrappingJob Handles dynamic resource allocation for job functions.
EncapsulatedJob A convenience Job class used to make a job subgraph

appear to be a single job.
ServiceHostJob Job that runs a service. Used internally by Toil. Users

should subclass Service instead of using this.
Promise References a return value from a method as a promise

before the method itself is run.
PromisedRequirement Class for dynamically allocating job function resource

requirements.
UnfulfilledPromiseSentinel This should be overwritten by a proper promised value.

Functions

parse_accelerator(spec) Parse an AcceleratorRequirement specified by user code.
accelerator_satisfies(candidate, requirement[,
ignore])

Test if candidate partially satisfies the given requirement.

accelerators_fully_satisfy(candidates, require-
ment[, ...])

Determine if a set of accelerators satisfy a requirement.

unwrap(p) Function for ensuring you actually have a promised
value, and not just a promise.

unwrap_all(p) Function for ensuring you actually have a collection of
promised values,

30.1. toil 745

Toil Documentation, Release 5.11.0

Attributes

logger

REQUIREMENT_NAMES

ParsedRequirement

ParseableIndivisibleResource

ParseableDivisibleResource

ParseableFlag

ParseableAcceleratorRequirement

ParseableRequirement

T

Promised

toil.job.logger

exception toil.job.JobPromiseConstraintError(promisingJob, recipientJob=None)
Bases: RuntimeError

JobPromiseConstraintError

Error for job being asked to promise its return value, but it not available.

(Due to the return value not yet been hit in the topological order of the job graph.)

Parameters
• promisingJob (Job) –

• recipientJob (Optional[Job]) –

exception toil.job.ConflictingPredecessorError(predecessor, successor)
Bases: Exception

746 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

ConflictingPredecessorError

Common base class for all non-exit exceptions.

Parameters
• predecessor (Job) –

• successor (Job) –

class toil.job.TemporaryID

Placeholder for a unregistered job ID used by a JobDescription.

Needs to be held:
• By JobDescription objects to record normal relationships.

• By Jobs to key their connected-component registries and to record predecessor relationships to facili-
tate EncapsulatedJob adding itself as a child.

• By Services to tie back to their hosting jobs, so the service tree can be built up from Service objects.

__str__()

Return str(self).

Return type
str

__repr__()

Return repr(self).

Return type
str

__hash__()

Return hash(self).

Return type
int

__eq__(other)
Return self==value.

Parameters
other (Any) –

Return type
bool

__ne__(other)
Return self!=value.

Parameters
other (Any) –

30.1. toil 747

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Return type
bool

class toil.job.AcceleratorRequirement

Bases: TypedDict

AcceleratorRequirementTypedDict

Requirement for one or more computational accelerators, like a GPU or FPGA.

count: int

How many of the accelerator are needed to run the job.

kind: str

What kind of accelerator is required. Can be “gpu”. Other kinds defined in the future might be “fpga”, etc.

model: typing_extensions.NotRequired[str]

What model of accelerator is needed. The exact set of values available depends on what the backing sched-
uler calls its accelerators; strings like “nvidia-tesla-k80” might be expected to work. If a specific model of
accelerator is not required, this should be absent.

brand: typing_extensions.NotRequired[str]

What brand or manufacturer of accelerator is required. The exact set of values available depends on what
the backing scheduler calls the brands of its accleerators; strings like “nvidia” or “amd” might be expected
to work. If a specific brand of accelerator is not required (for example, because the job can use multiple
brands of accelerator that support a given API) this should be absent.

api: typing_extensions.NotRequired[str]

What API is to be used to communicate with the accelerator. This can be “cuda”. Other APIs supported in
the future might be “rocm”, “opencl”, “metal”, etc. If the job does not need a particular API to talk to the
accelerator, this should be absent.

toil.job.parse_accelerator(spec)
Parse an AcceleratorRequirement specified by user code.

Supports formats like:

>>> parse_accelerator(8)
{'count': 8, 'kind': 'gpu'}

>>> parse_accelerator("1")
{'count': 1, 'kind': 'gpu'}

>>> parse_accelerator("nvidia-tesla-k80")
{'count': 1, 'kind': 'gpu', 'brand': 'nvidia', 'model': 'nvidia-tesla-k80'}

>>> parse_accelerator("nvidia-tesla-k80:2")
{'count': 2, 'kind': 'gpu', 'brand': 'nvidia', 'model': 'nvidia-tesla-k80'}

748 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

>>> parse_accelerator("gpu")
{'count': 1, 'kind': 'gpu'}

>>> parse_accelerator("cuda:1")
{'count': 1, 'kind': 'gpu', 'brand': 'nvidia', 'api': 'cuda'}

>>> parse_accelerator({"kind": "gpu"})
{'count': 1, 'kind': 'gpu'}

>>> parse_accelerator({"brand": "nvidia", "count": 5})
{'count': 5, 'kind': 'gpu', 'brand': 'nvidia'}

Assumes that if not specified, we are talking about GPUs, and about one of them. Knows that “gpu” is a kind,
and “cuda” is an API, and “nvidia” is a brand.

Raises
• ValueError – if it gets somethign it can’t parse

• TypeError – if it gets something it can’t parse because it’s the wrong type.

Parameters
spec (Union[int, str, Dict[str, Union[str, int]]]) –

Return type
AcceleratorRequirement

toil.job.accelerator_satisfies(candidate, requirement, ignore=[])
Test if candidate partially satisfies the given requirement.

Returns
True if the given candidate at least partially satisfies the given requirement (i.e. check all fields
other than count).

Parameters
• candidate (AcceleratorRequirement) –

• requirement (AcceleratorRequirement) –

• ignore (List[str]) –

Return type
bool

toil.job.accelerators_fully_satisfy(candidates, requirement, ignore=[])
Determine if a set of accelerators satisfy a requirement.

Ignores fields specified in ignore.

Returns
True if the requirement AcceleratorRequirement is fully satisfied by the ones in the list, taken
together (i.e. check all fields including count).

Parameters
• candidates (Optional[List[AcceleratorRequirement]]) –

• requirement (AcceleratorRequirement) –

• ignore (List[str]) –

30.1. toil 749

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
bool

class toil.job.RequirementsDict

Bases: TypedDict

RequirementsDictTypedDict

Typed storage for requirements for a job.

Where requirement values are of different types depending on the requirement.

cores: typing_extensions.NotRequired[Union[int, float]]

memory: typing_extensions.NotRequired[int]

disk: typing_extensions.NotRequired[int]

accelerators: typing_extensions.NotRequired[List[AcceleratorRequirement]]

preemptible: typing_extensions.NotRequired[bool]

toil.job.REQUIREMENT_NAMES = ['disk', 'memory', 'cores', 'accelerators', 'preemptible']

toil.job.ParsedRequirement

toil.job.ParseableIndivisibleResource

toil.job.ParseableDivisibleResource

toil.job.ParseableFlag

toil.job.ParseableAcceleratorRequirement

toil.job.ParseableRequirement

class toil.job.Requirer(requirements)
Base class implementing the storage and presentation of requirements.

Has cores, memory, disk, and preemptability as properties.

Parameters
requirements (Mapping[str, ParseableRequirement]) –

property requirements: RequirementsDict

Get dict containing all non-None, non-defaulted requirements.

Return type
RequirementsDict

750 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

property disk: int

Get the maximum number of bytes of disk required.

Return type
int

property memory: int

Get the maximum number of bytes of memory required.

Return type
int

property cores: Union[int, float]

Get the number of CPU cores required.

Return type
Union[int, float]

property preemptible: bool

Whether a preemptible node is permitted, or a nonpreemptible one is required.

Return type
bool

property accelerators: List[AcceleratorRequirement]

Any accelerators, such as GPUs, that are needed.

Return type
List[AcceleratorRequirement]

assignConfig(config)
Assign the given config object to be used to provide default values.

Must be called exactly once on a loaded JobDescription before any requirements are queried.

Parameters
config (toil.common.Config) – Config object to query

Return type
None

__getstate__()

Return the dict to use as the instance’s __dict__ when pickling.

Return type
Dict[str, Any]

__copy__()

Return a semantically-shallow copy of the object, for copy.copy().

Return type
Requirer

__deepcopy__(memo)
Return a semantically-deep copy of the object, for copy.deepcopy().

Parameters
memo (Any) –

Return type
Requirer

30.1. toil 751

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

preemptable(val)

Parameters
val (ParseableFlag) –

Return type
None

scale(requirement, factor)
Return a copy of this object with the given requirement scaled up or down.

Only works on requirements where that makes sense.

Parameters
• requirement (str) –

• factor (float) –

Return type
Requirer

requirements_string()

Get a nice human-readable string of our requirements.

Return type
str

class toil.job.JobDescription(requirements, jobName, unitName='', displayName='', command=None,
local=None)

Bases: Requirer

JobDescriptionRequirer

Stores all the information that the Toil Leader ever needs to know about a Job.

(requirements information, dependency information, commands to issue, etc.)

Can be obtained from an actual (i.e. executable) Job object, and can be used to obtain the Job object from the
JobStore.

Never contains other Jobs or JobDescriptions: all reference is by ID.

Subclassed into variants for checkpoint jobs and service jobs that have their specific parameters.

Parameters
• requirements (Mapping[str, Union[int, str, bool]]) –

• jobName (str) –

• unitName (Optional[str]) –

• displayName (Optional[str]) –

• command (Optional[str]) –

752 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• local (Optional[bool]) –

property services

Get a collection of the IDs of service host jobs for this job, in arbitrary order.

Will be empty if the job has no unfinished services.

property remainingTryCount

Get the number of tries remaining.

The try count set on the JobDescription, or the default based on the retry count from the config if none is
set.

serviceHostIDsInBatches()

Find all batches of service host job IDs that can be started at the same time.

(in the order they need to start in)

Return type
Iterator[List[str]]

successorsAndServiceHosts()

Get an iterator over all child, follow-on, and service job IDs.

Return type
Iterator[str]

allSuccessors()

Get an iterator over all child, follow-on, and chained, inherited successor job IDs.

Follow-ons will come before children.

Return type
Iterator[str]

successors_by_phase()

Get an iterator over all child/follow-on/chained inherited successor job IDs, along with their phase numbere
on the stack.

Phases ececute higher numbers to lower numbers.

Return type
Iterator[Tuple[int, str]]

nextSuccessors()

Return the collection of job IDs for the successors of this job that are ready to run.

If those jobs have multiple predecessor relationships, they may still be blocked on other jobs.

Returns None when at the final phase (all successors done), and an empty collection if there are more phases
but they can’t be entered yet (e.g. because we are waiting for the job itself to run).

Return type
Set[str]

filterSuccessors(predicate)
Keep only successor jobs for which the given predicate function approves.

The predicate function is called with the job’s ID.

Treats all other successors as complete and forgets them.

Parameters
predicate (Callable[[str], bool]) –

30.1. toil 753

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Return type
None

filterServiceHosts(predicate)
Keep only services for which the given predicate approves.

The predicate function is called with the service host job’s ID.

Treats all other services as complete and forgets them.

Parameters
predicate (Callable[[str], bool]) –

Return type
None

clear_nonexistent_dependents(job_store)
Remove all references to child, follow-on, and associated service jobs that do not exist.

That is to say, all those that have been completed and removed.

Parameters
job_store (toil.jobStores.abstractJobStore.AbstractJobStore) –

Return type
None

clear_dependents()

Remove all references to successor and service jobs.

Return type
None

is_subtree_done()

Check if the subtree is done.

Returns
True if the job appears to be done, and all related child, follow-on, and service jobs appear to
be finished and removed.

Return type
bool

replace(other)
Take on the ID of another JobDescription, retaining our own state and type.

When updated in the JobStore, we will save over the other JobDescription.

Useful for chaining jobs: the chained-to job can replace the parent job.

Merges cleanup state and successors other than this job from the job being replaced into this one.

Parameters
other (JobDescription) – Job description to replace.

Return type
None

addChild(childID)

Make the job with the given ID a child of the described job.

Parameters
childID (str) –

754 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
None

addFollowOn(followOnID)

Make the job with the given ID a follow-on of the described job.

Parameters
followOnID (str) –

Return type
None

addServiceHostJob(serviceID, parentServiceID=None)
Make the ServiceHostJob with the given ID a service of the described job.

If a parent ServiceHostJob ID is given, that parent service will be started first, and must have already been
added.

hasChild(childID)

Return True if the job with the given ID is a child of the described job.

Parameters
childID (str) –

Return type
bool

hasFollowOn(followOnID)

Test if the job with the given ID is a follow-on of the described job.

Parameters
followOnID (str) –

Return type
bool

hasServiceHostJob(serviceID)

Test if the ServiceHostJob is a service of the described job.

Return type
bool

renameReferences(renames)
Apply the given dict of ID renames to all references to jobs.

Does not modify our own ID or those of finished predecessors. IDs not present in the renames dict are left
as-is.

Parameters
renames (Dict[TemporaryID, str]) – Rename operations to apply.

Return type
None

addPredecessor()

Notify the JobDescription that a predecessor has been added to its Job.

Return type
None

30.1. toil 755

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

onRegistration(jobStore)
Perform setup work that requires the JobStore.

Called by the Job saving logic when this JobDescription meets the JobStore and has its ID assigned.

Overridden to perform setup work (like hooking up flag files for service jobs) that requires the JobStore.

Parameters
jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The job store
we are being placed into

Return type
None

setupJobAfterFailure(exit_status=None, exit_reason=None)
Configure job after a failure.

Reduce the remainingTryCount if greater than zero and set the memory to be at least as big as the default
memory (in case of exhaustion of memory, which is common).

Requires a configuration to have been assigned (see toil.job.Requirer.assignConfig()).

Parameters
• exit_status (Optional[int]) – The exit code from the job.

• exit_reason (Optional[toil.batchSystems.abstractBatchSystem.
BatchJobExitReason]) – The reason the job stopped, if available from the batch
system.

Return type
None

getLogFileHandle(jobStore)
Create a context manager that yields a file handle to the log file.

Assumes logJobStoreFileID is set.

clearRemainingTryCount()

Clear remainingTryCount and set it back to its default value.

Returns
True if a modification to the JobDescription was made, and False otherwise.

Return type
bool

__str__()

Produce a useful logging string identifying this job.

Return type
str

__repr__()

Return repr(self).

pre_update_hook()

Run before pickling and saving a created or updated version of this job.

Called by the job store.

Return type
None

756 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

get_job_kind()

Return an identifying string for the job.

The result may contain spaces.

Returns: Either the unit name, job name, or display name, which identifies
the kind of job it is to toil. Otherwise “Unknown Job” in case no identifier is available

Return type
str

class toil.job.ServiceJobDescription(*args, **kwargs)
Bases: JobDescription

JobDescription ServiceJobDescriptionRequirer

A description of a job that hosts a service.

onRegistration(jobStore)
Setup flag files.

When a ServiceJobDescription first meets the JobStore, it needs to set up its flag files.

class toil.job.CheckpointJobDescription(*args, **kwargs)
Bases: JobDescription

CheckpointJobDescriptionJobDescriptionRequirer

A description of a job that is a checkpoint.

restartCheckpoint(jobStore)
Restart a checkpoint after the total failure of jobs in its subtree.

Writes the changes to the jobStore immediately. All the checkpoint’s successors will be deleted, but its try
count will not be decreased.

Returns a list with the IDs of any successors deleted.

Parameters
jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

Return type
List[str]

30.1. toil 757

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

class toil.job.Job(memory=None, cores=None, disk=None, accelerators=None, preemptible=None,
preemptable=None, unitName='', checkpoint=False, displayName='',
descriptionClass=None, local=None)

Class represents a unit of work in toil.

Parameters
• memory (Optional[ParseableIndivisibleResource]) –

• cores (Optional[ParseableDivisibleResource]) –

• disk (Optional[ParseableIndivisibleResource]) –

• accelerators (Optional[ParseableAcceleratorRequirement]) –

• preemptible (Optional[ParseableFlag]) –

• preemptable (Optional[ParseableFlag]) –

• unitName (Optional[str]) –

• checkpoint (Optional[bool]) –

• displayName (Optional[str]) –

• descriptionClass (Optional[type]) –

• local (Optional[bool]) –

class Runner

Used to setup and run Toil workflow.

static getDefaultArgumentParser()

Get argument parser with added toil workflow options.
Returns

The argument parser used by a toil workflow with added Toil options.
Return type

argparse.ArgumentParser

static getDefaultOptions(jobStore)
Get default options for a toil workflow.

Parameters
jobStore (str) – A string describing the jobStore for the workflow.

Returns
The options used by a toil workflow.

Return type
argparse.Namespace

static addToilOptions(parser)
Adds the default toil options to an optparse or argparse parser object.

Parameters
parser (Union[optparse.OptionParser, argparse.ArgumentParser]) – Options
object to add toil options to.

Return type
None

static startToil(job, options)
Run the toil workflow using the given options.

Deprecated by toil.common.Toil.start.

758 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/optparse.html#module-optparse
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/optparse.html#optparse.OptionParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.11.0

(see Job.Runner.getDefaultOptions and Job.Runner.addToilOptions) starting with this job. :param job:
root job of the workflow :raises: toil.exceptions.FailedJobsException if at the end of function there
remain failed jobs. :return: The return value of the root job’s run function.

Parameters
job (Job) –

Return type
Any

class Service(memory=None, cores=None, disk=None, accelerators=None, preemptible=None,
unitName=None)

Bases: Requirer

Requirer Service

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

abstract start(job)
Start the service.

Parameters
job (Job) – The underlying host job that the service is being run in. Can be used to register
deferred functions, or to access the fileStore for creating temporary files.

Returns
An object describing how to access the service. The object must be pickleable and will be
used by jobs to access the service (see toil.job.Job.addService()).

Return type
Any

abstract stop(job)
Stops the service. Function can block until complete.

Parameters
job (Job) – The underlying host job that the service is being run in. Can be used to register
deferred functions, or to access the fileStore for creating temporary files.

Return type
None

check()

Checks the service is still running.
Raises
exceptions.RuntimeError – If the service failed, this will cause the service job to be
labeled failed.

Returns
True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should
raise a RuntimeError, not return False!

Return type
bool

30.1. toil 759

https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

property jobStoreID: Union[str, TemporaryID]

Get the ID of this Job.

Return type
Union[str, TemporaryID]

property description: JobDescription

Expose the JobDescription that describes this job.

Return type
JobDescription

property disk: int

The maximum number of bytes of disk the job will require to run.

Return type
int

property memory

The maximum number of bytes of memory the job will require to run.

property cores: Union[int, float]

The number of CPU cores required.

Return type
Union[int, float]

property accelerators: List[AcceleratorRequirement]

Any accelerators, such as GPUs, that are needed.

Return type
List[AcceleratorRequirement]

property preemptible: bool

Whether the job can be run on a preemptible node.

Return type
bool

property checkpoint: bool

Determine if the job is a checkpoint job or not.

Return type
bool

property tempDir: str

Shortcut to calling job.fileStore.getLocalTempDir().

Temp dir is created on first call and will be returned for first and future calls :return: Path to tempDir. See
job.fileStore.getLocalTempDir

Return type
str

__str__()

Produce a useful logging string to identify this Job and distinguish it from its JobDescription.

preemptable()

760 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

assignConfig(config)
Assign the given config object.

It will be used by various actions implemented inside the Job class.

Parameters
config (toil.common.Config) – Config object to query

Return type
None

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore (toil.fileStores.abstractFileStore.AbstractFileStore) – Used to
create local and globally sharable temporary files and to send log messages to the leader
process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

Return type
Any

addChild(childJob)
Add a childJob to be run as child of this job.

Child jobs will be run directly after this job’s toil.job.Job.run() method has completed.

Returns
childJob: for call chaining

Parameters
childJob (Job) –

Return type
Job

hasChild(childJob)
Check if childJob is already a child of this job.

Returns
True if childJob is a child of the job, else False.

Parameters
childJob (Job) –

Return type
bool

addFollowOn(followOnJob)
Add a follow-on job.

Follow-on jobs will be run after the child jobs and their successors have been run.

Returns
followOnJob for call chaining

Parameters
followOnJob (Job) –

30.1. toil 761

https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Return type
Job

hasPredecessor(job)
Check if a given job is already a predecessor of this job.

Parameters
job (Job) –

Return type
bool

hasFollowOn(followOnJob)
Check if given job is already a follow-on of this job.

Returns
True if the followOnJob is a follow-on of this job, else False.

Parameters
followOnJob (Job) –

Return type
bool

addService(service, parentService=None)
Add a service.

The toil.job.Job.Service.start() method of the service will be called after the run method has
completed but before any successors are run. The service’s toil.job.Job.Service.stop() method
will be called once the successors of the job have been run.

Services allow things like databases and servers to be started and accessed by jobs in a workflow.

Raises
toil.job.JobException – If service has already been made the child of a job or another
service.

Parameters
• service (Service) – Service to add.

• parentService (Optional[Service]) – Service that will be started before ‘service’ is
started. Allows trees of services to be established. parentService must be a service of this
job.

Returns
a promise that will be replaced with the return value from toil.job.Job.Service.
start() of service in any successor of the job.

Return type
Promise

hasService(service)
Return True if the given Service is a service of this job, and False otherwise.

Parameters
service (Service) –

Return type
bool

762 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

addChildFn(fn, *args, **kwargs)
Add a function as a child job.

Parameters
fn (Callable) – Function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to
specify resource requirements.

Returns
The new child job that wraps fn.

Return type
FunctionWrappingJob

addFollowOnFn(fn, *args, **kwargs)
Add a function as a follow-on job.

Parameters
fn (Callable) – Function to be run as a follow-on job with *args and **kwargs as argu-
ments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments
used to specify resource requirements.

Returns
The new follow-on job that wraps fn.

Return type
FunctionWrappingJob

addChildJobFn(fn, *args, **kwargs)
Add a job function as a child job.

See toil.job.JobFunctionWrappingJob for a definition of a job function.

Parameters
fn (Callable) – Job function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used
to specify resource requirements.

Returns
The new child job that wraps fn.

Return type
FunctionWrappingJob

addFollowOnJobFn(fn, *args, **kwargs)
Add a follow-on job function.

See toil.job.JobFunctionWrappingJob for a definition of a job function.

Parameters
fn (Callable) – Job function to be run as a follow-on job with *args and **kwargs as
arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword argu-
ments used to specify resource requirements.

Returns
The new follow-on job that wraps fn.

Return type
FunctionWrappingJob

30.1. toil 763

Toil Documentation, Release 5.11.0

log(text, level=logging.INFO)

Log using fileStore.logToMaster().

Parameters
text (str) –

Return type
None

static wrapFn(fn, *args, **kwargs)
Makes a Job out of a function.

Convenience function for constructor of toil.job.FunctionWrappingJob.

Parameters
fn – Function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify re-
source requirements.

Returns
The new function that wraps fn.

Return type
FunctionWrappingJob

static wrapJobFn(fn, *args, **kwargs)
Makes a Job out of a job function.

Convenience function for constructor of toil.job.JobFunctionWrappingJob.

Parameters
fn – Job function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource
requirements.

Returns
The new job function that wraps fn.

Return type
JobFunctionWrappingJob

encapsulate(name=None)
Encapsulates the job, see toil.job.EncapsulatedJob. Convenience function for constructor of toil.
job.EncapsulatedJob.

Parameters
name (Optional[str]) – Human-readable name for the encapsulated job.

Returns
an encapsulated version of this job.

Return type
EncapsulatedJob

rv(*path)
Create a promise (toil.job.Promise).

The “promise” representing a return value of the job’s run method, or, in case of a function-wrapping job,
the wrapped function’s return value.

Parameters
path ((Any)) – Optional path for selecting a component of the promised return value. If

764 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

absent or empty, the entire return value will be used. Otherwise, the first element of the path
is used to select an individual item of the return value. For that to work, the return value must
be a list, dictionary or of any other type implementing the __getitem__() magic method. If
the selected item is yet another composite value, the second element of the path can be used
to select an item from it, and so on. For example, if the return value is [6,{‘a’:42}], .rv(0)
would select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3. To select a slice
from a return value that is slicable, e.g. tuple or list, the path element should be a slice object.
For example, assuming that the return value is [6, 7, 8, 9] then .rv(slice(1, 3)) would select
[7, 8]. Note that slicing really only makes sense at the end of path.

Returns
A promise representing the return value of this jobs toil.job.Job.run() method.

Return type
Promise

registerPromise(path)

prepareForPromiseRegistration(jobStore)
Set up to allow this job’s promises to register themselves.

Prepare this job (the promisor) so that its promises can register themselves with it, when the jobs they are
promised to (promisees) are serialized.

The promissee holds the reference to the promise (usually as part of the job arguments) and when it is being
pickled, so will the promises it refers to. Pickling a promise triggers it to be registered with the promissor.

Parameters
jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

Return type
None

checkJobGraphForDeadlocks()

Ensures that a graph of Jobs (that hasn’t yet been saved to the JobStore) doesn’t contain any pathological
relationships between jobs that would result in deadlocks if we tried to run the jobs.

See toil.job.Job.checkJobGraphConnected(), toil.job.Job.checkJobGraphAcyclic() and
toil.job.Job.checkNewCheckpointsAreLeafVertices() for more info.

Raises
toil.job.JobGraphDeadlockException – if the job graph is cyclic, contains multiple
roots or contains checkpoint jobs that are not leaf vertices when defined (see toil.job.
Job.checkNewCheckpointsAreLeaves()).

getRootJobs()

Return the set of root job objects that contain this job.

A root job is a job with no predecessors (i.e. which are not children, follow-ons, or services).

Only deals with jobs created here, rather than loaded from the job store.

Return type
Set[Job]

checkJobGraphConnected()

Raises
toil.job.JobGraphDeadlockException – if toil.job.Job.getRootJobs() does not
contain exactly one root job.

30.1. toil 765

Toil Documentation, Release 5.11.0

As execution always starts from one root job, having multiple root jobs will cause a deadlock to occur.

Only deals with jobs created here, rather than loaded from the job store.

checkJobGraphAcylic()

Raises
toil.job.JobGraphDeadlockException – if the connected component of jobs containing
this job contains any cycles of child/followOn dependencies in the augmented job graph (see
below). Such cycles are not allowed in valid job graphs.

A follow-on edge (A, B) between two jobs A and B is equivalent to adding a child edge to B from (1) A,
(2) from each child of A, and (3) from the successors of each child of A. We call each such edge an edge
an “implied” edge. The augmented job graph is a job graph including all the implied edges.

For a job graph G = (V, E) the algorithm is O(|V|^2). It is O(|V| + |E|) for a graph with no follow-ons.
The former follow-on case could be improved!

Only deals with jobs created here, rather than loaded from the job store.

checkNewCheckpointsAreLeafVertices()

A checkpoint job is a job that is restarted if either it fails, or if any of its successors completely fails,
exhausting their retries.

A job is a leaf it is has no successors.

A checkpoint job must be a leaf when initially added to the job graph. When its run method is invoked it
can then create direct successors. This restriction is made to simplify implementation.

Only works on connected components of jobs not yet added to the JobStore.

Raises
toil.job.JobGraphDeadlockException – if there exists a job being added to the graph
for which checkpoint=True and which is not a leaf.

Return type
None

defer(function, *args, **kwargs)
Register a deferred function, i.e. a callable that will be invoked after the current attempt at running this job
concludes. A job attempt is said to conclude when the job function (or the toil.job.Job.run()method
for class-based jobs) returns, raises an exception or after the process running it terminates abnormally. A
deferred function will be called on the node that attempted to run the job, even if a subsequent attempt is
made on another node. A deferred function should be idempotent because it may be called multiple times
on the same node or even in the same process. More than one deferred function may be registered per job
attempt by calling this method repeatedly with different arguments. If the same function is registered twice
with the same or different arguments, it will be called twice per job attempt.

Examples for deferred functions are ones that handle cleanup of resources external to Toil, like Docker
containers, files outside the work directory, etc.

Parameters
• function (callable) – The function to be called after this job concludes.

• args (list) – The arguments to the function

• kwargs (dict) – The keyword arguments to the function

Return type
None

766 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Toil Documentation, Release 5.11.0

getUserScript()

Return type
toil.resource.ModuleDescriptor

getTopologicalOrderingOfJobs()

Returns
a list of jobs such that for all pairs of indices i, j for which i < j, the job at index i can be run
before the job at index j.

Return type
List[Job]

Only considers jobs in this job’s subgraph that are newly added, not loaded from the job store.

Ignores service jobs.

saveBody(jobStore)
Save the execution data for just this job to the JobStore, and fill in the JobDescription with the information
needed to retrieve it.

The Job’s JobDescription must have already had a real jobStoreID assigned to it.

Does not save the JobDescription.

Parameters
jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The job store
to save the job body into.

Return type
None

saveAsRootJob(jobStore)
Save this job to the given jobStore as the root job of the workflow.

Returns
the JobDescription describing this job.

Parameters
jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

Return type
JobDescription

classmethod loadJob(jobStore, jobDescription)
Retrieves a toil.job.Job instance from a JobStore

Parameters
• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The job

store.

• jobDescription (JobDescription) – the JobDescription of the job to retrieve.

Returns
The job referenced by the JobDescription.

Return type
Job

30.1. toil 767

Toil Documentation, Release 5.11.0

exception toil.job.JobException(message)
Bases: Exception

JobException

General job exception.

Parameters
message (str) –

exception toil.job.JobGraphDeadlockException(string)
Bases: JobException

JobException JobGraphDeadlockException

An exception raised in the event that a workflow contains an unresolvable dependency, such as a cycle. See
toil.job.Job.checkJobGraphForDeadlocks().

class toil.job.FunctionWrappingJob(userFunction, *args, **kwargs)
Bases: Job

FunctionWrappingJobJob

Job used to wrap a function. In its run method the wrapped function is called.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

768 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

getUserScript()

class toil.job.JobFunctionWrappingJob(userFunction, *args, **kwargs)
Bases: FunctionWrappingJob

FunctionWrappingJob JobFunctionWrappingJobJob

A job function is a function whose first argument is a Job instance that is the wrapping job for the function. This
can be used to add successor jobs for the function and perform all the functions the Job class provides.

To enable the job function to get access to the toil.fileStores.abstractFileStore.AbstractFileStore
instance (see toil.job.Job.run()), it is made a variable of the wrapping job called fileStore.

To specify a job’s resource requirements the following default keyword arguments can be specified:

• memory

• disk

• cores

• accelerators

• preemptible

For example to wrap a function into a job we would call:

Job.wrapJobFn(myJob, memory='100k', disk='1M', cores=0.1)

property fileStore

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

class toil.job.PromisedRequirementFunctionWrappingJob(userFunction, *args, **kwargs)
Bases: FunctionWrappingJob

FunctionWrappingJob PromisedRequirementFunctionWrappingJobJob

30.1. toil 769

Toil Documentation, Release 5.11.0

Handles dynamic resource allocation using toil.job.Promise instances. Spawns child function using parent
function parameters and fulfilled promised resource requirements.

classmethod create(userFunction, *args, **kwargs)
Creates an encapsulated Toil job function with unfulfilled promised resource requirements. After the
promises are fulfilled, a child job function is created using updated resource values. The subgraph is en-
capsulated to ensure that this child job function is run before other children in the workflow. Otherwise, a
different child may try to use an unresolved promise return value from the parent.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

evaluatePromisedRequirements()

class toil.job.PromisedRequirementJobFunctionWrappingJob(userFunction, *args, **kwargs)
Bases: PromisedRequirementFunctionWrappingJob

FunctionWrappingJob PromisedRequirementFunctionWrappingJobJob PromisedRequirementJobFunctionWrappingJob

Handles dynamic resource allocation for job functions. See toil.job.JobFunctionWrappingJob

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

class toil.job.EncapsulatedJob(job, unitName=None)
Bases: Job

EncapsulatedJobJob

A convenience Job class used to make a job subgraph appear to be a single job.

770 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Let A be the root job of a job subgraph and B be another job we’d like to run after A and all its successors have
completed, for this use encapsulate:

Job A and subgraph, Job B
A, B = A(), B()
Aprime = A.encapsulate()
Aprime.addChild(B)
B will run after A and all its successors have completed, A and its subgraph of
successors in effect appear to be just one job.

If the job being encapsulated has predecessors (e.g. is not the root job), then the encapsulated job will inherit
these predecessors. If predecessors are added to the job being encapsulated after the encapsulated job is created
then the encapsulating job will NOT inherit these predecessors automatically. Care should be exercised to ensure
the encapsulated job has the proper set of predecessors.

The return value of an encapsulated job (as accessed by the toil.job.Job.rv() function) is the return value
of the root job, e.g. A().encapsulate().rv() and A().rv() will resolve to the same value after A or A.encapsulate()
has been run.

addChild(childJob)
Add a childJob to be run as child of this job.

Child jobs will be run directly after this job’s toil.job.Job.run() method has completed.

Returns
childJob: for call chaining

addService(service, parentService=None)
Add a service.

The toil.job.Job.Service.start() method of the service will be called after the run method has
completed but before any successors are run. The service’s toil.job.Job.Service.stop() method
will be called once the successors of the job have been run.

Services allow things like databases and servers to be started and accessed by jobs in a workflow.

Raises
toil.job.JobException – If service has already been made the child of a job or another
service.

Parameters
• service – Service to add.

• parentService – Service that will be started before ‘service’ is started. Allows trees of
services to be established. parentService must be a service of this job.

Returns
a promise that will be replaced with the return value from toil.job.Job.Service.
start() of service in any successor of the job.

addFollowOn(followOnJob)
Add a follow-on job.

Follow-on jobs will be run after the child jobs and their successors have been run.

Returns
followOnJob for call chaining

30.1. toil 771

Toil Documentation, Release 5.11.0

rv(*path)
Create a promise (toil.job.Promise).

The “promise” representing a return value of the job’s run method, or, in case of a function-wrapping job,
the wrapped function’s return value.

Parameters
path ((Any)) – Optional path for selecting a component of the promised return value. If
absent or empty, the entire return value will be used. Otherwise, the first element of the path
is used to select an individual item of the return value. For that to work, the return value must
be a list, dictionary or of any other type implementing the __getitem__() magic method. If
the selected item is yet another composite value, the second element of the path can be used
to select an item from it, and so on. For example, if the return value is [6,{‘a’:42}], .rv(0)
would select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3. To select a slice
from a return value that is slicable, e.g. tuple or list, the path element should be a slice object.
For example, assuming that the return value is [6, 7, 8, 9] then .rv(slice(1, 3)) would select
[7, 8]. Note that slicing really only makes sense at the end of path.

Returns
A promise representing the return value of this jobs toil.job.Job.run() method.

Return type
Promise

prepareForPromiseRegistration(jobStore)
Set up to allow this job’s promises to register themselves.

Prepare this job (the promisor) so that its promises can register themselves with it, when the jobs they are
promised to (promisees) are serialized.

The promissee holds the reference to the promise (usually as part of the job arguments) and when it is being
pickled, so will the promises it refers to. Pickling a promise triggers it to be registered with the promissor.

__reduce__()

Called during pickling to define the pickled representation of the job.

We don’t want to pickle our internal references to the job we encapsulate, so we elide them here. When
actually run, we’re just a no-op job that can maybe chain.

getUserScript()

class toil.job.ServiceHostJob(service)
Bases: Job

Job ServiceHostJob

Job that runs a service. Used internally by Toil. Users should subclass Service instead of using this.

property fileStore

Return the file store, which the Service may need.

772 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

addChild(child)
Add a childJob to be run as child of this job.

Child jobs will be run directly after this job’s toil.job.Job.run() method has completed.

Returns
childJob: for call chaining

addFollowOn(followOn)
Add a follow-on job.

Follow-on jobs will be run after the child jobs and their successors have been run.

Returns
followOnJob for call chaining

addService(service, parentService=None)
Add a service.

The toil.job.Job.Service.start() method of the service will be called after the run method has
completed but before any successors are run. The service’s toil.job.Job.Service.stop() method
will be called once the successors of the job have been run.

Services allow things like databases and servers to be started and accessed by jobs in a workflow.

Raises
toil.job.JobException – If service has already been made the child of a job or another
service.

Parameters
• service – Service to add.

• parentService – Service that will be started before ‘service’ is started. Allows trees of
services to be established. parentService must be a service of this job.

Returns
a promise that will be replaced with the return value from toil.job.Job.Service.
start() of service in any successor of the job.

saveBody(jobStore)
Serialize the service itself before saving the host job’s body.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

getUserScript()

class toil.job.Promise(job, path)
References a return value from a method as a promise before the method itself is run.

References a return value from a toil.job.Job.run() or toil.job.Job.Service.start() method as a
promise before the method itself is run.

30.1. toil 773

Toil Documentation, Release 5.11.0

Let T be a job. Instances of Promise (termed a promise) are returned by T.rv(), which is used to reference the
return value of T’s run function. When the promise is passed to the constructor (or as an argument to a wrapped
function) of a different, successor job the promise will be replaced by the actual referenced return value. This
mechanism allows a return values from one job’s run method to be input argument to job before the former job’s
run function has been executed.

Parameters
• job (Job) –

• path (Any) –

filesToDelete

A set of IDs of files containing promised values when we know we won’t need them anymore

__reduce__()

Return the Promise class and construction arguments.

Called during pickling when a promise (an instance of this class) is about to be be pickled. Returns the
Promise class and construction arguments that will be evaluated during unpickling, namely the job store
coordinates of a file that will hold the promised return value. By the time the promise is about to be
unpickled, that file should be populated.

toil.job.T

toil.job.Promised

toil.job.unwrap(p)
Function for ensuring you actually have a promised value, and not just a promise. Mostly useful for satisfying
type-checking.

The “unwrap” terminology is borrowed from Rust.

Parameters
p (Promised[T]) –

Return type
T

toil.job.unwrap_all(p)
Function for ensuring you actually have a collection of promised values, and not any remaining promises. Mostly
useful for satisfying type-checking.

The “unwrap” terminology is borrowed from Rust.

Parameters
p (Sequence[Promised[T]]) –

Return type
Sequence[T]

class toil.job.PromisedRequirement(valueOrCallable, *args)
Class for dynamically allocating job function resource requirements.

(involving toil.job.Promise instances.)

Use when resource requirements depend on the return value of a parent function. PromisedRequirements can be
modified by passing a function that takes the Promise as input.

For example, let f, g, and h be functions. Then a Toil workflow can be defined as follows::
A = Job.wrapFn(f) B = A.addChildFn(g, cores=PromisedRequirement(A.rv()) C = B.addChildFn(h,
cores=PromisedRequirement(lambda x: 2*x, B.rv()))

774 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

getValue()

Return PromisedRequirement value.

static convertPromises(kwargs)
Return True if reserved resource keyword is a Promise or PromisedRequirement instance.

Converts Promise instance to PromisedRequirement.

Parameters
kwargs (Dict[str, Any]) – function keyword arguments

Return type
bool

class toil.job.UnfulfilledPromiseSentinel(fulfillingJobName, file_id, unpickled)
This should be overwritten by a proper promised value.

Throws an exception when unpickled.

Parameters
• fulfillingJobName (str) –

• file_id (str) –

• unpickled (Any) –

static __setstate__(stateDict)
Only called when unpickling.

This won’t be unpickled unless the promise wasn’t resolved, so we throw an exception.

Parameters
stateDict (Dict[str, Any]) –

Return type
None

toil.leader

The leader script (of the leader/worker pair) for running jobs.

Module Contents

Classes

Leader Represents the Toil leader.

30.1. toil 775

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Attributes

logger

toil.leader.logger

class toil.leader.Leader(config, batchSystem, provisioner, jobStore, rootJob, jobCache=None)
Represents the Toil leader.

Responsible for determining what jobs are ready to be scheduled, by consulting the job store, and issuing them
in the batch system.

Parameters
• config (toil.common.Config) –

• batchSystem (toil.batchSystems.abstractBatchSystem.
AbstractBatchSystem) –

• provisioner (Optional[toil.provisioners.abstractProvisioner.
AbstractProvisioner]) –

• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

• rootJob (toil.job.JobDescription) –

• jobCache (Optional[Dict[Union[str, toil.job.TemporaryID], toil.job.
JobDescription]]) –

run()

Run the leader process to issue and manage jobs.

Raises
toil.exceptions.FailedJobsException if failed jobs remain after running.

Returns
The return value of the root job’s run function.

Return type
Any

create_status_sentinel_file(fail)
Create a file in the jobstore indicating failure or success.

Parameters
fail (bool) –

Return type
None

innerLoop()

Process jobs.

This is the leader’s main loop.

checkForDeadlocks()

Check if the system is deadlocked running service jobs.

776 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

feed_deadlock_watchdog()

Note that progress has been made and any pending deadlock checks should be reset.

Return type
None

issueJob(jobNode)
Add a job to the queue of jobs currently trying to run.

Parameters
jobNode (toil.job.JobDescription) –

Return type
None

issueJobs(jobs)
Add a list of jobs, each represented as a jobNode object.

issueServiceJob(service_id)
Issue a service job.

Put it on a queue if the maximum number of service jobs to be scheduled has been reached.

Parameters
service_id (str) –

Return type
None

issueQueingServiceJobs()

Issues any queuing service jobs up to the limit of the maximum allowed.

getNumberOfJobsIssued(preemptible=None)
Get number of jobs that have been added by issueJob(s) and not removed by removeJob.

Parameters
preemptible (Optional[bool]) – If none, return all types of jobs. If true, return just the
number of preemptible jobs. If false, return just the number of non-preemptible jobs.

Return type
int

removeJob(jobBatchSystemID)

Remove a job from the system by batch system ID.

Returns
Job description as it was issued.

Parameters
jobBatchSystemID (int) –

Return type
toil.job.JobDescription

getJobs(preemptible=None)
Get all issued jobs.

Parameters
preemptible (Optional[bool]) – If specified, select only preemptible or only non-
preemptible jobs.

30.1. toil 777

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

Return type
List[toil.job.JobDescription]

killJobs(jobsToKill)
Kills the given set of jobs and then sends them for processing.

Returns the jobs that, upon processing, were reissued.

reissueOverLongJobs()

Check each issued job.

If a job is running for longer than desirable issue a kill instruction. Wait for the job to die then we pass the
job to process_finished_job.

Return type
None

reissueMissingJobs(killAfterNTimesMissing=3)
Check all the current job ids are in the list of currently issued batch system jobs.

If a job is missing, we mark it as so, if it is missing for a number of runs of this function (say 10).. then we
try deleting the job (though its probably lost), we wait then we pass the job to process_finished_job.

processRemovedJob(issuedJob, result_status)

process_finished_job(batch_system_id, result_status, wall_time=None, exit_reason=None)
Process finished jobs.

Called when an attempt to run a job finishes, either successfully or otherwise.

Takes the job out of the issued state, and then works out what to do about the fact that it succeeded or failed.

Returns
True if the job is going to run again, and False if the job is fully done or completely failed.

Return type
bool

process_finished_job_description(finished_job, result_status, wall_time=None, exit_reason=None,
batch_system_id=None)

Process a finished JobDescription based upon its succees or failure.

If wall-clock time is available, informs the cluster scaler about the job finishing.

If the job failed and a batch system ID is available, checks for and reports batch system logs.

Checks if it succeeded and was removed, or if it failed and needs to be set up after failure, and dispatches
to the appropriate function.

Returns
True if the job is going to run again, and False if the job is fully done or completely failed.

Parameters
• finished_job (toil.job.JobDescription) –

• result_status (int) –

• wall_time (Optional[float]) –

• exit_reason (Optional[toil.batchSystems.abstractBatchSystem.
BatchJobExitReason]) –

• batch_system_id (Optional[int]) –

778 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

Return type
bool

getSuccessors(job_id, alreadySeenSuccessors)
Get successors of the given job by walking the job graph recursively.

Parameters
• alreadySeenSuccessors (Set[str]) – any successor seen here is ignored and not tra-

versed.

• job_id (str) –

Returns
The set of found successors. This set is added to alreadySeenSuccessors.

Return type
Set[str]

processTotallyFailedJob(job_id)
Process a totally failed job.

Parameters
job_id (str) –

Return type
None

toil.realtimeLogger

Implements a real-time UDP-based logging system that user scripts can use for debugging.

Module Contents

Classes

LoggingDatagramHandler Receive logging messages from the jobs and display
them on the leader.

JSONDatagramHandler Send logging records over UDP serialized as JSON.
RealtimeLoggerMetaclass Metaclass for RealtimeLogger that lets add logging

methods.
RealtimeLogger Provide a logger that logs over UDP to the leader.

Attributes

logger

toil.realtimeLogger.logger

30.1. toil 779

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

class toil.realtimeLogger.LoggingDatagramHandler(request, client_address, server)
Bases: socketserver.BaseRequestHandler

BaseRequestHandler LoggingDatagramHandler

Receive logging messages from the jobs and display them on the leader.

Uses bare JSON message encoding.

handle()

Handle a single message. SocketServer takes care of splitting out the messages.

Messages are JSON-encoded logging module records.

Return type
None

class toil.realtimeLogger.JSONDatagramHandler(host, port)
Bases: logging.handlers.DatagramHandler

DatagramHandler JSONDatagramHandlerSocketHandlerFilterer Handler

Send logging records over UDP serialized as JSON.

They have to fit in a single UDP datagram, so don’t try to log more than 64kb at once.

makePickle(record)
Actually, encode the record as bare JSON instead.

Parameters
record (logging.LogRecord) –

Return type
bytes

class toil.realtimeLogger.RealtimeLoggerMetaclass

Bases: type

RealtimeLoggerMetaclass

780 Chapter 30. API Reference

https://docs.python.org/3/library/socketserver.html#socketserver.BaseRequestHandler
https://docs.python.org/3/library/logging.handlers.html#logging.handlers.DatagramHandler
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#type

Toil Documentation, Release 5.11.0

Metaclass for RealtimeLogger that lets add logging methods.

Like RealtimeLogger.warning(), RealtimeLogger.info(), etc.

__getattr__(name)
Fallback to attributes on the logger.

Parameters
name (str) –

Return type
Any

class toil.realtimeLogger.RealtimeLogger(batchSystem, level=defaultLevel)
Provide a logger that logs over UDP to the leader.

To use in a Toil job, do:

>>> from toil.realtimeLogger import RealtimeLogger
>>> RealtimeLogger.info("This logging message goes straight to the leader")

That’s all a user of Toil would need to do. On the leader, Job.Runner.startToil() automatically starts the UDP
server by using an instance of this class as a context manager.

Parameters
• batchSystem (toil.batchSystems.abstractBatchSystem.
AbstractBatchSystem) –

• level (str) –

envPrefix = 'TOIL_RT_LOGGING_'

defaultLevel = 'INFO'

lock

loggingServer

serverThread

initialized = 0

logger

classmethod getLogger()

Get the logger that logs real-time to the leader.

Note that if the returned logger is used on the leader, you will see the message twice, since it still goes to
the normal log handlers, too.

Return type
logging.Logger

__enter__()

Return type
None

30.1. toil 781

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger

Toil Documentation, Release 5.11.0

__exit__(exc_type, exc_val, exc_tb)

Parameters
• exc_type (Optional[Type[BaseException]]) –

• exc_val (Optional[BaseException]) –

• exc_tb (Optional[types.TracebackType]) –

Return type
None

toil.resource

Module Contents

Classes

Resource Represents a file or directory that will be deployed to
each node before any jobs in the user script are invoked.

