

Toil Documentation

Toil is an open-source pure-Python workflow engine that lets people write better pipelines.

Check out our website [http://toil.ucsc-cgl.org/] for a comprehensive list of Toil’s features and read our paper [http://biorxiv.org/content/early/2016/07/07/062497] to learn what Toil can do
in the real world. Please subscribe to our low-volume announce [https://groups.google.com/forum/#!forum/toil-announce] mailing list and feel free to also join us on GitHub [https://github.com/BD2KGenomics/toil] and Gitter [https://gitter.im/bd2k-genomics-toil/Lobby].

If using Toil for your research, please cite

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., … Paten, B. (2017).
Toil enables reproducible, open source, big biomedical data analyses. Nature Biotechnology, 35(4), 314–316.
http://doi.org/10.1038/nbt.3772

Getting Started

	Installation
	Preparing Your Python Runtime Environment

	Basic Installation

	Installing Toil with Extra Features

	Building from Source

	Quickstart Examples
	Running a basic workflow

	Running a basic CWL workflow

	Running a basic WDL workflow

	A (more) real-world example

	Launching a Toil Workflow in AWS

	Running a CWL Workflow on AWS

	Running a Workflow with Autoscaling - Cactus

Running Toil

	Introduction
	Job Store

	Batch System

	Provisioner

	Commandline Options
	The Job Store

	Commandline Options

	Restart Option

	Running Workflows with Services

	Setting Options directly with the Toil Script

	Toil Debugging
	Introspecting the Jobstore

	Stats and Status

	Using a Python debugger

	Running in the Cloud
	Managing a Cluster of Virtual Machines (Provisioning)

	Storage (Toil jobStore)

	Cloud Platforms
	Running on Kubernetes

	Running in AWS

	Running in Google Compute Engine (GCE)

	Cluster Utilities

	Stats Command

	Status Command

	Clean Command

	Launch-Cluster Command

	Ssh-Cluster Command

	Rsync-Cluster Command

	Destroy-Cluster Command

	Kill Command

	HPC Environments
	Standard Output/Error from Batch System Jobs

	CWL in Toil
	Running CWL Locally

	Detailed Usage Instructions

	Running CWL in the Cloud

	Running CWL within Toil Scripts

	Toil & CWL Tips

	WDL in Toil
	How to Run a WDL file in Toil

	ENCODE Example from ENCODE-DCC

	GATK Examples from the Broad

	toilwdl.py Options

	Running WDL within Toil Scripts

	WDL Specifications

Developing Toil Workflows

	Developing a Workflow
	Scripting Quick Start

	Job Basics

	Invoking a Workflow

	Specifying Commandline Arguments

	Resuming a Workflow

	Functions and Job Functions

	Workflows with Multiple Jobs

	Dynamic Job Creation

	Promises

	Promised Requirements

	FileID

	Managing files within a workflow

	Using Docker Containers in Toil

	Services

	Checkpoints

	Encapsulation

	Depending on Toil

	Best Practices for Dockerizing Toil Workflows

	Toil Class API

	Job Store API

	Toil Job API
	FunctionWrappingJob

	JobFunctionWrappingJob

	EncapsulatedJob

	Promise

	Job Methods API

	Job.Runner API

	job.fileStore API

	Batch System API
	Batch System Enivronmental Variables

	Batch System API

	Job.Service API

	Exceptions API

Contributing to Toil

	Running Tests
	Running Tests with pytest

	Running Integration Tests

	Test Environment Variables

	Using Docker with Quay

	Running Mesos Tests

	Developing with Docker
	Making Your Own Toil Docker Image

	Running a Cluster Locally

	Maintainer’s Guidelines
	Naming Conventions

	Pull Requests

	Publishing a Release

	Adding Retries to a Function

	Pull Request Checklists
	Reviewing Pull Requests

	Merging Pull Requests

Appendices

	Toil Architecture
	Optimizations

	Toil support for Common Workflow Language

	Minimum AWS IAM permissions

	Auto-Deployment
	Auto Deployment with Sibling Modules

	Auto-Deploying a Package Hierarchy

	Relying on Shared Filesystems

	Environment Variables

	Index

	Search Page

Installation

This document describes how to prepare for and install Toil. Note that Toil requires that the user run all commands
inside of a Python virtualenv [https://virtualenv.pypa.io/en/stable/]. Instructions for installing and creating a Python virtual environment are provided
below.

Preparing Your Python Runtime Environment

Toil currently supports Python 2.7, 3.5, and 3.6, and requires a virtualenv to be active to install.

If not already present, please install the latest Python virtualenv using pip [https://pip.readthedocs.io/en/latest/installing/]:

$ sudo pip install virtualenv

And create a virtual environment called venv in your home directory:

$ virtualenv ~/venv

If the user does not have root privileges, there are a few more steps, but one can download a specific virtualenv
package directly, untar the file, create, and source the virtualenv (version 15.1.0 as an example) using

$ curl -O https://pypi.python.org/packages/d4/0c/9840c08189e030873387a73b90ada981885010dd9aea134d6de30cd24cb8/virtualenv-15.1.0.tar.gz
$ tar xvfz virtualenv-15.1.0.tar.gz
$ cd virtualenv-15.1.0
$ python virtualenv.py ~/venv

Now that you’ve created your virtualenv, activate your virtual environment:

$ source ~/venv/bin/activate

Basic Installation

If you need only the basic version of Toil, it can be easily installed using pip:

$ pip install toil

Now you’re ready to run your first Toil workflow!

(If you need any of the extra features don’t do this yet and instead skip to the next section.)

Installing Toil with Extra Features

Python headers and static libraries

Needed for the mesos, aws, google, and encryption extras.

On Ubuntu:

$ sudo apt-get install build-essential python-dev

On macOS:

$ xcode-select --install

Encryption specific headers and library

Needed for the encryption extra.

On Ubuntu:

$ sudo apt-get install libssl-dev libffi-dev

On macOS:

$ brew install libssl libffi

Or see Cryptography [https://cryptography.io/en/latest/installation/] for other systems.

Some optional features, called extras, are not included in the basic
installation of Toil. To install Toil with all its bells and whistles, first
install any necessary headers and libraries (python-dev, libffi-dev). Then run

$ pip install toil[aws,mesos,google,encryption,cwl]

or

$ pip install toil[all]

Here’s what each extra provides:

	Extra

	Description

	all

	Installs all extras (though htcondor is linux-only and
will be skipped if not on a linux computer).

	aws

	Provides support for managing a cluster on Amazon Web
Service (AWS [https://aws.amazon.com/]) using Toil’s built in Cluster Utilities.
Clusters can scale up and down automatically.
It also supports storing workflow state.

	google

	Experimental. Stores workflow state in Google Cloud
Storage [https://cloud.google.com/storage/].

	mesos

	Provides support for running Toil on an Apache Mesos [https://mesos.apache.org/gettingstarted/]
cluster. Note that running Toil on other batch systems
does not require an extra. The mesos extra requires
the following native dependencies:

	Apache Mesos [https://mesos.apache.org/gettingstarted/] (Tested with Mesos v1.0.0)

	Python headers and static libraries

Important

If launching toil remotely on a mesos instance,
to install Toil with the mesos extra in a
virtualenv, be sure to create that virtualenv with the
--system-site-packages flag (only use remotely!):

$ virtualenv ~/venv --system-site-packages

Otherwise, you’ll see something like this:

ImportError: No module named mesos.native

	htcondor

	Support for the htcondor batch system. This currently is
a linux only extra.

	encryption

	Provides client-side encryption for files stored in the
AWS job store. This extra requires the
following native dependencies:

	Python headers and static libraries

	libffi headers and library

	cwl

	Provides support for running workflows written using the
Common Workflow Language [http://www.commonwl.org/].

	wdl

	Provides support for running workflows written using the
Workflow Description Language [https://software.broadinstitute.org/wdl/]. This extra has no native
dependencies.

Building from Source

If developing with Toil, you will need to build from source. This allows changes you
make to Toil to be reflected immediately in your runtime environment.

First, clone the source:

$ git clone https://github.com/DataBiosphere/toil.git
$ cd toil

Then, create and activate a virtualenv:

$ virtualenv venv
$. venv/bin/activate

From there, you can list all available Make targets by running make.
First and foremost, we want to install Toil’s build requirements (these are
additional packages that Toil needs to be tested and built but not to be run):

$ make prepare

Now, we can install Toil in development mode (such that changes to the
source code will immediately affect the virtualenv):

$ make develop

Or, to install with support for all optional Installing Toil with Extra Features:

$ make develop extras=[aws,mesos,google,encryption,cwl]

Or:

$ make develop extras=[all]

To build the docs, run make develop with all extras followed by

$ make docs

To run a quick batch of tests (this should take less than 30 minutes)
run

$ export TOIL_TEST_QUICK=True; make test

For more information on testing see Running Tests.

Quickstart Examples

Running a basic workflow

A Toil workflow can be run with just three steps:

	Install Toil (see Installation)

	Copy and paste the following code block into a new file called helloWorld.py:

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="1G", cores=1, disk="1G"):
 return "Hello, world!, here's a message: %s" % message

if __name__ == "__main__":
 parser = Job.Runner.getDefaultArgumentParser()
 options = parser.parse_args()
 options.clean = "always"
 with Toil(options) as toil:
 output = toil.start(Job.wrapFn(helloWorld, "You did it!"))
 print(output)

	Specify the name of the job store and run the workflow:

(venv) $ python helloWorld.py file:my-job-store

Note

Don’t actually type (venv) $ in at the beginning of each command. This is intended only to remind the user that
they should have their virtual environment running.

Congratulations! You’ve run your first Toil workflow using the default Batch System, singleMachine,
using the file job store.

Toil uses batch systems to manage the jobs it creates.

The singleMachine batch system is primarily used to prepare and debug workflows on a
local machine. Once validated, try running them on a full-fledged batch system (see Batch System API).
Toil supports many different batch systems such as Apache Mesos [https://mesos.apache.org/getting-started/] and Grid Engine; its versatility makes it
easy to run your workflow in all kinds of places.

Toil is totally customizable! Run python helloWorld.py --help to see a complete list of available options.

For something beyond a “Hello, world!” example, refer to A (more) real-world example.

Running a basic CWL workflow

The Common Workflow Language [http://www.commonwl.org/] (CWL) is an emerging standard for writing
workflows that are portable across multiple workflow engines and platforms.
Running CWL workflows using Toil is easy.

	First ensure that Toil is installed with the
cwl extra (see Installing Toil with Extra Features):

(venv) $ pip install 'toil[cwl]'

This installs the toil-cwl-runner executable.

	Copy and paste the following code block into example.cwl:

cwlVersion: v1.0
class: CommandLineTool
baseCommand: echo
stdout: output.txt
inputs:
 message:
 type: string
 inputBinding:
 position: 1
outputs:
 output:
 type: stdout

and this code into example-job.yaml:

message: Hello world!

	To run the workflow simply enter

(venv) $ toil-cwl-runner example.cwl example-job.yaml

Your output will be in output.txt:

(venv) $ cat output.txt
Hello world!

To learn more about CWL, see the CWL User Guide [https://www.commonwl.org/user_guide/] (from where this example was
shamelessly borrowed).

To run this workflow on an AWS cluster have a look at Running a CWL Workflow on AWS.

For information on using CWL with Toil see the section CWL in Toil

Running a basic WDL workflow

The Workflow Description Language [https://software.broadinstitute.org/wdl/] (WDL) is another emerging language for writing workflows that are portable across multiple workflow engines and platforms.
Running WDL workflows using Toil is still in alpha, and currently experimental. Toil currently supports basic workflow syntax (see WDL in Toil for more details and examples). Here we go over running a basic WDL helloworld workflow.

	First ensure that Toil is installed with the
wdl extra (see Installing Toil with Extra Features):

(venv) $ pip install 'toil[wdl]'

This installs the toil-wdl-runner executable.

	Copy and paste the following code block into wdl-helloworld.wdl:

 workflow write_simple_file {
 call write_file
 }
 task write_file {
 String message
 command { echo ${message} > wdl-helloworld-output.txt }
 output { File test = "wdl-helloworld-output.txt" }
 }

and this code into ``wdl-helloworld.json``::

 {
 "write_simple_file.write_file.message": "Hello world!"
 }

	To run the workflow simply enter

(venv) $ toil-wdl-runner wdl-helloworld.wdl wdl-helloworld.json

Your output will be in wdl-helloworld-output.txt:

(venv) $ cat wdl-helloworld-output.txt
Hello world!

To learn more about WDL, see the main WDL website [https://software.broadinstitute.org/wdl/] .

A (more) real-world example

For a more detailed example and explanation, we’ve developed a sample pipeline
that merge-sorts a temporary file. This is not supposed to be an efficient
sorting program, rather a more fully worked example of what Toil is capable of.

Running the example

	Download the example code

	Run it with the default settings:

(venv) $ python sort.py file:jobStore

The workflow created a file called sortedFile.txt in your current directory.
Have a look at it and notice that it contains a whole lot of sorted lines!

This workflow does a smart merge sort on a file it generates, fileToSort.txt. The sort is smart
because each step of the process—splitting the file into separate chunks, sorting these chunks, and merging them
back together—is compartmentalized into a job. Each job can specify its own resource requirements and will
only be run after the jobs it depends upon have run. Jobs without dependencies will be run in parallel.

Note

Delete fileToSort.txt before moving on to #3. This example introduces options that specify dimensions for
fileToSort.txt, if it does not already exist. If it exists, this workflow will use the existing file and
the results will be the same as #2.

	Run with custom options:

(venv) $ python sort.py file:jobStore \
 --numLines=5000 \
 --lineLength=10 \
 --overwriteOutput=True \
 --workDir=/tmp/

Here we see that we can add our own options to a Toil script. As noted above, the first two
options, --numLines and --lineLength, determine the number of lines and how many characters are in each line.
--overwriteOutput causes the current contents of sortedFile.txt to be overwritten, if it already exists.
The last option, --workDir, is an option built into Toil to specify where temporary files unique to a job are kept.

Describing the source code

To understand the details of what’s going on inside.
Let’s start with the main() function. It looks like a lot of code, but don’t worry—we’ll break it down piece by
piece.

def main(options=None):
 if not options:
 # deal with command line arguments
 parser = ArgumentParser()
 Job.Runner.addToilOptions(parser)
 parser.add_argument('--numLines', default=defaultLines, help='Number of lines in file to sort.', type=int)
 parser.add_argument('--lineLength', default=defaultLineLen, help='Length of lines in file to sort.', type=int)
 parser.add_argument("--fileToSort", help="The file you wish to sort")
 parser.add_argument("--outputFile", help="Where the sorted output will go")
 parser.add_argument("--overwriteOutput", help="Write over the output file if it already exists.", default=True)
 parser.add_argument("--N", dest="N",
 help="The threshold below which a serial sort function is used to sort file. "
 "All lines must of length less than or equal to N or program will fail",
 default=10000)
 parser.add_argument('--downCheckpoints', action='store_true',
 help='If this option is set, the workflow will make checkpoints on its way through'
 'the recursive "down" part of the sort')
 parser.add_argument("--sortMemory", dest="sortMemory",
 help="Memory for jobs that sort chunks of the file.",
 default=None)

 parser.add_argument("--mergeMemory", dest="mergeMemory",
 help="Memory for jobs that collate results.",
 default=None)

 options = parser.parse_args()
 if not hasattr(options, "sortMemory") or not options.sortMemory:
 options.sortMemory = sortMemory
 if not hasattr(options, "mergeMemory") or not options.mergeMemory:
 options.mergeMemory = sortMemory

 # do some input verification
 sortedFileName = options.outputFile or "sortedFile.txt"
 if not options.overwriteOutput and os.path.exists(sortedFileName):
 print(f'Output file {sortedFileName} already exists. '
 f'Delete it to run the sort example again or use --overwriteOutput=True')
 exit()

 fileName = options.fileToSort
 if options.fileToSort is None:
 # make the file ourselves
 fileName = 'fileToSort.txt'
 if os.path.exists(fileName):
 print(f'Sorting existing file: {fileName}')
 else:
 print(f'No sort file specified. Generating one automatically called: {fileName}.')
 makeFileToSort(fileName=fileName, lines=options.numLines, lineLen=options.lineLength)
 else:
 if not os.path.exists(options.fileToSort):
 raise RuntimeError("File to sort does not exist: %s" % options.fileToSort)

 if int(options.N) <= 0:
 raise RuntimeError("Invalid value of N: %s" % options.N)

 # Now we are ready to run
 with Toil(options) as workflow:
 sortedFileURL = 'file://' + os.path.abspath(sortedFileName)
 if not workflow.options.restart:
 sortFileURL = 'file://' + os.path.abspath(fileName)
 sortFileID = workflow.importFile(sortFileURL)
 sortedFileID = workflow.start(Job.wrapJobFn(setup,
 sortFileID,
 int(options.N),
 options.downCheckpoints,
 options=options,
 memory=sortMemory))
 else:
 sortedFileID = workflow.restart()
 workflow.exportFile(sortedFileID, sortedFileURL)

First we make a parser to process command line arguments using the argparse [https://docs.python.org/2.7/library/argparse.html] module. It’s important that we add the
call to Job.Runner.addToilOptions() to initialize our parser with all of Toil’s default options. Then we add
the command line arguments unique to this workflow, and parse the input. The help message listed with the arguments
should give you a pretty good idea of what they can do.

Next we do a little bit of verification of the input arguments. The option --fileToSort allows you to specify a file
that needs to be sorted. If this option isn’t given, it’s here that we make our own file with the call to
makeFileToSort().

Finally we come to the context manager that initializes the workflow. We create a path to the input file prepended with
'file://' as per the documentation for toil.common.Toil() when staging a file that is stored locally. Notice
that we have to check whether or not the workflow is restarting so that we don’t import the file more than once.
Finally we can kick off the workflow by calling toil.common.Toil.start() on the job setup. When the workflow
ends we capture its output (the sorted file’s fileID) and use that in toil.common.Toil.exportFile() to move the
sorted file from the job store back into “userland”.

Next let’s look at the job that begins the actual workflow, setup.

def setup(job, inputFile, N, downCheckpoints, options):
 """
 Sets up the sort.
 Returns the FileID of the sorted file
 """
 RealtimeLogger.info("Starting the merge sort")
 return job.addChildJobFn(down,
 inputFile, N, 'root',
 downCheckpoints,
 options = options,
 preemptable=True,
 memory=sortMemory).rv()

setup really only does two things. First it writes to the logs using Job.log() and then
calls addChildJobFn(). Child jobs run directly after the current job. This function turns the ‘job function’
down into an actual job and passes in the inputs including an optional resource requirement, memory. The job
doesn’t actually get run until the call to Job.rv(). Once the job down finishes, its output is returned here.

Now we can look at what down does.

def down(job, inputFileStoreID, N, path, downCheckpoints, options, memory=sortMemory):
 """
 Input is a file, a subdivision size N, and a path in the hierarchy of jobs.
 If the range is larger than a threshold N the range is divided recursively and
 a follow on job is then created which merges back the results else
 the file is sorted and placed in the output.
 """

 RealtimeLogger.info("Down job starting: %s" % path)

 # Read the file
 inputFile = job.fileStore.readGlobalFile(inputFileStoreID, cache=False)
 length = os.path.getsize(inputFile)
 if length > N:
 # We will subdivide the file
 RealtimeLogger.critical("Splitting file: %s of size: %s"
 % (inputFileStoreID, length))
 # Split the file into two copies
 midPoint = getMidPoint(inputFile, 0, length)
 t1 = job.fileStore.getLocalTempFile()
 with open(t1, 'w') as fH:
 fH.write(copySubRangeOfFile(inputFile, 0, midPoint+1))
 t2 = job.fileStore.getLocalTempFile()
 with open(t2, 'w') as fH:
 fH.write(copySubRangeOfFile(inputFile, midPoint+1, length))
 # Call down recursively. By giving the rv() of the two jobs as inputs to the follow-on job, up,
 # we communicate the dependency without hindering concurrency.
 result = job.addFollowOnJobFn(up,
 job.addChildJobFn(down, job.fileStore.writeGlobalFile(t1), N, path + '/0',
 downCheckpoints, checkpoint=downCheckpoints, options=options,
 preemptable=True, memory=options.sortMemory).rv(),
 job.addChildJobFn(down, job.fileStore.writeGlobalFile(t2), N, path + '/1',
 downCheckpoints, checkpoint=downCheckpoints, options=options,
 preemptable=True, memory=options.mergeMemory).rv(),
 path + '/up', preemptable=True, options=options, memory=options.sortMemory).rv()
 else:
 # We can sort this bit of the file
 RealtimeLogger.critical("Sorting file: %s of size: %s"
 % (inputFileStoreID, length))
 # Sort the copy and write back to the fileStore
 shutil.copyfile(inputFile, inputFile + '.sort')
 sort(inputFile + '.sort')
 result = job.fileStore.writeGlobalFile(inputFile + '.sort')

 RealtimeLogger.info("Down job finished: %s" % path)
 return result

Down is the recursive part of the workflow. First we read the file into the local filestore by calling
job.fileStore.readGlobalFile(). This puts a copy of the file in the temp directory for this particular job. This
storage will disappear once this job ends. For a detailed explanation of the filestore, job store, and their interfaces
have a look at Managing files within a workflow.

Next down checks the base case of the recursion: is the length of the input file less than N (remember N
was an option we added to the workflow in main)? In the base case, we just sort the file, and return the file ID
of this new sorted file.

If the base case fails, then the file is split into two new tempFiles using job.fileStore.getLocalTempFile() and
the helper function copySubRangeOfFile. Finally we add a follow on Job up with job.addFollowOnJobFn().
We’ve already seen child jobs. A follow-on Job is a job that runs after the current job and all of its children (and their children and follow-ons) have
completed. Using a follow-on makes sense because up is responsible for merging the files together and we don’t want
to merge the files together until we know they are sorted. Again, the return value of the follow-on job is requested
using Job.rv().

Looking at up

def up(job, inputFileID1, inputFileID2, path, options, memory=sortMemory):
 """
 Merges the two files and places them in the output.
 """

 RealtimeLogger.info("Up job starting: %s" % path)

 with job.fileStore.writeGlobalFileStream() as (fileHandle, outputFileStoreID):
 fileHandle = codecs.getwriter('utf-8')(fileHandle)
 with job.fileStore.readGlobalFileStream(inputFileID1) as inputFileHandle1:
 inputFileHandle1 = codecs.getreader('utf-8')(inputFileHandle1)
 with job.fileStore.readGlobalFileStream(inputFileID2) as inputFileHandle2:
 inputFileHandle2 = codecs.getreader('utf-8')(inputFileHandle2)
 RealtimeLogger.info("Merging %s and %s to %s"
 % (inputFileID1, inputFileID2, outputFileStoreID))
 merge(inputFileHandle1, inputFileHandle2, fileHandle)
 # Cleanup up the input files - these deletes will occur after the completion is successful.
 job.fileStore.deleteGlobalFile(inputFileID1)
 job.fileStore.deleteGlobalFile(inputFileID2)

 RealtimeLogger.info("Up job finished: %s" % path)

 return outputFileStoreID

we see that the two input files are merged together and the output is written to a new file using
job.fileStore.writeGlobalFileStream(). After a little cleanup, the output file is returned.

Once the final up finishes and all of the rv() promises are fulfilled, main receives the sorted file’s ID
which it uses in exportFile to send it to the user.

There are other things in this example that we didn’t go over such as Checkpoints and the details of much of
the Toil Class API.

At the end of the script the lines

if __name__ == '__main__'
 main()

are included to ensure that the main function is only run once in the ‘__main__’ process
invoked by you, the user.
In Toil terms, by invoking the script you created the leader process
in which the main()
function is run. A worker process is a separate process whose sole purpose
is to host the execution of one or more jobs defined in that script. In any Toil
workflow there is always one leader process, and potentially many worker processes.

When using the single-machine batch system (the default), the worker processes will be running
on the same machine as the leader process. With full-fledged batch systems like
Mesos the worker processes will typically be started on separate machines. The
boilerplate ensures that the pipeline is only started once—on the leader—but
not when its job functions are imported and executed on the individual workers.

Typing python sort.py --help will show the complete list of
arguments for the workflow which includes both Toil’s and ones defined inside
sort.py. A complete explanation of Toil’s arguments can be
found in Commandline Options.

Logging

By default, Toil logs a lot of information related to the current environment
in addition to messages from the batch system and jobs. This can be configured
with the --logLevel flag. For example, to only log CRITICAL level
messages to the screen:

(venv) $ python sort.py file:jobStore \
 --logLevel=critical \
 --overwriteOutput=True

This hides most of the information we get from the Toil run. For more detail,
we can run the pipeline with --logLevel=debug to see a comprehensive
output. For more information, see Commandline Options.

Error Handling and Resuming Pipelines

With Toil, you can recover gracefully from a bug in your pipeline without losing
any progress from successfully completed jobs. To demonstrate this, let’s add
a bug to our example code to see how Toil handles a failure and how we can
resume a pipeline after that happens. Add a bad assertion at line 52 of the
example (the first line of down()):

def down(job, inputFileStoreID, N, downCheckpoints, memory=sortMemory):
 ...
 assert 1 == 2, "Test error!"

When we run the pipeline, Toil will show a detailed failure log with a traceback:

(venv) $ python sort.py file:jobStore
...
---TOIL WORKER OUTPUT LOG---
...
m/j/jobonrSMP Traceback (most recent call last):
m/j/jobonrSMP File "toil/src/toil/worker.py", line 340, in main
m/j/jobonrSMP job._runner(jobGraph=jobGraph, jobStore=jobStore, fileStore=fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1270, in _runner
m/j/jobonrSMP returnValues = self._run(jobGraph, fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1217, in _run
m/j/jobonrSMP return self.run(fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1383, in run
m/j/jobonrSMP rValue = userFunction(*((self,) + tuple(self._args)), **self._kwargs)
m/j/jobonrSMP File "toil/example.py", line 30, in down
m/j/jobonrSMP assert 1 == 2, "Test error!"
m/j/jobonrSMP AssertionError: Test error!

If we try and run the pipeline again, Toil will give us an error message saying
that a job store of the same name already exists. By default, in the event of a
failure, the job store is preserved so that the workflow can be restarted,
starting from the previously failed jobs. We can restart the pipeline by running

(venv) $ python sort.py file:jobStore \
 --restart \
 --overwriteOutput=True

We can also change the number of times Toil will attempt to retry a failed job:

(venv) $ python sort.py file:jobStore \
 --retryCount 2 \
 --restart \
 --overwriteOutput=True

You’ll now see Toil attempt to rerun the failed job until it runs out of tries.
--retryCount is useful for non-systemic errors, like downloading a file that
may experience a sporadic interruption, or some other non-deterministic failure.

To successfully restart our pipeline, we can edit our script to comment out
line 30, or remove it, and then run

(venv) $ python sort.py file:jobStore \
 --restart \
 --overwriteOutput=True

The pipeline will run successfully, and the job store will be removed on the
pipeline’s completion.

Collecting Statistics

Please see the Stats Command section for more on gathering runtime and resource info on jobs.

Launching a Toil Workflow in AWS

After having installed the aws extra for Toil during the Installation and set up AWS
(see Preparing your AWS environment), the user can run the basic helloWorld.py script (Running a basic workflow)
on a VM in AWS just by modifying the run command.

Note that when running in AWS, users can either run the workflow on a single instance or run it on a
cluster (which is running across multiple containers on multiple AWS instances). For more information
on running Toil workflows on a cluster, see Running in AWS.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise things may not be cleaned up properly.

	Launch a cluster in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
 --keyPairName <AWS-key-pair-name> \
 --leaderNodeType t2.medium \
 --zone us-west-2a

The arguments keyPairName, leaderNodeType, and zone are required to launch a cluster.

	Copy helloWorld.py to the /tmp directory on the leader node using the Rsync-Cluster Command command:

(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> helloWorld.py :/tmp

Note that the command requires defining the file to copy as well as the target location on the cluster leader node.

	Login to the cluster leader node using the Ssh-Cluster Command command:

(venv) $ toil ssh-cluster --zone us-west-2a <cluster-name>

Note that this command will log you in as the root user.

	Run the Toil script in the cluster:

$ python /tmp/helloWorld.py aws:us-west-2:my-S3-bucket

In this particular case, we create an S3 bucket called my-S3-bucket in
the us-west-2 availability zone to store intermediate job results.

Along with some other INFO log messages, you should get the following output in your terminal window:
Hello, world!, here's a message: You did it!.

	Exit from the SSH connection.

$ exit

	Use the Destroy-Cluster Command command to destroy the cluster:

(venv) $ toil destroy-cluster --zone us-west-2a <cluster-name>

Note that this command will destroy the cluster leader
node and any resources created to run the job, including the S3 bucket.

Running a CWL Workflow on AWS

After having installed the aws and cwl extras for Toil during the Installation and set up AWS
(see Preparing your AWS environment), the user can run a CWL workflow with Toil on AWS.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise things may not be cleaned up properly.

	First launch a node in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
 --keyPairName <AWS-key-pair-name> \
 --leaderNodeType t2.medium \
 --zone us-west-2a

	Copy example.cwl and example-job.yaml from the CWL example to the node using
the Rsync-Cluster Command command:

(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> example.cwl :/tmp
(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> example-job.yaml :/tmp

	SSH into the cluster’s leader node using the Ssh-Cluster Command utility:

(venv) $ toil ssh-cluster --zone us-west-2a <cluster-name>

	Once on the leader node, it’s a good idea to update and install the following:

sudo apt-get update
sudo apt-get -y upgrade
sudo apt-get -y dist-upgrade
sudo apt-get -y install git
sudo pip install mesos.cli

	Now create a new virtualenv with the --system-site-packages option and activate:

virtualenv --system-site-packages venv
source venv/bin/activate

	Now run the CWL workflow:

(venv) $ toil-cwl-runner \
 --provisioner aws \
 --jobStore aws:us-west-2a:any-name \
 /tmp/example.cwl /tmp/example-job.yaml

Tip

When running a CWL workflow on AWS, input files can be provided either on the
local file system or in S3 buckets using s3:// URI references. Final output
files will be copied to the local file system of the leader node.

	Finally, log out of the leader node and from your local computer, destroy the cluster:

(venv) $ toil destroy-cluster --zone us-west-2a <cluster-name>

Running a Workflow with Autoscaling - Cactus

Cactus [https://github.com/ComparativeGenomicsToolkit/cactus] is a reference-free, whole-genome multiple alignment
program that can be run on any of the cloud platforms Toil supports.

Note

Cloud Independence:

This example provides a “cloud agnostic” view of running Cactus with Toil. Most options will not change between cloud providers.
However, each provisioner has unique inputs for --leaderNodeType, --nodeType and --zone.
We recommend the following:

	Option

	Used in

	AWS

	Google

	--leaderNodeType

	launch-cluster

	t2.medium

	n1-standard-1

	--zone

	launch-cluster

	us-west-2a

	us-west1-a

	--zone

	cactus

	us-west-2

	--nodeType

	cactus

	c3.4xlarge

	n1-standard-8

When executing toil launch-cluster with gce specified for --provisioner, the option --boto must
be specified and given a path to your .boto file. See Running in Google Compute Engine (GCE) for more information about the --boto option.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise things may not be cleaned up properly.

	Download pestis.tar.gz

	Launch a leader node using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
 --provisioner <aws, gce> \
 --keyPairName <key-pair-name> \
 --leaderNodeType <type> \
 --zone <zone>

Note

A Helpful Tip

When using AWS, setting the environment variable eliminates having to specify the --zone option
for each command. This will be supported for GCE in the future.

(venv) $ export TOIL_AWS_ZONE=us-west-2c

	Create appropriate directory for uploading files:

(venv) $ toil ssh-cluster --provisioner <aws, gce> <cluster-name>
$ mkdir /root/cact_ex
$ exit

	Copy the required files, i.e., seqFile.txt (a text file containing the locations of the input sequences as
well as their phylogenetic tree, see
here [https://github.com/ComparativeGenomicsToolkit/cactus#seqfile-the-input-file]), organisms’ genome sequence
files in FASTA format, and configuration files (e.g. blockTrim1.xml, if desired), up to the leader node:

(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> pestis-short-aws-seqFile.txt :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000169655.1_ASM16965v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000006645.1_ASM664v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000182485.1_ASM18248v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000013805.1_ASM1380v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> setup_leaderNode.sh :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> blockTrim1.xml :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> blockTrim3.xml :/root/cact_ex

	Log in to the leader node:

(venv) $ toil ssh-cluster --provisioner <aws, gce> <cluster-name>

	Set up the environment of the leader node to run Cactus:

$ bash /root/cact_ex/setup_leaderNode.sh
$ source cact_venv/bin/activate
(cact_venv) $ cd cactus
(cact_venv) $ pip install --upgrade .

	Run Cactus [https://github.com/ComparativeGenomicsToolkit/cactus] as an autoscaling workflow:

(cact_venv) $ TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:3.14.0 cactus \
 --provisioner <aws, gce> \
 --nodeType <type> \
 --maxNodes 2 \
 --minNodes 0 \
 --retry 10 \
 --batchSystem mesos \
 --logDebug \
 --logFile /logFile_pestis3 \
 --configFile \
 /root/cact_ex/blockTrim3.xml <aws, google>:<zone>:cactus-pestis \
 /root/cact_ex/pestis-short-aws-seqFile.txt \
 /root/cact_ex/pestis_output3.hal

Note

Pieces of the Puzzle:

TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:3.14.0 — specifies the version of Toil being used, 3.14.0;
if the latest one is desired, please eliminate.

--nodeType — determines the instance type used for worker nodes. The instance type specified here must be on
the same cloud provider as the one specified with --leaderNodeType

--maxNodes 2 — creates up to two instances of the type specified with --nodeType and
launches Mesos worker containers inside them.

--logDebug — equivalent to --logLevel DEBUG.

--logFile /logFile_pestis3 — writes logs in a file named logFile_pestis3 under / folder.

--configFile — this is not required depending on whether a specific configuration file is intended to run
the alignment.

<aws, google>:<zone>:cactus-pestis — creates a bucket, named cactus-pestis, with the specified cloud provider to store intermediate job files and metadata.
NOTE: If you want to use a GCE-based jobstore, specify google here, not gce.

The result file, named pestis_output3.hal, is stored under /root/cact_ex folder of the leader node.

Use cactus --help to see all the Cactus and Toil flags available.

	Log out of the leader node:

(cact_venv) $ exit

	Download the resulted output to local machine:

(venv) $ toil rsync-cluster \
 --provisioner <aws, gce> <cluster-name> \
 :/root/cact_ex/pestis_output3.hal \
 <path-of-folder-on-local-machine>

	Destroy the cluster:

(venv) $ toil destroy-cluster --provisioner <aws, gce> <cluster-name>

Introduction

Toil runs in various environments, including locally and in the cloud
(Amazon Web Services and Google Compute Engine). Toil also supports two DSLs: CWL and
(Amazon Web Services and Google Compute Engine). Toil also supports two DSLs: CWL and
WDL (experimental).

Toil is built in a modular way so that it can be used on lots of different systems, and with different configurations.
The three configurable pieces are the

	Job Store API: A filepath or url that can host and centralize all files for a workflow (e.g. a local folder, or an AWS s3 bucket url).

	Batch System API: Specifies either a local single-machine or a currently supported HPC environment (lsf, parasol, mesos, slurm, torque, htcondor, kubernetes, or grid_engine). Mesos is a special case, and is launched for cloud environments.

	Provisioner: For running in the cloud only. This specifies which cloud provider provides instances to do the “work” of your workflow.

Job Store

The job store is a storage abstraction which contains all of the information used in a Toil run. This centralizes all
of the files used by jobs in the workflow and also the details of the progress of the run. If a workflow crashes
or fails, the job store contains all of the information necessary to resume with minimal repetition of work.

Several different job stores are supported, including the file job store and cloud job stores.

File Job Store

The file job store is for use locally, and keeps the workflow information in a directory on the machine where the
workflow is launched. This is the simplest and most convenient job store for testing or for small runs.

For an example that uses the file job store, see Running a basic workflow.

Cloud Job Stores

Toil currently supports the following cloud storage systems as job stores:

	AWS Job Store: An AWS S3 bucket formatted as “aws:<zone>:<bucketname>” where only numbers, letters, and dashes are allowed in the bucket name. Example: aws:us-west-2:my-aws-jobstore-name.

	Google Job Store: A Google Cloud Storage bucket formatted as “gce:<zone>:<bucketname>” where only numbers, letters, and dashes are allowed in the bucket name. Example: gce:us-west2-a:my-google-jobstore-name.

These use cloud buckets to house all of the files. This is useful if there are several different
worker machines all running jobs that need to access the job store.

Batch System

A Toil batch system is either a local single-machine (one computer) or a currently supported
HPC cluster of computers (lsf, parasol, mesos, slurm, torque, htcondor, or grid_engine). Mesos
is a special case, and is launched for cloud environments. These environments manage individual
worker nodes under a leader node to process the work required in a workflow. The leader and its
workers all coordinate their tasks and files through a centralized job store location.

See Batch System API for a more detailed description of different batch systems.

Provisioner

The Toil provisioner provides a tool set for running a Toil workflow on a particular cloud platform.

The Cluster Utilities are command line tools used to provision nodes in your desired cloud platform.
They allows you to launch nodes, ssh to the leader, and rsync files back and forth.

For detailed instructions for using the provisioner see Running in AWS or Running in Google Compute Engine (GCE).

Commandline Options

A quick way to see all of Toil’s commandline options is by executing the following on a toil script:

$ toil example.py --help

For a basic toil workflow, Toil has one mandatory argument, the job store. All other arguments are optional.

The Job Store

Running toil scripts requires a filepath or url to a centralizing location for all of the files of the workflow.
This is Toil’s one required positional argument: the job store. To use the quickstart example,
if you’re on a node that has a large /scratch volume, you can specify that the jobstore be created there by
executing: python HelloWorld.py /scratch/my-job-store, or more explicitly,
python HelloWorld.py file:/scratch/my-job-store.

Syntax for specifying different job stores:

Local: file:job-store-name

AWS: aws:region-here:job-store-name

Google: google:projectID-here:job-store-name

Different types of job store options can be found below.

Commandline Options

Core Toil Options

	--workDir WORKDIR

	Absolute path to directory where temporary files
generated during the Toil run should be placed. Temp
files and folders, as well as standard output and error
from batch system jobs (unless –noStdOutErr), will be
placed in a directory toil-<workflowID> within workDir.
The workflowID is generated by Toil and will be reported
in the workflow logs. Default is determined by the variables
(TMPDIR, TEMP, TMP) via mkdtemp. This directory needs to
exist on all machines running jobs; if capturing standard
output and error from batch system jobs is desired, it will
generally need to be on a shared file system.

	--noStdOutErr

	Do not capture standard output and error from batch system jobs.

	--stats

	Records statistics about the toil workflow to be used
by ‘toil stats’.

	--clean=STATE

	Determines the deletion of the jobStore upon
completion of the program. Choices: ‘always’,
‘onError’,’never’, or ‘onSuccess’. The --stats option
requires information from the jobStore upon completion
so the jobStore will never be deleted with that flag.
If you wish to be able to restart the run, choose
‘never’ or ‘onSuccess’. Default is ‘never’ if stats is
enabled, and ‘onSuccess’ otherwise

	--cleanWorkDir STATE

	Determines deletion of temporary worker directory upon
completion of a job. Choices: ‘always’, ‘never’,
‘onSuccess’. Default = always. WARNING: This option
should be changed for debugging only. Running a full
pipeline with this option could fill your disk with
intermediate data.

	--clusterStats FILEPATH

	If enabled, writes out JSON resource usage statistics
to a file. The default location for this file is the
current working directory, but an absolute path can
also be passed to specify where this file should be
written. This option only applies when using scalable
batch systems.

	--restart

	If --restart is specified then will attempt to restart
existing workflow at the location pointed to by the
--jobStore option. Will raise an exception if the
workflow does not exist.

Logging Options

Toil hides stdout and stderr by default except in case of job failure. Log levels in toil are based on priority from
the logging module:

	--logOff

	Only CRITICAL log levels are shown.
Equivalent to --logLevel=OFF or --logLevel=CRITICAL.

	--logCritical

	Only CRITICAL log levels are shown.
Equivalent to --logLevel=OFF or --logLevel=CRITICAL.

	--logError

	Only ERROR, and CRITICAL log levels are shown.
Equivalent to --logLevel=ERROR.

	--logWarning

	Only WARN, ERROR, and CRITICAL log levels are shown.
Equivalent to --logLevel=WARNING.

	--logInfo

	All log statements are shown, except DEBUG.
Equivalent to --logLevel=INFO.

	--logDebug

	All log statements are shown.
Equivalent to --logLevel=DEBUG.

	--logLevel=LOGLEVEL

	May be set to: OFF (or CRITICAL),
ERROR, WARN (or WARNING), INFO, or DEBUG.

	--logFile FILEPATH

	Specifies a file path to write the logging output to.

	--rotatingLogging

	Turn on rotating logging, which prevents log files from
getting too big (set using --maxLogFileSize BYTESIZE).

	--maxLogFileSize BYTESIZE

	Sets the maximum log file size in bytes (--rotatingLogging must be active).

Batch System Options

	--batchSystem BATCHSYSTEM

	The type of batch system to run the job(s) with,
currently can be one of lsf, Mesos, slurm, torque,
htcondor, single_machine, parasol, grid_engine’, kubernetes.
(default: single_machine)

	--parasolCommand PARASOLCOMMAND

	The name or path of the parasol program. Will be
looked up on PATH unless it starts with a
slash. (default: parasol)

	--parasolMaxBatches PARASOLMAXBATCHES

	Maximum number of job batches the Parasol batch is
allowed to create. One batch is created for jobs with
a unique set of resource requirements. (default: 1000)

	--scale SCALE

	A scaling factor to change the value of all submitted
tasks’ submitted cores. Used in singleMachine batch
system. (default: 1)

	--linkImports

	When using Toil’s importFile function for staging,
input files are copied to the job store. Specifying
this option saves space by sym-linking imported files.
As long as caching is enabled Toil will protect the
file automatically by changing the permissions to
read-only.

	--mesosMaster MESOSMASTERADDRESS

	The host and port of the Mesos master separated by a
colon. (default: 169.233.147.202:5050)

Autoscaling Options

	--provisioner CLOUDPROVIDER

	The provisioner for cluster auto-scaling. The
currently supported choices are ‘aws’ or ‘gce’. The
default is None.

	--nodeTypes NODETYPES

	Specifies a list of comma-separated node types, each of which is
composed of slash-separated instance types, and an optional spot
bid set off by a colon, making the node type preemptable. Instance
types may appear in multiple node types, and the same node type
may appear as both preemptable and non-preemptable.
Valid argument specifying two node types:

c5.4xlarge/c5a.4xlarge:0.42,t2.large

	Node types:

	c5.4xlarge/c5a.4xlarge:0.42 and t2.large

	Instance types:

	c5.4xlarge, c5a.4xlarge, and t2.large

	Semantics:

	Bid $0.42/hour for either c5.4xlarge or c5a.4xlarge instances,
treated interchangeably, while they are available at that price,
and buy t2.large instances at full price

	--minNodes MINNODES

	Minimum number of nodes of each type in the cluster,
if using auto-scaling. This should be provided as a
comma-separated list of the same length as the list of
node types. default=0

	--maxNodes MAXNODES

	Maximum number of nodes of each type in the cluster,
if using autoscaling, provided as a comma-separated
list. The first value is used as a default if the list
length is less than the number of nodeTypes.
default=10

	--preemptableCompensation PREEMPTABLECOMPENSATION

	The preference of the autoscaler to replace
preemptable nodes with non-preemptable nodes, when
preemptable nodes cannot be started for some reason.
Defaults to 0.0. This value must be between 0.0 and
1.0, inclusive. A value of 0.0 disables such
compensation, a value of 0.5 compensates two missing
preemptable nodes with a non-preemptable one. A value
of 1.0 replaces every missing pre-emptable node with a
non-preemptable one.

	--nodeStorage NODESTORAGE

	Specify the size of the root volume of worker nodes
when they are launched in gigabytes. You may want to
set this if your jobs require a lot of disk space. The
default value is 50.

	--nodeStorageOverrides NODESTORAGEOVERRIDES

	Comma-separated list of nodeType:nodeStorage that are used
to override the default value from –nodeStorage for the
specified nodeType(s). This is useful for heterogeneous jobs
where some tasks require much more disk than others.

	--metrics

	Enable the prometheus/grafana dashboard for monitoring
CPU/RAM usage, queue size, and issued jobs.

	--defaultMemory INT

	The default amount of memory to request for a job.
Only applicable to jobs that do not specify an
explicit value for this requirement. Standard suffixes
like K, Ki, M, Mi, G or Gi are supported. Default is
2.0G

	--defaultCores FLOAT

	The default number of CPU cores to dedicate a job.
Only applicable to jobs that do not specify an
explicit value for this requirement. Fractions of a
core (for example 0.1) are supported on some batch
systems, namely Mesos and singleMachine. Default is
1.0

	--defaultDisk INT

	The default amount of disk space to dedicate a job.
Only applicable to jobs that do not specify an
explicit value for this requirement. Standard suffixes
like K, Ki, M, Mi, G or Gi are supported. Default is
2.0G

	--defaultPreemptable BOOL

	Set if jobs that do not specifically prohibit it should
able to run on preemptable (spot) nodes.