FileResource A resource read from a file on the leader.
DirectoryResource A resource read from a directory on the leader.
VirtualEnvResource A resource read from a virtualenv on the leader.
ModuleDescriptor A path to a Python module decomposed into a namedtu-

ple of three elements

Attributes

logger

toil.resource.logger

class toil.resource.Resource

Bases: namedtuple('Resource', ('name', 'pathHash', 'url', 'contentHash'))

Resource

Represents a file or directory that will be deployed to each node before any jobs in the user script are invoked.

Each instance is a namedtuple with the following elements:

The pathHash element contains the MD5 (in hexdigest form) of the path to the resource on the leader node. The
path, and therefore its hash is unique within a job store.

782 Chapter 30. API Reference

https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/types.html#types.TracebackType

Toil Documentation, Release 5.11.0

The url element is a “file:” or “http:” URL at which the resource can be obtained.

The contentHash element is an MD5 checksum of the resource, allowing for validation and caching of resources.

If the resource is a regular file, the type attribute will be ‘file’.

If the resource is a directory, the type attribute will be ‘dir’ and the URL will point at a ZIP archive of that
directory.

abstract property localPath: str

Get the path to resource on the worker.

The file or directory at the returned path may or may not yet exist. Invoking download() will ensure that it
does.

Return type
str

property localDirPath: str

The path to the directory containing the resource on the worker.

Return type
str

resourceEnvNamePrefix = 'JTRES_'

rootDirPathEnvName

classmethod create(jobStore, leaderPath)
Saves the content of the file or directory at the given path to the given job store and returns a resource object
representing that content for the purpose of obtaining it again at a generic, public URL. This method should
be invoked on the leader node.

Parameters
• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

• leaderPath (str) –

Return type
Resource

refresh(jobStore)

Parameters
jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

Return type
Resource

classmethod prepareSystem()

Prepares this system for the downloading and lookup of resources. This method should only be invoked on
a worker node. It is idempotent but not thread-safe.

Return type
None

classmethod cleanSystem()

Remove all downloaded, localized resources.

Return type
None

30.1. toil 783

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

register()

Register this resource for later retrieval via lookup(), possibly in a child process.

Return type
None

classmethod lookup(leaderPath)
Return a resource object representing a resource created from a file or directory at the given path on the
leader.

This method should be invoked on the worker. The given path does not need to refer to an existing file or
directory on the worker, it only identifies the resource within an instance of toil. This method returns None
if no resource for the given path exists.

Parameters
leaderPath (str) –

Return type
Optional[Resource]

download(callback=None)
Download this resource from its URL to a file on the local system.

This method should only be invoked on a worker node after the node was setup for accessing resources via
prepareSystem().

Parameters
callback (Optional[Callable[[str], None]]) –

Return type
None

pickle()

Return type
str

classmethod unpickle(s)

Parameters
s (str) –

Return type
Resource

class toil.resource.FileResource

Bases: Resource

FileResourceResource

A resource read from a file on the leader.

784 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

property localPath: str

Get the path to resource on the worker.

The file or directory at the returned path may or may not yet exist. Invoking download() will ensure that it
does.

Return type
str

class toil.resource.DirectoryResource

Bases: Resource

DirectoryResourceResource

A resource read from a directory on the leader.

The URL will point to a ZIP archive of the directory. All files in that directory (and any subdirectories) will be
included. The directory may be a package but it does not need to be.

property localPath: str

Get the path to resource on the worker.

The file or directory at the returned path may or may not yet exist. Invoking download() will ensure that it
does.

Return type
str

class toil.resource.VirtualEnvResource

Bases: DirectoryResource

DirectoryResource VirtualEnvResourceResource

A resource read from a virtualenv on the leader.

All modules and packages found in the virtualenv’s site-packages directory will be included.

class toil.resource.ModuleDescriptor

Bases: namedtuple('ModuleDescriptor', ('dirPath', 'name', 'fromVirtualEnv'))

30.1. toil 785

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

ModuleDescriptor

A path to a Python module decomposed into a namedtuple of three elements

• dirPath, the path to the directory that should be added to sys.path before importing the module,

• moduleName, the fully qualified name of the module with leading package names separated by dot and

>>> import toil.resource
>>> ModuleDescriptor.forModule('toil.resource')
ModuleDescriptor(dirPath='/.../src', name='toil.resource', fromVirtualEnv=False)

>>> import subprocess, tempfile, os
>>> dirPath = tempfile.mkdtemp()
>>> path = os.path.join(dirPath, 'foo.py')
>>> with open(path,'w') as f:
... _ = f.write('from toil.resource import ModuleDescriptor\n'
... 'print(ModuleDescriptor.forModule(__name__))')
>>> subprocess.check_output([sys.executable, path])
b"ModuleDescriptor(dirPath='...', name='foo', fromVirtualEnv=False)\n"

>>> from shutil import rmtree
>>> rmtree(dirPath)

Now test a collision. ‘collections’ is part of the standard library in Python 2 and 3. >>> dirPath = temp-
file.mkdtemp() >>> path = os.path.join(dirPath, ‘collections.py’) >>> with open(path,’w’) as f: . . . _ =
f.write(‘from toil.resource import ModuleDescriptorn’ . . . ‘ModuleDescriptor.forModule(__name__)’)

This should fail and return exit status 1 due to the collision with the built-in module: >>> subprocess.call([
sys.executable, path]) 1

Clean up >>> rmtree(dirPath)

property belongsToToil: bool

True if this module is part of the Toil distribution

Return type
bool

dirPath: str

name: str

classmethod forModule(name)
Return an instance of this class representing the module of the given name.

If the given module name is “__main__”, it will be translated to the actual file name of the top-level script
without the .py or .pyc extension. This method assumes that the module with the specified name has already
been loaded.

786 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Parameters
name (str) –

Return type
ModuleDescriptor

saveAsResourceTo(jobStore)
Store the file containing this module–or even the Python package directory hierarchy containing that file–as
a resource to the given job store and return the corresponding resource object. Should only be called on a
leader node.

Parameters
jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

Return type
Resource

localize()

Check if this module was saved as a resource.

If it was, return a new module descriptor that points to a local copy of that resource. Should only be called
on a worker node. On the leader, this method returns this resource, i.e. self.

Return type
ModuleDescriptor

globalize()

Reverse the effect of localize().

Return type
ModuleDescriptor

toCommand()

Return type
Sequence[str]

classmethod fromCommand(command)

Parameters
command (Sequence[str]) –

Return type
ModuleDescriptor

makeLoadable()

Return type
ModuleDescriptor

load()

Return type
Optional[types.ModuleType]

exception toil.resource.ResourceException

Bases: Exception

30.1. toil 787

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/exceptions.html#Exception

Toil Documentation, Release 5.11.0

ResourceException

Common base class for all non-exit exceptions.

toil.serviceManager

Module Contents

Classes

ServiceManager Manages the scheduling of services.

Attributes

logger

toil.serviceManager.logger

class toil.serviceManager.ServiceManager(job_store, toil_state)
Manages the scheduling of services.

Parameters
• job_store (toil.jobStores.abstractJobStore.AbstractJobStore) –

• toil_state (toil.toilState.ToilState) –

services_are_starting(job_id)
Check if services are being started.

Returns
True if the services for the given job are currently being started, and False otherwise.

Parameters
job_id (str) –

Return type
bool

get_job_count()

Get the total number of jobs we are working on.

(services and their parent non-service jobs)

Return type
int

788 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

start()

Start the service scheduling thread.

Return type
None

put_client(client_id)
Schedule the services of a job asynchronously.

When the job’s services are running the ID for the job will be returned by
toil.leader.ServiceManager.get_ready_client.

Parameters
client_id (str) – ID of job with services to schedule.

Return type
None

get_ready_client(maxWait)
Fetch a ready client, waiting as needed.

Parameters
maxWait (float) – Time in seconds to wait to get a JobDescription before returning

Returns
the ID of a client whose services are running, or None if no such job is available.

Return type
Optional[str]

get_unservable_client(maxWait)
Fetch a client whos services failed to start.

Parameters
maxWait (float) – Time in seconds to wait to get a JobDescription before returning

Returns
the ID of a client whose services failed to start, or None if no such job is available.

Return type
Optional[str]

get_startable_service(maxWait)
Fetch a service job that is ready to start.

Parameters
maxWait (float) – Time in seconds to wait to get a job before returning.

Returns
the ID of a service job that the leader can start, or None if no such job exists.

Return type
Optional[str]

kill_services(service_ids, error=False)
Stop all the given service jobs.

Parameters
• services – Service jobStoreIDs to kill

• error (bool) – Whether to signal that the service failed with an error when stopping it.

• service_ids (Iterable[str]) –

30.1. toil 789

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
None

is_active(service_id)
Return true if the service job has not been told to terminate.

Parameters
service_id (str) – Service to check on

Return type
bool

is_running(service_id)
Return true if the service job has started and is active.

Parameters
• service – Service to check on

• service_id (str) –

Return type
bool

check()

Check on the service manager thread.

Raises
RuntimeError – If the underlying thread has quit.

Return type
None

shutdown()

Terminate worker threads cleanly; starting and killing all service threads.

Will block until all services are started and blocked.

Return type
None

toil.statsAndLogging

Module Contents

Classes

StatsAndLogging A thread to aggregate statistics and logging.

790 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError

Toil Documentation, Release 5.11.0

Functions

set_log_level(level[, set_logger]) Sets the root logger level to a given string level (like
"INFO").

add_logging_options(parser) Add logging options to set the global log level.
configure_root_logger() Set up the root logger with handlers and formatting.
log_to_file(log_file, log_rotation)

set_logging_from_options(options)

suppress_exotic_logging(local_logger) Attempts to suppress the loggers of all non-Toil packages
by setting them to CRITICAL.

Attributes

logger

root_logger

toil_logger

DEFAULT_LOGLEVEL

toil.statsAndLogging.logger

toil.statsAndLogging.root_logger

toil.statsAndLogging.toil_logger

toil.statsAndLogging.DEFAULT_LOGLEVEL

class toil.statsAndLogging.StatsAndLogging(jobStore, config)
A thread to aggregate statistics and logging.

Parameters
• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

• config (toil.common.Config) –

start()

Start the stats and logging thread.

Return type
None

classmethod formatLogStream(stream, job_name=None)
Given a stream of text or bytes, and the job name, job itself, or some other optional stringifyable identity
info for the job, return a big text string with the formatted job log, suitable for printing for the user.

We don’t want to prefix every line of the job’s log with our own logging info, or we get prefixes wider than
any reasonable terminal and longer than the messages.

Parameters

30.1. toil 791

Toil Documentation, Release 5.11.0

• stream (Union[IO[str], IO[bytes]]) – The stream of text or bytes to print for the
user.

• job_name (Optional[str]) –

Return type
str

classmethod logWithFormatting(jobStoreID, jobLogs, method=logger.debug, message=None)

Parameters
• jobStoreID (str) –

• jobLogs (Union[IO[str], IO[bytes]]) –

• method (Callable[[str], None]) –

• message (Optional[str]) –

Return type
None

classmethod writeLogFiles(jobNames, jobLogList, config, failed=False)

Parameters
• jobNames (List[str]) –

• jobLogList (List[str]) –

• config (toil.common.Config) –

• failed (bool) –

Return type
None

classmethod statsAndLoggingAggregator(jobStore, stop, config)
The following function is used for collating stats/reporting log messages from the workers. Works inside
of a thread, collates as long as the stop flag is not True.

Parameters
• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

• stop (threading.Event) –

• config (toil.common.Config) –

Return type
None

check()

Check on the stats and logging aggregator. :raise RuntimeError: If the underlying thread has quit.

Return type
None

shutdown()

Finish up the stats/logging aggregation thread.

Return type
None

792 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/threading.html#threading.Event

Toil Documentation, Release 5.11.0

toil.statsAndLogging.set_log_level(level, set_logger=None)
Sets the root logger level to a given string level (like “INFO”).

Parameters
• level (str) –

• set_logger (Optional[logging.Logger]) –

Return type
None

toil.statsAndLogging.add_logging_options(parser)
Add logging options to set the global log level.

Parameters
parser (argparse.ArgumentParser) –

Return type
None

toil.statsAndLogging.configure_root_logger()

Set up the root logger with handlers and formatting.

Should be called before any entry point tries to log anything, to ensure consistent formatting.

Return type
None

toil.statsAndLogging.log_to_file(log_file, log_rotation)

Parameters
• log_file (Optional[str]) –

• log_rotation (bool) –

Return type
None

toil.statsAndLogging.set_logging_from_options(options)

Parameters
options (Union[toil.common.Config, argparse.Namespace]) –

Return type
None

toil.statsAndLogging.suppress_exotic_logging(local_logger)
Attempts to suppress the loggers of all non-Toil packages by setting them to CRITICAL.

For example: ‘requests_oauthlib’, ‘google’, ‘boto’, ‘websocket’, ‘oauthlib’, etc.

This will only suppress loggers that have already been instantiated and can be seen in the environment, except
for the list declared in “always_suppress”.

This is important because some packages, particularly boto3, are not always instantiated yet in the environment
when this is run, and so we create the logger and set the level preemptively.

Parameters
local_logger (str) –

Return type
None

30.1. toil 793

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.toilState

Module Contents

Classes

ToilState Holds the leader's scheduling information.

Attributes

logger

toil.toilState.logger

class toil.toilState.ToilState(jobStore)
Holds the leader’s scheduling information.

But onlt that which does not need to be persisted back to the JobStore (such as information on completed and
outstanding predecessors)

Holds the true single copies of all JobDescription objects that the Leader and ServiceManager will use. The
leader and service manager shouldn’t do their own load() and update() calls on the JobStore; they should go
through this class.

Everything in the leader should reference JobDescriptions by ID.

Only holds JobDescription objects, not Job objects, and those JobDescription objects only exist in single copies.

Parameters
jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

load_workflow(rootJob, jobCache=None)
Load the workflow rooted at the given job.

If jobs are loaded that have updated and need to be dealt with by the leader, JobUpdatedMessage messages
will be sent to the message bus.

The jobCache is a map from jobStoreID to JobDescription or None. Is used to speed up the building of the
state when loading initially from the JobStore, and is not preserved.

Parameters
• rootJob (toil.job.JobDescription) – The description for the root job of the workflow

being run.

• jobCache (Optional[Dict[str, toil.job.JobDescription]]) – A dict to cache
downloaded job descriptions in, keyed by ID.

Return type
None

job_exists(job_id)
Test if the givin job exists now.

Returns True if the given job exists right now, and false if it hasn’t been created or it has been deleted
elsewhere.

794 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Doesn’t guarantee that the job will or will not be gettable, if racing another process, or if it is still cached.

Parameters
job_id (str) –

Return type
bool

get_job(job_id)
Get the one true copy of the JobDescription with the given ID.

Parameters
job_id (str) –

Return type
toil.job.JobDescription

commit_job(job_id)
Save back any modifications made to a JobDescription.

(one retrieved from get_job())

Parameters
job_id (str) –

Return type
None

delete_job(job_id)
Destroy a JobDescription.

May raise an exception if the job could not be cleaned up (i.e. files belonging to it failed to delete).

Parameters
job_id (str) –

Return type
None

reset_job(job_id)
Discard any local modifications to a JobDescription.

Will make modifications from other hosts visible.

Parameters
job_id (str) –

Return type
None

successors_pending(predecessor_id, count)
Remember that the given job has the given number more pending successors.

(that have not yet succeeded or failed.)

Parameters
• predecessor_id (str) –

• count (int) –

Return type
None

30.1. toil 795

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

successor_returned(predecessor_id)
Remember that the given job has one fewer pending successors.

(because one has succeeded or failed.)

Parameters
predecessor_id (str) –

Return type
None

count_pending_successors(predecessor_id)
Count number of pending successors of the given job.

Pending successors are those which have not yet succeeded or failed.

Parameters
predecessor_id (str) –

Return type
int

toil.version

Module Contents

toil.version.baseVersion = '5.11.0'

toil.version.cgcloudVersion = '1.6.0a1.dev393'

toil.version.version = '5.11.0-9a04dabb36d6ab13ed1ac7c711dbdc8c71724dc9'

toil.version.distVersion = '5.11.0'

toil.version.exactPython = 'python3.7'

toil.version.python = 'python3.7'

toil.version.dockerTag = '5.11.0-9a04dabb36d6ab13ed1ac7c711dbdc8c71724dc9-py3.7'

toil.version.currentCommit = '9a04dabb36d6ab13ed1ac7c711dbdc8c71724dc9'

toil.version.dockerRegistry = 'quay.io/ucsc_cgl'

toil.version.dockerName = 'toil'

toil.version.dirty = False

toil.version.cwltool_version = '3.1.20230425144158'

796 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

toil.worker

Module Contents

Classes

StatsDict Subclass of MagicExpando for type-checking purposes.

Functions

nextChainable(predecessor, jobStore, config) Returns the next chainable job's JobDescription after the
given predecessor

workerScript(jobStore, config, jobName, jobStor-
eID[, ...])

Worker process script, runs a job.

parse_args(args) Parse command-line arguments to the worker.
in_contexts(contexts) Unpickle and enter all the pickled, base64-encoded con-

text managers in the
main([argv])

Attributes

logger

toil.worker.logger

class toil.worker.StatsDict(*args, **kwargs)
Bases: toil.lib.expando.MagicExpando

Expando MagicExpando StatsDict

Subclass of MagicExpando for type-checking purposes.

jobs: List[str]

toil.worker.nextChainable(predecessor, jobStore, config)
Returns the next chainable job’s JobDescription after the given predecessor JobDescription, if one exists, or None
if the chain must terminate.

Parameters
• predecessor (toil.job.JobDescription) – The job to chain from

30.1. toil 797

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The JobStore
to fetch JobDescriptions from.

• config (toil.common.Config) – The configuration for the current run.

Return type
Optional[toil.job.JobDescription]

toil.worker.workerScript(jobStore, config, jobName, jobStoreID, redirectOutputToLogFile=True)
Worker process script, runs a job.

Parameters
• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The JobStore

to fetch JobDescriptions from.

• config (toil.common.Config) – The configuration for the current run.

• jobName (str) – The “job name” (a user friendly name) of the job to be run

• jobStoreID (str) – The job store ID of the job to be run

• redirectOutputToLogFile (bool) –

Return int
1 if a job failed, or 0 if all jobs succeeded

Return type
int

toil.worker.parse_args(args)
Parse command-line arguments to the worker.

Parameters
args (List[str]) –

Return type
argparse.Namespace

toil.worker.in_contexts(contexts)
Unpickle and enter all the pickled, base64-encoded context managers in the given list. Then do the body, then
leave them all.

Parameters
contexts (List[str]) –

Return type
Iterator[None]

toil.worker.main(argv=None)

Parameters
argv (Optional[List[str]]) –

Return type
None

798 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

30.1.3 Package Contents

Functions

retry([intervals, infinite_retries, errors, ...]) Retry a function if it fails with any Exception defined in
"errors".

which (cmd[, mode, path]) Return the path with conforms to the given mode on the
Path.

toilPackageDirPath () Return the absolute path of the directory that corre-
sponds to the top-level toil package.

inVirtualEnv() Test if we are inside a virtualenv or Conda virtual envi-
ronment.

resolveEntryPoint(entryPoint) Find the path to the given entry point that should work
on a worker.

physicalMemory() Calculate the total amount of physical memory, in bytes.
physicalDisk(directory)

applianceSelf ([forceDockerAppliance]) Return the fully qualified name of the Docker image to
start Toil appliance containers from.

customDockerInitCmd() Return the custom command set by the
TOIL_CUSTOM_DOCKER_INIT_COMMAND environment
variable.

customInitCmd() Return the custom command set by the
TOIL_CUSTOM_INIT_COMMAND environment vari-
able.

lookupEnvVar(name, envName, defaultValue) Look up environment variables that control Toil and log
the result.

checkDockerImageExists(appliance) Attempt to check a url registryName for the existence of
a docker image with a given tag.

parseDockerAppliance(appliance) Derive parsed registry, image reference, and tag from a
docker image string.

checkDockerSchema(appliance)

requestCheckRegularDocker(origAppliance, reg-
istryName, ...)

Check if an image exists using the requests library.

requestCheckDockerIo(origAppliance, imageName,
tag)

Check docker.io to see if an image exists using the re-
quests library.

logProcessContext(config)

30.1. toil 799

Toil Documentation, Release 5.11.0

Attributes

memoize Memoize a function result based on its parameters using
this decorator.

currentCommit

log

KNOWN_EXTANT_IMAGES

cache_path

toil.memoize

Memoize a function result based on its parameters using this decorator.

For example, this can be used in place of lazy initialization. If the decorating function is invoked by multiple
threads, the decorated function may be called more than once with the same arguments.

toil.retry(intervals=None, infinite_retries=False, errors=None, log_message=None, prepare=None)
Retry a function if it fails with any Exception defined in “errors”.

Does so every x seconds, where x is defined by a list of numbers (ints or floats) in “intervals”. Also accepts
ErrorCondition events for more detailed retry attempts.

Parameters
• intervals (Optional[List]) – A list of times in seconds we keep retrying until returning

failure. Defaults to retrying with the following exponential back-off before failing: 1s, 1s,
2s, 4s, 8s, 16s

• infinite_retries (bool) – If this is True, reset the intervals when they run out. Defaults
to: False.

• errors (Optional[Sequence[Union[ErrorCondition, Type[Exception]]]]) – A
list of exceptions OR ErrorCondition objects to catch and retry on. ErrorCondition objects
describe more detailed error event conditions than a plain error. An ErrorCondition specifies:
- Exception (required) - Error codes that must match to be retried (optional; defaults to not
checking) - A string that must be in the error message to be retried (optional; defaults to not
checking) - A bool that can be set to False to always error on this condition.

If not specified, this will default to a generic Exception.

• log_message (Optional[Tuple[Callable, str]]) – Optional tuple of (“log/print
function()”, “message string”) that will precede each attempt.

• prepare (Optional[List[Callable]]) – Optional list of functions to call, with the func-
tion’s arguments, between retries, to reset state.

Returns
The result of the wrapped function or raise.

Return type
Callable[[Any], Any]

toil.currentCommit = '9a04dabb36d6ab13ed1ac7c711dbdc8c71724dc9'

toil.log

800 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

toil.which(cmd, mode=os.F_OK | os.X_OK, path=None)
Return the path with conforms to the given mode on the Path.

[Copy-pasted in from python3.6’s shutil.which().]

mode defaults to os.F_OK | os.X_OK. path defaults to the result of os.environ.get(“PATH”), or can be overridden
with a custom search path.

Returns
The path found, or None.

Return type
Optional[str]

toil.toilPackageDirPath()

Return the absolute path of the directory that corresponds to the top-level toil package.

The return value is guaranteed to end in ‘/toil’.

Return type
str

toil.inVirtualEnv()

Test if we are inside a virtualenv or Conda virtual environment.

Return type
bool

toil.resolveEntryPoint(entryPoint)
Find the path to the given entry point that should work on a worker.

Returns
The path found, which may be an absolute or a relative path.

Parameters
entryPoint (str) –

Return type
str

toil.physicalMemory()

Calculate the total amount of physical memory, in bytes.

>>> n = physicalMemory()
>>> n > 0
True
>>> n == physicalMemory()
True

Return type
int

toil.physicalDisk(directory)

Parameters
directory (str) –

Return type
int

30.1. toil 801

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

toil.applianceSelf(forceDockerAppliance=False)
Return the fully qualified name of the Docker image to start Toil appliance containers from.

The result is determined by the current version of Toil and three environment variables:
TOIL_DOCKER_REGISTRY, TOIL_DOCKER_NAME and TOIL_APPLIANCE_SELF.

TOIL_DOCKER_REGISTRY specifies an account on a publicly hosted docker registry like Quay or Docker Hub.
The default is UCSC’s CGL account on Quay.io where the Toil team publishes the official appliance images.
TOIL_DOCKER_NAME specifies the base name of the image. The default of toil will be adequate in most cases.
TOIL_APPLIANCE_SELF fully qualifies the appliance image, complete with registry, image name and version
tag, overriding both TOIL_DOCKER_NAME and TOIL_DOCKER_REGISTRY` as well as the version tag of the
image. Setting TOIL_APPLIANCE_SELF will not be necessary in most cases.

Parameters
forceDockerAppliance (bool) –

Return type
str

toil.customDockerInitCmd()

Return the custom command set by the TOIL_CUSTOM_DOCKER_INIT_COMMAND environment variable.

The custom docker command is run prior to running the workers and/or the primary node’s services.

This can be useful for doing any custom initialization on instances (e.g. authenticating to private docker reg-
istries). Any single quotes are escaped and the command cannot contain a set of blacklisted chars (newline or
tab).

Returns
The custom commmand, or an empty string is returned if the environment variable is not set.

Return type
str

toil.customInitCmd()

Return the custom command set by the TOIL_CUSTOM_INIT_COMMAND environment variable.

The custom init command is run prior to running Toil appliance itself in workers and/or the primary node (i.e.
this is run one stage before TOIL_CUSTOM_DOCKER_INIT_COMMAND).

This can be useful for doing any custom initialization on instances (e.g. authenticating to private docker reg-
istries). Any single quotes are escaped and the command cannot contain a set of blacklisted chars (newline or
tab).

returns: the custom command or n empty string is returned if the environment variable is not set.

Return type
str

toil.lookupEnvVar(name, envName, defaultValue)
Look up environment variables that control Toil and log the result.

Parameters
• name (str) – the human readable name of the variable

• envName (str) – the name of the environment variable to lookup

• defaultValue (str) – the fall-back value

Returns
the value of the environment variable or the default value the variable is not set

802 Chapter 30. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Return type
str

toil.checkDockerImageExists(appliance)
Attempt to check a url registryName for the existence of a docker image with a given tag.

Parameters
appliance (str) – The url of a docker image’s registry (with a tag) of the form:
‘quay.io/<repo_path>:<tag>’ or ‘<repo_path>:<tag>’. Examples: ‘quay.io/ucsc_cgl/toil:latest’,
‘ubuntu:latest’, or ‘broadinstitute/genomes-in-the-cloud:2.0.0’.

Returns
Raises an exception if the docker image cannot be found or is invalid. Otherwise, it will return
the appliance string.

Return type
str

toil.parseDockerAppliance(appliance)
Derive parsed registry, image reference, and tag from a docker image string.

Example: “quay.io/ucsc_cgl/toil:latest” Should return: “quay.io”, “ucsc_cgl/toil”, “latest”

If a registry is not defined, the default is: “docker.io” If a tag is not defined, the default is: “latest”

Parameters
appliance (str) – The full url of the docker image originally specified by the user (or the
default). e.g. “quay.io/ucsc_cgl/toil:latest”

Returns
registryName, imageName, tag

Return type
Tuple[str, str, str]

toil.checkDockerSchema(appliance)

exception toil.ApplianceImageNotFound(origAppliance, url, statusCode)
Bases: docker.errors.ImageNotFound

APIError NotFound

HTTPError

DockerException

ApplianceImageNotFoundImageNotFound

RequestException

Error raised when using TOIL_APPLIANCE_SELF results in an HTTP error.

Parameters
• origAppliance (str) – The full url of the docker image originally specified by the user (or

the default). e.g. “quay.io/ucsc_cgl/toil:latest”

• url (str) – The URL at which the image’s manifest is supposed to appear

• statusCode (int) – the failing HTTP status code returned by the URL

toil.KNOWN_EXTANT_IMAGES

30.1. toil 803

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.11.0

toil.requestCheckRegularDocker(origAppliance, registryName, imageName, tag)
Check if an image exists using the requests library.

URL is based on the docker v2 schema.

This has the following format: https://{websitehostname}.io/v2/{repo}/manifests/{tag}

Does not work with the official (docker.io) site, because they require an OAuth token, so a separate check is done
for docker.io images.

Parameters
• origAppliance (str) – The full url of the docker image originally specified by the user (or

the default).

e.g. quay.io/ucsc_cgl/toil:latest

• registryName (str) – The url of a docker image’s registry. e.g. quay.io

• imageName (str) – The image, including path and excluding the tag. e.g. ucsc_cgl/toil

• tag (str) – The tag used at that docker image’s registry. e.g. latest

Raises
ApplianceImageNotFound if no match is found.

Returns
Return True if match found.

Return type
bool

toil.requestCheckDockerIo(origAppliance, imageName, tag)
Check docker.io to see if an image exists using the requests library.

URL is based on the docker v2 schema. Requires that an access token be fetched first.

Parameters
• origAppliance (str) – The full url of the docker image originally specified by the user (or

the default). e.g. “ubuntu:latest”

• imageName (str) – The image, including path and excluding the tag. e.g. “ubuntu”

• tag (str) – The tag used at that docker image’s registry. e.g. “latest”

Raises
ApplianceImageNotFound if no match is found.

Returns
Return True if match found.

Return type
bool

toil.logProcessContext(config)

Parameters
config (common.Config) –

Return type
None

toil.cache_path = '~/.cache/aws/cached_temporary_credentials'

804 Chapter 30. API Reference

https://docs.docker.com/registry/spec/manifest-v2-2/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

30.2 tutorial_docker

30.2.1 Module Contents

tutorial_docker.align

tutorial_docker.jobstore: str

30.3 tutorial_managing2

30.3.1 Module Contents

Functions

globalFileStoreJobFn(job)

Attributes

jobstore

tutorial_managing2.globalFileStoreJobFn(job)

tutorial_managing2.jobstore: str

30.4 tutorial_helloworld

30.4.1 Module Contents

Functions

helloWorld(message[, memory, cores, disk])

Attributes

parser

tutorial_helloworld.helloWorld(message, memory='1G', cores=1, disk='1G')

tutorial_helloworld.parser

30.2. tutorial_docker 805

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

30.5 tutorial_discoverfiles

30.5.1 Module Contents

Classes

discoverFiles Views files at a specified path using ls.

Functions

main()

class tutorial_discoverfiles.discoverFiles(path, *args, **kwargs)
Bases: toil.job.Job

Job discoverFiles

Views files at a specified path using ls.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

tutorial_discoverfiles.main()

30.6 tutorial_multiplejobs2

30.6.1 Module Contents

Functions

helloWorld(job, message[, memory, cores, disk])

806 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Attributes

parser

tutorial_multiplejobs2.helloWorld(job, message, memory='2G', cores=2, disk='3G')

tutorial_multiplejobs2.parser

30.7 tutorial_dynamic

30.7.1 Module Contents

Functions

binaryStringFn(job, depth[, message])

Attributes

jobstore

tutorial_dynamic.binaryStringFn(job, depth, message='')

tutorial_dynamic.jobstore: str

30.8 tutorial_invokeworkflow2

30.8.1 Module Contents

Classes

HelloWorld Class represents a unit of work in toil.

Attributes

jobstore

30.7. tutorial_dynamic 807

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

class tutorial_invokeworkflow2.HelloWorld(message)
Bases: toil.job.Job

HelloWorldJob

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

tutorial_invokeworkflow2.jobstore: str

30.9 tutorial_jobfunctions

30.9.1 Module Contents

Functions

helloWorld(job, message)

Attributes

jobstore

tutorial_jobfunctions.helloWorld(job, message)

tutorial_jobfunctions.jobstore: str

808 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

30.10 tutorial_managing

30.10.1 Module Contents

Classes

LocalFileStoreJob Class represents a unit of work in toil.

Attributes

jobstore

class tutorial_managing.LocalFileStoreJob(memory=None, cores=None, disk=None, accelerators=None,
preemptible=None, preemptable=None, unitName='',
checkpoint=False, displayName='', descriptionClass=None,
local=None)

Bases: toil.job.Job

Job LocalFileStoreJob

Class represents a unit of work in toil.

Parameters
• memory (Optional[ParseableIndivisibleResource]) –

• cores (Optional[ParseableDivisibleResource]) –

• disk (Optional[ParseableIndivisibleResource]) –

• accelerators (Optional[ParseableAcceleratorRequirement]) –

• preemptible (Optional[ParseableFlag]) –

• preemptable (Optional[ParseableFlag]) –

• unitName (Optional[str]) –

• checkpoint (Optional[bool]) –

• displayName (Optional[str]) –

• descriptionClass (Optional[type]) –

• local (Optional[bool]) –

30.10. tutorial_managing 809

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.11.0

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

tutorial_managing.jobstore: str

30.11 example_alwaysfail

30.11.1 Module Contents

Functions

main() This workflow always fails.
explode(job)

example_alwaysfail.main()

This workflow always fails.

Invoke like:

python examples/example_alwaysfail.py ./jobstore

Then you can inspect the job store with tools like toil status:

toil status –printLogs ./jobstore

example_alwaysfail.explode(job)

30.12 example_cachingbenchmark

This workflow collects statistics about caching.

Invoke like:

python examples/example_cachingbenchmark.py ./jobstore –realTimeLogging –logInfo

python examples/example_cachingbenchmark.py ./jobstore –realTimeLogging –logInfo –disableCaching

python examples/example_cachingbenchmark.py aws:us-west-2:cachingjobstore –realTimeLogging
–logInfo

python examples/example_cachingbenchmark.py aws:us-west-2:cachingjobstore –realTimeLogging
–logInfo –disableCaching

810 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

30.12.1 Module Contents

Functions

main()

root(job, options)

poll(job, options, file_id, number[, cores, disk, mem-
ory])
report(job, views)

example_cachingbenchmark.main()

example_cachingbenchmark.root(job, options)

example_cachingbenchmark.poll(job, options, file_id, number, cores=0.1, disk='200M', memory='512M')

example_cachingbenchmark.report(job, views)

30.13 tutorial_quickstart

30.13.1 Module Contents

Functions

helloWorld(message[, memory, cores, disk])

Attributes

jobstore

tutorial_quickstart.helloWorld(message, memory='2G', cores=2, disk='3G')

tutorial_quickstart.jobstore: str

30.13. tutorial_quickstart 811

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

30.14 tutorial_encapsulation2

30.14.1 Module Contents

tutorial_encapsulation2.A

30.15 tutorial_multiplejobs3

30.15.1 Module Contents

Functions

helloWorld(job, message[, memory, cores, disk])

Attributes

parser

tutorial_multiplejobs3.helloWorld(job, message, memory='2G', cores=2, disk='3G')

tutorial_multiplejobs3.parser

30.16 tutorial_cwlexample

30.16.1 Module Contents

Functions

initialize_jobs(job)

runQC(job, cwl_file, cwl_filename, yml_file, ...)

812 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Attributes

jobstore

tutorial_cwlexample.initialize_jobs(job)

tutorial_cwlexample.runQC(job, cwl_file, cwl_filename, yml_file, yml_filename, outputs_dir, output_num)

tutorial_cwlexample.jobstore: str

30.17 tutorial_encapsulation

30.17.1 Module Contents

tutorial_encapsulation.A

30.18 tutorial_invokeworkflow

30.18.1 Module Contents

Classes

HelloWorld Class represents a unit of work in toil.

Attributes

jobstore

class tutorial_invokeworkflow.HelloWorld(message)
Bases: toil.job.Job

HelloWorldJob

Class represents a unit of work in toil.

30.17. tutorial_encapsulation 813

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

tutorial_invokeworkflow.jobstore: str

30.19 tutorial_requirements

30.19.1 Module Contents

Functions

parentJob(job)

stageFn(job, url[, cores])

analysisJob(job, fileStoreID[, cores])

Attributes

jobstore

tutorial_requirements.parentJob(job)

tutorial_requirements.stageFn(job, url, cores=1)

tutorial_requirements.analysisJob(job, fileStoreID, cores=2)

tutorial_requirements.jobstore: str

30.20 tutorial_staging

30.20.1 Module Contents

Classes

HelloWorld Class represents a unit of work in toil.

814 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Attributes

jobstore

class tutorial_staging.HelloWorld(id)
Bases: toil.job.Job

HelloWorldJob

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

tutorial_staging.jobstore: str

30.21 tutorial_promises

30.21.1 Module Contents

Functions

fn(job, i)

Attributes

jobstore

tutorial_promises.fn(job, i)

tutorial_promises.jobstore: str

30.21. tutorial_promises 815

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

30.22 tutorial_services

30.22.1 Module Contents

Classes

DemoService Abstract class used to define the interface to a service.

Functions

dbFn(loginCredentials)

Attributes

j

s

loginCredentialsPromise

jobstore

class tutorial_services.DemoService(memory=None, cores=None, disk=None, accelerators=None,
preemptible=None, unitName=None)

Bases: toil.job.Job.Service

DemoServiceServiceRequirer

Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

start(fileStore)
Start the service.

Parameters
job – The underlying host job that the service is being run in. Can be used to register deferred
functions, or to access the fileStore for creating temporary files.

816 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Returns
An object describing how to access the service. The object must be pickleable and will be
used by jobs to access the service (see toil.job.Job.addService()).

check()

Checks the service is still running.

Raises
exceptions.RuntimeError – If the service failed, this will cause the service job to be
labeled failed.

Returns
True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should
raise a RuntimeError, not return False!

stop(fileStore)
Stops the service. Function can block until complete.

Parameters
job – The underlying host job that the service is being run in. Can be used to register deferred
functions, or to access the fileStore for creating temporary files.

tutorial_services.j

tutorial_services.s

tutorial_services.loginCredentialsPromise

tutorial_services.dbFn(loginCredentials)

tutorial_services.jobstore: str

30.23 tutorial_promises2

30.23.1 Module Contents

Functions

binaryStrings(job, depth[, message])

merge(strings)

Attributes

jobstore

tutorial_promises2.binaryStrings(job, depth, message='')

tutorial_promises2.merge(strings)

30.23. tutorial_promises2 817

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

tutorial_promises2.jobstore: str

30.24 tutorial_multiplejobs

30.24.1 Module Contents

Functions

helloWorld(job, message[, memory, cores, disk])

Attributes

parser

tutorial_multiplejobs.helloWorld(job, message, memory='2G', cores=2, disk='3G')

tutorial_multiplejobs.parser

30.25 tutorial_arguments

30.25.1 Module Contents

Classes

HelloWorld Class represents a unit of work in toil.

Attributes

parser

class tutorial_arguments.HelloWorld(message)
Bases: toil.job.Job

HelloWorldJob

818 Chapter 30. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

Class represents a unit of work in toil.

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters
fileStore – Used to create local and globally sharable temporary files and to send log mes-
sages to the leader process.

Returns
The return value of the function can be passed to other jobs by means of toil.job.Job.
rv().

tutorial_arguments.parser

30.26 mkFile

30.26.1 Module Contents

Functions

main()

mkFile.main()

30.27 debugWorkflow

30.27.1 Module Contents

Functions

initialize_jobs(job) Stub function used to start a toil workflow since toil
workflows can only

writeA(job, mkFile) Runs a program, and writes a string 'A' into A.txt using
mkFile.py.

writeB(job, mkFile, B_file) Runs a program, extracts a string 'B' from an existing file,
B_file.txt, and

writeC(job) Creates/writes a file, C.txt, containing the string 'C'.
writeABC(job, A_dict, B_dict, C_dict, filepath) Takes 3 files (specified as dictionaries) and writes their

contents to ABC.txt.
finalize_jobs(job, num) Does nothing but should be recorded in stats, status, and

printDot().
broken_job(job, num) A job that will always fail. To be used for a tutorial.

30.26. mkFile 819

Toil Documentation, Release 5.11.0

Attributes

logger This workflow's purpose is to create files and jobs for
viewing using stats,

jobStorePath

debugWorkflow.logger

This workflow’s purpose is to create files and jobs for viewing using stats, status, and printDot() in toilDe-
bugTest.py. It’s intended for future use in a debugging tutorial containing a broken job. It is also a minor
integration test.

debugWorkflow.initialize_jobs(job)
Stub function used to start a toil workflow since toil workflows can only start with one job (but afterwards can
run many in parallel).

debugWorkflow.writeA(job, mkFile)
Runs a program, and writes a string ‘A’ into A.txt using mkFile.py.

debugWorkflow.writeB(job, mkFile, B_file)
Runs a program, extracts a string ‘B’ from an existing file, B_file.txt, and writes it into B.txt using mkFile.py.

debugWorkflow.writeC(job)
Creates/writes a file, C.txt, containing the string ‘C’.

debugWorkflow.writeABC(job, A_dict, B_dict, C_dict, filepath)
Takes 3 files (specified as dictionaries) and writes their contents to ABC.txt.

debugWorkflow.finalize_jobs(job, num)

Does nothing but should be recorded in stats, status, and printDot().

debugWorkflow.broken_job(job, num)

A job that will always fail. To be used for a tutorial.

debugWorkflow.jobStorePath

30.28 fake_mpi_run

30.28.1 Module Contents

Classes

Runner

820 Chapter 30. API Reference

Toil Documentation, Release 5.11.0

Functions

make_parser()

Attributes

args

fake_mpi_run.make_parser()

class fake_mpi_run.Runner

run_once(args)

Parameters
args (List[str]) –

run_many(n, args)

Parameters
• n (int) –

• args (List[str]) –

fake_mpi_run.args

• genindex

• search

30.28. fake_mpi_run 821

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.11.0

822 Chapter 30. API Reference

PYTHON MODULE INDEX

d
debugWorkflow, 819

e
example_alwaysfail, 810
example_cachingbenchmark, 810

f
fake_mpi_run, 820

m
mkFile, 819

t
toil, 201
toil.batchSystems, 201
toil.batchSystems.abstractBatchSystem, 214
toil.batchSystems.abstractGridEngineBatchSystem,

227
toil.batchSystems.awsBatch, 231
toil.batchSystems.cleanup_support, 235
toil.batchSystems.contained_executor, 236
toil.batchSystems.gridengine, 238
toil.batchSystems.htcondor, 240
toil.batchSystems.kubernetes, 243
toil.batchSystems.local_support, 248
toil.batchSystems.lsf, 249
toil.batchSystems.lsfHelper, 252
toil.batchSystems.mesos, 201
toil.batchSystems.mesos.batchSystem, 207
toil.batchSystems.mesos.conftest, 210
toil.batchSystems.mesos.executor, 210
toil.batchSystems.mesos.test, 201
toil.batchSystems.options, 255
toil.batchSystems.parasol, 256
toil.batchSystems.registry, 259
toil.batchSystems.singleMachine, 261
toil.batchSystems.slurm, 264
toil.batchSystems.tes, 267
toil.batchSystems.torque, 270
toil.bus, 721
toil.common, 730

toil.cwl, 273
toil.cwl.conftest, 273
toil.cwl.cwltoil, 273
toil.cwl.utils, 299
toil.deferred, 742
toil.exceptions, 744
toil.fileStores, 302
toil.fileStores.abstractFileStore, 302
toil.fileStores.cachingFileStore, 310
toil.fileStores.nonCachingFileStore, 316
toil.job, 745
toil.jobStores, 321
toil.jobStores.abstractJobStore, 336
toil.jobStores.aws, 321
toil.jobStores.aws.jobStore, 321
toil.jobStores.aws.utils, 332
toil.jobStores.conftest, 357
toil.jobStores.fileJobStore, 357
toil.jobStores.googleJobStore, 365
toil.jobStores.utils, 373
toil.leader, 775
toil.lib, 379
toil.lib.accelerators, 392
toil.lib.aws, 379
toil.lib.aws.ami, 379
toil.lib.aws.iam, 380
toil.lib.aws.session, 383
toil.lib.aws.utils, 386
toil.lib.bioio, 393
toil.lib.compatibility, 394
toil.lib.conversions, 394
toil.lib.docker, 397
toil.lib.ec2, 400
toil.lib.ec2nodes, 405
toil.lib.encryption, 392
toil.lib.encryption.conftest, 392
toil.lib.exceptions, 408
toil.lib.expando, 409
toil.lib.generatedEC2Lists, 411
toil.lib.humanize, 411
toil.lib.io, 412
toil.lib.iterables, 415

823

Toil Documentation, Release 5.11.0

toil.lib.memoize, 417
toil.lib.misc, 419
toil.lib.objects, 421
toil.lib.resources, 423
toil.lib.retry, 424
toil.lib.threading, 430
toil.lib.throttle, 435
toil.provisioners, 437
toil.provisioners.abstractProvisioner, 445
toil.provisioners.aws, 437
toil.provisioners.aws.awsProvisioner, 437
toil.provisioners.clusterScaler, 452
toil.provisioners.gceProvisioner, 461
toil.provisioners.node, 463
toil.realtimeLogger, 779
toil.resource, 782
toil.server, 467
toil.server.api_spec, 467
toil.server.app, 488
toil.server.celery_app, 489
toil.server.cli, 467
toil.server.cli.wes_cwl_runner, 467
toil.server.utils, 489
toil.server.wes, 471
toil.server.wes.abstract_backend, 471
toil.server.wes.amazon_wes_utils, 476
toil.server.wes.tasks, 479
toil.server.wes.toil_backend, 484
toil.server.wsgi_app, 498
toil.serviceManager, 788
toil.statsAndLogging, 790
toil.test, 499
toil.test.batchSystems, 499
toil.test.batchSystems.batchSystemTest, 499
toil.test.batchSystems.parasolTestSupport,

511
toil.test.batchSystems.test_lsf_helper, 513
toil.test.batchSystems.test_slurm, 514
toil.test.cwl, 516
toil.test.cwl.conftest, 516
toil.test.cwl.cwlTest, 516
toil.test.docs, 523
toil.test.docs.scriptsTest, 523
toil.test.jobStores, 524
toil.test.jobStores.jobStoreTest, 524
toil.test.lib, 531
toil.test.lib.aws, 531
toil.test.lib.aws.test_iam, 531
toil.test.lib.aws.test_s3, 532
toil.test.lib.aws.test_utils, 533
toil.test.lib.dockerTest, 534
toil.test.lib.test_conversions, 537
toil.test.lib.test_ec2, 538
toil.test.lib.test_misc, 539

toil.test.mesos, 541
toil.test.mesos.helloWorld, 541
toil.test.mesos.MesosDataStructuresTest, 541
toil.test.mesos.stress, 542
toil.test.provisioners, 545
toil.test.provisioners.aws, 545
toil.test.provisioners.aws.awsProvisionerTest,

545
toil.test.provisioners.clusterScalerTest, 549
toil.test.provisioners.clusterTest, 555
toil.test.provisioners.gceProvisionerTest,

557
toil.test.provisioners.provisionerTest, 559
toil.test.provisioners.restartScript, 560
toil.test.server, 561
toil.test.server.serverTest, 561
toil.test.sort, 567
toil.test.sort.restart_sort, 567
toil.test.sort.sort, 569
toil.test.sort.sortTest, 570
toil.test.src, 572
toil.test.src.autoDeploymentTest, 572
toil.test.src.busTest, 574
toil.test.src.checkpointTest, 575
toil.test.src.deferredFunctionTest, 579
toil.test.src.dockerCheckTest, 580
toil.test.src.fileStoreTest, 581
toil.test.src.helloWorldTest, 587
toil.test.src.importExportFileTest, 589
toil.test.src.jobDescriptionTest, 590
toil.test.src.jobEncapsulationTest, 591
toil.test.src.jobFileStoreTest, 592
toil.test.src.jobServiceTest, 593
toil.test.src.jobTest, 597
toil.test.src.miscTests, 601
toil.test.src.promisedRequirementTest, 602
toil.test.src.promisesTest, 605
toil.test.src.realtimeLoggerTest, 607
toil.test.src.regularLogTest, 609
toil.test.src.resourceTest, 610
toil.test.src.restartDAGTest, 611
toil.test.src.resumabilityTest, 612
toil.test.src.retainTempDirTest, 613
toil.test.src.systemTest, 614
toil.test.src.threadingTest, 614
toil.test.src.toilContextManagerTest, 615
toil.test.src.userDefinedJobArgTypeTest, 617
toil.test.src.workerTest, 618
toil.test.utils, 619
toil.test.utils.toilDebugTest, 619
toil.test.utils.toilKillTest, 620
toil.test.utils.utilsTest, 622
toil.test.wdl, 624
toil.test.wdl.builtinTest, 624