	--maxCores INT

	The maximum number of CPU cores to request from the
batch system at any one time. Standard suffixes like
K, Ki, M, Mi, G or Gi are supported.

	--maxMemory INT

	The maximum amount of memory to request from the batch
system at any one time. Standard suffixes like K, Ki,
M, Mi, G or Gi are supported.

	--maxDisk INT

	The maximum amount of disk space to request from the
batch system at any one time. Standard suffixes like
K, Ki, M, Mi, G or Gi are supported.

	--retryCount RETRYCOUNT

	Number of times to retry a failing job before giving
up and labeling job failed. default=1

	--doubleMem

	If set, batch jobs which die due to reaching memory
limit on batch schedulers will have their memory
doubled and they will be retried. The remaining
retry count will be reduced by 1. Currently only
supported by LSF. default=False.

	--maxJobDuration MAXJOBDURATION

	Maximum runtime of a job (in seconds) before we kill
it (this is a lower bound, and the actual time before
killing the job may be longer).

	--rescueJobsFrequency RESCUEJOBSFREQUENCY

	Period of time to wait (in seconds) between checking
for missing/overlong jobs, that is jobs which get lost
by the batch system.

	--maxServiceJobs MAXSERVICEJOBS

	The maximum number of service jobs that can be run
concurrently, excluding service jobs running on
preemptable nodes. default=9223372036854775807

	--maxPreemptableServiceJobs MAXPREEMPTABLESERVICEJOBS

	The maximum number of service jobs that can run
concurrently on preemptable nodes.
default=9223372036854775807

	--deadlockWait DEADLOCKWAIT

	Time, in seconds, to tolerate the workflow running only
the same service jobs, with no jobs to use them, before
declaring the workflow to be deadlocked and stopping.
default=60

	--deadlockCheckInterval DEADLOCKCHECKINTERVAL

	Time, in seconds, to wait between checks to see if the
workflow is stuck running only service jobs, with no
jobs to use them. Should be shorter than
–deadlockWait. May need to be increased if the batch
system cannot enumerate running jobs quickly enough, or
if polling for running jobs is placing an unacceptable
load on a shared cluster. default=30

	--statePollingWait STATEPOLLINGWAIT

	Time, in seconds, to wait before doing a scheduler
query for job state. Return cached results if within
the waiting period.

Miscellaneous Options

	--disableCaching

	Disables caching in the file store. This flag must be
set to use a batch system that does not support
cleanup, such as Parasol.

	--disableChaining

	Disables chaining of jobs (chaining uses one job’s
resource allocation for its successor job if
possible).

	--maxLogFileSize MAXLOGFILESIZE

	The maximum size of a job log file to keep (in bytes),
log files larger than this will be truncated to the
last X bytes. Setting this option to zero will prevent
any truncation. Setting this option to a negative
value will truncate from the beginning. Default=62.5 K

	--writeLogs FILEPATH

	Write worker logs received by the leader into their
own files at the specified path. Any non-empty standard
output and error from failed batch system jobs will also
be written into files at this path. The current working
directory will be used if a path is not specified
explicitly. Note: By default only the logs of failed
jobs are returned to leader. Set log level to ‘debug’
to get logs back from successful jobs, and adjust
‘maxLogFileSize’ to control the truncation limit for
worker logs.

	--writeLogsGzip FILEPATH

	Identical to --writeLogs except the logs files are
gzipped on the leader.

	--realTimeLogging

	Enable real-time logging from workers to masters.

	--sseKey SSEKEY

	Path to file containing 32 character key to be used
for server-side encryption on awsJobStore or
googleJobStore. SSE will not be used if this flag is
not passed.

	--setEnv NAME

	NAME=VALUE or NAME, -e NAME=VALUE or NAME are also valid.
Set an environment variable early on in the worker. If
VALUE is omitted, it will be looked up in the current
environment. Independently of this option, the worker
will try to emulate the leader’s environment before
running a job. Using this option, a variable can be
injected into the worker process itself before it is
started.

	--servicePollingInterval SERVICEPOLLINGINTERVAL

	Interval of time service jobs wait between polling for
the existence of the keep-alive flag (default=60)

	--debugWorker

	Experimental no forking mode for local debugging.
Specifically, workers are not forked and stderr/stdout
are not redirected to the log. (default=False)

	--disableProgress

	Disables the progress bar shown when standard error is
a terminal.

Restart Option

In the event of failure, Toil can resume the pipeline by adding the argument --restart and rerunning the
python script. Toil pipelines can even be edited and resumed which is useful for development or troubleshooting.

Running Workflows with Services

Toil supports jobs, or clusters of jobs, that run as services to other
accessor jobs. Example services include server databases or Apache Spark
Clusters. As service jobs exist to provide services to accessor jobs their
runtime is dependent on the concurrent running of their accessor jobs. The dependencies
between services and their accessor jobs can create potential deadlock scenarios,
where the running of the workflow hangs because only service jobs are being
run and their accessor jobs can not be scheduled because of too limited resources
to run both simultaneously. To cope with this situation Toil attempts to
schedule services and accessors intelligently, however to avoid a deadlock
with workflows running service jobs it is advisable to use the following parameters:

	--maxServiceJobs: The maximum number of service jobs that can be run concurrently, excluding service jobs running on preemptable nodes.

	--maxPreemptableServiceJobs: The maximum number of service jobs that can run concurrently on preemptable nodes.

Specifying these parameters so that at a maximum cluster size there will be
sufficient resources to run accessors in addition to services will ensure that
such a deadlock can not occur.

If too low a limit is specified then a deadlock can occur in which toil can
not schedule sufficient service jobs concurrently to complete the workflow.
Toil will detect this situation if it occurs and throw a
toil.DeadlockException exception. Increasing the cluster size
and these limits will resolve the issue.

Setting Options directly with the Toil Script

It’s good to remember that commandline options can be overridden in the Toil script itself. For example,
toil.job.Job.Runner.getDefaultOptions() can be used to run toil with all default options, and in this example,
it will override commandline args to run the default options and always run with the “./toilWorkflow” directory
specified as the jobstore:

options = Job.Runner.getDefaultOptions("./toilWorkflow") # Get the options object

with Toil(options) as toil:
 toil.start(Job()) # Run the script

However, each option can be explicitly set within the script by supplying arguments (in this example, we are setting
logLevel = "DEBUG" (all log statements are shown) and clean="ALWAYS" (always delete the jobstore) like so:

options = Job.Runner.getDefaultOptions("./toilWorkflow") # Get the options object
options.logLevel = "DEBUG" # Set the log level to the debug level.
options.clean = "ALWAYS" # Always delete the jobStore after a run

with Toil(options) as toil:
 toil.start(Job()) # Run the script

However, the usual incantation is to accept commandline args from the user with the following:

parser = Job.Runner.getDefaultArgumentParser() # Get the parser
options = parser.parse_args() # Parse user args to create the options object

with Toil(options) as toil:
 toil.start(Job()) # Run the script

Which can also, of course, then accept script supplied arguments as before (which will overwrite any user supplied args):

parser = Job.Runner.getDefaultArgumentParser() # Get the parser
options = parser.parse_args() # Parse user args to create the options object
options.logLevel = "DEBUG" # Set the log level to the debug level.
options.clean = "ALWAYS" # Always delete the jobStore after a run

with Toil(options) as toil:
 toil.start(Job()) # Run the script

Toil Debugging

Toil has a number of tools to assist in debugging. Here we provide help in working through potential problems that a user might encounter in attempting to run a workflow.

Introspecting the Jobstore

Note: Currently these features are only implemented for use locally (single machine) with the fileJobStore.

To view what files currently reside in the jobstore, run the following command:

$ toil debug-file file:path-to-jobstore-directory \
 --listFilesInJobStore

When run from the commandline, this should generate a file containing the contents of the job store (in addition to
displaying a series of log messages to the terminal). This file is named “jobstore_files.txt” by default and will be
generated in the current working directory.

If one wishes to copy any of these files to a local directory, one can run for example:

$ toil debug-file file:path-to-jobstore \
 --fetch overview.txt *.bam *.fastq \
 --localFilePath=/home/user/localpath

To fetch overview.txt, and all .bam and .fastq files. This can be used to recover previously used input and output
files for debugging or reuse in other workflows, or use in general debugging to ensure that certain outputs were imported
into the jobStore.

Stats and Status

See Stats Command for more about gathering statistics about job success, runtime, and resource usage from workflows.

Using a Python debugger

If you execute a workflow using the --debugWorker flag, Toil will not fork in order to run jobs, which means
you can either use pdb [https://docs.python.org/3/library/pdb.html], or an IDE that supports debugging Python [https://wiki.python.org/moin/PythonDebuggingTools#IDEs_with_Debug_Capabilities] as you would normally. Note that the --debugWorker flag will
only work with the singleMachine batch system (the default), and not any of the custom job schedulers.

Running in the Cloud

Toil supports Amazon Web Services (AWS) and Google Compute Engine (GCE) in the cloud and has autoscaling capabilities
that can adapt to the size of your workflow, whether your workflow requires 10 instances or 20,000.

Toil does this by creating a virtual cluster with Apache Mesos [https://mesos.apache.org/gettingstarted/]. Apache Mesos [https://mesos.apache.org/gettingstarted/] requires a leader node to coordinate
the workflow, and worker nodes to execute the various tasks within the workflow. As the workflow runs, Toil will
“autoscale”, creating and terminating workers as needed to meet the demands of the workflow.

Once a user is familiar with the basics of running toil locally (specifying a jobStore, and
how to write a toil script), they can move on to the guides below to learn how to translate these workflows into cloud
ready workflows.

Managing a Cluster of Virtual Machines (Provisioning)

Toil can launch and manage a cluster of virtual machines to run using the provisioner to run a workflow
distributed over several nodes. The provisioner also has the ability to automatically scale up or down the size of
the cluster to handle dynamic changes in computational demand (autoscaling). Currently we have working provisioners
with AWS and GCE (Azure support has been deprecated).

Toil uses Apache Mesos [https://mesos.apache.org/gettingstarted/] as the Batch System.

See here for instructions for Running in AWS.

See here for instructions for Running in Google Compute Engine (GCE).

Storage (Toil jobStore)

Toil can make use of cloud storage such as AWS or Google buckets to take care of storage needs.

This is useful when running Toil in single machine mode on any cloud platform since it allows you to
make use of their integrated storage systems.

For an overview of the job store see Job Store.

For instructions configuring a particular job store see:

	AWS Job Store

	Google Job Store

Cloud Platforms

	Running on Kubernetes
	Preparing your Kubernetes environment

	AWS Job Store for Kubernetes

	Configuring Toil for your Kubernetes environment

	Running workflows
	Option 1: Running the Leader Inside Kubernetes
	Monitoring and Debugging Kubernetes Jobs and Pods

	When Things Go Wrong

	Option 2: Running the Leader Outside Kubernetes

	Running in AWS
	Preparing your AWS environment

	AWS Job Store

	Toil Provisioner

	Details about Launching a Cluster in AWS
	Static Provisioning

	Uploading Workflows

	Running a Workflow with Autoscaling

	Preemptability

	Using MinIO and S3-Compatible object stores

	Dashboard

	Running in Google Compute Engine (GCE)
	Preparing your Google environment

	Google Job Store

	Running a Workflow with Autoscaling

	Cluster Utilities

	Stats Command

	Status Command

	Clean Command

	Launch-Cluster Command

	Ssh-Cluster Command

	Rsync-Cluster Command

	Destroy-Cluster Command

	Kill Command

Running on Kubernetes

Kubernetes [https://kubernetes.io/] is a very popular container orchestration tool that has become a de facto cross-cloud-provider API for accessing cloud resources. Major cloud providers like Amazon [https://aws.amazon.com/kubernetes/], Microsoft [https://azure.microsoft.com/en-us/overview/kubernetes-getting-started/], Kubernetes owner Google [https://cloud.google.com/kubernetes-engine/], and DigitalOcean [https://www.digitalocean.com/products/kubernetes/] have invested heavily in making Kubernetes work well on their platforms, by writing their own deployment documentation and developing provider-managed Kubernetes-based products. Using minikube [https://github.com/kubernetes/minikube], Kubernetes can even be run on a single machine.

Toil supports running Toil workflows against a Kubernetes cluster, either in the cloud or deployed on user-owned hardware.

Preparing your Kubernetes environment

	Get a Kubernetes cluster

To run Toil workflows on Kubernetes, you need to have a Kubernetes cluster set up. This will not be covered here, but there are many options available, and which one you choose will depend on which cloud ecosystem if any you use already, and on pricing. If you are just following along with the documentation, use minikube on your local machine.

Note that currently the only way to run a Toil workflow on Kubernetes is to use the AWS Job Store, so your Kubernetes workflow will currently have to store its data in Amazon’s cloud regardless of where you run it. This can result in significant egress charges from Amazon if you run it outside of Amazon.

Kubernetes Cluster Providers:

	Your own institution

	Amazon EKS [https://aws.amazon.com/eks/]

	Microsoft Azure AKS [https://docs.microsoft.com/en-us/azure/aks/]

	Google GKE [https://cloud.google.com/kubernetes-engine/]

	DigitalOcean Kubernetes [https://www.digitalocean.com/docs/kubernetes/]

	minikube [https://kubernetes.io/docs/tasks/tools/install-minikube/]

	Get a Kubernetes context on your local machine

There are two main ways to run Toil workflows on Kubernetes. You can either run the Toil leader on a machine outside the cluster, with jobs submitted to and run on the cluster, or you can submit the Toil leader itself as a job and have it run inside the cluster. Either way, you will need to configure your own machine to be able to submit jobs to the Kubernetes cluster. Generally, this involves creating and populating a file named .kube/config in your user’s home directory, and specifying the cluster to connect to, the certificate and token information needed for mutual authentication, and the Kubernetes namespace within which to work. However, Kubernetes configuration can also be picked up from other files in the .kube directory, environment variables, and the enclosing host when running inside a Kubernetes-managed container.

You will have to do different things here depending on where you got your Kubernetes cluster:

	Configuring for Amazon EKS [https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html]

	Configuring for Microsoft Azure AKS [https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az-aks-get-credentials]

	Configuring for Google GKE [https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl]

	Configuring for DigitalOcean Kubernetes Clusters [https://www.digitalocean.com/docs/kubernetes/how-to/connect-to-cluster/]

	Configuring for minikube [https://kubernetes.io/docs/setup/learning-environment/minikube/#kubectl]

Toil’s internal Kubernetes configuration logic mirrors that of the kubectl command. Toil workflows will use the current kubectl context to launch their Kubernetes jobs.

	If running the Toil leader in the cluster, get a service account

If you are going to run your workflow’s leader within the Kubernetes cluster (see Option 1: Running the Leader Inside Kubernetes), you will need a service account in your chosen Kubernetes namespace. Most namespaces should have a service account named default which should work fine. If your cluster requires you to use a different service account, you will need to obtain its name and use it when launching the Kubernetes job containing the Toil leader.

	Set up appropriate permissions

Your local Kubernetes context and/or the service account you are using to run the leader in the cluster will need to have certain permissions in order to run the workflow. Toil needs to be able to interact with jobs and pods in the cluster, and to retrieve pod logs. You as a user may need permission to set up an AWS credentials secret, if one is not already available. Additionally, it is very useful for you as a user to have permission to interact with nodes, and to shell into pods.

The appropriate permissions may already be available to you and your service account by default, especially in managed or ease-of-use-optimized setups such as EKS or minikube.

However, if the appropriate permissions are not already available, you or your cluster administrator will have to grant them manually. The following Role (toil-user) and ClusterRole (node-reader), to be applied with kubectl apply -f filename.yaml, should grant sufficient permissions to run Toil workflows when bound to your account and the service account used by Toil workflows. Be sure to replace YOUR_NAMESPACE_HERE with the namespace you are running your workflows in

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: YOUR_NAMESPACE_HERE
 name: toil-user
rules:
- apiGroups: ["*"]
 resources: ["*"]
 verbs: ["explain", "get", "watch", "list", "describe", "logs", "attach", "exec", "port-forward", "proxy", "cp", "auth"]
- apiGroups: ["batch"]
 resources: ["*"]
 verbs: ["get", "watch", "list", "create", "run", "set", "delete"]
- apiGroups: [""]
 resources: ["secrets", "pods", "pods/attach", "podtemplates", "configmaps", "events", "services"]
 verbs: ["patch", "get", "update", "watch", "list", "create", "run", "set", "delete", "exec"]
- apiGroups: [""]
 resources: ["pods", "pods/log"]
 verbs: ["get", "list"]
- apiGroups: [""]
 resources: ["pods/exec"]
 verbs: ["create"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: node-reader
rules:
- apiGroups: [""]
 resources: ["nodes"]
 verbs: ["get", "list", "describe"]
- apiGroups: [""]
 resources: ["namespaces"]
 verbs: ["get", "list", "describe"]
- apiGroups: ["metrics.k8s.io"]
 resources: ["*"]
 verbs: ["*"]

To bind a user or service account to the Role or ClusterRole and actually grant the permissions, you will need a RoleBinding and a ClusterRoleBinding, respectively. Make sure to fill in the namespace, username, and service account name, and add more user stanzas if your cluster is to support multiple Toil users.

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: toil-developer-member
 namespace: toil
subjects:
- kind: User
 name: YOUR_KUBERNETES_USERNAME_HERE
 apiGroup: rbac.authorization.k8s.io
- kind: ServiceAccount
 name: YOUR_SERVICE_ACCOUNT_NAME_HERE
 namespace: YOUR_NAMESPACE_HERE
roleRef:
 kind: Role
 name: toil-user
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: read-nodes
subjects:
- kind: User
 name: YOUR_KUBERNETES_USERNAME_HERE
 apiGroup: rbac.authorization.k8s.io
- kind: ServiceAccount
 name: YOUR_SERVICE_ACCOUNT_NAME_HERE
 namespace: YOUR_NAMESPACE_HERE
roleRef:
 kind: ClusterRole
 name: node-reader
 apiGroup: rbac.authorization.k8s.io

AWS Job Store for Kubernetes

Currently, the only job store, which is what Toil uses to exchange data between jobs, that works with jobs running on Kubernetes is the AWS Job Store. This requires that the Toil leader and Kubernetes jobs be able to connect to and use Amazon S3 and Amazon SimpleDB. It also requires that you have an Amazon Web Services account.

	Get access to AWS S3 and SimpleDB

In your AWS account, you need to create an AWS access key. First go to the IAM dashboard; for “us-west1”, the link would be:

https://console.aws.amazon.com/iam/home?region=us-west-1#/home

Then create an access key, and save the Access Key ID and the Secret Key. As documented in the AWS documentation [https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html]:

	On the IAM Dashboard page, choose your account name in the navigation bar, and then choose My Security Credentials.

	Expand the Access keys (access key ID and secret access key) section.

	Choose Create New Access Key. Then choose Download Key File to save the access key ID and secret access key to a file on your computer. After you close the dialog box, you can’t retrieve this secret access key again.

Make sure that, if your AWS infrastructure requires your user to authenticate with a multi-factor authentication (MFA) token, you obtain a second secret key and access key that don’t have this requirement. The secret key and access key used to populate the Kubernetes secret that allows the jobs to contact the job store need to be usable without human intervention.

	Configure AWS access from the local machine

This only really needs to happen if you run the leader on the local machine. But we need the files in place to fill in the secret in the next step. Run:

$ aws configure

Then when prompted, enter your secret key and access key. This should create a file ~/.aws/credentials that looks like this:

[default]
aws_access_key_id = BLAH
aws_secret_access_key = blahblahblah

	Create a Kubernetes secret to give jobs access to AWS

Go into the directory where the credentials file is:

$ cd ~/.aws

Then, create a Kubernetes secret that contains it. We’ll call it aws-credentials:

$ kubectl create secret generic aws-credentials --from-file credentials

Configuring Toil for your Kubernetes environment

To configure your workflow to run on Kubernetes, you will have to configure several environment variables, in addition to passing the --batchSystem kubernetes option. Doing the research to figure out what values to give these variables may require talking to your cluster provider.

	TOIL_AWS_SECRET_NAME is the most important, and must be set to the secret that contains your AWS credentials file, if your cluster nodes don’t otherwise have access to S3 and SimpleDB (such as through IAM roles). This is required for the AWS job store to work, which is currently the only job store that can be used on Kubernetes. In this example we are using aws-credentials.

	TOIL_KUBERNETES_HOST_PATH can be set to allow Toil jobs on the same physical host to share a cache. It should be set to a path on the host where the shared cache should be stored. It will be mounted as /var/lib/toil, or at TOIL_WORKDIR if specified, inside the container. This path must already exist on the host, and must have as much free space as your Kubernetes node offers to jobs. In this example, we are using /data/scratch. To actually make use of caching, make sure to also pass --disableCaching false to your Toil workflow.

	TOIL_KUBERNETES_OWNER should be set to the username of the user running the Toil workflow. The jobs that Toil creates will include this username, so they can be more easily recognized, and cleaned up by the user if anything happens to the Toil leader. In this example we are using demo-user.

Note that Docker containers cannot be run inside of unprivileged Kubernetes pods (which are themselves containers). The Docker daemon does not (yet) support this. Other tools, such as Singularity in its user-namespace mode, are able to run containers from within containers. If using Singularity to run containerized tools, and you want downloaded container images to persist between Toil jobs, you will also want to set TOIL_KUBERNETES_HOST_PATH and make sure that Singularity is downloading its containers under the Toil work directory (/var/lib/toil buy default) by setting SINGULARITY_CACHEDIR. However, you will need to make sure that no two jobs try to download the same container at the same time; Singularity has no synchronization or locking around its cache, but the cache is also not safe for simultaneous access by multiple Singularity invocations. Some Toil workflows use their own custom workaround logic for this problem; this work is likely to be made part of Toil in a future release.

Running workflows

To run the workflow, you will need to run the Toil leader process somewhere. It can either be run inside Kubernetes as a Kubernetes job, or outside Kubernetes as a normal command.

Option 1: Running the Leader Inside Kubernetes

Once you have determined a set of environment variable values for your workflow run, write a YAML file that defines a Kubernetes job to run your workflow with that configuration. Some configuration items (such as your username, and the name of your AWS credentials secret) need to be written into the YAML so that they can be used from the leader as well.

Note that the leader pod will need your workflow script, its other dependencies, and Toil all installed. An easy way to get Toil installed is to start with the Toil appliance image for the version of Toil you want to use. In this example, we use quay.io/ucsc_cgl/toil:4.1.0.

Here’s an example YAML file to run a test workflow:

apiVersion: batch/v1
kind: Job
metadata:
 # It is good practice to include your username in your job name.
 # Also specify it in TOIL_KUBERNETES_OWNER
 name: demo-user-toil-test
Do not try and rerun the leader job if it fails

spec:
 backoffLimit: 0
 template:
 spec:
 # Do not restart the pod when the job fails, but keep it around so the
 # log can be retrieved
 restartPolicy: Never
 volumes:
 - name: aws-credentials-vol
 secret:
 # Make sure the AWS credentials are available as a volume.
 # This should match TOIL_AWS_SECRET_NAME
 secretName: aws-credentials
 # You may need to replace this with a different service account name as
 # appropriate for your cluster.
 serviceAccountName: default
 containers:
 - name: main
 image: quay.io/ucsc_cgl/toil:4.1.0
 env:
 # Specify your username for inclusion in job names
 - name: TOIL_KUBERNETES_OWNER
 value: demo-user
 # Specify where to find the AWS credentials to access the job store with
 - name: TOIL_AWS_SECRET_NAME
 value: aws-credentials
 # Specify where per-host caches should be stored, on the Kubernetes hosts.
 # Needs to be set for Toil's caching to be efficient.
 - name: TOIL_KUBERNETES_HOST_PATH
 value: /data/scratch
 volumeMounts:
 # Mount the AWS credentials volume
 - mountPath: /root/.aws
 name: aws-credentials-vol
 resources:
 # Make sure to set these resource limits to values large enough
 # to accomodate the work your workflow does in the leader
 # process, but small enough to fit on your cluster.
 #
 # Since no request values are specified, the limits are also used
 # for the requests.
 limits:
 cpu: 2
 memory: "4Gi"
 ephemeral-storage: "10Gi"
 command:
 - /bin/bash
 - -c
 - |
 # This Bash script will set up Toil and the workflow to run, and run them.
 set -e
 # We make sure to create a work directory; Toil can't hot-deploy a
 # script from the root of the filesystem, which is where we start.
 mkdir /tmp/work
 cd /tmp/work
 # We make a virtual environment to allow workflow dependencies to be
 # hot-deployed.
 #
 # We don't really make use of it in this example, but for workflows
 # that depend on PyPI packages we will need this.
 #
 # We use --system-site-packages so that the Toil installed in the
 # appliance image is still available.
 virtualenv --python python3 --system-site-packages venv
 . venv/bin/activate
 # Now we install the workflow. Here we're using a demo workflow
 # script from Toil itself.
 wget https://raw.githubusercontent.com/DataBiosphere/toil/releases/4.1.0/src/toil/test/docs/scripts/tutorial_helloworld.py
 # Now we run the workflow. We make sure to use the Kubernetes batch
 # system and an AWS job store, and we set some generally useful
 # logging options. We also make sure to enable caching.
 python3 tutorial_helloworld.py \
 aws:us-west-2:demouser-toil-test-jobstore \
 --batchSystem kubernetes \
 --realTimeLogging \
 --logInfo \
 --disableCaching false

You can save this YAML as leader.yaml, and then run it on your Kubernetes installation with:

$ kubectl apply -f leader.yaml

To monitor the progress of the leader job, you will want to read its logs. If you are using a Kubernetes dashboard such as k9s [https://github.com/derailed/k9s], you can simply find the pod created for the job in the dashboard, and view its logs there. If not, you will need to locate the pod by hand.

Monitoring and Debugging Kubernetes Jobs and Pods

The following techniques are most useful for looking at the pod which holds the Toil leader, but they can also be applied to individual Toil jobs on Kubernetes, even when the leader is outside the cluster.

Kubernetes names pods for jobs by appending a short random string to the name of the job. You can find the name of the pod for your job by doing:

$ kubectl get pods | grep demo-user-toil-test
demo-user-toil-test-g5496 1/1 Running 0 2m

Assuming you have set TOIL_KUBERNETES_OWNER correctly, you should be able to find all of your workflow’s pods by searching for your username:

$ kubectl get pods | grep demo-user

If the status of a pod is anything other than Pending, you will be able to view its logs with:

$ kubectl logs demo-user-toil-test-g5496

This will dump the pod’s logs from the beginning to now and terminate. To follow along with the logs from a running pod, add the -f option:

$ kubectl logs -f demo-user-toil-test-g5496

A status of ImagePullBackoff suggests that you have requested to use an image that is not available. Check the image section of your YAML if you are looking at a leader, or the value of TOIL_APPLIANCE_SELF if you are delaying with a worker job. You also might want to check your Kubernetes node’s Internet connectivity and DNS function; in Kubernetes, DNS depends on system-level pods which can be terminated or evicted in cases of resource oversubscription, just like user workloads.

If your pod seems to be stuck Pending, ContainerCreating, you can get information on what is wrong with it by using kubectl describe pod:

$ kubectl describe pod demo-user-toil-test-g5496

Pay particular attention to the Events: section at the end of the output. An indication that a job is too big for the available nodes on your cluster, or that your cluster is too busy for your jobs, is FailedScheduling events:

Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 13s (x79 over 100m) default-scheduler 0/4 nodes are available: 1 Insufficient cpu, 1 Insufficient ephemeral-storage, 4 Insufficient memory.

If a pod is running but seems to be behaving erratically, or seems stuck, you can shell into it and look around:

$ kubectl exec -ti demo-user-toil-test-g5496 /bin/bash

One common cause of stuck pods is attempting to use more memory than allowed by Kubernetes (or by the Toil job’s memory resource requirement), but in a way that does not trigger the Linux OOM killer to terminate the pod’s processes. In these cases, the pod can remain stuck at nearly 100% memory usage more or less indefinitely, and attempting to shell into the pod (which needs to start a process within the pod, using some of its memory) will fail. In these cases, the recommended solution is to kill the offending pod and increase its (or its Toil job’s) memory requirement, or reduce its memory needs by adapting user code.

When Things Go Wrong

The Toil Kubernetes batch system includes cleanup code to terminate worker jobs when the leader shuts down. However, if the leader pod is removed by Kubernetes, is forcibly killed or otherwise suffers a sudden existence failure, it can go away while its worker jobs live on. It is not recommended to restart a workflow in this state, as jobs from the previous invocation will remain running and will be trying to modify the job store concurrently with jobs from the new invocation.

To clean up dangling jobs, you can use the following snippet:

$ kubectl get jobs | grep demo-user | cut -f1 -d' ' | xargs -n10 kubectl delete job

This will delete all jobs with demo-user’s username in their names, in batches of 10. You can also use the UUID that Toil assigns to a particular workflow invocation in the filter, to clean up only the jobs pertaining to that workflow invocation.

Option 2: Running the Leader Outside Kubernetes

If you don’t want to run your Toil leader inside Kubernetes, you can run it locally instead. This can be useful when developing a workflow; files can be hot-deployed from your local machine directly to Kubernetes. However, your local machine will have to have (ideally role-assumption- and MFA-free) access to AWS, and access to Kubernetes. Real time logging will not work unless your local machine is able to listen for incoming UDP packets on arbitrary ports on the address it uses to contact the IPv4 Internet; Toil does no NAT traversal or detection.

Note that if you set TOIL_WORKDIR when running your workflow like this, it will need to be a directory that exists both on the host and in the Toil appliance.

Here is an example of running our test workflow leader locally, outside of Kubernetes:

$ export TOIL_KUBERNETES_OWNER=demo-user # This defaults to your local username if not set
$ export TOIL_AWS_SECRET_NAME=aws-credentials
$ export TOIL_KUBERNETES_HOST_PATH=/data/scratch
$ virtualenv --python python3 --system-site-packages venv
$. venv/bin/activate
$ wget https://raw.githubusercontent.com/DataBiosphere/toil/releases/4.1.0/src/toil/test/docs/scripts/tutorial_helloworld.py
$ python3 tutorial_helloworld.py \
 aws:us-west-2:demouser-toil-test-jobstore \
 --batchSystem kubernetes \
 --realTimeLogging \
 --logInfo \
 --disableCaching false

Running in AWS

Toil jobs can be run on a variety of cloud platforms. Of these, Amazon Web
Services (AWS) is currently the best-supported solution. Toil provides the
Cluster Utilities to conveniently create AWS clusters, connect to the leader
of the cluster, and then launch a workflow. The leader handles distributing
the jobs over the worker nodes and autoscaling to optimize costs.

The Running a Workflow with Autoscaling section details how to create a cluster and run a workflow
that will dynamically scale depending on the workflow’s needs.

The Static Provisioning section explains how a static cluster (one that
won’t automatically change in size) can be created and provisioned (grown, shrunk, destroyed, etc.).

Preparing your AWS environment

To use Amazon Web Services (AWS) to run Toil or to just use S3 to host the files
during the computation of a workflow, first set up and configure an account with AWS:

	If necessary, create and activate an AWS account [https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/]

	Next, generate a key pair for AWS with the command (do NOT generate your key pair with the Amazon browser):

$ ssh-keygen -t rsa

	This should prompt you to save your key. Please save it in

~/.ssh/id_rsa

	Now move this to where your OS can see it as an authorized key:

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

	Next, you’ll need to add your key to the ssh-agent:

$ eval `ssh-agent -s`
$ ssh-add

If your key has a passphrase, you will be prompted to enter it here once.

	You’ll also need to chmod your private key (good practice but also enforced by AWS):

$ chmod 400 id_rsa

	Now you’ll need to add the key to AWS via the browser. For example, on us-west1, this address would accessible at:

https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1#KeyPairs:sort=keyName

	Now click on the “Import Key Pair” button to add your key:

[image: Adding an Amazon Key Pair]
 [https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1#KeyPairs:sort=keyName]

	Next, you need to create an AWS access key. First go to the IAM dashboard, again; for “us-west1”, the example link would be here:

https://console.aws.amazon.com/iam/home?region=us-west-1#/home

	The directions (transcribed from: https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html) are now:

	On the IAM Dashboard page, choose your account name in the navigation bar, and then choose My Security Credentials.

	Expand the Access keys (access key ID and secret access key) section.

	Choose Create New Access Key. Then choose Download Key File to save the access key ID and secret access key to a file on your computer. After you close the dialog box, you can’t retrieve this secret access key again.

	Now you should have a newly generated “AWS Access Key ID” and “AWS Secret Access Key”. We can now install the AWS CLI and make sure that it has the proper credentials:

$ pip install awscli --upgrade --user

	Now configure your AWS credentials with:

$ aws configure

	Add your “AWS Access Key ID” and “AWS Secret Access Key” from earlier and your region and output format:

" AWS Access Key ID [****************Q65Q]: "
" AWS Secret Access Key [****************G0ys]: "
" Default region name [us-west-1]: "
" Default output format [json]: "

This will create the files ~/.aws/config and ~/.aws/credentials.

	If not done already, install toil (example uses version 5.3.0, but we recommend the latest release):

$ virtualenv venv
$ source venv/bin/activate
$ pip install toil[all]==5.3.0

	Now that toil is installed and you are running a virtualenv, an example of launching a toil leader node would be the following
(again, note that we set TOIL_APPLIANCE_SELF to toil version 5.3.0 in this example, but please set the version to
the installed version that you are using if you’re using a different version):

$ TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:5.3.0 \
 toil launch-cluster clustername \
 --leaderNodeType t2.medium \
 --zone us-west-1a \
 --keyPairName id_rsa

To further break down each of these commands:

TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:latest — This is optional. It specifies a mesos docker image that we maintain with the latest version of toil installed on it. If you want to use a different version of toil, please specify the image tag you need from https://quay.io/repository/ucsc_cgl/toil?tag=latest&tab=tags.

toil launch-cluster — Base command in toil to launch a cluster.

clustername — Just choose a name for your cluster.

–leaderNodeType t2.medium — Specify the leader node type. Make a t2.medium (2CPU; 4Gb RAM; $0.0464/Hour). List of available AWS instances: https://aws.amazon.com/ec2/pricing/on-demand/

–zone us-west-1a — Specify the AWS zone you want to launch the instance in. Must have the same prefix as the zone in your awscli credentials (which, in the example of this tutorial is: “us-west-1”).

–keyPairName id_rsa — The name of your key pair, which should be “id_rsa” if you’ve followed this tutorial.

AWS Job Store

Using the AWS job store is straightforward after you’ve finished Preparing your AWS environment;
all you need to do is specify the prefix for the job store name.

To run the sort example sort example with the AWS job store you would type

$ python sort.py aws:us-west-2:my-aws-sort-jobstore

Toil Provisioner

The Toil provisioner is included in Toil alongside the [aws] extra and
allows us to spin up a cluster.

Getting started with the provisioner is simple:

	Make sure you have Toil installed with the AWS extras. For detailed instructions see Installing Toil with Extra Features.

	You will need an AWS account and you will need to save your AWS credentials on your local
machine. For help setting up an AWS account see
here [http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html]. For
setting up your AWS credentials follow instructions
here [http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files].

The Toil provisioner is built around the Toil Appliance, a Docker image that bundles
Toil and all its requirements (e.g. Mesos). This makes deployment simple across
platforms, and you can even simulate a cluster locally (see Developing with Docker for details).

Choosing Toil Appliance Image

When using the Toil provisioner, the appliance image will be automatically chosen
based on the pip-installed version of Toil on your system. That choice can be
overridden by setting the environment variables TOIL_DOCKER_REGISTRY and TOIL_DOCKER_NAME or
TOIL_APPLIANCE_SELF. See Environment Variables for more information on these variables. If
you are developing with autoscaling and want to test and build your own
appliance have a look at Developing with Docker.

For information on using the Toil Provisioner have a look at Running a Workflow with Autoscaling.

Details about Launching a Cluster in AWS

Using the provisioner to launch a Toil leader instance is simple using the launch-cluster command. For example,
to launch a cluster named “my-cluster” with a t2.medium leader in the us-west-2a zone, run

(venv) $ toil launch-cluster my-cluster \
 --leaderNodeType t2.medium \
 --zone us-west-2a \
 --keyPairName <your-AWS-key-pair-name>

The cluster name is used to uniquely identify your cluster and will be used to
populate the instance’s Name tag. Also, the Toil provisioner will
automatically tag your cluster with an Owner tag that corresponds to your
keypair name to facilitate cost tracking. In addition, the ToilNodeType tag
can be used to filter “leader” vs. “worker” nodes in your cluster.

The leaderNodeType is an EC2 instance type [https://aws.amazon.com/ec2/instance-types/]. This only affects the leader node.

The --zone parameter specifies which EC2 availability zone to launch the cluster in.
Alternatively, you can specify this option via the TOIL_AWS_ZONE environment variable.
Note: the zone is different from an EC2 region. A region corresponds to a geographical area
like us-west-2 (Oregon), and availability zones are partitions of this area like
us-west-2a.

By default, Toil creates an IAM role for each cluster with sufficient permissions
to perform cluster operations (e.g. full S3, EC2, and SDB access). If the default permissions
are not sufficient for your use case (e.g. if you need access to ECR), you may create a
custom IAM role with all necessary permissions and set the --awsEc2ProfileArn parameter
when launching the cluster. Note that your custom role must at least have
these permissions in order for the Toil cluster to function properly.

In addition, Toil creates a new security group with the same name as the cluster name with
default rules (e.g. opens port 22 for SSH access). If you require additional security groups,
you may use the --awsEc2ExtraSecurityGroupId parameter when launching the cluster.
Note: Do not use the same name as the cluster name for the extra security groups as
any security group matching the cluster name will be deleted once the cluster is destroyed.

For more information on options try:

(venv) $ toil launch-cluster --help

Static Provisioning

Toil can be used to manage a cluster in the cloud by using the Cluster Utilities.
The cluster utilities also make it easy to run a toil workflow directly on this
cluster. We call this static provisioning because the size of the cluster does not
change. This is in contrast with Running a Workflow with Autoscaling.

To launch worker nodes alongside the leader we use the -w option:

(venv) $ toil launch-cluster my-cluster \
 --leaderNodeType t2.small -z us-west-2a \
 --keyPairName your-AWS-key-pair-name \
 --nodeTypes m3.large,t2.micro -w 1,4

This will spin up a leader node of type t2.small with five additional workers — one m3.large instance and four t2.micro.

Currently static provisioning is only possible during the cluster’s creation.
The ability to add new nodes and remove existing nodes via the native provisioner is
in development. Of course the cluster can always be deleted with the
Destroy-Cluster Command utility.

Uploading Workflows

Now that our cluster is launched, we use the Rsync-Cluster Command utility to copy
the workflow to the leader. For a simple workflow in a single file this might
look like

(venv) $ toil rsync-cluster -z us-west-2a my-cluster toil-workflow.py :/

Note

If your toil workflow has dependencies have a look at the Auto-Deployment
section for a detailed explanation on how to include them.

Running a Workflow with Autoscaling

Autoscaling is a feature of running Toil in a cloud whereby additional cloud instances are launched to run the workflow.
Autoscaling leverages Mesos containers to provide an execution environment for these workflows.

Note

Make sure you’ve done the AWS setup in Preparing your AWS environment.

	Download sort.py

	Launch the leader node in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
 --keyPairName <AWS-key-pair-name> \
 --leaderNodeType t2.medium \
 --zone us-west-2a

	Copy the sort.py script up to the leader node:

(venv) $ toil rsync-cluster -z us-west-2a <cluster-name> sort.py :/root

	Login to the leader node:

(venv) $ toil ssh-cluster -z us-west-2a <cluster-name>

	Run the script as an autoscaling workflow:

$ python /root/sort.py aws:us-west-2:<my-jobstore-name> \
 --provisioner aws \
 --nodeTypes c3.large \
 --maxNodes 2 \
 --batchSystem mesos

Note

In this example, the autoscaling Toil code creates up to two instances of type c3.large and launches Mesos
slave containers inside them. The containers are then available to run jobs defined by the sort.py script.
Toil also creates a bucket in S3 called aws:us-west-2:autoscaling-sort-jobstore to store intermediate job
results. The Toil autoscaler can also provision multiple different node types, which is useful for workflows
that have jobs with varying resource requirements. For example, one could execute the script with
--nodeTypes c3.large,r3.xlarge --maxNodes 5,1, which would allow the provisioner to create up to five
c3.large nodes and one r3.xlarge node for memory-intensive jobs. In this situation, the autoscaler would avoid
creating the more expensive r3.xlarge node until needed, running most jobs on the c3.large nodes.

	View the generated file to sort:

$ head fileToSort.txt

	View the sorted file:

$ head sortedFile.txt

For more information on other autoscaling (and other) options have a look at Commandline Options and/or run

$ python my-toil-script.py --help

Important

Some important caveats about starting a toil run through an ssh session are
explained in the Ssh-Cluster Command section.

Preemptability

Toil can run on a heterogeneous cluster of both preemptable and non-preemptable nodes. Being preemptable node simply
means that the node may be shut down at any time, while jobs are running. These jobs can then be restarted later
somewhere else.

A node type can be specified as preemptable by adding a spot bid [https://aws.amazon.com/ec2/spot/pricing/] to its entry in the list of node types provided with
the --nodeTypes flag. If spot instance prices rise above your bid, the preemptable node whill be shut down.

While individual jobs can each explicitly specify whether or not they should be run on preemptable nodes
via the boolean preemptable resource requirement, the --defaultPreemptable flag will allow jobs without a
preemptable requirement to run on preemptable machines.

Specify Preemptability Carefully

Ensure that your choices for --nodeTypes and --maxNodes <> make
sense for your workflow and won’t cause it to hang. You should make sure the
provisioner is able to create nodes large enough to run the largest job
in the workflow, and that non-preemptable node types are allowed if there are
non-preemptable jobs in the workflow.

Finally, the --preemptableCompensation flag can be used to handle cases where preemptable nodes may not be
available but are required for your workflow. With this flag enabled, the autoscaler will attempt to compensate
for a shortage of preemptable nodes of a certain type by creating non-preemptable nodes of that type, if
non-preemptable nodes of that type were specified in --nodeTypes.

Using MinIO and S3-Compatible object stores

Toil can be configured to access files stored in an S3-compatible object store [https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services] such as MinIO [https://min.io/]. The following environment variables can be used to configure the S3 connection used:

	TOIL_S3_HOST: the IP address or hostname to use for connecting to S3

	TOIL_S3_PORT: the port number to use for connecting to S3, if needed

	TOIL_S3_USE_SSL: enable or disable the usage of SSL for connecting to S3 (True by default)

Examples:

TOIL_S3_HOST=127.0.0.1
TOIL_S3_PORT=9010
TOIL_S3_USE_SSL=False

Dashboard

Toil provides a dashboard for viewing the RAM and CPU usage of each node, the number of
issued jobs of each type, the number of failed jobs, and the size of the jobs queue. To launch this dashboard
for a toil workflow, include the --metrics flag in the toil script command. The dashboard can then be viewed
in your browser at localhost:3000 while connected to the leader node through toil ssh-cluster:

To change the default port number, you can use the --grafana_port argument:

(venv) $ toil ssh-cluster -z us-west-2a --grafana_port 8000 <cluster-name>

On AWS, the dashboard keeps track of every node in the cluster to monitor CPU and RAM usage, but it
can also be used while running a workflow on a single machine. The dashboard uses Grafana as the
front end for displaying real-time plots, and Prometheus for tracking metrics exported by toil:

[image: ../../_images/dashboard_screenshot.png]
In order to use the dashboard for a non-released toil version, you will have to build the containers locally with
make docker, since the prometheus, grafana, and mtail containers used in the dashboard are tied to a specific toil
version.

Running in Google Compute Engine (GCE)

Toil supports a provisioner with Google, and a Google Job Store. To get started, follow instructions
for Preparing your Google environment.

Preparing your Google environment

Toil supports using the Google Cloud Platform [https://cloud.google.com/storage/]. Setting this up is easy!

	Make sure that the google extra (Installing Toil with Extra Features) is installed

	Follow Google’s Instructions [https://cloud.google.com/docs/authentication/getting-started] to download credentials and set the
GOOGLE_APPLICATION_CREDENTIALS environment variable

	Create a new ssh key with the proper format. To create a new ssh key run the command

$ ssh-keygen -t rsa -f ~/.ssh/id_rsa -C [USERNAME]

where [USERNAME] is something like jane@example.com. Make sure to leave your password blank.

Warning

This command could overwrite an old ssh key you may be using. If you have an existing ssh key
you would like to use, it will need to be called id_rsa and it needs to have no password set.

Make sure only you can read the SSH keys:

$ chmod 400 ~/.ssh/id_rsa ~/.ssh/id_rsa.pub

	Add your newly formatted public key to Google. To do this, log into your Google Cloud account
and go to metadata [https://console.cloud.google.com/compute/metadata] section under the Compute tab.

[image: ../../_images/googleScreenShot.png]
Near the top of the screen click on ‘SSH Keys’, then edit, add item, and paste the key. Then save:

[image: ../../_images/googleScreenShot2.png]

For more details look at Google’s instructions for adding SSH keys [https://cloud.google.com/compute/docs/instances/adding-removing-ssh-keys].

Google Job Store

To use the Google Job Store you will need to set the
GOOGLE_APPLICATION_CREDENTIALS environment variable by following Google’s instructions [https://cloud.google.com/docs/authentication/getting-started].

Then to run the sort example with the Google job store you would type

$ python sort.py google:my-project-id:my-google-sort-jobstore

Running a Workflow with Autoscaling

Warning

Google Autoscaling is in beta!

The steps to run a GCE workflow are similar to those of AWS (Running a Workflow with Autoscaling), except you will
need to explicitly specify the --provisioner gce option which otherwise defaults to aws.

	Download sort.py

	Launch the leader node in GCE using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <CLUSTER-NAME> \
 --provisioner gce \
 --leaderNodeType n1-standard-1 \
 --keyPairName <SSH-KEYNAME> \
 --zone us-west1-a

Where <SSH-KEYNAME> is the first part of [USERNAME] used when setting up your ssh key.
For example if [USERNAME] was jane@example.com, <SSH-KEYNAME> should be jane.

The --keyPairName option is for an SSH key that was added to the Google account. If your ssh
key [USERNAME] was jane@example.com, then your key pair name will be just jane.

	Upload the sort example and ssh into the leader:

(venv) $ toil rsync-cluster --provisioner gce <CLUSTER-NAME> sort.py :/root
(venv) $ toil ssh-cluster --provisioner gce <CLUSTER-NAME>

	Run the workflow:

$ python /root/sort.py google:<PROJECT-ID>:<JOBSTORE-NAME> \
 --provisioner gce \
 --batchSystem mesos \
 --nodeTypes n1-standard-2 \
 --maxNodes 2

	Clean up:

$ exit # this exits the ssh from the leader node
(venv) $ toil destroy-cluster --provisioner gce <CLUSTER-NAME>

Cluster Utilities

There are several utilities used for starting and managing a Toil cluster using the AWS provisioner. They are installed
via the [aws] or [google] extra. For installation details see Toil Provisioner. The cluster utilities
are used for Running in AWS and are comprised of toil launch-cluster, toil rsync-cluster,
toil ssh-cluster, and toil destroy-cluster entry points.

Cluster commands specific to toil are:

status — Reports runtime and resource usage for all jobs in a specified jobstore (workflow must have originally been run using the --stats option).

stats — Inspects a job store to see which jobs have failed, run successfully, etc.

destroy-cluster — For autoscaling. Terminates the specified cluster and associated resources.

launch-cluster — For autoscaling. This is used to launch a toil leader instance with the specified provisioner.

rsync-cluster — For autoscaling. Used to transfer files to a cluster launched with toil launch-cluster.

ssh-cluster — SSHs into the toil appliance container running on the leader of the cluster.

clean — Delete the job store used by a previous Toil workflow invocation.

kill — Kills any running jobs in a rogue toil.

For information on a specific utility run:

toil launch-cluster --help

for a full list of its options and functionality.

The cluster utilities can be used for Running in Google Compute Engine (GCE) and Running in AWS.

Tip

By default, all of the cluster utilities expect to be running on AWS. To run with Google
you will need to specify the --provisioner gce option for each utility.

Note

Boto must be configured [http://boto3.readthedocs.io/en/latest/guide/quickstart.html#configuration] with AWS credentials before using cluster utilities.

Running in Google Compute Engine (GCE) contains instructions for

Stats Command

To use the stats command, a workflow must first be run using the --stats option. Using this command makes certain
that toil does not delete the job store, no matter what other options are specified (i.e. normally the option
--clean=always would delete the job, but --stats will override this).

An example of this would be running the following:

python discoverfiles.py file:my-jobstore --stats

Where discoverfiles.py is the following:

import os
import subprocess

from toil.common import Toil
from toil.job import Job

class discoverFiles(Job):
 """Views files at a specified path using ls."""
 def __init__(self, path, *args, **kwargs):
 self.path = path
 super(discoverFiles, self).__init__(*args, **kwargs)

 def run(self, fileStore):
 if os.path.exists(self.path):
 subprocess.check_call(["ls", self.path])

def main():
 options = Job.Runner.getDefaultArgumentParser().parse_args()
 options.clean = "always"

 job1 = discoverFiles(path="/sys/", displayName='sysFiles')
 job2 = discoverFiles(path=os.path.expanduser("~"), displayName='userFiles')
 job3 = discoverFiles(path="/tmp/")

 job1.addChild(job2)
 job2.addChild(job3)

 with Toil(options) as toil:
 if not toil.options.restart:
 toil.start(job1)
 else:
 toil.restart()

if __name__ == '__main__':
 main()

Notice the displayName key, which can rename a job, giving it an alias when it is finally displayed in stats.
Running this workflow file should record three job names: sysFiles (job1), userFiles (job2), and discoverFiles (job3).
To see the runtime and resources used for each job when it was run, type

toil stats file:my-jobstore

This should output the following:

Batch System: singleMachine
Default Cores: 1 Default Memory: 2097152K
Max Cores: 9.22337e+18
Total Clock: 0.56 Total Runtime: 1.01
Worker
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1 | 0.14 0.14 0.14 0.14 0.14 | 0.13 0.13 0.13 0.13 0.13 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K 76K 76K
Job
 Worker Jobs | min med ave max
 | 3 3 3 3
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 3 | 0.01 0.06 0.05 0.07 0.14 | 0.00 0.06 0.04 0.07 0.12 | 0.00 0.01 0.00 0.01 0.01 | 76K 76K 76K 76K 229K
 sysFiles
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1 | 0.01 0.01 0.01 0.01 0.01 | 0.00 0.00 0.00 0.00 0.00 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K 76K 76K
 userFiles
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1 | 0.06 0.06 0.06 0.06 0.06 | 0.06 0.06 0.06 0.06 0.06 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K 76K 76K
 discoverFiles
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1 | 0.07 0.07 0.07 0.07 0.07 | 0.07 0.07 0.07 0.07 0.07 | 0.00 0.00 0.00 0.00 0.00 | 76K 76K 76K 76K 76K

Once we’re done, we can clean up the job store by running

toil clean file:my-jobstore

Status Command

Continuing the example from the stats section above, if we ran our workflow with the command

python discoverfiles.py file:my-jobstore --stats

We could interrogate our jobstore with the status command, for example:

toil status file:my-jobstore

If the run was successful, this would not return much valuable information, something like

2018-01-11 19:31:29,739 - toil.lib.bioio - INFO - Root logger is at level 'INFO', 'toil' logger at level 'INFO'.
2018-01-11 19:31:29,740 - toil.utils.toilStatus - INFO - Parsed arguments
2018-01-11 19:31:29,740 - toil.utils.toilStatus - INFO - Checking if we have files for Toil
The root job of the job store is absent, the workflow completed successfully.

Otherwise, the status command should return the following:

There are x unfinished jobs, y parent jobs with children, z jobs with services, a services, and b totally failed jobs currently in c.

Clean Command

If a Toil pipeline didn’t finish successfully, or was run using --clean=always or --stats, the job store will exist
until it is deleted. toil clean <jobStore> ensures that all artifacts associated with a job store are removed.
This is particularly useful for deleting AWS job stores, which reserves an SDB domain as well as an S3 bucket.

The deletion of the job store can be modified by the --clean argument, and may be set to always, onError,
never, or onSuccess (default).

Temporary directories where jobs are running can also be saved from deletion using the --cleanWorkDir, which has
the same options as --clean. This option should only be run when debugging, as intermediate jobs will fill up
disk space.

Launch-Cluster Command

Running toil launch-cluster starts up a leader for a cluster. Workers can be
added to the initial cluster by specifying the -w option. An example would be

$ toil launch-cluster my-cluster \
 --leaderNodeType t2.small -z us-west-2a \
 --keyPairName your-AWS-key-pair-name \
 --nodeTypes m3.large,t2.micro -w 1,4

Options are listed below. These can also be displayed by running

$ toil launch-cluster --help

launch-cluster’s main positional argument is the clusterName. This is simply the name of your cluster. If it does not
exist yet, Toil will create it for you.

Launch-Cluster Options

	--help

	-h also accepted. Displays this help menu.

	--tempDirRoot TEMPDIRROOT

	Path to the temporary directory where all temp
files are created, by default uses the current working
directory as the base.

	--version

	Display version.

	--provisioner CLOUDPROVIDER

	-p CLOUDPROVIDER also accepted. The provisioner for
cluster auto-scaling. Both AWS and GCE are
currently supported.

	--zone ZONE

	-z ZONE also accepted. The availability zone of the leader. This
parameter can also be set via the TOIL_AWS_ZONE or TOIL_GCE_ZONE
environment variables, or by the ec2_region_name
parameter in your .boto file if using AWS, or derived from the
instance metadata if using this utility on an existing
EC2 instance.

	--leaderNodeType LEADERNODETYPE

	Non-preemptable node type to use for the cluster
leader.

	--keyPairName KEYPAIRNAME

	The name of the AWS or ssh key pair to include on the
instance.

	--boto BOTOPATH

	The path to the boto credentials directory. This is
transferred to all nodes in order to access the AWS
jobStore from non-AWS instances.

	--tag KEYVALUE

	KEYVALUE is specified as KEY=VALUE. -t KEY=VALUE also
accepted. Tags are added to the AWS cluster for this
node and all of its children.
Tags are of the form: -t key1=value1 –tag key2=value2.
Multiple tags are allowed and each tag needs its own
flag. By default the cluster is tagged with:
{ “Name”: clusterName, “Owner”: IAM username }.

	--vpcSubnet VPCSUBNET

	VPC subnet ID to launch cluster in. Uses default
subnet if not specified. This subnet needs to have
auto assign IPs turned on.

	--nodeTypes NODETYPES

	Comma-separated list of node types to create while
launching the leader. The syntax for each node type
depends on the provisioner used. For the AWS
provisioner this is the name of an EC2 instance type
followed by a colon and the price in dollars to bid for
a spot instance, for example ‘c3.8xlarge:0.42’. Must
also provide the –workers argument to specify how
many workers of each node type to create.

	--workers WORKERS

	-w WORKERS also accepted. Comma-separated list of the
number of workers of each node type to launch alongside
the leader when the cluster is created. This can be
useful if running toil without auto-scaling but with
need of more hardware support.

	--leaderStorage LEADERSTORAGE

	Specify the size (in gigabytes) of the root volume for
the leader instance. This is an EBS volume.

	--nodeStorage NODESTORAGE

	Specify the size (in gigabytes) of the root volume for
any worker instances created when using the -w flag.
This is an EBS volume.

	--nodeStorageOverrides NODESTORAGEOVERRIDES

	Comma-separated list of nodeType:nodeStorage that are used
to override the default value from –nodeStorage for the
specified nodeType(s). This is useful for heterogeneous jobs
where some tasks require much more disk than others.

Logging Options

	--logOff

	Same as --logCritical.

	--logCritical

	Turn on logging at level CRITICAL and above. (default
is INFO)

	--logError

	Turn on logging at level ERROR and above. (default is
INFO)

	--logWarning

	Turn on logging at level WARNING and above. (default
is INFO)

	--logInfo

	Turn on logging at level INFO and above. (default is
INFO)

	--logDebug

	Turn on logging at level DEBUG and above. (default is
INFO)

	--logLevel LOGLEVEL

	Log at given level (may be either OFF (or CRITICAL),
ERROR, WARN (or WARNING), INFO or DEBUG). (default is
INFO)

	--logFile LOGFILE

	File to log in.

	--rotatingLogging

	Turn on rotating logging, which prevents log files
getting too big.

Ssh-Cluster Command

Toil provides the ability to ssh into the leader of the cluster. This
can be done as follows:

$ toil ssh-cluster CLUSTER-NAME-HERE

This will open a shell on the Toil leader and is used to start an
Running a Workflow with Autoscaling run. Issues with docker prevent using screen and tmux
when sshing the cluster (The shell doesn’t know that it is a TTY which prevents
it from allocating a new screen session). This can be worked around via

$ script
$ screen

Simply running screen within script will get things working properly again.

Finally, you can execute remote commands with the following syntax:

$ toil ssh-cluster CLUSTER-NAME-HERE remoteCommand

It is not advised that you run your Toil workflow using remote execution like this
unless a tool like nohup [https://linux.die.net/man/1/nohup] is used to ensure the
process does not die if the SSH connection is interrupted.

For an example usage, see Running a Workflow with Autoscaling.

Rsync-Cluster Command

The most frequent use case for the rsync-cluster utility is deploying your
Toil script to the Toil leader. Note that the syntax is the same as traditional
rsync [https://linux.die.net/man/1/rsync] with the exception of the hostname before
the colon. This is not needed in toil rsync-cluster since the hostname is automatically
determined by Toil.

Here is an example of its usage:

$ toil rsync-cluster CLUSTER-NAME-HERE \
 ~/localFile :/remoteDestination

Destroy-Cluster Command

The destroy-cluster command is the advised way to get rid of any Toil cluster
launched using the Launch-Cluster Command command. It ensures that all attached nodes, volumes,
security groups, etc. are deleted. If a node or cluster is shut down using Amazon’s online portal
residual resources may still be in use in the background. To delete a cluster run

$ toil destroy-cluster CLUSTER-NAME-HERE

Kill Command

To kill all currently running jobs for a given jobstore, use the command

toil kill file:my-jobstore

HPC Environments

Toil is a flexible framework that can be leveraged in a variety of environments, including high-performance computing (HPC) environments.
Toil provides support for a number of batch systems, including Grid Engine [http://www.univa.com/oracle], Slurm [https://www.schedmd.com/], Torque [http://www.adaptivecomputing.com/products/open-source/torque/] and LSF [https://en.wikipedia.org/wiki/Platform_LSF], which are popular schedulers used in these environments.
Toil also supports HTCondor [https://research.cs.wisc.edu/htcondor/], which is a popular scheduler for high-throughput computing (HTC).
To use one of these batch systems specify the “--batchSystem” argument to the toil script.

Due to the cost and complexity of maintaining support for these schedulers we currently consider them to be “community supported”, that is the core development team does not regularly test or develop support for these systems. However, there are members of the Toil community currently deploying Toil in HPC environments and we welcome external contributions.

Developing the support of a new or existing batch system involves extending the abstract batch system class toil.batchSystems.abstractBatchSystem.AbstractBatchSystem.

Standard Output/Error from Batch System Jobs

Standard output and error from batch system jobs (except for the Parasol and Mesos batch systems) are redirected to files in the toil-<workflowID> directory created within the temporary directory specified by the --workDir option; see Commandline Options.
Each file is named as follows: toil_job_<Toil job ID>_batch_<name of batch system>_<job ID from batch system>_<file description>.log, where <file description> is std_output for standard output, and std_error for standard error.
HTCondor will also write job event log files with <file description> = job_events.

If capturing standard output and error is desired, --workDir will generally need to be on a shared file system; otherwise if these are written to local temporary directories on each node (e.g. /tmp) Toil will not be able to retrieve them.
Alternatively, the --noStdOutErr option forces Toil to discard all standard output and error from batch system jobs.

CWL in Toil

The Common Workflow Language (CWL) is an emerging standard for writing workflows
that are portable across multiple workflow engines and platforms.
Toil has full support for the CWL v1.0.1 specification.

Running CWL Locally

The toil-cwl-runner command provides cwl-parsing functionality using cwltool, and leverages the job-scheduling and
batch system support of Toil.

To run in local batch mode, provide the CWL file and the input object file:

$ toil-cwl-runner example.cwl example-job.yml

For a simple example of CWL with Toil see Running a basic CWL workflow.

Note for macOS + Docker + Toil

When invoking CWL documents that make use of Docker containers if you see errors that
look like

docker: Error response from daemon: Mounts denied:
The paths /var/...tmp are not shared from OS X and are not known to Docker.

you may need to add

export TMPDIR=/tmp/docker_tmp

either in your startup file (.bashrc) or add it manually in your shell before invoking
toil.

Detailed Usage Instructions

Help information can be found by using this toil command:

$ toil-cwl-runner -h

A more detailed example shows how we can specify both Toil and cwltool arguments for our workflow:

$ toil-cwl-runner \
 --singularity \
 --jobStore my_jobStore \
 --batchSystem lsf \
 --workDir `pwd` \
 --outdir `pwd` \
 --logFile cwltoil.log \
 --writeLogs `pwd` \
 --logLevel DEBUG \
 --retryCount 2 \
 --maxLogFileSize 20000000000 \
 --stats \
 standard_bam_processing.cwl \
 inputs.yaml

In this example, we set the following options, which are all passed to Toil:

--singularity: Specifies that all jobs with Docker fornat containers
specified should be run using the Singularity container engine instead of the
Docker container engine.

--jobStore: Path to a folder that already exists, which will contain the
Toil jobstore and all related job-tracking information.

--batchSystem: Use the specified HPC or Cloud-based cluster platform.

--workDir: The directory where all temporary files will be created for the
workflow. A subdirectory of this will be set as the $TMPDIR environment
variable and this subdirectory can be referenced using the CWL parameter
reference $(runtime.tmpdir) in CWL tools and workflows.

--outdir: Directory where final File and Directory outputs will be
written. References to these and other output types will be in the JSON object
printed to the stdout stream after workflow execution.

--logFile: Path to the main logfile with logs from all jobs.

--writeLogs: Directory where all job logs will be stored.

--retryCount: How many times to retry each Toil job.

--maxLogFileSize: Logs that get larger than this value will be truncated.

--stats: Save resources usages in json files that can be collected with the
toil stats command after the workflow is done.

Running CWL in the Cloud

To run in cloud and HPC configurations, you may need to provide additional
command line parameters to select and configure the batch system to use.

To run a CWL workflow in AWS with toil see Running a CWL Workflow on AWS.

Running CWL within Toil Scripts

A CWL workflow can be run indirectly in a native Toil script. However, this is not the standard way to run
CWL workflows with Toil and doing so comes at the cost of job efficiency. For some use cases, such as running one process on
multiple files, it may be useful. For example, if you want to run a CWL workflow with 3 YML files specifying different
samples inputs, it could look something like:

import os
import subprocess

from toil.common import Toil
from toil.job import Job

def initialize_jobs(job):
 job.fileStore.logToMaster('initialize_jobs')

def runQC(job, cwl_file, cwl_filename, yml_file, yml_filename, outputs_dir, output_num):
 job.fileStore.logToMaster("runQC")
 tempDir = job.fileStore.getLocalTempDir()

 cwl = job.fileStore.readGlobalFile(cwl_file, userPath=os.path.join(tempDir, cwl_filename))
 yml = job.fileStore.readGlobalFile(yml_file, userPath=os.path.join(tempDir, yml_filename))

 subprocess.check_call(["toil-cwl-runner", cwl, yml])

 output_filename = "output.txt"
 output_file = job.fileStore.writeGlobalFile(output_filename)
 job.fileStore.readGlobalFile(output_file, userPath=os.path.join(outputs_dir, "sample_" + output_num + "_" + output_filename))
 return output_file

if __name__ == "__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"
 with Toil(options) as toil:

 # specify the folder where the cwl and yml files live
 inputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "cwlExampleFiles")
 # specify where you wish the outputs to be written
 outputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "cwlExampleFiles")

 job0 = Job.wrapJobFn(initialize_jobs)

 cwl_filename = "hello.cwl"
 cwl_file = toil.importFile("file://" + os.path.abspath(os.path.join(inputs_dir, cwl_filename)))

 # add list of yml config inputs here or import and construct from file
 yml_files = ["hello1.yml", "hello2.yml", "hello3.yml"]
 i = 0
 for yml in yml_files:
 i = i + 1
 yml_file = toil.importFile("file://" + os.path.abspath(os.path.join(inputs_dir, yml)))
 yml_filename = yml
 job = Job.wrapJobFn(runQC, cwl_file, cwl_filename, yml_file, yml_filename, outputs_dir, output_num=str(i))
 job0.addChild(job)

 toil.start(job0)

Toil & CWL Tips

See logs for just one job by using the full log file

This requires knowing the job’s toil-generated ID, which can be found in the log files.

cat cwltoil.log | grep jobVM1fIs

Grep for full tool commands from toil logs

This gives you a more concise view of the commands being run (note that this information is only available from
Toil when running with –logDebug).

pcregrep -M "\[job .*\.cwl.*$\n(.* .*$\n)*" cwltoil.log
^allows for multiline matching

Find Bams that have been generated for specific step while pipeline is running:

find . | grep -P '^./out_tmpdir.*_MD\.bam$'

See what jobs have been run

cat log/cwltoil.log | grep -oP "\[job .*.cwl\]" | sort | uniq

or:

cat log/cwltoil.log | grep -i "issued job"

Get status of a workflow

$ toil status /home/johnsoni/TEST_RUNS_3/TEST_run/tmp/jobstore-09ae0acc-c800-11e8-9d09-70106fb1697e
<hostname> 2018-10-04 15:01:44,184 MainThread INFO toil.lib.bioio: Root logger is at level 'INFO', 'toil' logger at level 'INFO'.
<hostname> 2018-10-04 15:01:44,185 MainThread INFO toil.utils.toilStatus: Parsed arguments
<hostname> 2018-10-04 15:01:47,081 MainThread INFO toil.utils.toilStatus: Traversing the job graph gathering jobs. This may take a couple of minutes.

Of the 286 jobs considered, there are 179 jobs with children, 107 jobs ready to run, 0 zombie jobs, 0 jobs with services, 0 services, and 0 jobs with log files currently in file:/home/user/jobstore-09ae0acc-c800-11e8-9d09-70106fb1697e.

Toil Stats

You can get run statistics broken down by CWL file. This only works once the workflow is finished:

$ toil stats /path/to/jobstore

The output will contain CPU, memory, and walltime information for all CWL job types:

<hostname> 2018-10-15 12:06:19,003 MainThread INFO toil.lib.bioio: Root logger is at level 'INFO', 'toil' logger at level 'INFO'.
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Parsed arguments
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Checking if we have files for toil
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Checked arguments
Batch System: lsf
Default Cores: 1 Default Memory: 10485760K
Max Cores: 9.22337e+18
Total Clock: 106608.01 Total Runtime: 86634.11
Worker
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1659 | 0.00 0.80 264.87 12595.59 439424.40 | 0.00 0.46 449.05 42240.74 744968.80 | -35336.69 0.16 -184.17 4230.65 -305544.39 | 48K 223K 1020K 40235K 1692300K
Job
 Worker Jobs | min med ave max
 | 1077 1077 1077 1077
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 1077 | 0.04 1.18 407.06 12593.43 438404.73 | 0.01 0.28 691.17 42240.35 744394.14 | -35336.83 0.27 -284.11 4230.49 -305989.41 | 135K 268K 1633K 40235K 1759734K
 ResolveIndirect
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 205 | 0.04 0.07 0.16 2.29 31.95 | 0.01 0.02 0.02 0.14 3.60 | 0.02 0.05 0.14 2.28 28.35 | 190K 266K 256K 314K 52487K
 CWLGather
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 40 | 0.05 0.17 0.29 1.90 11.62 | 0.01 0.02 0.02 0.05 0.80 | 0.03 0.14 0.27 1.88 10.82 | 188K 265K 250K 316K 10039K
 CWLWorkflow
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 205 | 0.09 0.40 0.98 13.70 200.82 | 0.04 0.15 0.16 1.08 31.78 | 0.04 0.26 0.82 12.62 169.04 | 190K 270K 257K 316K 52826K
 file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/group_waltz_files.cwl
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 99 | 0.29 0.49 0.59 2.50 58.11 | 0.14 0.26 0.29 1.04 28.95 | 0.14 0.22 0.29 1.48 29.16 | 135K 135K 135K 136K 13459K
 file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/make_sample_output_dirs.cwl
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 11 | 0.34 0.52 0.74 2.63 8.18 | 0.20 0.30 0.41 1.17 4.54 | 0.14 0.20 0.33 1.45 3.65 | 136K 136K 136K 136K 1496K
 file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/consolidate_files.cwl
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 8 | 0.31 0.59 0.71 1.80 5.69 | 0.18 0.35 0.37 0.63 2.94 | 0.13 0.27 0.34 1.17 2.75 | 136K 136K 136K 136K 1091K
 file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/bwa-mem/bwa-mem.cwl
 Count | Time* | Clock | Wait | Memory
 n | min med* ave max total | min med ave max total | min med ave max total | min med ave max total
 22 | 895.76 3098.13 3587.34 12593.43 78921.51 | 2127.02 7910.31 8123.06 16959.13 178707.34 | -11049.84 -3827.96 -4535.72 19.49 -99785.83 | 5659K 5950K 5854K 6128K 128807K

Understanding toil log files

There is a worker_log.txt file for each job, this file is written to while the job is running, and deleted after the job finishes. The contents are printed to the main log file and transferred to a log file in the –logDir folder once the job is completed successfully.

The new log file will be named something like:

file:<path to cwl tool>.cwl_<job ID>.log

file:---home-johnsoni-pipeline_1.1.14-ACCESS--Pipeline-cwl_tools-marianas-ProcessLoopUMIFastq.cwl_I-O-jobfGsQQw000.log

This is the toil job command with spaces replaced by dashes.

WDL in Toil

Support is still in the alpha phase and should be able to handle basic wdl files. See the specification below for more
details.

How to Run a WDL file in Toil

Recommended best practice when running wdl files is to first use the Broad’s wdltool for syntax validation and generating
the needed json input file. Full documentation can be found on the repository [https://github.com/broadinstitute/wdltool], and a precompiled jar binary can be
downloaded here: wdltool [https://github.com/broadinstitute/wdltool/releases] (this requires java7 [http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html]).

That means two steps. First, make sure your wdl file is valid and devoid of syntax errors by running

java -jar wdltool.jar validate example_wdlfile.wdl

Second, generate a complementary json file if your wdl file needs one. This json will contain keys for every necessary
input that your wdl file needs to run:

java -jar wdltool.jar inputs example_wdlfile.wdl

When this json template is generated, open the file, and fill in values as necessary by hand. WDL files all require
json files to accompany them. If no variable inputs are needed, a json file containing only ‘{}’ may be required.

Once a wdl file is validated and has an appropriate json file, workflows can be run in toil using:

toil-wdl-runner example_wdlfile.wdl example_jsonfile.json

See options below for more parameters.

ENCODE Example from ENCODE-DCC

To follow this example, you will need docker installed. The original workflow can be found here:
https://github.com/ENCODE-DCC/pipeline-container

We’ve included the wdl file and data files in the toil repository needed to run this example. First, download
the example code [http://toil-datasets.s3.amazonaws.com/ENCODE_data.zip] and unzip. The file needed is “testENCODE/encode_mapping_workflow.wdl”.

Next, use wdltool [https://github.com/broadinstitute/wdltool/releases] (this requires java7 [http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html]) to validate this file:

java -jar wdltool.jar validate encode_mapping_workflow.wdl

Next, use wdltool to generate a json file for this wdl file:

java -jar wdltool.jar inputs encode_mapping_workflow.wdl

This json file once opened should look like this:

{
"encode_mapping_workflow.fastqs": "Array[File]",
"encode_mapping_workflow.trimming_parameter": "String",
"encode_mapping_workflow.reference": "File"
}

The trimming_parameter should be set to ‘native’.
Download the example code [http://toil-datasets.s3.amazonaws.com/ENCODE_data.zip] and unzip. Inside are two data files required for the run

ENCODE_data/reference/GRCh38_chr21_bwa.tar.gz
ENCODE_data/ENCFF000VOL_chr21.fq.gz

Editing the json to include these as inputs, the json should now look something like this:

{
"encode_mapping_workflow.fastqs": ["/path/to/unzipped/ENCODE_data/ENCFF000VOL_chr21.fq.gz"],
"encode_mapping_workflow.trimming_parameter": "native",
"encode_mapping_workflow.reference": "/path/to/unzipped/ENCODE_data/reference/GRCh38_chr21_bwa.tar.gz"
}

The wdl and json files can now be run using the command

toil-wdl-runner encode_mapping_workflow.wdl encode_mapping_workflow.json

This should deposit the output files in the user’s current working directory (to change this, specify a new directory
with the ‘-o’ option).

GATK Examples from the Broad

Simple examples of WDL can be found on the Broad’s website as tutorials:
https://software.broadinstitute.org/wdl/documentation/topic?name=wdl-tutorials.

One can follow along with these tutorials, write their own wdl files following the directions and run them using either
cromwell or toil. For example, in tutorial 1, if you’ve followed along and named your wdl file ‘helloHaplotypeCall.wdl’,
then once you’ve validated your wdl file using wdltool [https://github.com/broadinstitute/wdltool/releases] (this requires java7 [http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html]) using

java -jar wdltool.jar validate helloHaplotypeCaller.wdl

and generated a json file (and subsequently typed in appropriate filepaths* and variables) using

java -jar wdltool.jar inputs helloHaplotypeCaller.wdl

	Absolute filepath inputs are recommended for local testing.

then the wdl script can be run using

toil-wdl-runner helloHaplotypeCaller.wdl helloHaplotypeCaller_inputs.json

toilwdl.py Options

‘-o’ or ‘--outdir’: Specifies the output folder, and defaults to the current working directory if
not specified by the user.

‘--dev_mode’: Creates “AST.out”, which holds a printed AST of the wdl file and “mappings.out”, which holds the
printed task, workflow, csv, and tsv dictionaries generated by the parser. Also saves the compiled toil python workflow
file for debugging.

Any number of arbitrary options may also be specified. These options will not be parsed immediately, but passed down
as toil options once the wdl/json files are processed. For valid toil options, see the documentation:
http://toil.readthedocs.io/en/latest/running/cliOptions.html

Running WDL within Toil Scripts

Note

A cromwell.jar file is needed in order to run a WDL workflow.

A WDL workflow can be run indirectly in a native Toil script. However, this is not the standard way to run
WDL workflows with Toil and doing so comes at the cost of job efficiency. For some use cases, such as running one process on
multiple files, it may be useful. For example, if you want to run a WDL workflow with 3 JSON files specifying different
samples inputs, it could look something like:

import os
import subprocess

from toil.common import Toil
from toil.job import Job

def initialize_jobs(job):
 job.fileStore.logToMaster("initialize_jobs")

def runQC(job, wdl_file, wdl_filename, json_file, json_filename, outputs_dir, jar_loc,output_num):
 job.fileStore.logToMaster("runQC")
 tempDir = job.fileStore.getLocalTempDir()

 wdl = job.fileStore.readGlobalFile(wdl_file, userPath=os.path.join(tempDir, wdl_filename))
 json = job.fileStore.readGlobalFile(json_file, userPath=os.path.join(tempDir, json_filename))

 subprocess.check_call(["java","-jar",jar_loc,"run",wdl,"--inputs",json])

 output_filename = "output.txt"
 output_file = job.fileStore.writeGlobalFile(outputs_dir + output_filename)
 job.fileStore.readGlobalFile(output_file, userPath=os.path.join(outputs_dir, "sample_" + output_num + "_" + output_filename))
 return output_file

if __name__ == "__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:

 # specify the folder where the wdl and json files live
 inputs_dir = "wdlExampleFiles/"
 # specify where you wish the outputs to be written
 outputs_dir = "wdlExampleFiles/"
 # specify the location of your cromwell jar
 jar_loc = os.path.abspath("wdlExampleFiles/cromwell-35.jar")

 job0 = Job.wrapJobFn(initialize_jobs)

 wdl_filename = "hello.wdl"
 wdl_file = toil.importFile("file://" + os.path.abspath(os.path.join(inputs_dir, wdl_filename)))

 # add list of yml config inputs here or import and construct from file
 json_files = ["hello1.json", "hello2.json", "hello3.json"]
 i = 0
 for json in json_files:
 i = i + 1
 json_file = toil.importFile("file://" + os.path.join(inputs_dir, json))
 json_filename = json
 job = Job.wrapJobFn(runQC, wdl_file, wdl_filename, json_file, json_filename, outputs_dir, jar_loc, output_num=str(i))
 job0.addChild(job)

 toil.start(job0)

WDL Specifications

WDL language specifications can be found here: https://github.com/broadinstitute/wdl/blob/develop/SPEC.md

Implementing support for more features is currently underway, but a basic roadmap so far is:

	CURRENTLY IMPLEMENTED:

	
	Scatter

	Many Built-In Functions

	Docker Calls

	Handles Priority, and Output File Wrangling

	Currently Handles Primitives and Arrays

	TO BE IMPLEMENTED:

	
	Integrate Cloud Autoscaling Capacity More Robustly

	WDL Files That “Import” Other WDL Files (Including URI Handling for ‘http://’ and ‘https://’)

Developing a Workflow

This tutorial walks through the features of Toil necessary for developing a
workflow using the Toil Python API.

Note

“script” and “workflow” will be used interchangeably

Scripting Quick Start

To begin, consider this short toil script which illustrates defining a
workflow:

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
 return "Hello, world!, here's a message: %s" % message

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "OFF"
 options.clean = "always"

 hello_job = Job.wrapFn(helloWorld, "Woot")

 with Toil(options) as toil:
 print(toil.start(hello_job)) #Prints Hello, world!, ...

The workflow consists of a single job. The resource requirements for that job
are (optionally) specified by keyword arguments (memory, cores, disk). The
script is run using toil.job.Job.Runner.getDefaultOptions(). Below we
explain the components of this code in detail.

Job Basics

The atomic unit of work in a Toil workflow is a Job.
User scripts inherit from this base class to define units of work. For example,
here is a more long-winded class-based version of the job in the quick start
example:

from toil.job import Job

class HelloWorld(Job):
 def __init__(self, message):
 Job.__init__(self, memory="2G", cores=2, disk="3G")
 self.message = message

 def run(self, fileStore):
 return "Hello, world! Here's a message: %s" % self.message

In the example a class, HelloWorld, is defined. The constructor requests 2
gigabytes of memory, 2 cores and 3 gigabytes of local disk to complete the work.

The toil.job.Job.run() method is the function the user overrides to get
work done. Here it just logs a message using
toil.job.Job.log(), which will be registered in the log
output of the leader process of the workflow.

Invoking a Workflow

We can add to the previous example to turn it into a complete workflow by
adding the necessary function calls to create an instance of HelloWorld and to
run this as a workflow containing a single job. This uses the
toil.job.Job.Runner class, which is used to start and resume Toil
workflows. For example:

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
 def __init__(self, message):
 Job.__init__(self, memory="2G", cores=2, disk="3G")
 self.message = message

 def run(self, fileStore):
 return "Hello, world!, here's a message: %s" % self.message

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "OFF"
 options.clean = "always"

 hello_job = HelloWorld("Woot")

 with Toil(options) as toil:
 print(toil.start(hello_job))

Note

Do not include a . in the name of your python script (besides .py at the end).
This is to allow toil to import the types and functions defined in your file while starting a new process.

Alternatively, the more powerful toil.common.Toil class can be used to
run and resume workflows. It is used as a context manager and allows for
preliminary setup, such as staging of files into the job store on the leader
node. An instance of the class is initialized by specifying an options object.
The actual workflow is then invoked by calling the
toil.common.Toil.start() method, passing the root job of the workflow,
or, if a workflow is being restarted, toil.common.Toil.restart() should
be used. Note that the context manager should have explicit if else branches
addressing restart and non restart cases. The boolean value for these if else
blocks is toil.options.restart.

For example:

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
 def __init__(self, message):
 Job.__init__(self, memory="2G", cores=2, disk="3G")
 self.message = message

 def run(self, fileStore):
 self.log("Hello, world!, I have a message: {}".format(self.message))

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 if not toil.options.restart:
 job = HelloWorld("Woot!")
 toil.start(job)
 else:
 toil.restart()

The call to toil.job.Job.Runner.getDefaultOptions() creates a set of
default options for the workflow. The only argument is a description of how to
store the workflow’s state in what we call a job-store. Here the job-store is
contained in a directory within the current working directory called
“toilWorkflowRun”. Alternatively this string can encode other ways to store the
necessary state, e.g. an S3 bucket object store location. By default
the job-store is deleted if the workflow completes successfully.

The workflow is executed in the final line, which creates an instance of
HelloWorld and runs it as a workflow. Note all Toil workflows start from a
single starting job, referred to as the root job. The return value of the
root job is returned as the result of the completed workflow (see promises
below to see how this is a useful feature!).

Specifying Commandline Arguments

To allow command line control of the options we can use the
toil.job.Job.Runner.getDefaultArgumentParser()
method to create a argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] object which can be used to
parse command line options for a Toil script. For example:

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
 def __init__(self, message):
 Job.__init__(self, memory="2G", cores=2, disk="3G")
 self.message = message

 def run(self, fileStore):
 return "Hello, world!, here's a message: %s" % self.message

if __name__=="__main__":
 parser = Job.Runner.getDefaultArgumentParser()
 options = parser.parse_args()
 options.logLevel = "OFF"
 options.clean = "always"

 hello_job = HelloWorld("Woot")

 with Toil(options) as toil:
 print(toil.start(hello_job))

Creates a fully fledged script with all the options Toil exposed as command
line arguments. Running this script with “–help” will print the full list of
options.

Alternatively an existing argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] or
optparse.OptionParser [https://docs.python.org/3/library/optparse.html#optparse.OptionParser] object can have Toil script command line options
added to it with the toil.job.Job.Runner.addToilOptions() method.

Resuming a Workflow

In the event that a workflow fails, either because of programmatic error within
the jobs being run, or because of node failure, the workflow can be resumed.
Workflows can only not be reliably resumed if the job-store itself becomes
corrupt.

Critical to resumption is that jobs can be rerun, even if they have apparently
completed successfully. Put succinctly, a user defined job should not corrupt
its input arguments. That way, regardless of node, network or leader failure
the job can be restarted and the workflow resumed.

To resume a workflow specify the “restart” option in the options object passed
to toil.common.Toil.start(). If node failures are expected it can
also be useful to use the integer “retryCount” option, which will attempt to
rerun a job retryCount number of times before marking it fully failed.

In the common scenario that a small subset of jobs fail (including retry
attempts) within a workflow Toil will continue to run other jobs until it can
do no more, at which point toil.common.Toil.start() will raise a
toil.leader.FailedJobsException exception. Typically at this point
the user can decide to fix the script and resume the workflow or delete the
job-store manually and rerun the complete workflow.

Functions and Job Functions

Defining jobs by creating class definitions generally involves the boilerplate
of creating a constructor. To avoid this the classes
toil.job.FunctionWrappingJob and
toil.job.JobFunctionWrappingTarget allow functions to be directly
converted to jobs. For example, the quick start example (repeated here):

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
 return "Hello, world!, here's a message: %s" % message

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "OFF"
 options.clean = "always"

 hello_job = Job.wrapFn(helloWorld, "Woot")

 with Toil(options) as toil:
 print(toil.start(hello_job)) #Prints Hello, world!, ...

Is equivalent to the previous example, but using a function to define the job.

The function call:

Job.wrapFn(helloWorld, "Woot")

Creates the instance of the toil.job.FunctionWrappingTarget that wraps
the function.

The keyword arguments memory, cores and disk allow resource requirements
to be specified as before. Even if they are not included as keyword arguments
within a function header they can be passed as arguments when wrapping a
function as a job and will be used to specify resource requirements.

We can also use the function wrapping syntax to a job function, a function
whose first argument is a reference to the wrapping job. Just like a self
argument in a class, this allows access to the methods of the wrapping job, see
toil.job.JobFunctionWrappingTarget. For example:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message):
 job.log("Hello world, I have a message: {}".format(message))

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 hello_job = Job.wrapJobFn(helloWorld, "Woot!")

 with Toil(options) as toil:
 toil.start(hello_job)

Here helloWorld() is a job function. It uses the toil.job.Job.log()
to log a message that will
be printed to the output console. Here the only subtle difference to note is
the line:

hello_job = Job.wrapJobFn(helloWorld, "Woot")

Which uses the function toil.job.Job.wrapJobFn() to wrap the job function
instead of toil.job.Job.wrapFn() which wraps a vanilla function.

Workflows with Multiple Jobs

A parent job can have child jobs and follow-on jobs. These relationships
are specified by methods of the job class, e.g. toil.job.Job.addChild()
and toil.job.Job.addFollowOn().

Considering a set of jobs the nodes in a job graph and the child and follow-on
relationships the directed edges of the graph, we say that a job B that is on a
directed path of child/follow-on edges from a job A in the job graph is a
successor of A, similarly A is a predecessor of B.

A parent job’s child jobs are run directly after the parent job has completed,
and in parallel. The follow-on jobs of a job are run after its child jobs and
their successors have completed. They are also run in parallel. Follow-ons
allow the easy specification of cleanup tasks that happen after a set of
parallel child tasks. The following shows a simple example that uses the
earlier helloWorld() job function:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
 job.log("Hello world, I have a message: {}".format(message))

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 j1 = Job.wrapJobFn(helloWorld, "first")
 j2 = Job.wrapJobFn(helloWorld, "second or third")
 j3 = Job.wrapJobFn(helloWorld, "second or third")
 j4 = Job.wrapJobFn(helloWorld, "last")
 j1.addChild(j2)
 j1.addChild(j3)
 j1.addFollowOn(j4)

 with Toil(options) as toil:
 toil.start(j1)

In the example four jobs are created, first j1 is run, then j2 and
j3 are run in parallel as children of j1, finally j4 is run as a
follow-on of j1.

There are multiple short hand functions to achieve the same workflow, for
example:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
 job.log("Hello world, I have a message: {}".format(message))

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 j1 = Job.wrapJobFn(helloWorld, "first")
 j2 = j1.addChildJobFn(helloWorld, "second or third")
 j3 = j1.addChildJobFn(helloWorld, "second or third")
 j4 = j1.addFollowOnJobFn(helloWorld, "last")

 with Toil(options) as toil:
 toil.start(j1)

Equivalently defines the workflow, where the functions
toil.job.Job.addChildJobFn() and toil.job.Job.addFollowOnJobFn()
are used to create job functions as children or follow-ons of an earlier job.

Jobs graphs are not limited to trees, and can express arbitrary directed acyclic
graphs. For a precise definition of legal graphs see
toil.job.Job.checkJobGraphForDeadlocks(). The previous example could be
specified as a DAG as follows:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
 job.log("Hello world, I have a message: {}".format(message))

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 j1 = Job.wrapJobFn(helloWorld, "first")
 j2 = j1.addChildJobFn(helloWorld, "second or third")
 j3 = j1.addChildJobFn(helloWorld, "second or third")
 j4 = j2.addChildJobFn(helloWorld, "last")
 j3.addChild(j4)

 with Toil(options) as toil:
 toil.start(j1)

Note the use of an extra child edge to make j4 a child of both j2 and
j3.

Dynamic Job Creation

The previous examples show a workflow being defined outside of a job. However,
Toil also allows jobs to be created dynamically within jobs. For example:

from toil.common import Toil
from toil.job import Job

def binaryStringFn(job, depth, message=""):
 if depth > 0:
 job.addChildJobFn(binaryStringFn, depth-1, message + "0")
 job.addChildJobFn(binaryStringFn, depth-1, message + "1")
 else:
 job.log("Binary string: {}".format(message))

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 toil.start(Job.wrapJobFn(binaryStringFn, depth=5))

The job function binaryStringFn logs all possible binary strings of length
n (here n=5), creating a total of 2^(n+2) - 1 jobs dynamically and
recursively. Static and dynamic creation of jobs can be mixed in a Toil
workflow, with jobs defined within a job or job function being created at
run time.

Promises

The previous example of dynamic job creation shows variables from a parent job
being passed to a child job. Such forward variable passing is naturally
specified by recursive invocation of successor jobs within parent jobs. This
can also be achieved statically by passing around references to the return
variables of jobs. In Toil this is achieved with promises, as illustrated in
the following example:

from toil.common import Toil
from toil.job import Job

def fn(job, i):
 job.log("i is: %s" % i, level=100)
 return i+1

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 j1 = Job.wrapJobFn(fn, 1)
 j2 = j1.addChildJobFn(fn, j1.rv())
 j3 = j1.addFollowOnJobFn(fn, j2.rv())

 with Toil(options) as toil:
 toil.start(j1)

Running this workflow results in three log messages from the jobs: i is 1
from j1, i is 2 from j2 and i is 3 from j3.

The return value from the first job is promised to the second job by the call
to toil.job.Job.rv() in the following line:

j2 = j1.addChildFn(fn, j1.rv())

The value of j1.rv() is a promise, rather than the actual return value of
the function, because j1 for the given input has at that point not been
evaluated. A promise (toil.job.Promise) is essentially a pointer to
for the return value that is replaced by the actual return value once it has
been evaluated. Therefore, when j2 is run the promise becomes 2.

Promises also support indexing of return values:

def parent(job):
 indexable = Job.wrapJobFn(fn)
 job.addChild(indexable)
 job.addFollowOnFn(raiseWrap, indexable.rv(2))

def raiseWrap(arg):
 raise RuntimeError(arg) # raises "2"

def fn(job):
 return (0, 1, 2, 3)

Promises can be quite useful. For example, we can combine dynamic job creation
with promises to achieve a job creation process that mimics the functional
patterns possible in many programming languages:

from toil.common import Toil
from toil.job import Job

def binaryStrings(job, depth, message=""):
 if depth > 0:
 s = [job.addChildJobFn(binaryStrings, depth-1, message + "0").rv(),
 job.addChildJobFn(binaryStrings, depth-1, message + "1").rv()]
 return job.addFollowOnFn(merge, s).rv()
 return [message]

def merge(strings):
 return strings[0] + strings[1]

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.loglevel = "OFF"
 options.clean = "always"

 with Toil(options) as toil:
 print(toil.start(Job.wrapJobFn(binaryStrings, depth=5)))

The return value l of the workflow is a list of all binary strings of
length 10, computed recursively. Although a toy example, it demonstrates how
closely Toil workflows can mimic typical programming patterns.