824 Python Module Index

Toil Documentation, Release 5.11.0

toil.test.wdl.conftest, 628
toil.test.wdl.toilwdlTest, 628
toil.test.wdl.wdltoil_test, 632
toil.toilState, 794
toil.utils, 650
toil.utils.toilClean, 650
toil.utils.toilDebugFile, 651
toil.utils.toilDebugJob, 652
toil.utils.toilDestroyCluster, 652
toil.utils.toilKill, 653
toil.utils.toilLaunchCluster, 653
toil.utils.toilMain, 654
toil.utils.toilRsyncCluster, 655
toil.utils.toilServer, 656
toil.utils.toilSshCluster, 656
toil.utils.toilStats, 657
toil.utils.toilStatus, 663
toil.utils.toilUpdateEC2Instances, 666
toil.version, 796
toil.wdl, 666
toil.wdl.toilwdl, 681
toil.wdl.utils, 682
toil.wdl.versions, 666
toil.wdl.versions.dev, 666
toil.wdl.versions.draft2, 668
toil.wdl.versions.v1, 676
toil.wdl.wdl_analysis, 683
toil.wdl.wdl_functions, 684
toil.wdl.wdl_synthesis, 695
toil.wdl.wdl_types, 700
toil.wdl.wdltoil, 706
toil.worker, 797
tutorial_arguments, 818
tutorial_cwlexample, 812
tutorial_discoverfiles, 806
tutorial_docker, 805
tutorial_dynamic, 807
tutorial_encapsulation, 813
tutorial_encapsulation2, 812
tutorial_helloworld, 805
tutorial_invokeworkflow, 813
tutorial_invokeworkflow2, 807
tutorial_jobfunctions, 808
tutorial_managing, 809
tutorial_managing2, 805
tutorial_multiplejobs, 818
tutorial_multiplejobs2, 806
tutorial_multiplejobs3, 812
tutorial_promises, 815
tutorial_promises2, 817
tutorial_quickstart, 811
tutorial_requirements, 814
tutorial_services, 816
tutorial_staging, 814

Python Module Index 825

Toil Documentation, Release 5.11.0

826 Python Module Index

INDEX

Symbols
__call__() (toil.batchSystems.options.OptionSetter

method), 255
__call__() (toil.lib.objects.InnerClass method), 423
__call__() (toil.lib.throttle.LocalThrottle method), 435
__call__() (toil.lib.throttle.throttle method), 437
__copy__() (toil.job.Requirer method), 751
__deepcopy__() (toil.job.Requirer method), 751
__del__() (toil.deferred.DeferredFunctionManager

method), 743
__del__() (toil.fileStores.cachingFileStore.CachingFileStore

method), 316
__del__() (toil.fileStores.nonCachingFileStore.NonCachingFileStore

method), 320
__enter__() (toil.batchSystems.cleanup_support.WorkerCleanupContext

method), 236
__enter__() (toil.common.Toil method), 734
__enter__() (toil.jobStores.utils.ReadablePipe

method), 377
__enter__() (toil.jobStores.utils.WritablePipe method),

375
__enter__() (toil.lib.exceptions.panic method), 408
__enter__() (toil.lib.throttle.throttle method), 437
__enter__() (toil.realtimeLogger.RealtimeLogger

method), 781
__enter__() (toil.test.ApplianceTestSupport.Appliance

method), 647
__eq__() (toil.batchSystems.mesos.Shape method), 212
__eq__() (toil.common.Config method), 732
__eq__() (toil.job.TemporaryID method), 747
__eq__() (toil.lib.ec2nodes.InstanceType method), 406
__eq__() (toil.provisioners.abstractProvisioner.Shape

method), 446
__eq__() (toil.wdl.wdl_types.WDLPair method), 706
__eq__() (toil.wdl.wdl_types.WDLType method), 701
__exit__() (toil.batchSystems.cleanup_support.WorkerCleanupContext

method), 236
__exit__() (toil.common.Toil method), 734
__exit__() (toil.jobStores.utils.ReadablePipe method),

377
__exit__() (toil.jobStores.utils.WritablePipe method),

375

__exit__() (toil.lib.exceptions.panic method), 408
__exit__() (toil.lib.throttle.throttle method), 437
__exit__() (toil.realtimeLogger.RealtimeLogger

method), 781
__exit__() (toil.test.ApplianceTestSupport.Appliance

method), 647
__get__() (toil.lib.objects.InnerClass method), 423
__getattr__() (toil.batchSystems.kubernetes.KubernetesBatchSystem.DecoratorWrapper

method), 244
__getattr__() (toil.realtimeLogger.RealtimeLoggerMetaclass

method), 781
__getattribute__() (toil.lib.expando.MagicExpando

method), 411
__getstate__() (toil.job.Requirer method), 751
__gt__() (toil.batchSystems.mesos.MesosShape

method), 214
__gt__() (toil.batchSystems.mesos.Shape method), 212
__gt__() (toil.provisioners.abstractProvisioner.Shape

method), 446
__hash__() (toil.batchSystems.mesos.Shape method),

213
__hash__() (toil.common.Config method), 733
__hash__() (toil.job.TemporaryID method), 747
__hash__() (toil.provisioners.abstractProvisioner.Shape

method), 446
__hash__() (toil.provisioners.node.Node method), 463
__iter__() (toil.lib.iterables.concat method), 417
__iter__() (toil.test.concat method), 637
__ne__() (toil.job.TemporaryID method), 747
__reduce__() (toil.job.EncapsulatedJob method), 772
__reduce__() (toil.job.Promise method), 774
__repr__ (toil.deferred.DeferredFunction attribute), 742
__repr__() (toil.batchSystems.abstractBatchSystem.ResourcePool

method), 225
__repr__() (toil.batchSystems.abstractBatchSystem.ResourceSet

method), 226
__repr__() (toil.batchSystems.mesos.Shape method),

213
__repr__() (toil.bus.JobStatus method), 730
__repr__() (toil.cwl.cwltoil.ResolveSource method),

278
__repr__() (toil.job.JobDescription method), 756

827

Toil Documentation, Release 5.11.0

__repr__() (toil.job.TemporaryID method), 747
__repr__() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

method), 325
__repr__() (toil.jobStores.fileJobStore.FileJobStore

method), 358
__repr__() (toil.provisioners.abstractProvisioner.Shape

method), 446
__repr__() (toil.provisioners.node.Node method), 463
__repr__() (toil.wdl.wdl_types.WDLPair method), 706
__repr__() (toil.wdl.wdl_types.WDLType method), 701
__setstate__() (toil.job.UnfulfilledPromiseSentinel

static method), 775
__slots__ (toil.lib.ec2nodes.InstanceType attribute),

406
__str__() (toil.batchSystems.DeadlockException

method), 272
__str__() (toil.batchSystems.abstractBatchSystem.InsufficientSystemResources

method), 224
__str__() (toil.batchSystems.abstractBatchSystem.ResourcePool

method), 225
__str__() (toil.batchSystems.abstractBatchSystem.ResourceSet

method), 226
__str__() (toil.batchSystems.mesos.Shape method), 213
__str__() (toil.cwl.cwltoil.ToilTool method), 283
__str__() (toil.deferred.DeferredFunction method), 743
__str__() (toil.exceptions.FailedJobsException

method), 744
__str__() (toil.job.Job method), 760
__str__() (toil.job.JobDescription method), 756
__str__() (toil.job.TemporaryID method), 747
__str__() (toil.lib.ec2nodes.InstanceType method), 406
__str__() (toil.lib.misc.CalledProcessErrorStderr

method), 420
__str__() (toil.provisioners.abstractProvisioner.Shape

method), 446
__str__() (toil.provisioners.clusterScaler.JobTooBigError

method), 459
__str__() (toil.provisioners.clusterScaler.NodeReservation

method), 454
__str__() (toil.provisioners.node.Node method), 463
__str__() (toil.wdl.wdl_types.WDLType method), 701

A
A (in module tutorial_encapsulation), 813
A (in module tutorial_encapsulation2), 812
a() (in module toil.test.src.promisesTest), 606
a_long_time (in module toil.lib.ec2), 401
a_short_time (in module toil.lib.ec2), 401
a_short_time (in module

toil.provisioners.abstractProvisioner), 445
a_short_time (in module toil.provisioners.node), 463
abspath_file() (in module toil.wdl.wdl_functions),

688

abspath_single_file() (in module
toil.wdl.wdl_functions), 688

AbstractAWSAutoscaleTest (class in
toil.test.provisioners.aws.awsProvisionerTest),
546

AbstractBatchSystem (class in
toil.batchSystems.abstractBatchSystem), 217

AbstractClusterTest (class in
toil.test.provisioners.clusterTest), 556

AbstractEncryptedJobStoreTest (class in
toil.test.jobStores.jobStoreTest), 528

AbstractEncryptedJobStoreTest.Test (class in
toil.test.jobStores.jobStoreTest), 528

AbstractFileStore (class in
toil.fileStores.abstractFileStore), 303

AbstractGCEAutoscaleTest (class in
toil.test.provisioners.gceProvisionerTest),
557

AbstractGridEngineBatchSystem (class in
toil.batchSystems.abstractGridEngineBatchSystem),
227

AbstractGridEngineBatchSystem.Worker (class in
toil.batchSystems.abstractGridEngineBatchSystem),
227

AbstractJobStore (class in
toil.jobStores.abstractJobStore), 339

AbstractJobStoreTest (class in
toil.test.jobStores.jobStoreTest), 525

AbstractJobStoreTest.Test (class in
toil.test.jobStores.jobStoreTest), 525

AbstractProvisioner (class in
toil.provisioners.abstractProvisioner), 446

AbstractProvisioner.InstanceConfiguration
(class in toil.provisioners.abstractProvisioner),
447

AbstractScalableBatchSystem (class in
toil.batchSystems.abstractBatchSystem), 223

AbstractStateStore (class in toil.server.utils), 492
AbstractToilWESServerTest (class in

toil.test.server.serverTest), 564
accelerator_satisfies() (in module toil.job), 749
AcceleratorRequirement (class in toil.job), 748
accelerators (toil.job.Job property), 760
accelerators (toil.job.RequirementsDict attribute), 750
accelerators (toil.job.Requirer property), 751
accelerators_fully_satisfy() (in module toil.job),

749
acquire() (toil.batchSystems.abstractBatchSystem.ResourcePool

method), 225
acquire() (toil.batchSystems.abstractBatchSystem.ResourceSet

method), 226
acquireNow() (toil.batchSystems.abstractBatchSystem.ResourcePool

method), 225
acquireNow() (toil.batchSystems.abstractBatchSystem.ResourceSet

828 Index

Toil Documentation, Release 5.11.0

method), 226
acquisitionOf() (toil.batchSystems.abstractBatchSystem.ResourcePool

method), 225
acquisitionOf() (toil.batchSystems.abstractBatchSystem.ResourceSet

method), 226
AcquisitionTimeoutException, 224
add_all_batchsystem_options() (in module

toil.batchSystems.options), 256
add_logging_options() (in module

toil.statsAndLogging), 793
add_options() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

class method), 219
add_options() (toil.batchSystems.awsBatch.AWSBatchBatchSystem

class method), 234
add_options() (toil.batchSystems.kubernetes.KubernetesBatchSystem

class method), 247
add_options() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

class method), 210
add_options() (toil.batchSystems.parasol.ParasolBatchSystem

class method), 258
add_options() (toil.batchSystems.singleMachine.SingleMachineBatchSystem

class method), 263
add_options() (toil.batchSystems.slurm.SlurmBatchSystem

class method), 266
add_options() (toil.batchSystems.tes.TESBatchSystem

class method), 269
add_prometheus_data_source()

(toil.common.ToilMetrics method), 738
add_provisioner_options() (in module

toil.provisioners), 465
add_stats_options() (in module toil.utils.toilStats),

662
add_to_action_collection() (in module

toil.lib.aws.iam), 381
add_toil_service() (toil.provisioners.abstractProvisioner.AbstractProvisioner

method), 450
addBatchSystemFactory() (in module

toil.batchSystems.registry), 260
addChild() (toil.cwl.cwltoil.SelfJob method), 295
addChild() (toil.job.EncapsulatedJob method), 771
addChild() (toil.job.Job method), 761
addChild() (toil.job.JobDescription method), 754
addChild() (toil.job.ServiceHostJob method), 772
addChildFn() (toil.job.Job method), 762
addChildJobFn() (toil.job.Job method), 763
addCompletedJob() (toil.provisioners.clusterScaler.ClusterScaler

method), 456
addCompletedJob() (toil.provisioners.clusterScaler.ScalerThread

method), 460
addFile() (toil.provisioners.abstractProvisioner.AbstractProvisioner.InstanceConfiguration

method), 447
addFollowOn() (toil.job.EncapsulatedJob method), 771
addFollowOn() (toil.job.Job method), 761
addFollowOn() (toil.job.JobDescription method), 755

addFollowOn() (toil.job.ServiceHostJob method), 773
addFollowOnFn() (toil.job.Job method), 763
addFollowOnJobFn() (toil.job.Job method), 763
addJob() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner

method), 554
addJobShape() (toil.provisioners.clusterScaler.BinPackedFit

method), 454
addKubernetesLeader()

(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 451

addKubernetesServices()
(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 451

addKubernetesWorker()
(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 451

addManagedNodes() (toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 449

addManagedNodes() (toil.provisioners.aws.awsProvisioner.AWSProvisioner
method), 440

addNodeExporterService()
(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 450

addNodes() (toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 449

addNodes() (toil.provisioners.aws.awsProvisioner.AWSProvisioner
method), 440

addNodes() (toil.provisioners.gceProvisioner.GCEProvisioner
method), 462

addNodes() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 554

addOptions() (in module toil.common), 733
addPredecessor() (toil.job.JobDescription method),

755
addRandomFollowOnEdges()

(toil.test.src.jobTest.JobTest method), 599
addService() (toil.job.EncapsulatedJob method), 771
addService() (toil.job.Job method), 762
addService() (toil.job.ServiceHostJob method), 773
addServiceHostJob() (toil.job.JobDescription

method), 755
addSSHRSAKey() (toil.provisioners.abstractProvisioner.AbstractProvisioner.InstanceConfiguration

method), 447
addToilOptions() (toil.job.Job.Runner static method),

758
addUnit() (toil.provisioners.abstractProvisioner.AbstractProvisioner.InstanceConfiguration

method), 447
addVolumesService()

(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 450

adjustCacheLimit() (toil.fileStores.cachingFileStore.CachingFileStore
method), 313

adjustEndingReservationForJob() (in module
toil.provisioners.clusterScaler), 455

Index 829

Toil Documentation, Release 5.11.0

align (in module tutorial_docker), 805
allocatedCores (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest

attribute), 503
allowed_actions_attached() (in module

toil.lib.aws.iam), 382
allowed_actions_roles() (in module

toil.lib.aws.iam), 382
allowed_actions_users() (in module

toil.lib.aws.iam), 383
AllowedActionCollection (in module

toil.lib.aws.iam), 381
allSuccessors() (toil.job.JobDescription method),

753
AlwaysFail (class in toil.test.src.checkpointTest), 577
AMITest (class in toil.test.lib.test_ec2), 538
analysisJob() (in module tutorial_requirements), 814
analyze() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL

method), 667
analyze() (toil.wdl.versions.draft2.AnalyzeDraft2WDL

method), 669
analyze() (toil.wdl.versions.v1.AnalyzeV1WDL

method), 677
analyze() (toil.wdl.wdl_analysis.AnalyzeWDL method),

683
AnalyzeDevelopmentWDL (class in

toil.wdl.versions.dev), 667
AnalyzeDraft2WDL (class in toil.wdl.versions.draft2),

668
AnalyzeV1WDL (class in toil.wdl.versions.v1), 676
AnalyzeWDL (class in toil.wdl.wdl_analysis), 683
annotation_name (toil.bus.JobAnnotationMessage at-

tribute), 725
annotation_value (toil.bus.JobAnnotationMessage at-

tribute), 725
annotations (toil.bus.JobStatus attribute), 729
api (toil.job.AcceleratorRequirement attribute), 748
apiDockerCall() (in module toil.lib.docker), 397
ApplianceImageNotFound, 635, 803
applianceSelf() (in module toil), 801
applianceSelf() (in module toil.test), 635
ApplianceTestSupport (class in toil.test), 646
ApplianceTestSupport.Appliance (class in toil.test),

646
ApplianceTestSupport.LeaderThread (class in

toil.test), 648
ApplianceTestSupport.WorkerThread (class in

toil.test), 649
apply() (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement

method), 245
apply_bparams() (in module

toil.batchSystems.lsfHelper), 254
apply_conf_file() (in module

toil.batchSystems.lsfHelper), 254
apply_lsadmin() (in module

toil.batchSystems.lsfHelper), 254
aRepr (in module toil.jobStores.aws.jobStore), 332
args (in module fake_mpi_run), 821
as_map() (in module toil.wdl.wdl_functions), 694
as_pairs() (in module toil.wdl.wdl_functions), 694
assertIsCopy() (toil.test.src.userDefinedJobArgTypeTest.Foo

method), 618
assertUrl() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test

method), 527
assign_job_id() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 344
assign_job_id() (toil.jobStores.aws.jobStore.AWSJobStore

method), 325
assign_job_id() (toil.jobStores.fileJobStore.FileJobStore

method), 358
assign_job_id() (toil.jobStores.googleJobStore.GoogleJobStore

method), 367
assignConfig() (toil.job.Job method), 760
assignConfig() (toil.job.Requirer method), 751
assignID() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 344
atomic_copy() (in module toil.lib.io), 414
atomic_copyobj() (in module toil.lib.io), 414
atomic_install() (in module toil.lib.io), 413
atomic_tmp_file() (in module toil.lib.io), 413
AtomicFileCreate() (in module toil.lib.io), 413
attemptToAddJob() (toil.provisioners.clusterScaler.NodeReservation

method), 455
attributesToBinary()

(toil.jobStores.aws.utils.SDBHelper class
method), 334

AutoDeploymentTest (class in
toil.test.src.autoDeploymentTest), 572

aws_batch_batch_system_factory() (in module
toil.batchSystems.registry), 260

aws_marketplace_flatcar_ami_search() (in mod-
ule toil.lib.aws.ami), 380

AWSAutoscaleTest (class in
toil.test.provisioners.aws.awsProvisionerTest),
546

AWSAutoscaleTestMultipleNodeTypes (class in
toil.test.provisioners.aws.awsProvisionerTest),
547

AWSBatchBatchSystem (class in
toil.batchSystems.awsBatch), 232

AWSBatchBatchSystemTest (class in
toil.test.batchSystems.batchSystemTest), 504

AWSConnectionManager (class in toil.lib.aws.session),
384

awsFilterImpairedNodes() (in module
toil.provisioners.aws.awsProvisioner), 438

AWSJobStore (class in toil.jobStores.aws.jobStore), 322
AWSJobStore.FileInfo (class in

toil.jobStores.aws.jobStore), 323

830 Index

Toil Documentation, Release 5.11.0

AWSJobStoreTest (class in
toil.test.jobStores.jobStoreTest), 529

AWSManagedAutoscaleTest (class in
toil.test.provisioners.aws.awsProvisionerTest),
547

AWSProvisioner (class in
toil.provisioners.aws.awsProvisioner), 438

AWSProvisionerBenchTest (class in
toil.test.provisioners.aws.awsProvisionerTest),
545

awsRegion() (toil.test.ToilTest class method), 640
AWSRestartTest (class in

toil.test.provisioners.aws.awsProvisionerTest),
548

awsRetry() (in module
toil.provisioners.aws.awsProvisioner), 438

awsRetryPredicate() (in module
toil.provisioners.aws.awsProvisioner), 437

AWSStateStoreTest (class in
toil.test.server.serverTest), 564

AWSStaticAutoscaleTest (class in
toil.test.provisioners.aws.awsProvisionerTest),
547

B
b() (in module toil.test.src.promisesTest), 606
b_to_mib() (in module toil.lib.conversions), 396
badChild() (in module toil.test.src.resumabilityTest),

613
basename() (in module toil.wdl.wdl_functions), 690
BaseToilWdlTest (class in toil.test.wdl.toilwdlTest),

628
baseVersion (in module toil.version), 796
batch() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 345
batch() (toil.jobStores.aws.jobStore.AWSJobStore

method), 325
batch() (toil.jobStores.fileJobStore.FileJobStore

method), 359
batch() (toil.jobStores.googleJobStore.GoogleJobStore

method), 367
batch_logs_dir (toil.common.Config attribute), 732
batch_system (toil.bus.ExternalBatchIdMessage

attribute), 725
batch_system (toil.bus.JobStatus attribute), 730
BATCH_SYSTEM_FACTORY_REGISTRY (in module

toil.batchSystems.registry), 260
BATCH_SYSTEMS (in module toil.batchSystems.registry),

260
BatchJobExitReason (class in

toil.batchSystems.abstractBatchSystem), 214
batchSystem (toil.common.Config attribute), 732
BatchSystemCleanupSupport (class in

toil.batchSystems.cleanup_support), 235

BatchSystemLocalSupport (class in
toil.batchSystems.local_support), 248

BatchSystemPluginTest (class in
toil.test.batchSystems.batchSystemTest), 501

BatchSystemSupport (class in
toil.batchSystems.abstractBatchSystem), 220

belongsToToil (toil.resource.ModuleDescriptor prop-
erty), 786

BINARY_PREFIXES (in module toil.lib.conversions), 395
binaryStringFn() (in module tutorial_dynamic), 807
binaryStrings() (in module tutorial_promises2), 817
binaryToAttributes()

(toil.jobStores.aws.utils.SDBHelper class
method), 334

binPack() (toil.provisioners.clusterScaler.BinPackedFit
method), 454

BinPackedFit (class in toil.provisioners.clusterScaler),
453

binPacking() (in module
toil.provisioners.clusterScaler), 456

BinPackingTest (class in
toil.test.provisioners.clusterScalerTest), 549

boto2() (toil.lib.aws.session.AWSConnectionManager
method), 385

boto3_session (in module toil.jobStores.aws.jobStore),
322

botocore (in module toil.lib.retry), 427
BotoServerError (in module toil.lib.aws.utils), 387
brand (toil.job.AcceleratorRequirement attribute), 748
broken_job() (in module debugWorkflow), 820
bucket (toil.test.lib.aws.test_s3.S3Test attribute), 533
bucket (toil.test.server.serverTest.BucketUsingTest at-

tribute), 563
bucket_location_to_region() (in module

toil.lib.aws.utils), 389
bucket_name (toil.test.server.serverTest.BucketUsingTest

attribute), 563
bucket_path (toil.test.server.serverTest.AWSStateStoreTest

attribute), 564
BucketLocationConflictException, 332
bucketNameRe (toil.jobStores.aws.jobStore.AWSJobStore

attribute), 325
BucketUsingTest (class in toil.test.server.serverTest),

563
BUFFER_SIZE (toil.jobStores.fileJobStore.FileJobStore

attribute), 358
build_tag_dict_from_env() (in module toil.lib.aws),

392
build_wes_request()

(toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters
method), 469

buildElement() (in module toil.utils.toilStats), 661
buildLocator() (toil.common.Toil static method), 735
bytes2human() (in module toil.lib.conversions), 396

Index 831

Toil Documentation, Release 5.11.0

bytes2human() (in module toil.lib.humanize), 412
bytes_in_unit() (in module toil.lib.conversions), 395
bytes_to_message() (in module toil.bus), 726

C
c() (in module toil.test.src.promisesTest), 606
c4_8xlarge (in module

toil.test.provisioners.clusterScalerTest), 549
c4_8xlarge_preemptible (in module

toil.test.provisioners.clusterScalerTest), 549
cache_path (in module toil), 804
cacheDirName() (in module toil.common), 741
CachedUnpicklingJobStoreTest (class in

toil.test.src.promisesTest), 605
CacheError, 310
CacheUnbalancedError, 310
CachingFileStore (class in

toil.fileStores.cachingFileStore), 311
CachingFileStoreTestWithAwsJobStore (class in

toil.test.src.fileStoreTest), 586
CachingFileStoreTestWithFileJobStore (class in

toil.test.src.fileStoreTest), 585
CachingFileStoreTestWithGoogleJobStore (class

in toil.test.src.fileStoreTest), 586
cachingIsFree() (toil.fileStores.cachingFileStore.CachingFileStore

method), 313
call_cmd() (toil.server.wes.tasks.ToilWorkflowRunner

method), 481
call_command() (in module toil.lib.misc), 420
call_sacct() (in module

toil.test.batchSystems.test_slurm), 514
call_sacct_raises() (in module

toil.test.batchSystems.test_slurm), 514
call_scontrol() (in module

toil.test.batchSystems.test_slurm), 514
CalledProcessErrorStderr, 420
can_fake_root() (toil.wdl.wdltoil.WDLTaskJob

method), 714
cancel() (toil.server.wes.tasks.MultiprocessingTaskRunner

class method), 483
cancel() (toil.server.wes.tasks.TaskRunner static

method), 482
cancel_run() (in module toil.server.wes.tasks), 482
cancel_run() (toil.server.wes.abstract_backend.WESBackend

method), 475
cancel_run() (toil.server.wes.toil_backend.ToilBackend

method), 487
category_choices (in module toil.utils.toilStats), 662
ceil() (in module toil.wdl.wdl_functions), 690
celery (in module toil.server.celery_app), 489
cgcloudVersion (in module toil.version), 796
ChainedIndexedPromisesTest (class in

toil.test.src.promisesTest), 606
check() (toil.bus.MessageBus method), 727

check() (toil.job.Job.Service method), 759
check() (toil.provisioners.clusterScaler.ScalerThread

method), 460
check() (toil.serviceManager.ServiceManager method),

790
check() (toil.statsAndLogging.StatsAndLogging

method), 792
check() (toil.test.batchSystems.batchSystemTest.Service

method), 507
check() (toil.test.src.jobServiceTest.ToySerializableService

method), 596
check() (toil.test.src.jobServiceTest.ToyService method),

595
check() (toil.test.src.jobTest.TrivialService method), 600
check() (tutorial_services.DemoService method), 817
check_cwltool_version() (in module toil.cwl), 302
check_directory_dict_invariants() (in module

toil.cwl.cwltoil), 283
check_for_coordination_corruption()

(toil.fileStores.nonCachingFileStore.NonCachingFileStore
static method), 317

check_for_state_corruption()
(toil.fileStores.nonCachingFileStore.NonCachingFileStore
method), 317

check_function() (toil.test.wdl.builtinTest.WdlWorkflowsTest
method), 626

check_lsf_json_output_supported() (in module
toil.batchSystems.lsfHelper), 254

check_on_run() (toil.server.wes.toil_backend.ToilWorkflow
method), 484

check_resource_request()
(toil.batchSystems.abstractBatchSystem.BatchSystemSupport
method), 220

check_resource_request()
(toil.batchSystems.singleMachine.SingleMachineBatchSystem
method), 262

check_status() (toil.test.utils.utilsTest.UtilsTest
method), 623

check_valid_node_types() (in module
toil.provisioners), 466

checkDockerImageExists() (in module toil), 803
checkDockerSchema() (in module toil), 803
checkExitCode() (toil.test.docs.scriptsTest.ToilDocumentationTest

method), 523
checkExpectedOut() (toil.test.docs.scriptsTest.ToilDocumentationTest

method), 523
checkExpectedPattern()

(toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

checkForDeadlocks() (toil.leader.Leader method),
776

checkJobGraphAcylic() (toil.job.Job method), 766
checkJobGraphConnected() (toil.job.Job method),

765

832 Index

Toil Documentation, Release 5.11.0

checkJobGraphForDeadlocks() (toil.job.Job method),
765

checkNewCheckpointsAreLeafVertices()
(toil.job.Job method), 766

checkOnJobs() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker
method), 228

checkpoint (toil.job.Job property), 760
CheckpointFailsFirstTime (class in

toil.test.src.checkpointTest), 578
CheckpointJobDescription (class in toil.job), 757
CheckpointTest (class in toil.test.src.checkpointTest),

576
CheckRetryCount (class in toil.test.src.checkpointTest),

576
checkStats() (toil.provisioners.clusterScaler.ClusterStats

method), 460
checksum (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

property), 323
ChecksumError, 322
child() (in module toil.test.src.jobTest), 600
child() (in module toil.test.src.promisesTest), 606
childFn() (in module toil.test.src.helloWorldTest), 588
childFn() (in module

toil.test.src.toilContextManagerTest), 616
childJob() (in module

toil.test.batchSystems.batchSystemTest), 507
childMessage (in module toil.test.mesos.helloWorld),

542
choose_spot_zone() (in module toil.provisioners.aws),

444
clean() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 344
clean_up() (toil.server.wes.toil_backend.ToilWorkflow

method), 485
clean_work_dir (toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo

attribute), 217
cleanCommand (toil.test.utils.utilsTest.UtilsTest prop-

erty), 622
cleanJobStoreUtil()

(toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest
method), 558

cleanSystem() (toil.resource.Resource class method),
783

cleanUpExternalStores()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
class method), 527

cleanupWorker() (toil.deferred.DeferredFunctionManager
class method), 743

cleanWorkDir (toil.common.Config attribute), 732
CleanWorkDirTest (class in

toil.test.src.retainTempDirTest), 613
clear_dependents() (toil.job.JobDescription method),

754
clear_nonexistent_dependents()

(toil.job.JobDescription method), 754
clearRemainingTryCount() (toil.job.JobDescription

method), 756
client() (in module toil.lib.aws.session), 385
client() (toil.lib.aws.session.AWSConnectionManager

method), 384
close() (toil.lib.io.WriteWatchingStream method), 415
cloud (toil.provisioners.abstractProvisioner.AbstractProvisioner

attribute), 448
cluster_factory() (in module toil.provisioners), 465
CLUSTER_LAUNCHING_PERMISSIONS (in module

toil.lib.aws.iam), 381
ClusterCombinationNotSupportedException, 466
ClusterDesiredSizeMessage (class in toil.bus), 726
ClusterScaler (class in

toil.provisioners.clusterScaler), 456
ClusterScalerTest (class in

toil.test.provisioners.clusterScalerTest), 551
ClusterSizeMessage (class in toil.bus), 725
ClusterStats (class in toil.provisioners.clusterScaler),

460
ClusterTypeNotSupportedException, 466
coalesce_job_exit_codes()

(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker
method), 229

coalesce_job_exit_codes()
(toil.batchSystems.lsf.LSFBatchSystem.Worker
method), 251

coalesce_job_exit_codes()
(toil.batchSystems.slurm.SlurmBatchSystem.Worker
method), 266

collect_attachments()
(toil.server.wes.abstract_backend.WESBackend
method), 475

collect_by_key() (in module toil.wdl.wdl_functions),
695

collect_ignore (in module
toil.batchSystems.mesos.conftest), 210

collect_ignore (in module toil.cwl.conftest), 273
collect_ignore (in module toil.jobStores.conftest), 357
collect_ignore (in module

toil.lib.encryption.conftest), 392
collect_ignore (in module toil.test.cwl.conftest), 516
collect_ignore (in module toil.test.wdl.conftest), 628
collect_process_name_garbage() (in module

toil.lib.threading), 433
ColumnWidths (class in toil.utils.toilStats), 658
combine_bindings() (in module toil.wdl.wdltoil), 708
combine_dicts() (in module toil.wdl.wdl_functions),

690
commit_job() (toil.toilState.ToilState method), 795
compare_runs() (in module toil.test.wdl.toilwdlTest),

631
compare_vcf_files() (in module

Index 833

Toil Documentation, Release 5.11.0

toil.test.wdl.toilwdlTest), 631
compat_bytes() (in module toil.lib.compatibility), 394
compat_bytes_recursive() (in module

toil.lib.compatibility), 394
compound_types (toil.wdl.wdl_analysis.AnalyzeWDL

attribute), 683
computeColumnWidths() (in module toil.utils.toilStats),

661
concat (class in toil.lib.iterables), 416
concat (class in toil.test), 636
ConcurrentFileModificationException, 338
Conditional (class in toil.cwl.cwltoil), 277
Config (class in toil.common), 731
config (toil.common.Toil attribute), 734
config (toil.jobStores.abstractJobStore.AbstractJobStore

property), 339
configure_root_logger() (in module

toil.statsAndLogging), 793
ConflictingPredecessorError, 746
CONFORMANCE_TEST_TIMEOUT (in module

toil.test.cwl.cwlTest), 517
connect() (toil.bus.MessageBus method), 727
connect_output_file() (toil.bus.MessageBus

method), 727
connect_to_state_store() (in module

toil.server.utils), 495
connect_to_workflow_state_store() (in module

toil.server.utils), 496
connection_reset() (in module toil.lib.aws.utils), 387
connectSchedd() (toil.batchSystems.htcondor.HTCondorBatchSystem.Worker

method), 242
CONSISTENCY_TICKS (in module

toil.jobStores.aws.jobStore), 322
CONSISTENCY_TIME (in module

toil.jobStores.aws.jobStore), 322
containerIsRunning() (in module toil.lib.docker), 399
content (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

property), 323
ConversionTest (class in toil.test.lib.test_conversions),

537
convert_units() (in module toil.lib.conversions), 395
convertPromises() (toil.job.PromisedRequirement

static method), 775
coordination_dir (toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo

attribute), 217
copy() (toil.lib.expando.Expando method), 410
copyFrom() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

method), 324
copyKeyMultipart() (in module

toil.jobStores.aws.utils), 335
copySshKeys() (toil.provisioners.node.Node method),

464
copySubRangeOfFile() (in module

toil.test.sort.restart_sort), 568

copySubRangeOfFile() (in module toil.test.sort.sort),
570

copyTo() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo
method), 324

coreRsync() (toil.provisioners.node.Node method), 464
cores (toil.job.Job property), 760
cores (toil.job.RequirementsDict attribute), 750
cores (toil.job.Requirer property), 751
coreSSH() (toil.provisioners.node.Node method), 464
count (toil.job.AcceleratorRequirement attribute), 748
count() (in module toil.test.batchSystems.batchSystemTest),

511
count() (toil.bus.MessageInbox method), 728
count_nvidia_gpus() (in module toil.lib.accelerators),

393
count_pending_successors() (toil.toilState.ToilState

method), 796
CovItemT (toil.batchSystems.kubernetes.KubernetesBatchSystem

attribute), 245
cpu_count() (in module toil.batchSystems.mesos.test),

204
cpu_count() (in module toil.lib.threading), 432
cpu_count() (in module toil.test), 639
cpuCount (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest

attribute), 502
create() (toil.deferred.DeferredFunction class method),

742
create() (toil.job.PromisedRequirementFunctionWrappingJob

class method), 770
create() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 345
create() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

class method), 323
create() (toil.resource.Resource class method), 783
create() (toil.wdl.wdl_types.WDLType method), 701
create_app() (in module toil.server.app), 488
create_auto_scaling_group() (in module

toil.lib.ec2), 404
create_celery_app() (in module

toil.server.celery_app), 489
create_file() (toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest

method), 582
create_file() (toil.test.src.importExportFileTest.ImportExportFileTest

method), 589
create_instances() (in module toil.lib.ec2), 403
create_job() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 345
create_job() (toil.jobStores.aws.jobStore.AWSJobStore

method), 326
create_job() (toil.jobStores.fileJobStore.FileJobStore

method), 359
create_job() (toil.jobStores.googleJobStore.GoogleJobStore

method), 367
create_launch_template() (in module toil.lib.ec2),

834 Index

Toil Documentation, Release 5.11.0

404
create_ondemand_instances() (in module

toil.lib.ec2), 403
create_root_job() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 341
create_s3_bucket() (in module toil.lib.aws.utils), 388
create_spot_instances() (in module toil.lib.ec2),

402
create_status_sentinel_file() (toil.leader.Leader

method), 776
create_subgraph() (toil.wdl.wdltoil.WDLSectionJob

method), 717
create_tags_dict() (in module

toil.utils.toilLaunchCluster), 654
create_tasks_dict()

(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 669

create_wdl_compound_type()
(toil.wdl.wdl_analysis.AnalyzeWDL method),
684

create_wdl_primitive_type()
(toil.wdl.wdl_analysis.AnalyzeWDL method),
683

create_workflows_dict()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 671

createBatchSystem() (toil.common.Toil static
method), 736

createBatchSystem()
(toil.test.batchSystems.batchSystemTest.AWSBatchBatchSystemTest
method), 504

createBatchSystem()
(toil.test.batchSystems.batchSystemTest.GridEngineBatchSystemTest
method), 508

createBatchSystem()
(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest
method), 502

createBatchSystem()
(toil.test.batchSystems.batchSystemTest.HTCondorBatchSystemTest
method), 509

createBatchSystem()
(toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemTest
method), 503

createBatchSystem()
(toil.test.batchSystems.batchSystemTest.LSFBatchSystemTest
method), 509

createBatchSystem()
(toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest
method), 505

createBatchSystem()
(toil.test.batchSystems.batchSystemTest.ParasolBatchSystemTest
method), 508

createBatchSystem()
(toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemTest

method), 505
createBatchSystem()

(toil.test.batchSystems.batchSystemTest.SlurmBatchSystemTest
method), 508

createBatchSystem()
(toil.test.batchSystems.batchSystemTest.TESBatchSystemTest
method), 504

createBatchSystem()
(toil.test.batchSystems.batchSystemTest.TorqueBatchSystemTest
method), 509

createClusterSettings()
(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 448

createClusterSettings()
(toil.provisioners.aws.awsProvisioner.AWSProvisioner
method), 438

createClusterSettings()
(toil.provisioners.gceProvisioner.GCEProvisioner
method), 461

createClusterSettings()
(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 553

createClusterUtil()
(toil.test.provisioners.clusterTest.AbstractClusterTest
method), 556

createClusterUtil()
(toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest
method), 557

createConfig() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest
class method), 502

createConfig() (toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest
class method), 505

createFileStore() (toil.fileStores.abstractFileStore.AbstractFileStore
static method), 303

createJobs() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker
method), 228

createJobs() (toil.batchSystems.htcondor.HTCondorBatchSystem.Worker
method), 241

createRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 341

createSummary() (in module toil.utils.toilStats), 661
cross() (in module toil.wdl.wdl_functions), 694
current_process_name_for (in module

toil.lib.threading), 433
current_process_name_lock (in module

toil.lib.threading), 433
current_size (toil.bus.ClusterSizeMessage attribute),

726
currentCommit (in module toil), 800
currentCommit (in module toil.version), 796
custom_repr (in module toil.jobStores.aws.jobStore),

332
customDockerInitCmd() (in module toil), 802
customInitCmd() (in module toil), 802

Index 835

Toil Documentation, Release 5.11.0

CWL_UNSUPPORTED_REQUIREMENT_EXCEPTION (in mod-
ule toil.cwl.utils), 300

CWL_UNSUPPORTED_REQUIREMENT_EXIT_CODE (in mod-
ule toil.cwl.utils), 300

CWLGather (class in toil.cwl.cwltoil), 294
CWLJob (class in toil.cwl.cwltoil), 291
CWLJobWrapper (class in toil.cwl.cwltoil), 291
CWLNamedJob (class in toil.cwl.cwltoil), 290
CWLOnARMTest (class in toil.test.cwl.cwlTest), 521
CWLScatter (class in toil.cwl.cwltoil), 293
cwltoil_was_removed() (in module toil.cwl.cwltoil),

276
cwltool_version (in module toil.cwl), 302
cwltool_version (in module toil.version), 796
CWLUnsupportedException, 300
CWLv10Test (class in toil.test.cwl.cwlTest), 519
CWLv11Test (class in toil.test.cwl.cwlTest), 520
CWLv12Test (class in toil.test.cwl.cwlTest), 521
CWLWorkflow (class in toil.cwl.cwltoil), 296
CWLWorkflowTest (class in toil.test.cwl.cwlTest), 518

D
d() (in module toil.test.src.promisesTest), 607
daddy() (toil.batchSystems.singleMachine.SingleMachineBatchSystem

method), 262
data (toil.server.wes.amazon_wes_utils.WorkflowPlan

attribute), 477
data() (toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest

method), 546
DataDict (class in toil.server.wes.amazon_wes_utils),

477
DataStructuresTest (class in

toil.test.mesos.MesosDataStructuresTest),
541

dbFn() (in module tutorial_services), 817
DeadlockException, 272
debugWorkflow

module, 819
DECIMAL_PREFIXES (in module toil.lib.conversions), 395
decode_directory() (in module toil.cwl.cwltoil), 284
decorateSubHeader() (in module toil.utils.toilStats),

660
decorateTitle() (in module toil.utils.toilStats), 660
default() (toil.wdl.wdl_functions.WDLJSONEncoder

method), 686
DEFAULT_BATCH_SYSTEM (in module

toil.batchSystems.registry), 260
default_caching() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 356
default_caching() (toil.jobStores.fileJobStore.FileJobStore

method), 358
DEFAULT_DELAYS (in module toil.lib.retry), 429
DEFAULT_LOGLEVEL (in module toil.statsAndLogging),

791

DEFAULT_LSF_UNITS (in module
toil.batchSystems.lsfHelper), 253

DEFAULT_RESOURCE_UNITS (in module
toil.batchSystems.lsfHelper), 254

DEFAULT_TASK_COMPLETION_TIMEOUT
(toil.provisioners.gceProvisioner.GCEProvisioner
attribute), 461

DEFAULT_TIMEOUT (in module toil.lib.retry), 429
DEFAULT_TMPDIR (in module toil.cwl.cwltoil), 276
DEFAULT_TMPDIR_PREFIX (in module toil.cwl.cwltoil),

276
default_value (toil.wdl.wdl_types.WDLFileType prop-

erty), 704
default_value (toil.wdl.wdl_types.WDLStringType

property), 702
default_value (toil.wdl.wdl_types.WDLType prop-

erty), 700
defaultLevel (toil.realtimeLogger.RealtimeLogger at-

tribute), 781
defaultLineLen (in module toil.test.sort.restart_sort),

568
defaultLineLen (in module toil.test.sort.sort), 569
defaultLineLen (in module toil.test.sort.sortTest), 571
defaultLines (in module toil.test.sort.restart_sort), 568
defaultLines (in module toil.test.sort.sort), 569
defaultLines (in module toil.test.sort.sortTest), 571
defaultN (in module toil.test.sort.sortTest), 571
defaultRequirements (in module

toil.test.batchSystems.batchSystemTest), 501
defaultTargetTime (in module toil.common), 731
DefaultWithSource (class in toil.cwl.cwltoil), 279
defer() (toil.job.Job method), 766
DeferredFunction (class in toil.deferred), 742
DeferredFunctionManager (class in toil.deferred), 743
DeferredFunctionTest (class in

toil.test.src.deferredFunctionTest), 579
defined() (in module toil.wdl.wdl_functions), 688
delete() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 347
delete() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

method), 324
delete_file() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 351
delete_file() (toil.jobStores.aws.jobStore.AWSJobStore

method), 330
delete_file() (toil.jobStores.fileJobStore.FileJobStore

method), 362
delete_file() (toil.jobStores.googleJobStore.GoogleJobStore

method), 371
delete_iam_instance_profile() (in module

toil.lib.aws.utils), 387
delete_iam_role() (in module toil.lib.aws.utils), 387
delete_job() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 347

836 Index

Toil Documentation, Release 5.11.0

delete_job() (toil.jobStores.aws.jobStore.AWSJobStore
method), 326

delete_job() (toil.jobStores.fileJobStore.FileJobStore
method), 360

delete_job() (toil.jobStores.googleJobStore.GoogleJobStore
method), 368

delete_job() (toil.toilState.ToilState method), 795
delete_s3_bucket() (in module toil.lib.aws.utils), 388
delete_sdb_domain() (in module toil.lib.aws.utils),

387
deleteFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 351
deleteGlobalFile() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 308
deleteGlobalFile() (toil.fileStores.cachingFileStore.CachingFileStore

method), 315
deleteGlobalFile() (toil.fileStores.nonCachingFileStore.NonCachingFileStore

method), 319
deleteLocalFile() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 307
deleteLocalFile() (toil.fileStores.cachingFileStore.CachingFileStore

method), 314
deleteLocalFile() (toil.fileStores.nonCachingFileStore.NonCachingFileStore

method), 319
DemoService (class in tutorial_services), 816
deployScript() (toil.test.ApplianceTestSupport.Appliance

method), 648
deprecated() (in module toil.lib.compatibility), 394
description (toil.job.Job property), 760
desired_labels (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement

attribute), 244
desired_size (toil.bus.ClusterDesiredSizeMessage at-

tribute), 726
destroy() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 344
destroy() (toil.jobStores.aws.jobStore.AWSJobStore

method), 332
destroy() (toil.jobStores.fileJobStore.FileJobStore

method), 358
destroy() (toil.jobStores.googleJobStore.GoogleJobStore

method), 366
destroy_all_process_names() (in module

toil.lib.threading), 433
destroyCluster() (toil.provisioners.abstractProvisioner.AbstractProvisioner

method), 450
destroyCluster() (toil.provisioners.aws.awsProvisioner.AWSProvisioner

method), 440
destroyCluster() (toil.provisioners.gceProvisioner.GCEProvisioner

method), 462
destroyCluster() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner

method), 555
destroyCluster() (toil.test.provisioners.clusterTest.AbstractClusterTest

method), 556
destroyClusterUtil()

(toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest
method), 557

determine_load_listing() (in module
toil.cwl.cwltoil), 297

devirtualize_files() (in module toil.wdl.wdltoil),
712

DIAL_SPECIFIC_REGION_CONFIG (in module
toil.jobStores.aws.utils), 333

diamond() (in module toil.test.src.jobTest), 600
dict_from_JSON() (in module toil.wdl.utils), 682
DirectoryContents (in module toil.cwl.cwltoil), 283
DirectoryResource (class in toil.resource), 785
DirectoryStructure (in module toil.cwl.utils), 301
dirname (in module toil.lib.ec2nodes), 406
dirPath (toil.resource.ModuleDescriptor attribute), 786
dirty (in module toil.version), 796
disableAutoDeployment (toil.common.Config at-

tribute), 732
disconnected() (toil.batchSystems.mesos.executor.MesosExecutor

method), 211
discoverFiles (class in tutorial_discoverfiles), 806
disk (toil.job.Job property), 760
disk (toil.job.RequirementsDict attribute), 750
disk (toil.job.Requirer property), 750
distVersion (in module toil.test), 639
distVersion (in module toil.version), 796
do_eval() (toil.cwl.cwltoil.StepValueFrom method), 279
do_GET() (toil.test.jobStores.jobStoreTest.StubHttpRequestHandler

method), 531
dockerCall() (in module toil.lib.docker), 397
dockerCheckOutput() (in module toil.lib.docker), 397
DockerCheckTest (class in

toil.test.src.dockerCheckTest), 580
dockerKill() (in module toil.lib.docker), 399
dockerName (in module toil.version), 796
dockerRegistry (in module toil.version), 796
dockerStop() (in module toil.lib.docker), 399
dockerTag (in module toil.version), 796
DockerTest (class in toil.test.lib.dockerTest), 535
down() (in module toil.test.sort.restart_sort), 568
down() (in module toil.test.sort.sort), 569
download() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

method), 324
download() (toil.resource.Resource method), 784
download() (toil.test.cwl.cwlTest.CWLWorkflowTest

method), 518
download_directory()

(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 518

download_file_from_internet() (in module
toil.server.utils), 490

download_file_from_s3() (in module
toil.server.utils), 491

download_structure() (in module toil.cwl.utils), 301

Index 837

Toil Documentation, Release 5.11.0

download_subdirectory()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 518

downloadStream() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo
method), 324

DownReturnType (in module toil.cwl.utils), 300
drop_missing_files() (in module toil.wdl.wdltoil),

712
duplicate_quotes() (toil.batchSystems.htcondor.HTCondorBatchSystem.Worker

method), 242

E
e() (in module toil.test.src.promisesTest), 607
E2Instances (in module toil.lib.generatedEC2Lists),

411
ec2InstancesByRegion (in module

toil.lib.generatedEC2Lists), 411
EC2Regions (in module toil.lib.ec2nodes), 406
emit() (toil.test.src.realtimeLoggerTest.MessageDetector

method), 608
empty() (toil.bus.MessageInbox method), 728
enable_public_objects() (in module

toil.lib.aws.utils), 388
encapsulate() (toil.job.Job method), 764
EncapsulatedJob (class in toil.job), 770
encapsulatedJobFn() (in module

toil.test.src.jobEncapsulationTest), 591
encode_data (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

attribute), 630
encode_data_dir (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

attribute), 630
encode_directory() (in module toil.cwl.cwltoil), 284
EncryptedAWSJobStoreTest (class in

toil.test.jobStores.jobStoreTest), 530
ensure_no_collisions() (in module toil.cwl.cwltoil),

277
enter() (toil.lib.threading.LastProcessStandingArena

method), 434
envPrefix (toil.realtimeLogger.RealtimeLogger at-

tribute), 781
ERROR (toil.batchSystems.abstractBatchSystem.BatchJobExitReason

attribute), 215
error() (toil.batchSystems.mesos.executor.MesosExecutor

method), 211
error_meets_conditions() (in module toil.lib.retry),

429
errorChild() (in module toil.test.src.jobTest), 600
ErrorCondition (class in toil.lib.retry), 427
establish_boto3_session() (in module

toil.lib.aws.session), 385
eval_prep() (toil.cwl.cwltoil.StepValueFrom method),

278
evaluate_call_inputs() (in module toil.wdl.wdltoil),

711

evaluate_decl() (in module toil.wdl.wdltoil), 711
evaluate_defaultable_decl() (in module

toil.wdl.wdltoil), 711
evaluate_named_expression() (in module

toil.wdl.wdltoil), 711
evaluatePromisedRequirements()

(toil.job.PromisedRequirementFunctionWrappingJob
method), 770

EVICTION_THRESHOLD (in module
toil.provisioners.clusterScaler), 453

ex_create_multiple_nodes()
(toil.provisioners.gceProvisioner.GCEProvisioner
method), 463

exactPython (in module toil.version), 796
example_alwaysfail

module, 810
example_cachingbenchmark

module, 810
exc_info (toil.batchSystems.mesos.test.ExceptionalThread

attribute), 203
exc_info (toil.lib.threading.ExceptionalThread at-

tribute), 432
exc_info (toil.test.ExceptionalThread attribute), 638
ExceptionalThread (class in

toil.batchSystems.mesos.test), 202
ExceptionalThread (class in toil.lib.threading), 431
ExceptionalThread (class in toil.test), 637
executor() (in module

toil.batchSystems.contained_executor), 237
executorLost() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 210
exists() (toil.cwl.cwltoil.ToilFsAccess method), 285
exists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 345
exists() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

class method), 324
exists() (toil.server.wes.toil_backend.ToilWorkflow

method), 484
exit_code (toil.bus.JobCompletedMessage attribute),

724
exit_code (toil.bus.JobStatus attribute), 729
EXIT_STATUS_UNAVAILABLE_VALUE (in module

toil.batchSystems.abstractBatchSystem), 214
exitReason (toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo

attribute), 216
exitStatus (toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo

attribute), 216
Expando (class in toil.lib.expando), 409
expectedShutdownErrors() (in module

toil.provisioners.aws.awsProvisioner), 437
explode() (in module example_alwaysfail), 810
export_file() (toil.common.Toil method), 736
export_file() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 308

838 Index

Toil Documentation, Release 5.11.0

export_file() (toil.fileStores.cachingFileStore.CachingFileStore
method), 315

export_file() (toil.fileStores.nonCachingFileStore.NonCachingFileStore
method), 319

export_file() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 342

exportFile() (toil.common.Toil method), 736
exportFile() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 308
exportFile() (toil.fileStores.cachingFileStore.CachingFileStore

method), 315
exportFile() (toil.fileStores.nonCachingFileStore.NonCachingFileStore

method), 319
exportFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 342
external_batch_id (toil.bus.ExternalBatchIdMessage

attribute), 725
external_batch_id (toil.bus.JobStatus attribute), 730
ExternalBatchIdMessage (class in toil.bus), 725
externalStoreCache (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test

attribute), 526
extract() (toil.cwl.cwltoil.CWLGather static method),

294
extractFile() (toil.provisioners.node.Node method),

464

F
f0() (in module toil.test.provisioners.restartScript), 561
FAILED (toil.batchSystems.abstractBatchSystem.BatchJobExitReason

attribute), 215
FailedConstraint (in module

toil.provisioners.clusterScaler), 453
FailedJobsException, 744
failing_job_fn() (in module toil.test.src.busTest), 575
failingFn() (in module toil.test.src.restartDAGTest),

612
FailOnce (class in toil.test.src.checkpointTest), 578
fake_mpi_run

module, 820
FakeBatchSystem (class in

toil.test.batchSystems.test_slurm), 514
fallbackGetJobExitCode()

(toil.batchSystems.lsf.LSFBatchSystem.Worker
method), 252

fallbackRunningJobIDs()
(toil.batchSystems.lsf.LSFBatchSystem.Worker
method), 250

fC() (in module toil.common), 740
feed_deadlock_watchdog() (toil.leader.Leader

method), 776
feed_flatcar_ami_release() (in module

toil.lib.aws.ami), 380
fetch_and_unzip_from_s3()

(toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

class method), 631
fetch_call_outputs()

(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

fetch_ignoredifs() (toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

fetch_ignoredifs_chain()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

fetch_scatter_inputs()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

fetch_scatter_inputs_chain()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

fetch_scatter_outputs()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

fetch_scratch() (toil.server.wes.toil_backend.ToilWorkflow
method), 484

fetch_state() (toil.server.wes.toil_backend.ToilWorkflow
method), 484

fetch_url() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

fetchEC2Index() (in module toil.lib.ec2nodes), 407
fetchEC2InstanceDict() (in module

toil.lib.ec2nodes), 407
fetchFiles() (in module toil.test.utils.toilDebugTest),

620
fetchJobStoreFiles() (in module

toil.utils.toilDebugFile), 651
fetchRootJob() (toil.utils.toilStatus.ToilStatus

method), 665
fetchUserJobs() (toil.utils.toilStatus.ToilStatus

method), 665
file_exists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 351
file_exists() (toil.jobStores.aws.jobStore.AWSJobStore

method), 329
file_exists() (toil.jobStores.fileJobStore.FileJobStore

method), 362
file_exists() (toil.jobStores.googleJobStore.GoogleJobStore

method), 371
fileContents (toil.test.jobStores.jobStoreTest.StubHttpRequestHandler

attribute), 531
fileExists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 351
FileID (class in toil.fileStores), 320
fileID (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

property), 323
fileIsCached() (toil.fileStores.cachingFileStore.CachingFileStore

method), 313
FileJobStore (class in toil.jobStores.fileJobStore), 357
FileJobStoreTest (class in

Index 839

Toil Documentation, Release 5.11.0

toil.test.jobStores.jobStoreTest), 528
FileResource (class in toil.resource), 784
files (toil.server.wes.amazon_wes_utils.WorkflowPlan

attribute), 477
FilesDict (class in toil.server.wes.amazon_wes_utils),

477
fileSizeAndTime() (in module

toil.jobStores.aws.utils), 334
FileStateStore (class in toil.server.utils), 493
FileStateStoreTest (class in

toil.test.server.serverTest), 562
FileStateStoreURLTest (class in

toil.test.server.serverTest), 563
filesToDelete (toil.job.Promise attribute), 774
fileStore (toil.job.JobFunctionWrappingJob property),

769
fileStore (toil.job.ServiceHostJob property), 772
fileStoreChild() (in module

toil.test.src.jobFileStoreTest), 593
fileStoreString (in module

toil.test.src.jobFileStoreTest), 593
fileTestJob() (in module

toil.test.src.jobFileStoreTest), 593
filter_out_static_nodes()

(toil.provisioners.clusterScaler.ClusterScaler
method), 458

filter_skip_null() (in module toil.cwl.cwltoil), 276
filtered_secondary_files() (in module

toil.cwl.cwltoil), 297
filterServiceHosts() (toil.job.JobDescription

method), 754
filterSuccessors() (toil.job.JobDescription method),

753
finalize_jobs() (in module debugWorkflow), 820
find() (in module toil.batchSystems.lsfHelper), 254
find_asts() (toil.wdl.versions.draft2.AnalyzeDraft2WDL

method), 669
find_default_container() (in module

toil.cwl.cwltoil), 299
find_first_match() (in module

toil.batchSystems.lsfHelper), 254
findMesosBinary() (toil.batchSystems.mesos.test.MesosTestSupport.MesosThread

method), 205
FINISHED (toil.batchSystems.abstractBatchSystem.BatchJobExitReason

attribute), 215
fits() (toil.provisioners.clusterScaler.NodeReservation

method), 454
flat_crossproduct_scatter()

(toil.cwl.cwltoil.CWLScatter method), 293
flatcar_release_feed_amis() (in module

toil.lib.aws.ami), 379
FlatcarFeedTest (class in toil.test.lib.test_ec2), 538
flatten() (in module toil.lib.iterables), 416
flatten() (in module toil.wdl.wdl_functions), 695

flatten_tags() (in module toil.lib.aws.utils), 390
floor() (in module toil.wdl.wdl_functions), 690
flush() (toil.lib.io.WriteWatchingStream method), 415
fn() (in module tutorial_promises), 815
fn1Test() (in module toil.test.src.jobTest), 599
fn2Test() (in module toil.test.src.jobTest), 599
fnTest() (in module toil.test.src.jobServiceTest), 596
FollowOn (class in toil.test.src.helloWorldTest), 588
FollowOn (class in toil.test.src.toilContextManagerTest),

616
Foo (class in toil.test.src.userDefinedJobArgTypeTest),

618
for_each() (toil.bus.MessageInbox method), 728
for_each_node() (in module toil.wdl.wdltoil), 709
forgetJob() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker

method), 228
FORGO (in module toil.lib.docker), 397
format_std_out_err_glob()

(toil.batchSystems.abstractBatchSystem.BatchSystemSupport
method), 222

format_std_out_err_path()
(toil.batchSystems.abstractBatchSystem.BatchSystemSupport
method), 221

formatLogStream() (toil.statsAndLogging.StatsAndLogging
class method), 791

forModule() (toil.resource.ModuleDescriptor class
method), 786

forPath() (toil.fileStores.FileID class method), 321
frameworkMessage() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 209
frameworkMessage() (toil.batchSystems.mesos.executor.MesosExecutor

method), 211
fromCommand() (toil.resource.ModuleDescriptor class

method), 787
fromItem() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

class method), 324
full_policy() (toil.provisioners.aws.awsProvisioner.AWSProvisioner

method), 441
FunctionWrappingJob (class in toil.job), 768

G
gatk_data (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

attribute), 630
gatk_data_dir (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

attribute), 630
GCEAutoscaleTest (class in

toil.test.provisioners.gceProvisionerTest),
558

GCEAutoscaleTestMultipleNodeTypes (class in
toil.test.provisioners.gceProvisionerTest), 558

GCEProvisioner (class in
toil.provisioners.gceProvisioner), 461

GCERestartTest (class in
toil.test.provisioners.gceProvisionerTest),

840 Index

Toil Documentation, Release 5.11.0

559
GCEStaticAutoscaleTest (class in

toil.test.provisioners.gceProvisionerTest),
558

gen_message_bus_path() (in module toil.bus), 730
generate_attachment_path_names() (in module

toil.server.cli.wes_cwl_runner), 468
generate_default_job_store() (in module

toil.cwl.cwltoil), 298
generate_docker_bashscript_file() (in module

toil.wdl.wdl_functions), 687
generate_locator() (in module toil.jobStores.utils),

378
generate_stdout_file() (in module

toil.wdl.wdl_functions), 689
generateTorqueWrapper()

(toil.batchSystems.torque.TorqueBatchSystem.Worker
method), 272

get() (in module toil.utils.toilStats), 660
get() (toil.server.utils.AbstractStateStore method), 492
get() (toil.server.utils.FileStateStore method), 494
get() (toil.server.utils.MemoryStateCache method), 491
get() (toil.server.utils.S3StateStore method), 494
get() (toil.server.utils.WorkflowStateStore method), 495
get_actions_from_policy_document() (in module

toil.lib.aws.iam), 382
get_analyzer() (in module toil.wdl.utils), 682
get_aws_account_num() (in module toil.lib.aws.iam),

383
get_aws_zone_from_boto() (in module toil.lib.aws),

391
get_aws_zone_from_boto() (in module

toil.provisioners.aws), 442
get_aws_zone_from_environment() (in module

toil.lib.aws), 391
get_aws_zone_from_environment() (in module

toil.provisioners.aws), 442
get_aws_zone_from_environment_region() (in

module toil.lib.aws), 391
get_aws_zone_from_environment_region() (in

module toil.provisioners.aws), 442
get_aws_zone_from_metadata() (in module

toil.lib.aws), 391
get_aws_zone_from_metadata() (in module

toil.provisioners.aws), 442
get_aws_zone_from_spot_market() (in module

toil.provisioners.aws), 443
get_batch_logs_dir()

(toil.batchSystems.abstractBatchSystem.BatchSystemSupport
method), 221

get_best_aws_zone() (in module
toil.provisioners.aws), 443

get_bucket_region() (in module toil.lib.aws.utils),
389

get_conf_file() (in module
toil.batchSystems.lsfHelper), 254

get_container_engine() (in module toil.cwl.cwltoil),
292

get_current_aws_region() (in module toil.lib.aws),
390

get_current_aws_zone() (in module toil.lib.aws), 391
get_current_state()

(toil.server.utils.WorkflowStateMachine
method), 497

get_default_kubernetes_owner()
(toil.batchSystems.kubernetes.KubernetesBatchSystem
class method), 247

get_default_mesos_endpoint()
(toil.batchSystems.mesos.batchSystem.MesosBatchSystem
class method), 210

get_default_tes_endpoint()
(toil.batchSystems.tes.TESBatchSystem class
method), 268

get_deps_from_cwltool() (in module
toil.server.cli.wes_cwl_runner), 470

get_empty_file_store_id()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 350

get_empty_file_store_id()
(toil.jobStores.aws.jobStore.AWSJobStore
method), 326

get_empty_file_store_id()
(toil.jobStores.fileJobStore.FileJobStore
method), 361

get_empty_file_store_id()
(toil.jobStores.googleJobStore.GoogleJobStore
method), 370

get_env() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 344

get_env() (toil.jobStores.googleJobStore.GoogleJobStore
method), 368

get_error_body() (in module toil.lib.retry), 428
get_error_code() (in module toil.lib.retry), 427
get_error_message() (in module toil.lib.retry), 428
get_error_status() (in module toil.lib.retry), 428
get_failed_constraints()

(toil.provisioners.clusterScaler.NodeReservation
method), 454

get_file_class() (in module toil.server.utils), 491
get_file_paths_in_bindings() (in module

toil.wdl.wdltoil), 712
get_file_size() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 352
get_file_size() (toil.jobStores.aws.jobStore.AWSJobStore

method), 329
get_file_size() (toil.jobStores.fileJobStore.FileJobStore

method), 363
get_file_size() (toil.jobStores.googleJobStore.GoogleJobStore

Index 841

Toil Documentation, Release 5.11.0

method), 371
get_flatcar_ami() (in module toil.lib.aws.ami), 379
get_free_snapshot()

(toil.batchSystems.abstractBatchSystem.ResourceSet
method), 226

get_health() (toil.server.wes.toil_backend.ToilBackend
method), 488

get_homepage() (toil.server.wes.toil_backend.ToilBackend
method), 488

get_individual_local_accelerators() (in module
toil.lib.accelerators), 393

get_is_directory() (toil.jobStores.abstractJobStore.AbstractJobStore
class method), 343

get_iso_time() (in module toil.server.utils), 490
get_job() (toil.toilState.ToilState method), 795
get_job_count() (toil.serviceManager.ServiceManager

method), 788
get_job_kind() (toil.job.JobDescription method), 756
get_local_workflow_coordination_dir()

(toil.common.Toil class method), 737
get_lsf_units() (in module

toil.batchSystems.lsfHelper), 254
get_lsf_units_from_stream() (in module

toil.batchSystems.lsfHelper), 254
get_lsf_version() (in module

toil.batchSystems.lsfHelper), 254
get_max_startup_seconds()

(toil.test.batchSystems.batchSystemTest.AWSBatchBatchSystemTest
method), 504

get_max_startup_seconds()
(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest
method), 502

get_messages_path()
(toil.server.wes.toil_backend.ToilWorkflow
method), 485

get_object_for_url() (in module toil.lib.aws.utils),
389

get_omp_threads() (in module
toil.test.batchSystems.batchSystemTest), 511

get_or_die() (in module toil.utils.toilMain), 654
get_output_files() (toil.server.wes.toil_backend.ToilWorkflow

method), 485
get_policy_permissions() (in module

toil.lib.aws.iam), 383
get_process_name() (in module toil.lib.threading),

433
get_public_ip() (in module toil.lib.misc), 419
get_public_url() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 346
get_public_url() (toil.jobStores.aws.jobStore.AWSJobStore

method), 331
get_public_url() (toil.jobStores.fileJobStore.FileJobStore

method), 359
get_public_url() (toil.jobStores.googleJobStore.GoogleJobStore

method), 367
get_ready_client() (toil.serviceManager.ServiceManager

method), 789
get_restrictive_environment_for_local_accelerators()

(in module toil.lib.accelerators), 393
get_root_job_return_value()

(toil.jobStores.abstractJobStore.AbstractJobStore
method), 341

get_run_log() (toil.server.wes.abstract_backend.WESBackend
method), 475

get_run_log() (toil.server.wes.toil_backend.ToilBackend
method), 487

get_run_status() (toil.server.wes.abstract_backend.WESBackend
method), 475

get_run_status() (toil.server.wes.toil_backend.ToilBackend
method), 487

get_runs() (toil.server.wes.toil_backend.ToilBackend
method), 486

get_service_info() (toil.server.wes.abstract_backend.WESBackend
method), 474

get_service_info() (toil.server.wes.toil_backend.ToilBackend
method), 486

get_shared_public_url()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 346

get_shared_public_url()
(toil.jobStores.aws.jobStore.AWSJobStore
method), 331

get_shared_public_url()
(toil.jobStores.fileJobStore.FileJobStore
method), 359

get_shared_public_url()
(toil.jobStores.googleJobStore.GoogleJobStore
method), 367

get_size() (toil.jobStores.abstractJobStore.AbstractJobStore
class method), 343

get_size() (toil.jobStores.abstractJobStore.JobStoreSupport
class method), 356

get_size() (toil.jobStores.aws.jobStore.AWSJobStore
class method), 327

get_size() (toil.jobStores.fileJobStore.FileJobStore
class method), 360

get_size() (toil.jobStores.googleJobStore.GoogleJobStore
class method), 372

get_startable_service()
(toil.serviceManager.ServiceManager method),
789

get_state() (toil.server.wes.tasks.ToilWorkflowRunner
method), 480

get_state() (toil.server.wes.toil_backend.ToilBackend
method), 486

get_state() (toil.server.wes.toil_backend.ToilWorkflow
method), 484

get_state_store() (toil.test.server.serverTest.AWSStateStoreTest

842 Index

Toil Documentation, Release 5.11.0

method), 564
get_state_store() (toil.test.server.serverTest.FileStateStoreTest

method), 563
get_state_store() (toil.test.server.serverTest.FileStateStoreURLTest

method), 563
get_state_store() (toil.test.server.serverTest.hidden.AbstractStateStoreTest

method), 562
get_stderr() (toil.server.wes.toil_backend.ToilBackend

method), 487
get_stderr_path() (toil.server.wes.toil_backend.ToilWorkflow

method), 485
get_stdout() (toil.server.wes.toil_backend.ToilBackend

method), 487
get_stdout_path() (toil.server.wes.toil_backend.ToilWorkflow

method), 485
get_supertype() (in module toil.wdl.wdltoil), 709
get_task_logs() (toil.server.wes.toil_backend.ToilWorkflow

method), 485
get_temp_file() (in module toil.test), 640
get_toil_coordination_dir() (toil.common.Toil

class method), 737
get_total_cpu_time() (in module toil.lib.resources),

423
get_total_cpu_time_and_memory_usage() (in mod-

ule toil.lib.resources), 423
get_unservable_client()

(toil.serviceManager.ServiceManager method),
789

get_user_name() (in module toil.lib.misc), 419
get_version() (in module toil.wdl.utils), 682
get_version() (toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters

method), 469
getAdjacencyList() (toil.test.src.jobTest.JobTest

static method), 599
getAutoscaledInstanceShapes()

(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 448

getAverageRuntime()
(toil.provisioners.clusterScaler.ClusterScaler
method), 456

getBaseInstanceConfiguration()
(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 450

getBatchSystemID() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker
method), 228

getBatchSystemName()
(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest
method), 503

getBatchSystemName()
(toil.test.batchSystems.batchSystemTest.MesosBatchSystemJobTest
method), 510

getBatchSystemName()
(toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemJobTest
method), 510

getBatchSystemName()
(toil.test.src.promisedRequirementTest.MesosPromisedRequirementsTest
method), 605

getBatchSystemName()
(toil.test.src.promisedRequirementTest.SingleMachinePromisedRequirementsTest
method), 604

getCacheAvailable()
(toil.fileStores.cachingFileStore.CachingFileStore
method), 313

getCacheExtraJobSpace()
(toil.fileStores.cachingFileStore.CachingFileStore
method), 313

getCacheLimit() (toil.fileStores.cachingFileStore.CachingFileStore
method), 312

getCacheUnusedJobRequirement()
(toil.fileStores.cachingFileStore.CachingFileStore
method), 313

getCacheUsed() (toil.fileStores.cachingFileStore.CachingFileStore
method), 312

getContainerName() (in module toil.lib.docker), 400
getCounterPath() (toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest

method), 603
getCounters() (in module

toil.test.batchSystems.batchSystemTest), 511
getDefaultArgumentParser() (toil.job.Job.Runner

static method), 758
getDefaultOptions() (toil.job.Job.Runner static

method), 758
getDirSizeRecursively() (in module toil.common),

741
getEmptyFileStoreID()

(toil.jobStores.abstractJobStore.AbstractJobStore
method), 349

getEnv() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 344

getEnvString() (toil.batchSystems.htcondor.HTCondorBatchSystem.Worker
method), 242

getEstimatedNodeCounts()
(toil.provisioners.clusterScaler.ClusterScaler
method), 457

getFileReaderCount()
(toil.fileStores.cachingFileStore.CachingFileStore
method), 313

getFileSize() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 352

getFileSystemSize() (in module toil.common), 741
getGlobalFileSize()

(toil.fileStores.abstractFileStore.AbstractFileStore
method), 307

getIssuedBatchJobIDs()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 218

getIssuedBatchJobIDs()
(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

Index 843

Toil Documentation, Release 5.11.0

method), 230
getIssuedBatchJobIDs()

(toil.batchSystems.awsBatch.AWSBatchBatchSystem
method), 234

getIssuedBatchJobIDs()
(toil.batchSystems.kubernetes.KubernetesBatchSystem
method), 247

getIssuedBatchJobIDs()
(toil.batchSystems.mesos.batchSystem.MesosBatchSystem
method), 208

getIssuedBatchJobIDs()
(toil.batchSystems.parasol.ParasolBatchSystem
method), 258

getIssuedBatchJobIDs()
(toil.batchSystems.singleMachine.SingleMachineBatchSystem
method), 263

getIssuedBatchJobIDs()
(toil.batchSystems.tes.TESBatchSystem
method), 269

getIssuedLocalJobIDs()
(toil.batchSystems.local_support.BatchSystemLocalSupport
method), 249

getJobExitCode() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker
method), 230

getJobExitCode() (toil.batchSystems.gridengine.GridEngineBatchSystem.Worker
method), 239

getJobExitCode() (toil.batchSystems.htcondor.HTCondorBatchSystem.Worker
method), 242

getJobExitCode() (toil.batchSystems.lsf.LSFBatchSystem.Worker
method), 251

getJobExitCode() (toil.batchSystems.slurm.SlurmBatchSystem.Worker
method), 266

getJobExitCode() (toil.batchSystems.torque.TorqueBatchSystem.Worker
method), 272

getJobExitCodeBACCT()
(toil.batchSystems.lsf.LSFBatchSystem.Worker
method), 252

getJobIDsForResultsFile()
(toil.batchSystems.parasol.ParasolBatchSystem
method), 258

getJobs() (toil.leader.Leader method), 777
getJobs() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner

method), 554
getJobStore() (toil.common.Toil class method), 735
getKubernetesAutoscalerSetupCommands()

(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 451

getKubernetesAutoscalerSetupCommands()
(toil.provisioners.aws.awsProvisioner.AWSProvisioner
method), 439

getKubernetesCloudProvider()
(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 451

getKubernetesCloudProvider()

(toil.provisioners.aws.awsProvisioner.AWSProvisioner
method), 439

getKubernetesValues()
(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 451

getLeader() (toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 449

getLeader() (toil.provisioners.aws.awsProvisioner.AWSProvisioner
method), 441

getLeader() (toil.provisioners.gceProvisioner.GCEProvisioner
method), 462

getLeader() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 555

getLocalTempDir() (toil.fileStores.abstractFileStore.AbstractFileStore
method), 304

getLocalTempFile() (toil.fileStores.abstractFileStore.AbstractFileStore
method), 304

getLocalTempFileName()
(toil.fileStores.abstractFileStore.AbstractFileStore
method), 305

getLocalWorkflowDir() (toil.common.Toil class
method), 737

getLogFileHandle() (toil.job.JobDescription method),
756

getLogger() (toil.realtimeLogger.RealtimeLogger class
method), 781

getLogLevelString() (in module toil.lib.bioio), 393
getMidPoint() (in module toil.test.sort.restart_sort),

569
getMidPoint() (in module toil.test.sort.sort), 570
getNextJobID() (toil.batchSystems.local_support.BatchSystemLocalSupport

method), 249
getNodeID() (in module toil.common), 734
getNodes() (toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem

method), 223
getNodes() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 209
getNodes() (toil.provisioners.clusterScaler.ClusterScaler

method), 458
getNodes() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner

method), 554
getNodeShape() (toil.provisioners.abstractProvisioner.AbstractProvisioner

method), 450
getNodeShape() (toil.provisioners.aws.awsProvisioner.AWSProvisioner

method), 439
getNodeShape() (toil.provisioners.gceProvisioner.GCEProvisioner

method), 462
getNodeShape() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner

method), 554
getNumberOfJobsIssued() (toil.leader.Leader

method), 777
getNumberOfJobsIssued()

(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 554

844 Index

Toil Documentation, Release 5.11.0

getNumberOfNodes() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 555

getNumRetries() (toil.test.src.checkpointTest.CheckRetryCount
method), 576

getOne() (in module toil.test.src.promisedRequirementTest),
604

getOptions() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest
method), 503

getOptions() (toil.test.batchSystems.batchSystemTest.MesosBatchSystemJobTest
method), 510

getOptions() (toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest
method), 603

getOptions() (toil.test.src.promisedRequirementTest.MesosPromisedRequirementsTest
method), 604

getPIDStatus() (toil.utils.toilStatus.ToilStatus static
method), 664

getProvisionedWorkers()
(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 449

getProvisionedWorkers()
(toil.provisioners.aws.awsProvisioner.AWSProvisioner
method), 440

getProvisionedWorkers()
(toil.provisioners.gceProvisioner.GCEProvisioner
method), 462

getProvisionedWorkers()
(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 554

getPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 345

getRandomEdge() (toil.test.src.jobTest.JobTest static
method), 599

getRequiredNodes() (toil.provisioners.clusterScaler.BinPackedFit
method), 454

getRootJobReturnValue()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 341

getRootJobs() (toil.job.Job method), 765
getRootVolID() (toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest

method), 546
getRootVolID() (toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest

method), 547
getRunningBatchJobIDs()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 218

getRunningBatchJobIDs()
(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem
method), 230

getRunningBatchJobIDs()
(toil.batchSystems.awsBatch.AWSBatchBatchSystem
method), 234

getRunningBatchJobIDs()
(toil.batchSystems.kubernetes.KubernetesBatchSystem
method), 247

getRunningBatchJobIDs()
(toil.batchSystems.mesos.batchSystem.MesosBatchSystem
method), 208

getRunningBatchJobIDs()
(toil.batchSystems.parasol.ParasolBatchSystem
method), 258

getRunningBatchJobIDs()
(toil.batchSystems.singleMachine.SingleMachineBatchSystem
method), 263

getRunningBatchJobIDs()
(toil.batchSystems.tes.TESBatchSystem
method), 269

getRunningJobIDs() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker
method), 229

getRunningJobIDs() (toil.batchSystems.gridengine.GridEngineBatchSystem.Worker
method), 239

getRunningJobIDs() (toil.batchSystems.htcondor.HTCondorBatchSystem.Worker
method), 242

getRunningJobIDs() (toil.batchSystems.lsf.LSFBatchSystem.Worker
method), 250

getRunningJobIDs() (toil.batchSystems.slurm.SlurmBatchSystem.Worker
method), 265

getRunningJobIDs() (toil.batchSystems.torque.TorqueBatchSystem.Worker
method), 271

getRunningLocalJobIDs()
(toil.batchSystems.local_support.BatchSystemLocalSupport
method), 249

getSchedulingStatusMessage()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 219

getSchedulingStatusMessage()
(toil.batchSystems.singleMachine.SingleMachineBatchSystem
method), 262

getSharedPublicUrl()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 346

getSize() (toil.jobStores.abstractJobStore.AbstractJobStore
class method), 343

getSize() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo
method), 324

getSpaceUsableForJobs()
(toil.fileStores.cachingFileStore.CachingFileStore
method), 313

getStaticNodes() (toil.provisioners.clusterScaler.ClusterScaler
method), 457

getStats() (in module toil.utils.toilStats), 662
getStatus() (toil.utils.toilStatus.ToilStatus static

method), 664
getSuccessors() (toil.leader.Leader method), 779
getTempFile() (in module toil.lib.bioio), 394
getThirtyTwoMb() (in module

toil.test.src.promisedRequirementTest), 604
getToilWorkDir() (toil.common.Toil static method),

736

Index 845

Toil Documentation, Release 5.11.0

getTopologicalOrderingOfJobs() (toil.job.Job
method), 767

getUpdatedBatchJob()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 218

getUpdatedBatchJob()
(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem
method), 230

getUpdatedBatchJob()
(toil.batchSystems.awsBatch.AWSBatchBatchSystem
method), 233

getUpdatedBatchJob()
(toil.batchSystems.kubernetes.KubernetesBatchSystem
method), 246

getUpdatedBatchJob()
(toil.batchSystems.mesos.batchSystem.MesosBatchSystem
method), 208

getUpdatedBatchJob()
(toil.batchSystems.parasol.ParasolBatchSystem
method), 258

getUpdatedBatchJob()
(toil.batchSystems.singleMachine.SingleMachineBatchSystem
method), 263

getUpdatedBatchJob()
(toil.batchSystems.tes.TESBatchSystem
method), 268

getUpdatedBatchJob()
(toil.batchSystems.torque.TorqueBatchSystem.Worker
method), 271

getUpdatedLocalJob()
(toil.batchSystems.local_support.BatchSystemLocalSupport
method), 249

getUserScript() (toil.job.EncapsulatedJob method),
772

getUserScript() (toil.job.FunctionWrappingJob
method), 768

getUserScript() (toil.job.Job method), 766
getUserScript() (toil.job.ServiceHostJob method),

773
getValue() (toil.job.PromisedRequirement method),

774
getWaitDuration() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

class method), 231
getWaitDuration() (toil.batchSystems.gridengine.GridEngineBatchSystem

class method), 240
getWaitDuration() (toil.batchSystems.lsf.LSFBatchSystem

method), 252
getWaitDuration() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 209
getWaitDuration() (toil.test.batchSystems.test_slurm.FakeBatchSystem

method), 514
getWidth() (toil.utils.toilStats.ColumnWidths method),

658
getWorkerContexts()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 220

getWorkerContexts()
(toil.batchSystems.cleanup_support.BatchSystemCleanupSupport
method), 235

getWorkersInCluster()
(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 555

glob() (in module toil.lib.resources), 423
glob() (toil.cwl.cwltoil.ToilFsAccess method), 284
global_mutex() (in module toil.lib.threading), 434
globalFileStoreJobFn() (in module tuto-

rial_managing2), 805
globalize() (toil.resource.ModuleDescriptor method),

787
goodChild() (in module toil.test.src.resumabilityTest),

612
google_retry() (in module

toil.jobStores.googleJobStore), 366
google_retry() (in module

toil.test.jobStores.jobStoreTest), 525
google_retry_predicate() (in module

toil.jobStores.googleJobStore), 365
GOOGLE_STORAGE (in module

toil.jobStores.googleJobStore), 365
GoogleJobStore (class in

toil.jobStores.googleJobStore), 366
GoogleJobStoreTest (class in

toil.test.jobStores.jobStoreTest), 529
grandChildJob() (in module

toil.test.batchSystems.batchSystemTest), 507
greater_than() (toil.batchSystems.mesos.Shape

method), 212
greater_than() (toil.provisioners.abstractProvisioner.Shape

method), 446
greatGrandChild() (in module

toil.test.batchSystems.batchSystemTest), 507
gridengine_batch_system_factory() (in module

toil.batchSystems.registry), 260
GridEngineBatchSystem (class in

toil.batchSystems.gridengine), 238
GridEngineBatchSystem.Worker (class in

toil.batchSystems.gridengine), 238
GridEngineBatchSystemTest (class in

toil.test.batchSystems.batchSystemTest), 508
GunicornApplication (class in toil.server.wsgi_app),

498

H
handle() (toil.realtimeLogger.LoggingDatagramHandler

method), 780
handle_errors() (in module

toil.server.wes.abstract_backend), 474

846 Index

Toil Documentation, Release 5.11.0

handleLocalJob() (toil.batchSystems.local_support.BatchSystemLocalSupport
method), 248

hasAutoscaledNodeTypes()
(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 448

hasChild() (toil.cwl.cwltoil.SelfJob method), 295
hasChild() (toil.job.Job method), 761
hasChild() (toil.job.JobDescription method), 755
hasFollowOn() (toil.job.Job method), 762
hasFollowOn() (toil.job.JobDescription method), 755
hasPredecessor() (toil.job.Job method), 762
hasService() (toil.job.Job method), 762
hasServiceHostJob() (toil.job.JobDescription

method), 755
HAVE_S3 (in module toil.server.utils), 490
have_working_nvidia_docker_runtime() (in mod-

ule toil.lib.accelerators), 393
have_working_nvidia_docker_runtime() (in mod-

ule toil.test), 636
have_working_nvidia_smi() (in module

toil.lib.accelerators), 392
have_working_nvidia_smi() (in module toil.test), 636
headers (toil.test.jobStores.jobStoreTest.GoogleJobStoreTest

attribute), 529
hello_world() (in module toil.test.mesos.helloWorld),

542
hello_world_child() (in module

toil.test.mesos.helloWorld), 542
HelloWorld (class in toil.test.src.helloWorldTest), 588
HelloWorld (class in toil.test.src.toilContextManagerTest),

616
HelloWorld (class in tutorial_arguments), 818
HelloWorld (class in tutorial_invokeworkflow), 813
HelloWorld (class in tutorial_invokeworkflow2), 807
HelloWorld (class in tutorial_staging), 815
helloWorld() (in module tutorial_helloworld), 805
helloWorld() (in module tutorial_jobfunctions), 808
helloWorld() (in module tutorial_multiplejobs), 818
helloWorld() (in module tutorial_multiplejobs2), 807
helloWorld() (in module tutorial_multiplejobs3), 812
helloWorld() (in module tutorial_quickstart), 811
HelloWorldFollowOn (class in toil.test.mesos.stress),

544
HelloWorldJob (class in toil.test.mesos.stress), 544
HelloWorldTest (class in toil.test.src.helloWorldTest),

587
heredoc_wdl() (in module toil.wdl.wdl_functions), 690
hidden (class in toil.test.batchSystems.batchSystemTest),

501
hidden (class in toil.test.server.serverTest), 562
hidden (class in toil.test.src.fileStoreTest), 582
hidden (class in toil.test.src.promisedRequirementTest),

603
hidden.AbstractBatchSystemJobTest (class in

toil.test.batchSystems.batchSystemTest), 502
hidden.AbstractBatchSystemTest (class in

toil.test.batchSystems.batchSystemTest), 501
hidden.AbstractCachingFileStoreTest (class in

toil.test.src.fileStoreTest), 583
hidden.AbstractFileStoreTest (class in

toil.test.src.fileStoreTest), 582
hidden.AbstractGridEngineBatchSystemTest

(class in toil.test.batchSystems.batchSystemTest),
503

hidden.AbstractNonCachingFileStoreTest (class
in toil.test.src.fileStoreTest), 583

hidden.AbstractPromisedRequirementsTest (class
in toil.test.src.promisedRequirementTest), 603

hidden.AbstractStateStoreTest (class in
toil.test.server.serverTest), 562

hms_duration_to_seconds() (in module
toil.lib.conversions), 396

htcondor_batch_system_factory() (in module
toil.batchSystems.registry), 260

HTCondorBatchSystem (class in
toil.batchSystems.htcondor), 240

HTCondorBatchSystem.Worker (class in
toil.batchSystems.htcondor), 240

HTCondorBatchSystemTest (class in
toil.test.batchSystems.batchSystemTest), 509

human2bytes() (in module toil.lib.conversions), 396
human2bytes() (in module toil.lib.humanize), 412

I
iam_client (in module toil.lib.ec2), 403
IAMTest (class in toil.test.lib.aws.test_iam), 532
iC() (in module toil.common), 740
ignoreNode() (toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem

method), 223
ignoreNode() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 208
ignoreNode() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner

method), 553
IllegalDeletionCacheError, 310
import_file() (toil.common.Toil method), 736
import_file() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 308
import_file() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 342
import_files() (in module toil.cwl.cwltoil), 287
import_files() (in module toil.wdl.wdltoil), 712
ImportExportFileTest (class in

toil.test.src.importExportFileTest), 589
importFile() (toil.common.Toil method), 736
importFile() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 308
importFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 341

Index 847

Toil Documentation, Release 5.11.0

in_contexts() (in module toil.worker), 798
inconsistencies_detected() (in module

toil.lib.ec2), 401
INCONSISTENCY_ERRORS (in module toil.lib.ec2), 401
indent() (toil.wdl.wdl_synthesis.SynthesizeWDL

method), 699
Info (class in toil.batchSystems.singleMachine), 264
init() (toil.server.wsgi_app.GunicornApplication

method), 498
init_action_collection() (in module

toil.lib.aws.iam), 381
initialize() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 340
initialize() (toil.jobStores.aws.jobStore.AWSJobStore

method), 325
initialize() (toil.jobStores.fileJobStore.FileJobStore

method), 358
initialize() (toil.jobStores.googleJobStore.GoogleJobStore

method), 366
initialize_jobs() (in module debugWorkflow), 820
initialize_jobs() (in module tutorial_cwlexample),

813
initialize_run() (toil.server.wes.tasks.ToilWorkflowRunner

method), 481
initialized (toil.realtimeLogger.RealtimeLogger at-

tribute), 781
injectFile() (toil.provisioners.node.Node method),

464
InnerClass (class in toil.lib.objects), 421
innerLoop() (toil.leader.Leader method), 776
insertJob() (toil.batchSystems.mesos.JobQueue

method), 213
instance_type (toil.bus.ClusterDesiredSizeMessage at-

tribute), 726
instance_type (toil.bus.ClusterSizeMessage attribute),

726
InstanceType (class in toil.lib.ec2nodes), 406
InsufficientSystemResources, 224
integrative() (in module toil.test), 644
internet_connection() (in module

toil.utils.toilUpdateEC2Instances), 666
InvalidAWSJobStoreTest (class in

toil.test.jobStores.jobStoreTest), 530
InvalidClusterStateException, 438
InvalidImportExportUrlException, 337
InvalidSourceCacheError, 311
InvalidVersion, 302
inVirtualEnv() (in module toil), 801
invoke() (toil.deferred.DeferredFunction method), 743
is_active() (toil.serviceManager.ServiceManager

method), 790
is_context() (in module toil.wdl.versions.v1), 676
is_false() (toil.cwl.cwltoil.Conditional method), 277
is_number() (in module toil.wdl.wdl_functions), 689

is_ok() (toil.server.wes.tasks.MultiprocessingTaskRunner
class method), 483

is_ok() (toil.server.wes.tasks.TaskRunner static
method), 482

is_retryable_kubernetes_error() (in module
toil.batchSystems.kubernetes), 243

is_running() (toil.serviceManager.ServiceManager
method), 790

is_subtree_done() (toil.job.JobDescription method),
754

isAcyclic() (toil.test.src.jobTest.JobTest method), 599
isdir() (toil.cwl.cwltoil.ToilFsAccess method), 285
isfile() (toil.cwl.cwltoil.ToilFsAccess method), 285
isNumber() (in module toil.lib.ec2nodes), 406
issueBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 218
issueBatchJob() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

method), 230
issueBatchJob() (toil.batchSystems.awsBatch.AWSBatchBatchSystem

method), 233
issueBatchJob() (toil.batchSystems.htcondor.HTCondorBatchSystem

method), 242
issueBatchJob() (toil.batchSystems.kubernetes.KubernetesBatchSystem

method), 246
issueBatchJob() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 208
issueBatchJob() (toil.batchSystems.parasol.ParasolBatchSystem

method), 257
issueBatchJob() (toil.batchSystems.singleMachine.SingleMachineBatchSystem

method), 263
issueBatchJob() (toil.batchSystems.tes.TESBatchSystem

method), 268
issueJob() (toil.leader.Leader method), 777
issueJobs() (toil.leader.Leader method), 777
issueQueingServiceJobs() (toil.leader.Leader

method), 777
issueServiceJob() (toil.leader.Leader method), 777
IT (in module toil.lib.iterables), 416
itemsPerBatchDelete

(toil.jobStores.aws.jobStore.AWSJobStore
attribute), 325

ItemT (toil.batchSystems.kubernetes.KubernetesBatchSystem
attribute), 245

J
j (in module tutorial_services), 817
Job (class in toil.job), 757
Job.Runner (class in toil.job), 758
Job.Service (class in toil.job), 759
JOB_DIR_PREFIX (toil.jobStores.fileJobStore.FileJobStore

attribute), 358
job_exists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 345

848 Index

Toil Documentation, Release 5.11.0

job_exists() (toil.jobStores.aws.jobStore.AWSJobStore
method), 326

job_exists() (toil.jobStores.fileJobStore.FileJobStore
method), 359

job_exists() (toil.jobStores.googleJobStore.GoogleJobStore
method), 367

job_exists() (toil.toilState.ToilState method), 794
job_id (toil.bus.JobAnnotationMessage attribute), 725
job_id (toil.bus.JobCompletedMessage attribute), 724
job_id (toil.bus.JobFailedMessage attribute), 724
job_id (toil.bus.JobIssuedMessage attribute), 723
job_id (toil.bus.JobMissingMessage attribute), 724
job_id (toil.bus.JobUpdatedMessage attribute), 723
JOB_NAME_DIR_PREFIX

(toil.jobStores.fileJobStore.FileJobStore at-
tribute), 358

job_store_id (toil.bus.JobStatus attribute), 729
job_type (toil.bus.JobCompletedMessage attribute), 724
job_type (toil.bus.JobFailedMessage attribute), 724
job_type (toil.bus.JobIssuedMessage attribute), 723
JobAnnotationMessage (class in toil.bus), 724
JobClass (class in toil.test.src.userDefinedJobArgTypeTest),

618
JobCompletedMessage (class in toil.bus), 723
JobDescription (class in toil.job), 752
JobDescriptionTest (class in

toil.test.src.jobDescriptionTest), 590
JobEncapsulationTest (class in

toil.test.src.jobEncapsulationTest), 591
JobException, 767
JobFailedMessage (class in toil.bus), 724
JobFileStoreTest (class in

toil.test.src.jobFileStoreTest), 592
jobFunction() (in module

toil.test.src.userDefinedJobArgTypeTest),
618

JobFunctionWrappingJob (class in toil.job), 769
JobGraphDeadlockException, 768
jobID (toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo

attribute), 216
jobIDs() (toil.batchSystems.mesos.JobQueue method),

213
JobIssuedMessage (class in toil.bus), 723
JobMissingMessage (class in toil.bus), 724
JobPromiseConstraintError, 746
JobQueue (class in toil.batchSystems.mesos), 213
jobs (toil.worker.StatsDict attribute), 797
jobs() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 347
jobs() (toil.jobStores.aws.jobStore.AWSJobStore

method), 326
jobs() (toil.jobStores.fileJobStore.FileJobStore method),

360
jobs() (toil.jobStores.googleJobStore.GoogleJobStore

method), 368
JobServiceTest (class in toil.test.src.jobServiceTest),

594
jobsPerBatchInsert (toil.jobStores.aws.jobStore.AWSJobStore

attribute), 325
JobStatus (class in toil.bus), 729
jobstore (in module tutorial_cwlexample), 813
jobstore (in module tutorial_docker), 805
jobstore (in module tutorial_dynamic), 807
jobstore (in module tutorial_invokeworkflow), 814
jobstore (in module tutorial_invokeworkflow2), 808
jobstore (in module tutorial_jobfunctions), 808
jobstore (in module tutorial_managing), 810
jobstore (in module tutorial_managing2), 805
jobstore (in module tutorial_promises), 815
jobstore (in module tutorial_promises2), 817
jobstore (in module tutorial_quickstart), 811
jobstore (in module tutorial_requirements), 814
jobstore (in module tutorial_services), 817
jobstore (in module tutorial_staging), 815
jobStore (toil.common.Config attribute), 732
JOBSTORE_HELP (in module toil.common), 733
JobStoreExistsException, 339
jobStoreID (toil.job.Job property), 759
jobStorePath (in module debugWorkflow), 820
JobStoreSupport (class in

toil.jobStores.abstractJobStore), 356
jobStoreType (toil.test.src.deferredFunctionTest.DeferredFunctionTest

attribute), 579
jobStoreType (toil.test.src.fileStoreTest.CachingFileStoreTestWithAwsJobStore

attribute), 586
jobStoreType (toil.test.src.fileStoreTest.CachingFileStoreTestWithFileJobStore

attribute), 586
jobStoreType (toil.test.src.fileStoreTest.CachingFileStoreTestWithGoogleJobStore

attribute), 587
jobStoreType (toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest

attribute), 582
jobStoreType (toil.test.src.fileStoreTest.NonCachingFileStoreTestWithAwsJobStore

attribute), 586
jobStoreType (toil.test.src.fileStoreTest.NonCachingFileStoreTestWithFileJobStore

attribute), 585
jobStoreType (toil.test.src.fileStoreTest.NonCachingFileStoreTestWithGoogleJobStore

attribute), 586
JobStoreUnavailableException, 378
JobTest (class in toil.test.src.jobTest), 597
JobTooBigError, 459
JobTuple (in module toil.batchSystems.abstractGridEngineBatchSystem),