Promised Requirements

Promised requirements are a special case of Promises that allow a job’s
return value to be used as another job’s resource requirements.

This is useful when, for example, a job’s storage requirement is determined by a
file staged to the job store by an earlier job:

import os

from toil.common import Toil
from toil.job import Job, PromisedRequirement

def parentJob(job):
 downloadJob = Job.wrapJobFn(stageFn, "File://"+os.path.realpath(__file__), cores=0.1, memory='32M', disk='1M')
 job.addChild(downloadJob)

 analysis = Job.wrapJobFn(analysisJob, fileStoreID=downloadJob.rv(0),
 disk=PromisedRequirement(downloadJob.rv(1)))
 job.addFollowOn(analysis)

def stageFn(job, url, cores=1):
 importedFile = job.fileStore.importFile(url)
 return importedFile, importedFile.size

def analysisJob(job, fileStoreID, cores=2):
 # now do some analysis on the file
 pass

if __name__ == "__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 toil.start(Job.wrapJobFn(parentJob))

Note that this also makes use of the size attribute of the FileID object.
This promised requirements mechanism can also be used in combination with an aggregator for
multiple jobs’ output values:

def parentJob(job):
 aggregator = []
 for fileNum in range(0,10):
 downloadJob = Job.wrapJobFn(stageFn, "File://"+os.path.realpath(__file__), cores=0.1, memory='32M', disk='1M')
 job.addChild(downloadJob)
 aggregator.append(downloadJob)

 analysis = Job.wrapJobFn(analysisJob, fileStoreID=downloadJob.rv(0),
 disk=PromisedRequirement(lambda xs: sum(xs), [j.rv(1) for j in aggregator]))
 job.addFollowOn(analysis)

Limitations

Just like regular promises, the return value must be determined prior to
scheduling any job that depends on the return value. In our example above, notice
how the dependent jobs were follow ons to the parent while promising jobs are
children of the parent. This ordering ensures that all promises are
properly fulfilled.

FileID

The toil.fileStore.FileID class is a small wrapper around Python’s builtin string class. It is used to
represent a file’s ID in the file store, and has a size attribute that is the
file’s size in bytes. This object is returned by importFile and writeGlobalFile.

Managing files within a workflow

It is frequently the case that a workflow will want to create files, both
persistent and temporary, during its run. The
toil.fileStores.abstractFileStore.AbstractFileStore class is used by
jobs to manage these files in a manner that guarantees cleanup and resumption
on failure.

The toil.job.Job.run() method has a file store instance as an argument.
The following example shows how this can be used to create temporary files that
persist for the length of the job, be placed in a specified local disk of the
node and that will be cleaned up, regardless of failure, when the job finishes:

from toil.common import Toil
from toil.job import Job

class LocalFileStoreJob(Job):
 def run(self, fileStore):
 # self.TempDir will always contain the name of a directory within the allocated disk space reserved for the job
 scratchDir = self.tempDir

 # Similarly create a temporary file.
 scratchFile = fileStore.getLocalTempFile()

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 # Create an instance of FooJob which will have at least 2 gigabytes of storage space.
 j = LocalFileStoreJob(disk="2G")

 #Run the workflow
 with Toil(options) as toil:
 toil.start(j)

Job functions can also access the file store for the job. The equivalent of the
LocalFileStoreJob class is

def localFileStoreJobFn(job):
 scratchDir = job.tempDir
 scratchFile = job.fileStore.getLocalTempFile()

Note that the fileStore attribute is accessed as an attribute of the
job argument.

In addition to temporary files that exist for the duration of a job, the file
store allows the creation of files in a global store, which persists during
the workflow and are globally accessible (hence the name) between jobs. For
example:

import os

from toil.common import Toil
from toil.job import Job

def globalFileStoreJobFn(job):
 job.log("The following example exercises all the methods provided"
 " by the toil.fileStores.abstractFileStore.AbstractFileStore class")

 # Create a local temporary file.
 scratchFile = job.fileStore.getLocalTempFile()

 # Write something in the scratch file.
 with open(scratchFile, 'w') as fH:
 fH.write("What a tangled web we weave")

 # Write a copy of the file into the file-store; fileID is the key that can be used to retrieve the file.
 # This write is asynchronous by default
 fileID = job.fileStore.writeGlobalFile(scratchFile)

 # Write another file using a stream; fileID2 is the
 # key for this second file.
 with job.fileStore.writeGlobalFileStream(cleanup=True) as (fH, fileID2):
 fH.write(b"Out brief candle")

 # Now read the first file; scratchFile2 is a local copy of the file that is read-only by default.
 scratchFile2 = job.fileStore.readGlobalFile(fileID)

 # Read the second file to a desired location: scratchFile3.
 scratchFile3 = os.path.join(job.tempDir, "foo.txt")
 job.fileStore.readGlobalFile(fileID2, userPath=scratchFile3)

 # Read the second file again using a stream.
 with job.fileStore.readGlobalFileStream(fileID2) as fH:
 print(fH.read()) #This prints "Out brief candle"

 # Delete the first file from the global file-store.
 job.fileStore.deleteGlobalFile(fileID)

 # It is unnecessary to delete the file keyed by fileID2 because we used the cleanup flag,
 # which removes the file after this job and all its successors have run (if the file still exists)

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 toil.start(Job.wrapJobFn(globalFileStoreJobFn))

The example demonstrates the global read, write and delete functionality of the
file-store, using both local copies of the files and streams to read and write
the files. It covers all the methods provided by the file store interface.

What is obvious is that the file-store provides no functionality to update an
existing “global” file, meaning that files are, barring deletion, immutable.
Also worth noting is that there is no file system hierarchy for files in the
global file store. These limitations allow us to fairly easily support
different object stores and to use caching to limit the amount of network file
transfer between jobs.

Staging of Files into the Job Store

External files can be imported into or exported out of the job store prior to
running a workflow when the toil.common.Toil context manager is used
on the leader. The context manager provides methods
toil.common.Toil.importFile(), and toil.common.Toil.exportFile()
for this purpose. The destination and source locations of such files are
described with URLs passed to the two methods. A list of the currently
supported URLs can be found at
toil.jobStores.abstractJobStore.AbstractJobStore.importFile(). To import
an external file into the job store as a shared file, pass the optional
sharedFileName parameter to that method.

If a workflow fails for any reason an imported file acts as any other file in
the job store. If the workflow was configured such that it not be cleaned up on
a failed run, the file will persist in the job store and needs not be staged
again when the workflow is resumed.

Example:

import os

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
 def __init__(self, id):
 Job.__init__(self, memory="2G", cores=2, disk="3G")
 self.inputFileID = id

 def run(self, fileStore):
 with fileStore.readGlobalFileStream(self.inputFileID, encoding='utf-8') as fi:
 with fileStore.writeGlobalFileStream(encoding='utf-8') as (fo, outputFileID):
 fo.write(fi.read() + 'World!')
 return outputFileID

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 if not toil.options.restart:
 ioFileDirectory = os.path.join(os.path.dirname(os.path.abspath(__file__)), "stagingExampleFiles")
 inputFileID = toil.importFile("file://" + os.path.abspath(os.path.join(ioFileDirectory, "in.txt")))
 outputFileID = toil.start(HelloWorld(inputFileID))
 else:
 outputFileID = toil.restart()

 toil.exportFile(outputFileID, "file://" + os.path.abspath(os.path.join(ioFileDirectory, "out.txt")))

Using Docker Containers in Toil

Docker containers are commonly used with Toil. The combination of Toil and Docker
allows for pipelines to be fully portable between any platform that has both Toil
and Docker installed. Docker eliminates the need for the user to do any other tool
installation or environment setup.

In order to use Docker containers with Toil, Docker must be installed on all
workers of the cluster. Instructions for installing Docker can be found on the
Docker [https://docs.docker.com/engine/getstarted/step_one/] website.

When using Toil-based autoscaling, Docker will be automatically set up
on the cluster’s worker nodes, so no additional installation steps are necessary.
Further information on using Toil-based autoscaling can be found in the Running a Workflow with Autoscaling
documentation.

In order to use docker containers in a Toil workflow, the container can be built
locally or downloaded in real time from an online docker repository like Quay. If
the container is not in a repository, the container’s layers must be accessible on
each node of the cluster.

When invoking docker containers from within a Toil workflow, it is strongly
recommended that you use dockerCall(), a toil job function provided in
toil.lib.docker. dockerCall leverages docker’s own python API,
and provides container cleanup on job failure. When docker containers are
run without this feature, failed jobs can result in resource leaks. Docker’s
API can be found at docker-py [https://docker-py.readthedocs.io/en/stable/].

In order to use dockerCall, your installation of Docker must be set up to run
without sudo. Instructions for setting this up can be found here [https://docs.docker.com/engine/installation/linux/ubuntulinux/#/create-a-docker-group].

An example of a basic dockerCall is below:

dockerCall(job=job,
 tool='quay.io/ucsc_cgl/bwa',
 workDir=job.tempDir,
 parameters=['index', '/data/reference.fa'])

Note the assumption that reference.fa file is located in /data. This is Toil’s
standard convention as a mount location to reduce boilerplate when calling dockerCall.
Users can choose their own mount locations by supplying a volumes kwarg to dockerCall,
such as: volumes={working_dir: {‘bind’: ‘/data’, ‘mode’: ‘rw’}}, where working_dir
is an absolute path on the user’s filesystem.

dockerCall can also be added to workflows like any other job function:

import os

from toil.common import Toil
from toil.job import Job
from toil.lib.docker import apiDockerCall

align = Job.wrapJobFn(apiDockerCall,
 image='ubuntu',
 working_dir=os.getcwd(),
 parameters=['ls', '-lha'])

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 toil.start(align)

cgl-docker-lib [https://github.com/BD2KGenomics/cgl-docker-lib/blob/master/README.md] contains dockerCall-compatible Dockerized tools that are
commonly used in bioinformatics analysis.

The documentation provides guidelines for developing your own Docker containers
that can be used with Toil and dockerCall. In order for a container to be
compatible with dockerCall, it must have an ENTRYPOINT set to a wrapper
script, as described in cgl-docker-lib containerization standards. This can be
set by passing in the optional keyword argument, ‘entrypoint’. Example:

entrypoint=[“/bin/bash”,”-c”]

dockerCall supports currently the 75 keyword arguments found in the python
Docker API [https://docker-py.readthedocs.io/en/stable/containers.html], under the ‘run’ command.

Services

It is sometimes desirable to run services, such as a database or server,
concurrently with a workflow. The toil.job.Job.Service class provides
a simple mechanism for spawning such a service within a Toil workflow, allowing
precise specification of the start and end time of the service, and providing
start and end methods to use for initialization and cleanup. The following
simple, conceptual example illustrates how services work:

from toil.common import Toil
from toil.job import Job

class DemoService(Job.Service):

 def start(self, fileStore):
 # Start up a database/service here
 # Return a value that enables another process to connect to the database
 return "loginCredentials"

 def check(self):
 # A function that if it returns False causes the service to quit
 # If it raises an exception the service is killed and an error is reported
 return True

 def stop(self, fileStore):
 # Cleanup the database here
 pass

j = Job()
s = DemoService()
loginCredentialsPromise = j.addService(s)

def dbFn(loginCredentials):
 # Use the login credentials returned from the service's start method to connect to the service
 pass

j.addChildFn(dbFn, loginCredentialsPromise)

if __name__=="__main__":
 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 toil.start(j)

In this example the DemoService starts a database in the start method,
returning an object from the start method indicating how a client job would
access the database. The service’s stop method cleans up the database, while
the service’s check method is polled periodically to check the service is alive.

A DemoService instance is added as a service of the root job j, with
resource requirements specified. The return value from
toil.job.Job.addService() is a promise to the return value of the
service’s start method. When the promised is fulfilled it will represent how to
connect to the database. The promise is passed to a child job of j, which
uses it to make a database connection. The services of a job are started before
any of its successors have been run and stopped after all the successors of the
job have completed successfully.

Multiple services can be created per job, all run in parallel. Additionally,
services can define sub-services using toil.job.Job.Service.addChild().
This allows complex networks of services to be created, e.g. Apache Spark
clusters, within a workflow.

Checkpoints

Services complicate resuming a workflow after failure, because they can create
complex dependencies between jobs. For example, consider a service that
provides a database that multiple jobs update. If the database service fails
and loses state, it is not clear that just restarting the service will allow
the workflow to be resumed, because jobs that created that state may have
already finished. To get around this problem Toil supports checkpoint jobs,
specified as the boolean keyword argument checkpoint to a job or wrapped
function, e.g.:

j = Job(checkpoint=True)

A checkpoint job is rerun if one or more of its successors fails its retry
attempts, until it itself has exhausted its retry attempts. Upon restarting a
checkpoint job all its existing successors are first deleted, and then the job
is rerun to define new successors. By checkpointing a job that defines a
service, upon failure of the service the database and the jobs that access the
service can be redefined and rerun.

To make the implementation of checkpoint jobs simple, a job can only be a
checkpoint if when first defined it has no successors, i.e. it can only define
successors within its run method.

Encapsulation

Let A be a root job potentially with children and follow-ons. Without an
encapsulated job the simplest way to specify a job B which runs after A
and all its successors is to create a parent of A, call it Ap, and then
make B a follow-on of Ap. e.g.:

from toil.common import Toil
from toil.job import Job

if __name__=="__main__":
 # A is a job with children and follow-ons, for example:
 A = Job()
 A.addChild(Job())
 A.addFollowOn(Job())

 # B is a job which needs to run after A and its successors
 B = Job()

 # The way to do this without encapsulation is to make a parent of A, Ap, and make B a follow-on of Ap.
 Ap = Job()
 Ap.addChild(A)
 Ap.addFollowOn(B)

 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 print(toil.start(Ap))

An encapsulated job E(A) of A saves making Ap, instead we can
write:

from toil.common import Toil
from toil.job import Job

if __name__=="__main__":
 # A
 A = Job()
 A.addChild(Job())
 A.addFollowOn(Job())

 # Encapsulate A
 A = A.encapsulate()

 # B is a job which needs to run after A and its successors
 B = Job()

 # With encapsulation A and its successor subgraph appear to be a single job, hence:
 A.addChild(B)

 options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
 options.logLevel = "INFO"
 options.clean = "always"

 with Toil(options) as toil:
 print(toil.start(A))

Note the call to toil.job.Job.encapsulate() creates the
toil.job.Job.EncapsulatedJob.

Depending on Toil

If you are packing your workflow(s) as a pip-installable distribution on PyPI,
you might be tempted to declare Toil as a dependency in your setup.py, via
the install_requires keyword argument to setup(). Unfortunately, this
does not work, for two reasons: For one, Toil uses Setuptools’ extra
mechanism to manage its own optional dependencies. If you explicitly declared a
dependency on Toil, you would have to hard-code a particular combination of
extras (or no extras at all), robbing the user of the choice what Toil extras
to install. Secondly, and more importantly, declaring a dependency on Toil
would only lead to Toil being installed on the leader node of a cluster, but
not the worker nodes. Auto-deployment does not work here because Toil cannot
auto-deploy itself, the classic “Which came first, chicken or egg?” problem.

In other words, you shouldn’t explicitly depend on Toil. Document the
dependency instead (as in “This workflow needs Toil version X.Y.Z to be
installed”) and optionally add a version check to your setup.py. Refer to
the check_version() function in the toil-lib project’s setup.py [https://github.com/BD2KGenomics/toil-lib/blob/master/setup.py] for
an example. Alternatively, you can also just depend on toil-lib and you’ll
get that check for free.

If your workflow depends on a dependency of Toil,
consider not making that dependency explicit either. If you do, you risk a
version conflict between your project and Toil. The pip utility may
silently ignore that conflict, breaking either Toil or your workflow. It is
safest to simply assume that Toil installs that dependency for you. The only
downside is that you are locked into the exact version of that dependency that
Toil declares. But such is life with Python, which, unlike Java, has no means
of dependencies belonging to different software components within the same
process, and whose favored software distribution utility is incapable [https://github.com/pypa/pip/issues/988] of
properly resolving overlapping dependencies and detecting conflicts.

Best Practices for Dockerizing Toil Workflows

Computational Genomics Lab [https://cgl.genomics.ucsc.edu/]’s Dockstore [https://dockstore.org/docs] based production system provides workflow authors a
way to run Dockerized versions of their pipeline in an automated, scalable fashion. To be compatible
with this system of a workflow should meet the following requirements. In addition
to the Docker container, a common workflow language descriptor file [https://dockstore.org/docs/getting-started-with-cwl] is needed. For inputs:

	Only command line arguments should be used for configuring the workflow. If
the workflow relies on a configuration file, like Toil-RNAseq [https://github.com/BD2KGenomics/toil-rnaseq] or ProTECT [https://github.com/BD2KGenomics/protect], a
wrapper script inside the Docker container can be used to parse the CLI and
generate the necessary configuration file.

	All inputs to the pipeline should be explicitly enumerated rather than implicit.
For example, don’t rely on one FASTQ read’s path to discover the location of its
pair. This is necessary since all inputs are mapped to their own isolated directories
when the Docker is called via Dockstore.

	All inputs must be documented in the CWL descriptor file. Examples of this file can be seen in
both Toil-RNAseq [https://github.com/BD2KGenomics/toil-rnaseq] and ProTECT [https://github.com/BD2KGenomics/protect].

For outputs:

	All outputs should be written to a local path rather than S3.

	Take care to package outputs in a local and user-friendly way. For example,
don’t tar up all output if there are specific files that will care to see individually.

	All output file names should be deterministic and predictable. For example,
don’t prepend the name of an output file with PASS/FAIL depending on the outcome
of the pipeline.

	All outputs must be documented in the CWL descriptor file. Examples of this file can be seen in
both Toil-RNAseq [https://github.com/BD2KGenomics/toil-rnaseq] and ProTECT [https://github.com/BD2KGenomics/protect].

Toil Class API

The Toil class configures and starts a Toil run.

	
class toil.common.Toil(options)[source]

	A context manager that represents a Toil workflow, specifically the batch system, job store,
and its configuration.

	
__init__(options)[source]

	Initialize a Toil object from the given options. Note that this is very light-weight and
that the bulk of the work is done when the context is entered.

	Parameters

	options (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – command line options specified by the user

	
config = None

	
	Type

	toil.common.Config

	
start(rootJob)[source]

	Invoke a Toil workflow with the given job as the root for an initial run. This method
must be called in the body of a with Toil(...) as toil: statement. This method should
not be called more than once for a workflow that has not finished.

	Parameters

	rootJob (toil.job.Job) – The root job of the workflow

	Returns

	The root job’s return value

	
restart()[source]

	Restarts a workflow that has been interrupted.

	Returns

	The root job’s return value

	
classmethod getJobStore(locator)[source]

	Create an instance of the concrete job store implementation that matches the given locator.

	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) – The location of the job store to be represent by the instance

	Returns

	an instance of a concrete subclass of AbstractJobStore

	Return type

	toil.jobStores.abstractJobStore.AbstractJobStore

	
static createBatchSystem(config)[source]

	Creates an instance of the batch system specified in the given config.

	Parameters

	config (toil.common.Config) – the current configuration

	Return type

	batchSystems.abstractBatchSystem.AbstractBatchSystem

	Returns

	an instance of a concrete subclass of AbstractBatchSystem

	
importFile(srcUrl, sharedFileName=None, symlink=False)[source]

	Imports the file at the given URL into job store.

See toil.jobStores.abstractJobStore.AbstractJobStore.importFile() for a
full description

	
exportFile(jobStoreFileID, dstUrl)[source]

	Exports file to destination pointed at by the destination URL.

See toil.jobStores.abstractJobStore.AbstractJobStore.exportFile() for a
full description

	
static getToilWorkDir(configWorkDir: Optional[str] = None) → str[source]

	Returns a path to a writable directory under which per-workflow
directories exist. This directory is always required to exist on a
machine, even if the Toil worker has not run yet. If your workers and
leader have different temp directories, you may need to set
TOIL_WORKDIR.

	Parameters

	configWorkDir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Value passed to the program using the –workDir flag

	Returns

	Path to the Toil work directory, constant across all machines

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod getLocalWorkflowDir(workflowID, configWorkDir=None)[source]

	Returns a path to the directory where worker directories and the cache will be located
for this workflow on this machine.

	Parameters

	configWorkDir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Value passed to the program using the –workDir flag

	Returns

	Path to the local workflow directory on this machine

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
writePIDFile()[source]

	Write a the pid of this process to a file in the jobstore.

Overwriting the current contents of pid.log is a feature, not a bug of this method.
Other methods will rely on always having the most current pid available.
So far there is no reason to store any old pids.

Job Store API

The job store interface is an abstraction layer that that hides the specific details of file storage,
for example standard file systems, S3, etc. The AbstractJobStore
API is implemented to support a give file store, e.g. S3. Implement this API to support a new file store.

	
class toil.jobStores.abstractJobStore.AbstractJobStore[source]

	Represents the physical storage for the jobs and files in a Toil workflow.

JobStores are responsible for storing toil.job.JobDescription
(which relate jobs to each other) and files.

Actual toil.job.Job objects are stored in files, referenced by
JobDescriptions. All the non-file CRUD methods the JobStore provides deal
in JobDescriptions and not full, executable Jobs.

To actually get ahold of a toil.job.Job, use
toil.job.Job.loadJob() with a JobStore and the relevant JobDescription.

	
__init__() → None[source]

	Create an instance of the job store. The instance will not be fully functional until
either initialize() or resume() is invoked. Note that the destroy()
method may be invoked on the object with or without prior invocation of either of these two
methods.

	
initialize(config: toil.common.Config) → None[source]

	Create the physical storage for this job store, allocate a workflow ID and persist the
given Toil configuration to the store.

	Parameters

	config (toil.common.Config) – the Toil configuration to initialize this job store
with. The given configuration will be updated with the newly allocated workflow ID.

	Raises

	JobStoreExistsException – if the physical storage for this job store already exists

	
writeConfig() → None[source]

	Persists the value of the AbstractJobStore.config attribute to the
job store, so that it can be retrieved later by other instances of this class.

	
resume() → None[source]

	Connect this instance to the physical storage it represents and load the Toil configuration
into the AbstractJobStore.config attribute.

	Raises

	NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

	
config

	The Toil configuration associated with this job store.

	Return type

	toil.common.Config

	
setRootJob(rootJobStoreID: toil.fileStores.FileID) → None[source]

	Set the root job of the workflow backed by this job store

	Parameters

	rootJobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the job to set as root

	
loadRootJob() → toil.job.JobDescription[source]

	Loads the JobDescription for the root job in the current job store.

	Raises

	toil.job.JobException – If no root job is set or if the root job doesn’t exist in
this job store

	Returns

	The root job.

	Return type

	toil.job.JobDescription

	
createRootJob(desc: toil.job.JobDescription) → toil.job.JobDescription[source]

	Create the given JobDescription and set it as the root job in this job store

	Parameters

	desc (toil.job.JobDescription) – JobDescription to save and make the root job.

	Return type

	toil.job.JobDescription

	
getRootJobReturnValue() → Any[source]

	Parse the return value from the root job.

Raises an exception if the root job hasn’t fulfilled its promise yet.

	
importFile(srcUrl: str, sharedFileName: Optional[str] = None, hardlink: bool = False, symlink: bool = False) → Optional[toil.fileStores.FileID][source]

	Imports the file at the given URL into job store. The ID of the newly imported file is
returned. If the name of a shared file name is provided, the file will be imported as
such and None is returned. If an executable file on the local filesystem is uploaded, its
executability will be preserved when it is downloaded.

Currently supported schemes are:

	
	‘s3’ for objects in Amazon S3

	e.g. s3://bucket/key

	
	‘file’ for local files

	e.g. file:///local/file/path

	
	‘http’

	e.g. http://someurl.com/path

	
	‘gs’

	e.g. gs://bucket/file

	Parameters

	
	srcUrl (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL that points to a file or object in the storage mechanism of a
supported URL scheme e.g. a blob in an AWS s3 bucket.

	sharedFileName (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional name to assign to the imported file within the job store

	Returns

	The jobStoreFileID of the imported file or None if sharedFileName was given

	Return type

	toil.fileStores.FileID or None [https://docs.python.org/3/library/constants.html#None]

	
exportFile(jobStoreFileID: toil.fileStores.FileID, dstUrl: str) → None[source]

	Exports file to destination pointed at by the destination URL. The exported file will be
executable if and only if it was originally uploaded from an executable file on the
local filesystem.

Refer to AbstractJobStore.importFile() documentation for currently supported URL schemes.

Note that the helper method _exportFile is used to read from the source and write to
destination. To implement any optimizations that circumvent this, the _exportFile method
should be overridden by subclasses of AbstractJobStore.

	Parameters

	
	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) – The id of the file in the job store that should be exported.

	dstUrl (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL that points to a file or object in the storage mechanism of a
supported URL scheme e.g. a blob in an AWS s3 bucket.

	
classmethod getSize(url: urllib.parse.ParseResult) → None[source]

	Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

	Parameters

	url (urlparse.ParseResult) – URL that points to a file or object in the storage
mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.

	
destroy() → None[source]

	The inverse of initialize(), this method deletes the physical storage represented
by this instance. While not being atomic, this method is at least idempotent,
as a means to counteract potential issues with eventual consistency exhibited by the
underlying storage mechanisms. This means that if the method fails (raises an exception),
it may (and should be) invoked again. If the underlying storage mechanism is eventually
consistent, even a successful invocation is not an ironclad guarantee that the physical
storage vanished completely and immediately. A successful invocation only guarantees that
the deletion will eventually happen. It is therefore recommended to not immediately reuse
the same job store location for a new Toil workflow.

	
getEnv() → Dict[str, str][source]

	Returns a dictionary of environment variables that this job store requires to be set in
order to function properly on a worker.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str],str [https://docs.python.org/3/library/stdtypes.html#str]]

	
clean(jobCache: Optional[Dict[str, toil.job.JobDescription]] = None) → toil.job.JobDescription[source]

	Function to cleanup the state of a job store after a restart.
Fixes jobs that might have been partially updated. Resets the try counts and removes jobs
that are not successors of the current root job.

	Parameters

	jobCache (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str],toil.job.JobDescription]) – if a value it must be a dict
from job ID keys to JobDescription object values. Jobs will be loaded from the cache
(which can be downloaded from the job store in a batch) instead of piecemeal when
recursed into.

	Return type

	toil.job.JobDescription

	
assignID(jobDescription: toil.job.JobDescription) → None[source]

	Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created or updated.

	Parameters

	jobDescription (toil.job.JobDescription) – The JobDescription to give an ID to

	
batch() → Iterator[None][source]

	If supported by the batch system, calls to create() with this context
manager active will be performed in a batch after the context manager
is released.

	
create(jobDescription: toil.job.JobDescription) → toil.job.JobDescription[source]

	Writes the given JobDescription to the job store. The job must have an ID assigned already.

	Returns

	The JobDescription passed.

	Return type

	toil.job.JobDescription

	
exists(jobStoreID: str) → bool[source]

	Indicates whether a description of the job with the specified jobStoreID exists in the job store

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
getPublicUrl(fileName: str) → str[source]

	Returns a publicly accessible URL to the given file in the job store. The returned URL may
expire as early as 1h after its been returned. Throw an exception if the file does not
exist.

	Parameters

	fileName (str [https://docs.python.org/3/library/stdtypes.html#str]) – the jobStoreFileID of the file to generate a URL for

	Raises

	NoSuchFileException – if the specified file does not exist in this job store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
getSharedPublicUrl(sharedFileName: str) → str[source]

	Differs from getPublicUrl() in that this method is for generating URLs for shared
files written by writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL
starts with ‘http:’, ‘https:’ or ‘file:’. The returned URL may expire as early as 1h
after its been returned. Throw an exception if the file does not exist.

	Parameters

	sharedFileName (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the shared file to generate a publically accessible url for.

	Raises

	NoSuchFileException – raised if the specified file does not exist in the store

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
load(jobStoreID: str) → toil.job.JobDescription[source]

	Loads the description of the job referenced by the given ID, assigns it
the job store’s config, and returns it.

May declare the job to have failed (see
toil.job.JobDescription.setupJobAfterFailure()) if there is
evidence of a failed update attempt.

	Parameters

	jobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the job to load

	Raises

	NoSuchJobException – if there is no job with the given ID

	Return type

	toil.job.JobDescription

	
update(jobDescription: toil.job.JobDescription) → None[source]

	Persists changes to the state of the given JobDescription in this store atomically.

	Parameters

	job (toil.job.JobDescription) – the job to write to this job store

	
delete(jobStoreID: str) → None[source]

	Removes the JobDescription from the store atomically. You may not then
subsequently call load(), write(), update(), etc. with the same
jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job
will succeed silently.

	Parameters

	jobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the job to delete from this job store

	
jobs() → Iterator[toil.job.JobDescription][source]

	Best effort attempt to return iterator on JobDescriptions for all jobs
in the store. The iterator may not return all jobs and may also contain
orphaned jobs that have already finished successfully and should not be
rerun. To guarantee you get any and all jobs that can be run instead
construct a more expensive ToilState object

	Returns

	Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may contain
invalid jobs

	Return type

	Iterator[toil.job.jobDescription]

	
writeFile(localFilePath: str, jobStoreID: Optional[str] = None, cleanup: bool = False) → str[source]

	Takes a file (as a path) and places it in this job store. Returns an ID that can be used
to retrieve the file at a later time. The file is written in a atomic manner. It will
not appear in the jobStore until the write has successfully completed.

	Parameters

	
	localFilePath (str [https://docs.python.org/3/library/stdtypes.html#str]) – the path to the local file that will be uploaded to the job store.
The last path component (basename of the file) will remain
associated with the file in the file store, if supported, so
that the file can be searched for by name or name glob.

	jobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

	Returns

	an ID referencing the newly created file and can be used to read the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
writeFileStream(jobStoreID: Optional[str] = None, cleanup: bool = False, basename: Optional[str] = None, encoding: Optional[str] = None, errors: Optional[str] = None) → Iterator[Tuple[IO[bytes], str]][source]

	Similar to writeFile, but returns a context manager yielding a tuple of
1) a file handle which can be written to and 2) the ID of the resulting
file in the job store. The yielded file handle does not need to and
should not be closed explicitly. The file is written in a atomic manner.
It will not appear in the jobStore until the write has successfully
completed.

	Parameters

	
	jobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

	Returns

	a context manager yielding a file handle which can be written to and an ID that references
the newly created file and can be used to read the file in the future.

	Return type

	Iterator[Tuple[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
getEmptyFileStoreID(jobStoreID: Optional[str] = None, cleanup: bool = False, basename: Optional[str] = None) → str[source]

	Creates an empty file in the job store and returns its ID.
Call to fileExists(getEmptyFileStoreID(jobStoreID)) will return True.

	Parameters

	
	jobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of a job, or None. If specified, the may be associated
with that job in a job-store-specific way. This may influence the returned ID.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to delete the file when the job
whose jobStoreID was given as jobStoreID is deleted with
jobStore.delete(job). If jobStoreID was not given, does nothing.

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the implementation, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	Returns

	a jobStoreFileID that references the newly created file and can be used to reference the
file in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
readFile(jobStoreFileID: str, localFilePath: str, symlink: bool = False) → None[source]

	Copies or hard links the file referenced by jobStoreFileID to the given
local file path. The version will be consistent with the last copy of
the file written/updated. If the file in the job store is later
modified via updateFile or updateFileStream, it is
implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not
appear in the local file system until the copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

	Parameters

	
	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to be copied

	localFilePath (str [https://docs.python.org/3/library/stdtypes.html#str]) – the local path indicating where to place the contents of the
given file in the job store

	symlink (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the reader can tolerate a symlink. If set to true, the job
store may create a symlink instead of a full copy of the file or a hard link.

	
readFileStream(jobStoreFileID: str, encoding: Optional[str] = None, errors: Optional[str] = None) → Iterator[Union[_io.BytesIO, TextIO]][source]

	Similar to readFile, but returns a context manager yielding a file handle which can be
read from. The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to get a readable file handle for

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same as
for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Returns

	a context manager yielding a file handle which can be read from

	Return type

	Iterator[Union[BytesIO, TextIO]]

	
deleteFile(jobStoreFileID: str) → None[source]

	Deletes the file with the given ID from this job store. This operation is idempotent, i.e.
deleting a file twice or deleting a non-existent file will succeed silently.

	Parameters

	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the file to delete

	
fileExists(jobStoreFileID: str) → bool[source]

	Determine whether a file exists in this job store.

	Parameters

	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) – an ID referencing the file to be checked

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
getFileSize(jobStoreFileID: str) → int[source]

	Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of
file sizes, since the encrypted file may have been padded to the
nearest block, augmented with an initialization vector, etc.

	Parameters

	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) – an ID referencing the file to be checked

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
updateFile(jobStoreFileID: str, localFilePath: str) → None[source]

	Replaces the existing version of a file in the job store. Throws an exception if the file
does not exist.

	Parameters

	
	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the file in the job store to be updated

	localFilePath (str [https://docs.python.org/3/library/stdtypes.html#str]) – the local path to a file that will overwrite the current version
in the job store

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchFileException – if the specified file does not exist

	
updateFileStream(jobStoreFileID: str, encoding: Optional[str] = None, errors: Optional[str] = None) → None[source]

	Replaces the existing version of a file in the job store. Similar to writeFile, but
returns a context manager yielding a file handle which can be written to. The
yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the file in the job store to be updated

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	
	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	NoSuchFileException – if the specified file does not exist

	
writeSharedFileStream(sharedFileName: str, isProtected: Optional[bool] = None, encoding: Optional[str] = None, errors: Optional[str] = None) → Iterator[IO[bytes]][source]

	Returns a context manager yielding a writable file handle to the global file referenced
by the given name. File will be created in an atomic manner.

	Parameters

	
	sharedFileName (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	isProtected (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the file must be encrypted, None if it may be encrypted or
False if it must be stored in the clear.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to encode the file. Encodings are the same
as for encode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	a context manager yielding a writable file handle

	Return type

	Iterator[IO[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
readSharedFileStream(sharedFileName: str, encoding: Optional[str] = None, errors: Optional[str] = None) → Iterator[_io.BytesIO][source]

	Returns a context manager yielding a readable file handle to the global file referenced
by the given name.

	Parameters

	
	sharedFileName (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file name matching AbstractJobStore.fileNameRegex, unique within
this job store

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same
as for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	Returns

	a context manager yielding a readable file handle

	Return type

	Iterator[BytesIO]

	
writeStatsAndLogging(statsAndLoggingString: str) → None[source]

	Adds the given statistics/logging string to the store of statistics info.

	Parameters

	statsAndLoggingString (str [https://docs.python.org/3/library/stdtypes.html#str]) – the string to be written to the stats file

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	
readStatsAndLogging(callback: Callable[[...], Any], readAll: bool = False) → int[source]

	Reads stats/logging strings accumulated by the writeStatsAndLogging() method. For each
stats/logging string this method calls the given callback function with an open,
readable file handle from which the stats string can be read. Returns the number of
stats/logging strings processed. Each stats/logging string is only processed once unless
the readAll parameter is set, in which case the given callback will be invoked for all
existing stats/logging strings, including the ones from a previous invocation of this
method.

	Parameters

	
	callback (Callable) – a function to be applied to each of the stats file handles found

	readAll (bool [https://docs.python.org/3/library/functions.html#bool]) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

	Raises

	ConcurrentFileModificationException – if the file was modified concurrently during
an invocation of this method

	Returns

	the number of stats files processed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Toil Job API

Functions to wrap jobs and return values (promises).

FunctionWrappingJob

The subclass of Job for wrapping user functions.

	
class toil.job.FunctionWrappingJob(userFunction, *args, **kwargs)[source]

	Job used to wrap a function. In its run method the wrapped function is called.

	
__init__(userFunction, *args, **kwargs)[source]

	
	Parameters

	userFunction (callable) – The function to wrap. It will be called with *args and
**kwargs as arguments.

The keywords memory, cores, disk, preemptable and checkpoint are
reserved keyword arguments that if specified will be used to determine the resources
required for the job, as toil.job.Job.__init__(). If they are keyword arguments to
the function they will be extracted from the function definition, but may be overridden
by the user (as you would expect).

	
run(fileStore)[source]

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore (toil.fileStores.abstractFileStore.AbstractFileStore) – Used to create local and
globally sharable temporary files and to send log messages to the leader
process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

JobFunctionWrappingJob

The subclass of FunctionWrappingJob for wrapping user job functions.

	
class toil.job.JobFunctionWrappingJob(userFunction, *args, **kwargs)[source]

	A job function is a function whose first argument is a Job
instance that is the wrapping job for the function. This can be used to
add successor jobs for the function and perform all the functions the
Job class provides.

To enable the job function to get access to the
toil.fileStores.abstractFileStore.AbstractFileStore instance (see
toil.job.Job.run()), it is made a variable of the wrapping job called
fileStore.

To specify a job’s resource requirements the following default keyword arguments
can be specified:

	memory

	disk

	cores

For example to wrap a function into a job we would call:

Job.wrapJobFn(myJob, memory='100k', disk='1M', cores=0.1)

	
run(fileStore)[source]

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore (toil.fileStores.abstractFileStore.AbstractFileStore) – Used to create local and
globally sharable temporary files and to send log messages to the leader
process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

EncapsulatedJob

The subclass of Job for encapsulating a job, allowing a subgraph of jobs to be treated as a single job.

	
class toil.job.EncapsulatedJob(job, unitName=None)[source]

	A convenience Job class used to make a job subgraph appear to be a single job.

Let A be the root job of a job subgraph and B be another job we’d like to run after A
and all its successors have completed, for this use encapsulate:

Job A and subgraph, Job B
A, B = A(), B()
Aprime = A.encapsulate()
Aprime.addChild(B)
B will run after A and all its successors have completed, A and its subgraph of
successors in effect appear to be just one job.

If the job being encapsulated has predecessors (e.g. is not the root job), then the encapsulated
job will inherit these predecessors. If predecessors are added to the job being encapsulated
after the encapsulated job is created then the encapsulating job will NOT inherit these
predecessors automatically. Care should be exercised to ensure the encapsulated job has the
proper set of predecessors.

The return value of an encapsulatd job (as accessed by the toil.job.Job.rv() function)
is the return value of the root job, e.g. A().encapsulate().rv() and A().rv() will resolve to
the same value after A or A.encapsulate() has been run.

	
__init__(job, unitName=None)[source]

	
	Parameters

	
	job (toil.job.Job) – the job to encapsulate.

	unitName (str [https://docs.python.org/3/library/stdtypes.html#str]) – human-readable name to identify this job instance.

	
addChild(childJob)[source]

	Adds childJob to be run as child of this job. Child jobs will be run directly after this job’s toil.job.Job.run() method has completed.

	Parameters

	childJob (toil.job.Job) –

	Returns

	childJob

	Return type

	toil.job.Job

	
addService(service, parentService=None)[source]

	Add a service.

The toil.job.Job.Service.start() method of the service will be called
after the run method has completed but before any successors are run.
The service’s toil.job.Job.Service.stop() method will be called once
the successors of the job have been run.

Services allow things like databases and servers to be started and accessed
by jobs in a workflow.

	Raises

	toil.job.JobException – If service has already been made the child of a job or another service.

	Parameters

	
	service (toil.job.Job.Service) – Service to add.

	parentService (toil.job.Job.Service) – Service that will be started before ‘service’ is
started. Allows trees of services to be established. parentService must be a service
of this job.

	Returns

	a promise that will be replaced with the return value from
toil.job.Job.Service.start() of service in any successor of the job.

	Return type

	toil.job.Promise

	
addFollowOn(followOnJob)[source]

	Adds a follow-on job, follow-on jobs will be run after the child jobs and their successors have been run.

	Parameters

	followOnJob (toil.job.Job) –

	Returns

	followOnJob

	Return type

	toil.job.Job

	
rv(*path)[source]

	Creates a promise (toil.job.Promise) representing a return value of the job’s
run method, or, in case of a function-wrapping job, the wrapped function’s return value.

	Parameters

	path ((Any)) – Optional path for selecting a component of the promised return value.
If absent or empty, the entire return value will be used. Otherwise, the first
element of the path is used to select an individual item of the return value. For
that to work, the return value must be a list, dictionary or of any other type
implementing the __getitem__() magic method. If the selected item is yet another
composite value, the second element of the path can be used to select an item from
it, and so on. For example, if the return value is [6,{‘a’:42}], .rv(0) would
select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3. To
select a slice from a return value that is slicable, e.g. tuple or list, the path
element should be a slice object. For example, assuming that the return value is
[6, 7, 8, 9] then .rv(slice(1, 3)) would select [7, 8]. Note that slicing
really only makes sense at the end of path.

	Returns

	A promise representing the return value of this jobs toil.job.Job.run()
method.

	Return type

	toil.job.Promise

	
prepareForPromiseRegistration(jobStore)[source]

	Ensure that a promise by this job (the promissor) can register with the promissor when
another job referring to the promise (the promissee) is being serialized. The promissee
holds the reference to the promise (usually as part of the the job arguments) and when it
is being pickled, so will the promises it refers to. Pickling a promise triggers it to be
registered with the promissor.

	Returns

	

Promise

The class used to reference return values of jobs/services not yet run/started.

	
class toil.job.Promise(job, path)[source]

	References a return value from a toil.job.Job.run() or
toil.job.Job.Service.start() method as a promise before the method itself is run.

Let T be a job. Instances of Promise (termed a promise) are returned by T.rv(),
which is used to reference the return value of T’s run function. When the promise is passed
to the constructor (or as an argument to a wrapped function) of a different, successor job
the promise will be replaced by the actual referenced return value. This mechanism allows a
return values from one job’s run method to be input argument to job before the former job’s
run function has been executed.

	
filesToDelete = {}

	A set of IDs of files containing promised values when we know we won’t need them anymore

	
__init__(job, path)[source]

	
	Parameters

	
	job (Job) – the job whose return value this promise references

	path – see Job.rv()

	
class toil.job.PromisedRequirement(valueOrCallable, *args)[source]

	
	
__init__(valueOrCallable, *args)[source]

	Class for dynamically allocating job function resource requirements involving
toil.job.Promise instances.

Use when resource requirements depend on the return value of a parent function.
PromisedRequirements can be modified by passing a function that takes the
Promise as input.

For example, let f, g, and h be functions. Then a Toil workflow can be
defined as follows::
A = Job.wrapFn(f)
B = A.addChildFn(g, cores=PromisedRequirement(A.rv())
C = B.addChildFn(h, cores=PromisedRequirement(lambda x: 2*x, B.rv()))

	Parameters

	
	valueOrCallable – A single Promise instance or a function that
takes args as input parameters.

	args (int [https://docs.python.org/3/library/functions.html#int] or Promise) – variable length argument list

	
getValue()[source]

	Returns PromisedRequirement value

	
static convertPromises(kwargs)[source]

	Returns True if reserved resource keyword is a Promise or
PromisedRequirement instance. Converts Promise instance
to PromisedRequirement.

	Parameters

	kwargs – function keyword arguments

	Returns

	bool

Job Methods API

Jobs are the units of work in Toil which are composed into workflows.

	
class toil.job.Job(memory=None, cores=None, disk=None, preemptable=None, unitName='', checkpoint=False, displayName='', descriptionClass=None)[source]

	Class represents a unit of work in toil.

	
__init__(memory=None, cores=None, disk=None, preemptable=None, unitName='', checkpoint=False, displayName='', descriptionClass=None)[source]

	This method must be called by any overriding constructor.

	Parameters

	
	memory (int [https://docs.python.org/3/library/functions.html#int] or string convertible by toil.lib.conversions.human2bytes to an int) – the maximum number of bytes of memory the job will require to run.

	cores (float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], or string convertible by toil.lib.conversions.human2bytes to an int) – the number of CPU cores required.

	disk (int [https://docs.python.org/3/library/functions.html#int] or string convertible by toil.lib.conversions.human2bytes to an int) – the amount of local disk space required by the job, expressed in bytes.

	preemptable (bool [https://docs.python.org/3/library/functions.html#bool], int in {0, 1}, or string in {'false', 'true'} in any case) – if the job can be run on a preemptable node.

	unitName (str [https://docs.python.org/3/library/stdtypes.html#str]) – Human-readable name for this instance of the job.

	checkpoint (bool [https://docs.python.org/3/library/functions.html#bool]) – if any of this job’s successor jobs completely fails,
exhausting all their retries, remove any successor jobs and rerun this job to restart the
subtree. Job must be a leaf vertex in the job graph when initially defined, see
toil.job.Job.checkNewCheckpointsAreCutVertices().

	displayName (str [https://docs.python.org/3/library/stdtypes.html#str]) – Human-readable job type display name.

	descriptionClass (class) – Override for the JobDescription class used to describe the job.

	
jobStoreID

	Get the ID of this Job.

	Return type

	str|toil.job.TemporaryID

	
description

	Expose the JobDescription that describes this job.