227
JobTuple (in module toil.batchSystems.htcondor), 240
JobUpdatedMessage (class in toil.bus), 723
join() (toil.batchSystems.mesos.test.ExceptionalThread

method), 203
join() (toil.cwl.cwltoil.ToilFsAccess method), 285

Index 849

Toil Documentation, Release 5.11.0

join() (toil.lib.threading.ExceptionalThread method),
432

join() (toil.test.ExceptionalThread method), 638
json_var() (toil.wdl.wdl_synthesis.SynthesizeWDL

method), 698
JSONDatagramHandler (class in toil.realtimeLogger),

780
JustAValue (class in toil.cwl.cwltoil), 279

K
keys() (in module toil.wdl.wdl_functions), 694
KeyValuesList (in module

toil.batchSystems.kubernetes), 244
kill_services() (toil.serviceManager.ServiceManager

method), 789
killBatchJobs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 218
killBatchJobs() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

method), 230
killBatchJobs() (toil.batchSystems.awsBatch.AWSBatchBatchSystem

method), 234
killBatchJobs() (toil.batchSystems.kubernetes.KubernetesBatchSystem

method), 247
killBatchJobs() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 208
killBatchJobs() (toil.batchSystems.parasol.ParasolBatchSystem

method), 258
killBatchJobs() (toil.batchSystems.singleMachine.SingleMachineBatchSystem

method), 263
killBatchJobs() (toil.batchSystems.tes.TESBatchSystem

method), 269
KILLED (toil.batchSystems.abstractBatchSystem.BatchJobExitReason

attribute), 215
killJob() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker

method), 229
killJob() (toil.batchSystems.gridengine.GridEngineBatchSystem.Worker

method), 239
killJob() (toil.batchSystems.htcondor.HTCondorBatchSystem.Worker

method), 242
killJob() (toil.batchSystems.lsf.LSFBatchSystem.Worker

method), 250
killJob() (toil.batchSystems.slurm.SlurmBatchSystem.Worker

method), 265
killJob() (toil.batchSystems.torque.TorqueBatchSystem.Worker

method), 271
killJobs() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker

method), 228
killJobs() (toil.leader.Leader method), 778
killLocalJobs() (toil.batchSystems.local_support.BatchSystemLocalSupport

method), 248
killTask() (toil.batchSystems.mesos.executor.MesosExecutor

method), 211
kind (toil.job.AcceleratorRequirement attribute), 748
KNOWN_EXTANT_IMAGES (in module toil), 803

kubernetes (in module toil.lib.retry), 426
kubernetes_batch_system_factory() (in module

toil.batchSystems.registry), 260
kubernetes_host_path

(toil.batchSystems.kubernetes.KubernetesBatchSystem.KubernetesConfig
attribute), 245

kubernetes_owner (toil.batchSystems.kubernetes.KubernetesBatchSystem.KubernetesConfig
attribute), 245

kubernetes_pod_timeout
(toil.batchSystems.kubernetes.KubernetesBatchSystem.KubernetesConfig
attribute), 245

kubernetes_policy()
(toil.provisioners.aws.awsProvisioner.AWSProvisioner
method), 441

kubernetes_service_account
(toil.batchSystems.kubernetes.KubernetesBatchSystem.KubernetesConfig
attribute), 245

KubernetesBatchSystem (class in
toil.batchSystems.kubernetes), 244

KubernetesBatchSystem.DecoratorWrapper (class
in toil.batchSystems.kubernetes), 244

KubernetesBatchSystem.KubernetesConfig (class
in toil.batchSystems.kubernetes), 245

KubernetesBatchSystem.Placement (class in
toil.batchSystems.kubernetes), 244

KubernetesBatchSystemBenchTest (class in
toil.test.batchSystems.batchSystemTest), 503

KubernetesBatchSystemTest (class in
toil.test.batchSystems.batchSystemTest), 503

L
LastProcessStandingArena (class in

toil.lib.threading), 434
launchCluster() (toil.provisioners.abstractProvisioner.AbstractProvisioner

method), 448
launchCluster() (toil.provisioners.aws.awsProvisioner.AWSProvisioner

method), 438
launchCluster() (toil.provisioners.gceProvisioner.GCEProvisioner

method), 461
launchCluster() (toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest

method), 547
launchCluster() (toil.test.provisioners.aws.awsProvisionerTest.AWSManagedAutoscaleTest

method), 547
launchCluster() (toil.test.provisioners.aws.awsProvisionerTest.AWSStaticAutoscaleTest

method), 547
launchCluster() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner

method), 555
launchCluster() (toil.test.provisioners.clusterTest.AbstractClusterTest

method), 556
launchCluster() (toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest

method), 558
launchCluster() (toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTest

method), 558

850 Index

Toil Documentation, Release 5.11.0

launchCluster() (toil.test.provisioners.gceProvisionerTest.GCEStaticAutoscaleTest
method), 558

launchTask() (toil.batchSystems.mesos.executor.MesosExecutor
method), 211

Leader (class in toil.leader), 776
LEADER_HOME_DIR (toil.provisioners.abstractProvisioner.AbstractProvisioner

attribute), 448
leave() (toil.lib.threading.LastProcessStandingArena

method), 434
length() (in module toil.wdl.wdl_functions), 694
link_file() (in module toil.server.utils), 490
link_merge() (toil.cwl.cwltoil.ResolveSource method),

278
list_objects_for_url() (in module

toil.lib.aws.utils), 389
list_runs() (toil.server.wes.abstract_backend.WESBackend

method), 474
list_runs() (toil.server.wes.toil_backend.ToilBackend

method), 487
list_url() (toil.jobStores.abstractJobStore.AbstractJobStore

class method), 343
listdir() (toil.cwl.cwltoil.ToilFsAccess method), 285
load() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 346
load() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

class method), 324
load() (toil.resource.ModuleDescriptor method), 787
load() (toil.server.wsgi_app.GunicornApplication

method), 498
load_config() (toil.server.wsgi_app.GunicornApplication

method), 498
load_contents() (toil.test.cwl.cwlTest.CWLWorkflowTest

method), 518
load_job() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 346
load_job() (toil.jobStores.aws.jobStore.AWSJobStore

method), 326
load_job() (toil.jobStores.fileJobStore.FileJobStore

method), 359
load_job() (toil.jobStores.googleJobStore.GoogleJobStore

method), 368
load_root_job() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 341
load_workflow() (toil.toilState.ToilState method), 794
loadJob() (toil.job.Job class method), 767
loadModules() (in module toil.utils.toilMain), 655
loadOrCreate() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

class method), 324
loadOrFail() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

class method), 324
loadRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 341
localDirPath (toil.resource.Resource property), 783
LocalFileStoreJob (class in tutorial_managing), 809

localize() (toil.resource.ModuleDescriptor method),
787

localPath (toil.resource.DirectoryResource property),
785

localPath (toil.resource.FileResource property), 784
localPath (toil.resource.Resource property), 783
LocalThrottle (class in toil.lib.throttle), 435
locator (toil.jobStores.abstractJobStore.AbstractJobStore

property), 340
lock (toil.batchSystems.mesos.test.MesosTestSupport.MesosThread

attribute), 205
lock (toil.realtimeLogger.RealtimeLogger attribute), 781
lock (toil.test.ApplianceTestSupport.Appliance at-

tribute), 647
lock (toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolThread

attribute), 512
log (in module toil), 800
log (in module toil.batchSystems.mesos.batchSystem),

207
log (in module toil.batchSystems.mesos.executor), 211
log (in module toil.batchSystems.mesos.test), 204
log (in module toil.jobStores.googleJobStore), 365
log (in module toil.jobStores.utils), 374
log (in module toil.test.batchSystems.parasolTestSupport),

511
log (in module toil.test.cwl.cwlTest), 517
log (in module toil.test.provisioners.aws.awsProvisionerTest),

545
log (in module toil.test.provisioners.clusterTest), 556
log (in module toil.test.provisioners.gceProvisionerTest),

557
log (in module toil.test.provisioners.provisionerTest), 560
log (in module toil.test.src.miscTests), 601
log (in module toil.test.src.promisedRequirementTest),

603
log (in module toil.test.src.threadingTest), 614
log() (toil.common.ToilMetrics method), 739
log() (toil.job.Job method), 763
log_bindings() (in module toil.wdl.wdltoil), 708
log_for_run() (toil.server.wes.abstract_backend.WESBackend

static method), 475
log_to_file() (in module toil.statsAndLogging), 793
logAccess() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 306
logClusterDesiredSize() (toil.common.ToilMetrics

method), 739
logClusterSize() (toil.common.ToilMetrics method),

739
logCompletedJob() (toil.common.ToilMetrics method),

739
logDiskUsage() (in module

toil.test.src.promisedRequirementTest), 604
logFailedJob() (toil.common.ToilMetrics method),

739

Index 851

Toil Documentation, Release 5.11.0

logFile (toil.common.Config attribute), 731
logger (in module debugWorkflow), 820
logger (in module toil.batchSystems.abstractBatchSystem),

214
logger (in module toil.batchSystems.abstractGridEngineBatchSystem),

227
logger (in module toil.batchSystems.awsBatch), 232
logger (in module toil.batchSystems.cleanup_support),

235
logger (in module toil.batchSystems.contained_executor),

237
logger (in module toil.batchSystems.gridengine), 238
logger (in module toil.batchSystems.htcondor), 240
logger (in module toil.batchSystems.kubernetes), 243
logger (in module toil.batchSystems.local_support), 248
logger (in module toil.batchSystems.lsf), 250
logger (in module toil.batchSystems.lsfHelper), 254
logger (in module toil.batchSystems.options), 255
logger (in module toil.batchSystems.parasol), 257
logger (in module toil.batchSystems.registry), 260
logger (in module toil.batchSystems.singleMachine), 261
logger (in module toil.batchSystems.slurm), 264
logger (in module toil.batchSystems.tes), 267
logger (in module toil.batchSystems.torque), 270
logger (in module toil.bus), 723
logger (in module toil.common), 731
logger (in module toil.cwl), 302
logger (in module toil.cwl.cwltoil), 276
logger (in module toil.cwl.utils), 300
logger (in module toil.deferred), 742
logger (in module toil.exceptions), 744
logger (in module toil.fileStores.abstractFileStore), 303
logger (in module toil.fileStores.cachingFileStore), 310
logger (in module toil.fileStores.nonCachingFileStore),

316
logger (in module toil.job), 746
logger (in module toil.jobStores.abstractJobStore), 337
logger (in module toil.jobStores.aws.jobStore), 322
logger (in module toil.jobStores.aws.utils), 333
logger (in module toil.jobStores.fileJobStore), 357
logger (in module toil.leader), 776
logger (in module toil.lib.aws), 390
logger (in module toil.lib.aws.ami), 379
logger (in module toil.lib.aws.iam), 381
logger (in module toil.lib.aws.session), 384
logger (in module toil.lib.aws.utils), 387
logger (in module toil.lib.docker), 397
logger (in module toil.lib.ec2), 401
logger (in module toil.lib.ec2nodes), 406
logger (in module toil.lib.humanize), 412
logger (in module toil.lib.io), 413
logger (in module toil.lib.misc), 419
logger (in module toil.lib.retry), 427
logger (in module toil.lib.threading), 431

logger (in module toil.provisioners), 465
logger (in module toil.provisioners.abstractProvisioner),

445
logger (in module toil.provisioners.aws), 443
logger (in module toil.provisioners.aws.awsProvisioner),

437
logger (in module toil.provisioners.clusterScaler), 453
logger (in module toil.provisioners.gceProvisioner), 461
logger (in module toil.provisioners.node), 463
logger (in module toil.realtimeLogger), 779
logger (in module toil.resource), 782
logger (in module toil.server.app), 488
logger (in module toil.server.cli.wes_cwl_runner), 468
logger (in module toil.server.utils), 490
logger (in module toil.server.wes.abstract_backend),

472
logger (in module toil.server.wes.amazon_wes_utils),

476
logger (in module toil.server.wes.tasks), 480
logger (in module toil.server.wes.toil_backend), 484
logger (in module toil.serviceManager), 788
logger (in module toil.statsAndLogging), 791
logger (in module toil.test), 639
logger (in module toil.test.batchSystems.batchSystemTest),

501
logger (in module toil.test.jobStores.jobStoreTest), 525
logger (in module toil.test.lib.aws.test_iam), 532
logger (in module toil.test.lib.aws.test_s3), 532
logger (in module toil.test.lib.aws.test_utils), 534
logger (in module toil.test.lib.dockerTest), 535
logger (in module toil.test.lib.test_conversions), 537
logger (in module toil.test.lib.test_ec2), 538
logger (in module toil.test.lib.test_misc), 539
logger (in module toil.test.provisioners.clusterScalerTest),

549
logger (in module toil.test.server.serverTest), 561
logger (in module toil.test.sort.sortTest), 571
logger (in module toil.test.src.autoDeploymentTest), 572
logger (in module toil.test.src.busTest), 574
logger (in module toil.test.src.deferredFunctionTest),

579
logger (in module toil.test.src.fileStoreTest), 582
logger (in module toil.test.src.jobFileStoreTest), 592
logger (in module toil.test.src.jobServiceTest), 594
logger (in module toil.test.src.jobTest), 597
logger (in module toil.test.src.regularLogTest), 609
logger (in module toil.test.src.restartDAGTest), 611
logger (in module toil.test.utils.toilDebugTest), 619
logger (in module toil.test.utils.toilKillTest), 621
logger (in module toil.test.utils.utilsTest), 622
logger (in module toil.toilState), 794
logger (in module toil.utils.toilClean), 650
logger (in module toil.utils.toilDebugFile), 651
logger (in module toil.utils.toilDebugJob), 652

852 Index

Toil Documentation, Release 5.11.0

logger (in module toil.utils.toilDestroyCluster), 653
logger (in module toil.utils.toilKill), 653
logger (in module toil.utils.toilLaunchCluster), 654
logger (in module toil.utils.toilRsyncCluster), 655
logger (in module toil.utils.toilServer), 656
logger (in module toil.utils.toilSshCluster), 656
logger (in module toil.utils.toilStats), 658
logger (in module toil.utils.toilStatus), 663
logger (in module toil.utils.toilUpdateEC2Instances),

666
logger (in module toil.wdl.toilwdl), 681
logger (in module toil.wdl.versions.dev), 667
logger (in module toil.wdl.versions.draft2), 668
logger (in module toil.wdl.versions.v1), 676
logger (in module toil.wdl.wdl_analysis), 683
logger (in module toil.wdl.wdl_functions), 686
logger (in module toil.wdl.wdl_synthesis), 695
logger (in module toil.wdl.wdltoil), 708
logger (in module toil.worker), 797
logger (toil.realtimeLogger.RealtimeLogger attribute),

781
LoggingDatagramHandler (class in

toil.realtimeLogger), 779
loggingServer (toil.realtimeLogger.RealtimeLogger at-

tribute), 781
loginCredentialsPromise (in module tuto-

rial_services), 817
logIssuedJob() (toil.common.ToilMetrics method),

739
logMissingJob() (toil.common.ToilMetrics method),

739
logProcessContext() (in module toil), 804
logQueueSize() (toil.common.ToilMetrics method),

739
logRotating (toil.common.Config attribute), 732
LogTest (class in toil.test.src.realtimeLoggerTest), 608
logToMaster() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 309
logWithFormatting()

(toil.statsAndLogging.StatsAndLogging class
method), 792

LongTestFollowOn (class in toil.test.mesos.stress), 543
LongTestJob (class in toil.test.mesos.stress), 543
lookup() (toil.resource.Resource class method), 784
lookupEnvVar() (in module toil), 802
LOST (toil.batchSystems.abstractBatchSystem.BatchJobExitReason

attribute), 215
LSB_PARAMS_FILENAME (in module

toil.batchSystems.lsfHelper), 253
lsf_batch_system_factory() (in module

toil.batchSystems.registry), 260
LSF_CONF_ENV (in module toil.batchSystems.lsfHelper),

253
LSF_CONF_FILENAME (in module

toil.batchSystems.lsfHelper), 253
LSF_JSON_OUTPUT_MIN_VERSION (in module

toil.batchSystems.lsfHelper), 254
LSFBatchSystem (class in toil.batchSystems.lsf), 250
LSFBatchSystem.Worker (class in

toil.batchSystems.lsf), 250
LSFBatchSystemTest (class in

toil.test.batchSystems.batchSystemTest), 509
LSFHelperTest (class in

toil.test.batchSystems.test_lsf_helper), 513

M
MagicExpando (class in toil.lib.expando), 410
main() (in module example_alwaysfail), 810
main() (in module example_cachingbenchmark), 811
main() (in module mkFile), 819
main() (in module toil.batchSystems.mesos.executor),

211
main() (in module toil.cwl.cwltoil), 299
main() (in module toil.server.cli.wes_cwl_runner), 471
main() (in module toil.test.mesos.helloWorld), 542
main() (in module toil.test.mesos.stress), 544
main() (in module toil.test.sort.restart_sort), 569
main() (in module toil.test.sort.sort), 570
main() (in module toil.test.src.userDefinedJobArgTypeTest),

618
main() (in module toil.utils.toilClean), 650
main() (in module toil.utils.toilDebugFile), 652
main() (in module toil.utils.toilDebugJob), 652
main() (in module toil.utils.toilDestroyCluster), 653
main() (in module toil.utils.toilKill), 653
main() (in module toil.utils.toilLaunchCluster), 654
main() (in module toil.utils.toilMain), 654
main() (in module toil.utils.toilRsyncCluster), 655
main() (in module toil.utils.toilServer), 656
main() (in module toil.utils.toilSshCluster), 656
main() (in module toil.utils.toilStats), 662
main() (in module toil.utils.toilStatus), 665
main() (in module toil.utils.toilUpdateEC2Instances),

666
main() (in module toil.wdl.toilwdl), 681
main() (in module toil.wdl.wdltoil), 720
main() (in module toil.worker), 798
main() (in module tutorial_discoverfiles), 806
make_gather_bindings()

(toil.wdl.wdltoil.WDLSectionJob method),
717

make_parser() (in module fake_mpi_run), 821
make_path_mapper() (toil.cwl.cwltoil.ToilTool

method), 282
make_public_dir() (in module toil.lib.io), 414
make_tests() (in module toil.test), 645
makeFileToSort() (in module

toil.test.sort.restart_sort), 569

Index 853

Toil Documentation, Release 5.11.0

makeFileToSort() (in module toil.test.sort.sort), 570
makeImportExportTests()

(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
class method), 527

makeJob() (in module toil.cwl.cwltoil), 293
makeJobGraph() (toil.test.src.jobTest.JobTest method),

599
makeLoadable() (toil.resource.ModuleDescriptor

method), 787
makePickle() (toil.realtimeLogger.JSONDatagramHandler

method), 780
makeRandomDAG() (toil.test.src.jobTest.JobTest static

method), 599
MalformedRequestException, 472
ManagedNodesNotSupportedException, 445
map_over_files_in_bindings() (in module

toil.wdl.wdltoil), 713
map_over_typed_files_in_binding() (in module

toil.wdl.wdltoil), 713
map_over_typed_files_in_bindings() (in module

toil.wdl.wdltoil), 713
map_over_typed_files_in_value() (in module

toil.wdl.wdltoil), 713
MAT (in module toil.lib.memoize), 418
MAX_BATCH_SIZE (in module

toil.jobStores.googleJobStore), 365
MAX_CANCELING_SECONDS (in module toil.server.utils),

496
max_jobs (toil.common.Config attribute), 732
max_local_jobs (toil.common.Config attribute), 732
MAX_POLL_COUNT (in module

toil.batchSystems.awsBatch), 232
maxAttributesPerItem

(toil.jobStores.aws.utils.SDBHelper attribute),
334

maxBinarySize() (toil.jobStores.aws.utils.SDBHelper
class method), 334

maxBucketNameLen (toil.jobStores.aws.jobStore.AWSJobStore
attribute), 325

maxConcurrency() (in module
toil.test.src.promisedRequirementTest), 604

MaxCoresSingleMachineBatchSystemTest (class in
toil.test.batchSystems.batchSystemTest), 506

maxInlinedSize() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo
static method), 324

maxNameLen (toil.jobStores.aws.jobStore.AWSJobStore
attribute), 325

maxRawValueSize (toil.jobStores.aws.utils.SDBHelper
attribute), 334

maxValueSize (toil.jobStores.aws.utils.SDBHelper at-
tribute), 334

maxWaitTime (toil.provisioners.node.Node attribute),
463

measureConcurrency() (in module

toil.test.batchSystems.batchSystemTest), 510
meets_boto_error_code_condition() (in module

toil.lib.retry), 428
meets_error_code_condition() (in module

toil.lib.retry), 428
meets_error_message_condition() (in module

toil.lib.retry), 428
MEMLIMIT (toil.batchSystems.abstractBatchSystem.BatchJobExitReason

attribute), 215
memoize (in module toil), 800
memoize (in module toil.lib.memoize), 418
memoize (in module toil.test), 637
memory (toil.job.Job property), 760
memory (toil.job.RequirementsDict attribute), 750
memory (toil.job.Requirer property), 751
MemoryStateCache (class in toil.server.utils), 491
MemoryStateStore (class in toil.server.utils), 493
merge() (in module toil.test.sort.restart_sort), 568
merge() (in module toil.test.sort.sort), 570
merge() (in module tutorial_promises2), 817
mesos_batch_system_factory() (in module

toil.batchSystems.registry), 260
MesosBatchSystem (class in

toil.batchSystems.mesos.batchSystem), 207
MesosBatchSystem.ExecutorInfo (class in

toil.batchSystems.mesos.batchSystem), 207
MesosBatchSystemJobTest (class in

toil.test.batchSystems.batchSystemTest), 510
MesosBatchSystemTest (class in

toil.test.batchSystems.batchSystemTest), 505
mesosCommand() (toil.batchSystems.mesos.test.MesosTestSupport.MesosAgentThread

method), 206
mesosCommand() (toil.batchSystems.mesos.test.MesosTestSupport.MesosMasterThread

method), 206
mesosCommand() (toil.batchSystems.mesos.test.MesosTestSupport.MesosThread

method), 205
MesosExecutor (class in

toil.batchSystems.mesos.executor), 211
MesosPromisedRequirementsTest (class in

toil.test.src.promisedRequirementTest), 604
MesosShape (class in toil.batchSystems.mesos), 213
MesosTestSupport (class in

toil.batchSystems.mesos.test), 204
MesosTestSupport.MesosAgentThread (class in

toil.batchSystems.mesos.test), 206
MesosTestSupport.MesosMasterThread (class in

toil.batchSystems.mesos.test), 205
MesosTestSupport.MesosThread (class in

toil.batchSystems.mesos.test), 204
message (toil.fileStores.cachingFileStore.CacheUnbalancedError

attribute), 310
message_to_bytes() (in module toil.bus), 726
MessageBus (class in toil.bus), 726
MessageBusClient (class in toil.bus), 728

854 Index

Toil Documentation, Release 5.11.0

MessageBusConnection (class in toil.bus), 729
MessageBusTest (class in toil.test.src.busTest), 574
MessageDetector (class in

toil.test.src.realtimeLoggerTest), 608
MessageInbox (class in toil.bus), 728
MessageOutbox (class in toil.bus), 729
MessageType (in module toil.bus), 726
MessageType (toil.bus.MessageBus attribute), 727
MessageType (toil.bus.MessageInbox attribute), 728
methodNamePartRegex (in module toil.test), 645
mib_to_b() (in module toil.lib.conversions), 396
MIN_REQUESTABLE_CORES (in module

toil.batchSystems.awsBatch), 232
MIN_REQUESTABLE_MIB (in module

toil.batchSystems.awsBatch), 232
minBucketNameLen (toil.jobStores.aws.jobStore.AWSJobStore

attribute), 325
minCores (toil.batchSystems.singleMachine.SingleMachineBatchSystem

attribute), 262
MiscTests (class in toil.test.src.miscTests), 601
mkFile

module, 819
MockBatchSystemAndProvisioner (class in

toil.test.provisioners.clusterScalerTest), 553
model (toil.job.AcceleratorRequirement attribute), 748
modify_cmd_expr_w_attributes()

(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 670

modify_param_paths()
(toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters
method), 469

module
debugWorkflow, 819
example_alwaysfail, 810
example_cachingbenchmark, 810
fake_mpi_run, 820
mkFile, 819
toil, 201
toil.batchSystems, 201
toil.batchSystems.abstractBatchSystem,

214
toil.batchSystems.abstractGridEngineBatchSystem,

227
toil.batchSystems.awsBatch, 231
toil.batchSystems.cleanup_support, 235
toil.batchSystems.contained_executor, 236
toil.batchSystems.gridengine, 238
toil.batchSystems.htcondor, 240
toil.batchSystems.kubernetes, 243
toil.batchSystems.local_support, 248
toil.batchSystems.lsf, 249
toil.batchSystems.lsfHelper, 252
toil.batchSystems.mesos, 201
toil.batchSystems.mesos.batchSystem, 207

toil.batchSystems.mesos.conftest, 210
toil.batchSystems.mesos.executor, 210
toil.batchSystems.mesos.test, 201
toil.batchSystems.options, 255
toil.batchSystems.parasol, 256
toil.batchSystems.registry, 259
toil.batchSystems.singleMachine, 261
toil.batchSystems.slurm, 264
toil.batchSystems.tes, 267
toil.batchSystems.torque, 270
toil.bus, 721
toil.common, 730
toil.cwl, 273
toil.cwl.conftest, 273
toil.cwl.cwltoil, 273
toil.cwl.utils, 299
toil.deferred, 742
toil.exceptions, 744
toil.fileStores, 302
toil.fileStores.abstractFileStore, 302
toil.fileStores.cachingFileStore, 310
toil.fileStores.nonCachingFileStore, 316
toil.job, 745
toil.jobStores, 321
toil.jobStores.abstractJobStore, 336
toil.jobStores.aws, 321
toil.jobStores.aws.jobStore, 321
toil.jobStores.aws.utils, 332
toil.jobStores.conftest, 357
toil.jobStores.fileJobStore, 357
toil.jobStores.googleJobStore, 365
toil.jobStores.utils, 373
toil.leader, 775
toil.lib, 379
toil.lib.accelerators, 392
toil.lib.aws, 379
toil.lib.aws.ami, 379
toil.lib.aws.iam, 380
toil.lib.aws.session, 383
toil.lib.aws.utils, 386
toil.lib.bioio, 393
toil.lib.compatibility, 394
toil.lib.conversions, 394
toil.lib.docker, 397
toil.lib.ec2, 400
toil.lib.ec2nodes, 405
toil.lib.encryption, 392
toil.lib.encryption.conftest, 392
toil.lib.exceptions, 408
toil.lib.expando, 409
toil.lib.generatedEC2Lists, 411
toil.lib.humanize, 411
toil.lib.io, 412
toil.lib.iterables, 415

Index 855

Toil Documentation, Release 5.11.0

toil.lib.memoize, 417
toil.lib.misc, 419
toil.lib.objects, 421
toil.lib.resources, 423
toil.lib.retry, 424
toil.lib.threading, 430
toil.lib.throttle, 435
toil.provisioners, 437
toil.provisioners.abstractProvisioner,

445
toil.provisioners.aws, 437
toil.provisioners.aws.awsProvisioner, 437
toil.provisioners.clusterScaler, 452
toil.provisioners.gceProvisioner, 461
toil.provisioners.node, 463
toil.realtimeLogger, 779
toil.resource, 782
toil.server, 467
toil.server.api_spec, 467
toil.server.app, 488
toil.server.celery_app, 489
toil.server.cli, 467
toil.server.cli.wes_cwl_runner, 467
toil.server.utils, 489
toil.server.wes, 471
toil.server.wes.abstract_backend, 471
toil.server.wes.amazon_wes_utils, 476
toil.server.wes.tasks, 479
toil.server.wes.toil_backend, 484
toil.server.wsgi_app, 498
toil.serviceManager, 788
toil.statsAndLogging, 790
toil.test, 499
toil.test.batchSystems, 499
toil.test.batchSystems.batchSystemTest,

499
toil.test.batchSystems.parasolTestSupport,

511
toil.test.batchSystems.test_lsf_helper,

513
toil.test.batchSystems.test_slurm, 514
toil.test.cwl, 516
toil.test.cwl.conftest, 516
toil.test.cwl.cwlTest, 516
toil.test.docs, 523
toil.test.docs.scriptsTest, 523
toil.test.jobStores, 524
toil.test.jobStores.jobStoreTest, 524
toil.test.lib, 531
toil.test.lib.aws, 531
toil.test.lib.aws.test_iam, 531
toil.test.lib.aws.test_s3, 532
toil.test.lib.aws.test_utils, 533
toil.test.lib.dockerTest, 534

toil.test.lib.test_conversions, 537
toil.test.lib.test_ec2, 538
toil.test.lib.test_misc, 539
toil.test.mesos, 541
toil.test.mesos.helloWorld, 541
toil.test.mesos.MesosDataStructuresTest,

541
toil.test.mesos.stress, 542
toil.test.provisioners, 545
toil.test.provisioners.aws, 545
toil.test.provisioners.aws.awsProvisionerTest,

545
toil.test.provisioners.clusterScalerTest,

549
toil.test.provisioners.clusterTest, 555
toil.test.provisioners.gceProvisionerTest,

557
toil.test.provisioners.provisionerTest,

559
toil.test.provisioners.restartScript, 560
toil.test.server, 561
toil.test.server.serverTest, 561
toil.test.sort, 567
toil.test.sort.restart_sort, 567
toil.test.sort.sort, 569
toil.test.sort.sortTest, 570
toil.test.src, 572
toil.test.src.autoDeploymentTest, 572
toil.test.src.busTest, 574
toil.test.src.checkpointTest, 575
toil.test.src.deferredFunctionTest, 579
toil.test.src.dockerCheckTest, 580
toil.test.src.fileStoreTest, 581
toil.test.src.helloWorldTest, 587
toil.test.src.importExportFileTest, 589
toil.test.src.jobDescriptionTest, 590
toil.test.src.jobEncapsulationTest, 591
toil.test.src.jobFileStoreTest, 592
toil.test.src.jobServiceTest, 593
toil.test.src.jobTest, 597
toil.test.src.miscTests, 601
toil.test.src.promisedRequirementTest,

602
toil.test.src.promisesTest, 605
toil.test.src.realtimeLoggerTest, 607
toil.test.src.regularLogTest, 609
toil.test.src.resourceTest, 610
toil.test.src.restartDAGTest, 611
toil.test.src.resumabilityTest, 612
toil.test.src.retainTempDirTest, 613
toil.test.src.systemTest, 614
toil.test.src.threadingTest, 614
toil.test.src.toilContextManagerTest, 615

856 Index

Toil Documentation, Release 5.11.0

toil.test.src.userDefinedJobArgTypeTest,
617

toil.test.src.workerTest, 618
toil.test.utils, 619
toil.test.utils.toilDebugTest, 619
toil.test.utils.toilKillTest, 620
toil.test.utils.utilsTest, 622
toil.test.wdl, 624
toil.test.wdl.builtinTest, 624
toil.test.wdl.conftest, 628
toil.test.wdl.toilwdlTest, 628
toil.test.wdl.wdltoil_test, 632
toil.toilState, 794
toil.utils, 650
toil.utils.toilClean, 650
toil.utils.toilDebugFile, 651
toil.utils.toilDebugJob, 652
toil.utils.toilDestroyCluster, 652
toil.utils.toilKill, 653
toil.utils.toilLaunchCluster, 653
toil.utils.toilMain, 654
toil.utils.toilRsyncCluster, 655
toil.utils.toilServer, 656
toil.utils.toilSshCluster, 656
toil.utils.toilStats, 657
toil.utils.toilStatus, 663
toil.utils.toilUpdateEC2Instances, 666
toil.version, 796
toil.wdl, 666
toil.wdl.toilwdl, 681
toil.wdl.utils, 682
toil.wdl.versions, 666
toil.wdl.versions.dev, 666
toil.wdl.versions.draft2, 668
toil.wdl.versions.v1, 676
toil.wdl.wdl_analysis, 683
toil.wdl.wdl_functions, 684
toil.wdl.wdl_synthesis, 695
toil.wdl.wdl_types, 700
toil.wdl.wdltoil, 706
toil.worker, 797
tutorial_arguments, 818
tutorial_cwlexample, 812
tutorial_discoverfiles, 806
tutorial_docker, 805
tutorial_dynamic, 807
tutorial_encapsulation, 813
tutorial_encapsulation2, 812
tutorial_helloworld, 805
tutorial_invokeworkflow, 813
tutorial_invokeworkflow2, 807
tutorial_jobfunctions, 808
tutorial_managing, 809
tutorial_managing2, 805

tutorial_multiplejobs, 818
tutorial_multiplejobs2, 806
tutorial_multiplejobs3, 812
tutorial_promises, 815
tutorial_promises2, 817
tutorial_quickstart, 811
tutorial_requirements, 814
tutorial_services, 816
tutorial_staging, 814

ModuleDescriptor (class in toil.resource), 785
monkeyPatchSdbConnection() (in module

toil.jobStores.aws.utils), 336
mpTestPartSize (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test

attribute), 526
MRT (in module toil.lib.memoize), 418
MT (in module toil.test), 640
MultiprocessingTaskRunner (class in

toil.server.wes.tasks), 482

N
name (toil.bus.JobStatus attribute), 729
name (toil.resource.ModuleDescriptor attribute), 786
name (toil.wdl.wdl_types.WDLArrayType property), 704
name (toil.wdl.wdl_types.WDLBooleanType property),

703
name (toil.wdl.wdl_types.WDLFileType property), 704
name (toil.wdl.wdl_types.WDLFloatType property), 703
name (toil.wdl.wdl_types.WDLIntType property), 702
name (toil.wdl.wdl_types.WDLMapType property), 705
name (toil.wdl.wdl_types.WDLPairType property), 705
name (toil.wdl.wdl_types.WDLStringType property), 702
name (toil.wdl.wdl_types.WDLType property), 700
nameSeparator (toil.jobStores.aws.jobStore.AWSJobStore

attribute), 325
needs_aws_batch() (in module toil.test), 641
needs_aws_ec2() (in module toil.test), 641
needs_aws_s3() (in module toil.test), 641
needs_celery_broker() (in module toil.test), 644
needs_cwl() (in module toil.test), 644
needs_docker() (in module toil.test), 643
needs_docker_cuda() (in module toil.test), 643
needs_encryption() (in module toil.test), 643
needs_env_var() (in module toil.test), 640
needs_fetchable_appliance() (in module toil.test),

644
needs_file_import()

(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 698

needs_google() (in module toil.test), 641
needs_gridengine() (in module toil.test), 641
needs_htcondor() (in module toil.test), 642
needs_java() (in module toil.test), 643
needs_kubernetes() (in module toil.test), 642

Index 857

Toil Documentation, Release 5.11.0

needs_kubernetes_installed() (in module toil.test),
642

needs_local_appliance() (in module toil.test), 644
needs_local_cuda() (in module toil.test), 643
needs_lsf() (in module toil.test), 642
needs_mesos() (in module toil.test), 642
needs_parasol() (in module toil.test), 642
needs_rsync3() (in module toil.test), 640
needs_server() (in module toil.test), 644
needs_singularity() (in module toil.test), 643
needs_slurm() (in module toil.test), 642
needs_tes() (in module toil.test), 641
needs_torque() (in module toil.test), 641
needs_wes_server() (in module toil.test), 644
needsdocker() (toil.wdl.wdl_synthesis.SynthesizeWDL

method), 699
nested_crossproduct_scatter()

(toil.cwl.cwltoil.CWLScatter method), 294
nextChainable() (in module toil.worker), 797
nextJobOfType() (toil.batchSystems.mesos.JobQueue

method), 213
nextSuccessors() (toil.job.JobDescription method),

753
no_such_sdb_domain() (in module

toil.jobStores.aws.utils), 336
NoAvailableJobStoreException, 298
Node (class in toil.provisioners.node), 463
NODE_BOTO_PATH (toil.provisioners.gceProvisioner.GCEProvisioner

attribute), 461
NodeInfo (class in toil.batchSystems.abstractBatchSystem),

222
nodeInUse() (toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem

method), 223
nodeInUse() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 209
nodeInUse() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner

method), 553
NodeReservation (class in

toil.provisioners.clusterScaler), 454
nodeReservations (toil.provisioners.clusterScaler.BinPackedFit

attribute), 453
nodeServiceAccountJson

(toil.jobStores.googleJobStore.GoogleJobStore
attribute), 366

NonCachingFileStore (class in
toil.fileStores.nonCachingFileStore), 316

NonCachingFileStoreTestWithAwsJobStore (class
in toil.test.src.fileStoreTest), 586

NonCachingFileStoreTestWithFileJobStore (class
in toil.test.src.fileStoreTest), 585

NonCachingFileStoreTestWithGoogleJobStore
(class in toil.test.src.fileStoreTest), 586

NonDownloadingSize (class in toil.wdl.wdltoil), 710
noOp() (in module toil.test.src.jobEncapsulationTest),

591
normalize_uri() (toil.common.Toil static method), 736
NoSuchClusterException, 466
NoSuchFileException, 338
NoSuchJobException, 337
NoSuchJobStoreException, 338
not_found() (in module toil.lib.ec2), 401
NOTICE (in module toil.server.wes.amazon_wes_utils),

476
numCores (in module toil.test.batchSystems.batchSystemTest),

501
numCores (toil.batchSystems.singleMachine.SingleMachineBatchSystem

attribute), 262

O
old_retry() (in module toil.lib.retry), 429
onRegistration() (toil.job.JobDescription method),

755
onRegistration() (toil.job.ServiceJobDescription

method), 757
onWrite() (toil.lib.io.WriteWatchingStream method),

415
open() (toil.cwl.cwltoil.ToilFsAccess method), 284
open() (toil.deferred.DeferredFunctionManager

method), 743
open() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 304
open() (toil.fileStores.cachingFileStore.CachingFileStore

method), 313
open() (toil.fileStores.nonCachingFileStore.NonCachingFileStore

method), 317
OperationForbidden, 473
optimize_spot_bid() (in module

toil.provisioners.aws), 444
optional_hard_copy()

(toil.jobStores.fileJobStore.FileJobStore
method), 360

OptionSetter (class in toil.batchSystems.options), 255
OptionType (toil.batchSystems.kubernetes.KubernetesBatchSystem

attribute), 246
OptionType (toil.batchSystems.options.OptionSetter at-

tribute), 255
OptionType (toil.batchSystems.slurm.SlurmBatchSystem

attribute), 266
OS_SIZE (in module toil.provisioners.clusterScaler), 453
outbox() (toil.bus.MessageBus method), 727
outer (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

attribute), 323
ownerID (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

property), 323

P
P (toil.batchSystems.kubernetes.KubernetesBatchSystem

attribute), 245

858 Index

Toil Documentation, Release 5.11.0

P (toil.batchSystems.kubernetes.KubernetesBatchSystem.DecoratorWrapper
attribute), 244

pack() (toil.fileStores.FileID method), 321
pack_job() (in module

toil.batchSystems.contained_executor), 237
pack_toil_uri() (in module toil.wdl.wdltoil), 709
padStr() (in module toil.utils.toilStats), 658
panic (class in toil.lib.exceptions), 408
parasol_batch_system_factory() (in module

toil.batchSystems.registry), 260
ParasolBatchSystem (class in

toil.batchSystems.parasol), 257
ParasolBatchSystemTest (class in

toil.test.batchSystems.batchSystemTest), 507
parasolCommand() (toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolLeaderThread

method), 512
parasolCommand() (toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolThread

method), 512
parasolCommand() (toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolWorkerThread

method), 513
parasolOutputPattern

(toil.batchSystems.parasol.ParasolBatchSystem
attribute), 257

ParasolTestSupport (class in
toil.test.batchSystems.parasolTestSupport),
511

ParasolTestSupport.ParasolLeaderThread (class
in toil.test.batchSystems.parasolTestSupport),
512

ParasolTestSupport.ParasolThread (class in
toil.test.batchSystems.parasolTestSupport), 511

ParasolTestSupport.ParasolWorkerThread (class
in toil.test.batchSystems.parasolTestSupport),
512

parent() (in module toil.test.src.jobTest), 599
parent() (in module toil.test.src.promisesTest), 606
parent() (in module toil.test.src.resumabilityTest), 612
parentJob() (in module

toil.test.batchSystems.batchSystemTest), 506
parentJob() (in module tutorial_requirements), 814
parentMessage (in module toil.test.mesos.helloWorld),

542
parse_accelerator() (in module toil.job), 748
parse_accelerator_list() (in module toil.common),

741
parse_args() (in module toil.worker), 798
parse_bjobs_record()

(toil.batchSystems.lsf.LSFBatchSystem.Worker
method), 252

parse_cores() (in module toil.wdl.wdl_functions), 689
parse_declaration()

(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 672

parse_declaration_expressn()

(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 673

parse_declaration_expressn_arrayliteral()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 674

parse_declaration_expressn_arraymaplookup()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 673

parse_declaration_expressn_fncall()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 674

parse_declaration_expressn_fncall_normalparams()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 675

parse_declaration_expressn_logicalnot()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 673

parse_declaration_expressn_memberaccess()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 673

parse_declaration_expressn_operator()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 674

parse_declaration_expressn_ternaryif()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 673

parse_declaration_expressn_tupleliteral()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 674

parse_declaration_name()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 672

parse_declaration_type()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 672

parse_disk() (in module toil.wdl.wdl_functions), 689
parse_elapsed() (toil.batchSystems.slurm.SlurmBatchSystem.Worker

method), 266
parse_iso_utc() (in module toil.lib.memoize), 418
parse_mem_and_cmd_from_output() (in module

toil.batchSystems.lsfHelper), 254
parse_memory() (in module

toil.batchSystems.lsfHelper), 254
parse_memory() (in module toil.wdl.wdl_functions),

689
parse_memory_string() (in module

toil.lib.conversions), 396
parse_node_types() (in module toil.provisioners), 465
parse_params() (toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters

method), 469
parse_task() (toil.wdl.versions.draft2.AnalyzeDraft2WDL

method), 669
parse_task_outputs()

(toil.wdl.versions.draft2.AnalyzeDraft2WDL

Index 859

Toil Documentation, Release 5.11.0

method), 671
parse_task_rawcommand()

(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 670

parse_task_rawcommand_attributes()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 670

parse_task_runtime()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 670

parse_task_runtime_key()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 670

parse_workflow() (toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 672

parse_workflow_body()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 672

parse_workflow_call()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 675

parse_workflow_call_body()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 675

parse_workflow_call_body_declarations()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 675

parse_workflow_call_body_io()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 675

parse_workflow_call_body_io_map()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 675

parse_workflow_call_taskalias()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 675

parse_workflow_call_taskname()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 675

parse_workflow_if()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 672

parse_workflow_if_expression()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 672

parse_workflow_manifest_file() (in module
toil.server.wes.amazon_wes_utils), 478

parse_workflow_scatter()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 672

parse_workflow_scatter_collection()
(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 672

parse_workflow_scatter_item()

(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 672

parse_workflow_zip_file() (in module
toil.server.wes.amazon_wes_utils), 478

ParseableAcceleratorRequirement (in module
toil.job), 750

ParseableDivisibleResource (in module toil.job),
750

ParseableFlag (in module toil.job), 750
ParseableIndivisibleResource (in module toil.job),

750
ParseableRequirement (in module toil.job), 750
parseBjobs() (toil.batchSystems.lsf.LSFBatchSystem.Worker

method), 252
parseBool() (in module toil.common), 733
parseDockerAppliance() (in module toil), 803
ParsedRequirement (in module toil.job), 750
parseLocator() (toil.common.Toil static method), 735
parseMaxMem() (toil.batchSystems.lsf.LSFBatchSystem.Worker

method), 252
parseMemory() (in module toil.lib.ec2nodes), 407
parser (in module toil.test.provisioners.restartScript),

561
parser (in module tutorial_arguments), 819
parser (in module tutorial_helloworld), 805
parser (in module tutorial_multiplejobs), 818
parser (in module tutorial_multiplejobs2), 807
parser (in module tutorial_multiplejobs3), 812
parser_with_common_options() (in module

toil.common), 733
parser_with_server_options() (in module

toil.server.app), 488
parseSetEnv() (in module toil.common), 740
parseStorage() (in module toil.lib.ec2nodes), 406
passingFn() (in module toil.test.src.restartDAGTest),

611
path_to_loc() (in module toil.cwl.cwltoil), 286
PathIndexingPromiseTest (class in

toil.test.src.promisesTest), 606
per_core_reservation() (in module

toil.batchSystems.lsfHelper), 254
per_core_reserve_from_stream() (in module

toil.batchSystems.lsfHelper), 254
PerfectServiceTest (class in

toil.test.src.jobServiceTest), 594
permission_matches_any() (in module

toil.lib.aws.iam), 382
physicalDisk() (in module toil), 801
physicalMemory (toil.batchSystems.singleMachine.SingleMachineBatchSystem

attribute), 262
physicalMemory() (in module toil), 801
pick_value() (toil.cwl.cwltoil.ResolveSource method),

278
pickle() (toil.resource.Resource method), 784

860 Index

Toil Documentation, Release 5.11.0

pip() (toil.test.provisioners.clusterTest.AbstractClusterTest
method), 556

pkg_root (in module toil.test.cwl.cwlTest), 517
pkg_root (in module toil.test.docs.scriptsTest), 523
pkg_root (in module toil.test.utils.toilKillTest), 621
pkg_root (in module toil.test.utils.utilsTest), 622
policy_permissions_allow() (in module

toil.lib.aws.iam), 382
poll() (in module example_cachingbenchmark), 811
poll_run() (in module toil.server.cli.wes_cwl_runner),