	Return type

	toil.job.JobDescription

	
disk

	The maximum number of bytes of disk the job will require to run.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
memory

	The maximum number of bytes of memory the job will require to run.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
cores

	
The number of CPU cores required.

	Return type

	int|float

	
preemptable

	Whether the job can be run on a preemptable node.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
checkpoint

	Determine if the job is a checkpoint job or not.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
assignConfig(config)[source]

	Assign the given config object to be used by various actions
implemented inside the Job class.

	Parameters

	config (toil.common.Config) – Config object to query

	
run(fileStore)[source]

	Override this function to perform work and dynamically create successor jobs.

	Parameters

	fileStore (toil.fileStores.abstractFileStore.AbstractFileStore) – Used to create local and
globally sharable temporary files and to send log messages to the leader
process.

	Returns

	The return value of the function can be passed to other jobs by means of
toil.job.Job.rv().

	
addChild(childJob)[source]

	Adds childJob to be run as child of this job. Child jobs will be run directly after this job’s toil.job.Job.run() method has completed.

	Parameters

	childJob (toil.job.Job) –

	Returns

	childJob

	Return type

	toil.job.Job

	
hasChild(childJob)[source]

	Check if childJob is already a child of this job.

	Parameters

	childJob (toil.job.Job) –

	Returns

	True if childJob is a child of the job, else False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
addFollowOn(followOnJob)[source]

	Adds a follow-on job, follow-on jobs will be run after the child jobs and their successors have been run.

	Parameters

	followOnJob (toil.job.Job) –

	Returns

	followOnJob

	Return type

	toil.job.Job

	
hasPredecessor(job: toil.job.Job) → bool[source]

	Check if a given job is already a predecessor of this job.

	
hasFollowOn(followOnJob)[source]

	Check if given job is already a follow-on of this job.

	Parameters

	followOnJob (toil.job.Job) –

	Returns

	True if the followOnJob is a follow-on of this job, else False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
addService(service, parentService=None)[source]

	Add a service.

The toil.job.Job.Service.start() method of the service will be called
after the run method has completed but before any successors are run.
The service’s toil.job.Job.Service.stop() method will be called once
the successors of the job have been run.

Services allow things like databases and servers to be started and accessed
by jobs in a workflow.

	Raises

	toil.job.JobException – If service has already been made the child of a job or another service.

	Parameters

	
	service (toil.job.Job.Service) – Service to add.

	parentService (toil.job.Job.Service) – Service that will be started before ‘service’ is
started. Allows trees of services to be established. parentService must be a service
of this job.

	Returns

	a promise that will be replaced with the return value from
toil.job.Job.Service.start() of service in any successor of the job.

	Return type

	toil.job.Promise

	
hasService(service)[source]

	Returns True if the given Service is a service of this job, and False otherwise.

	
addChildFn(fn, *args, **kwargs)[source]

	Adds a function as a child job.

	Parameters

	fn – Function to be run as a child job with *args and **kwargs as arguments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new child job that wraps fn.

	Return type

	toil.job.FunctionWrappingJob

	
addFollowOnFn(fn, *args, **kwargs)[source]

	Adds a function as a follow-on job.

	Parameters

	fn – Function to be run as a follow-on job with *args and **kwargs as arguments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new follow-on job that wraps fn.

	Return type

	toil.job.FunctionWrappingJob

	
addChildJobFn(fn, *args, **kwargs)[source]

	Adds a job function as a child job. See toil.job.JobFunctionWrappingJob
for a definition of a job function.

	Parameters

	fn – Job function to be run as a child job with *args and **kwargs as arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new child job that wraps fn.

	Return type

	toil.job.JobFunctionWrappingJob

	
addFollowOnJobFn(fn, *args, **kwargs)[source]

	Add a follow-on job function. See toil.job.JobFunctionWrappingJob
for a definition of a job function.

	Parameters

	fn – Job function to be run as a follow-on job with *args and **kwargs as arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new follow-on job that wraps fn.

	Return type

	toil.job.JobFunctionWrappingJob

	
tempDir

	Shortcut to calling job.fileStore.getLocalTempDir(). Temp dir is created on first call
and will be returned for first and future calls
:return: Path to tempDir. See job.fileStore.getLocalTempDir
:rtype: str

	
log(text, level=20)[source]

	convenience wrapper for fileStore.logToMaster()

	
static wrapFn(fn, *args, **kwargs)[source]

	Makes a Job out of a function. Convenience function for constructor of toil.job.FunctionWrappingJob.

	Parameters

	fn – Function to be run with *args and **kwargs as arguments. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new function that wraps fn.

	Return type

	toil.job.FunctionWrappingJob

	
static wrapJobFn(fn, *args, **kwargs)[source]

	Makes a Job out of a job function. Convenience function for constructor of toil.job.JobFunctionWrappingJob.

	Parameters

	fn – Job function to be run with *args and **kwargs as arguments. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource requirements.

	Returns

	The new job function that wraps fn.

	Return type

	toil.job.JobFunctionWrappingJob

	
encapsulate(name=None)[source]

	Encapsulates the job, see toil.job.EncapsulatedJob.
Convenience function for constructor of toil.job.EncapsulatedJob.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Human-readable name for the encapsulated job.

	Returns

	an encapsulated version of this job.

	Return type

	toil.job.EncapsulatedJob

	
rv(*path)[source]

	Creates a promise (toil.job.Promise) representing a return value of the job’s
run method, or, in case of a function-wrapping job, the wrapped function’s return value.

	Parameters

	path ((Any)) – Optional path for selecting a component of the promised return value.
If absent or empty, the entire return value will be used. Otherwise, the first
element of the path is used to select an individual item of the return value. For
that to work, the return value must be a list, dictionary or of any other type
implementing the __getitem__() magic method. If the selected item is yet another
composite value, the second element of the path can be used to select an item from
it, and so on. For example, if the return value is [6,{‘a’:42}], .rv(0) would
select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3. To
select a slice from a return value that is slicable, e.g. tuple or list, the path
element should be a slice object. For example, assuming that the return value is
[6, 7, 8, 9] then .rv(slice(1, 3)) would select [7, 8]. Note that slicing
really only makes sense at the end of path.

	Returns

	A promise representing the return value of this jobs toil.job.Job.run()
method.

	Return type

	toil.job.Promise

	
prepareForPromiseRegistration(jobStore)[source]

	Ensure that a promise by this job (the promissor) can register with the promissor when
another job referring to the promise (the promissee) is being serialized. The promissee
holds the reference to the promise (usually as part of the the job arguments) and when it
is being pickled, so will the promises it refers to. Pickling a promise triggers it to be
registered with the promissor.

	Returns

	

	
checkJobGraphForDeadlocks()[source]

	Ensures that a graph of Jobs (that hasn’t yet been saved to the
JobStore) doesn’t contain any pathological relationships between jobs
that would result in deadlocks if we tried to run the jobs.

See toil.job.Job.checkJobGraphConnected(),
toil.job.Job.checkJobGraphAcyclic() and
toil.job.Job.checkNewCheckpointsAreLeafVertices() for more info.

	Raises

	toil.job.JobGraphDeadlockException – if the job graph
is cyclic, contains multiple roots or contains checkpoint jobs that are
not leaf vertices when defined (see toil.job.Job.checkNewCheckpointsAreLeaves()).

	
getRootJobs() → Set[toil.job.Job][source]

	Returns the set of root job objects that contain this job.
A root job is a job with no predecessors (i.e. which are not children, follow-ons, or services).

Only deals with jobs created here, rather than loaded from the job store.

	
checkJobGraphConnected()[source]

	
	Raises

	toil.job.JobGraphDeadlockException – if toil.job.Job.getRootJobs() does not contain exactly one root job.

As execution always starts from one root job, having multiple root jobs will cause a deadlock to occur.

Only deals with jobs created here, rather than loaded from the job store.

	
checkJobGraphAcylic()[source]

	
	Raises

	toil.job.JobGraphDeadlockException – if the connected component of jobs containing this job contains any cycles of child/followOn dependencies in the augmented job graph (see below). Such cycles are not allowed in valid job graphs.

A follow-on edge (A, B) between two jobs A and B is equivalent to adding a child edge to B from (1) A, (2) from each child of A, and (3) from the successors of each child of A. We call each such edge an edge an “implied” edge. The augmented job graph is a job graph including all the implied edges.

For a job graph G = (V, E) the algorithm is O(|V|^2). It is O(|V| + |E|) for a graph with no follow-ons. The former follow-on case could be improved!

Only deals with jobs created here, rather than loaded from the job store.

	
checkNewCheckpointsAreLeafVertices()[source]

	A checkpoint job is a job that is restarted if either it fails, or if any of its successors completely fails, exhausting their retries.

A job is a leaf it is has no successors.

A checkpoint job must be a leaf when initially added to the job graph. When its run method is invoked it can then create direct successors. This restriction is made
to simplify implementation.

Only works on connected components of jobs not yet added to the JobStore.

	Raises

	toil.job.JobGraphDeadlockException – if there exists a job being added to the graph for which checkpoint=True and which is not a leaf.

	
defer(function, *args, **kwargs)[source]

	Register a deferred function, i.e. a callable that will be invoked after the current
attempt at running this job concludes. A job attempt is said to conclude when the job
function (or the toil.job.Job.run() method for class-based jobs) returns, raises an
exception or after the process running it terminates abnormally. A deferred function will
be called on the node that attempted to run the job, even if a subsequent attempt is made
on another node. A deferred function should be idempotent because it may be called
multiple times on the same node or even in the same process. More than one deferred
function may be registered per job attempt by calling this method repeatedly with
different arguments. If the same function is registered twice with the same or different
arguments, it will be called twice per job attempt.

Examples for deferred functions are ones that handle cleanup of resources external to
Toil, like Docker containers, files outside the work directory, etc.

	Parameters

	
	function (callable) – The function to be called after this job concludes.

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – The arguments to the function

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The keyword arguments to the function

	
getTopologicalOrderingOfJobs()[source]

	
	Returns

	a list of jobs such that for all pairs of indices i, j for which i < j, the job at index i can be run before the job at index j.

Only considers jobs in this job’s subgraph that are newly added, not loaded from the job store.

Ignores service jobs.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][Job]

	
saveBody(jobStore)[source]

	Save the execution data for just this job to the JobStore, and fill in
the JobDescription with the information needed to retrieve it.

The Job’s JobDescription must have already had a real jobStoreID assigned to it.

Does not save the JobDescription.

	Parameters

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The job store
to save the job body into.

	
saveAsRootJob(jobStore)[source]

	Save this job to the given jobStore as the root job of the workflow.

	Parameters

	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –

	Returns

	the JobDescription describing this job.

	
classmethod loadJob(jobStore, jobDescription)[source]

	Retrieves a toil.job.Job instance from a JobStore

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – The job store.

	jobDescription (toil.job.JobDescription) – the JobDescription of the job to retrieve.

	Returns

	The job referenced by the JobDescription.

	Return type

	toil.job.Job

Job.Runner API

The Runner contains the methods needed to configure and start a Toil run.

	
class Job.Runner[source]

	Used to setup and run Toil workflow.

	
static getDefaultArgumentParser()[source]

	Get argument parser with added toil workflow options.

	Returns

	The argument parser used by a toil workflow with added Toil options.

	Return type

	argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	
static getDefaultOptions(jobStore)[source]

	Get default options for a toil workflow.

	Parameters

	jobStore (string) – A string describing the jobStore for the workflow.

	Returns

	The options used by a toil workflow.

	Return type

	argparse.ArgumentParser values object

	
static addToilOptions(parser)[source]

	Adds the default toil options to an optparse [https://docs.python.org/3/library/optparse.html#module-optparse] or argparse [https://docs.python.org/3/library/argparse.html#module-argparse]
parser object.

	Parameters

	parser (optparse.OptionParser [https://docs.python.org/3/library/optparse.html#optparse.OptionParser] or argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) – Options object to add toil options to.

	
static startToil(job, options)[source]

	Deprecated by toil.common.Toil.start. Runs the toil workflow using the given options
(see Job.Runner.getDefaultOptions and Job.Runner.addToilOptions) starting with this
job.
:param toil.job.Job job: root job of the workflow
:raises: toil.leader.FailedJobsException if at the end of function their remain failed jobs.
:return: The return value of the root job’s run function.
:rtype: Any

job.fileStore API

The AbstractFileStore is an abstraction of a Toil run’s shared storage.

	
class toil.fileStores.abstractFileStore.AbstractFileStore(jobStore: toil.jobStores.abstractJobStore.AbstractJobStore, jobDesc: toil.job.JobDescription, localTempDir: str, waitForPreviousCommit: Callable[[], None])[source]

	Interface used to allow user code run by Toil to read and write files.

Also provides the interface to other Toil facilities used by user code,
including:

	normal (non-real-time) logging

	finding the correct temporary directory for scratch work

	importing and exporting files into and out of the workflow

Stores user files in the jobStore, but keeps them separate from actual
jobs.

May implement caching.

Passed as argument to the toil.job.Job.run() method.

Access to files is only permitted inside the context manager provided by
toil.fileStores.abstractFileStore.AbstractFileStore.open().

Also responsible for committing completed jobs back to the job store with
an update operation, and allowing that commit operation to be waited for.

	
__init__(jobStore: toil.jobStores.abstractJobStore.AbstractJobStore, jobDesc: toil.job.JobDescription, localTempDir: str, waitForPreviousCommit: Callable[[], None]) → None[source]

	Create a new file store object.

	Parameters

	
	jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) – the job store
in use for the current Toil run.

	jobDesc (toil.job.JobDescription) – the JobDescription object for the currently
running job.

	localTempDir (str [https://docs.python.org/3/library/stdtypes.html#str]) – the per-worker local temporary directory, under which
per-job directories will be created. Assumed to be inside the
workflow directory, which is assumed to be inside the work directory.

	waitForPreviousCommit – the waitForCommit method of the previous job’s file
store, when jobs are running in sequence on the same worker. Used to
prevent this file store’s startCommit and the previous job’s
startCommit methods from running at the same time and racing. If
they did race, it might be possible for the later job to be fully
marked as completed in the job store before the eralier job was.

	
static shutdownFileStore(workflowDir, workflowID)[source]

	Carry out any necessary filestore-specific cleanup.

This is a destructive operation and it is important to ensure that there are no other running
processes on the system that are modifying or using the file store for this workflow.

This is the intended to be the last call to the file store in a Toil run, called by the
batch system cleanup function upon batch system shutdown.

	Parameters

	
	workflowDir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the cache directory

	workflowID (str [https://docs.python.org/3/library/stdtypes.html#str]) – The workflow ID for this invocation of the workflow

	
open(job: toil.job.Job) → Generator[None, None, None][source]

	The context manager used to conduct tasks prior-to, and after a job has
been run. File operations are only permitted inside the context
manager.

Implementations must only yield from within with super().open(job):.

	Parameters

	job (toil.job.Job) – The job instance of the toil job to run.

	
getLocalTempDir()[source]

	Get a new local temporary directory in which to write files that persist for the duration of
the job.

	Returns

	The absolute path to a new local temporary directory. This directory will exist
for the duration of the job only, and is guaranteed to be deleted once the job
terminates, removing all files it contains recursively.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
getLocalTempFile()[source]

	Get a new local temporary file that will persist for the duration of the job.

	Returns

	The absolute path to a local temporary file. This file will exist for the
duration of the job only, and is guaranteed to be deleted once the job terminates.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
getLocalTempFileName()[source]

	Get a valid name for a new local file. Don’t actually create a file at the path.

	Returns

	Path to valid file

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
writeGlobalFile(localFileName, cleanup=False)[source]

	Takes a file (as a path) and uploads it to the job store. If the file
is in a FileStore-managed temporary directory (i.e. from
toil.fileStores.abstractFileStore.AbstractFileStore.getLocalTempDir()),
it will become a local copy of the file, eligible for deletion by
toil.fileStores.abstractFileStore.AbstractFileStore.deleteLocalFile().

If an executable file on the local filesystem is uploaded, its executability will
be preserved when it is downloaded again.

	Parameters

	
	localFileName (string) – The path to the local file to upload. The
last path component (basename of the file) will remain
associated with the file in the file store, if supported by the
backing JobStore, so that the file can be searched for by name
or name glob.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – if True then the copy of the global file will be deleted once the
job and all its successors have completed running. If not the global file must be
deleted manually.

	Returns

	an ID that can be used to retrieve the file.

	Return type

	toil.fileStores.FileID

	
writeGlobalFileStream(cleanup=False, basename=None, encoding=None, errors=None)[source]

	Similar to writeGlobalFile, but allows the writing of a stream to the job store.
The yielded file handle does not need to and should not be closed explicitly.

	Parameters

	
	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same as
for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – is as in toil.fileStores.abstractFileStore.AbstractFileStore.writeGlobalFile().

	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – If supported by the backing JobStore, use the given
file basename so that when searching the job store with a query
matching that basename, the file will be detected.

	Returns

	A context manager yielding a tuple of
1) a file handle which can be written to and
2) the toil.fileStores.FileID of the resulting file in the job store.

	
logAccess(fileStoreID: Union[toil.fileStores.FileID, str], destination: Optional[str] = None)[source]

	Record that the given file was read by the job, to be announced if the
job fails. If destination is not None, it gives the path that the file
was downloaded to. Otherwise, assumes that the file was streamed.

Must be called by readGlobalFile() and readGlobalFileStream()
implementations.

	
readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=False, symlink=False)[source]

	Makes the file associated with fileStoreID available locally. If mutable is True,
then a copy of the file will be created locally so that the original is not modified
and does not change the file for other jobs. If mutable is False, then a link can
be created to the file, saving disk resources. The file that is downloaded will be
executable if and only if it was originally uploaded from an executable file on the
local filesystem.

If a user path is specified, it is used as the destination. If a user path isn’t
specified, the file is stored in the local temp directory with an encoded name.

The destination file must not be deleted by the user; it can only be
deleted through deleteLocalFile.

Implementations must call logAccess() to report the download.

	Parameters

	
	or str fileStoreID (toil.fileStores.FileID) – job store id for the file

	userPath (string) – a path to the name of file to which the global file will be copied
or hard-linked (see below).

	cache (bool [https://docs.python.org/3/library/functions.html#bool]) – Described in toil.fileStores.CachingFileStore.readGlobalFile()

	mutable (bool [https://docs.python.org/3/library/functions.html#bool]) – Described in toil.fileStores.CachingFileStore.readGlobalFile()

	Returns

	An absolute path to a local, temporary copy of the file keyed by fileStoreID.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
readGlobalFileStream(fileStoreID, encoding=None, errors=None)[source]

	Similar to readGlobalFile, but allows a stream to be read from the job store. The yielded
file handle does not need to and should not be closed explicitly.

	Parameters

	
	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the encoding used to decode the file. Encodings are the same as
for decode(). Defaults to None which represents binary mode.

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string that specifies how encoding errors are to be handled. Errors
are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Implementations must call logAccess() to report the download.

	Returns

	a context manager yielding a file handle which can be read from.

	
getGlobalFileSize(fileStoreID)[source]

	Get the size of the file pointed to by the given ID, in bytes.

If a FileID or something else with a non-None ‘size’ field, gets that.

Otherwise, asks the job store to poll the file’s size.

Note that the job store may overestimate the file’s size, for example
if it is encrypted and had to be augmented with an IV or other
encryption framing.

	Parameters

	or str fileStoreID (toil.fileStores.FileID) – File ID for the file

	Returns

	File’s size in bytes, as stored in the job store

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
deleteLocalFile(fileStoreID)[source]

	Deletes local copies of files associated with the provided job store ID.

Raises an OSError with an errno of errno.ENOENT if no such local copies
exist. Thus, cannot be called multiple times in succession.

The files deleted are all those previously read from this file ID via
readGlobalFile by the current job into the job’s file-store-provided
temp directory, plus the file that was written to create the given file
ID, if it was written by the current job from the job’s
file-store-provided temp directory.

	Parameters

	or str fileStoreID (toil.fileStores.FileID) – File Store ID of the file to be deleted.

	
deleteGlobalFile(fileStoreID)[source]

	Deletes local files with the provided job store ID and then permanently deletes them from
the job store. To ensure that the job can be restarted if necessary, the delete will not
happen until after the job’s run method has completed.

	Parameters

	or str fileStoreID (toil.fileStores.FileID) – the File Store ID of the file to be deleted.

	
logToMaster(text: str, level: int = 20) → None[source]

	Send a logging message to the leader. The message will also be logged by the worker at the same level.

	Parameters

	
	text – The string to log.

	level (int [https://docs.python.org/3/library/functions.html#int]) – The logging level.

	
startCommit(jobState=False)[source]

	Update the status of the job on the disk.

May start an asynchronous process. Call waitForCommit() to wait on that process.

	Parameters

	jobState (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, commit the state of the FileStore’s job,
and file deletes. Otherwise, commit only file creates/updates.

	
waitForCommit()[source]

	Blocks while startCommit is running. This function is called by this job’s
successor to ensure that it does not begin modifying the job store until after this job has
finished doing so.

Might be called when startCommit is never called on a particular
instance, in which case it does not block.

	Returns

	Always returns True

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
classmethod shutdown(dir_)[source]

	Shutdown the filestore on this node.

This is intended to be called on batch system shutdown.

	Parameters

	dir – The implementation-specific directory containing the required information for
shutting down the file store and removing all its state and all job local temp
directories from the node.

	
class toil.fileStores.FileID(fileStoreID, size, executable=False)[source]

	A small wrapper around Python’s builtin string class. It is used to represent a file’s ID in the file store, and
has a size attribute that is the file’s size in bytes. This object is returned by importFile and writeGlobalFile.

Calls into the file store can use bare strings; size will be queried from the job store if unavailable in the ID.

	
__init__(fileStoreID, size, executable=False)[source]

	Initialize self. See help(type(self)) for accurate signature.

	
pack()[source]

	Pack the FileID into a string so it can be passed through external code.

	
classmethod unpack(packedFileStoreID)[source]

	Unpack the result of pack() into a FileID object.

Batch System API

The batch system interface is used by Toil to abstract over different ways of running
batches of jobs, for example Slurm, GridEngine, Mesos, Parasol and a single node. The
toil.batchSystems.abstractBatchSystem.AbstractBatchSystem API is implemented to
run jobs using a given job management system, e.g. Mesos.

Batch System Enivronmental Variables

Environmental variables allow passing of scheduler specific parameters.

For SLURM:

export TOIL_SLURM_ARGS="-t 1:00:00 -q fatq"

For TORQUE there are two environment variables - one for everything but the resource
requirements, and another - for resources requirements (without the -l prefix):

export TOIL_TORQUE_ARGS="-q fatq"
export TOIL_TORQUE_REQS="walltime=1:00:00"

For GridEngine (SGE, UGE), there is an additional environmental variable to define the
parallel environment [http://www.softpanorama.org/HPC/Grid_engine/parallel_environment.shtml#Important_details]
for running multicore jobs:

export TOIL_GRIDENGINE_PE='smp'
export TOIL_GRIDENGINE_ARGS='-q batch.q'

For HTCondor, additional parameters can be included in the submit file passed to condor_submit:

export TOIL_HTCONDOR_PARAMS='requirements = TARGET.has_sse4_2 == true; accounting_group = test'

The environment variable is parsed as a semicolon-separated string of parameter = value pairs.

Batch System API

	
class toil.batchSystems.abstractBatchSystem.AbstractBatchSystem[source]

	An abstract (as far as Python currently allows) base class to represent the interface the batch
system must provide to Toil.

	
classmethod supportsAutoDeployment()[source]

	Whether this batch system supports auto-deployment of the user script itself. If it does,
the setUserScript() can be invoked to set the resource object representing the user
script.

Note to implementors: If your implementation returns True here, it should also override

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
classmethod supportsWorkerCleanup()[source]

	Indicates whether this batch system invokes
BatchSystemSupport.workerCleanup() after the last job for a
particular workflow invocation finishes. Note that the term worker
refers to an entire node, not just a worker process. A worker process
may run more than one job sequentially, and more than one concurrent
worker process may exist on a worker node, for the same workflow. The
batch system is said to shut down after the last worker process
terminates.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
setUserScript(userScript)[source]

	Set the user script for this workflow. This method must be called before the first job is
issued to this batch system, and only if supportsAutoDeployment() returns True,
otherwise it will raise an exception.

	Parameters

	userScript (toil.resource.Resource) – the resource object representing the user script
or module and the modules it depends on.

	
issueBatchJob(jobDesc)[source]

	Issues a job with the specified command to the batch system and returns a unique jobID.

:param jobDesc a toil.job.JobDescription

	Returns

	a unique jobID that can be used to reference the newly issued job

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
killBatchJobs(jobIDs)[source]

	Kills the given job IDs. After returning, the killed jobs will not
appear in the results of getRunningBatchJobIDs. The killed job will not
be returned from getUpdatedBatchJob.

	Parameters

	jobIDs (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]) – list of IDs of jobs to kill

	
getIssuedBatchJobIDs()[source]

	Gets all currently issued jobs

	Returns

	A list of jobs (as jobIDs) currently issued (may be running, or may be
waiting to be run). Despite the result being a list, the ordering should not
be depended upon.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
getRunningBatchJobIDs()[source]

	Gets a map of jobs as jobIDs that are currently running (not just waiting)
and how long they have been running, in seconds.

	Returns

	dictionary with currently running jobID keys and how many seconds they have
been running as the value

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][int [https://docs.python.org/3/library/functions.html#int],float [https://docs.python.org/3/library/functions.html#float]]

	
getUpdatedBatchJob(maxWait)[source]

	Returns information about job that has updated its status (i.e. ceased
running, either successfully or with an error). Each such job will be
returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they
may cause None to be returned earlier than maxWait.

	Parameters

	maxWait (float [https://docs.python.org/3/library/functions.html#float]) – the number of seconds to block, waiting for a result

	Return type

	UpdatedBatchJobInfo or None [https://docs.python.org/3/library/constants.html#None]

	Returns

	If a result is available, returns UpdatedBatchJobInfo.
Otherwise it returns None. wallTime is the number of seconds (a strictly
positive float) in wall-clock time the job ran for, or None if this
batch system does not support tracking wall time.

	
getSchedulingStatusMessage()[source]

	Get a log message fragment for the user about anything that might be
going wrong in the batch system, if available.

If no useful message is available, return None.

This can be used to report what resource is the limiting factor when
scheduling jobs, for example. If the leader thinks the workflow is
stuck, the message can be displayed to the user to help them diagnose
why it might be stuck.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	Returns

	User-directed message about scheduling state.

	
shutdown()[source]

	Called at the completion of a toil invocation.
Should cleanly terminate all worker threads.

	
setEnv(name, value=None)[source]

	Set an environment variable for the worker process before it is launched. The worker
process will typically inherit the environment of the machine it is running on but this
method makes it possible to override specific variables in that inherited environment
before the worker is launched. Note that this mechanism is different to the one used by
the worker internally to set up the environment of a job. A call to this method affects
all jobs issued after this method returns. Note to implementors: This means that you
would typically need to copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

	
classmethod setOptions(setOption)[source]

	Process command line or configuration options relevant to this batch system.
The

	Parameters

	setOption – A function with signature setOption(varName, parsingFn=None, checkFn=None, default=None)
used to update run configuration

	
getWorkerContexts()[source]

	Get a list of picklable context manager objects to wrap worker work in,
in order.

Can be used to ask the Toil worker to do things in-process (such as
configuring environment variables, hot-deploying user scripts, or
cleaning up a node) that would otherwise require a wrapping “executor”
process.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Job.Service API

The Service class allows databases and servers to be spawned within a Toil workflow.

	
class Job.Service(memory=None, cores=None, disk=None, preemptable=None, unitName=None)[source]

	Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

	
__init__(memory=None, cores=None, disk=None, preemptable=None, unitName=None)[source]

	Memory, core and disk requirements are specified identically to as in toil.job.Job.__init__().

	
start(job)[source]

	Start the service.

	Parameters

	job (toil.job.Job) – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	Returns

	An object describing how to access the service. The object must be pickleable
and will be used by jobs to access the service (see toil.job.Job.addService()).

	
stop(job)[source]

	Stops the service. Function can block until complete.

	Parameters

	job (toil.job.Job) – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access
the fileStore for creating temporary files.

	
check()[source]

	Checks the service is still running.

	Raises

	exceptions.RuntimeError – If the service failed, this will cause the service job to be labeled failed.

	Returns

	True if the service is still running, else False. If False then the service job will be terminated,
and considered a success. Important point: if the service job exits due to a failure, it should raise a
RuntimeError, not return False!

Exceptions API

Toil specific exceptions.

	
exception toil.job.JobException(message)[source]

	General job exception.

	
__init__(message)[source]

	Initialize self. See help(type(self)) for accurate signature.

	
exception toil.job.JobGraphDeadlockException(string)[source]

	An exception raised in the event that a workflow contains an unresolvable dependency, such as a cycle. See toil.job.Job.checkJobGraphForDeadlocks().

	
__init__(string)[source]

	Initialize self. See help(type(self)) for accurate signature.

	
exception toil.jobStores.abstractJobStore.ConcurrentFileModificationException(jobStoreFileID: toil.fileStores.FileID)[source]

	Indicates that the file was attempted to be modified by multiple processes at once.

	
__init__(jobStoreFileID: toil.fileStores.FileID)[source]

	
	Parameters

	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the file that was modified by multiple workers
or processes concurrently

	
exception toil.jobStores.abstractJobStore.JobStoreExistsException(locator: str)[source]

	Indicates that the specified job store already exists.

	
__init__(locator: str)[source]

	
	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) – The location of the job store

	
exception toil.jobStores.abstractJobStore.NoSuchFileException(jobStoreFileID: toil.fileStores.FileID, customName: Optional[str] = None, *extra)[source]

	Indicates that the specified file does not exist.

	
__init__(jobStoreFileID: toil.fileStores.FileID, customName: Optional[str] = None, *extra)[source]

	
	Parameters

	
	jobStoreFileID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the ID of the file that was mistakenly assumed to exist

	customName (str [https://docs.python.org/3/library/stdtypes.html#str]) – optionally, an alternate name for the nonexistent file

	extra (list [https://docs.python.org/3/library/stdtypes.html#list]) – optional extra information to add to the error message

	
exception toil.jobStores.abstractJobStore.NoSuchJobException(jobStoreID: toil.fileStores.FileID)[source]

	Indicates that the specified job does not exist.

	
__init__(jobStoreID: toil.fileStores.FileID)[source]

	
	Parameters

	jobStoreID (str [https://docs.python.org/3/library/stdtypes.html#str]) – the jobStoreID that was mistakenly assumed to exist

	
exception toil.jobStores.abstractJobStore.NoSuchJobStoreException(locator: str)[source]

	Indicates that the specified job store does not exist.

	
__init__(locator: str)[source]

	
	Parameters

	locator (str [https://docs.python.org/3/library/stdtypes.html#str]) – The location of the job store

Running Tests

Test make targets, invoked as $ make <target>, subject to which
environment variables are set (see Running Integration Tests).

	TARGET

	DESCRIPTION

	test

	Invokes all tests.

	integration_test

	Invokes only the integration tests.

	test_offline

	Skips building the Docker appliance and only
invokes tests that have no docker dependencies.

	integration_test_local

	Makes integration tests easier to debug locally
by running the integration tests serially and
doesn’t redirect output. This makes it appears on
the terminal as expected.

Before running tests for the first time, initialize your virtual environment
following the steps in Building from Source.

Run all tests (including slow tests):

$ make test

Run only quick tests (as of Jul 25, 2018, this was ~ 20 minutes):

$ export TOIL_TEST_QUICK=True; make test

Run an individual test with:

$ make test tests=src/toil/test/sort/sortTest.py::SortTest::testSort

The default value for tests is "src" which includes all tests in the
src/ subdirectory of the project root. Tests that require a particular
feature will be skipped implicitly. If you want to explicitly skip tests that
depend on a currently installed feature, use

$ make test tests="-m 'not aws' src"

This will run only the tests that don’t depend on the aws extra, even if
that extra is currently installed. Note the distinction between the terms
feature and extra. Every extra is a feature but there are features that are
not extras, such as the gridengine and parasol features. To skip tests
involving both the parasol feature and the aws extra, use the following:

$ make test tests="-m 'not aws and not parasol' src"

Running Tests with pytest

Often it is simpler to use pytest directly, instead of calling the make wrapper.
This usually works as expected, but some tests need some manual preparation. To run a specific test with pytest,
use the following:

python -m pytest src/toil/test/sort/sortTest.py::SortTest::testSort

For more information, see the pytest documentation [https://docs.pytest.org/en/latest/].

Running Integration Tests

These tests are generally only run using in our CI workflow due to their resource requirements and cost. However, they
can be made available for local testing:

	Running tests that make use of Docker (e.g. autoscaling tests and Docker tests) require an appliance image to be
hosted. First, make sure you have gone through the set up found in Using Docker with Quay.
Then to build and host the appliance image run the make target push_docker.

$ make push_docker

	Running integration tests require activation via an environment variable as well as exporting information relevant to
the desired tests. Enable the integration tests:

$ export TOIL_TEST_INTEGRATIVE=True

	Finally, set the environment variables for keyname and desired zone:

$ export TOIL_X_KEYNAME=[Your Keyname]
$ export TOIL_X_ZONE=[Desired Zone]

Where X is one of our currently supported cloud providers (GCE, AWS).

	See the above sections for guidance on running tests.

Test Environment Variables

	TOIL_TEST_TEMP

	An absolute path to a directory where Toil tests
will write their temporary files. Defaults to the
system’s standard temporary directory [https://docs.python.org/2/library/tempfile.html#tempfile.gettempdir].

	TOIL_TEST_INTEGRATIVE

	If True, this allows the integration tests to
run. Only valid when running the tests from the
source directory via make test or
make test_parallel.

	TOIL_AWS_KEYNAME

	An AWS keyname (see Preparing your AWS environment), which
is required to run the AWS tests.

	TOIL_GOOGLE_PROJECTID

	A Google Cloud account projectID
(see Running in Google Compute Engine (GCE)), which is required to
to run the Google Cloud tests.

	TOIL_TEST_QUICK

	If True, long running tests are skipped.

Partial install and failing tests

Some tests may fail with an ImportError if the required extras are not installed.
Install Toil with all of the extras
do prevent such errors.

Using Docker with Quay

Docker [https://www.docker.com/products/docker] is needed for some of the tests. Follow the appropriate
installation instructions for your system on their website to get started.

When running make test you might still get the following error:

$ make test
Please set TOIL_DOCKER_REGISTRY, e.g. to quay.io/USER.

To solve, make an account with Quay [https://quay.io/] and specify it like so:

$ TOIL_DOCKER_REGISTRY=quay.io/USER make test

where USER is your Quay username.

For convenience you may want to add this variable to your bashrc by running

$ echo 'export TOIL_DOCKER_REGISTRY=quay.io/USER' >> $HOME/.bashrc

Running Mesos Tests

If you’re running Toil’s Mesos tests, be sure to create the virtualenv with
--system-site-packages to include the Mesos Python bindings. Verify this by
activating the virtualenv and running pip list | grep mesos. On macOS,
this may come up empty. To fix it, run the following:

for i in /usr/local/lib/python2.7/site-packages/*mesos*; do ln -snf $i venv/lib/python2.7/site-packages/; done

Developing with Docker

To develop on features reliant on the Toil Appliance (the docker image toil uses for AWS autoscaling), you
should consider setting up a personal registry on Quay [https://quay.io/] or Docker Hub [https://hub.docker.com/]. Because
the Toil Appliance images are tagged with the Git commit they are based on and
because only commits on our master branch trigger an appliance build on Quay,
as soon as a developer makes a commit or dirties the working copy they will no
longer be able to rely on Toil to automatically detect the proper Toil Appliance
image. Instead, developers wishing to test any appliance changes in autoscaling
should build and push their own appliance image to a personal Docker registry.
This is described in the next section.

Making Your Own Toil Docker Image

Note! Toil checks if the docker image specified by TOIL_APPLIANCE_SELF
exists prior to launching by using the docker v2 schema. This should be
valid for any major docker repository, but there is an option to override
this if desired using the option: --forceDockerAppliance.

Here is a general workflow (similar instructions apply when using Docker Hub):

	Make some changes to the provisioner of your local version of Toil

	Go to the location where you installed the Toil source code and run

$ make docker

to automatically build a docker image that can now be uploaded to
your personal Quay [https://quay.io/] account. If you have not installed Toil source
code yet see Building from Source.

	If it’s not already you will need Docker installed and need
to log into Quay [https://docs.quay.io/solution/getting-started.html]. Also you will want to make sure that your Quay
account is public.

	Set the environment variable TOIL_DOCKER_REGISTRY to your Quay
account. If you find yourself doing this often you may want to add

export TOIL_DOCKER_REGISTRY=quay.io/<MY_QUAY_USERNAME>

to your .bashrc or equivalent.

	Now you can run

$ make push_docker

which will upload the docker image to your Quay account. Take note of
the image’s tag for the next step.

	Finally you will need to tell Toil from where to pull the Appliance
image you’ve created (it uses the Toil release you have installed by
default). To do this set the environment variable
TOIL_APPLIANCE_SELF to the url of your image. For more info see
Environment Variables.

	Now you can launch your cluster! For more information see
Running a Workflow with Autoscaling.

Running a Cluster Locally

The Toil Appliance container can also be useful as a test environment since it
can simulate a Toil cluster locally. An important caveat for this is autoscaling,
since autoscaling will only work on an EC2 instance and cannot (at this time) be
run on a local machine.

To spin up a local cluster, start by using the following Docker run command to launch
a Toil leader container:

docker run \
 --entrypoint=mesos-master \
 --net=host \
 -d \
 --name=leader \
 --volume=/home/jobStoreParentDir:/jobStoreParentDir \
 quay.io/ucsc_cgl/toil:3.6.0 \
 --registry=in_memory \
 --ip=127.0.0.1 \
 --port=5050 \
 --allocation_interval=500ms

A couple notes on this command: the -d flag tells Docker to run in daemon mode so
the container will run in the background. To verify that the container is running you
can run docker ps to see all containers. If you want to run your own container
rather than the official UCSC container you can simply replace the
quay.io/ucsc_cgl/toil:3.6.0 parameter with your own container name.

Also note that we are not mounting the job store directory itself, but rather the location
where the job store will be written. Due to complications with running Docker on MacOS, I
recommend only mounting directories within your home directory. The next command will
launch the Toil worker container with similar parameters:

docker run \
 --entrypoint=mesos-slave \
 --net=host \
 -d \
 --name=worker \
 --volume=/home/jobStoreParentDir:/jobStoreParentDir \
 quay.io/ucsc_cgl/toil:3.6.0 \
 --work_dir=/var/lib/mesos \
 --master=127.0.0.1:5050 \
 --ip=127.0.0.1 \
 —-attributes=preemptable:False \
 --resources=cpus:2

Note here that we are specifying 2 CPUs and a non-preemptable worker. We can
easily change either or both of these in a logical way. To change the number
of cores we can change the 2 to whatever number you like, and to
change the worker to be preemptable we change preemptable:False to
preemptable:True. Also note that the same volume is mounted into the
worker. This is needed since both the leader and worker write and read
from the job store. Now that your cluster is running, you can run

docker exec -it leader bash

to get a shell in your leader ‘node’. You can also replace the leader parameter
with worker to get shell access in your worker.

Docker-in-Docker issues

If you want to run Docker inside this Docker cluster (Dockerized tools, perhaps),
you should also mount in the Docker socket via -v /var/run/docker.sock:/var/run/docker.sock.
This will give the Docker client inside the Toil Appliance access to the Docker engine
on the host. Client/engine version mismatches have been known to cause issues, so we
recommend using Docker version 1.12.3 on the host to be compatible with the Docker
client installed in the Appliance. Finally, be careful where you write files inside
the Toil Appliance - ‘child’ Docker containers launched in the Appliance will actually
be siblings to the Appliance since the Docker engine is located on the host. This
means that the ‘child’ container can only mount in files from the Appliance if
the files are located in a directory that was originally mounted into the Appliance
from the host - that way the files are accessible to the sibling container. Note:
if Docker can’t find the file/directory on the host it will silently fail and mount
in an empty directory.

Maintainer’s Guidelines

In general, as developers and maintainers of the code, we adhere to the following guidelines:

	We strive to never break the build on master. All development should be done
on branches, in either the main Toil repository or in developers’ forks.

	Pull requests should be used for any and all changes (except truly trivial
ones).

	Pull requests should be in response to issues. If you find yourself making a
pull request without an issue, you should create the issue first.

Naming Conventions

	Commit messages should be great [https://chris.beams.io/posts/git-commit/#seven-rules]. Most importantly, they must:

	Have a short subject line. If in need of more space, drop down two lines
and write a body to explain what is changing and why it has to change.

	Write the subject line as a command: Destroy all humans,
not All humans destroyed.

	Reference the issue being fixed in a Github-parseable format, such as
(resolves #1234) at the end of the subject line, or This will fix #1234.
somewhere in the body. If no single commit on its own fixes the issue, the
cross-reference must appear in the pull request title or body instead.

	Branches in the main Toil repository must start with issues/,
followed by the issue number (or numbers, separated by a dash), followed by a
short, lowercase, hyphenated description of the change. (There can be many open
pull requests with their associated branches at any given point in time and
this convention ensures that we can easily identify branches.)

Say there is an issue numbered #123 titled Foo does not work. The branch name
would be issues/123-fix-foo and the title of the commit would be
Fix foo in case of bar (resolves #123).

Pull Requests

	All pull requests must be reviewed by a person other than the request’s
author. Review the PR by following the Reviewing Pull Requests checklist.

	Modified pull requests must be re-reviewed before merging. Note that Github
does not enforce this!

	Merge pull requests by following the Merging Pull Requests checklist.

	When merging a pull request, make sure to update the Draft Changelog [https://github.com/DataBiosphere/toil/wiki/Draft-Changelog] on
the Github wiki, which we will use to produce the changelog for the next
release. The PR template tells you to do this, so don’t forget. New entries
should go at the bottom.

	Pull requests will not be merged unless Travis and Gitlab CI tests pass.
Gitlab tests are only run on code in the main Toil repository on some branch,
so it is the responsibility of the approving reviewer to make sure that pull
requests from outside repositories are copied to branches in the main
repository. This can be accomplished with (from a Toil clone):

./contrib/admin/test-pr theirusername their-branch issues/123-fix-description-here

This must be repeated every time the PR submitter updates their PR, after
checking to see that the update is not malicious.

If there is no issue corresponding to the PR, after which the branch can be
named, the reviewer of the PR should first create the issue.

Developers who have push access to the main Toil repository are encouraged to
make their pull requests from within the repository, to avoid this step.

	Prefer using “Squash and marge” when merging pull requests to master especially
when the PR contains a “single unit” of work (i.e. if one were to rewrite the
PR from scratch with all the fixes included, they would have one commit for
the entire PR). This makes the commit history on master more readable
and easier to debug in case of a breakage.

When squashing a PR from multiple authors, please add
Co-authored-by [https://github.blog/2018-01-29-commit-together-with-co-authors/] to give credit to all contributing authors.

See Issue #2816 [https://github.com/DataBiosphere/toil/issues/2816] for more details.

Publishing a Release

These are the steps to take to publish a Toil release:

	Determine the release version X.Y.Z. This should follow
semantic versioning [https://semver.org/]; if user-workflow-breaking changes are made, X
should be incremented, and Y and Z should be zero. If non-breaking
changes are made but new functionality is added, X should remain the same
as the last release, Y should be incremented, and Z should be zero.
If only patches are released, X and Y should be the same as the last
release and Z should be incremented.

	If it does not exist already, create a release branch in the Toil repo
named X.Y.x, where x is a literal lower-case “x”. For patch releases,
find the existing branch and make sure it is up to date with the patch
commits that are to be released. They may be cherry-picked over [https://trunkbaseddevelopment.com/branch-for-release/] from
master.

	On the release branch, edit version_template.py in the root of the
repository. Find the line that looks like this (slightly different for patch
releases):

baseVersion = 'X.Y.0a1'

Make it look like this instead:

baseVersion = 'X.Y.Z'

Commit your change to the branch.

	Tag the current state of the release branch as releases/X.Y.Z.

	Make the Github release here [https://github.com/DataBiosphere/toil/releases/new], referencing that tag. For a non-patch
release, fill in the description with the changelog from the wiki page [https://github.com/DataBiosphere/toil/wiki/Draft-Changelog],
which you should clear. For a patch release, just describe the patch.

	For a non-patch release, set up the main branch so that development
builds will declare themselves to be alpha versions of what the next release
will probably be. Edit version_template.py in the root of the repository
on the main branch to set baseVersion like this:

baseVersion = 'X.Y+1.0a1'

Make sure to replace X and Y+1 with actual numbers.

Adding Retries to a Function

See toil.lib.retry [https://github.com/DataBiosphere/toil/blob/master/src/toil/lib/retry.py] .

retry() can be used to decorate any function based on the list of errors one wishes to retry on.

This list of errors can contain normal Exception objects, and/or RetryCondition objects wrapping Exceptions to
include additional conditions.

For example, retrying on a one Exception (HTTPError):

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError])
def update_my_wallpaper():
 return get('https://www.deviantart.com/')

Or:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError, ValueError])
def update_my_wallpaper():
 return get('https://www.deviantart.com/')

The examples above will retry for the default interval on any errors specified the “errors=” arg list.