471
populate_env_vars() (toil.cwl.cwltoil.CWLJob

method), 292
potential_absolute_uris() (in module

toil.wdl.wdltoil), 708
pre_update_hook() (toil.job.JobDescription method),

756
preemptable() (toil.job.Job method), 760
preemptable() (toil.job.Requirer method), 751
preemptible (in module

toil.test.batchSystems.batchSystemTest), 501
preemptible (toil.job.Job property), 760
preemptible (toil.job.RequirementsDict attribute), 750
preemptible (toil.job.Requirer property), 751
PreemptibleDeficitCompensationTest (class in

toil.test.provisioners.aws.awsProvisionerTest),
548

PREFIX (toil.deferred.DeferredFunctionManager at-
tribute), 743

PREFIX_LENGTH (in module
toil.test.src.jobFileStoreTest), 592

prepare_restart() (toil.common.Config method), 732
prepare_start() (toil.common.Config method), 732
prepareBsub() (toil.batchSystems.lsf.LSFBatchSystem.Worker

method), 252
prepareForPromiseRegistration()

(toil.job.EncapsulatedJob method), 772
prepareForPromiseRegistration() (toil.job.Job

method), 765
prepareQsub() (toil.batchSystems.gridengine.GridEngineBatchSystem.Worker

method), 239
prepareQsub() (toil.batchSystems.torque.TorqueBatchSystem.Worker

method), 272
prepareSbatch() (toil.batchSystems.slurm.SlurmBatchSystem.Worker

method), 266
prepareSubmission()

(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker
method), 229

prepareSubmission()
(toil.batchSystems.gridengine.GridEngineBatchSystem.Worker
method), 239

prepareSubmission()
(toil.batchSystems.htcondor.HTCondorBatchSystem.Worker
method), 241

prepareSubmission()
(toil.batchSystems.lsf.LSFBatchSystem.Worker
method), 251

prepareSubmission()
(toil.batchSystems.slurm.SlurmBatchSystem.Worker
method), 265

prepareSubmission()
(toil.batchSystems.torque.TorqueBatchSystem.Worker
method), 271

prepareSystem() (toil.resource.Resource class
method), 783

presenceIndicator()
(toil.jobStores.aws.jobStore.AWSJobStore.FileInfo
class method), 323

presenceIndicator()
(toil.jobStores.aws.utils.SDBHelper class
method), 334

prettyMemory() (in module toil.utils.toilStats), 659
prettyTime() (in module toil.utils.toilStats), 659
previousVersion (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

property), 323
primitive_types (toil.wdl.wdl_analysis.AnalyzeWDL

attribute), 683
print_bus_messages() (toil.utils.toilStatus.ToilStatus

method), 664
print_dot_chart() (toil.utils.toilStatus.ToilStatus

method), 663
print_logs_and_exit() (in module

toil.server.cli.wes_cwl_runner), 471
printAggregateJobStats()

(toil.utils.toilStatus.ToilStatus method), 664
printContentsOfJobStore() (in module

toil.utils.toilDebugFile), 651
printHelp() (in module toil.utils.toilMain), 655
printJobChildren() (toil.utils.toilStatus.ToilStatus

method), 663
printJobLog() (toil.utils.toilStatus.ToilStatus method),

663
printq() (in module toil.lib.misc), 420
printUnicodeCharacter() (in module

toil.test.utils.utilsTest), 623
printVersion() (in module toil.utils.toilMain), 655
process_and_read_file() (in module

toil.wdl.wdl_functions), 689
process_finished_job() (toil.leader.Leader method),

778
process_finished_job_description()

(toil.leader.Leader method), 778
process_infile() (in module toil.wdl.wdl_functions),

687
process_name_exists() (in module toil.lib.threading),

433
process_outfile() (in module toil.wdl.wdl_functions),

688

Index 861

Toil Documentation, Release 5.11.0

process_single_infile() (in module
toil.wdl.wdl_functions), 687

process_single_outfile() (in module
toil.wdl.wdl_functions), 688

processData() (in module toil.utils.toilStats), 662
processRemovedJob() (toil.leader.Leader method),

778
processTotallyFailedJob() (toil.leader.Leader

method), 779
ProcessType (in module toil.cwl.cwltoil), 295
prohibited_labels (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement

attribute), 244
projectID (toil.test.jobStores.jobStoreTest.GoogleJobStoreTest

attribute), 529
projectID (toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest

attribute), 557
Promise (class in toil.job), 773
promise_tuples (toil.cwl.cwltoil.ResolveSource at-

tribute), 277
Promised (in module toil.job), 774
PromisedRequirement (class in toil.job), 774
PromisedRequirementFunctionWrappingJob (class

in toil.job), 769
PromisedRequirementJobFunctionWrappingJob

(class in toil.job), 770
ProvisionerTest (class in

toil.test.provisioners.provisionerTest), 560
ProxyConnectionError, 337
prune() (in module toil.lib.ec2), 403
publicUrlExpiration

(toil.jobStores.abstractJobStore.AbstractJobStore
attribute), 340

publish() (toil.bus.MessageBus method), 727
publish() (toil.bus.MessageOutbox method), 729
put_client() (toil.serviceManager.ServiceManager

method), 789
putScript() (toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest

method), 546
python (in module toil.version), 796
python() (toil.test.provisioners.clusterTest.AbstractClusterTest

method), 556

Q
queue_run() (toil.server.wes.toil_backend.ToilWorkflow

method), 485
queue_size (toil.bus.QueueSizeMessage attribute), 725
QueueSizeMessage (class in toil.bus), 725

R
R (toil.batchSystems.kubernetes.KubernetesBatchSystem

attribute), 245
r3_8xlarge (in module

toil.test.provisioners.clusterScalerTest), 549

r5_2xlarge (in module
toil.test.provisioners.clusterScalerTest), 549

r5_4xlarge (in module
toil.test.provisioners.clusterScalerTest), 549

raise_() (in module toil.lib.exceptions), 408
reachable() (toil.test.src.jobTest.JobTest method), 599
read_boolean() (in module toil.wdl.wdl_functions),

692
read_cache() (toil.server.utils.AbstractStateStore

method), 493
read_cache() (toil.server.utils.WorkflowStateStore

method), 495
read_csv() (in module toil.wdl.wdl_functions), 691
read_file() (in module toil.wdl.wdl_functions), 689
read_file() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 350
read_file() (toil.jobStores.aws.jobStore.AWSJobStore

method), 329
read_file() (toil.jobStores.fileJobStore.FileJobStore

method), 362
read_file() (toil.jobStores.googleJobStore.GoogleJobStore

method), 370
read_file_stream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 351
read_file_stream() (toil.jobStores.aws.jobStore.AWSJobStore

method), 330
read_file_stream() (toil.jobStores.fileJobStore.FileJobStore

method), 363
read_file_stream() (toil.jobStores.googleJobStore.GoogleJobStore

method), 370
read_float() (in module toil.wdl.wdl_functions), 692
read_from_url() (toil.jobStores.abstractJobStore.AbstractJobStore

class method), 343
read_int() (in module toil.wdl.wdl_functions), 691
read_json() (in module toil.wdl.wdl_functions), 691
read_kill_flag() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 356
read_leader_node_id()

(toil.jobStores.abstractJobStore.AbstractJobStore
method), 356

read_leader_pid() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 355

read_lines() (in module toil.wdl.wdl_functions), 690
read_logs() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 355
read_logs() (toil.jobStores.aws.jobStore.AWSJobStore

method), 331
read_logs() (toil.jobStores.fileJobStore.FileJobStore

method), 364
read_logs() (toil.jobStores.googleJobStore.GoogleJobStore

method), 373
read_map() (in module toil.wdl.wdl_functions), 691
read_shared_file_stream()

(toil.jobStores.abstractJobStore.AbstractJobStore

862 Index

Toil Documentation, Release 5.11.0

method), 354
read_shared_file_stream()

(toil.jobStores.aws.jobStore.AWSJobStore
method), 330

read_shared_file_stream()
(toil.jobStores.fileJobStore.FileJobStore
method), 364

read_shared_file_stream()
(toil.jobStores.googleJobStore.GoogleJobStore
method), 372

read_single_file() (in module
toil.wdl.wdl_functions), 688

read_string() (in module toil.wdl.wdl_functions), 691
read_tsv() (in module toil.wdl.wdl_functions), 690
ReadablePipe (class in toil.jobStores.utils), 375
ReadableTransformingPipe (class in

toil.jobStores.utils), 377
readClusterSettings()

(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 448

readClusterSettings()
(toil.provisioners.aws.awsProvisioner.AWSProvisioner
method), 438

readClusterSettings()
(toil.provisioners.gceProvisioner.GCEProvisioner
method), 461

readClusterSettings()
(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 553

readFile() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 350

readFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 350

readFrom() (toil.jobStores.utils.WritablePipe method),
375

readGlobalFile() (toil.fileStores.abstractFileStore.AbstractFileStore
method), 306

readGlobalFile() (toil.fileStores.cachingFileStore.CachingFileStore
method), 314

readGlobalFile() (toil.fileStores.nonCachingFileStore.NonCachingFileStore
method), 318

readGlobalFileStream()
(toil.fileStores.abstractFileStore.AbstractFileStore
method), 307

readGlobalFileStream()
(toil.fileStores.cachingFileStore.CachingFileStore
method), 314

readGlobalFileStream()
(toil.fileStores.nonCachingFileStore.NonCachingFileStore
method), 318

readSharedFileStream()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 354

readStatsAndLogging()

(toil.jobStores.abstractJobStore.AbstractJobStore
method), 355

readStatsFileOwnerID
(toil.jobStores.aws.jobStore.AWSJobStore
attribute), 325

realpath() (toil.cwl.cwltoil.ToilFsAccess method), 285
RealtimeLogger (class in toil.realtimeLogger), 781
RealtimeLoggerMetaclass (class in

toil.realtimeLogger), 780
RealtimeLoggerTest (class in

toil.test.src.realtimeLoggerTest), 607
recursive_dependencies() (in module

toil.wdl.wdltoil), 709
refresh() (toil.resource.Resource method), 783
region (toil.test.server.serverTest.BucketUsingTest at-

tribute), 563
region_to_bucket_location() (in module

toil.lib.aws.utils), 389
regionDict (in module toil.lib.generatedEC2Lists), 411
register() (toil.resource.Resource method), 783
registered() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 209
registered() (toil.batchSystems.mesos.executor.MesosExecutor

method), 211
registerPromise() (toil.job.Job method), 765
RegularLogTest (class in toil.test.src.regularLogTest),

609
reissueMissingJobs() (toil.leader.Leader method),

778
reissueOverLongJobs() (toil.leader.Leader method),

778
release() (toil.batchSystems.abstractBatchSystem.ResourcePool

method), 225
release() (toil.batchSystems.abstractBatchSystem.ResourceSet

method), 226
remainingBillingInterval()

(toil.provisioners.node.Node method), 463
remainingBillingInterval()

(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 554

remainingTryCount (toil.job.JobDescription property),
753

remove_empty_listings() (in module
toil.cwl.cwltoil), 289

remove_pickle_problems() (in module
toil.cwl.cwltoil), 296

removeJob() (toil.leader.Leader method), 777
renameReferences() (toil.job.JobDescription method),

755
replace() (toil.job.JobDescription method), 754
replay_message_bus() (in module toil.bus), 730
report() (in module example_cachingbenchmark), 811
report() (toil.utils.toilStats.ColumnWidths method),

658

Index 863

Toil Documentation, Release 5.11.0

report_on_jobs() (toil.utils.toilStatus.ToilStatus
method), 664

reportData() (in module toil.utils.toilStats), 662
reportMemory() (in module toil.utils.toilStats), 659
reportNumber() (in module toil.utils.toilStats), 659
reportPrettyData() (in module toil.utils.toilStats),

661
reportTime() (in module toil.utils.toilStats), 659
requestCheckDockerIo() (in module toil), 804
requestCheckRegularDocker() (in module toil), 803
required_env_vars() (toil.cwl.cwltoil.CWLJob

method), 292
required_labels (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement

attribute), 244
REQUIREMENT_NAMES (in module toil.job), 750
requirements (toil.job.Requirer property), 750
requirements_string() (toil.job.Requirer method),

752
RequirementsDict (class in toil.job), 750
Requirer (class in toil.job), 750
reregistered() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 210
reregistered() (toil.batchSystems.mesos.executor.MesosExecutor

method), 211
RESERVE_BREAKPOINTS (in module

toil.provisioners.clusterScaler), 453
RESERVE_FRACTIONS (in module

toil.provisioners.clusterScaler), 453
RESERVE_SMALL_AMOUNT (in module

toil.provisioners.clusterScaler), 453
RESERVE_SMALL_LIMIT (in module

toil.provisioners.clusterScaler), 453
reset_job() (toil.toilState.ToilState method), 795
resetCounters() (in module

toil.test.batchSystems.batchSystemTest), 511
resolve() (toil.cwl.cwltoil.DefaultWithSource method),

279
resolve() (toil.cwl.cwltoil.JustAValue method), 279
resolve() (toil.cwl.cwltoil.ResolveSource method), 278
resolve() (toil.cwl.cwltoil.StepValueFrom method), 279
resolve_dict_w_promises() (in module

toil.cwl.cwltoil), 279
resolve_operation_id()

(toil.server.wes.abstract_backend.WESBackend
method), 474

resolveEntryPoint() (in module toil), 801
ResolveIndirect (class in toil.cwl.cwltoil), 290
ResolveSource (class in toil.cwl.cwltoil), 277
Resource (class in toil.resource), 782
resource() (in module toil.lib.aws.session), 385
resource() (toil.lib.aws.session.AWSConnectionManager

method), 384
resourceEnvNamePrefix (toil.resource.Resource at-

tribute), 783

ResourceException, 787
resourceOffers() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 209
ResourcePool (class in

toil.batchSystems.abstractBatchSystem), 225
ResourceSet (class in

toil.batchSystems.abstractBatchSystem), 226
ResourceTest (class in toil.test.src.resourceTest), 610
restart() (toil.common.Toil method), 735
restartCheckpoint()

(toil.job.CheckpointJobDescription method),
757

RestartDAGTest (class in toil.test.src.restartDAGTest),
611

RestartingJob (class in
toil.test.src.importExportFileTest), 589

restore_batch_system_plugin_state() (in module
toil.batchSystems.registry), 260

result_status (toil.bus.JobUpdatedMessage at-
tribute), 723

ResumabilityTest (class in
toil.test.src.resumabilityTest), 612

resume() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 340

resume() (toil.jobStores.aws.jobStore.AWSJobStore
method), 325

resume() (toil.jobStores.fileJobStore.FileJobStore
method), 358

resume() (toil.jobStores.googleJobStore.GoogleJobStore
method), 366

resumeJobStore() (toil.common.Toil class method),
735

retry() (in module toil), 800
retry() (in module toil.batchSystems.mesos.test), 202
retry() (in module toil.lib.retry), 427
retry_ec2() (in module toil.lib.ec2), 401
retry_flaky_test (in module toil.lib.retry), 430
retry_s3() (in module toil.lib.aws.utils), 388
retry_sdb() (in module toil.jobStores.aws.utils), 336
retryable_kubernetes_errors (in module

toil.batchSystems.kubernetes), 243
retryable_s3_errors() (in module toil.lib.aws.utils),

388
retryable_sdb_errors() (in module

toil.jobStores.aws.utils), 336
retryable_ssl_error() (in module

toil.jobStores.aws.utils), 336
retryPredicate() (toil.provisioners.abstractProvisioner.AbstractProvisioner

static method), 448
retryPredicate() (toil.provisioners.aws.awsProvisioner.AWSProvisioner

static method), 439
retryPredicate() (toil.provisioners.gceProvisioner.GCEProvisioner

static method), 462
return_status_code() (in module toil.lib.retry), 427

864 Index

Toil Documentation, Release 5.11.0

revsort() (toil.test.cwl.cwlTest.CWLWorkflowTest
method), 518

revsort_no_checksum()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 518

RM (in module toil.lib.docker), 397
rm_unprocessed_secondary_files() (in module

toil.cwl.cwltoil), 296
robust_rmtree() (in module toil.lib.io), 413
root() (in module example_cachingbenchmark), 811
root_logger (in module toil.statsAndLogging), 791
rootDirPathEnvName (toil.resource.Resource at-

tribute), 783
rootJobStoreIDFileName

(toil.jobStores.abstractJobStore.AbstractJobStore
attribute), 340

rsyncUtil() (toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest
method), 546

rsyncUtil() (toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest
method), 557

run() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker
method), 228

run() (toil.batchSystems.mesos.test.ExceptionalThread
method), 203

run() (toil.cwl.cwltoil.CWLGather method), 295
run() (toil.cwl.cwltoil.CWLJob method), 292
run() (toil.cwl.cwltoil.CWLJobWrapper method), 291
run() (toil.cwl.cwltoil.CWLScatter method), 294
run() (toil.cwl.cwltoil.CWLWorkflow method), 296
run() (toil.cwl.cwltoil.ResolveIndirect method), 290
run() (toil.job.FunctionWrappingJob method), 768
run() (toil.job.Job method), 761
run() (toil.job.JobFunctionWrappingJob method), 769
run() (toil.job.PromisedRequirementFunctionWrappingJob

method), 770
run() (toil.job.PromisedRequirementJobFunctionWrappingJob

method), 770
run() (toil.job.ServiceHostJob method), 773
run() (toil.leader.Leader method), 776
run() (toil.lib.threading.ExceptionalThread method),

432
run() (toil.server.wes.tasks.MultiprocessingTaskRunner

class method), 483
run() (toil.server.wes.tasks.TaskRunner static method),

482
run() (toil.server.wes.tasks.ToilWorkflowRunner

method), 481
run() (toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolLeaderThread

method), 512
run() (toil.test.batchSystems.parasolTestSupport.ParasolTestSupport.ParasolThread

method), 512
run() (toil.test.ExceptionalThread method), 638
run() (toil.test.mesos.stress.HelloWorldFollowOn

method), 544

run() (toil.test.mesos.stress.HelloWorldJob method),
544

run() (toil.test.mesos.stress.LongTestFollowOn method),
543

run() (toil.test.mesos.stress.LongTestJob method), 543
run() (toil.test.src.checkpointTest.AlwaysFail method),

577
run() (toil.test.src.checkpointTest.CheckpointFailsFirstTime

method), 578
run() (toil.test.src.checkpointTest.CheckRetryCount

method), 577
run() (toil.test.src.checkpointTest.FailOnce method), 579
run() (toil.test.src.helloWorldTest.FollowOn method),

588
run() (toil.test.src.helloWorldTest.HelloWorld method),

588
run() (toil.test.src.importExportFileTest.RestartingJob

method), 590
run() (toil.test.src.realtimeLoggerTest.LogTest method),

608
run() (toil.test.src.toilContextManagerTest.FollowOn

method), 616
run() (toil.test.src.toilContextManagerTest.HelloWorld

method), 616
run() (toil.test.src.userDefinedJobArgTypeTest.JobClass

method), 618
run() (toil.test.utils.utilsTest.RunTwoJobsPerWorker

method), 624
run() (toil.wdl.wdltoil.WDLArrayBindingsJob method),

718
run() (toil.wdl.wdltoil.WDLBaseJob method), 714
run() (toil.wdl.wdltoil.WDLCombineBindingsJob

method), 716
run() (toil.wdl.wdltoil.WDLConditionalJob method),

719
run() (toil.wdl.wdltoil.WDLNamespaceBindingsJob

method), 716
run() (toil.wdl.wdltoil.WDLOutputsJob method), 720
run() (toil.wdl.wdltoil.WDLRootJob method), 720
run() (toil.wdl.wdltoil.WDLScatterJob method), 718
run() (toil.wdl.wdltoil.WDLTaskJob method), 714
run() (toil.wdl.wdltoil.WDLWorkflowJob method), 719
run() (toil.wdl.wdltoil.WDLWorkflowNodeJob method),

715
run() (tutorial_arguments.HelloWorld method), 819
run() (tutorial_discoverfiles.discoverFiles method), 806
run() (tutorial_invokeworkflow.HelloWorld method),

813
run() (tutorial_invokeworkflow2.HelloWorld method),

808
run() (tutorial_managing.LocalFileStoreJob method),

809
run() (tutorial_staging.HelloWorld method), 815
run1000JobsOnMicros()

Index 865

Toil Documentation, Release 5.11.0

(toil.test.provisioners.clusterScalerTest.BinPackingTest
method), 551

run_app() (in module toil.server.wsgi_app), 499
run_conformance_tests() (in module

toil.test.cwl.cwlTest), 517
run_jobs() (toil.cwl.cwltoil.ToilSingleJobExecutor

method), 282
run_local_jobs_on_workers (toil.common.Config at-

tribute), 732
run_many() (fake_mpi_run.Runner method), 821
run_once() (fake_mpi_run.Runner method), 821
run_wes (in module toil.server.wes.tasks), 482
run_wes_task() (in module toil.server.wes.tasks), 481
run_with_engine_options()

(toil.server.cli.wes_cwl_runner.WESClientWithWorkflowEngineParameters
method), 470

run_workflow() (toil.server.wes.abstract_backend.WESBackend
method), 475

run_workflow() (toil.server.wes.toil_backend.ToilBackend
method), 487

run_zip_workflow() (toil.test.server.serverTest.ToilWESServerWorkflowTest
method), 565

runCheckpointVertexTest()
(toil.test.src.jobTest.JobTest method), 599

runMain() (in module toil.test.sort.sortTest), 571
Runner (class in fake_mpi_run), 821
runNewCheckpointIsLeafVertexTest()

(toil.test.src.jobTest.JobTest method), 599
running_on_ec2() (in module toil.lib.aws), 391
running_on_ec2() (in module toil.provisioners.aws),

442
running_on_ec2() (in module toil.test), 636
running_on_ecs() (in module toil.lib.aws), 391
runningPattern (toil.batchSystems.parasol.ParasolBatchSystem

attribute), 257
runOnAppliance() (toil.test.ApplianceTestSupport.Appliance

method), 648
runQC() (in module tutorial_cwlexample), 813
runToil() (toil.test.src.jobServiceTest.JobServiceTest

method), 594
runToil() (toil.test.src.jobServiceTest.PerfectServiceTest

method), 595
RunTwoJobsPerWorker (class in toil.test.utils.utilsTest),

623
rv() (toil.cwl.cwltoil.SelfJob method), 295
rv() (toil.job.EncapsulatedJob method), 771
rv() (toil.job.Job method), 764

S
s (in module tutorial_services), 817
s3_boto3_client (in module

toil.jobStores.aws.jobStore), 322
s3_boto3_resource (in module

toil.jobStores.aws.jobStore), 322

s3_resource (toil.test.lib.aws.test_s3.S3Test attribute),
533

s3_resource (toil.test.server.serverTest.BucketUsingTest
attribute), 563

S3StateStore (class in toil.server.utils), 494
S3Test (class in toil.test.lib.aws.test_s3), 532
safe_read_file() (in module toil.server.utils), 491
safe_write_file() (in module toil.server.utils), 491
safeUnpickleFromStream() (in module toil.common),

741
save() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

method), 324
save_batch_system_plugin_state() (in module

toil.batchSystems.registry), 260
saveAsResourceTo() (toil.resource.ModuleDescriptor

method), 787
saveAsRootJob() (toil.job.Job method), 767
saveBody() (toil.job.Job method), 767
saveBody() (toil.job.ServiceHostJob method), 773
scale() (toil.job.Requirer method), 752
ScalerThread (class in toil.provisioners.clusterScaler),

459
ScalerThreadTest (class in

toil.test.provisioners.clusterScalerTest), 552
scan_bus_messages() (toil.bus.MessageBus class

method), 728
scan_for_unsupported_requirements() (in module

toil.cwl.cwltoil), 297
schedd_lock (in module toil.batchSystems.htcondor),

240
script() (toil.test.provisioners.aws.awsProvisionerTest.AbstractAWSAutoscaleTest

method), 546
scriptCommand() (toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest

method), 506
sdb_unavailable() (in module

toil.jobStores.aws.utils), 336
SDBHelper (class in toil.jobStores.aws.utils), 333
secure_path() (toil.server.wes.abstract_backend.WESBackend

static method), 475
select_first() (in module toil.wdl.wdl_functions),

690
SelfJob (class in toil.cwl.cwltoil), 295
send_cancel() (toil.server.utils.WorkflowStateMachine

method), 497
send_canceled() (toil.server.utils.WorkflowStateMachine

method), 497
send_complete() (toil.server.utils.WorkflowStateMachine

method), 497
send_enqueue() (toil.server.utils.WorkflowStateMachine

method), 496
send_executor_error()

(toil.server.utils.WorkflowStateMachine
method), 497

send_initialize() (toil.server.utils.WorkflowStateMachine

866 Index

Toil Documentation, Release 5.11.0

method), 496
send_run() (toil.server.utils.WorkflowStateMachine

method), 497
send_system_error()

(toil.server.utils.WorkflowStateMachine
method), 497

ServerSideCopyProhibitedError, 335
serverThread (toil.realtimeLogger.RealtimeLogger at-

tribute), 781
Service (class in toil.test.batchSystems.batchSystemTest),

507
serviceAccessor() (in module

toil.test.src.jobServiceTest), 596
serviceHostIDsInBatches() (toil.job.JobDescription

method), 753
ServiceHostJob (class in toil.job), 772
ServiceJobDescription (class in toil.job), 757
ServiceManager (class in toil.serviceManager), 788
services (toil.job.JobDescription property), 753
services_are_starting()

(toil.serviceManager.ServiceManager method),
788

serviceTest() (in module toil.test.src.jobServiceTest),
595

serviceTestParallelRecursive() (in module
toil.test.src.jobServiceTest), 595

serviceTestRecursive() (in module
toil.test.src.jobServiceTest), 595

serviceWorker() (toil.test.src.jobServiceTest.ToyService
static method), 596

session() (toil.lib.aws.session.AWSConnectionManager
method), 384

set() (toil.server.utils.AbstractStateStore method), 492
set() (toil.server.utils.FileStateStore method), 494
set() (toil.server.utils.MemoryStateCache method), 492
set() (toil.server.utils.S3StateStore method), 495
set() (toil.server.utils.WorkflowStateStore method), 495
set_batchsystem_config_defaults() (in module

toil.batchSystems.options), 256
set_batchsystem_options() (in module

toil.batchSystems.options), 256
set_log_level() (in module toil.statsAndLogging),

792
set_logging_from_options() (in module

toil.statsAndLogging), 793
set_message_bus() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 217
set_message_bus() (toil.batchSystems.abstractBatchSystem.BatchSystemSupport

method), 221
set_preemptible() (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement

method), 245
set_root_job() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 340
set_up_and_run_task()

(toil.server.wes.tasks.MultiprocessingTaskRunner
static method), 483

set_up_run() (toil.server.wes.toil_backend.ToilWorkflow
method), 485

setAutoscaledNodeTypes()
(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 448

setAutoscaledNodeTypes()
(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 554

setEnv() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 219

setEnv() (toil.batchSystems.abstractBatchSystem.BatchSystemSupport
method), 220

setEnv() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem
method), 231

setEnv() (toil.batchSystems.parasol.ParasolBatchSystem
method), 257

setLoggingFromOptions() (in module toil.lib.bioio),
394

setNodeCount() (toil.provisioners.clusterScaler.ClusterScaler
method), 458

setOptions() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 219

setOptions() (toil.batchSystems.awsBatch.AWSBatchBatchSystem
class method), 234

setOptions() (toil.batchSystems.kubernetes.KubernetesBatchSystem
class method), 247

setOptions() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem
class method), 210

setOptions() (toil.batchSystems.parasol.ParasolBatchSystem
class method), 259

setOptions() (toil.batchSystems.singleMachine.SingleMachineBatchSystem
class method), 264

setOptions() (toil.batchSystems.slurm.SlurmBatchSystem
class method), 266

setOptions() (toil.batchSystems.tes.TESBatchSystem
class method), 269

setOptions() (toil.common.Config method), 732
setRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 340
setStaticNodes() (toil.provisioners.clusterScaler.ClusterScaler

method), 456
setup() (in module toil.test.sort.restart_sort), 568
setup() (in module toil.test.sort.sort), 569
setUp() (toil.test.batchSystems.batchSystemTest.BatchSystemPluginTest

method), 501
setUp() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest

method), 503
setUp() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest

method), 502
setUp() (toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest

method), 506
setUp() (toil.test.batchSystems.test_slurm.SlurmTest

Index 867

Toil Documentation, Release 5.11.0

method), 515
setUp() (toil.test.cwl.cwlTest.CWLOnARMTest method),

521
setUp() (toil.test.cwl.cwlTest.CWLv10Test method), 519
setUp() (toil.test.cwl.cwlTest.CWLWorkflowTest

method), 518
setUp() (toil.test.jobStores.jobStoreTest.AbstractEncryptedJobStoreTest.Test

method), 528
setUp() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test

method), 526
setUp() (toil.test.lib.dockerTest.DockerTest method),

535
setUp() (toil.test.lib.test_misc.UserNameUnvailableTest

method), 540
setUp() (toil.test.lib.test_misc.UserNameVeryBrokenTest

method), 540
setUp() (toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest

method), 547
setUp() (toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTestMultipleNodeTypes

method), 548
setUp() (toil.test.provisioners.aws.awsProvisionerTest.AWSRestartTest

method), 548
setUp() (toil.test.provisioners.aws.awsProvisionerTest.PreemptibleDeficitCompensationTest

method), 548
setUp() (toil.test.provisioners.clusterScalerTest.BinPackingTest

method), 550
setUp() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest

method), 551
setUp() (toil.test.provisioners.clusterTest.AbstractClusterTest

method), 556
setUp() (toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest

method), 558
setUp() (toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTest

method), 558
setUp() (toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTestMultipleNodeTypes

method), 559
setUp() (toil.test.provisioners.gceProvisionerTest.GCERestartTest

method), 559
setUp() (toil.test.server.serverTest.AbstractToilWESServerTest

method), 564
setUp() (toil.test.server.serverTest.FileStateStoreTest

method), 562
setUp() (toil.test.server.serverTest.FileStateStoreURLTest

method), 563
setUp() (toil.test.server.serverTest.ToilWESServerCeleryS3StateWorkflowTest

method), 567
setUp() (toil.test.sort.sortTest.SortTest method), 571
setUp() (toil.test.src.autoDeploymentTest.AutoDeploymentTest

method), 572
setUp() (toil.test.src.deferredFunctionTest.DeferredFunctionTest

method), 579
setUp() (toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest

method), 583
setUp() (toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest

method), 582
setUp() (toil.test.src.fileStoreTest.hidden.AbstractNonCachingFileStoreTest

method), 583
setUp() (toil.test.src.importExportFileTest.ImportExportFileTest

method), 589
setUp() (toil.test.src.jobDescriptionTest.JobDescriptionTest

method), 590
setUp() (toil.test.src.miscTests.MiscTests method), 601
setUp() (toil.test.src.regularLogTest.RegularLogTest

method), 609
setUp() (toil.test.src.restartDAGTest.RestartDAGTest

method), 611
setUp() (toil.test.src.retainTempDirTest.CleanWorkDirTest

method), 613
setUp() (toil.test.src.toilContextManagerTest.ToilContextManagerTest

method), 616
setUp() (toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest

method), 617
setUp() (toil.test.src.workerTest.WorkerTests method),

619
setUp() (toil.test.ToilTest method), 640
setUp() (toil.test.utils.toilKillTest.ToilKillTest method),

621
setUp() (toil.test.utils.utilsTest.UtilsTest method), 622
setUp() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest

method), 624
setUp() (toil.test.wdl.toilwdlTest.BaseToilWdlTest

method), 628
setup_method() (toil.test.ToilTest method), 639
setUpClass() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest

class method), 502
setUpClass() (toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest

class method), 506
setUpClass() (toil.test.cwl.cwlTest.CWLv11Test class

method), 520
setUpClass() (toil.test.cwl.cwlTest.CWLv12Test class

method), 521
setUpClass() (toil.test.docs.scriptsTest.ToilDocumentationTest

class method), 523
setUpClass() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test

class method), 526
setUpClass() (toil.test.lib.aws.test_s3.S3Test class

method), 533
setUpClass() (toil.test.lib.test_ec2.AMITest class

method), 539
setUpClass() (toil.test.server.serverTest.BucketUsingTest

class method), 563
setUpClass() (toil.test.src.jobTest.JobTest class

method), 598
setUpClass() (toil.test.ToilTest class method), 639
setUpClass() (toil.test.wdl.builtinTest.WdlLanguageSpecWorkflowsTest

class method), 626
setUpClass() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest

class method), 625

868 Index

Toil Documentation, Release 5.11.0

setUpClass() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
class method), 627

setUpClass() (toil.test.wdl.builtinTest.WdlWorkflowsTest
class method), 626

setUpClass() (toil.test.wdl.toilwdlTest.BaseToilWdlTest
class method), 629

setUpClass() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest
class method), 630

setUpClass() (toil.test.wdl.wdltoil_test.WdlToilTest
class method), 632

setupJobAfterFailure() (toil.job.JobDescription
method), 756

setUserScript() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 217

setUserScript() (toil.batchSystems.awsBatch.AWSBatchBatchSystem
method), 233

setUserScript() (toil.batchSystems.kubernetes.KubernetesBatchSystem
method), 246

setUserScript() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem
method), 208

setUserScript() (toil.batchSystems.tes.TESBatchSystem
method), 268

setWidth() (toil.utils.toilStats.ColumnWidths method),
658

Shape (class in toil.batchSystems.mesos), 212
Shape (class in toil.provisioners.abstractProvisioner),

445
shapes() (toil.provisioners.clusterScaler.NodeReservation

method), 455
sharedFileNameRegex

(toil.jobStores.abstractJobStore.AbstractJobStore
attribute), 340

sharedFileOwnerID (toil.jobStores.aws.jobStore.AWSJobStore
attribute), 325

shutdown() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 219

shutdown() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem
method), 231

shutdown() (toil.batchSystems.awsBatch.AWSBatchBatchSystem
method), 233

shutdown() (toil.batchSystems.kubernetes.KubernetesBatchSystem
method), 246

shutdown() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem
method), 209

shutdown() (toil.batchSystems.mesos.executor.MesosExecutor
method), 211

shutdown() (toil.batchSystems.parasol.ParasolBatchSystem
method), 258

shutdown() (toil.batchSystems.singleMachine.SingleMachineBatchSystem
method), 263

shutdown() (toil.batchSystems.tes.TESBatchSystem
method), 269

shutdown() (toil.common.ToilMetrics method), 740
shutdown() (toil.fileStores.abstractFileStore.AbstractFileStore

class method), 309
shutdown() (toil.fileStores.cachingFileStore.CachingFileStore

class method), 315
shutdown() (toil.fileStores.nonCachingFileStore.NonCachingFileStore

class method), 320
shutDown() (toil.provisioners.clusterScaler.ClusterScaler

method), 458
shutdown() (toil.provisioners.clusterScaler.ScalerThread

method), 460
shutdown() (toil.serviceManager.ServiceManager

method), 790
shutdown() (toil.statsAndLogging.StatsAndLogging

method), 792
shutDown() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner

method), 553
shutdownFileStore()

(toil.fileStores.abstractFileStore.AbstractFileStore
static method), 304

shutdownLocal() (toil.batchSystems.local_support.BatchSystemLocalSupport
method), 249

shutDownStats() (toil.provisioners.clusterScaler.ClusterStats
method), 460

simpleFileStoreJob() (in module
toil.test.src.jobFileStoreTest), 593

simpleJobFn() (in module toil.test.src.jobTest), 599
simplify_list() (in module toil.cwl.cwltoil), 280
single_machine_batch_system_factory() (in mod-

ule toil.batchSystems.registry), 260
SingleMachineBatchSystem (class in

toil.batchSystems.singleMachine), 261
SingleMachineBatchSystemJobTest (class in

toil.test.batchSystems.batchSystemTest), 510
SingleMachineBatchSystemTest (class in

toil.test.batchSystems.batchSystemTest), 505
SingleMachinePromisedRequirementsTest (class in

toil.test.src.promisedRequirementTest), 604
sitePackages (toil.test.src.autoDeploymentTest.AutoDeploymentTest

attribute), 572
size() (in module toil.wdl.wdl_functions), 689
size() (toil.cwl.cwltoil.ToilFsAccess method), 285
SkipNull (class in toil.cwl.cwltoil), 276
skipped_outputs() (toil.cwl.cwltoil.Conditional

method), 277
sleepSeconds() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

method), 231
sleepTime (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest

attribute), 503
slow() (in module toil.test), 645
slow_down() (in module toil.lib.misc), 420
slurm_batch_system_factory() (in module

toil.batchSystems.registry), 260
SlurmBatchSystem (class in toil.batchSystems.slurm),

264
SlurmBatchSystem.Worker (class in

Index 869

Toil Documentation, Release 5.11.0

toil.batchSystems.slurm), 264
SlurmBatchSystemTest (class in

toil.test.batchSystems.batchSystemTest), 508
SlurmTest (class in toil.test.batchSystems.test_slurm),

514
smoothEstimate() (toil.provisioners.clusterScaler.ClusterScaler

method), 457
sort() (in module toil.test.sort.restart_sort), 568
sort() (in module toil.test.sort.sort), 570
sort_category_choices (in module toil.utils.toilStats),

662
sort_field_choices (in module toil.utils.toilStats),

662
sort_options() (toil.server.wes.tasks.ToilWorkflowRunner

method), 480
sortJobs() (in module toil.utils.toilStats), 660
sortMemory (in module toil.test.sort.restart_sort), 568
sortMemory (in module toil.test.sort.sort), 569
SortTest (class in toil.test.sort.sortTest), 571
SOURCE_IMAGE (toil.provisioners.gceProvisioner.GCEProvisioner

attribute), 461
split() (in module toil.provisioners.clusterScaler), 455
sprintTag() (in module toil.utils.toilStats), 660
SQLITE_TIMEOUT_SECS (in module

toil.fileStores.cachingFileStore), 310
sseKeyPath (toil.jobStores.aws.jobStore.AWSJobStore

property), 325
sshAppliance() (toil.provisioners.node.Node method),

464
sshInstance() (toil.provisioners.node.Node method),

464
sshUtil() (toil.test.provisioners.clusterTest.AbstractClusterTest

method), 556
sshUtil() (toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest

method), 557
stageFn() (in module tutorial_requirements), 814
start() (toil.common.Toil method), 735
start() (toil.job.Job.Service method), 759
start() (toil.serviceManager.ServiceManager method),

788
start() (toil.statsAndLogging.StatsAndLogging

method), 791
start() (toil.test.batchSystems.batchSystemTest.Service

method), 507
start() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner

method), 553
start() (toil.test.src.jobServiceTest.ToySerializableService

method), 596
start() (toil.test.src.jobServiceTest.ToyService method),

595
start() (toil.test.src.jobTest.TrivialService method), 600
start() (tutorial_services.DemoService method), 816
start_server() (in module toil.server.app), 489
startCommit() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 309
startCommit() (toil.fileStores.cachingFileStore.CachingFileStore

method), 315
startCommit() (toil.fileStores.nonCachingFileStore.NonCachingFileStore

method), 320
startCommitThread()

(toil.fileStores.cachingFileStore.CachingFileStore
method), 315

startDashboard() (toil.common.ToilMetrics method),
738

startStats() (toil.provisioners.clusterScaler.ClusterStats
method), 460

startToil() (toil.job.Job.Runner static method), 758
STATE_DIR_STEM (toil.deferred.DeferredFunctionManager

attribute), 743
state_store_cache (in module toil.server.utils), 495
STATE_TO_EXIT_REASON (in module

toil.batchSystems.awsBatch), 232
STATE_TO_EXIT_REASON (in module

toil.batchSystems.tes), 267
StatsAndLogging (class in toil.statsAndLogging), 791
statsAndLoggingAggregator()

(toil.statsAndLogging.StatsAndLogging class
method), 792

statsCommand (toil.test.utils.utilsTest.UtilsTest prop-
erty), 622

StatsDict (class in toil.worker), 797
statsFileOwnerID (toil.jobStores.aws.jobStore.AWSJobStore

attribute), 325
statusCommand() (toil.test.utils.utilsTest.UtilsTest

method), 623
statusUpdate() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

method), 209
StepValueFrom (class in toil.cwl.cwltoil), 278
STOP (in module toil.lib.docker), 397
stop() (toil.job.Job.Service method), 759
stop() (toil.test.batchSystems.batchSystemTest.Service

method), 507
stop() (toil.test.src.jobServiceTest.ToySerializableService

method), 596
stop() (toil.test.src.jobServiceTest.ToyService method),

595
stop() (toil.test.src.jobTest.TrivialService method), 600
stop() (tutorial_services.DemoService method), 817
streamingFileStoreString (in module

toil.test.src.jobFileStoreTest), 593
strict_bool() (in module toil.lib.memoize), 418
StubHttpRequestHandler (class in

toil.test.jobStores.jobStoreTest), 531
sub() (in module toil.wdl.wdl_functions), 688
submit_run() (in module

toil.server.cli.wes_cwl_runner), 470
submitJob() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem.Worker

method), 229

870 Index

Toil Documentation, Release 5.11.0

submitJob() (toil.batchSystems.gridengine.GridEngineBatchSystem.Worker
method), 239

submitJob() (toil.batchSystems.htcondor.HTCondorBatchSystem.Worker
method), 242

submitJob() (toil.batchSystems.lsf.LSFBatchSystem.Worker
method), 251

submitJob() (toil.batchSystems.slurm.SlurmBatchSystem.Worker
method), 266

submitJob() (toil.batchSystems.torque.TorqueBatchSystem.Worker
method), 271

subprocessDockerCall() (in module toil.lib.docker),
397

subscribe() (toil.bus.MessageBus method), 727
subtract() (toil.provisioners.clusterScaler.NodeReservation

method), 455
successor_returned() (toil.toilState.ToilState

method), 795
successors_by_phase() (toil.job.JobDescription

method), 753
successors_pending() (toil.toilState.ToilState

method), 795
successorsAndServiceHosts()

(toil.job.JobDescription method), 753
SUPPORTED_HTTP_ERRORS (in module toil.lib.retry), 426
supportedClusterTypes()

(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 448

supportedClusterTypes()
(toil.provisioners.aws.awsProvisioner.AWSProvisioner
method), 438

supportedClusterTypes()
(toil.provisioners.gceProvisioner.GCEProvisioner
method), 461

supportedClusterTypes()
(toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 553

supportsAutoDeployment()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 217

supportsAutoDeployment()
(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem
class method), 230

supportsAutoDeployment()
(toil.batchSystems.awsBatch.AWSBatchBatchSystem
class method), 232

supportsAutoDeployment()
(toil.batchSystems.kubernetes.KubernetesBatchSystem
class method), 246

supportsAutoDeployment()
(toil.batchSystems.mesos.batchSystem.MesosBatchSystem
class method), 207

supportsAutoDeployment()
(toil.batchSystems.parasol.ParasolBatchSystem
class method), 257

supportsAutoDeployment()
(toil.batchSystems.singleMachine.SingleMachineBatchSystem
class method), 262

supportsAutoDeployment()
(toil.batchSystems.tes.TESBatchSystem class
method), 268

supportsWallTime() (toil.test.batchSystems.batchSystemTest.AWSBatchBatchSystemTest
method), 504

supportsWallTime() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest
method), 502

supportsWallTime() (toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemTest
method), 503

supportsWallTime() (toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest
method), 505

supportsWallTime() (toil.test.batchSystems.batchSystemTest.ParasolBatchSystemTest
method), 508

supportsWallTime() (toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemTest
method), 505

supportsWallTime() (toil.test.batchSystems.batchSystemTest.TESBatchSystemTest
method), 504

supportsWorkerCleanup()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 217

supportsWorkerCleanup()
(toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem
class method), 230

supportsWorkerCleanup()
(toil.batchSystems.cleanup_support.BatchSystemCleanupSupport
class method), 235

supportsWorkerCleanup()
(toil.batchSystems.mesos.batchSystem.MesosBatchSystem
class method), 207

supportsWorkerCleanup()
(toil.batchSystems.parasol.ParasolBatchSystem
class method), 257

supportsWorkerCleanup()
(toil.batchSystems.singleMachine.SingleMachineBatchSystem
class method), 262

suppress_exotic_logging() (in module
toil.statsAndLogging), 793

sync_memoize() (in module toil.lib.memoize), 418
SynthesizeWDL (class in toil.wdl.wdl_synthesis), 695
SYS_MAX_SIZE (in module toil.common), 731
system() (in module toil.lib.bioio), 393
SystemTest (class in toil.test.src.systemTest), 614

T
T (in module toil.job), 774
t2_micro (in module toil.test.provisioners.clusterScalerTest),

549
TagGenerationTest (class in toil.test.lib.aws.test_utils),

534
task_filter() (in module

toil.server.wes.amazon_wes_utils), 479

Index 871

Toil Documentation, Release 5.11.0

TaskData (in module toil.batchSystems.mesos), 213
TaskLog (in module toil.server.wes.abstract_backend),

472
TaskRunner (class in toil.server.wes.tasks), 482
tearDown() (toil.test.batchSystems.batchSystemTest.BatchSystemPluginTest

method), 501
tearDown() (toil.test.batchSystems.batchSystemTest.GridEngineBatchSystemTest

method), 508
tearDown() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest

method), 503
tearDown() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest

method), 502
tearDown() (toil.test.batchSystems.batchSystemTest.HTCondorBatchSystemTest

method), 510
tearDown() (toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest

method), 506
tearDown() (toil.test.batchSystems.batchSystemTest.MesosBatchSystemJobTest

method), 510
tearDown() (toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest

method), 505
tearDown() (toil.test.batchSystems.batchSystemTest.ParasolBatchSystemTest

method), 508
tearDown() (toil.test.batchSystems.batchSystemTest.SlurmBatchSystemTest

method), 509
tearDown() (toil.test.batchSystems.batchSystemTest.TorqueBatchSystemTest

method), 509
tearDown() (toil.test.cwl.cwlTest.CWLv10Test method),

520
tearDown() (toil.test.cwl.cwlTest.CWLv11Test method),

520
tearDown() (toil.test.cwl.cwlTest.CWLv12Test method),

521
tearDown() (toil.test.cwl.cwlTest.CWLWorkflowTest

method), 518
tearDown() (toil.test.docs.scriptsTest.ToilDocumentationTest

method), 523
tearDown() (toil.test.jobStores.jobStoreTest.AbstractEncryptedJobStoreTest.Test

method), 528
tearDown() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test

method), 526
tearDown() (toil.test.lib.test_misc.UserNameUnvailableTest

method), 540
tearDown() (toil.test.lib.test_misc.UserNameVeryBrokenTest

method), 540
tearDown() (toil.test.provisioners.clusterTest.AbstractClusterTest

method), 556
tearDown() (toil.test.provisioners.gceProvisionerTest.AbstractGCEAutoscaleTest

method), 558
tearDown() (toil.test.server.serverTest.AbstractToilWESServerTest

method), 565
tearDown() (toil.test.sort.sortTest.SortTest method), 571
tearDown() (toil.test.src.jobDescriptionTest.JobDescriptionTest

method), 591
tearDown() (toil.test.src.promisedRequirementTest.MesosPromisedRequirementsTest

method), 605
tearDown() (toil.test.src.promisedRequirementTest.SingleMachinePromisedRequirementsTest

method), 604
tearDown() (toil.test.src.restartDAGTest.RestartDAGTest

method), 611
tearDown() (toil.test.src.retainTempDirTest.CleanWorkDirTest

method), 613
tearDown() (toil.test.src.toilContextManagerTest.ToilContextManagerTest

method), 616
tearDown() (toil.test.ToilTest method), 640
tearDown() (toil.test.utils.toilKillTest.ToilKillTest

method), 621
tearDown() (toil.test.utils.utilsTest.UtilsTest method),

622
tearDown() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest

method), 625
tearDown() (toil.test.wdl.toilwdlTest.BaseToilWdlTest

method), 629
tearDownClass() (toil.test.lib.aws.test_s3.S3Test class

method), 533
tearDownClass() (toil.test.server.serverTest.BucketUsingTest

class method), 564
tearDownClass() (toil.test.ToilTest class method), 640
tearDownClass() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

class method), 630
tearDownModule() (in module

toil.test.jobStores.jobStoreTest), 525
tempDir (toil.job.Job property), 760
tempFileContaining() (in module

toil.test.src.resourceTest), 610
tempFileTestErrorJob() (in module

toil.test.src.retainTempDirTest), 614
tempFileTestJob() (in module

toil.test.src.retainTempDirTest), 614
TemporaryID (class in toil.job), 747
TERMINAL_STATES (in module toil.server.utils), 496
terminateNodes() (toil.provisioners.abstractProvisioner.AbstractProvisioner

method), 449
terminateNodes() (toil.provisioners.aws.awsProvisioner.AWSProvisioner

method), 440
terminateNodes() (toil.provisioners.gceProvisioner.GCEProvisioner

method), 462
terminateNodes() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner

method), 554
tes_batch_system_factory() (in module

toil.batchSystems.registry), 260
tes_bearer_token (toil.common.Config attribute), 732
tes_endpoint (toil.common.Config attribute), 732
tes_password (toil.common.Config attribute), 732
tes_user (toil.common.Config attribute), 732
TESBatchSystem (class in toil.batchSystems.tes), 267
TESBatchSystemTest (class in

toil.test.batchSystems.batchSystemTest), 504
test() (toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest

872 Index

Toil Documentation, Release 5.11.0

method), 506
test() (toil.test.provisioners.aws.awsProvisionerTest.PreemptibleDeficitCompensationTest

method), 548
test() (toil.test.src.promisesTest.CachedUnpicklingJobStoreTest

method), 606
test() (toil.test.src.promisesTest.ChainedIndexedPromisesTest

method), 606
test() (toil.test.src.promisesTest.PathIndexingPromiseTest

method), 607
test() (toil.test.src.resumabilityTest.ResumabilityTest

method), 612
test_AMI_finding() (toil.test.provisioners.aws.awsProvisionerTest.AWSProvisionerBenchTest

method), 545
test_as_map() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest

method), 627
test_as_pairs() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest

method), 627
test_atomic_context_error()

(toil.test.src.miscTests.MiscTests method),
601

test_atomic_context_ok()
(toil.test.src.miscTests.MiscTests method),
601

test_atomic_install()
(toil.test.src.miscTests.MiscTests method),
601

test_atomic_install_dev()
(toil.test.src.miscTests.MiscTests method),
601

test_available_cores()
(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest
method), 502

test_basic_import_export()
(toil.test.src.importExportFileTest.ImportExportFileTest
method), 589

test_bioconda() (toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_biocontainers()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_build_tag() (toil.test.lib.aws.test_utils.TagGenerationTest
method), 534

test_build_tag_with_tags()
(toil.test.lib.aws.test_utils.TagGenerationTest
method), 534

test_bypass_stable_feed()
(toil.test.lib.test_ec2.FlatcarFeedTest method),
538

test_call_command_err()
(toil.test.src.miscTests.MiscTests method),
602

test_call_command_ok()
(toil.test.src.miscTests.MiscTests method),
601

test_ceil() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_coalesce_job_exit_codes_many_all_exist()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_coalesce_job_exit_codes_one_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_coalesce_job_exit_codes_one_not_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_coalesce_job_exit_codes_sacct_raises_job_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_coalesce_job_exit_codes_sacct_raises_job_not_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_coalesce_job_exit_codes_some_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_collect_by_key()
(toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 628

test_convert() (toil.test.lib.test_conversions.ConversionTest
method), 537

test_create_bucket() (toil.test.lib.aws.test_s3.S3Test
method), 533

test_cross() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_cross_thread_messaging()
(toil.test.src.busTest.MessageBusTest method),
575

test_cuda() (toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_cwl_on_arm() (toil.test.cwl.cwlTest.CWLOnARMTest
method), 522

test_cwl_toil_kill()
(toil.test.utils.toilKillTest.ToilKillTest method),
621

test_download_directory_file()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_download_directory_s3()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_download_file()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_download_http()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_download_https()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

Index 873

Toil Documentation, Release 5.11.0

test_download_s3() (toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_download_structure() (in module
toil.test.cwl.cwlTest), 522

test_download_subdirectory_file()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_download_subdirectory_s3()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_empty_aws_tags()
(toil.test.lib.aws.test_utils.TagGenerationTest
method), 534

test_empty_file_path()
(toil.test.wdl.wdltoil_test.WdlToilTest method),
632

test_enum_ints_in_file()
(toil.test.src.busTest.MessageBusTest method),
575

test_fetch_arm_flatcar()
(toil.test.lib.test_ec2.AMITest method), 539

test_fetch_flatcar() (toil.test.lib.test_ec2.AMITest
method), 539

test_file_link_imports()
(toil.test.jobStores.jobStoreTest.FileJobStoreTest
method), 529

test_filename_conflict_detection() (in module
toil.test.cwl.cwlTest), 522

test_filename_conflict_detection_at_root()
(in module toil.test.cwl.cwlTest), 522

test_filename_conflict_resolution() (in module
toil.test.cwl.cwlTest), 522

test_flatten() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 628

test_floor() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_get_bucket_location_public_bucket()
(toil.test.lib.aws.test_s3.S3Test method), 533

test_get_service_info()
(toil.test.server.serverTest.ToilWESServerBenchTest
method), 565

test_get_user_name()
(toil.test.lib.test_misc.UserNameAvailableTest
method), 540

test_get_user_name()
(toil.test.lib.test_misc.UserNameUnvailableTest
method), 540

test_get_user_name()
(toil.test.lib.test_misc.UserNameVeryBrokenTest
method), 540

test_getJobDetailsFromSacct_many_all_exist()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobDetailsFromSacct_many_none_exist()

(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobDetailsFromSacct_many_some_exist()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobDetailsFromSacct_one_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobDetailsFromSacct_one_not_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobDetailsFromScontrol_many_all_exist()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobDetailsFromScontrol_many_none_exist()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobDetailsFromScontrol_many_some_exist()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobDetailsFromScontrol_one_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobDetailsFromScontrol_one_not_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobExitCode_job_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobExitCode_job_not_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobExitCode_sacct_raises_job_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_getJobExitCode_sacct_raises_job_not_exists()
(toil.test.batchSystems.test_slurm.SlurmTest
method), 515

test_giraffe() (toil.test.wdl.wdltoil_test.WdlToilTest
method), 632

test_giraffe_deepvariant()
(toil.test.wdl.wdltoil_test.WdlToilTest method),
632

test_gridengine_cwl_conformance()
(toil.test.cwl.cwlTest.CWLv10Test method),
520

test_gridengine_cwl_conformance_with_caching()
(toil.test.cwl.cwlTest.CWLv10Test method), 520

test_health() (toil.test.server.serverTest.ToilWESServerBenchTest
method), 565

test_hms_duration_to_seconds()
(toil.test.lib.test_conversions.ConversionTest
method), 537

test_home() (toil.test.server.serverTest.ToilWESServerBenchTest

874 Index

Toil Documentation, Release 5.11.0

method), 565
test_human2bytes() (toil.test.lib.test_conversions.ConversionTest

method), 537
test_import_export_restart_false()

(toil.test.src.importExportFileTest.ImportExportFileTest
method), 589

test_import_export_restart_true()
(toil.test.src.importExportFileTest.ImportExportFileTest
method), 589

test_incorrect_json_emoji()
(toil.test.lib.aws.test_utils.TagGenerationTest
method), 534

test_incorrect_json_object()
(toil.test.lib.aws.test_utils.TagGenerationTest
method), 534

test_jobstore_does_not_leak_symlinks()
(toil.test.jobStores.jobStoreTest.FileJobStoreTest
method), 529

test_jobstore_init_preserves_symlink_path()
(toil.test.jobStores.jobStoreTest.FileJobStoreTest
method), 528

test_keys() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_kubernetes_cwl_conformance()
(toil.test.cwl.cwlTest.CWLv10Test method),
520

test_kubernetes_cwl_conformance()
(toil.test.cwl.cwlTest.CWLv11Test method),
521

test_kubernetes_cwl_conformance()
(toil.test.cwl.cwlTest.CWLv12Test method),
521

test_kubernetes_cwl_conformance_with_caching()
(toil.test.cwl.cwlTest.CWLv10Test method), 520

test_kubernetes_cwl_conformance_with_caching()
(toil.test.cwl.cwlTest.CWLv11Test method), 521

test_kubernetes_cwl_conformance_with_caching()
(toil.test.cwl.cwlTest.CWLv12Test method), 521

test_label_constraints()
(toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemBenchTest
method), 504

test_length() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_load_contents_file()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_load_contents_http()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_load_contents_https()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_load_contents_s3()
(toil.test.cwl.cwlTest.CWLWorkflowTest

method), 519
test_log_dir_echo_no_output() (in module

toil.test.cwl.cwlTest), 522
test_log_dir_echo_stderr() (in module

toil.test.cwl.cwlTest), 522
test_lsf_cwl_conformance()

(toil.test.cwl.cwlTest.CWLv10Test method),
520

test_lsf_cwl_conformance_with_caching()
(toil.test.cwl.cwlTest.CWLv10Test method), 520

test_mesos_cwl_conformance()
(toil.test.cwl.cwlTest.CWLv10Test method),
520

test_mesos_cwl_conformance_with_caching()
(toil.test.cwl.cwlTest.CWLv10Test method), 520

test_miniwdl_self_test()
(toil.test.wdl.wdltoil_test.WdlToilTest method),
632

test_mpi() (toil.test.cwl.cwlTest.CWLWorkflowTest
method), 518

test_negative_permissions_iam()
(toil.test.lib.aws.test_iam.IAMTest method),
532

test_nested_panic() (toil.test.src.miscTests.TestPanic
method), 602

test_node_type_parsing()
(toil.test.provisioners.provisionerTest.ProvisionerTest
method), 560

test_omp_threads() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest
method), 503

test_overhead_accounting_large()
(toil.test.provisioners.clusterScalerTest.ClusterScalerTest
method), 552

test_overhead_accounting_observed()
(toil.test.provisioners.clusterScalerTest.ClusterScalerTest
method), 552

test_overhead_accounting_small()
(toil.test.provisioners.clusterScalerTest.ClusterScalerTest
method), 552

test_panic() (toil.test.src.miscTests.TestPanic
method), 602

test_panic_by_hand()
(toil.test.src.miscTests.TestPanic method),
602

test_panic_with_secondary()
(toil.test.src.miscTests.TestPanic method),
602

test_parasol_cwl_conformance()
(toil.test.cwl.cwlTest.CWLv10Test method),
520

test_parasol_cwl_conformance_with_caching()
(toil.test.cwl.cwlTest.CWLv10Test method), 520

test_parse_archive_feed()
(toil.test.lib.test_ec2.FlatcarFeedTest method),

Index 875

Toil Documentation, Release 5.11.0

538
test_parse_beta_feed()

(toil.test.lib.test_ec2.FlatcarFeedTest method),
538

test_parse_mem_and_cmd_from_output()
(toil.test.batchSystems.test_lsf_helper.LSFHelperTest
method), 513

test_parse_stable_feed()
(toil.test.lib.test_ec2.FlatcarFeedTest method),
538

test_permissions_iam()
(toil.test.lib.aws.test_iam.IAMTest method),
532

test_pick_value_with_one_null_value() (in mod-
ule toil.test.cwl.cwlTest), 522

test_preemptability_constraints()
(toil.test.batchSystems.batchSystemTest.KubernetesBatchSystemBenchTest
method), 504

test_range() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_read() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_read_write_global_files()
(toil.test.provisioners.aws.awsProvisionerTest.AWSProvisionerBenchTest
method), 545

test_restart() (toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_restart_without_bus_path()
(toil.test.src.busTest.MessageBusTest method),
575

test_round() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_run_and_cancel_workflows()
(toil.test.server.serverTest.ToilWESServerWorkflowTest
method), 566

test_run_colon_output()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_run_conformance()
(toil.test.cwl.cwlTest.CWLv10Test method),
520

test_run_conformance()
(toil.test.cwl.cwlTest.CWLv11Test method),
520

test_run_conformance()
(toil.test.cwl.cwlTest.CWLv12Test method),
521

test_run_conformance_with_caching()
(toil.test.cwl.cwlTest.CWLv10Test method),
520

test_run_conformance_with_caching()
(toil.test.cwl.cwlTest.CWLv11Test method),
520

test_run_conformance_with_caching()

(toil.test.cwl.cwlTest.CWLv12Test method),
521

test_run_conformance_with_in_place_update()
(toil.test.cwl.cwlTest.CWLv12Test method), 521

test_run_jobs() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest
method), 502

test_run_revsort() (toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_run_revsort2()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_run_revsort_debug_worker()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_run_revsort_nochecksum()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_run_workflow_https_url()
(toil.test.server.serverTest.ToilWESServerWorkflowTest
method), 566

test_run_workflow_inputs_zip()
(toil.test.server.serverTest.ToilWESServerWorkflowTest
method), 566

test_run_workflow_manifest_and_inputs_zip()
(toil.test.server.serverTest.ToilWESServerWorkflowTest
method), 566

test_run_workflow_manifest_zip()
(toil.test.server.serverTest.ToilWESServerWorkflowTest
method), 566

test_run_workflow_multi_file_zip()
(toil.test.server.serverTest.ToilWESServerWorkflowTest
method), 566

test_run_workflow_no_params_zip()
(toil.test.server.serverTest.ToilWESServerWorkflowTest
method), 566

test_run_workflow_relative_url()
(toil.test.server.serverTest.ToilWESServerWorkflowTest
method), 566

test_run_workflow_relative_url_no_attachments_fails()
(toil.test.server.serverTest.ToilWESServerWorkflowTest
method), 566

test_run_workflow_single_file_zip()
(toil.test.server.serverTest.ToilWESServerWorkflowTest
method), 566

test_s3_as_secondary_file()
(toil.test.cwl.cwlTest.CWLWorkflowTest
method), 518

test_set_env() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest
method), 502

test_set_job_env() (toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest
method), 502

test_size() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_size_large() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

876 Index

Toil Documentation, Release 5.11.0

method), 631
test_slurm_cwl_conformance()

(toil.test.cwl.cwlTest.CWLv10Test method),
520

test_slurm_cwl_conformance_with_caching()
(toil.test.cwl.cwlTest.CWLv10Test method), 520

test_state_store() (toil.test.server.serverTest.hidden.AbstractStateStoreTest
method), 562

test_state_store_paths()
(toil.test.server.serverTest.AWSStateStoreTest
method), 564

test_stdout() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_streamable() (toil.test.cwl.cwlTest.CWLWorkflowTest
method), 519

test_sub() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_torque_cwl_conformance()
(toil.test.cwl.cwlTest.CWLv10Test method),
520

test_torque_cwl_conformance_with_caching()
(toil.test.cwl.cwlTest.CWLv10Test method), 520

test_transpose() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_type_pair() (toil.test.wdl.builtinTest.WdlLanguageSpecWorkflowsTest
method), 627

test_usage_message() (in module
toil.test.cwl.cwlTest), 522

test_v1_declaration()
(toil.test.wdl.builtinTest.WdlLanguageSpecWorkflowsTest
method), 627

test_visit_cwl_class_and_reduce() (in module
toil.test.cwl.cwlTest), 522

test_visit_top_cwl_class() (in module
toil.test.cwl.cwlTest), 522

test_wes_server_cwl_conformance()
(toil.test.cwl.cwlTest.CWLv12Test method),
521

test_wildcard_handling()
(toil.test.lib.aws.test_iam.IAMTest method),
532

test_workflow_canceling_recovery()
(toil.test.server.serverTest.ToilServerUtilsTest
method), 562

test_workflow_echo_string() (in module
toil.test.cwl.cwlTest), 522

test_workflow_echo_string_scatter_capture_stdout()
(in module toil.test.cwl.cwlTest), 522

test_workflow_echo_string_scatter_stderr_log_dir()
(in module toil.test.cwl.cwlTest), 522

test_write() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

test_zip() (toil.test.wdl.builtinTest.WdlStandardLibraryWorkflowsTest
method), 627

testAddBatchSystemFactory()
(toil.test.batchSystems.batchSystemTest.BatchSystemPluginTest
method), 501

testAddChildEncapsulate()
(toil.test.src.jobEncapsulationTest.JobEncapsulationTest
method), 591

testAddingInitialNode()
(toil.test.provisioners.clusterScalerTest.BinPackingTest
method), 550

testAlways() (toil.test.src.retainTempDirTest.CleanWorkDirTest
method), 613

testApplianceParser()
(toil.test.src.dockerCheckTest.DockerCheckTest
method), 581

testArguments() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testAsyncWriteWithCaching()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 584

testAtomicityOfNonEmptyDirectoryRenames()
(toil.test.src.systemTest.SystemTest method),
614

testAutoScale() (toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest
method), 547

testAutoScale() (toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTestMultipleNodeTypes
method), 548

testAutoScale() (toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTest
method), 558

testAutoScale() (toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTestMultipleNodeTypes
method), 559

testAutoScaledCluster()
(toil.test.provisioners.aws.awsProvisionerTest.AWSRestartTest
method), 548

testAutoScaledCluster()
(toil.test.provisioners.gceProvisionerTest.GCERestartTest
method), 559

testAwsMesos() (toil.test.sort.sortTest.SortTest
method), 571

testAWSProvisionerUtils()
(toil.test.utils.utilsTest.UtilsTest method),
623

testAwsSingle() (toil.test.sort.sortTest.SortTest
method), 571

testBadGoogleRepo()
(toil.test.src.dockerCheckTest.DockerCheckTest
method), 581

testBadQuayRepo() (toil.test.src.dockerCheckTest.DockerCheckTest
method), 581

testBadQuayRepoNTag()
(toil.test.src.dockerCheckTest.DockerCheckTest
method), 581

testBadQuayTag() (toil.test.src.dockerCheckTest.DockerCheckTest
method), 581

testBatchCreate() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test

Index 877

Toil Documentation, Release 5.11.0

method), 527
testBatchResourceLimits()

(toil.test.batchSystems.batchSystemTest.ParasolBatchSystemTest
method), 508

testBatchSystemCleanupCanHandleWorkerDeaths()
(toil.test.src.deferredFunctionTest.DeferredFunctionTest
method), 580

testBetaInertia() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest
method), 552

testBroadDockerRepo()
(toil.test.src.dockerCheckTest.DockerCheckTest
method), 581

testBroadDockerRepoBadTag()
(toil.test.src.dockerCheckTest.DockerCheckTest
method), 581

testBuiltIn() (toil.test.src.resourceTest.ResourceTest
method), 610

testCacheEvictionFailCase()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 584

testCacheEvictionPartialEvict()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 584

testCacheEvictionTotalEvict()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 584

testCachingFileStore()
(toil.test.src.jobFileStoreTest.JobFileStoreTest
method), 592

testCheckpointedRestartSucceeds()
(toil.test.src.checkpointTest.CheckpointTest
method), 576

testCheckpointNotRetried()
(toil.test.src.checkpointTest.CheckpointTest
method), 576

testCheckpointRetriedOnce()
(toil.test.src.checkpointTest.CheckpointTest
method), 576

testCheckResourceRequest()
(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest
method), 502

testChildLoadingEquality()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 526

testCleanCache() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testClusterScaling()
(toil.test.provisioners.clusterScalerTest.ScalerThreadTest
method), 552

testClusterScalingMultipleNodeTypes()
(toil.test.provisioners.clusterScalerTest.ScalerThreadTest
method), 553

testClusterScalingWithPreemptibleJobs()
(toil.test.provisioners.clusterScalerTest.ScalerThreadTest

method), 553
testConcurrencyDynamic()

(toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest
method), 603

testConcurrencyStatic()
(toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest
method), 603

testConcurrencyWithDisk()
(toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemJobTest
method), 510

testConfigEquality()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 526

testContextManger()
(toil.test.src.toilContextManagerTest.ToilContextManagerTest
method), 616

testControlledFailedWorkerRetry()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 585

testCopySubRangeOfFile()
(toil.test.sort.sortTest.SortTest method), 572

testCSV() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest
method), 630

testCwlexample() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testDAGConsistency() (toil.test.src.jobTest.JobTest
method), 598

testDeadlockDetection()
(toil.test.src.jobTest.JobTest method), 598

testDeferralWithConcurrentEncapsulation()
(toil.test.src.autoDeploymentTest.AutoDeploymentTest
method), 573

testDeferralWithFailureAndEncapsulation()
(toil.test.src.autoDeploymentTest.AutoDeploymentTest
method), 573

testDeferredFunctionRunsWithClassMethod()
(toil.test.src.deferredFunctionTest.DeferredFunctionTest
method), 580

testDeferredFunctionRunsWithFailures()
(toil.test.src.deferredFunctionTest.DeferredFunctionTest
method), 580

testDeferredFunctionRunsWithLambda()
(toil.test.src.deferredFunctionTest.DeferredFunctionTest
method), 580

testDeferredFunctionRunsWithMethod()
(toil.test.src.deferredFunctionTest.DeferredFunctionTest
method), 579

testDeleteLocalFile()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 585

testDestructionIdempotence()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testDestructionOfCorruptedJobStore()

878 Index

Toil Documentation, Release 5.11.0

(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testDiscoverfiles()
(toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testDocker() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testDockerClean() (toil.test.lib.dockerTest.DockerTest
method), 535

testDockerClean_CRx_FORGO()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_CRx_None()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_CRx_RM()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_CRx_STOP()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_CxD_FORGO()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_CxD_None()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_CxD_RM()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_CxD_STOP()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_Cxx_FORGO()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_Cxx_None()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_Cxx_RM()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_Cxx_STOP()
(toil.test.lib.dockerTest.DockerTest method),
535

testDockerClean_xRx_FORGO()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerClean_xRx_None()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerClean_xRx_RM()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerClean_xRx_STOP()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerClean_xxD_FORGO()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerClean_xxD_None()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerClean_xxD_RM()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerClean_xxD_STOP()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerClean_xxx_FORGO()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerClean_xxx_None()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerClean_xxx_RM()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerClean_xxx_STOP()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerLogs() (toil.test.lib.dockerTest.DockerTest
method), 536

testDockerLogs_Demux()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerLogs_Demux_Stream()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerLogs_Stream()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerPipeChain()
(toil.test.lib.dockerTest.DockerTest method),
536

testDockerPipeChainErrorDetection()
(toil.test.lib.dockerTest.DockerTest method),
536

testDynamic() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testEmptyFileStoreIDIsReadable()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 528

testEncapsulation()
(toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testEncapsulation()
(toil.test.src.jobEncapsulationTest.JobEncapsulationTest

Index 879

Toil Documentation, Release 5.11.0

method), 591
testEncapsulation2()

(toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testENCODE() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest
method), 631

testEncrypted() (toil.test.jobStores.jobStoreTest.AbstractEncryptedJobStoreTest.Test
method), 528

testEvaluatingRandomDAG()
(toil.test.src.jobTest.JobTest method), 599

testExportAfterFailedExport()
(toil.test.src.toilContextManagerTest.ToilContextManagerTest
method), 616

testExtremeCacheSetup()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 583

testFetchJobStoreFiles() (in module
toil.test.utils.toilDebugTest), 620

testFetchJobStoreFilesWSymlinks() (in module
toil.test.utils.toilDebugTest), 620

testFileDeletion() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testFileGridEngine() (toil.test.sort.sortTest.SortTest
method), 571

testFileMesos() (toil.test.sort.sortTest.SortTest
method), 571

testFileParasol() (toil.test.sort.sortTest.SortTest
method), 572

testFileSingle() (toil.test.sort.sortTest.SortTest
method), 571

testFileSingle10000()
(toil.test.sort.sortTest.SortTest method), 571

testFileSingleCheckpoints()
(toil.test.sort.sortTest.SortTest method), 571

testFileSingleNonCaching()
(toil.test.sort.sortTest.SortTest method), 571

testFileStoreExportFile()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 585

testFileStoreLogging()
(toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest
method), 583

testFileStoreOperations()
(toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest
method), 583

testFileTorqueEngine()
(toil.test.sort.sortTest.SortTest method), 572

testFn_Basename() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest
method), 629

testFn_Ceil() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_Cross() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 626

testFn_Floor() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest

method), 625
testFn_Glob() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest

method), 629
testFn_Length() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest

method), 625
testFn_ParseCores()

(toil.test.wdl.toilwdlTest.ToilWDLLibraryTest
method), 630

testFn_ParseDisk() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest
method), 630

testFn_ParseMemory()
(toil.test.wdl.toilwdlTest.ToilWDLLibraryTest
method), 629

testFn_ReadBoolean()
(toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_ReadFloat() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_ReadInt() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_ReadJson() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_ReadLines() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_ReadMap() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_ReadString()
(toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_ReadTsv() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_SelectFirst()
(toil.test.wdl.toilwdlTest.ToilWDLLibraryTest
method), 629

testFn_Size() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest
method), 629

testFn_Sub() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_Transpose() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_WriteJson() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_WriteLines()
(toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_WriteMap() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_WriteTsv() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 625

testFn_Zip() (toil.test.wdl.builtinTest.WdlStandardLibraryFunctionsTest
method), 626

testGetMidPoint() (toil.test.sort.sortTest.SortTest
method), 572

testGetPIDStatus() (toil.test.utils.utilsTest.UtilsTest

880 Index

Toil Documentation, Release 5.11.0

method), 623
testGetSizeOfDirectoryWorks()

(toil.test.src.miscTests.MiscTests method),
601

testGetStatusFailedCWLWF()
(toil.test.utils.utilsTest.UtilsTest method),
623

testGetStatusFailedToilWF()
(toil.test.utils.utilsTest.UtilsTest method),
623

testGetStatusSuccessfulCWLWF()
(toil.test.utils.utilsTest.UtilsTest method),
623

testGlobalMutexOrdering()
(toil.test.src.threadingTest.ThreadingTest
method), 615

testGoogleMesos() (toil.test.sort.sortTest.SortTest
method), 571

testGoogleRepo() (toil.test.src.dockerCheckTest.DockerCheckTest
method), 581

testGoogleSingle() (toil.test.sort.sortTest.SortTest
method), 571

testGrowingAndShrinkingJob()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testHelloworld() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testHelloWorld() (toil.test.src.helloWorldTest.HelloWorldTest
method), 587

testHidingProcessEscape()
(toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemTest
method), 506

testHighTargetTime()
(toil.test.provisioners.clusterScalerTest.BinPackingTest
method), 550

testIDStability() (toil.test.src.miscTests.MiscTests
method), 601

testIgnoreNode() (toil.test.batchSystems.batchSystemTest.MesosBatchSystemTest
method), 505

testImportFtpFile()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testImportHttpFile()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testImportReadFileCompatibility()
(toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest
method), 583

testingIsAutomatic (in module
toil.test.src.fileStoreTest), 582

testInitialState() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 526

testInlinedFiles() (toil.test.jobStores.jobStoreTest.AWSJobStoreTest
method), 530

testInvalidJobStoreName()
(toil.test.jobStores.jobStoreTest.InvalidAWSJobStoreTest
method), 530

testInvokeworkflow()
(toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testInvokeworkflow2()
(toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testJobClass() (toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest
method), 617

testJobClassFromMain()
(toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest
method), 618

testJobConcurrency()
(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemJobTest
method), 503

testJobCreation() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 526

testJobDeletions() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 526

testJobDescription()
(toil.test.src.jobDescriptionTest.JobDescriptionTest
method), 591

testJobDescriptionSequencing()
(toil.test.src.jobDescriptionTest.JobDescriptionTest
method), 591

testJobFileStore() (toil.test.src.jobFileStoreTest.JobFileStoreTest
method), 593

testJobFileStoreWithBadWorker()
(toil.test.src.jobFileStoreTest.JobFileStoreTest
method), 593

testJobFunction() (toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest
method), 617

testJobFunctionFromMain()
(toil.test.src.userDefinedJobArgTypeTest.UserDefinedJobArgTypeTest
method), 618

testJobFunctions() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testJobLoadEquality()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 526

testJobQueue() (toil.test.mesos.MesosDataStructuresTest.DataStructuresTest
method), 541

testJobStoreContents() (in module
toil.test.utils.toilDebugTest), 620

testJobTooLargeForAllNodes()
(toil.test.provisioners.clusterScalerTest.BinPackingTest
method), 551

testJSON() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest
method), 631

testLargeFile() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testLastProcessStanding()

Index 881

Toil Documentation, Release 5.11.0

(toil.test.src.threadingTest.ThreadingTest
method), 615

testLogToMaster() (toil.test.src.regularLogTest.RegularLogTest
method), 609

testLongRunningJobs()
(toil.test.provisioners.clusterScalerTest.BinPackingTest
method), 551

testLowTargetTime()
(toil.test.provisioners.clusterScalerTest.BinPackingTest
method), 550

testManaging() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testManaging2() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testMaxNodes() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest
method), 551

testMD5sum() (toil.test.wdl.toilwdlTest.ToilWdlTest
method), 629

testMD5sum() (toil.test.wdl.wdltoil_test.WdlToilTest
method), 632

testMerge() (toil.test.sort.sortTest.SortTest method),
572

testMinNodes() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest
method), 551

testMultipartUploads()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testMultiplejobs() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testMultiplejobs2()
(toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testMultiplejobs3()
(toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testMultipleJobsPerWorkerStats()
(toil.test.utils.utilsTest.UtilsTest method),
623

testMultipleJobsReadSameCacheHitGlobalFile()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 584

testMultipleJobsReadSameCacheMissGlobalFile()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 584

testMultipleLogToMaster()
(toil.test.src.regularLogTest.RegularLogTest
method), 609

testMultiThreadImportFile()
(toil.test.jobStores.jobStoreTest.AWSJobStoreTest
method), 530

testNestedResourcesDoNotBlock()
(toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemJobTest
method), 510

testNever() (toil.test.src.retainTempDirTest.CleanWorkDirTest

method), 613
testNewCheckpointIsLeafVertexNonRootCase()

(toil.test.src.jobTest.JobTest method), 598
testNewCheckpointIsLeafVertexRootCase()

(toil.test.src.jobTest.JobTest method), 598
testNewJobsCanHandleOtherJobDeaths()

(toil.test.src.deferredFunctionTest.DeferredFunctionTest
method), 580

testNextChainable()
(toil.test.src.workerTest.WorkerTests method),
619

testNo (toil.test.sort.sortTest.SortTest attribute), 571
testNoContextManger()

(toil.test.src.toilContextManagerTest.ToilContextManagerTest
method), 616

testNoLaunchingIfDeltaAlreadyMet()
(toil.test.provisioners.clusterScalerTest.ClusterScalerTest
method), 552

testNonCachingDockerChain()
(toil.test.lib.dockerTest.DockerTest method),
536

testNonCachingDockerChainErrorDetection()
(toil.test.lib.dockerTest.DockerTest method),
536

testNonCachingFileStore()
(toil.test.src.jobFileStoreTest.JobFileStoreTest
method), 592

testNonexistentRepo()
(toil.test.src.dockerCheckTest.DockerCheckTest
method), 581

testNonPyStandAlone()
(toil.test.src.resourceTest.ResourceTest
method), 610

testOfficialUbuntuRepo()
(toil.test.src.dockerCheckTest.DockerCheckTest
method), 581

testOnErrorWithError()
(toil.test.src.retainTempDirTest.CleanWorkDirTest
method), 613

testOnErrorWithNoError()
(toil.test.src.retainTempDirTest.CleanWorkDirTest
method), 613

testOnSuccessWithError()
(toil.test.src.retainTempDirTest.CleanWorkDirTest
method), 613

testOnSuccessWithSuccess()
(toil.test.src.retainTempDirTest.CleanWorkDirTest
method), 613

testOverlargeJob() (toil.test.jobStores.jobStoreTest.AWSJobStoreTest
method), 530

testPackage() (toil.test.src.resourceTest.ResourceTest
method), 610

testPackingOneShape()
(toil.test.provisioners.clusterScalerTest.BinPackingTest

882 Index

Toil Documentation, Release 5.11.0

method), 550
TestPanic (class in toil.test.src.miscTests), 602
testPartialReadFromStream()

(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testPathologicalCase()
(toil.test.provisioners.clusterScalerTest.BinPackingTest
method), 551

testPerJobFiles() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testPersistantFilesToDelete()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 526

testPipe() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest
method), 631

testPreemptibleDeficitIsSet()
(toil.test.provisioners.clusterScalerTest.ClusterScalerTest
method), 552

testPreemptibleDeficitResponse()
(toil.test.provisioners.clusterScalerTest.ClusterScalerTest
method), 552

testPreserveFileName()
(toil.test.jobStores.jobStoreTest.FileJobStoreTest
method), 528

testPrimitives() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest
method), 630

testPrintJobLog() (toil.test.utils.utilsTest.UtilsTest
method), 623

testProcessEscape()
(toil.test.batchSystems.batchSystemTest.SingleMachineBatchSystemTest
method), 506

testPromiseRequirementRaceStatic()
(toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest
method), 604

testPromises() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testPromises2() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testPromisesWithJobStoreFileObjects()
(toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest
method), 603

testPromisesWithNonCachingFileStore()
(toil.test.src.promisedRequirementTest.hidden.AbstractPromisedRequirementsTest
method), 603

testQuickstart() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testReadCacheMissFileFromJobStoreWithCachingReadFile()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 584

testReadCacheMissFileFromJobStoreWithoutCachingReadFile()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 584

testReadCachHitFileFromJobStore()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest

method), 584
testReadWriteFileStreamTextMode()

(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 526

testReadWriteFileStreamTextMode()
(toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest
method), 583

testReadWriteSharedFilesTextMode()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 526

testRealtimeLogger()
(toil.test.src.realtimeLoggerTest.RealtimeLoggerTest
method), 607

testRegularLog() (toil.test.src.regularLogTest.RegularLogTest
method), 609

testRemoveLocalImmutablyReadFile()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 585

testRemoveLocalMutablyReadFile()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 585

testRequirements() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testRestart() (toil.test.src.autoDeploymentTest.AutoDeploymentTest
method), 573

testRestartAttribute()
(toil.test.utils.utilsTest.UtilsTest method),
623

testRestartedWorkflowSchedulesCorrectJobsOnFailedParent()
(toil.test.src.restartDAGTest.RestartDAGTest
method), 611

testRestartedWorkflowSchedulesCorrectJobsOnKilledParent()
(toil.test.src.restartDAGTest.RestartDAGTest
method), 611

testReturnFileSizes()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 585

testReturnFileSizesWithBadWorker()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 585

testRounding() (toil.test.provisioners.clusterScalerTest.ClusterScalerTest
method), 551

testScalableBatchSystem()
(toil.test.batchSystems.batchSystemTest.hidden.AbstractBatchSystemTest
method), 502

testSDBDomainsDeletedOnFailedJobstoreBucketCreation()
(toil.test.jobStores.jobStoreTest.AWSJobStoreTest
method), 529

testService() (toil.test.src.jobServiceTest.JobServiceTest
method), 594

testServiceDeadlock()
(toil.test.src.jobServiceTest.JobServiceTest
method), 594

testServiceParallelRecursive()

Index 883

Toil Documentation, Release 5.11.0

(toil.test.src.jobServiceTest.JobServiceTest
method), 594

testServiceRecursive()
(toil.test.src.jobServiceTest.JobServiceTest
method), 594

testServices() (toil.test.batchSystems.batchSystemTest.MaxCoresSingleMachineBatchSystemTest
method), 506

testServices() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testServiceSerialization()
(toil.test.src.jobServiceTest.JobServiceTest
method), 594

testServiceWithCheckpoints()
(toil.test.src.jobServiceTest.JobServiceTest
method), 594

testSharedFiles() (toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 526

testSiblingDAGConsistency()
(toil.test.src.jobTest.JobTest method), 598

testSimultaneousReadsUncachedStream()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 585

testSort() (toil.test.sort.sortTest.SortTest method), 572
testSorting() (toil.test.provisioners.clusterScalerTest.BinPackingTest

method), 550
testSplitRootPackages()

(toil.test.src.autoDeploymentTest.AutoDeploymentTest
method), 573

testSpotAutoScale()
(toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest
method), 547

testSpotAutoScale()
(toil.test.provisioners.gceProvisionerTest.GCEAutoscaleTest
method), 558

testSpotAutoScaleBalancingTypes()
(toil.test.provisioners.aws.awsProvisionerTest.AWSAutoscaleTest
method), 547

testStaging() (toil.test.docs.scriptsTest.ToilDocumentationTest
method), 524

testStandAlone() (toil.test.src.resourceTest.ResourceTest
method), 610

testStandAloneInPackage()
(toil.test.src.resourceTest.ResourceTest
method), 610

testStatic() (toil.test.src.jobTest.JobTest method), 598
testStatic2() (toil.test.src.jobTest.JobTest method),

598
testStatsAndLogging()

(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testToilIsNotBroken()
(toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest
method), 582

testToilQuayRepo() (toil.test.src.dockerCheckTest.DockerCheckTest

method), 581
testTrivialDAGConsistency()

(toil.test.src.jobTest.JobTest method), 598
testTSV() (toil.test.wdl.toilwdlTest.ToilWDLLibraryTest

method), 630
testTut01() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

method), 631
testTut02() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

method), 631
testTut03() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

method), 631
testTut04() (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

method), 631
testUnicodeSupport()

(toil.test.utils.utilsTest.UtilsTest method),
623

testUpdateBehavior()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 526

testUserTypesInJobFunctionArgs()
(toil.test.src.autoDeploymentTest.AutoDeploymentTest
method), 573

testUtilsSort() (toil.test.utils.utilsTest.UtilsTest
method), 623

testUtilsStatsSort()
(toil.test.utils.utilsTest.UtilsTest method),
623

testVirtualEnv() (toil.test.src.resourceTest.ResourceTest
method), 610

testWriteExportFileCompatibility()
(toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest
method), 583

testWriteGzipLogs()
(toil.test.src.regularLogTest.RegularLogTest
method), 609

testWriteLocalFileToJobStore()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 584

testWriteLogFiles()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testWriteLogs() (toil.test.src.regularLogTest.RegularLogTest
method), 609

testWriteNonLocalFileToJobStore()
(toil.test.src.fileStoreTest.hidden.AbstractCachingFileStoreTest
method), 584

testWriteReadGlobalFilePermissions()
(toil.test.src.fileStoreTest.hidden.AbstractFileStoreTest
method), 583

testZeroLengthFiles()
(toil.test.jobStores.jobStoreTest.AbstractJobStoreTest.Test
method), 527

testZeroResourceJobs()
(toil.test.provisioners.clusterScalerTest.BinPackingTest

884 Index

Toil Documentation, Release 5.11.0

method), 550
ThreadingTest (class in toil.test.src.threadingTest), 614
throttle (class in toil.lib.throttle), 435
throttle() (toil.lib.throttle.LocalThrottle method), 435
THROTTLED_ERROR_CODES (in module toil.lib.aws.utils),

387
timeLimit() (in module toil.test), 645
title() (toil.utils.toilStats.ColumnWidths method), 658
to_dict() (toil.wdl.wdl_types.WDLPair method), 705
toCommand() (toil.resource.ModuleDescriptor method),

787
toIgnitionConfig() (toil.provisioners.abstractProvisioner.AbstractProvisioner.InstanceConfiguration

method), 447
toil

module, 201
Toil (class in toil.common), 734
toil.batchSystems

module, 201
toil.batchSystems.abstractBatchSystem

module, 214
toil.batchSystems.abstractGridEngineBatchSystem

module, 227
toil.batchSystems.awsBatch

module, 231
toil.batchSystems.cleanup_support

module, 235
toil.batchSystems.contained_executor

module, 236
toil.batchSystems.gridengine

module, 238
toil.batchSystems.htcondor

module, 240
toil.batchSystems.kubernetes

module, 243
toil.batchSystems.local_support

module, 248
toil.batchSystems.lsf

module, 249
toil.batchSystems.lsfHelper

module, 252
toil.batchSystems.mesos

module, 201
toil.batchSystems.mesos.batchSystem

module, 207
toil.batchSystems.mesos.conftest

module, 210
toil.batchSystems.mesos.executor

module, 210
toil.batchSystems.mesos.test

module, 201
toil.batchSystems.options

module, 255
toil.batchSystems.parasol

module, 256

toil.batchSystems.registry
module, 259

toil.batchSystems.singleMachine
module, 261

toil.batchSystems.slurm
module, 264

toil.batchSystems.tes
module, 267

toil.batchSystems.torque
module, 270

toil.bus
module, 721

toil.common
module, 730

toil.cwl
module, 273

toil.cwl.conftest
module, 273

toil.cwl.cwltoil
module, 273

toil.cwl.utils
module, 299

toil.deferred
module, 742

toil.exceptions
module, 744

toil.fileStores
module, 302

toil.fileStores.abstractFileStore
module, 302

toil.fileStores.cachingFileStore
module, 310

toil.fileStores.nonCachingFileStore
module, 316

toil.job
module, 745

toil.jobStores
module, 321

toil.jobStores.abstractJobStore
module, 336

toil.jobStores.aws
module, 321

toil.jobStores.aws.jobStore
module, 321

toil.jobStores.aws.utils
module, 332

toil.jobStores.conftest
module, 357

toil.jobStores.fileJobStore
module, 357

toil.jobStores.googleJobStore
module, 365

toil.jobStores.utils
module, 373

Index 885

Toil Documentation, Release 5.11.0

toil.leader
module, 775

toil.lib
module, 379

toil.lib.accelerators
module, 392

toil.lib.aws
module, 379

toil.lib.aws.ami
module, 379

toil.lib.aws.iam
module, 380

toil.lib.aws.session
module, 383

toil.lib.aws.utils
module, 386

toil.lib.bioio
module, 393

toil.lib.compatibility
module, 394

toil.lib.conversions
module, 394

toil.lib.docker
module, 397

toil.lib.ec2
module, 400

toil.lib.ec2nodes
module, 405

toil.lib.encryption
module, 392

toil.lib.encryption.conftest
module, 392

toil.lib.exceptions
module, 408

toil.lib.expando
module, 409

toil.lib.generatedEC2Lists
module, 411

toil.lib.humanize
module, 411

toil.lib.io
module, 412

toil.lib.iterables
module, 415

toil.lib.memoize
module, 417

toil.lib.misc
module, 419

toil.lib.objects
module, 421

toil.lib.resources
module, 423

toil.lib.retry
module, 424

toil.lib.threading
module, 430

toil.lib.throttle
module, 435

toil.provisioners
module, 437

toil.provisioners.abstractProvisioner
module, 445

toil.provisioners.aws
module, 437

toil.provisioners.aws.awsProvisioner
module, 437

toil.provisioners.clusterScaler
module, 452

toil.provisioners.gceProvisioner
module, 461

toil.provisioners.node
module, 463

toil.realtimeLogger
module, 779

toil.resource
module, 782

toil.server
module, 467

toil.server.api_spec
module, 467

toil.server.app
module, 488

toil.server.celery_app
module, 489

toil.server.cli
module, 467

toil.server.cli.wes_cwl_runner
module, 467

toil.server.utils
module, 489

toil.server.wes
module, 471

toil.server.wes.abstract_backend
module, 471

toil.server.wes.amazon_wes_utils
module, 476

toil.server.wes.tasks
module, 479

toil.server.wes.toil_backend
module, 484

toil.server.wsgi_app
module, 498

toil.serviceManager
module, 788

toil.statsAndLogging
module, 790

toil.test
module, 499

886 Index

Toil Documentation, Release 5.11.0

toil.test.batchSystems
module, 499

toil.test.batchSystems.batchSystemTest
module, 499

toil.test.batchSystems.parasolTestSupport
module, 511

toil.test.batchSystems.test_lsf_helper
module, 513

toil.test.batchSystems.test_slurm
module, 514

toil.test.cwl
module, 516

toil.test.cwl.conftest
module, 516

toil.test.cwl.cwlTest
module, 516

toil.test.docs
module, 523

toil.test.docs.scriptsTest
module, 523

toil.test.jobStores
module, 524

toil.test.jobStores.jobStoreTest
module, 524

toil.test.lib
module, 531

toil.test.lib.aws
module, 531

toil.test.lib.aws.test_iam
module, 531

toil.test.lib.aws.test_s3
module, 532

toil.test.lib.aws.test_utils
module, 533

toil.test.lib.dockerTest
module, 534

toil.test.lib.test_conversions
module, 537

toil.test.lib.test_ec2
module, 538

toil.test.lib.test_misc
module, 539

toil.test.mesos
module, 541

toil.test.mesos.helloWorld
module, 541

toil.test.mesos.MesosDataStructuresTest
module, 541

toil.test.mesos.stress
module, 542

toil.test.provisioners
module, 545

toil.test.provisioners.aws
module, 545

toil.test.provisioners.aws.awsProvisionerTest
module, 545

toil.test.provisioners.clusterScalerTest
module, 549

toil.test.provisioners.clusterTest
module, 555

toil.test.provisioners.gceProvisionerTest
module, 557

toil.test.provisioners.provisionerTest
module, 559

toil.test.provisioners.restartScript
module, 560

toil.test.server
module, 561

toil.test.server.serverTest
module, 561

toil.test.sort
module, 567

toil.test.sort.restart_sort
module, 567

toil.test.sort.sort
module, 569

toil.test.sort.sortTest
module, 570

toil.test.src
module, 572

toil.test.src.autoDeploymentTest
module, 572

toil.test.src.busTest
module, 574

toil.test.src.checkpointTest
module, 575

toil.test.src.deferredFunctionTest
module, 579

toil.test.src.dockerCheckTest
module, 580

toil.test.src.fileStoreTest
module, 581

toil.test.src.helloWorldTest
module, 587

toil.test.src.importExportFileTest
module, 589

toil.test.src.jobDescriptionTest
module, 590

toil.test.src.jobEncapsulationTest
module, 591

toil.test.src.jobFileStoreTest
module, 592

toil.test.src.jobServiceTest
module, 593

toil.test.src.jobTest
module, 597

toil.test.src.miscTests
module, 601

Index 887

Toil Documentation, Release 5.11.0

toil.test.src.promisedRequirementTest
module, 602

toil.test.src.promisesTest
module, 605

toil.test.src.realtimeLoggerTest
module, 607

toil.test.src.regularLogTest
module, 609

toil.test.src.resourceTest
module, 610

toil.test.src.restartDAGTest
module, 611

toil.test.src.resumabilityTest
module, 612

toil.test.src.retainTempDirTest
module, 613

toil.test.src.systemTest
module, 614

toil.test.src.threadingTest
module, 614

toil.test.src.toilContextManagerTest
module, 615

toil.test.src.userDefinedJobArgTypeTest
module, 617

toil.test.src.workerTest
module, 618

toil.test.utils
module, 619

toil.test.utils.toilDebugTest
module, 619

toil.test.utils.toilKillTest
module, 620

toil.test.utils.utilsTest
module, 622

toil.test.wdl
module, 624

toil.test.wdl.builtinTest
module, 624

toil.test.wdl.conftest
module, 628

toil.test.wdl.toilwdlTest
module, 628

toil.test.wdl.wdltoil_test
module, 632

toil.toilState
module, 794

toil.utils
module, 650

toil.utils.toilClean
module, 650

toil.utils.toilDebugFile
module, 651

toil.utils.toilDebugJob
module, 652

toil.utils.toilDestroyCluster
module, 652

toil.utils.toilKill
module, 653

toil.utils.toilLaunchCluster
module, 653

toil.utils.toilMain
module, 654

toil.utils.toilRsyncCluster
module, 655

toil.utils.toilServer
module, 656

toil.utils.toilSshCluster
module, 656

toil.utils.toilStats
module, 657

toil.utils.toilStatus
module, 663

toil.utils.toilUpdateEC2Instances
module, 666

toil.version
module, 796

toil.wdl
module, 666

toil.wdl.toilwdl
module, 681

toil.wdl.utils
module, 682

toil.wdl.versions
module, 666

toil.wdl.versions.dev
module, 666

toil.wdl.versions.draft2
module, 668

toil.wdl.versions.v1
module, 676

toil.wdl.wdl_analysis
module, 683

toil.wdl.wdl_functions
module, 684

toil.wdl.wdl_synthesis
module, 695

toil.wdl.wdl_types
module, 700

toil.wdl.wdltoil
module, 706

toil.worker
module, 797

toil_batch_id (toil.bus.ExternalBatchIdMessage at-
tribute), 725

toil_batch_id (toil.bus.JobIssuedMessage attribute),
723

toil_batch_id (toil.bus.JobStatus attribute), 729
toil_get_file() (in module toil.cwl.cwltoil), 286