To retry on specifically 500/502/503/504 errors, you could specify an ErrorCondition object instead, for example:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
 ErrorCondition(
 error=HTTPError,
 error_codes=[500, 502, 503, 504]
)])
def update_my_wallpaper():
 return requests.get('https://www.deviantart.com/')

To retry on specifically errors containing the phrase “NotFound”:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
 ErrorCondition(
 error=HTTPError,
 error_message_must_include="NotFound"
)])
def update_my_wallpaper():
 return requests.get('https://www.deviantart.com/')

To retry on all HTTPError errors EXCEPT an HTTPError containing the phrase “NotFound”:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
 HTTPError,
 ErrorCondition(
 error=HTTPError,
 error_message_must_include="NotFound",
 retry_on_this_condition=False
)])
def update_my_wallpaper():
 return requests.get('https://www.deviantart.com/')

To retry on boto3’s specific status errors, an example of the implementation is:

import boto3
from botocore.exceptions import ClientError

@retry(errors=[
 ErrorCondition(
 error=ClientError,
 boto_error_codes=["BucketNotFound"]
)])
def boto_bucket(bucket_name):
 boto_session = boto3.session.Session()
 s3_resource = boto_session.resource('s3')
 return s3_resource.Bucket(bucket_name)

Any combination of these will also work, provided the codes are matched to the correct exceptions. A ValueError will
not return a 404, for example.

The retry function as a decorator should make retrying functions easier and clearer. It also encourages
smaller independent functions, as opposed to lumping many different things that may need to be retried on
different conditions in the same function.

The ErrorCondition object tries to take some of the heavy lifting of writing specific retry conditions
and boil it down to an API that covers all common use-cases without the user having to write
any new bespoke functions.

Use-cases covered currently:

	Retrying on a normal error, like a KeyError.

	Retrying on HTTP error codes (use ErrorCondition).

	Retrying on boto’s specific status errors, like “BucketNotFound” (use ErrorCondition).

	Retrying when an error message contains a certain phrase (use ErrorCondition).

	Explicitly NOT retrying on a condition (use ErrorCondition).

If new functionality is needed, it’s currently best practice in Toil to add
functionality to the ErrorCondition itself rather than making a new custom retry method.

Pull Request Checklists

This document contains checklists for dealing with PRs. More general PR information is available at Pull Requests.

Reviewing Pull Requests

This checklist is to be kept in sync with the checklist in the pull request template.

When reviewing a PR, do the following:

	
	 Make sure it is coming from issues/XXXX-fix-the-thing in the Toil repo, or from an external repo.

 Toil Architecture

Toil Architecture

The following diagram layouts out the software architecture of Toil.

[image: Toil's architecture is composed of the leader, the job store, the worker processes, the batch system, the node provisioner, and the stats and logging monitor.]

Figure 1: The basic components of Toil’s architecture.

	These components are described below:

	
	
	the leader:

	The leader is responsible for deciding which jobs should be run. To do this
it traverses the job graph. Currently this is a single threaded process,
but we make aggressive steps to prevent it becoming a bottleneck
(see Read-only Leader described below).

	
	the job-store:

	Handles all files shared between the components. Files in the job-store
are the means by which the state of the workflow is maintained. Each job
is backed by a file in the job store, and atomic updates to this state
are used to ensure the workflow can always be resumed upon failure. The
job-store can also store all user files, allowing them to be shared
between jobs. The job-store is defined by the
AbstractJobStore class.
Multiple implementations of this class allow Toil to support different
back-end file stores, e.g.: S3, network file systems, Google file store, etc.

	
	workers:

	The workers are temporary processes responsible for running jobs,
one at a time per worker. Each worker process is invoked with a job argument
that it is responsible for running. The worker monitors this job and reports
back success or failure to the leader by editing the job’s state in the file-store.
If the job defines successor jobs the worker may choose to immediately run them
(see Job Chaining below).

	
	the batch-system:

	Responsible for scheduling the jobs given to it by the leader, creating
a worker command for each job. The batch-system is defined by the
AbstractBatchSystem class.
Toil uses multiple existing batch systems to schedule jobs, including
Apache Mesos, GridEngine and a multi-process single node implementation
that allows workflows to be run without any of these frameworks. Toil
can therefore fairly easily be made to run a workflow using an existing
cluster.

	
	the node provisioner:

	Creates worker nodes in which the batch system schedules workers.
It is defined by the AbstractProvisioner
class.

	
	the statistics and logging monitor:

	Monitors logging and statistics produced by the workers and reports them. Uses the
job-store to gather this information.

Optimizations

Toil implements lots of optimizations designed for scalability.
Here we detail some of the key optimizations.

Read-only leader

The leader process is currently implemented as a single thread. Most of the leader’s
tasks revolve around processing the state of jobs, each stored as a file within the job-store.
To minimise the load on this thread, each worker does as much work as possible
to manage the state of the job it is running. As a result, with a couple of minor exceptions,
the leader process never needs to write or update the state of a job within the job-store.
For example, when a job is complete and has no further successors the responsible
worker deletes the job from the job-store, marking it complete. The leader then
only has to check for the existence of the file when it receives a signal from the batch-system
to know that the job is complete. This off-loading of state management is orthogonal to
future parallelization of the leader.

Job chaining

The scheduling of successor jobs is partially managed by the worker, reducing the
number of individual jobs the leader needs to process. Currently this is very
simple: if the there is a single next successor job to run and its resources fit within the
resources of the current job and closely match the resources of the current job then
the job is run immediately on the worker without returning to the leader. Further extensions
of this strategy are possible, but for many workflows which define a series of serial successors
(e.g. map sequencing reads, post-process mapped reads, etc.) this pattern is very effective
at reducing leader workload.

Preemptable node support

Critical to running at large-scale is dealing with intermittent node failures. Toil is
therefore designed to always be resumable providing the job-store does not become corrupt.
This robustness allows Toil to run on preemptible nodes, which are only available when others are not
willing to pay more to use them. Designing workflows that divide into many short individual jobs
that can use preemptable nodes allows for workflows to be efficiently scheduled and executed.

Caching

Running bioinformatic pipelines often require the passing of large datasets between jobs. Toil
caches the results from jobs such that child jobs running on the same node can directly use the same
file objects, thereby eliminating the need for an intermediary transfer to the job store. Caching
also reduces the burden on the local disks, because multiple jobs can share a single file.
The resulting drop in I/O allows pipelines to run faster, and, by the sharing of files,
allows users to run more jobs in parallel by reducing overall disk requirements.

To demonstrate the efficiency of caching, we ran an experimental internal pipeline on 3 samples from
the TCGA Lung Squamous Carcinoma (LUSC) dataset. The pipeline takes the tumor and normal exome
fastqs, and the tumor rna fastq and input, and predicts MHC presented neoepitopes in the patient
that are potential targets for T-cell based immunotherapies. The pipeline was run individually on
the samples on c3.8xlarge machines on AWS (60GB RAM,600GB SSD storage, 32 cores). The pipeline
aligns the data to hg19-based references, predicts MHC haplotypes using PHLAT, calls mutations using
2 callers (MuTect and RADIA) and annotates them using SnpEff, then predicts MHC:peptide binding
using the IEDB suite of tools before running an in-house rank boosting algorithm on the final calls.

To optimize time taken, The pipeline is written such that mutations are called on a per-chromosome
basis from the whole-exome bams and are merged into a complete vcf. Running mutect in parallel on
whole exome bams requires each mutect job to download the complete Tumor and Normal Bams to their
working directories – An operation that quickly fills the disk and limits the parallelizability of
jobs. The script was run in Toil, with and without caching, and Figure 2 shows that the workflow
finishes faster in the cached case while using less disk on average than the uncached run. We
believe that benefits of caching arising from file transfers will be much higher on magnetic
disk-based storage systems as compared to the SSD systems we tested this on.

[image: Graph outlining the efficiency gain from caching.]

Figure 2: Efficiency gain from caching. The lower half of each plot describes the disk used by
the pipeline recorded every 10 minutes over the duration of the pipeline, and the upper half
shows the corresponding stage of the pipeline that is being processed. Since jobs requesting the
same file shared the same inode, the effective load on the disk is considerably lower than in
the uncached case where every job downloads a personal copy of every file it needs. We see that
in all cases, the uncached run uses almost 300-400GB more that the cached run in the resource
heavy mutation calling step. We also see a benefit in terms of wall time for each stage since we
eliminate the time taken for file transfers.

Toil support for Common Workflow Language

The CWL document and input document are loaded using the ‘cwltool.load_tool’
module. This performs normalization and URI expansion (for example, relative
file references are turned into absolute file URIs), validates the document
against the CWL schema, initializes Python objects corresponding to major
document elements (command line tools, workflows, workflow steps), and performs
static type checking that sources and sinks have compatible types.

Input files referenced by the CWL document and input document are imported into
the Toil file store. CWL documents may use any URI scheme supported by Toil
file store, including local files and object storage.

The ‘location’ field of File references are updated to reflect the import token
returned by the Toil file store.

For directory inputs, the directory listing is stored in Directory object.
Each individual files is imported into Toil file store.

An initial workflow Job is created from the toplevel CWL document. Then,
control passes to the Toil engine which schedules the initial workflow job to
run.

When the toplevel workflow job runs, it traverses the CWL workflow and creates
a toil job for each step. The dependency graph is expressed by making
downstream jobs children of upstream jobs, and initializing the child jobs with
an input object containing the promises of output from upstream jobs.

Because Toil jobs have a single output, but CWL permits steps to have multiple
output parameters that may feed into multiple other steps, the input to a
CWLJob is expressed with an “indirect dictionary”. This is a dictionary of
input parameters, where each entry value is a tuple of a promise and a promise
key. When the job runs, the indirect dictionary is turned into a concrete
input object by resolving each promise into its actual value (which is always a
dict), and then looking up the promise key to get the actual value for the the
input parameter.

If a workflow step specifies a scatter, then a scatter job is created and
connected into the workflow graph as described above. When the scatter step
runs, it creates child jobs for each parameterizations of the scatter. A
gather job is added as a follow-on to gather the outputs into arrays.

When running a command line tool, it first creates output and temporary
directories under the Toil local temp dir. It runs the command line tool using
the single_job_executor from CWLTool, providing a Toil-specific constructor for
filesystem access, and overriding the default PathMapper to use ToilPathMapper.

The ToilPathMapper keeps track of a file’s symbolic identifier (the Toil
FileID), its local path on the host (the value returned by readGlobalFile) and
the the location of the file inside the Docker container.

After executing single_job_executor from CWLTool, it gets back the output
object and status. If the underlying job failed, raise an exception. Files
from the output object are added to the file store using writeGlobalFile and
the ‘location’ field of File references are updated to reflect the token
returned by the Toil file store.

When the workflow completes, it returns an indirect dictionary linking to the
outputs of the job steps that contribute to the final output. This is the
value returned by toil.start() or toil.restart(). This is resolved to get the
final output object. The files in this object are exported from the file store
to ‘outdir’ on the host file system, and the ‘location’ field of File
references are updated to reflect the final exported location of the output
files.

 Minimum AWS IAM permissions

Minimum AWS IAM permissions

Toil requires at least the following permissions in an IAM role to operate on a cluster.
These are added by default when launching a cluster. However, ensure that they are present
if creating a custom IAM role when launching a cluster
with the --awsEc2ProfileArn parameter.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:*",
 "s3:*",
 "sdb:*",
 "iam:PassRole"
],
 "Resource": "*"
 }
]
}

 Auto-Deployment

Auto-Deployment

If you want to run your workflow in a distributed environment, on multiple worker machines, either in the cloud or on a
bare-metal cluster, your script needs to be made available to those other machines. If your script imports other
modules, those modules also need to be made available on the workers. Toil can automatically do that for you, with a
little help on your part. We call this feature auto-deployment of a workflow.

Let’s first examine various scenarios of auto-deploying a workflow, which, as we’ll see shortly cannot be
auto-deployed. Lastly, we’ll deal with the issue of declaring Toil as a dependency of a
workflow that is packaged as a setuptools distribution.

Toil can be easily deployed to a remote host. First, assuming you’ve followed our Preparing your AWS environment section to install Toil
and use it to create a remote leader node on (in this example) AWS, you can now log into this into using
Ssh-Cluster Command and once on the remote host, create and activate a virtualenv (noting to make sure to use the
--system-site-packages option!):

$ virtualenv --system-site-packages venv
$. venv/bin/activate

Note the --system-site-packages option, which ensures that globally-installed packages are accessible inside the
virtualenv. Do not (re)install Toil after this! The --system-site-packages option has already transferred Toil and
the dependencies from your local installation of Toil for you.

From here, you can install a project and its dependencies:

$ tree
.
├── util
│ ├── __init__.py
│ └── sort
│ ├── __init__.py
│ └── quick.py
└── workflow
 ├── __init__.py
 └── main.py

3 directories, 5 files
$ pip install matplotlib
$ cp -R workflow util venv/lib/python2.7/site-packages

Ideally, your project would have a setup.py file (see setuptools [http://setuptools.readthedocs.io/en/latest/index.html]) which streamlines the installation process:

$ tree
.
├── util
│ ├── __init__.py
│ └── sort
│ ├── __init__.py
│ └── quick.py
├── workflow
│ ├── __init__.py
│ └── main.py
└── setup.py

3 directories, 6 files
$ pip install .

Or, if your project has been published to PyPI:

$ pip install my-project

In each case, we have created a virtualenv with the --system-site-packages flag in the venv subdirectory then
installed the matplotlib distribution from PyPI along with the two packages that our project consists of. (Again,
both Python and Toil are assumed to be present on the leader and all worker nodes.)

We can now run our workflow:

$ python main.py --batchSystem=mesos …

Important

If workflow’s external dependencies contain native code (i.e. are not pure
Python) then they must be manually installed on each worker.

Warning

Neither python setup.py develop nor pip install -e . can be used in
this process as, instead of copying the source files, they create .egg-link
files that Toil can’t auto-deploy. Similarly, python setup.py install
doesn’t work either as it installs the project as a Python .egg which is
also not currently supported by Toil (though it could be [https://github.com/BD2KGenomics/toil/issues/1367] in the future).

Also note that using the
--single-version-externally-managed flag with setup.py will
prevent the installation of your package as an .egg. It will also disable
the automatic installation of your project’s dependencies.

Auto Deployment with Sibling Modules

This scenario applies if the user script imports modules that are its siblings:

$ cd my_project
$ ls
userScript.py utilities.py
$./userScript.py --batchSystem=mesos …

Here userScript.py imports additional functionality from utilities.py.
Toil detects that userScript.py has sibling modules and copies them to the
workers, alongside the user script. Note that sibling modules will be
auto-deployed regardless of whether they are actually imported by the user
script–all .py files residing in the same directory as the user script will
automatically be auto-deployed.

Sibling modules are a suitable method of organizing the source code of
reasonably complicated workflows.

Auto-Deploying a Package Hierarchy

Recall that in Python, a package [https://docs.python.org/2/tutorial/modules.html#packages] is a directory containing one or more
.py files—one of which must be called __init__.py—and optionally other
packages. For more involved workflows that contain a significant amount of
code, this is the recommended way of organizing the source code. Because we use
a package hierarchy, we can’t really refer to the user script as such, we call
it the user module instead. It is merely one of the modules in the package
hierarchy. We need to inform Toil that we want to use a package hierarchy by
invoking Python’s -m option. That enables Toil to identify the entire set
of modules belonging to the workflow and copy all of them to each worker. Note
that while using the -m option is optional in the scenarios above, it is
mandatory in this one.

The following shell session illustrates this:

$ cd my_project
$ tree
.
├── utils
│ ├── __init__.py
│ └── sort
│ ├── __init__.py
│ └── quick.py
└── workflow
 ├── __init__.py
 └── main.py

3 directories, 5 files
$ python -m workflow.main --batchSystem=mesos …

Here the user module main.py does not reside in the current directory, but
is part of a package called util, in a subdirectory of the current
directory. Additional functionality is in a separate module called
util.sort.quick which corresponds to util/sort/quick.py. Because we
invoke the user module via python -m workflow.main, Toil can determine the
root directory of the hierarchy–my_project in this case–and copy all Python
modules underneath it to each worker. The -m option is documented here [https://docs.python.org/2/using/cmdline.html#cmdoption-m]

When -m is passed, Python adds the current working directory to
sys.path, the list of root directories to be considered when resolving a
module name like workflow.main. Without that added convenience we’d have to
run the workflow as PYTHONPATH="$PWD" python -m workflow.main. This also
means that Toil can detect the root directory of the user module’s package
hierarchy even if it isn’t the current working directory. In other words we
could do this:

$ cd my_project
$ export PYTHONPATH="$PWD"
$ cd /some/other/dir
$ python -m workflow.main --batchSystem=mesos …

Also note that the root directory itself must not be package, i.e. must not
contain an __init__.py.

Relying on Shared Filesystems

Bare-metal clusters typically mount a shared file system like NFS on each node.
If every node has that file system mounted at the same path, you can place your
project on that shared filesystem and run your user script from there.
Additionally, you can clone the Toil source tree into a directory on that
shared file system and you won’t even need to install Toil on every worker. Be
sure to add both your project directory and the Toil clone to PYTHONPATH. Toil
replicates PYTHONPATH from the leader to every worker.

Using a shared filesystem

Toil currently only supports a tempdir set to a local, non-shared directory.

Toil Appliance

The term Toil Appliance refers to the Mesos Docker image that Toil uses to simulate the machines in the virtual mesos
cluster. It’s easily deployed, only needs Docker, and allows for workflows to be run in single-machine mode and for
clusters of VMs to be provisioned. To specify a different image, see the Toil Environment Variables section. For more
information on the Toil Appliance, see the Running in AWS section.

 Environment Variables

Environment Variables

There are several environment variables that affect the way Toil runs.

	TOIL_CHECK_ENV

	A flag that determines whether Toil will try to
refer back to a Python virtual environment in
which it is installed when composing commands that
may be run on other hosts. If set to True, if
Toil is installed in the current virtual
environment, it will use absolute paths to its own
executables (and the virtual environment must thus
be available on at the same path on all nodes).
Otherwise, Toil internal commands such as
_toil_worker will be resolved according to the
PATH on the node where they are executed. This
setting can be useful in a shared HPC environment,
where users may have their own Toil installations
in virtual environments.

	TOIL_WORKDIR

	An absolute path to a directory where Toil will
write its temporary files. This directory must
exist on each worker node and may be set to a
different value on each worker. The --workDir
command line option overrides this. When using the
Toil docker container, such as on Kubernetes, this
defaults to /var/lib/toil. When using Toil
autoscaling with Mesos, this is somewhere inside
the Mesos sandbox. In all other cases, the
system’s standard temporary directory [https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir] is used.

	TOIL_WORKDIR_OVERRIDE

	An absolute path to a directory where Toil will
write its temporary files. This overrides
TOIL_WORKDIR and the --workDir command
line option.

	TOIL_KUBERNETES_HOST_PATH

	A path on Kubernetes hosts that will be mounted as
/tmp in the workers, to allow for shared caching.

	TOIL_KUBERNETES_OWNER

	A name prefix for easy identification of
Kubernetes jobs. If not set, Toil will use the
current user name.

	KUBE_WATCH_ENABLED

	A boolean variable that allows for users
to utilize kubernetes watch stream feature
intead of polling for running jobs. Default
value is set to False.

	TOIL_APPLIANCE_SELF

	The fully qualified reference for the Toil
Appliance you wish to use, in the form
REPO/IMAGE:TAG.
quay.io/ucsc_cgl/toil:3.6.0 and
cket/toil:3.5.0 are both examples of valid
options. Note that since Docker defaults to
Dockerhub repos, only quay.io repos need to
specify their registry.

	TOIL_DOCKER_REGISTRY

	The URL of the registry of the Toil Appliance
image you wish to use. Docker will use Dockerhub
by default, but the quay.io registry is also
very popular and easily specifiable by setting
this option to quay.io.

	TOIL_DOCKER_NAME

	The name of the Toil Appliance image you
wish to use. Generally this is simply toil but
this option is provided to override this,
since the image can be built with arbitrary names.

	TOIL_AWS_SECRET_NAME

	For the Kubernetes batch system, the name of a
Kubernetes secret which contains a credentials
file granting access to AWS resources. Will be
mounted as ~/.aws inside Kubernetes-managed
Toil containers. Enables the AWSJobStore to be
used with the Kubernetes batch system, if the
credentials allow access to S3 and SimpleDB.

	TOIL_AWS_ZONE

	The EC2 zone to provision nodes in if using
Toil’s provisioner.

	TOIL_AWS_AMI

	ID of the AMI to use in node provisioning. If in
doubt, don’t set this variable.

	TOIL_AWS_NODE_DEBUG

	Determines whether to preserve nodes that have
failed health checks. If set to True, nodes
that fail EC2 health checks won’t immediately be
terminated so they can be examined and the cause
of failure determined. If any EC2 nodes are left
behind in this manner, the security group will
also be left behind by necessity as it cannot be
deleted until all associated nodes have been
terminated.

	TOIL_GOOGLE_PROJECTID

	The Google project ID to use when generating
Google job store names for tests or CWL workflows.

	TOIL_SLURM_ARGS

	Arguments for sbatch for the slurm batch system.
Do not pass CPU or memory specifications here.
Instead, define resource requirements for the job.
There is no default value for this variable.

	TOIL_GRIDENGINE_ARGS

	Arguments for qsub for the gridengine batch
system. Do not pass CPU or memory specifications
here. Instead, define resource requirements for
the job. There is no default value for this
variable.

	TOIL_GRIDENGINE_PE

	Parallel environment arguments for qsub and for
the gridengine batch system. There is no default
value for this variable.

	TOIL_TORQUE_ARGS

	Arguments for qsub for the Torque batch system.
Do not pass CPU or memory specifications here.
Instead, define extra parameters for the job such
as queue. Example: -q medium
Use TOIL_TORQUE_REQS to pass extra values for the
-l resource requirements parameter.
There is no default value for this variable.

	TOIL_TORQUE_REQS

	Arguments for the resource requirements for Torque
batch system. Do not pass CPU or memory
specifications here. Instead, define extra resource
requirements as a string that goes after the -l
argument to qsub. Example:
walltime=2:00:00,file=50gb
There is no default value for this variable.

	TOIL_LSF_ARGS

	Additional arguments for the LSF’s bsub command.
Instead, define extra parameters for the job such
as queue. Example: -q medium.
There is no default value for this variable.

	TOIL_HTCONDOR_PARAMS

	Additional parameters to include in the HTCondor
submit file passed to condor_submit. Do not pass
CPU or memory specifications here. Instead define
extra parameters which may be required by HTCondor.
This variable is parsed as a semicolon-separated
string of parameter = value pairs. Example:
requirements = TARGET.has_sse4_2 == true;
accounting_group = test.
There is no default value for this variable.

	TOIL_CUSTOM_DOCKER_INIT_COMMAND

	Any custom bash command to run in the Toil docker
container prior to running the Toil services.
Can be used for any custom initialization in the
worker and/or primary nodes such as private docker
docker authentication. Example for AWS ECR:
pip install awscli && eval $(aws ecr get-login
--no-include-email --region us-east-1).

	TOIL_CUSTOM_INIT_COMMAND

	Any custom bash command to run prior to starting
the Toil appliance. Can be used for any custom
initialization in the worker and/or primary nodes
such as private docker authentication for the Toil
appliance itself (i.e. from TOIL_APPLIANCE_SELF).

	TOIL_S3_HOST

	the IP address or hostname to use for connecting
to S3. Example: TOIL_S3_HOST=127.0.0.1

	TOIL_S3_PORT

	a port number to use for connecting to S3.
Example: TOIL_S3_PORT=9001

	TOIL_S3_USE_SSL

	enable or disable the usage of SSL for connecting
to S3 (True by default).
Example: TOIL_S3_USE_SSL=False

	TOIL_OWNER_TAG

	This will tag cloud resources with a tag reading:
“Owner: $TOIL_OWNER_TAG”. Currently only on AWS
buckets, this is an internal UCSC flag to stop a
bot we have that terminates untagged resources.

	SINGULARITY_DOCKER_HUB_MIRROR

	An http or https URL for the Singularity wrapper
in the Toil Docker container to use as a mirror
for Docker Hub.

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (toil.common.Toil method)

 	(toil.fileStores.FileID method)

 	(toil.fileStores.abstractFileStore.AbstractFileStore method)

 	(toil.job.EncapsulatedJob method)

 	(toil.job.FunctionWrappingJob method)

 	(toil.job.Job method)

 	(toil.job.Job.Service method)

 	(toil.job.JobException method)

 	(toil.job.JobGraphDeadlockException method)

 	(toil.job.Promise method)

 	(toil.job.PromisedRequirement method)

 	(toil.jobStores.abstractJobStore.AbstractJobStore method)

 	(toil.jobStores.abstractJobStore.ConcurrentFileModificationException method)

 	(toil.jobStores.abstractJobStore.JobStoreExistsException method)

 	(toil.jobStores.abstractJobStore.NoSuchFileException method)

 	(toil.jobStores.abstractJobStore.NoSuchJobException method)

 	(toil.jobStores.abstractJobStore.NoSuchJobStoreException method)

A

 	
 	AbstractBatchSystem (class in toil.batchSystems.abstractBatchSystem)

 	AbstractFileStore (class in toil.fileStores.abstractFileStore)

 	AbstractJobStore (class in toil.jobStores.abstractJobStore)

 	addChild() (toil.job.EncapsulatedJob method)

 	(toil.job.Job method)

 	addChildFn() (toil.job.Job method)

 	addChildJobFn() (toil.job.Job method)

 	addFollowOn() (toil.job.EncapsulatedJob method)

 	(toil.job.Job method)

 	
 	addFollowOnFn() (toil.job.Job method)

 	addFollowOnJobFn() (toil.job.Job method)

 	addService() (toil.job.EncapsulatedJob method)

 	(toil.job.Job method)

 	addToilOptions() (toil.job.Job.Runner static method)

 	assignConfig() (toil.job.Job method)

 	assignID() (toil.jobStores.abstractJobStore.AbstractJobStore method)

B

 	
 	batch() (toil.jobStores.abstractJobStore.AbstractJobStore method)

C

 	
 	check() (toil.job.Job.Service method)

 	checkJobGraphAcylic() (toil.job.Job method)

 	checkJobGraphConnected() (toil.job.Job method)

 	checkJobGraphForDeadlocks() (toil.job.Job method)

 	checkNewCheckpointsAreLeafVertices() (toil.job.Job method)

 	checkpoint (toil.job.Job attribute)

 	clean() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	
 	ConcurrentFileModificationException

 	config (toil.common.Toil attribute)

 	(toil.jobStores.abstractJobStore.AbstractJobStore attribute)

 	convertPromises() (toil.job.PromisedRequirement static method)

 	cores (toil.job.Job attribute)

 	create() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	createBatchSystem() (toil.common.Toil static method)

 	createRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore method)

D

 	
 	defer() (toil.job.Job method)

 	delete() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	deleteFile() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	deleteGlobalFile() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	
 	deleteLocalFile() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	description (toil.job.Job attribute)

 	destroy() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	disk (toil.job.Job attribute)

E

 	
 	encapsulate() (toil.job.Job method)

 	EncapsulatedJob (class in toil.job)

 	
 	exists() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	exportFile() (toil.common.Toil method)

 	(toil.jobStores.abstractJobStore.AbstractJobStore method)

F

 	
 	fileExists() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	FileID (class in toil.fileStores)

 	
 	filesToDelete (toil.job.Promise attribute)

 	FunctionWrappingJob (class in toil.job)

G

 	
 	getDefaultArgumentParser() (toil.job.Job.Runner static method)

 	getDefaultOptions() (toil.job.Job.Runner static method)

 	getEmptyFileStoreID() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getEnv() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getFileSize() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getGlobalFileSize() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	getIssuedBatchJobIDs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	getJobStore() (toil.common.Toil class method)

 	getLocalTempDir() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	getLocalTempFile() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	getLocalTempFileName() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	getLocalWorkflowDir() (toil.common.Toil class method)

 	
 	getPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getRootJobReturnValue() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getRootJobs() (toil.job.Job method)

 	getRunningBatchJobIDs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	getSchedulingStatusMessage() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	getSharedPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	getSize() (toil.jobStores.abstractJobStore.AbstractJobStore class method)

 	getToilWorkDir() (toil.common.Toil static method)

 	getTopologicalOrderingOfJobs() (toil.job.Job method)

 	getUpdatedBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	getValue() (toil.job.PromisedRequirement method)

 	getWorkerContexts() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

H

 	
 	hasChild() (toil.job.Job method)

 	hasFollowOn() (toil.job.Job method)

 	
 	hasPredecessor() (toil.job.Job method)

 	hasService() (toil.job.Job method)

I

 	
 	importFile() (toil.common.Toil method)

 	(toil.jobStores.abstractJobStore.AbstractJobStore method)

 	
 	initialize() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	issueBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

J

 	
 	Job (class in toil.job)

 	Job.Runner (class in toil.job)

 	Job.Service (class in toil.job)

 	JobException

 	
 	JobFunctionWrappingJob (class in toil.job)

 	JobGraphDeadlockException

 	jobs() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	JobStoreExistsException

 	jobStoreID (toil.job.Job attribute)

K

 	
 	killBatchJobs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

L

 	
 	load() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	loadJob() (toil.job.Job class method)

 	loadRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	
 	log() (toil.job.Job method)

 	logAccess() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	logToMaster() (toil.fileStores.abstractFileStore.AbstractFileStore method)

M

 	
 	memory (toil.job.Job attribute)

N

 	
 	NoSuchFileException

 	
 	NoSuchJobException

 	NoSuchJobStoreException

O

 	
 	open() (toil.fileStores.abstractFileStore.AbstractFileStore method)

P

 	
 	pack() (toil.fileStores.FileID method)

 	preemptable (toil.job.Job attribute)

 	prepareForPromiseRegistration() (toil.job.EncapsulatedJob method)

 	(toil.job.Job method)

 	
 	Promise (class in toil.job)

 	PromisedRequirement (class in toil.job)

R

 	
 	readFile() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	readFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	readGlobalFile() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	readGlobalFileStream() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	readSharedFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	readStatsAndLogging() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	
 	restart() (toil.common.Toil method)

 	resume() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	run() (toil.job.FunctionWrappingJob method)

 	(toil.job.Job method)

 	(toil.job.JobFunctionWrappingJob method)

 	rv() (toil.job.EncapsulatedJob method)

 	(toil.job.Job method)

S

 	
 	saveAsRootJob() (toil.job.Job method)

 	saveBody() (toil.job.Job method)

 	setEnv() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	setOptions() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem class method)

 	setRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	setUserScript() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	shutdown() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem method)

 	(toil.fileStores.abstractFileStore.AbstractFileStore class method)

 	
 	shutdownFileStore() (toil.fileStores.abstractFileStore.AbstractFileStore static method)

 	start() (toil.common.Toil method)

 	(toil.job.Job.Service method)

 	startCommit() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	startToil() (toil.job.Job.Runner static method)

 	stop() (toil.job.Job.Service method)

 	supportsAutoDeployment() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem class method)

 	supportsWorkerCleanup() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem class method)

T

 	
 	tempDir (toil.job.Job attribute)

 	
 	Toil (class in toil.common)

U

 	
 	unpack() (toil.fileStores.FileID class method)

 	update() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	
 	updateFile() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	updateFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

W

 	
 	waitForCommit() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	wrapFn() (toil.job.Job static method)

 	wrapJobFn() (toil.job.Job static method)

 	writeConfig() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	writeFile() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	
 	writeFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	writeGlobalFile() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	writeGlobalFileStream() (toil.fileStores.abstractFileStore.AbstractFileStore method)

 	writePIDFile() (toil.common.Toil method)

 	writeSharedFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 	writeStatsAndLogging() (toil.jobStores.abstractJobStore.AbstractJobStore method)

 Overview: module code

 All modules for which code is available

	toil.batchSystems.abstractBatchSystem

	toil.common

	toil.fileStores

	toil.fileStores.abstractFileStore

	toil.job

	toil.jobStores.abstractJobStore

 toil.common

 Source code for toil.common

Copyright (C) 2015-2021 Regents of the University of California
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
import logging
import os
import pickle
import re
import requests
import subprocess
import sys
import tempfile
import time
import uuid

from argparse import _ArgumentGroup, ArgumentParser, ArgumentDefaultsHelpFormatter
from typing import Optional, Callable, Any, List, Tuple, Union

from toil import logProcessContext, lookupEnvVar
from toil.batchSystems.options import (add_all_batchsystem_options,
 set_batchsystem_config_defaults,
 set_batchsystem_options)
from toil.lib.conversions import human2bytes, bytes2human
from toil.lib.retry import retry
from toil.provisioners import (add_provisioner_options,
 parse_node_types,
 check_valid_node_types,
 cluster_factory)
from toil.lib.aws import zone_to_region
from toil.realtimeLogger import RealtimeLogger
from toil.statsAndLogging import (add_logging_options,
 root_logger,
 set_logging_from_options)
from toil.version import dockerRegistry, dockerTag, version

aim to pack autoscaling jobs within a 30 minute block before provisioning a new node
defaultTargetTime = 1800
UUID_LENGTH = 32
logger = logging.getLogger(__name__)

class Config:
 """Class to represent configuration operations for a toil workflow run."""
 def __init__(self):
 # Core options
 self.workflowID: Optional[str] = None
 """This attribute uniquely identifies the job store and therefore the workflow. It is
 necessary in order to distinguish between two consecutive workflows for which
 self.jobStore is the same, e.g. when a job store name is reused after a previous run has
 finished successfully and its job store has been clean up."""
 self.workflowAttemptNumber = None
 self.jobStore = None
 self.logLevel: str = logging.getLevelName(root_logger.getEffectiveLevel())
 self.workDir: Optional[str] = None
 self.noStdOutErr: bool = False
 self.stats: bool = False

 # Because the stats option needs the jobStore to persist past the end of the run,
 # the clean default value depends the specified stats option and is determined in setOptions
 self.clean = None
 self.cleanWorkDir: Optional[bool] = None
 self.clusterStats = None

 # Restarting the workflow options
 self.restart: bool = False

 # Batch system options
 set_batchsystem_config_defaults(self)

 # Autoscaling options
 self.provisioner = None
 self.nodeTypes = []
 self.minNodes = None
 self.maxNodes = [10]
 self.targetTime = defaultTargetTime
 self.betaInertia = 0.1
 self.scaleInterval = 60
 self.preemptableCompensation = 0.0
 self.nodeStorage = 50
 self.nodeStorageOverrides = []
 self.metrics: bool = False

 # Parameters to limit service jobs, so preventing deadlock scheduling scenarios
 self.maxPreemptableServiceJobs: int = sys.maxsize
 self.maxServiceJobs: int = sys.maxsize
 self.deadlockWait: Union[float, int] = 60 # Number of seconds we must be stuck with all services before declaring a deadlock
 self.deadlockCheckInterval: Union[float, int] = 30 # Minimum polling delay for deadlocks
 self.statePollingWait: Union[float, int] = 1 # Number of seconds to wait before querying job state

 # Resource requirements
 self.defaultMemory: int = 2147483648
 self.defaultCores: Union[float, int] = 1
 self.defaultDisk: int = 2147483648
 self.readGlobalFileMutableByDefault: bool = False
 self.defaultPreemptable: bool = False
 self.maxCores: int = sys.maxsize
 self.maxMemory: int = sys.maxsize
 self.maxDisk: int = sys.maxsize

 # Retrying/rescuing jobs
 self.retryCount: int = 1
 self.enableUnlimitedPreemptableRetries: bool = False
 self.doubleMem: bool = False
 self.maxJobDuration: int = sys.maxsize
 self.rescueJobsFrequency: int = 3600

 # Misc
 self.disableCaching: bool = False
 self.disableChaining: bool = False
 self.disableJobStoreChecksumVerification: bool = False
 self.maxLogFileSize: int = 64000
 self.writeLogs = None
 self.writeLogsGzip = None
 self.writeLogsFromAllJobs: bool = False
 self.sseKey: str = None
 self.servicePollingInterval: int = 60
 self.useAsync: bool = True
 self.forceDockerAppliance: bool = False
 self.runCwlInternalJobsOnWorkers: bool = False
 self.statusWait: int = 3600
 self.disableProgress: bool = False

 # Debug options
 self.debugWorker: bool = False
 self.disableWorkerOutputCapture: bool = False
 self.badWorker = 0.0
 self.badWorkerFailInterval = 0.01

 # CWL
 self.cwl: bool = False

 def setOptions(self, options) -> None:
 """Creates a config object from the options object."""
 def set_option(option_name: str,
 parsing_function: Optional[Callable] = None,
 check_function: Optional[Callable] = None,
 default: Any = None) -> None:
 option_value = getattr(options, option_name, default)

 if option_value is not None:
 if parsing_function is not None:
 option_value = parsing_function(option_value)
 if check_function is not None:
 try:
 check_function(option_value)
 except AssertionError:
 raise RuntimeError(f"The {option_name} option has an invalid value: {option_value}")
 setattr(self, option_name, option_value)

 # Function to parse integer from string expressed in different formats
 h2b = lambda x: human2bytes(str(x))

 def parse_jobstore(jobstore_uri: str):
 name, rest = Toil.parseLocator(jobstore_uri)
 if name == 'file':
 # We need to resolve relative paths early, on the leader, because the worker process
 # may have a different working directory than the leader, e.g. under Mesos.
 return Toil.buildLocator(name, os.path.abspath(rest))
 else:
 return jobstore_uri

 def parse_str_list(s: str):
 return [str(x) for x in s.split(",")]

 def parse_int_list(s: str):
 return [int(x) for x in s.split(",")]

 # Core options
 set_option("jobStore", parsing_function=parse_jobstore)
 # TODO: LOG LEVEL STRING
 set_option("workDir")
 if self.workDir is not None:
 self.workDir: Optional[str] = os.path.abspath(self.workDir)
 if not os.path.exists(self.workDir):
 raise RuntimeError(f"The path provided to --workDir ({self.workDir}) does not exist.")

 if len(self.workDir) > 80:
 logger.warning(f'Length of workDir path "{self.workDir}" is {len(self.workDir)} characters. '
 f'Consider setting a shorter path with --workPath or setting TMPDIR to something '
 f'like "/tmp" to avoid overly long paths.')

 set_option("noStdOutErr")
 set_option("stats")
 set_option("cleanWorkDir")
 set_option("clean")
 if self.stats:
 if self.clean != "never" and self.clean is not None:
 raise RuntimeError("Contradicting options passed: Clean flag is set to %s "
 "despite the stats flag requiring "
 "the jobStore to be intact at the end of the run. "
 "Set clean to \'never\'" % self.clean)
 self.clean = "never"
 elif self.clean is None:
 self.clean = "onSuccess"
 set_option('clusterStats')
 set_option("restart")

 # Batch system options
 set_option("batchSystem")
 set_batchsystem_options(self.batchSystem, set_option)
 set_option("disableAutoDeployment")
 set_option("scale", float, fC(0.0))
 set_option("parasolCommand")
 set_option("parasolMaxBatches", int, iC(1))
 set_option("linkImports")
 set_option("moveExports")
 set_option("allocate_mem")
 set_option("mesosMasterAddress")
 set_option("kubernetesHostPath")
 set_option("environment", parseSetEnv)

 # Autoscaling options
 set_option("provisioner")
 set_option("nodeTypes", parse_node_types)
 set_option("minNodes", parse_int_list)
 set_option("maxNodes", parse_int_list)
 set_option("targetTime", int)
 if self.targetTime <= 0:
 raise RuntimeError(f'targetTime ({self.targetTime}) must be a positive integer!')
 set_option("betaInertia", float)
 if not 0.0 <= self.betaInertia <= 0.9:
 raise RuntimeError(f'betaInertia ({self.betaInertia}) must be between 0.0 and 0.9!')
 set_option("scaleInterval", float)
 set_option("metrics")
 set_option("preemptableCompensation", float)
 if not 0.0 <= self.preemptableCompensation <= 1.0:
 raise RuntimeError(f'preemptableCompensation ({self.preemptableCompensation}) must be between 0.0 and 1.0!')
 set_option("nodeStorage", int)

 def check_nodestoreage_overrides(overrides: List[str]) -> None:
 for override in overrides:
 tokens = override.split(":")
 assert len(tokens) == 2, \
 'Each component of --nodeStorageOverrides must be of the form <instance type>:<storage in GiB>'
 assert any(tokens[0] in n[0] for n in self.nodeTypes), \
 'instance type in --nodeStorageOverrides must be used in --nodeTypes'
 assert tokens[1].isdigit(), \
 'storage must be an integer in --nodeStorageOverrides'
 set_option("nodeStorageOverrides", parse_str_list, check_function=check_nodestoreage_overrides)

 # Parameters to limit service jobs / detect deadlocks
 set_option("maxServiceJobs", int)
 set_option("maxPreemptableServiceJobs", int)
 set_option("deadlockWait", int)
 set_option("deadlockCheckInterval", int)
 set_option("statePollingWait", int)

 # Resource requirements
 set_option("defaultMemory", h2b, iC(1))
 set_option("defaultCores", float, fC(1.0))
 set_option("defaultDisk", h2b, iC(1))
 set_option("readGlobalFileMutableByDefault")
 set_option("maxCores", int, iC(1))
 set_option("maxMemory", h2b, iC(1))
 set_option("maxDisk", h2b, iC(1))
 set_option("defaultPreemptable")

 # Retrying/rescuing jobs
 set_option("retryCount", int, iC(1))
 set_option("enableUnlimitedPreemptableRetries")
 set_option("doubleMem")
 set_option("maxJobDuration", int, iC(1))
 set_option("rescueJobsFrequency", int, iC(1))

 # Misc
 set_option("maxLocalJobs", int)
 set_option("disableCaching")
 set_option("disableChaining")
 set_option("disableJobStoreChecksumVerification")
 set_option("maxLogFileSize", h2b, iC(1))
 set_option("writeLogs")
 set_option("writeLogsGzip")
 set_option("writeLogsFromAllJobs")
 set_option("runCwlInternalJobsOnWorkers")
 set_option("disableProgress")

 assert not (self.writeLogs and self.writeLogsGzip), \
 "Cannot use both --writeLogs and --writeLogsGzip at the same time."
 assert not self.writeLogsFromAllJobs or self.writeLogs or self.writeLogsGzip, \
 "To enable --writeLogsFromAllJobs, either --writeLogs or --writeLogsGzip must be set."

 def check_sse_key(sse_key: str) -> None:
 with open(sse_key) as f:
 assert len(f.readline().rstrip()) == 32, 'SSE key appears to be invalid.'

 set_option("sseKey", check_function=check_sse_key)
 set_option("servicePollingInterval", float, fC(0.0))
 set_option("forceDockerAppliance")

 # Debug options
 set_option("debugWorker")
 set_option("disableWorkerOutputCapture")
 set_option("badWorker", float, fC(0.0, 1.0))
 set_option("badWorkerFailInterval", float, fC(0.0))

 def __eq__(self, other):
 return self.__dict__ == other.__dict__

 def __hash__(self):
 return self.__dict__.__hash__()

JOBSTORE_HELP = ("The location of the job store for the workflow. "
 "A job store holds persistent information about the jobs, stats, and files in a "
 "workflow. If the workflow is run with a distributed batch system, the job "
 "store must be accessible by all worker nodes. Depending on the desired "
 "job store implementation, the location should be formatted according to "
 "one of the following schemes:\n\n"
 "file:<path> where <path> points to a directory on the file systen\n\n"
 "aws:<region>:<prefix> where <region> is the name of an AWS region like "
 "us-west-2 and <prefix> will be prepended to the names of any top-level "
 "AWS resources in use by job store, e.g. S3 buckets.\n\n "
 "google:<project_id>:<prefix> TODO: explain\n\n"
 "For backwards compatibility, you may also specify ./foo (equivalent to "
 "file:./foo or just file:foo) or /bar (equivalent to file:/bar).")

def parser_with_common_options(provisioner_options=False, jobstore_option=True):
 parser = ArgumentParser(prog='Toil', formatter_class=ArgumentDefaultsHelpFormatter)

 if provisioner_options:
 add_provisioner_options(parser)

 if jobstore_option:
 parser.add_argument('jobStore', type=str, help=JOBSTORE_HELP)

 # always add these
 add_logging_options(parser)
 parser.add_argument("--version", action='version', version=version)
 parser.add_argument("--tempDirRoot", dest="tempDirRoot", type=str, default=tempfile.gettempdir(),
 help="Path to where temporary directory containing all temp files are created, "
 "by default generates a fresh tmp dir with 'tempfile.gettempdir()'.")
 return parser

def addOptions(parser: ArgumentParser, config: Config = Config()):
 if not (isinstance(parser, ArgumentParser) or isinstance(parser, _ArgumentGroup)):
 raise ValueError(f"Unanticipated class: {parser.__class__}. Must be: argparse.ArgumentParser or ArgumentGroup.")

 add_logging_options(parser)
 parser.register("type", "bool", parseBool) # Custom type for arg=True/False.

 # Core options
 core_options = parser.add_argument_group(
 title="Toil core options.",
 description="Options to specify the location of the Toil workflow and "
 "turn on stats collation about the performance of jobs."
)
 core_options.add_argument('jobStore', type=str, help=JOBSTORE_HELP)
 core_options.add_argument("--workDir", dest="workDir", default=None,
 help="Absolute path to directory where temporary files generated during the Toil "
 "run should be placed. Standard output and error from batch system jobs "
 "(unless --noStdOutErr) will be placed in this directory. A cache directory "
 "may be placed in this directory. Temp files and folders will be placed in a "
 "directory toil-<workflowID> within workDir. The workflowID is generated by "
 "Toil and will be reported in the workflow logs. Default is determined by the "
 "variables (TMPDIR, TEMP, TMP) via mkdtemp. This directory needs to exist on "
 "all machines running jobs; if capturing standard output and error from batch "
 "system jobs is desired, it will generally need to be on a shared file system. "
 "When sharing a cache between containers on a host, this directory must be "
 "shared between the containers.")
 core_options.add_argument("--noStdOutErr", dest="noStdOutErr", action="store_true", default=None,
 help="Do not capture standard output and error from batch system jobs.")
 core_options.add_argument("--stats", dest="stats", action="store_true", default=None,
 help="Records statistics about the toil workflow to be used by 'toil stats'.")
 clean_choices = ['always', 'onError', 'never', 'onSuccess']
 core_options.add_argument("--clean", dest="clean", choices=clean_choices, default=None,
 help=f"Determines the deletion of the jobStore upon completion of the program. "
 f"Choices: {clean_choices}. The --stats option requires information from the "
 f"jobStore upon completion so the jobStore will never be deleted with that flag. "
 f"If you wish to be able to restart the run, choose \'never\' or \'onSuccess\'. "
 f"Default is \'never\' if stats is enabled, and \'onSuccess\' otherwise.")
 core_options.add_argument("--cleanWorkDir", dest="cleanWorkDir", choices=clean_choices, default='always',
 help=f"Determines deletion of temporary worker directory upon completion of a job. "
 f"Choices: {clean_choices}. Default = always. WARNING: This option should be "
 f"changed for debugging only. Running a full pipeline with this option could "
 f"fill your disk with excessive intermediate data.")
 core_options.add_argument("--clusterStats", dest="clusterStats", nargs='?', action='store', default=None,
 const=os.getcwd(),
 help="If enabled, writes out JSON resource usage statistics to a file. "
 "The default location for this file is the current working directory, but an "
 "absolute path can also be passed to specify where this file should be written. "
 "This options only applies when using scalable batch systems.")

 # Restarting the workflow options
 restart_options = parser.add_argument_group(
 title="Toil options for restarting an existing workflow.",
 description="Allows the restart of an existing workflow"
)
 restart_options.add_argument("--restart", dest="restart", default=None, action="store_true",
 help="If --restart is specified then will attempt to restart existing workflow "
 "at the location pointed to by the --jobStore option. Will raise an exception "
 "if the workflow does not exist")

 # Batch system options
 batchsystem_options = parser.add_argument_group(
 title="Toil options for specifying the batch system.",
 description="Allows the specification of the batch system."
)
 batchsystem_options.add_argument("--statePollingWait", dest="statePollingWait", default=1, type=int,
 help="Time, in seconds, to wait before doing a scheduler query for job state. "
 "Return cached results if within the waiting period.")
 add_all_batchsystem_options(batchsystem_options)

 # Auto scaling options
 autoscaling_options = parser.add_argument_group(
 title="Toil options for autoscaling the cluster of worker nodes.",
 description="Allows the specification of the minimum and maximum number of nodes in an autoscaled cluster, "
 "as well as parameters to control the level of provisioning."
)
 provisioner_choices = ['aws', 'gce', None]
 # TODO: Better consolidate this provisioner arg and the one in provisioners/__init__.py?
 autoscaling_options.add_argument('--provisioner', '-p', dest="provisioner", choices=provisioner_choices,
 help=f"The provisioner for cluster auto-scaling. This is the main Toil "
 f"'--provisioner' option, and defaults to None for running on single "
 f"machine and non-auto-scaling batch systems. The currently supported "
 f"choices are {provisioner_choices}. The default is {config.provisioner}.")
 autoscaling_options.add_argument('--nodeTypes', default=None,
 help="Specifies a list of comma-separated node types, each of which is "
 "composed of slash-separated instance types, and an optional spot "
 "bid set off by a colon, making the node type preemptable. Instance "
 "types may appear in multiple node types, and the same node type "
 "may appear as both preemptable and non-preemptable.\n"
 "Valid argument specifying two node types:\n"
 "\tc5.4xlarge/c5a.4xlarge:0.42,t2.large\n"
 "Node types:\n"
 "\tc5.4xlarge/c5a.4xlarge:0.42 and t2.large\n"
 "Instance types:\n"
 "\tc5.4xlarge, c5a.4xlarge, and t2.large\n"
 "Semantics:\n"
 "\tBid $0.42/hour for either c5.4xlarge or c5a.4xlarge instances,\n"
 "\ttreated interchangeably, while they are available at that price,\n"
 "\tand buy t2.large instances at full price")
 autoscaling_options.add_argument('--minNodes', default=None,
 help="Mininum number of nodes of each type in the cluster, if using "
 "auto-scaling. This should be provided as a comma-separated list of the "
 "same length as the list of node types. default=0")
 autoscaling_options.add_argument('--maxNodes', default=None,
 help=f"Maximum number of nodes of each type in the cluster, if using autoscaling, "
 f"provided as a comma-separated list. The first value is used as a default "
 f"if the list length is less than the number of nodeTypes. "
 f"default={config.maxNodes[0]}")
 autoscaling_options.add_argument("--targetTime", dest="targetTime", default=None,
 help=f"Sets how rapidly you aim to complete jobs in seconds. Shorter times mean "
 f"more aggressive parallelization. The autoscaler attempts to scale up/down "
 f"so that it expects all queued jobs will complete within targetTime "
 f"seconds. default={config.targetTime}")
 autoscaling_options.add_argument("--betaInertia", dest="betaInertia", default=None,
 help=f"A smoothing parameter to prevent unnecessary oscillations in the number "
 f"of provisioned nodes. This controls an exponentially weighted moving "
 f"average of the estimated number of nodes. A value of 0.0 disables any "
 f"smoothing, and a value of 0.9 will smooth so much that few changes will "
 f"ever be made. Must be between 0.0 and 0.9. default={config.betaInertia}")
 autoscaling_options.add_argument("--scaleInterval", dest="scaleInterval", default=None,
 help=f"The interval (seconds) between assessing if the scale of "
 f"the cluster needs to change. default={config.scaleInterval}")
 autoscaling_options.add_argument("--preemptableCompensation", dest="preemptableCompensation", default=None,
 help=f"The preference of the autoscaler to replace preemptable nodes with "
 f"non-preemptable nodes, when preemptable nodes cannot be started for some "
 f"reason. Defaults to {config.preemptableCompensation}. This value must be "
 f"between 0.0 and 1.0, inclusive. A value of 0.0 disables such "
 f"compensation, a value of 0.5 compensates two missing preemptable nodes "
 f"with a non-preemptable one. A value of 1.0 replaces every missing "
 f"pre-emptable node with a non-preemptable one.")
 autoscaling_options.add_argument("--nodeStorage", dest="nodeStorage", default=50,
 help="Specify the size of the root volume of worker nodes when they are launched "
 "in gigabytes. You may want to set this if your jobs require a lot of disk "
 "space. (default: %(default)s).")
 autoscaling_options.add_argument('--nodeStorageOverrides', default=None,
 help="Comma-separated list of nodeType:nodeStorage that are used to override "
 "the default value from --nodeStorage for the specified nodeType(s). "
 "This is useful for heterogeneous jobs where some tasks require much more "
 "disk than others.")
 autoscaling_options.add_argument("--metrics", dest="metrics", default=False, action="store_true",
 help="Enable the prometheus/grafana dashboard for monitoring CPU/RAM usage, "
 "queue size, and issued jobs.")

 # Parameters to limit service jobs / detect service deadlocks
 if not config.cwl:
 service_options = parser.add_argument_group(
 title="Toil options for limiting the number of service jobs and detecting service deadlocks",
 description="Allows the specification of the maximum number of service jobs in a cluster. By keeping "
 "this limited we can avoid nodes occupied with services causing deadlocks."
)
 service_options.add_argument("--maxServiceJobs", dest="maxServiceJobs", default=None, type=int,
 help=f"The maximum number of service jobs that can be run concurrently, "
 f"excluding service jobs running on preemptable nodes. "
 f"default={config.maxServiceJobs}")
 service_options.add_argument("--maxPreemptableServiceJobs", dest="maxPreemptableServiceJobs", default=None,
 type=int,
 help=f"The maximum number of service jobs that can run concurrently on "
 f"preemptable nodes. default={config.maxPreemptableServiceJobs}")
 service_options.add_argument("--deadlockWait", dest="deadlockWait", default=None, type=int,
 help=f"Time, in seconds, to tolerate the workflow running only the same service "
 f"jobs, with no jobs to use them, before declaring the workflow to be "
 f"deadlocked and stopping. default={config.deadlockWait}")
 service_options.add_argument("--deadlockCheckInterval", dest="deadlockCheckInterval", default=None, type=int,
 help="Time, in seconds, to wait between checks to see if the workflow is stuck "
 "running only service jobs, with no jobs to use them. Should be shorter "
 "than --deadlockWait. May need to be increased if the batch system cannot "
 "enumerate running jobs quickly enough, or if polling for running jobs is "
 "placing an unacceptable load on a shared cluster. "
 "default={config.deadlockCheckInterval}")

 # Resource requirements
 resource_options = parser.add_argument_group(
 title="Toil options for cores/memory requirements.",
 description="The options to specify default cores/memory requirements (if not specified by the jobs "
 "themselves), and to limit the total amount of memory/cores requested from the batch system."
)
 resource_help_msg = ('The {} amount of {} to request for a job. '
 'Only applicable to jobs that do not specify an explicit value for this requirement. '
 '{}. '
 'Default is {}.')
 cpu_note = 'Fractions of a core (for example 0.1) are supported on some batch systems [mesos, single_machine]'
 disk_mem_note = 'Standard suffixes like K, Ki, M, Mi, G or Gi are supported'
 resource_options.add_argument('--defaultMemory', dest='defaultMemory', default=None, metavar='INT',
 help=resource_help_msg.format('default', 'memory', disk_mem_note,
 bytes2human(config.defaultMemory)))
 resource_options.add_argument('--defaultCores', dest='defaultCores', default=None, metavar='FLOAT',
 help=resource_help_msg.format('default', 'cpu', cpu_note, str(config.defaultCores)))
 resource_options.add_argument('--defaultDisk', dest='defaultDisk', default=None, metavar='INT',
 help=resource_help_msg.format('default', 'disk', disk_mem_note,
 bytes2human(config.defaultDisk)))
 resource_options.add_argument('--defaultPreemptable', dest='defaultPreemptable', metavar='BOOL',
 type='bool', nargs='?', const=True, default=False,
 help='Make all jobs able to run on preemptable (spot) nodes by default.')
 resource_options.add_argument('--maxCores', dest='maxCores', default=None, metavar='INT',
 help=resource_help_msg.format('max', 'cpu', cpu_note, str(config.maxCores)))
 resource_options.add_argument('--maxMemory', dest='maxMemory', default=None, metavar='INT',
 help=resource_help_msg.format('max', 'memory', disk_mem_note,
 bytes2human(config.maxMemory)))
 resource_options.add_argument('--maxDisk', dest='maxDisk', default=None, metavar='INT',
 help=resource_help_msg.format('max', 'disk', disk_mem_note,
 bytes2human(config.maxDisk)))

 # Retrying/rescuing jobs
 job_options = parser.add_argument_group(
 title="Toil options for rescuing/killing/restarting jobs.",
 description="The options for jobs that either run too long/fail or get lost (some batch systems have issues!)."
)
 job_options.add_argument("--retryCount", dest="retryCount", default=None,
 help=f"Number of times to retry a failing job before giving up and "
 f"labeling job failed. default={config.retryCount}")
 job_options.add_argument("--enableUnlimitedPreemptableRetries", dest="enableUnlimitedPreemptableRetries",
 action='store_true', default=False,
 help="If set, preemptable failures (or any failure due to an instance getting "
 "unexpectedly terminated) will not count towards job failures and --retryCount.")
 job_options.add_argument("--doubleMem", dest="doubleMem", action='store_true', default=False,
 help="If set, batch jobs which die to reaching memory limit on batch schedulers "
 "will have their memory doubled and they will be retried. The remaining "
 "retry count will be reduced by 1. Currently supported by LSF.")
 job_options.add_argument("--maxJobDuration", dest="maxJobDuration", default=None,
 help=f"Maximum runtime of a job (in seconds) before we kill it (this is a lower bound, "
 f"and the actual time before killing the job may be longer). "
 f"default={config.maxJobDuration}")
 job_options.add_argument("--rescueJobsFrequency", dest="rescueJobsFrequency", default=None,
 help=f"Period of time to wait (in seconds) between checking for missing/overlong jobs, "
 f"that is jobs which get lost by the batch system. Expert parameter. "
 f"default={config.rescueJobsFrequency}")

 # Debug options
 debug_options = parser.add_argument_group(
 title="Toil debug options.",
 description="Debug options for finding problems or helping with testing."
)
 debug_options.add_argument("--debugWorker", default=False, action="store_true",
 help="Experimental no forking mode for local debugging. Specifically, workers "
 "are not forked and stderr/stdout are not redirected to the log.")
 debug_options.add_argument("--disableWorkerOutputCapture", default=False, action="store_true",
 help="Let worker output go to worker's standard out/error instead of per-job logs.")
 debug_options.add_argument("--badWorker", dest="badWorker", default=None,
 help=f"For testing purposes randomly kill --badWorker proportion of jobs using "
 f"SIGKILL. default={config.badWorker}")
 debug_options.add_argument("--badWorkerFailInterval", dest="badWorkerFailInterval", default=None,
 help=f"When killing the job pick uniformly within the interval from 0.0 to "
 f"--badWorkerFailInterval seconds after the worker starts. "
 f"default={config.badWorkerFailInterval}")

 # Misc options
 misc_options = parser.add_argument_group(
 title="Toil miscellaneous options.",
 description="Everything else."
)
 misc_options.add_argument('--disableCaching', dest='disableCaching', type='bool', nargs='?', const=True,
 default=False,
 help='Disables caching in the file store. This flag must be set to use '
 'a batch system that does not support cleanup, such as Parasol.')
 misc_options.add_argument('--disableChaining', dest='disableChaining', action='store_true', default=False,
 help="Disables chaining of jobs (chaining uses one job's resource allocation "
 "for its successor job if possible).")
 misc_options.add_argument("--disableJobStoreChecksumVerification", dest="disableJobStoreChecksumVerification",
 default=False, action="store_true",
 help="Disables checksum verification for files transferred to/from the job store. "
 "Checksum verification is a safety check to ensure the data is not corrupted "
 "during transfer. Currently only supported for non-streaming AWS files.")
 misc_options.add_argument("--maxLogFileSize", dest="maxLogFileSize", default=None,
 help=f"The maximum size of a job log file to keep (in bytes), log files larger than "
 f"this will be truncated to the last X bytes. Setting this option to zero will "
 f"prevent any truncation. Setting this option to a negative value will truncate "
 f"from the beginning. Default={bytes2human(config.maxLogFileSize)}")
 misc_options.add_argument("--writeLogs", dest="writeLogs", nargs='?', action='store', default=None,
 const=os.getcwd(),
 help="Write worker logs received by the leader into their own files at the specified "
 "path. Any non-empty standard output and error from failed batch system jobs will "
 "also be written into files at this path. The current working directory will be "
 "used if a path is not specified explicitly. Note: By default only the logs of "
 "failed jobs are returned to leader. Set log level to 'debug' or enable "
 "'--writeLogsFromAllJobs' to get logs back from successful jobs, and adjust "
 "'maxLogFileSize' to control the truncation limit for worker logs.")
 misc_options.add_argument("--writeLogsGzip", dest="writeLogsGzip", nargs='?', action='store', default=None,
 const=os.getcwd(),
 help="Identical to --writeLogs except the logs files are gzipped on the leader.")
 misc_options.add_argument("--writeLogsFromAllJobs", dest="writeLogsFromAllJobs", action='store_true',
 default=False,
 help="Whether to write logs from all jobs (including the successful ones) without "
 "necessarily setting the log level to 'debug'. Ensure that either --writeLogs "
 "or --writeLogsGzip is set if enabling this option.")
 misc_options.add_argument("--realTimeLogging", dest="realTimeLogging", action="store_true", default=False,
 help="Enable real-time logging from workers to masters")
 misc_options.add_argument("--sseKey", dest="sseKey", default=None,
 help="Path to file containing 32 character key to be used for server-side encryption on "
 "awsJobStore or googleJobStore. SSE will not be used if this flag is not passed.")
 misc_options.add_argument("--setEnv", '-e', metavar='NAME=VALUE or NAME', dest="environment", default=[],
 action="append",
 help="Set an environment variable early on in the worker. If VALUE is omitted, it will "
 "be looked up in the current environment. Independently of this option, the worker "
 "will try to emulate the leader's environment before running a job, except for "
 "some variables known to vary across systems. Using this option, a variable can "
 "be injected into the worker process itself before it is started.")
 misc_options.add_argument("--servicePollingInterval", dest="servicePollingInterval", default=None,
 help=f"Interval of time service jobs wait between polling for the existence of the "
 f"keep-alive flag. Default: {config.servicePollingInterval}")
 misc_options.add_argument('--forceDockerAppliance', dest='forceDockerAppliance', action='store_true', default=False,
 help='Disables sanity checking the existence of the docker image specified by '
 'TOIL_APPLIANCE_SELF, which Toil uses to provision mesos for autoscaling.')
 misc_options.add_argument('--disableProgress', dest='disableProgress', action='store_true', default=False,
 help="Disables the progress bar shown when standard error is a terminal.")

def parseBool(val):
 if val.lower() in ['true', 't', 'yes', 'y', 'on', '1']:
 return True
 elif val.lower() in ['false', 'f', 'no', 'n', 'off', '0']:
 return False
 else:
 raise RuntimeError("Could not interpret \"%s\" as a boolean value" % val)

def getNodeID() -> str:
 """
 Return unique ID of the current node (host). The resulting string will be convertable to a uuid.UUID.

 Tries several methods until success. The returned ID should be identical across calls from different processes on
 the same node at least until the next OS reboot.

 The last resort method is uuid.getnode() that in some rare OS configurations may return a random ID each time it is
 called. However, this method should never be reached on a Linux system, because reading from
 /proc/sys/kernel/random/boot_id will be tried prior to that. If uuid.getnode() is reached, it will be called twice,
 and exception raised if the values are not identical.
 """
 for idSourceFile in ["/var/lib/dbus/machine-id", "/proc/sys/kernel/random/boot_id"]:
 if os.path.exists(idSourceFile):
 try:
 with open(idSourceFile, "r") as inp:
 nodeID = inp.readline().strip()
 except EnvironmentError:
 logger.warning(f"Exception when trying to read ID file {idSourceFile}. "
 f"Will try next method to get node ID.", exc_info=True)
 else:
 if len(nodeID.split()) == 1:
 logger.debug(f"Obtained node ID {nodeID} from file {idSourceFile}")
 break
 else:
 logger.warning(f"Node ID {nodeID} from file {idSourceFile} contains spaces. "
 f"Will try next method to get node ID.")
 else:
 nodeIDs = []
 for i_call in range(2):
 nodeID = str(uuid.getnode()).strip()
 if len(nodeID.split()) == 1:
 nodeIDs.append(nodeID)
 else:
 logger.warning(f"Node ID {nodeID} from uuid.getnode() contains spaces")
 nodeID = ""
 if len(nodeIDs) == 2:
 if nodeIDs[0] == nodeIDs[1]:
 nodeID = nodeIDs[0]
 else:
 logger.warning(f"Different node IDs {nodeIDs} received from repeated calls to uuid.getnode(). "
 f"You should use another method to generate node ID.")

 logger.debug(f"Obtained node ID {nodeID} from uuid.getnode()")
 if not nodeID:
 logger.warning("Failed to generate stable node ID, returning empty string. If you see this message with a "
 "work dir on a shared file system when using workers running on multiple nodes, you might "
 "experience cryptic job failures")
 if len(nodeID.replace('-', '')) < UUID_LENGTH:
 # Some platforms (Mac) give us not enough actual hex characters.
 # Repeat them so the result is convertable to a uuid.UUID
 nodeID = nodeID.replace('-', '')
 num_repeats = UUID_LENGTH // len(nodeID) + 1
 nodeID = nodeID * num_repeats
 nodeID = nodeID[:UUID_LENGTH]
 return nodeID

[docs]class Toil:
 """
 A context manager that represents a Toil workflow, specifically the batch system, job store,
 and its configuration.
 """

[docs] def __init__(self, options):
 """
 Initialize a Toil object from the given options. Note that this is very light-weight and
 that the bulk of the work is done when the context is entered.

 :param argparse.Namespace options: command line options specified by the user
 """
 super(Toil, self).__init__()
 self.options = options
 self.config = None
 """
 :type: toil.common.Config
 """
 self._jobStore = None
 """
 :type: toil.jobStores.abstractJobStore.AbstractJobStore
 """
 self._batchSystem = None
 """
 :type: toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
 """
 self._provisioner = None
 """
 :type: toil.provisioners.abstractProvisioner.AbstractProvisioner
 """
 self._jobCache = dict()
 self._inContextManager = False
 self._inRestart = False

 def __enter__(self):
 """
 Derive configuration from the command line options, load the job store and, on restart,
 consolidate the derived configuration with the one from the previous invocation of the
 workflow.
 """
 set_logging_from_options(self.options)
 config = Config()
 config.setOptions(self.options)
 jobStore = self.getJobStore(config.jobStore)
 if not config.restart:
 config.workflowAttemptNumber = 0
 jobStore.initialize(config)
 else:
 jobStore.resume()
 # Merge configuration from job store with command line options
 config = jobStore.config
 config.setOptions(self.options)
 config.workflowAttemptNumber += 1
 jobStore.writeConfig()
 self.config = config
 self._jobStore = jobStore
 self._inContextManager = True
 return self

 # noinspection PyUnusedLocal
 def __exit__(self, exc_type, exc_val, exc_tb):
 """
 Clean up after a workflow invocation. Depending on the configuration, delete the job store.
 """
 try:
 if (exc_type is not None and self.config.clean == "onError" or
 exc_type is None and self.config.clean == "onSuccess" or
 self.config.clean == "always"):

 try:
 if self.config.restart and not self._inRestart:
 pass
 else:
 self._jobStore.destroy()
 logger.info("Successfully deleted the job store: %s" % str(self._jobStore))
 except:
 logger.info("Failed to delete the job store: %s" % str(self._jobStore))
 raise
 except Exception as e:
 if exc_type is None:
 raise
 else:
 logger.exception('The following error was raised during clean up:')
 self._inContextManager = False
 self._inRestart = False
 return False # let exceptions through

[docs] def start(self, rootJob):
 """
 Invoke a Toil workflow with the given job as the root for an initial run. This method
 must be called in the body of a ``with Toil(...) as toil:`` statement. This method should
 not be called more than once for a workflow that has not finished.

 :param toil.job.Job rootJob: The root job of the workflow
 :return: The root job's return value
 """
 self._assertContextManagerUsed()
 self.writePIDFile()
 if self.config.restart:
 raise ToilRestartException('A Toil workflow can only be started once. Use '
 'Toil.restart() to resume it.')

 self._batchSystem = self.createBatchSystem(self.config)
 self._setupAutoDeployment(rootJob.getUserScript())
 try:
 self._setBatchSystemEnvVars()
 self._serialiseEnv()
 self._cacheAllJobs()

 # Pickle the promised return value of the root job, then write the pickled promise to
 # a shared file, where we can find and unpickle it at the end of the workflow.
 # Unpickling the promise will automatically substitute the promise for the actual
 # return value.
 with self._jobStore.writeSharedFileStream('rootJobReturnValue') as fH:
 rootJob.prepareForPromiseRegistration(self._jobStore)
 promise = rootJob.rv()
 pickle.dump(promise, fH, protocol=pickle.HIGHEST_PROTOCOL)

 # Setup the first JobDescription and cache it
 rootJobDescription = rootJob.saveAsRootJob(self._jobStore)
 self._cacheJob(rootJobDescription)

 self._setProvisioner()
 return self._runMainLoop(rootJobDescription)
 finally:
 self._shutdownBatchSystem()

[docs] def restart(self):
 """
 Restarts a workflow that has been interrupted.

 :return: The root job's return value
 """
 self._inRestart = True
 self._assertContextManagerUsed()
 self.writePIDFile()
 if not self.config.restart:
 raise ToilRestartException('A Toil workflow must be initiated with Toil.start(), '
 'not restart().')

 from toil.job import JobException
 try:
 self._jobStore.loadRootJob()
 except JobException:
 logger.warning(
 'Requested restart but the workflow has already been completed; allowing exports to rerun.')
 return self._jobStore.getRootJobReturnValue()

 self._batchSystem = self.createBatchSystem(self.config)
 self._setupAutoDeployment()
 try:
 self._setBatchSystemEnvVars()
 self._serialiseEnv()
 self._cacheAllJobs()
 self._setProvisioner()
 rootJobDescription = self._jobStore.clean(jobCache=self._jobCache)
 return self._runMainLoop(rootJobDescription)
 finally:
 self._shutdownBatchSystem()

 def _setProvisioner(self):
 if self.config.provisioner is None:
 self._provisioner = None
 else:
 self._provisioner = cluster_factory(provisioner=self.config.provisioner,
 clusterName=None,
 zone=None, # read from instance meta-data
 nodeStorage=self.config.nodeStorage,
 nodeStorageOverrides=self.config.nodeStorageOverrides,
 sseKey=self.config.sseKey)
 self._provisioner.setAutoscaledNodeTypes(self.config.nodeTypes)

[docs] @classmethod
 def getJobStore(cls, locator):
 """
 Create an instance of the concrete job store implementation that matches the given locator.

 :param str locator: The location of the job store to be represent by the instance

 :return: an instance of a concrete subclass of AbstractJobStore
 :rtype: toil.jobStores.abstractJobStore.AbstractJobStore
 """
 name, rest = cls.parseLocator(locator)
 if name == 'file':
 from toil.jobStores.fileJobStore import FileJobStore
 return FileJobStore(rest)
 elif name == 'aws':
 from toil.jobStores.aws.jobStore import AWSJobStore
 return AWSJobStore(rest)
 elif name == 'google':
 from toil.jobStores.googleJobStore import GoogleJobStore
 return GoogleJobStore(rest)
 else:
 raise RuntimeError("Unknown job store implementation '%s'" % name)

 @staticmethod
 def parseLocator(locator):
 if locator[0] in '/.' or ':' not in locator:
 return 'file', locator
 else:
 try:
 name, rest = locator.split(':', 1)
 except ValueError:
 raise RuntimeError('Invalid job store locator syntax.')
 else:
 return name, rest

 @staticmethod
 def buildLocator(name, rest):
 assert ':' not in name
 return f'{name}:{rest}'

 @classmethod
 def resumeJobStore(cls, locator):
 jobStore = cls.getJobStore(locator)
 jobStore.resume()
 return jobStore

[docs] @staticmethod
 def createBatchSystem(config):
 """
 Creates an instance of the batch system specified in the given config.

 :param toil.common.Config config: the current configuration

 :rtype: batchSystems.abstractBatchSystem.AbstractBatchSystem

 :return: an instance of a concrete subclass of AbstractBatchSystem
 """
 kwargs = dict(config=config,
 maxCores=config.maxCores,
 maxMemory=config.maxMemory,
 maxDisk=config.maxDisk)

 from toil.batchSystems.registry import BATCH_SYSTEM_FACTORY_REGISTRY

 try:
 batch_system = BATCH_SYSTEM_FACTORY_REGISTRY[config.batchSystem]()
 except:
 raise RuntimeError(f'Unrecognized batch system: {config.batchSystem}')

 if not config.disableCaching and not batch_system.supportsWorkerCleanup():
 raise RuntimeError(f'{config.batchSystem} currently does not support shared caching, because it '
 'does not support cleaning up a worker after the last job '
 'finishes. Set the --disableCaching flag if you want to '
 'use this batch system.')
 logger.debug('Using the %s' % re.sub("([a-z])([A-Z])", r"\g<1> \g<2>", batch_system.__name__).lower())

 return batch_system(**kwargs)

 def _setupAutoDeployment(self, userScript=None):
 """
 Determine the user script, save it to the job store and inject a reference to the saved
 copy into the batch system such that it can auto-deploy the resource on the worker
 nodes.

 :param toil.resource.ModuleDescriptor userScript: the module descriptor referencing the
 user script. If None, it will be looked up in the job store.
 """
 if userScript is not None:
 # This branch is hit when a workflow is being started
 if userScript.belongsToToil:
 logger.debug('User script %s belongs to Toil. No need to auto-deploy it.', userScript)
 userScript = None
 else:
 if (self._batchSystem.supportsAutoDeployment() and
 not self.config.disableAutoDeployment):
 # Note that by saving the ModuleDescriptor, and not the Resource we allow for
 # redeploying a potentially modified user script on workflow restarts.
 with self._jobStore.writeSharedFileStream('userScript') as f:
 pickle.dump(userScript, f, protocol=pickle.HIGHEST_PROTOCOL)
 else:
 from toil.batchSystems.singleMachine import \
 SingleMachineBatchSystem
 if not isinstance(self._batchSystem, SingleMachineBatchSystem):
 logger.warning('Batch system does not support auto-deployment. The user '
 'script %s will have to be present at the same location on '
 'every worker.', userScript)
 userScript = None
 else:
 # This branch is hit on restarts
 if (self._batchSystem.supportsAutoDeployment() and
 not self.config.disableAutoDeployment):
 # We could deploy a user script
 from toil.jobStores.abstractJobStore import NoSuchFileException
 try:
 with self._jobStore.readSharedFileStream('userScript') as f:
 userScript = safeUnpickleFromStream(f)
 except NoSuchFileException:
 logger.debug('User script neither set explicitly nor present in the job store.')
 userScript = None
 if userScript is None:
 logger.debug('No user script to auto-deploy.')
 else:
 logger.debug('Saving user script %s as a resource', userScript)
 userScriptResource = userScript.saveAsResourceTo(self._jobStore)
 logger.debug('Injecting user script %s into batch system.', userScriptResource)
 self._batchSystem.setUserScript(userScriptResource)

[docs] def importFile(self, srcUrl, sharedFileName=None, symlink=False):
 """
 Imports the file at the given URL into job store.

 See :func:`toil.jobStores.abstractJobStore.AbstractJobStore.importFile` for a
 full description
 """
 self._assertContextManagerUsed()
 return self._jobStore.importFile(srcUrl, sharedFileName=sharedFileName, symlink=symlink)

[docs] def exportFile(self, jobStoreFileID, dstUrl):
 """
 Exports file to destination pointed at by the destination URL.

 See :func:`toil.jobStores.abstractJobStore.AbstractJobStore.exportFile` for a
 full description
 """
 self._assertContextManagerUsed()
 self._jobStore.exportFile(jobStoreFileID, dstUrl)

 def _setBatchSystemEnvVars(self):
 """
 Sets the environment variables required by the job store and those passed on command line.
 """
 for envDict in (self._jobStore.getEnv(), self.config.environment):
 for k, v in envDict.items():
 self._batchSystem.setEnv(k, v)

 def _serialiseEnv(self):
 """
 Puts the environment in a globally accessible pickle file.
 """
 # Dump out the environment of this process in the environment pickle file.
 with self._jobStore.writeSharedFileStream("environment.pickle") as fileHandle:
 pickle.dump(dict(os.environ), fileHandle, pickle.HIGHEST_PROTOCOL)
 logger.debug("Written the environment for the jobs to the environment file")

 def _cacheAllJobs(self):
 """
 Downloads all jobs in the current job store into self.jobCache.
 """
 logger.debug('Caching all jobs in job store')
 self._jobCache = {jobDesc.jobStoreID: jobDesc for jobDesc in self._jobStore.jobs()}
 logger.debug('{} jobs downloaded.'.format(len(self._jobCache)))

 def _cacheJob(self, job):
 """
 Adds given job to current job cache.

 :param toil.job.JobDescription job: job to be added to current job cache
 """
 self._jobCache[job.jobStoreID] = job

[docs] @staticmethod
 def getToilWorkDir(configWorkDir: Optional[str] = None) -> str:
 """
 Returns a path to a writable directory under which per-workflow
 directories exist. This directory is always required to exist on a
 machine, even if the Toil worker has not run yet. If your workers and
 leader have different temp directories, you may need to set
 TOIL_WORKDIR.

 :param str configWorkDir: Value passed to the program using the --workDir flag
 :return: Path to the Toil work directory, constant across all machines
 :rtype: str
 """
 workDir = os.getenv('TOIL_WORKDIR_OVERRIDE') or configWorkDir or os.getenv('TOIL_WORKDIR') or tempfile.gettempdir()
 if not os.path.exists(workDir):
 raise RuntimeError(f'The directory specified by --workDir or TOIL_WORKDIR ({workDir}) does not exist.')
 return workDir

[docs] @classmethod
 def getLocalWorkflowDir(cls, workflowID, configWorkDir=None):
 """
 Returns a path to the directory where worker directories and the cache will be located
 for this workflow on this machine.

 :param str configWorkDir: Value passed to the program using the --workDir flag
 :return: Path to the local workflow directory on this machine
 :rtype: str
 """
 # Get the global Toil work directory. This ensures that it exists.
 base = cls.getToilWorkDir(configWorkDir=configWorkDir)

 # Create a directory unique to each host in case workDir is on a shared FS.
 # This prevents workers on different nodes from erasing each other's directories.
 workflowDir: str = os.path.join(base, str(uuid.uuid5(uuid.UUID(getNodeID()), workflowID)).replace('-', ''))
 try:
 # Directory creation is atomic
 os.mkdir(workflowDir)
 except OSError as err:
 if err.errno != 17:
 # The directory exists if a previous worker set it up.
 raise
 else:
 logger.debug('Created the workflow directory for this machine at %s' % workflowDir)
 return workflowDir

 def _runMainLoop(self, rootJob):
 """
 Runs the main loop with the given job.
 :param toil.job.Job rootJob: The root job for the workflow.
 :rtype: Any
 """
 logProcessContext(self.config)

 with RealtimeLogger(self._batchSystem,
 level=self.options.logLevel if self.options.realTimeLogging else None):
 # FIXME: common should not import from leader
 from toil.leader import Leader
 return Leader(config=self.config,
 batchSystem=self._batchSystem,
 provisioner=self._provisioner,
 jobStore=self._jobStore,
 rootJob=rootJob,
 jobCache=self._jobCache).run()

 def _shutdownBatchSystem(self):
 """
 Shuts down current batch system if it has been created.
 """
 assert self._batchSystem is not None

 startTime = time.time()
 logger.debug('Shutting down batch system ...')
 self._batchSystem.shutdown()
 logger.debug('... finished shutting down the batch system in %s seconds.'
 % (time.time() - startTime))

 def _assertContextManagerUsed(self):
 if not self._inContextManager:
 raise ToilContextManagerException()

[docs] def writePIDFile(self):
 """
 Write a the pid of this process to a file in the jobstore.

 Overwriting the current contents of pid.log is a feature, not a bug of this method.
 Other methods will rely on always having the most current pid available.
 So far there is no reason to store any old pids.
 """
 with self._jobStore.writeSharedFileStream('pid.log') as f:
 f.write(str(os.getpid()).encode('utf-8'))

class ToilRestartException(Exception):
 def __init__(self, message):
 super(ToilRestartException, self).__init__(message)

class ToilContextManagerException(Exception):
 def __init__(self):
 super(ToilContextManagerException, self).__init__(
 'This method cannot be called outside the "with Toil(...)" context manager.')

class ToilMetrics:
 def __init__(self, provisioner=None):
 clusterName = 'none'
 region = 'us-west-2'
 if provisioner is not None:
 clusterName = provisioner.clusterName
 if provisioner._zone is not None:
 if provisioner.cloud == 'aws':
 # Remove AZ name
 region = zone_to_region(provisioner._zone)
 else:
 region = provisioner._zone

 registry = lookupEnvVar(name='docker registry',
 envName='TOIL_DOCKER_REGISTRY',
 defaultValue=dockerRegistry)

 self.mtailImage = "%s/toil-mtail:%s" % (registry, dockerTag)
 self.grafanaImage = "%s/toil-grafana:%s" % (registry, dockerTag)
 self.prometheusImage = "%s/toil-prometheus:%s" % (registry, dockerTag)

 self.startDashboard(clusterName=clusterName, zone=region)

 # Always restart the mtail container, because metrics should start from scratch
 # for each workflow
 try:
 subprocess.check_call(["docker", "rm", "-f", "toil_mtail"])
 except subprocess.CalledProcessError:
 pass

 try:
 self.mtailProc = subprocess.Popen(["docker", "run", "--rm", "--interactive",
 "--net=host",
 "--name", "toil_mtail",
 "-p", "3903:3903",
 self.mtailImage],
 stdin=subprocess.PIPE, stdout=subprocess.PIPE)
 except subprocess.CalledProcessError:
 logger.warning("Could not start toil metrics server.")
 self.mtailProc = None
 except KeyboardInterrupt:
 self.mtailProc.terminate()

 # On single machine, launch a node exporter instance to monitor CPU/RAM usage.
 # On AWS this is handled by the EC2 init script
 self.nodeExporterProc = None
 if not provisioner:
 try:
 self.nodeExporterProc = subprocess.Popen(["docker", "run", "--rm",
 "--net=host",
 "-p", "9100:9100",
 "-v", "/proc:/host/proc",
 "-v", "/sys:/host/sys",
 "-v", "/:/rootfs",
 "quay.io/prometheus/node-exporter:0.15.2",
 "-collector.procfs", "/host/proc",
 "-collector.sysfs", "/host/sys",
 "-collector.filesystem.ignored-mount-points",
 "^/(sys|proc|dev|host|etc)($|/)"])
 except subprocess.CalledProcessError:
 logger.warning(
 "Couldn't start node exporter, won't get RAM and CPU usage for dashboard.")
 self.nodeExporterProc = None
 except KeyboardInterrupt:
 self.nodeExporterProc.terminate()

 @staticmethod
 def _containerRunning(containerName):
 try:
 result = subprocess.check_output(["docker", "inspect", "-f",
 "'{{.State.Running}}'", containerName]).decode('utf-8') == "true"
 except subprocess.CalledProcessError:
 result = False
 return result

 def startDashboard(self, clusterName, zone):
 try:
 if not self._containerRunning("toil_prometheus"):
 try:
 subprocess.check_call(["docker", "rm", "-f", "toil_prometheus"])
 except subprocess.CalledProcessError:
 pass
 subprocess.check_call(["docker", "run",
 "--name", "toil_prometheus",
 "--net=host",
 "-d",
 "-p", "9090:9090",
 self.prometheusImage,
 clusterName,
 zone])

 if not self._containerRunning("toil_grafana"):
 try:
 subprocess.check_call(["docker", "rm", "-f", "toil_grafana"])
 except subprocess.CalledProcessError:
 pass
 subprocess.check_call(["docker", "run",
 "--name", "toil_grafana",
 "-d", "-p=3000:3000",
 self.grafanaImage])
 except subprocess.CalledProcessError:
 logger.warning("Could not start prometheus/grafana dashboard.")
 return

 try:
 self.add_prometheus_data_source()
 except requests.exceptions.ConnectionError:
 logger.debug("Could not add data source to Grafana dashboard - no metrics will be displayed.")

 @retry(errors=[requests.exceptions.ConnectionError])
 def add_prometheus_data_source(self):
 requests.post(
 'http://localhost:3000/api/datasources',
 auth=('admin', 'admin'),
 data='{"name":"DS_PROMETHEUS","type":"prometheus", "url":"http://localhost:9090", "access":"direct"}',
 headers={'content-type': 'application/json', "access": "direct"}
)

 def log(self, message):
 if self.mtailProc:
 self.mtailProc.stdin.write((message + "\n").encode("utf-8"))
 self.mtailProc.stdin.flush()

 # Note: The mtail configuration (dashboard/mtail/toil.mtail) depends on these messages
 # remaining intact

 def logMissingJob(self):
 self.log("missing_job")

 def logClusterSize(self, nodeType, currentSize, desiredSize):
 self.log("current_size '%s' %i" % (nodeType, currentSize))
 self.log("desired_size '%s' %i" % (nodeType, desiredSize))

 def logQueueSize(self, queueSize):
 self.log("queue_size %i" % queueSize)

 def logIssuedJob(self, jobType):
 self.log("issued_job %s" % jobType)

 def logFailedJob(self, jobType):
 self.log("failed_job %s" % jobType)

 def logCompletedJob(self, jobType):
 self.log("completed_job %s" % jobType)

 def shutdown(self):
 if self.mtailProc:
 self.mtailProc.kill()
 if self.nodeExporterProc:
 self.nodeExporterProc.kill()

def parseSetEnv(l):
 """
 Parses a list of strings of the form "NAME=VALUE" or just "NAME" into a dictionary. Strings
 of the latter from will result in dictionary entries whose value is None.

 :type l: list[str]
 :rtype: dict[str,str]

 >>> parseSetEnv([])
 {}
 >>> parseSetEnv(['a'])
 {'a': None}
 >>> parseSetEnv(['a='])
 {'a': ''}
 >>> parseSetEnv(['a=b'])
 {'a': 'b'}
 >>> parseSetEnv(['a=a', 'a=b'])
 {'a': 'b'}
 >>> parseSetEnv(['a=b', 'c=d'])
 {'a': 'b', 'c': 'd'}
 >>> parseSetEnv(['a=b=c'])
 {'a': 'b=c'}
 >>> parseSetEnv([''])
 Traceback (most recent call last):
 ...
 ValueError: Empty name
 >>> parseSetEnv(['=1'])
 Traceback (most recent call last):
 ...
 ValueError: Empty name
 """
 d = dict()
 for i in l:
 try:
 k, v = i.split('=', 1)
 except ValueError:
 k, v = i, None
 if not k:
 raise ValueError('Empty name')
 d[k] = v
 return d

def iC(minValue, maxValue=sys.maxsize):
 # Returns function that checks if a given int is in the given half-open interval
 assert isinstance(minValue, int) and isinstance(maxValue, int)
 return lambda x: minValue <= x < maxValue

def fC(minValue, maxValue=None):
 # Returns function that checks if a given float is in the given half-open interval
 assert isinstance(minValue, float)
 if maxValue is None:
 return lambda x: minValue <= x
 else:
 assert isinstance(maxValue, float)
 return lambda x: minValue <= x < maxValue

def cacheDirName(workflowID):
 """
 :return: Name of the cache directory.
 """
 return f'cache-{workflowID}'

def getDirSizeRecursively(dirPath: str) -> int:
 """
 This method will return the cumulative number of bytes occupied by the files
 on disk in the directory and its subdirectories.

 If the method is unable to access a file or directory (due to insufficient
 permissions, or due to the file or directory having been removed while this
 function was attempting to traverse it), the error will be handled
 internally, and a (possibly 0) lower bound on the size of the directory
 will be returned.

 The environment variable 'BLOCKSIZE'='512' is set instead of the much cleaner
 --block-size=1 because Apple can't handle it.

 :param str dirPath: A valid path to a directory or file.
 :return: Total size, in bytes, of the file or directory at dirPath.
 """

 # du is often faster than using os.lstat(), sometimes significantly so.

 # The call: 'du -s /some/path' should give the number of 512-byte blocks
 # allocated with the environment variable: BLOCKSIZE='512' set, and we
 # multiply this by 512 to return the filesize in bytes.

 try:
 return int(subprocess.check_output(['du', '-s', dirPath],
 env=dict(os.environ, BLOCKSIZE='512')).decode('utf-8').split()[0]) * 512
 except subprocess.CalledProcessError:
 # Something was inaccessible or went away
 return 0

def getFileSystemSize(dirPath: str) -> Tuple[int, int]:
 """
 Return the free space, and total size of the file system hosting `dirPath`.

 :param str dirPath: A valid path to a directory.
 :return: free space and total size of file system
 :rtype: tuple
 """
 assert os.path.exists(dirPath)
 diskStats = os.statvfs(dirPath)
 freeSpace = diskStats.f_frsize * diskStats.f_bavail
 diskSize = diskStats.f_frsize * diskStats.f_blocks
 return freeSpace, diskSize

def safeUnpickleFromStream(stream):
 string = stream.read()
 return pickle.loads(string)

 toil.fileStores

 Source code for toil.fileStores

Copyright (C) 2015-2021 Regents of the University of California
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
import os
import stat

[docs]class FileID(str):
 """
 A small wrapper around Python's builtin string class. It is used to represent a file's ID in the file store, and
 has a size attribute that is the file's size in bytes. This object is returned by importFile and writeGlobalFile.