888 Index

Toil Documentation, Release 5.11.0

toil_logger (in module toil.statsAndLogging), 791
toil_make_tool() (in module toil.cwl.cwltoil), 283
toil_read_source() (in module toil.wdl.wdltoil), 708
toil_service_env_options()

(toil.provisioners.abstractProvisioner.AbstractProvisioner
method), 450

toil_service_env_options()
(toil.provisioners.aws.awsProvisioner.AWSProvisioner
method), 439

TOIL_URI_SCHEME (in module toil.wdl.wdltoil), 709
ToilBackend (class in toil.server.wes.toil_backend), 486
ToilCommandLineTool (class in toil.cwl.cwltoil), 283
ToilContextManagerException, 738
ToilContextManagerTest (class in

toil.test.src.toilContextManagerTest), 615
ToilDocumentationTest (class in

toil.test.docs.scriptsTest), 523
ToilExpressionTool (class in toil.cwl.cwltoil), 283
ToilFsAccess (class in toil.cwl.cwltoil), 284
ToilJob (in module toil.batchSystems.mesos), 214
ToilKillTest (class in toil.test.utils.toilKillTest), 621
ToilKillTestWithAWSJobStore (class in

toil.test.utils.toilKillTest), 621
toilMain (toil.test.utils.utilsTest.UtilsTest property), 622
ToilMetrics (class in toil.common), 738
toilPackageDirPath() (in module toil), 801
toilPackageDirPath() (in module toil.test), 635
ToilPathMapper (class in toil.cwl.cwltoil), 280
ToilRestartException, 738
ToilServerUtilsTest (class in

toil.test.server.serverTest), 561
ToilSingleJobExecutor (class in toil.cwl.cwltoil), 282
toilStageFiles() (in module toil.cwl.cwltoil), 291
ToilState (class in toil.toilState), 794
ToilStatus (class in toil.utils.toilStatus), 663
ToilTest (class in toil.test), 639
ToilTool (class in toil.cwl.cwltoil), 282
ToilWdlIntegrationTest (class in

toil.test.wdl.toilwdlTest), 630
ToilWDLLibraryTest (class in toil.test.wdl.toilwdlTest),

629
ToilWDLStdLibBase (class in toil.wdl.wdltoil), 710
ToilWDLStdLibTaskOutputs (class in toil.wdl.wdltoil),

710
ToilWdlTest (class in toil.test.wdl.toilwdlTest), 629
ToilWESServerBenchTest (class in

toil.test.server.serverTest), 565
ToilWESServerCeleryS3StateWorkflowTest (class

in toil.test.server.serverTest), 567
ToilWESServerCeleryWorkflowTest (class in

toil.test.server.serverTest), 567
ToilWESServerWorkflowTest (class in

toil.test.server.serverTest), 565
ToilWorkflow (class in toil.server.wes.toil_backend),

484
ToilWorkflowRunner (class in toil.server.wes.tasks),

480
toItem() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

method), 324
tokenize_conf_stream() (in module

toil.batchSystems.lsfHelper), 254
tolerated_taints (toil.batchSystems.kubernetes.KubernetesBatchSystem.Placement

attribute), 245
torque_batch_system_factory() (in module

toil.batchSystems.registry), 260
TorqueBatchSystem (class in toil.batchSystems.torque),

270
TorqueBatchSystem.Worker (class in

toil.batchSystems.torque), 270
TorqueBatchSystemTest (class in

toil.test.batchSystems.batchSystemTest), 509
touchFile() (in module toil.test.mesos.stress), 543
ToySerializableService (class in

toil.test.src.jobServiceTest), 596
ToyService (class in toil.test.src.jobServiceTest), 595
transform() (toil.jobStores.utils.ReadableTransformingPipe

method), 377
translate_wdl_string_to_python_string()

(toil.wdl.versions.draft2.AnalyzeDraft2WDL
method), 671

transpose() (in module toil.wdl.wdl_functions), 693
traverseJobGraph() (toil.utils.toilStatus.ToilStatus

method), 665
trivialParent() (in module toil.test.src.jobTest), 599
TrivialService (class in toil.test.src.jobTest), 600
truncExpBackoff() (in module toil.lib.misc), 420
try_and_nested_panic_with_secondary()

(toil.test.src.miscTests.TestPanic method),
602

try_and_panic() (toil.test.src.miscTests.TestPanic
method), 602

try_and_panic_by_hand()
(toil.test.src.miscTests.TestPanic method),
602

try_and_panic_with_secondary()
(toil.test.src.miscTests.TestPanic method),
602

try_path() (in module toil.lib.io), 414
tryRun() (toil.batchSystems.mesos.test.ExceptionalThread

method), 203
tryRun() (toil.batchSystems.mesos.test.MesosTestSupport.MesosThread

method), 205
tryRun() (toil.lib.threading.ExceptionalThread

method), 432
tryRun() (toil.provisioners.clusterScaler.ScalerThread

method), 460
tryRun() (toil.test.ApplianceTestSupport.Appliance

method), 648

Index 889

Toil Documentation, Release 5.11.0

tryRun() (toil.test.ExceptionalThread method), 638
tutorial_arguments

module, 818
tutorial_cwlexample

module, 812
tutorial_discoverfiles

module, 806
tutorial_docker

module, 805
tutorial_dynamic

module, 807
tutorial_encapsulation

module, 813
tutorial_encapsulation2

module, 812
tutorial_helloworld

module, 805
tutorial_invokeworkflow

module, 813
tutorial_invokeworkflow2

module, 807
tutorial_jobfunctions

module, 808
tutorial_managing

module, 809
tutorial_managing2

module, 805
tutorial_multiplejobs

module, 818
tutorial_multiplejobs2

module, 806
tutorial_multiplejobs3

module, 812
tutorial_promises

module, 815
tutorial_promises2

module, 817
tutorial_quickstart

module, 811
tutorial_requirements

module, 814
tutorial_services

module, 816
tutorial_staging

module, 814
typeEmpty() (toil.batchSystems.mesos.JobQueue

method), 213

U
UnexpectedResourceState, 401
UnfulfilledPromiseSentinel (class in toil.job), 775
unignoreNode() (toil.batchSystems.abstractBatchSystem.AbstractScalableBatchSystem

method), 223

unignoreNode() (toil.batchSystems.mesos.batchSystem.MesosBatchSystem
method), 208

unignoreNode() (toil.test.provisioners.clusterScalerTest.MockBatchSystemAndProvisioner
method), 553

UnimplementedURLException, 337
unix_now_ms() (in module toil.lib.misc), 419
unpack() (toil.fileStores.FileID class method), 321
unpack_toil_uri() (in module toil.wdl.wdltoil), 709
unpickle() (toil.resource.Resource class method), 784
UnresolvedDict (class in toil.cwl.cwltoil), 276
unwrap() (in module toil.job), 774
unwrap_all() (in module toil.job), 774
up() (in module toil.test.sort.restart_sort), 568
up() (in module toil.test.sort.sort), 570
update() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 347
update_file() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 352
update_file() (toil.jobStores.aws.jobStore.AWSJobStore

method), 329
update_file() (toil.jobStores.fileJobStore.FileJobStore

method), 362
update_file() (toil.jobStores.googleJobStore.GoogleJobStore

method), 371
update_file_stream()

(toil.jobStores.abstractJobStore.AbstractJobStore
method), 353

update_file_stream()
(toil.jobStores.aws.jobStore.AWSJobStore
method), 329

update_file_stream()
(toil.jobStores.fileJobStore.FileJobStore
method), 363

update_file_stream()
(toil.jobStores.googleJobStore.GoogleJobStore
method), 371

update_job() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 347

update_job() (toil.jobStores.aws.jobStore.AWSJobStore
method), 326

update_job() (toil.jobStores.fileJobStore.FileJobStore
method), 360

update_job() (toil.jobStores.googleJobStore.GoogleJobStore
method), 368

updateClusterSize()
(toil.provisioners.clusterScaler.ClusterScaler
method), 457

updateColumnWidths() (in module toil.utils.toilStats),
661

UpdatedBatchJobInfo (class in
toil.batchSystems.abstractBatchSystem), 215

updatedJobWorker() (toil.batchSystems.parasol.ParasolBatchSystem
method), 258

updateFile() (toil.jobStores.abstractJobStore.AbstractJobStore

890 Index

Toil Documentation, Release 5.11.0

method), 352
updateFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 352
updateStaticEC2Instances() (in module

toil.lib.ec2nodes), 407
upload() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

method), 324
upload_directory() (in module toil.cwl.cwltoil), 289
upload_file() (in module toil.cwl.cwltoil), 289
uploadFile() (in module toil.jobStores.aws.utils), 335
uploadFromPath() (in module toil.jobStores.aws.utils),

334
uploadStream() (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

method), 324
UpReturnType (in module toil.cwl.utils), 300
usage_message (in module toil.cwl.cwltoil), 298
UserDefinedJobArgTypeTest (class in

toil.test.src.userDefinedJobArgTypeTest),
617

UserError, 401
UserNameAvailableTest (class in

toil.test.lib.test_misc), 539
UserNameUnvailableTest (class in

toil.test.lib.test_misc), 540
UserNameVeryBrokenTest (class in

toil.test.lib.test_misc), 540
userScript (toil.batchSystems.mesos.batchSystem.MesosBatchSystem

attribute), 207
utc_now() (in module toil.lib.misc), 419
UtilsTest (class in toil.test.utils.utilsTest), 622
UUID_LENGTH (in module toil.common), 731

V
VALID_PREFIXES (in module toil.lib.conversions), 395
validDirs (toil.jobStores.fileJobStore.FileJobStore at-

tribute), 358
validDirsSet (toil.jobStores.fileJobStore.FileJobStore

attribute), 358
version (in module toil.version), 796
version (toil.jobStores.aws.jobStore.AWSJobStore.FileInfo

property), 323
version (toil.wdl.versions.dev.AnalyzeDevelopmentWDL

property), 667
version (toil.wdl.versions.draft2.AnalyzeDraft2WDL

property), 669
version (toil.wdl.versions.v1.AnalyzeV1WDL property),

677
version (toil.wdl.wdl_analysis.AnalyzeWDL property),

683
versionings (toil.jobStores.aws.jobStore.AWSJobStore

attribute), 325
VersionNotImplementedException, 472
VirtualEnvResource (class in toil.resource), 785
virtualize_files() (in module toil.wdl.wdltoil), 712

visit() (toil.cwl.cwltoil.ToilPathMapper method), 280
visit_any_decls() (toil.wdl.versions.v1.AnalyzeV1WDL

method), 679
visit_apply() (toil.wdl.versions.v1.AnalyzeV1WDL

method), 680
visit_array_literal()

(toil.wdl.versions.v1.AnalyzeV1WDL method),
680

visit_at() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 680

visit_bound_decls()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
679

visit_call() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL
method), 667

visit_call() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 677

visit_conditional()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
677

visit_cwl_class_and_reduce() (in module
toil.cwl.utils), 300

visit_document() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL
method), 667

visit_document() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 677

visit_document_element()
(toil.wdl.versions.dev.AnalyzeDevelopmentWDL
method), 667

visit_document_element()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
677

visit_expr() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 679

visit_expr_core() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL
method), 668

visit_expr_core() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 680

visit_expression_group()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
680

visit_expression_placeholder_option()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
679

visit_get_name() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 680

visit_ifthenelse() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 680

visit_infix0() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 679

visit_infix1() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 679

visit_infix2() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 680

Index 891

Toil Documentation, Release 5.11.0

visit_infix3() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 680

visit_infix4() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 680

visit_infix5() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 680

visit_inner_workflow_element()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
677

visit_land() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 680

visit_lor() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 679

visit_negate() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 680

visit_number() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 679

visit_pair_literal()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
680

visit_primitive_literal()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
679

visit_primitives() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 680

visit_scatter() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 677

visit_string() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 679

visit_string_expr_part()
(toil.wdl.versions.dev.AnalyzeDevelopmentWDL
method), 668

visit_string_expr_part()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
679

visit_string_expr_with_string_part()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
679

visit_string_part()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
679

visit_task() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 677

visit_task_command()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
678

visit_task_command_expr_part()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
678

visit_task_command_expr_with_string()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
678

visit_task_command_string_part()
(toil.wdl.versions.v1.AnalyzeV1WDL method),

678
visit_task_input() (toil.wdl.versions.v1.AnalyzeV1WDL

method), 678
visit_task_output()

(toil.wdl.versions.v1.AnalyzeV1WDL method),
678

visit_task_runtime()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
678

visit_top_cwl_class() (in module toil.cwl.utils), 300
visit_unarysigned()

(toil.wdl.versions.v1.AnalyzeV1WDL method),
680

visit_unbound_decls()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
679

visit_wdl_type() (toil.wdl.versions.dev.AnalyzeDevelopmentWDL
method), 668

visit_wdl_type() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 679

visit_workflow() (toil.wdl.versions.v1.AnalyzeV1WDL
method), 677

visit_workflow_input()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
677

visit_workflow_output()
(toil.wdl.versions.v1.AnalyzeV1WDL method),
677

visitSteps() (in module toil.cwl.cwltoil), 296

W
WAIT_FOR_DEATH_TIMEOUT (in module

toil.server.wes.tasks), 480
wait_for_master() (toil.batchSystems.mesos.test.MesosTestSupport

method), 206
wait_instances_running() (in module toil.lib.ec2),

402
wait_spot_requests_active() (in module

toil.lib.ec2), 402
wait_transition() (in module toil.lib.ec2), 401
wait_until_instance_profile_arn_exists() (in

module toil.lib.ec2), 403
waitForCommit() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 309
waitForCommit() (toil.fileStores.cachingFileStore.CachingFileStore

method), 315
waitForCommit() (toil.fileStores.nonCachingFileStore.NonCachingFileStore

method), 320
waitForNode() (toil.provisioners.node.Node method),

464
wallTime (toil.batchSystems.abstractBatchSystem.UpdatedBatchJobInfo

attribute), 216
wdl_data (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest

attribute), 630

892 Index

Toil Documentation, Release 5.11.0

wdl_data_dir (toil.test.wdl.toilwdlTest.ToilWdlIntegrationTest
attribute), 630

wdl_range() (in module toil.wdl.wdl_functions), 693
wdl_zip() (in module toil.wdl.wdl_functions), 694
WDLArrayBindingsJob (class in toil.wdl.wdltoil), 718
WDLArrayType (class in toil.wdl.wdl_types), 704
WDLBaseJob (class in toil.wdl.wdltoil), 713
WDLBindings (in module toil.wdl.wdltoil), 708
WDLBooleanType (class in toil.wdl.wdl_types), 703
WDLCombineBindingsJob (class in toil.wdl.wdltoil), 715
WDLCompoundType (class in toil.wdl.wdl_types), 701
WDLConditionalJob (class in toil.wdl.wdltoil), 718
WDLFile (class in toil.wdl.wdl_types), 705
WDLFileType (class in toil.wdl.wdl_types), 703
WDLFloatType (class in toil.wdl.wdl_types), 702
WDLIntType (class in toil.wdl.wdl_types), 702
WDLJSONEncoder (class in toil.wdl.wdl_functions), 686
WdlLanguageSpecWorkflowsTest (class in

toil.test.wdl.builtinTest), 626
WDLMapType (class in toil.wdl.wdl_types), 705
WDLNamespaceBindingsJob (class in toil.wdl.wdltoil),

716
WDLOutputsJob (class in toil.wdl.wdltoil), 719
WDLPair (class in toil.wdl.wdl_types), 705
WDLPairType (class in toil.wdl.wdl_types), 704
WDLRootJob (class in toil.wdl.wdltoil), 720
WDLRuntimeError, 686, 700
WDLScatterJob (class in toil.wdl.wdltoil), 717
WDLSectionJob (class in toil.wdl.wdltoil), 716
WdlStandardLibraryFunctionsTest (class in

toil.test.wdl.builtinTest), 624
WdlStandardLibraryWorkflowsTest (class in

toil.test.wdl.builtinTest), 627
WDLStringType (class in toil.wdl.wdl_types), 701
WDLTaskJob (class in toil.wdl.wdltoil), 714
WdlToilTest (class in toil.test.wdl.wdltoil_test), 632
WDLType (class in toil.wdl.wdl_types), 700
WDLWorkflowJob (class in toil.wdl.wdltoil), 719
WDLWorkflowNodeJob (class in toil.wdl.wdltoil), 715
WdlWorkflowsTest (class in toil.test.wdl.builtinTest),

626
WESBackend (class in toil.server.wes.abstract_backend),

474
WESClientWithWorkflowEngineParameters (class in

toil.server.cli.wes_cwl_runner), 468
which() (in module toil), 800
WIP_SUFFIX (toil.deferred.DeferredFunctionManager at-

tribute), 743
with_retries() (toil.batchSystems.abstractGridEngineBatchSystem.AbstractGridEngineBatchSystem

method), 231
work_dir (toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo

attribute), 216
workerCleanup() (toil.batchSystems.abstractBatchSystem.BatchSystemSupport

static method), 222

WorkerCleanupContext (class in
toil.batchSystems.cleanup_support), 236

WorkerCleanupInfo (class in
toil.batchSystems.abstractBatchSystem), 216

workerScript() (in module toil.worker), 798
WorkerTests (class in toil.test.src.workerTest), 618
workflow_debug_jobstore() (in module

toil.test.utils.toilDebugTest), 619
workflow_id (toil.batchSystems.abstractBatchSystem.WorkerCleanupInfo

attribute), 217
workflow_manifest_url_to_path() (in module

toil.server.wes.amazon_wes_utils), 478
workflowAttemptNumber (toil.common.Config at-

tribute), 732
WorkflowConflictException, 473
workflowDependencies

(toil.server.wes.amazon_wes_utils.FilesDict
attribute), 477

WorkflowExecutionException, 473
workflowID (toil.common.Config attribute), 732
workflowInputFiles (toil.server.wes.amazon_wes_utils.FilesDict

attribute), 477
WorkflowNotFoundException, 473
workflowOptions (toil.server.wes.amazon_wes_utils.FilesDict

attribute), 477
WorkflowPlan (class in

toil.server.wes.amazon_wes_utils), 476
workflowSource (toil.server.wes.amazon_wes_utils.FilesDict

attribute), 477
WorkflowStateMachine (class in toil.server.utils), 496
WorkflowStateStore (class in toil.server.utils), 495
workflowUrl (toil.server.wes.amazon_wes_utils.DataDict

attribute), 477
wrapFn() (toil.job.Job static method), 764
wrapJobFn() (toil.job.Job static method), 764
WritablePipe (class in toil.jobStores.utils), 374
write() (toil.lib.io.WriteWatchingStream method), 415
write_AST() (toil.wdl.versions.draft2.AnalyzeDraft2WDL

method), 669
write_AST() (toil.wdl.wdl_analysis.AnalyzeWDL

method), 683
write_cache() (toil.server.utils.AbstractStateStore

method), 493
write_cache() (toil.server.utils.WorkflowStateStore

method), 496
write_config() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 340
write_declaration_type()

(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 698

write_file() (in module toil.cwl.cwltoil), 286
write_file() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 348
write_file() (toil.jobStores.aws.jobStore.AWSJobStore

Index 893

Toil Documentation, Release 5.11.0

method), 327
write_file() (toil.jobStores.fileJobStore.FileJobStore

method), 360
write_file() (toil.jobStores.googleJobStore.GoogleJobStore

method), 368
write_file_stream()

(toil.jobStores.abstractJobStore.AbstractJobStore
method), 348

write_file_stream()
(toil.jobStores.aws.jobStore.AWSJobStore
method), 327

write_file_stream()
(toil.jobStores.fileJobStore.FileJobStore
method), 361

write_file_stream()
(toil.jobStores.googleJobStore.GoogleJobStore
method), 369

write_function() (toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_function_bashscriptline()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 698

write_function_cmdline()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 699

write_function_dockercall()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 698

write_function_header()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 698

write_function_outputreturn()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 699

write_function_subprocesspopen()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 699

write_functions() (toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_json() (in module toil.wdl.wdl_functions), 693
write_kill_flag() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 356
write_leader_node_id()

(toil.jobStores.abstractJobStore.AbstractJobStore
method), 355

write_leader_pid() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 355

write_lines() (in module toil.wdl.wdl_functions), 692
write_logs() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 354
write_logs() (toil.jobStores.aws.jobStore.AWSJobStore

method), 331
write_logs() (toil.jobStores.fileJobStore.FileJobStore

method), 364

write_logs() (toil.jobStores.googleJobStore.GoogleJobStore
method), 372

write_main() (toil.wdl.wdl_synthesis.SynthesizeWDL
method), 696

write_main_destbucket()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 696

write_main_header()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 696

write_main_jobwrappers()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 696

write_main_jobwrappers_call()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_main_jobwrappers_declaration()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 696

write_main_jobwrappers_if()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_main_jobwrappers_scatter()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_map() (in module toil.wdl.wdl_functions), 693
write_mappings() (in module toil.wdl.utils), 682
write_modules() (toil.wdl.wdl_synthesis.SynthesizeWDL

method), 696
write_output_files()

(toil.server.wes.tasks.ToilWorkflowRunner
method), 481

write_python_file()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 699

write_scatter_callwrapper()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_scatterfunction()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_scatterfunction_header()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_scatterfunction_lists()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_scatterfunction_loop()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_scatterfunction_outputreturn()
(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_scatterfunctions_within_if()

894 Index

Toil Documentation, Release 5.11.0

(toil.wdl.wdl_synthesis.SynthesizeWDL
method), 697

write_scratch_file()
(toil.server.wes.tasks.ToilWorkflowRunner
method), 480

write_shared_file_stream()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 353

write_shared_file_stream()
(toil.jobStores.aws.jobStore.AWSJobStore
method), 328

write_shared_file_stream()
(toil.jobStores.fileJobStore.FileJobStore
method), 363

write_shared_file_stream()
(toil.jobStores.googleJobStore.GoogleJobStore
method), 372

write_temp_file() (in module
toil.test.batchSystems.batchSystemTest), 505

write_tsv() (in module toil.wdl.wdl_functions), 692
write_workflow() (toil.server.wes.tasks.ToilWorkflowRunner

method), 480
writeA() (in module debugWorkflow), 820
writeABC() (in module debugWorkflow), 820
writeB() (in module debugWorkflow), 820
writeC() (in module debugWorkflow), 820
writeConfig() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 340
writeFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 347
writeFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 348
writeGlobalFile() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 305
writeGlobalFile() (toil.fileStores.cachingFileStore.CachingFileStore

method), 313
writeGlobalFile() (toil.fileStores.nonCachingFileStore.NonCachingFileStore

method), 317
writeGlobalFileStream()

(toil.fileStores.abstractFileStore.AbstractFileStore
method), 305

writeGlobalFileWrapper() (in module
toil.cwl.cwltoil), 289

writelines() (toil.lib.io.WriteWatchingStream
method), 415

writeLogFiles() (toil.statsAndLogging.StatsAndLogging
class method), 792

writeSharedFileStream()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 353

writeStatsAndLogging()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 354

writeTo() (toil.jobStores.utils.ReadablePipe method),

376
writeTo() (toil.jobStores.utils.ReadableTransformingPipe

method), 378
writeToAppliance() (toil.test.ApplianceTestSupport.Appliance

method), 648
WriteWatchingStream (class in toil.lib.io), 415

Z
zone_to_region() (in module toil.lib.aws), 391
zone_to_region() (in module toil.provisioners.aws),

443
ZoneTuple (in module toil.provisioners.aws), 443

Index 895

	Installation
	Preparing Your Python Runtime Environment
	Basic Installation
	Installing Toil with Extra Features
	Building from Source

	Quickstart Examples
	Running a basic workflow
	Running a basic CWL workflow
	Running a basic WDL workflow
	A (more) real-world example
	Running the example
	Describing the source code
	Logging
	Error Handling and Resuming Pipelines
	Collecting Statistics

	Launching a Toil Workflow in AWS
	Running a CWL Workflow on AWS
	Running a Workflow with Autoscaling - Cactus

	Introduction
	Job Store
	File Job Store
	Cloud Job Stores

	Batch System
	Provisioner

	Commandline Options
	The Job Store
	Commandline Options
	Restart Option
	Running Workflows with Services
	Setting Options directly with the Toil Script

	Toil Debugging
	Introspecting the Jobstore
	Stats and Status
	Using a Python debugger

	Running in the Cloud
	Managing a Cluster of Virtual Machines (Provisioning)
	Storage (Toil jobStore)

	Cloud Platforms
	Running on Kubernetes
	Preparing your Kubernetes environment
	AWS Job Store for Kubernetes
	Configuring Toil for your Kubernetes environment
	Running workflows
	Option 1: Running the Leader Inside Kubernetes
	Monitoring and Debugging Kubernetes Jobs and Pods
	When Things Go Wrong

	Option 2: Running the Leader Outside Kubernetes
	Running CWL Workflows
	AppArmor and Singularity

	Running in AWS
	Preparing your AWS environment
	AWS Job Store
	Toil Provisioner
	Details about Launching a Cluster in AWS
	Static Provisioning
	Uploading Workflows
	Running a Workflow with Autoscaling
	Preemptibility
	Provisioning with a Kubernetes cluster
	Using MinIO and S3-Compatible object stores

	Dashboard

	Running in Google Compute Engine (GCE)
	Preparing your Google environment
	Google Job Store
	Running a Workflow with Autoscaling

	Cluster Utilities
	Stats Command
	Status Command
	Clean Command
	Launch-Cluster Command
	Ssh-Cluster Command
	Rsync-Cluster Command
	Destroy-Cluster Command
	Kill Command

	HPC Environments
	Standard Output/Error from Batch System Jobs

	CWL in Toil
	Running CWL Locally
	Note for macOS + Docker + Toil

	Detailed Usage Instructions
	Running CWL in the Cloud
	Running CWL within Toil Scripts
	Running CWL workflows with InplaceUpdateRequirement
	Toil & CWL Tips

	WDL in Toil
	Running WDL with Toil
	Toil WDL Runner Options
	WDL Specifications
	Using the Old WDL Compiler
	Toil WDL Compiler Options
	Compiler Example: ENCODE Example from ENCODE-DCC
	Compiler Example: GATK Examples from the Broad

	Workflow Execution Service (WES)
	Preparing your WES environment
	Starting a WES server
	Running the Server with docker-compose
	Running on a Toil cluster
	WES API Endpoints
	Submitting a Workflow
	Upload multiple files
	Specify Toil options

	Monitoring a Workflow
	Checking the state
	Getting the full logs
	Canceling a run

	Developing a Workflow
	Scripting Quick Start
	Job Basics
	Invoking a Workflow
	Specifying Commandline Arguments
	Resuming a Workflow
	Functions and Job Functions
	Workflows with Multiple Jobs
	Dynamic Job Creation
	Promises
	Promised Requirements
	FileID
	Managing files within a workflow
	Staging of Files into the Job Store

	Using Docker Containers in Toil
	Services
	Checkpoints
	Encapsulation
	Depending on Toil
	Best Practices for Dockerizing Toil Workflows

	Toil Class API
	Job Store API
	Toil Job API
	FunctionWrappingJob
	JobFunctionWrappingJob
	EncapsulatedJob
	Promise

	Job Methods API
	JobDescription

	Job.Runner API
	job.fileStore API
	Batch System API
	Batch System Enivronmental Variables
	Batch System API

	Job.Service API
	Exceptions API
	Running Tests
	Running Tests with pytest
	Running Integration Tests
	Test Environment Variables
	Using Docker with Quay
	Running Mesos Tests

	Developing with Docker
	Making Your Own Toil Docker Image
	Running a Cluster Locally

	Maintainer’s Guidelines
	Naming Conventions
	Pull Requests
	Publishing a Release
	Using Git Hooks
	Adding Retries to a Function

	Pull Request Checklists
	Reviewing Pull Requests
	Merging Pull Requests

	Toil Architecture
	Jobs and JobDescriptions
	Optimizations
	Read-only leader
	Job chaining
	Preemptable node support
	Caching

	Toil support for Common Workflow Language

	Minimum AWS IAM permissions
	Auto-Deployment
	Auto Deployment with Sibling Modules
	Auto-Deploying a Package Hierarchy
	Relying on Shared Filesystems
	Toil Appliance

	Environment Variables
	API Reference
	toil
	Subpackages
	toil.batchSystems
	Subpackages
	toil.batchSystems.mesos
	Subpackages
	toil.batchSystems.mesos.test
	Package Contents
	Classes
	Functions
	Attributes
	Submodules
	toil.batchSystems.mesos.batchSystem
	Module Contents
	Classes
	Attributes
	toil.batchSystems.mesos.conftest
	Module Contents
	toil.batchSystems.mesos.executor
	Module Contents
	Classes
	Functions
	Attributes
	Package Contents
	Classes
	Attributes

	Submodules
	toil.batchSystems.abstractBatchSystem
	Module Contents
	Classes
	Attributes
	toil.batchSystems.abstractGridEngineBatchSystem
	Module Contents
	Classes
	Attributes
	toil.batchSystems.awsBatch
	Module Contents
	Classes
	Attributes
	toil.batchSystems.cleanup_support
	Module Contents
	Classes
	Attributes
	toil.batchSystems.contained_executor
	Module Contents
	Functions
	Attributes
	toil.batchSystems.gridengine
	Module Contents
	Classes
	Attributes
	toil.batchSystems.htcondor
	Module Contents
	Classes
	Attributes
	toil.batchSystems.kubernetes
	Module Contents
	Classes
	Functions
	Attributes
	toil.batchSystems.local_support
	Module Contents
	Classes
	Attributes
	toil.batchSystems.lsf
	Module Contents
	Classes
	Attributes
	toil.batchSystems.lsfHelper
	Module Contents
	Functions
	Attributes
	toil.batchSystems.options
	Module Contents
	Classes
	Functions
	Attributes
	toil.batchSystems.parasol
	Module Contents
	Classes
	Attributes
	toil.batchSystems.registry
	Module Contents
	Functions
	Attributes
	toil.batchSystems.singleMachine
	Module Contents
	Classes
	Attributes
	toil.batchSystems.slurm
	Module Contents
	Classes
	Attributes
	toil.batchSystems.tes
	Module Contents
	Classes
	Attributes
	toil.batchSystems.torque
	Module Contents
	Classes
	Attributes

	Package Contents

	toil.cwl
	Submodules
	toil.cwl.conftest
	Module Contents
	toil.cwl.cwltoil
	Module Contents
	Classes
	Functions
	Attributes
	toil.cwl.utils
	Module Contents
	Functions
	Attributes

	Package Contents
	Functions
	Attributes

	toil.fileStores
	Submodules
	toil.fileStores.abstractFileStore
	Module Contents
	Classes
	Attributes
	toil.fileStores.cachingFileStore
	Module Contents
	Classes
	Attributes
	toil.fileStores.nonCachingFileStore
	Module Contents
	Classes
	Attributes

	Package Contents
	Classes

	toil.jobStores
	Subpackages
	toil.jobStores.aws
	Submodules
	toil.jobStores.aws.jobStore
	Module Contents
	Classes
	Attributes
	toil.jobStores.aws.utils
	Module Contents
	Classes
	Functions
	Attributes

	Submodules
	toil.jobStores.abstractJobStore
	Module Contents
	Classes
	Attributes
	toil.jobStores.conftest
	Module Contents
	toil.jobStores.fileJobStore
	Module Contents
	Classes
	Attributes
	toil.jobStores.googleJobStore
	Module Contents
	Classes
	Functions
	Attributes
	toil.jobStores.utils
	Module Contents
	Classes
	Functions
	Attributes

	toil.lib
	Subpackages
	toil.lib.aws
	Submodules
	toil.lib.aws.ami
	Module Contents
	Functions
	Attributes
	toil.lib.aws.iam
	Module Contents
	Functions
	Attributes
	toil.lib.aws.session
	Module Contents
	Classes
	Functions
	Attributes
	toil.lib.aws.utils
	Module Contents
	Functions
	Attributes
	Package Contents
	Functions
	Attributes
	toil.lib.encryption
	Submodules
	toil.lib.encryption.conftest
	Module Contents

	Submodules
	toil.lib.accelerators
	Module Contents
	Functions
	toil.lib.bioio
	Module Contents
	Functions
	toil.lib.compatibility
	Module Contents
	Functions
	toil.lib.conversions
	Module Contents
	Functions
	Attributes
	toil.lib.docker
	Module Contents
	Functions
	Attributes
	toil.lib.ec2
	Module Contents
	Functions
	Attributes
	toil.lib.ec2nodes
	Module Contents
	Classes
	Functions
	Attributes
	toil.lib.exceptions
	Module Contents
	Classes
	Functions
	toil.lib.expando
	Module Contents
	Classes
	toil.lib.generatedEC2Lists
	Module Contents
	toil.lib.humanize
	Module Contents
	Functions
	Attributes
	toil.lib.io
	Module Contents
	Classes
	Functions
	Attributes
	toil.lib.iterables
	Module Contents
	Classes
	Functions
	Attributes
	toil.lib.memoize
	Module Contents
	Functions
	Attributes
	toil.lib.misc
	Module Contents
	Functions
	Attributes
	toil.lib.objects
	Module Contents
	Classes
	toil.lib.resources
	Module Contents
	Functions
	toil.lib.retry
	Module Contents
	Classes
	Functions
	Attributes
	toil.lib.threading
	Module Contents
	Classes
	Functions
	Attributes
	toil.lib.throttle
	Module Contents
	Classes

	toil.provisioners
	Subpackages
	toil.provisioners.aws
	Submodules
	toil.provisioners.aws.awsProvisioner
	Module Contents
	Classes
	Functions
	Attributes
	Package Contents
	Functions
	Attributes

	Submodules
	toil.provisioners.abstractProvisioner
	Module Contents
	Classes
	Attributes
	toil.provisioners.clusterScaler
	Module Contents
	Classes
	Functions
	Attributes
	toil.provisioners.gceProvisioner
	Module Contents
	Classes
	Attributes
	toil.provisioners.node
	Module Contents
	Classes
	Attributes

	Package Contents
	Functions
	Attributes

	toil.server
	Subpackages
	toil.server.api_spec
	toil.server.cli
	Submodules
	toil.server.cli.wes_cwl_runner
	Module Contents
	Classes
	Functions
	Attributes
	toil.server.wes
	Submodules
	toil.server.wes.abstract_backend
	Module Contents
	Classes
	Functions
	Attributes
	toil.server.wes.amazon_wes_utils
	Module Contents
	Classes
	Functions
	Attributes
	toil.server.wes.tasks
	Module Contents
	Classes
	Functions
	Attributes
	toil.server.wes.toil_backend
	Module Contents
	Classes
	Attributes

	Submodules
	toil.server.app
	Module Contents
	Functions
	Attributes
	toil.server.celery_app
	Module Contents
	Functions
	Attributes
	toil.server.utils
	Module Contents
	Classes
	Functions
	Attributes
	toil.server.wsgi_app
	Module Contents
	Classes
	Functions

	toil.test
	Subpackages
	toil.test.batchSystems
	Submodules
	toil.test.batchSystems.batchSystemTest
	Module Contents
	Classes
	Functions
	Attributes
	toil.test.batchSystems.parasolTestSupport
	Module Contents
	Classes
	Attributes
	toil.test.batchSystems.test_lsf_helper
	Module Contents
	Classes
	toil.test.batchSystems.test_slurm
	Module Contents
	Classes
	Functions
	toil.test.cwl
	Submodules
	toil.test.cwl.conftest
	Module Contents
	toil.test.cwl.cwlTest
	Module Contents
	Classes
	Functions
	Attributes
	toil.test.docs
	Submodules
	toil.test.docs.scriptsTest
	Module Contents
	Classes
	Attributes
	toil.test.jobStores
	Submodules
	toil.test.jobStores.jobStoreTest
	Module Contents
	Classes
	Functions
	Attributes
	toil.test.lib
	Subpackages
	toil.test.lib.aws
	Submodules
	toil.test.lib.aws.test_iam
	Module Contents
	Classes
	Attributes
	toil.test.lib.aws.test_s3
	Module Contents
	Classes
	Attributes
	toil.test.lib.aws.test_utils
	Module Contents
	Classes
	Attributes
	Submodules
	toil.test.lib.dockerTest
	Module Contents
	Classes
	Attributes
	toil.test.lib.test_conversions
	Module Contents
	Classes
	Attributes
	toil.test.lib.test_ec2
	Module Contents
	Classes
	Attributes
	toil.test.lib.test_misc
	Module Contents
	Classes
	Attributes
	toil.test.mesos
	Submodules
	toil.test.mesos.MesosDataStructuresTest
	Module Contents
	Classes
	toil.test.mesos.helloWorld
	Module Contents
	Functions
	Attributes
	toil.test.mesos.stress
	Module Contents
	Classes
	Functions
	toil.test.provisioners
	Subpackages
	toil.test.provisioners.aws
	Submodules
	toil.test.provisioners.aws.awsProvisionerTest
	Module Contents
	Classes
	Attributes
	Submodules
	toil.test.provisioners.clusterScalerTest
	Module Contents
	Classes
	Attributes
	toil.test.provisioners.clusterTest
	Module Contents
	Classes
	Attributes
	toil.test.provisioners.gceProvisionerTest
	Module Contents
	Classes
	Attributes
	toil.test.provisioners.provisionerTest
	Module Contents
	Classes
	Attributes
	toil.test.provisioners.restartScript
	Module Contents
	Functions
	Attributes
	toil.test.server
	Submodules
	toil.test.server.serverTest
	Module Contents
	Classes
	Attributes
	toil.test.sort
	Submodules
	toil.test.sort.restart_sort
	Module Contents
	Functions
	Attributes
	toil.test.sort.sort
	Module Contents
	Functions
	Attributes
	toil.test.sort.sortTest
	Module Contents
	Classes
	Functions
	Attributes
	toil.test.src
	Submodules
	toil.test.src.autoDeploymentTest
	Module Contents
	Classes
	Attributes
	toil.test.src.busTest
	Module Contents
	Classes
	Functions
	Attributes
	toil.test.src.checkpointTest
	Module Contents
	Classes
	toil.test.src.deferredFunctionTest
	Module Contents
	Classes
	Attributes
	toil.test.src.dockerCheckTest
	Module Contents
	Classes
	toil.test.src.fileStoreTest
	Module Contents
	Classes
	Attributes
	toil.test.src.helloWorldTest
	Module Contents
	Classes
	Functions
	toil.test.src.importExportFileTest
	Module Contents
	Classes
	toil.test.src.jobDescriptionTest
	Module Contents
	Classes
	toil.test.src.jobEncapsulationTest
	Module Contents
	Classes
	Functions
	toil.test.src.jobFileStoreTest
	Module Contents
	Classes
	Functions
	Attributes
	toil.test.src.jobServiceTest
	Module Contents
	Classes
	Functions
	Attributes
	toil.test.src.jobTest
	Module Contents
	Classes
	Functions
	Attributes
	toil.test.src.miscTests
	Module Contents
	Classes
	Attributes
	toil.test.src.promisedRequirementTest
	Module Contents
	Classes
	Functions
	Attributes
	toil.test.src.promisesTest
	Module Contents
	Classes
	Functions
	toil.test.src.realtimeLoggerTest
	Module Contents
	Classes
	toil.test.src.regularLogTest
	Module Contents
	Classes
	Attributes
	toil.test.src.resourceTest
	Module Contents
	Classes
	Functions
	toil.test.src.restartDAGTest
	Module Contents
	Classes
	Functions
	Attributes
	toil.test.src.resumabilityTest
	Module Contents
	Classes
	Functions
	toil.test.src.retainTempDirTest
	Module Contents
	Classes
	Functions
	toil.test.src.systemTest
	Module Contents
	Classes
	toil.test.src.threadingTest
	Module Contents
	Classes
	Attributes
	toil.test.src.toilContextManagerTest
	Module Contents
	Classes
	Functions
	toil.test.src.userDefinedJobArgTypeTest
	Module Contents
	Classes
	Functions
	toil.test.src.workerTest
	Module Contents
	Classes
	toil.test.utils
	Submodules
	toil.test.utils.toilDebugTest
	Module Contents
	Functions
	Attributes
	toil.test.utils.toilKillTest
	Module Contents
	Classes
	Attributes
	toil.test.utils.utilsTest
	Module Contents
	Classes
	Functions
	Attributes
	toil.test.wdl
	Submodules
	toil.test.wdl.builtinTest
	Module Contents
	Classes
	toil.test.wdl.conftest
	Module Contents
	toil.test.wdl.toilwdlTest
	Module Contents
	Classes
	Functions
	toil.test.wdl.wdltoil_test
	Module Contents
	Classes

	Package Contents
	Classes
	Functions
	Attributes

	toil.utils
	Submodules
	toil.utils.toilClean
	Module Contents
	Functions
	Attributes
	toil.utils.toilDebugFile
	Module Contents
	Functions
	Attributes
	toil.utils.toilDebugJob
	Module Contents
	Functions
	Attributes
	toil.utils.toilDestroyCluster
	Module Contents
	Functions
	Attributes
	toil.utils.toilKill
	Module Contents
	Functions
	Attributes
	toil.utils.toilLaunchCluster
	Module Contents
	Functions
	Attributes
	toil.utils.toilMain
	Module Contents
	Functions
	toil.utils.toilRsyncCluster
	Module Contents
	Functions
	Attributes
	toil.utils.toilServer
	Module Contents
	Functions
	Attributes
	toil.utils.toilSshCluster
	Module Contents
	Functions
	Attributes
	toil.utils.toilStats
	Module Contents
	Classes
	Functions
	Attributes
	toil.utils.toilStatus
	Module Contents
	Classes
	Functions
	Attributes
	toil.utils.toilUpdateEC2Instances
	Module Contents
	Functions
	Attributes

	toil.wdl
	Subpackages
	toil.wdl.versions
	Submodules
	toil.wdl.versions.dev
	Module Contents
	Classes
	Attributes
	toil.wdl.versions.draft2
	Module Contents
	Classes
	Attributes
	Simple Cases
	More Abstract Cases
	toil.wdl.versions.v1
	Module Contents
	Classes
	Functions
	Attributes

	Submodules
	toil.wdl.toilwdl
	Module Contents
	Functions
	Attributes
	toil.wdl.utils
	Module Contents
	Functions
	toil.wdl.wdl_analysis
	Module Contents
	Classes
	Attributes
	toil.wdl.wdl_functions
	Module Contents
	Classes
	Functions
	Attributes
	toil.wdl.wdl_synthesis
	Module Contents
	Classes
	Attributes
	toil.wdl.wdl_types
	Module Contents
	Classes
	toil.wdl.wdltoil
	Module Contents
	Classes
	Functions
	Attributes

	Submodules
	toil.bus
	Module Contents
	Classes
	Functions
	Attributes

	toil.common
	Module Contents
	Classes
	Functions
	Attributes

	toil.deferred
	Module Contents
	Classes
	Attributes

	toil.exceptions
	Module Contents

	toil.job
	Module Contents
	Classes
	Functions
	Attributes

	toil.leader
	Module Contents
	Classes
	Attributes

	toil.realtimeLogger
	Module Contents
	Classes
	Attributes

	toil.resource
	Module Contents
	Classes
	Attributes

	toil.serviceManager
	Module Contents
	Classes
	Attributes

	toil.statsAndLogging
	Module Contents
	Classes
	Functions
	Attributes

	toil.toilState
	Module Contents
	Classes
	Attributes

	toil.version
	Module Contents

	toil.worker
	Module Contents
	Classes
	Functions
	Attributes

	Package Contents
	Functions
	Attributes

	tutorial_docker
	Module Contents

	tutorial_managing2
	Module Contents
	Functions
	Attributes

	tutorial_helloworld
	Module Contents
	Functions
	Attributes

	tutorial_discoverfiles
	Module Contents
	Classes
	Functions

	tutorial_multiplejobs2
	Module Contents
	Functions
	Attributes

	tutorial_dynamic
	Module Contents
	Functions
	Attributes

	tutorial_invokeworkflow2
	Module Contents
	Classes
	Attributes

	tutorial_jobfunctions
	Module Contents
	Functions
	Attributes

	tutorial_managing
	Module Contents
	Classes
	Attributes

	example_alwaysfail
	Module Contents
	Functions

	example_cachingbenchmark
	Module Contents
	Functions

	tutorial_quickstart
	Module Contents
	Functions
	Attributes

	tutorial_encapsulation2
	Module Contents

	tutorial_multiplejobs3
	Module Contents
	Functions
	Attributes

	tutorial_cwlexample
	Module Contents
	Functions
	Attributes

	tutorial_encapsulation
	Module Contents

	tutorial_invokeworkflow
	Module Contents
	Classes
	Attributes

	tutorial_requirements
	Module Contents
	Functions
	Attributes

	tutorial_staging
	Module Contents
	Classes
	Attributes

	tutorial_promises
	Module Contents
	Functions
	Attributes

	tutorial_services
	Module Contents
	Classes
	Functions
	Attributes

	tutorial_promises2
	Module Contents
	Functions
	Attributes

	tutorial_multiplejobs
	Module Contents
	Functions
	Attributes

	tutorial_arguments
	Module Contents
	Classes
	Attributes

	mkFile
	Module Contents
	Functions

	debugWorkflow
	Module Contents
	Functions
	Attributes

	fake_mpi_run
	Module Contents
	Classes
	Functions
	Attributes

	Python Module Index
	Index