 Calls into the file store can use bare strings; size will be queried from the job store if unavailable in the ID.
 """

 def __new__(cls, fileStoreID, *args):
 return super(FileID, cls).__new__(cls, fileStoreID)

[docs] def __init__(self, fileStoreID, size, executable=False):
 # Don't pass an argument to parent class's __init__.
 # In Python 3 we can have super(FileID, self) hand us object's __init__ which chokes on any arguments.
 super(FileID, self).__init__()
 self.size = size
 self.executable = executable

[docs] def pack(self):
 """
 Pack the FileID into a string so it can be passed through external code.
 """
 return '{}:{}:{}'.format(self.size, int(self.executable), self)

 @classmethod
 def forPath(cls, fileStoreID, filePath):
 executable = os.stat(filePath).st_mode & stat.S_IXUSR != 0
 return cls(fileStoreID, os.stat(filePath).st_size, executable)

[docs] @classmethod
 def unpack(cls, packedFileStoreID):
 """
 Unpack the result of pack() into a FileID object.
 """
 # Only separate twice in case the FileID itself has colons in it
 vals = packedFileStoreID.split(':', 2)
 # Break up the packed value
 size = int(vals[0])
 executable = bool(vals[1])
 value = vals[2]
 # Create the FileID
 return cls(value, size, executable)

 toil.job

 Source code for toil.job

Copyright (C) 2015-2021 Regents of the University of California
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
import collections
import copy
import importlib
import inspect
import itertools
import logging
import os
import pickle
import shutil
import tempfile
import time
import uuid
from abc import ABCMeta, abstractmethod
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from contextlib import contextmanager
from io import BytesIO
from typing import Dict, Optional, Union, Set

import dill

from toil.common import Config, Toil, addOptions, safeUnpickleFromStream
from toil.deferred import DeferredFunction
from toil.fileStores import FileID
from toil.lib.expando import Expando
from toil.lib.conversions import human2bytes
from toil.lib.resources import (get_total_cpu_time,
 get_total_cpu_time_and_memory_usage)
from toil.resource import ModuleDescriptor
from toil.statsAndLogging import set_logging_from_options

logger = logging.getLogger(__name__)

class JobPromiseConstraintError(RuntimeError):
 """
 Represents a problem where a job is being asked to promise its return
 value, but it has not yet been hit in the topological order of the job
 graph.
 """
 def __init__(self, promisingJob, recipientJob=None):
 """
 :param toil.job.Job promisingJob: The job being asked for its return value.
 :param toil.job.Job recipientJob: The job receiving the return value, if any.
 """

 self.promisingJob = promisingJob
 self.recipientJob = recipientJob

 if recipientJob is None:
 # Come up with a vaguer error message
 super().__init__(f"Job {promisingJob.description} cannot promise its return value to a job that is not its successor")
 else:
 # Write a full error message
 super().__init__(f"Job {promisingJob.description} cannot promise its return value to non-successor {recipientJob.description}")

class ConflictingPredecessorError(Exception):
 def __init__(self, predecessor: 'Job', successor: 'Job'):
 super().__init__(f'The given job: "{predecessor.description}" is already a predecessor of job: "{successor.description}".')

class TemporaryID:
 """
 Placeholder for a job ID used by a JobDescription that has not yet been
 registered with any JobStore.

 Needs to be held:
 * By JobDescription objects to record normal relationships.
 * By Jobs to key their connected-component registries and to record
 predecessor relationships to facilitate EncapsulatedJob adding
 itself as a child.
 * By Services to tie back to their hosting jobs, so the service
 tree can be built up from Service objects.
 """
 def __init__(self):
 """
 Assign a unique temporary ID that won't collide with anything.
 """
 self._value = uuid.uuid4()

 def __str__(self):
 return self.__repr__()

 def __repr__(self):
 return f'TemporaryID({self._value})'

 def __hash__(self):
 return hash(self._value)

 def __eq__(self, other):
 return isinstance(other, TemporaryID) and self._value == other._value

 def __ne__(self, other):
 return not isinstance(other, TemporaryID) or self._value != other._value

class Requirer:
 """
 Base class implementing the storage and presentation of requirements for
 cores, memory, disk, and preemptability as properties.
 """

 def __init__(self, requirements):
 """
 Parse and save the given requirements.

 :param dict requirements: Dict from string to number, string, or bool
 describing a set of resource requirments. 'cores', 'memory',
 'disk', and 'preemptable' fields, if set, are parsed and broken out
 into properties. If unset, the relevant property will be
 unspecified, and will be pulled from the assigned Config object if
 queried (see :meth:`toil.job.Requirer.assignConfig`). If
 unspecified and no Config object is assigned, an AttributeError
 will be raised at query time.
 """

 super().__init__()

 # We can have a toil.common.Config assigned to fill in default values
 # for e.g. job requirements not explicitly specified.
 self._config = None

 # Save requirements, parsing and validating anything that needs parsing or validating.
 # Don't save Nones.
 self._requirementOverrides = {k: self._parseResource(k, v) for (k, v) in requirements.items() if v is not None}

 def assignConfig(self, config):
 """
 Assign the given config object to be used to provide default values.

 Must be called exactly once on a loaded JobDescription before any
 requirements are queried.

 :param toil.common.Config config: Config object to query
 """
 if self._config is not None:
 raise RuntimeError(f"Config assigned multiple times to {self}")
 self._config = config

 def __getstate__(self):
 """
 Return the dict to use as the instance's __dict__ when pickling.
 """

 # We want to exclude the config from pickling.
 state = self.__dict__.copy()
 state['_config'] = None
 return state

 def __copy__(self):
 """
 Return a semantically-shallow copy of the object, for :meth:`copy.copy`.
 """

 # See https://stackoverflow.com/a/40484215 for how to do an override
 # that uses the base implementation

 # Hide this override
 implementation = self.__copy__
 self.__copy__ = None

 # Do the copy which omits the config via __getstate__ override
 clone = copy.copy(self)

 # Put back the override on us and the copy
 self.__copy__ = implementation
 clone.__copy__ = implementation

 if self._config is not None:
 # Share a config reference
 clone.assignConfig(self._config)

 return clone

 def __deepcopy__(self, memo):
 """
 Return a semantically-deep copy of the object, for :meth:`copy.deepcopy`.
 """

 # See https://stackoverflow.com/a/40484215 for how to do an override
 # that uses the base implementation

 # Hide this override
 implementation = self.__deepcopy__
 self.__deepcopy__ = None

 # Do the deepcopy which omits the config via __getstate__ override
 clone = copy.deepcopy(self, memo)

 # Put back the override on us and the copy
 self.__deepcopy__ = implementation
 clone.__deepcopy__ = implementation

 if self._config is not None:
 # Share a config reference
 clone.assignConfig(self._config)

 return clone

 @staticmethod
 def _parseResource(name, value):
 """
 Parse a Toil resource requirement value and apply resource-specific type checks. If the
 value is a string, a binary or metric unit prefix in it will be evaluated and the
 corresponding integral value will be returned.

 :param str name: The name of the resource
 :param str|int|float|bool|None value: The resource value
 :rtype: int|float|bool|None

 >>> Requirer._parseResource('cores', None)
 >>> Requirer._parseResource('cores', 1), Requirer._parseResource('disk', 1), \
 Requirer._parseResource('memory', 1)
 (1, 1, 1)
 >>> Requirer._parseResource('cores', '1G'), Requirer._parseResource('disk', '1G'), \
 Requirer._parseResource('memory', '1G')
 (1073741824, 1073741824, 1073741824)
 >>> Requirer._parseResource('cores', 1.1)
 1.1
 >>> Requirer._parseResource('disk', 1.1) # doctest: +IGNORE_EXCEPTION_DETAIL
 Traceback (most recent call last):
 ...
 TypeError: The 'disk' requirement does not accept values that are of <type 'float'>
 >>> Requirer._parseResource('memory', object()) # doctest: +IGNORE_EXCEPTION_DETAIL
 Traceback (most recent call last):
 ...
 TypeError: The 'memory' requirement does not accept values that are of ...
 """

 if value is None:
 # Anything can be None.
 return value

 if name in ('memory', 'disk', 'cores'):
 # These should be numbers that accept things like "5G".
 if isinstance(value, (str, bytes)):
 value = human2bytes(value)
 if isinstance(value, int):
 return value
 elif isinstance(value, float) and name == 'cores':
 # But only cores can be fractional.
 return value
 else:
 raise TypeError(f"The '{name}' requirement does not accept values that are of type {type(value)}")
 elif name == 'preemptable':
 if isinstance(value, str):
 if value.tolower() == 'true':
 return True
 elif value.tolower() == 'false':
 return False
 else:
 raise ValueError(f"The '{name}' requirement, as a string, must be 'true' or 'false' but is {value}")
 elif isinstance(value, int):
 if value == 1:
 return True
 if value == 0:
 return False
 else:
 raise ValueError(f"The '{name}' requirement, asn an int, must be 1 or 0 but is {value}")
 elif isinstance(value, bool):
 return value
 else:
 raise TypeError(f"The '{name}' requirement does not accept values that are of type {type(value)}")
 else:
 # Anything else we just pass along without opinons
 return value

 def _fetchRequirement(self, requirement):
 """
 Get the value of the specified requirement ('blah') by looking it up in
 our requirement storage and querying 'defaultBlah' on the config if it
 isn't set. If the config would be queried but isn't associated, raises
 AttributeError.

 :param str requirement: The name of the resource
 :rtype: int|float|bool|None
 """
 if requirement in self._requirementOverrides:
 value = self._requirementOverrides[requirement]
 if value is None:
 raise AttributeError(f"Encountered explicit None for '{requirement}' requirement of {self}")
 return value
 elif self._config is not None:
 value = getattr(self._config, 'default' + requirement.capitalize())
 if value is None:
 raise AttributeError(f"Encountered None for default '{requirement}' requirement in config: {self._config}")
 return value
 else:
 raise AttributeError(f"Default value for '{requirement}' requirement of {self} cannot be determined")

 @property
 def requirements(self):
 """
 Dict containing all non-None, non-defaulted requirements.

 :rtype: dict
 """
 return dict(self._requirementOverrides)

 @property
 def disk(self) -> int:
 """
 The maximum number of bytes of disk required.

 :rtype: int
 """
 return self._fetchRequirement('disk')
 @disk.setter
 def disk(self, val):
 self._requirementOverrides['disk'] = self._parseResource('disk', val)

 @property
 def memory(self):
 """
 The maximum number of bytes of memory required.

 :rtype: int
 """
 return self._fetchRequirement('memory')
 @memory.setter
 def memory(self, val):
 self._requirementOverrides['memory'] = self._parseResource('memory', val)

 @property
 def cores(self):
 """
 The number of CPU cores required.

 :rtype: int|float
 """
 return self._fetchRequirement('cores')
 @cores.setter
 def cores(self, val):
 self._requirementOverrides['cores'] = self._parseResource('cores', val)

 @property
 def preemptable(self):
 """
 Whether a preemptable node is permitted, or a nonpreemptable one is required.

 :rtype: bool
 """
 return self._fetchRequirement('preemptable')
 @preemptable.setter
 def preemptable(self, val):
 self._requirementOverrides['preemptable'] = self._parseResource('preemptable', val)

class JobDescription(Requirer):
 """
 Stores all the information that the Toil Leader ever needs to know about a
 Job: requirements information, dependency information, commands to issue,
 etc.

 Can be obtained from an actual (i.e. executable) Job object, and can be
 used to obtain the Job object from the JobStore.

 Never contains other Jobs or JobDescriptions: all reference is by ID.

 Subclassed into variants for checkpoint jobs and service jobs that have
 their specific parameters.
 """

 def __init__(self, requirements: Dict[str, Union[int, str, bool]], jobName: str, unitName: str='', displayName: str='', command: Optional[str]=None) -> None:
 """
 Create a new JobDescription.

 :param dict requirements: Dict from string to number, string, or bool
 describing the resource requirments of the job. 'cores', 'memory',
 'disk', and 'preemptable' fields, if set, are parsed and broken out
 into properties. If unset, the relevant property will be
 unspecified, and will be pulled from the assigned Config object if
 queried (see :meth:`toil.job.Requirer.assignConfig`).
 :param str jobName: Name of the kind of job this is. May be used in job
 store IDs and logging. Also used to let the cluster scaler learn a
 model for how long the job will take. Ought to be the job class's
 name if no real user-defined name is available.
 :param str unitName: Name of this instance of this kind of job. May
 appear with jobName in logging.
 :param str displayName: A human-readable name to identify this
 particular job instance. Ought to be the job class's name
 if no real user-defined name is available.
 """

 # Set requirements
 super().__init__(requirements)

 # Save names, making sure they are strings and not e.g. bytes.
 def makeString(x):
 return x if not isinstance(x, bytes) else x.decode('utf-8', errors='replace')
 self.jobName = makeString(jobName)
 self.unitName = makeString(unitName)
 self.displayName = makeString(displayName)

 # Set properties that are not fully filled in on creation.

 # ID of this job description in the JobStore.
 self.jobStoreID = TemporaryID()

 # Mostly fake, not-really-executable command string that encodes how to
 # find the Job body data that this JobDescription describes, and the
 # module(s) needed to unpickle it.
 #
 # Gets replaced with/rewritten into the real, executable command when
 # the leader passes the description off to the batch system to be
 # executed.
 self.command: Optional[str] = command

 # Set scheduling properties that the leader read to think about scheduling.

 # The number of times the job should be attempted. Includes the initial
 # try, plus the nu,ber of times to retry if the job fails. This number
 # is reduced each time the job is run, until it is zero, and then no
 # further attempts to run the job are made. If None, taken as the
 # default value for this workflow execution.
 self._remainingTryCount = None

 # Holds FileStore FileIDs of the files that this job has deleted. Used
 # to journal deletions of files and recover from a worker crash between
 # committing a JobDescription update and actually executing the
 # requested deletions.
 self.filesToDelete = []

 # Holds JobStore Job IDs of the jobs that have been chained into this
 # job, and which should be deleted when this job finally is deleted.
 self.jobsToDelete = []

 # The number of direct predecessors of the job. Needs to be stored at
 # the JobDescription to support dynamically-created jobs with multiple
 # predecessors. Otherwise, we could reach a job by one path down from
 # the root and decide to schedule it without knowing that it is also
 # reachable from other paths down from the root.
 self.predecessorNumber = 0

 # The IDs of predecessor jobs that have finished. Managed by the Leader
 # and ToilState, and just stored in the JobDescription. Never changed
 # after the job is scheduled, so we don't ahve to worry about
 # conflicting updates from workers.
 # TODO: Move into ToilState itself so leader stops mutating us so much?
 self.predecessorsFinished = set()

 # Note that we don't hold IDs of our predecessors. Predecessors know
 # about us, and not the other way around. Otherwise we wouldn't be able
 # to save ourselves to the job store until our predecessors were saved,
 # but they'd also be waiting on us.

 # The IDs of all child jobs of the described job.
 # Children which are done must be removed with filterSuccessors.
 self.childIDs = set()

 # The IDs of all follow-on jobs of the described job.
 # Follow-ons which are done must be removed with filterSuccessors.
 self.followOnIDs = set()

 # Dict from ServiceHostJob ID to list of child ServiceHostJobs that start after it.
 # All services must have an entry, if only to an empty list.
 self.serviceTree = {}

 # A jobStoreFileID of the log file for a job. This will be None unless the job failed and
 # the logging has been captured to be reported on the leader.
 self.logJobStoreFileID = None

 def serviceHostIDsInBatches(self):
 """
 Get an iterator over all batches of service host job IDs that can be
 started at the same time, in the order they need to start in.
 """

 # First start all the jobs with no parent
 roots = set(self.serviceTree.keys())
 for parent, children in self.serviceTree.items():
 for child in children:
 roots.remove(child)
 batch = list(roots)
 if len(batch) > 0:
 # If there's a first batch, yield it
 yield batch

 while len(batch) > 0:
 nextBatch = []
 for started in batch:
 # Go find all the children that can start now that we have started.
 for child in self.serviceTree[started]:
 nextBatch.append(child)

 batch = nextBatch
 if len(batch) > 0:
 # Emit the batch if nonempty
 yield batch

 def successorsAndServiceHosts(self):
 """
 Get an iterator over all child, follow-on, and service job IDs
 """
 return itertools.chain(self.childIDs, self.followOnIDs, self.serviceTree.keys())

 def allSuccessors(self):
 """
 Get an iterator over all child and follow-on job IDs
 """
 return itertools.chain(self.childIDs, self.followOnIDs)

 @property
 def services(self):
 """
 Get a collection of the IDs of service host jobs for this job, in arbitrary order.

 Will be empty if the job has no unfinished services.
 """

 return list(self.serviceTree.keys())

 def nextSuccessors(self):
 """
 Return the collection of job IDs for the successors of this job that,
 according to this job, are ready to run.

 If those jobs have multiple predecessor relationships, they may still
 be blocked on other jobs.

 Returns None when at the final phase (all successors done), and an
 empty collection if there are more phases but they can't be entered yet
 (e.g. because we are waiting for the job itself to run).
 """

 if self.command is not None:
 # We ourselves need to run. So there's not nothing to do but no successors are ready.
 return []
 elif len(self.childIDs) != 0:
 # Our children need to run
 return self.childIDs
 elif len(self.followOnIDs) != 0:
 # Our follow-ons need to run
 return self.followOnIDs
 else:
 # Everything is done.
 return None

 @property
 def stack(self):
 """
 Get an immutable collection of immutable collections of IDs of successors that need to run still.

 Batches of successors are in reverse order of the order they need to run in.

 Some successors in each batch may have already been finished. Batches may be empty.

 Exists so that code that used the old stack list immutably can work
 still. New development should use nextSuccessors(), and all mutations
 should use filterSuccessors() (which automatically removes completed
 phases).

 :return: Batches of successors that still need to run, in reverse
 order. An empty batch may exist under a non-empty batch, or at the top
 when the job itself is not done.
 :rtype: tuple(tuple(str))
 """

 result = []
 if self.command is not None or len(self.childIDs) != 0 or len(self.followOnIDs) != 0:
 # Follow-ons haven't all finished yet
 result.append(tuple(self.followOnIDs))
 if self.command is not None or len(self.childIDs) != 0:
 # Children haven't all finished yet
 result.append(tuple(self.childIDs))
 return tuple(result)

 def filterSuccessors(self, predicate):
 """
 Keep only successor jobs for which the given predicate function returns True when called with the job's ID.

 Treats all other successors as complete and forgets them.
 """

 self.childIDs = {x for x in self.childIDs if predicate(x)}
 self.followOnIDs = {x for x in self.followOnIDs if predicate(x)}

 def filterServiceHosts(self, predicate):
 """
 Keep only services for which the given predicate function returns True when called with the service host job's ID.

 Treats all other services as complete and forgets them.
 """

 # Get all the services we shouldn't have anymore
 toRemove = set()
 for serviceID in self.services:
 if not predicate(serviceID):
 toRemove.add(serviceID)

 # Drop everything from that set as a value and a key
 self.serviceTree = {k: [x for x in v if x not in toRemove] for k, v in self.serviceTree.items() if k not in toRemove}

 def clearSuccessorsAndServiceHosts(self):
 """
 Remove all references to child, follow-on, and service jobs associated with the described job.
 """
 self.childIDs = set()
 self.followOnIDs = set()
 self.serviceTree = {}

 def replace(self, other):
 """
 Take on the ID of another JobDescription, while retaining our own state and type.

 When updated in the JobStore, we will save over the other JobDescription.

 Useful for chaining jobs: the chained-to job can replace the parent job.

 Merges cleanup state from the job being replaced into this one.

 :param toil.job.JobDescription other: Job description to replace.
 """

 # TODO: also be able to take on the successors of the other job, under
 # ours on the stack, somehow.

 self.jobStoreID = other.jobStoreID

 # Save files and jobs to delete from the job we replaced, so we can
 # roll up a whole chain of jobs and delete them when they're all done.
 self.filesToDelete += other.filesToDelete
 self.jobsToDelete += other.jobsToDelete

 def addChild(self, childID):
 """
 Make the job with the given ID a child of the described job.
 """

 self.childIDs.add(childID)

 def addFollowOn(self, followOnID):
 """
 Make the job with the given ID a follow-on of the described job.
 """

 self.followOnIDs.add(followOnID)

 def addServiceHostJob(self, serviceID, parentServiceID=None):
 """
 Make the ServiceHostJob with the given ID a service of the described job.

 If a parent ServiceHostJob ID is given, that parent service will be started
 first, and must have already been added.
 """

 # Make sure we aren't clobbering something
 assert serviceID not in self.serviceTree
 self.serviceTree[serviceID] = []
 if parentServiceID is not None:
 self.serviceTree[parentServiceID].append(serviceID)

 def hasChild(self, childID):
 """
 Return True if the job with the given ID is a child of the described job.
 """

 return childID in self.childIDs

 def hasFollowOn(self, followOnID):
 """
 Return True if the job with the given ID is a follow-on of the described job.
 """

 return followOnID in self.followOnIDs

 def hasServiceHostJob(self, serviceID):
 """
 Return True if the ServiceHostJob with the given ID is a service of the described job.
 """

 return serviceID in self.serviceTree

 def renameReferences(self, renames):
 """
 Apply the given dict of ID renames to all references to jobs. Does not
 modify our own ID or those of finished predecessors.

 IDs not present in the renames dict are left as-is.

 :param dict(TemporaryID, str) renames: Rename operations to apply.
 """

 self.childIDs = {renames.get(old, old) for old in self.childIDs}
 self.followOnIDs = {renames.get(old, old) for old in self.followOnIDs}
 self.serviceTree = {renames.get(parent, parent): [renames.get(child, child) for child in children]
 for parent, children in self.serviceTree.items()}

 def addPredecessor(self):
 """
 Notify the JobDescription that a predecessor has been added to its Job.
 """
 self.predecessorNumber += 1

 def onRegistration(self, jobStore):
 """
 Called by the Job saving logic when this JobDescription meets the JobStore and has its ID assigned.

 Overridden to perform setup work (like hooking up flag files for service jobs) that requires the JobStore.

 :param toil.jobStores.abstractJobStore.AbstractJobStore jobStore: The job store we are being placed into
 """

 def setupJobAfterFailure(self, exitReason=None):
 """
 Reduce the remainingTryCount if greater than zero and set the memory
 to be at least as big as the default memory (in case of exhaustion of memory,
 which is common).

 Requires a configuration to have been assigned (see :meth:`toil.job.Requirer.assignConfig`).

 :param toil.batchSystems.abstractBatchSystem.BatchJobExitReason exitReason: The configuration for the current workflow run.

 """

 # Avoid potential circular imports
 from toil.batchSystems.abstractBatchSystem import BatchJobExitReason

 # Old version of this function used to take a config. Make sure that isn't happening.
 assert not isinstance(exitReason, Config), "Passing a Config as an exit reason"
 # Make sure we have an assigned config.
 assert self._config is not None

 if self._config.enableUnlimitedPreemptableRetries and exitReason == BatchJobExitReason.LOST:
 logger.info("*Not* reducing try count (%s) of job %s with ID %s",
 self.remainingTryCount, self, self.jobStoreID)
 else:
 self.remainingTryCount = max(0, self.remainingTryCount - 1)
 logger.warning("Due to failure we are reducing the remaining try count of job %s with ID %s to %s",
 self, self.jobStoreID, self.remainingTryCount)
 # Set the default memory to be at least as large as the default, in
 # case this was a malloc failure (we do this because of the combined
 # batch system)
 if exitReason == BatchJobExitReason.MEMLIMIT and self._config.doubleMem:
 self.memory = self.memory * 2
 logger.warning("We have doubled the memory of the failed job %s to %s bytes due to doubleMem flag",
 self, self.memory)
 if self.memory < self._config.defaultMemory:
 self.memory = self._config.defaultMemory
 logger.warning("We have increased the default memory of the failed job %s to %s bytes",
 self, self.memory)

 if self.disk < self._config.defaultDisk:
 self.disk = self._config.defaultDisk
 logger.warning("We have increased the disk of the failed job %s to the default of %s bytes",
 self, self.disk)

 def getLogFileHandle(self, jobStore):
 """
 Returns a context manager that yields a file handle to the log file.

 Assumes logJobStoreFileID is set.
 """
 return jobStore.readFileStream(self.logJobStoreFileID)

 @property
 def remainingTryCount(self):
 """
 The try count set on the JobDescription, or the default based on the
 retry count from the config if none is set.
 """
 if self._remainingTryCount is not None:
 return self._remainingTryCount
 elif self._config is not None:
 # Our try count should be the number of retries in the config, plus
 # 1 for the initial try
 return self._config.retryCount + 1
 else:
 raise AttributeError(f"Try count for {self} cannot be determined")
 @remainingTryCount.setter
 def remainingTryCount(self, val):
 self._remainingTryCount = val

 def clearRemainingTryCount(self):
 """
 Clear remainingTryCount and set it back to its default value.

 :returns: True if a modification to the JobDescription was made, and
 False otherwise.
 :rtype: bool
 """
 if self._remainingTryCount is not None:
 # We had a value stored
 self._remainingTryCount = None
 return True
 else:
 # No change needed
 return False

 def __str__(self):
 """
 Produce a useful logging string identifying this job.
 """

 printedName = "'" + self.jobName + "'"
 if self.unitName:
 printedName += ' ' + self.unitName

 if self.jobStoreID is not None:
 printedName += ' ' + str(self.jobStoreID)

 return printedName

 # Not usable as a key (not hashable) and doesn't have any value-equality.
 # There really should only ever be one true version of a JobDescription at
 # a time, keyed by jobStoreID.

 def __repr__(self):
 return '%s(**%r)' % (self.__class__.__name__, self.__dict__)

class ServiceJobDescription(JobDescription):
 """
 A description of a job that hosts a service.
 """

 def __init__(self, *args, **kwargs):
 """
 Create a ServiceJobDescription to describe a ServiceHostJob.
 """

 # Make the base JobDescription
 super().__init__(*args, **kwargs)

 # Set service-specific properties

 # An empty file in the jobStore which when deleted is used to signal that the service
 # should cease.
 self.terminateJobStoreID = None

 # Similarly a empty file which when deleted is used to signal that the service is
 # established
 self.startJobStoreID = None

 # An empty file in the jobStore which when deleted is used to signal that the service
 # should terminate signaling an error.
 self.errorJobStoreID = None

 def onRegistration(self, jobStore):
 """
 When a ServiceJobDescription first meets the JobStore, it needs to set up its flag files.
 """
 super().onRegistration(jobStore)

 self.startJobStoreID = jobStore.getEmptyFileStoreID()
 self.terminateJobStoreID = jobStore.getEmptyFileStoreID()
 self.errorJobStoreID = jobStore.getEmptyFileStoreID()

class CheckpointJobDescription(JobDescription):
 """
 A description of a job that is a checkpoint.
 """

 def __init__(self, *args, **kwargs):
 """
 Create a CheckpointJobDescription to describe a checkpoint job.
 """

 # Make the base JobDescription
 super().__init__(*args, **kwargs)

 # Set checkpoint-specific properties

 # None, or a copy of the original command string used to reestablish the job after failure.
 self.checkpoint = None

 # Files that can not be deleted until the job and its successors have completed
 self.checkpointFilesToDelete = []

 # Human-readable names of jobs that were run as part of this job's
 # invocation, starting with this job
 self.chainedJobs = []

 def restartCheckpoint(self, jobStore):
 """
 Restart a checkpoint after the total failure of jobs in its subtree.

 Writes the changes to the jobStore immediately. All the
 checkpoint's successors will be deleted, but its try count
 will *not* be decreased.

 Returns a list with the IDs of any successors deleted.
 """
 assert self.checkpoint is not None
 successorsDeleted = []
 if self.childIDs or self.followOnIDs or self.serviceTree or self.command is not None:
 if self.command is not None:
 assert self.command == self.checkpoint
 logger.debug("Checkpoint job already has command set to run")
 else:
 self.command = self.checkpoint

 jobStore.update(self) # Update immediately to ensure that checkpoint
 # is made before deleting any remaining successors

 if self.childIDs or self.followOnIDs or self.serviceTree:
 # If the subtree of successors is not complete restart everything
 logger.debug("Checkpoint job has unfinished successor jobs, deleting children: %s, followOns: %s, services: %s " %
 (self.childIDs, self.followOnIDs, self.serviceTree.keys()))
 # Delete everything on the stack, as these represent successors to clean
 # up as we restart the queue
 def recursiveDelete(jobDesc):
 # Recursive walk the stack to delete all remaining jobs
 for otherJobID in jobDesc.successorsAndServiceHosts():
 if jobStore.exists(otherJobID):
 recursiveDelete(jobStore.load(otherJobID))
 else:
 logger.debug("Job %s has already been deleted", otherJobID)
 if jobDesc.jobStoreID != self.jobStoreID:
 # Delete everything under us except us.
 logger.debug("Checkpoint is deleting old successor job: %s", jobDesc.jobStoreID)
 jobStore.delete(jobDesc.jobStoreID)
 successorsDeleted.append(jobDesc.jobStoreID)
 recursiveDelete(self)

 # Cut links to the jobs we deleted.
 self.clearSuccessorsAndServiceHosts()

 # Update again to commit the removal of successors.
 jobStore.update(self)
 return successorsDeleted

[docs]class Job:
 """
 Class represents a unit of work in toil.
 """
[docs] def __init__(self, memory=None, cores=None, disk=None, preemptable=None,
 unitName='', checkpoint=False, displayName='',
 descriptionClass=None):
 """
 This method must be called by any overriding constructor.

 :param memory: the maximum number of bytes of memory the job will require to run.
 :param cores: the number of CPU cores required.
 :param disk: the amount of local disk space required by the job, expressed in bytes.
 :param preemptable: if the job can be run on a preemptable node.
 :param unitName: Human-readable name for this instance of the job.
 :param checkpoint: if any of this job's successor jobs completely fails,
 exhausting all their retries, remove any successor jobs and rerun this job to restart the
 subtree. Job must be a leaf vertex in the job graph when initially defined, see
 :func:`toil.job.Job.checkNewCheckpointsAreCutVertices`.
 :param displayName: Human-readable job type display name.
 :param descriptionClass: Override for the JobDescription class used to describe the job.

 :type memory: int or string convertible by toil.lib.conversions.human2bytes to an int
 :type cores: float, int, or string convertible by toil.lib.conversions.human2bytes to an int
 :type disk: int or string convertible by toil.lib.conversions.human2bytes to an int
 :type preemptable: bool, int in {0, 1}, or string in {'false', 'true'} in any case
 :type unitName: str
 :type checkpoint: bool
 :type displayName: str
 :type descriptionClass: class
 """

 # Fill in our various names
 jobName = self.__class__.__name__
 displayName = displayName if displayName else jobName

 # Build a requirements dict for the description
 requirements = {'memory': memory, 'cores': cores, 'disk': disk,
 'preemptable': preemptable}
 if descriptionClass is None:
 if checkpoint:
 # Actually describe as a checkpoint job
 descriptionClass = CheckpointJobDescription
 else:
 # Use the normal default
 descriptionClass = JobDescription
 # Create the JobDescription that owns all the scheduling information.
 # Make it with a temporary ID until we can be assigned a real one by
 # the JobStore.
 self._description = descriptionClass(requirements, jobName, unitName=unitName, displayName=displayName)

 # Private class variables needed to actually execute a job, in the worker.
 # Also needed for setting up job graph structures before saving to the JobStore.

 # This dict holds a mapping from TemporaryIDs to the job objects they represent.
 # Will be shared among all jobs in a disconnected piece of the job
 # graph that hasn't been registered with a JobStore yet.
 # Make sure to initially register ourselves.
 self._registry = {self._description.jobStoreID: self}

 # Job relationships are all stored exactly once in the JobDescription.
 # Except for predecessor relationships which are stored here, just
 # while the user is creating the job graphs, to check for duplicate
 # relationships and to let EncapsulatedJob magically add itself as a
 # child. Note that this stores actual Job objects, to call addChild on.
 self._directPredecessors = set()

 # Note that self.__module__ is not necessarily this module, i.e. job.py. It is the module
 # defining the class self is an instance of, which may be a subclass of Job that may be
 # defined in a different module.
 self.userModule = ModuleDescriptor.forModule(self.__module__).globalize()
 # Maps index paths into composite return values to lists of IDs of files containing
 # promised values for those return value items. An index path is a tuple of indices that
 # traverses a nested data structure of lists, dicts, tuples or any other type supporting
 # the __getitem__() protocol.. The special key `()` (the empty tuple) represents the
 # entire return value.
 self._rvs = collections.defaultdict(list)
 self._promiseJobStore = None
 self._fileStore = None
 self._defer = None
 self._tempDir = None

 def __str__(self):
 """
 Produce a useful logging string to identify this Job and distinguish it
 from its JobDescription.
 """
 if self.description is None:
 return repr(self)
 else:
 return 'Job(' + str(self.description) + ')'

 @property
 def jobStoreID(self):
 """
 Get the ID of this Job.

 :rtype: str|toil.job.TemporaryID
 """
 # This is managed by the JobDescription.
 return self._description.jobStoreID

 @property
 def description(self):
 """
 Expose the JobDescription that describes this job.

 :rtype: toil.job.JobDescription
 """
 return self._description

 # Instead of being a Requirer ourselves, we pass anything about
 # requirements through to the JobDescription.

 @property
 def disk(self) -> int:
 """
 The maximum number of bytes of disk the job will require to run.

 :rtype: int
 """
 return self.description.disk
 @disk.setter
 def disk(self, val):
 self.description.disk = val

 @property
 def memory(self):
 """
 The maximum number of bytes of memory the job will require to run.

 :rtype: int
 """
 return self.description.memory
 @memory.setter
 def memory(self, val):
 self.description.memory = val

 @property
 def cores(self):
 """
 The number of CPU cores required.

 :rtype: int|float
 """
 return self.description.cores
 @cores.setter
 def cores(self, val):
 self.description.cores = val

 @property
 def preemptable(self):
 """
 Whether the job can be run on a preemptable node.

 :rtype: bool
 """
 return self.description.preemptable
 @preemptable.setter
 def preemptable(self, val):
 self.description.preemptable = val

 @property
 def checkpoint(self):
 """
 Determine if the job is a checkpoint job or not.

 :rtype: bool
 """

 return isinstance(self._description, CheckpointJobDescription)

[docs] def assignConfig(self, config):
 """
 Assign the given config object to be used by various actions
 implemented inside the Job class.

 :param toil.common.Config config: Config object to query
 """
 self.description.assignConfig(config)

[docs] def run(self, fileStore):
 """
 Override this function to perform work and dynamically create successor jobs.

 :param toil.fileStores.abstractFileStore.AbstractFileStore fileStore: Used to create local and
 globally sharable temporary files and to send log messages to the leader
 process.

 :return: The return value of the function can be passed to other jobs by means of
 :func:`toil.job.Job.rv`.
 """

 def _jobGraphsJoined(self, other):
 """
 Called whenever the job graphs of this job and the other job may have been merged into one connected component.

 Ought to be called on the bigger registry first.

 Merges TemporaryID registries if needed.

 :param toil.job.Job other: A job possibly from the other connected component
 """

 # Maintain the invariant that a whole connected component has a config
 # assigned if any job in it does.
 if self.description._config is None and other.description._config is not None:
 # The other component has a config assigned but this component doesn't.
 for job in self._registry.values():
 job.assignConfig(other.description._config)
 elif other.description._config is None and self.description._config is not None:
 # We have a config assigned but the other component doesn't.
 for job in other._registry.values():
 job.assignConfig(self.description._config)

 if len(self._registry) < len(other._registry):
 # Merge into the other component instead
 other._jobGraphsJoined(self)
 else:
 if self._registry != other._registry:
 # We are in fact joining connected components.

 # Steal everything from the other connected component's registry
 self._registry.update(other._registry)

 for job in other._registry.values():
 # Point all their jobs at the new combined registry
 job._registry = self._registry

[docs] def addChild(self, childJob):
 """
 Adds childJob to be run as child of this job. Child jobs will be run \
 directly after this job's :func:`toil.job.Job.run` method has completed.

 :param toil.job.Job childJob:
 :return: childJob
 :rtype: toil.job.Job
 """

 assert isinstance(childJob, Job)

 # Join the job graphs
 self._jobGraphsJoined(childJob)
 # Remember the child relationship
 self._description.addChild(childJob.jobStoreID)
 # Record the temporary back-reference
 childJob._addPredecessor(self)

 return childJob

[docs] def hasChild(self, childJob):
 """
 Check if childJob is already a child of this job.

 :param toil.job.Job childJob:
 :return: True if childJob is a child of the job, else False.
 :rtype: bool
 """
 return self._description.hasChild(childJob.jobStoreID)

[docs] def addFollowOn(self, followOnJob):
 """
 Adds a follow-on job, follow-on jobs will be run after the child jobs and \
 their successors have been run.

 :param toil.job.Job followOnJob:
 :return: followOnJob
 :rtype: toil.job.Job
 """

 assert isinstance(followOnJob, Job)

 # Join the job graphs
 self._jobGraphsJoined(followOnJob)
 # Remember the follow-on relationship
 self._description.addFollowOn(followOnJob.jobStoreID)
 # Record the temporary back-reference
 followOnJob._addPredecessor(self)

 return followOnJob

[docs] def hasPredecessor(self, job: 'Job') -> bool:
 """Check if a given job is already a predecessor of this job."""
 return job in self._directPredecessors

[docs] def hasFollowOn(self, followOnJob):
 """
 Check if given job is already a follow-on of this job.

 :param toil.job.Job followOnJob:
 :return: True if the followOnJob is a follow-on of this job, else False.
 :rtype: bool
 """
 return self._description.hasChild(followOnJob.jobStoreID)

[docs] def addService(self, service, parentService=None):
 """
 Add a service.

 The :func:`toil.job.Job.Service.start` method of the service will be called
 after the run method has completed but before any successors are run.
 The service's :func:`toil.job.Job.Service.stop` method will be called once
 the successors of the job have been run.

 Services allow things like databases and servers to be started and accessed
 by jobs in a workflow.

 :raises toil.job.JobException: If service has already been made the child of a job or another service.
 :param toil.job.Job.Service service: Service to add.
 :param toil.job.Job.Service parentService: Service that will be started before 'service' is
 started. Allows trees of services to be established. parentService must be a service
 of this job.
 :return: a promise that will be replaced with the return value from
 :func:`toil.job.Job.Service.start` of service in any successor of the job.
 :rtype: toil.job.Promise
 """

 if parentService is not None:
 if not self.hasService(parentService):
 raise JobException("Parent service is not a service of the given job")

 if service.hostID is not None:
 raise JobException("Service has already been added to a job")

 # Create a host job for the service, ad get it an ID
 hostingJob = ServiceHostJob(service)
 self._jobGraphsJoined(hostingJob)

 # Record the relationship to the hosting job, with its parent if any.
 self._description.addServiceHostJob(hostingJob.jobStoreID, parentService.hostID if parentService is not None else None)

 # For compatibility with old Cactus versions that tinker around with
 # our internals, we need to make the hosting job available as
 # self._services[-1]. TODO: Remove this when Cactus has updated.
 self._services = [hostingJob]

 # Return the promise for the service's startup result
 return hostingJob.rv()

[docs] def hasService(self, service):
 """
 Returns True if the given Service is a service of this job, and False otherwise.
 """

 return service.hostID is None or self._description.hasServiceHostJob(service.hostID)

 ##Convenience functions for creating jobs

[docs] def addChildFn(self, fn, *args, **kwargs):
 """
 Adds a function as a child job.

 :param fn: Function to be run as a child job with ``*args`` and ``**kwargs`` as \
 arguments to this function. See toil.job.FunctionWrappingJob for reserved \
 keyword arguments used to specify resource requirements.
 :return: The new child job that wraps fn.
 :rtype: toil.job.FunctionWrappingJob
 """
 if PromisedRequirement.convertPromises(kwargs):
 return self.addChild(PromisedRequirementFunctionWrappingJob.create(fn, *args, **kwargs))
 else:
 return self.addChild(FunctionWrappingJob(fn, *args, **kwargs))

[docs] def addFollowOnFn(self, fn, *args, **kwargs):
 """
 Adds a function as a follow-on job.

 :param fn: Function to be run as a follow-on job with ``*args`` and ``**kwargs`` as \
 arguments to this function. See toil.job.FunctionWrappingJob for reserved \
 keyword arguments used to specify resource requirements.
 :return: The new follow-on job that wraps fn.
 :rtype: toil.job.FunctionWrappingJob
 """
 if PromisedRequirement.convertPromises(kwargs):
 return self.addFollowOn(PromisedRequirementFunctionWrappingJob.create(fn, *args, **kwargs))
 else:
 return self.addFollowOn(FunctionWrappingJob(fn, *args, **kwargs))

[docs] def addChildJobFn(self, fn, *args, **kwargs):
 """
 Adds a job function as a child job. See :class:`toil.job.JobFunctionWrappingJob`
 for a definition of a job function.

 :param fn: Job function to be run as a child job with ``*args`` and ``**kwargs`` as \
 arguments to this function. See toil.job.JobFunctionWrappingJob for reserved \
 keyword arguments used to specify resource requirements.
 :return: The new child job that wraps fn.
 :rtype: toil.job.JobFunctionWrappingJob
 """
 if PromisedRequirement.convertPromises(kwargs):
 return self.addChild(PromisedRequirementJobFunctionWrappingJob.create(fn, *args, **kwargs))
 else:
 return self.addChild(JobFunctionWrappingJob(fn, *args, **kwargs))

[docs] def addFollowOnJobFn(self, fn, *args, **kwargs):
 """
 Add a follow-on job function. See :class:`toil.job.JobFunctionWrappingJob`
 for a definition of a job function.

 :param fn: Job function to be run as a follow-on job with ``*args`` and ``**kwargs`` as \
 arguments to this function. See toil.job.JobFunctionWrappingJob for reserved \
 keyword arguments used to specify resource requirements.
 :return: The new follow-on job that wraps fn.
 :rtype: toil.job.JobFunctionWrappingJob
 """
 if PromisedRequirement.convertPromises(kwargs):
 return self.addFollowOn(PromisedRequirementJobFunctionWrappingJob.create(fn, *args, **kwargs))
 else:
 return self.addFollowOn(JobFunctionWrappingJob(fn, *args, **kwargs))

 @property
 def tempDir(self):
 """
 Shortcut to calling :func:`job.fileStore.getLocalTempDir`. Temp dir is created on first call
 and will be returned for first and future calls
 :return: Path to tempDir. See `job.fileStore.getLocalTempDir`
 :rtype: str
 """
 if self._tempDir is None:
 self._tempDir = self._fileStore.getLocalTempDir()
 return self._tempDir

[docs] def log(self, text, level=logging.INFO):
 """
 convenience wrapper for :func:`fileStore.logToMaster`
 """
 self._fileStore.logToMaster(text, level)

[docs] @staticmethod
 def wrapFn(fn, *args, **kwargs):
 """
 Makes a Job out of a function. \
 Convenience function for constructor of :class:`toil.job.FunctionWrappingJob`.

 :param fn: Function to be run with ``*args`` and ``**kwargs`` as arguments. \
 See toil.job.JobFunctionWrappingJob for reserved keyword arguments used \
 to specify resource requirements.
 :return: The new function that wraps fn.
 :rtype: toil.job.FunctionWrappingJob
 """
 if PromisedRequirement.convertPromises(kwargs):
 return PromisedRequirementFunctionWrappingJob.create(fn, *args, **kwargs)
 else:
 return FunctionWrappingJob(fn, *args, **kwargs)

[docs] @staticmethod
 def wrapJobFn(fn, *args, **kwargs):
 """
 Makes a Job out of a job function. \
 Convenience function for constructor of :class:`toil.job.JobFunctionWrappingJob`.

 :param fn: Job function to be run with ``*args`` and ``**kwargs`` as arguments. \
 See toil.job.JobFunctionWrappingJob for reserved keyword arguments used \
 to specify resource requirements.
 :return: The new job function that wraps fn.
 :rtype: toil.job.JobFunctionWrappingJob
 """
 if PromisedRequirement.convertPromises(kwargs):
 return PromisedRequirementJobFunctionWrappingJob.create(fn, *args, **kwargs)
 else:
 return JobFunctionWrappingJob(fn, *args, **kwargs)

[docs] def encapsulate(self, name=None):
 """
 Encapsulates the job, see :class:`toil.job.EncapsulatedJob`.
 Convenience function for constructor of :class:`toil.job.EncapsulatedJob`.

 :param str name: Human-readable name for the encapsulated job.

 :return: an encapsulated version of this job.
 :rtype: toil.job.EncapsulatedJob
 """
 return EncapsulatedJob(self, unitName=name)

 ##
 #The following function is used for passing return values between
 #job run functions
 ##

[docs] def rv(self, *path):
 """
 Creates a *promise* (:class:`toil.job.Promise`) representing a return value of the job's
 run method, or, in case of a function-wrapping job, the wrapped function's return value.

 :param (Any) path: Optional path for selecting a component of the promised return value.
 If absent or empty, the entire return value will be used. Otherwise, the first
 element of the path is used to select an individual item of the return value. For
 that to work, the return value must be a list, dictionary or of any other type
 implementing the `__getitem__()` magic method. If the selected item is yet another
 composite value, the second element of the path can be used to select an item from
 it, and so on. For example, if the return value is `[6,{'a':42}]`, `.rv(0)` would
 select `6` , `rv(1)` would select `{'a':3}` while `rv(1,'a')` would select `3`. To
 select a slice from a return value that is slicable, e.g. tuple or list, the path
 element should be a `slice` object. For example, assuming that the return value is
 `[6, 7, 8, 9]` then `.rv(slice(1, 3))` would select `[7, 8]`. Note that slicing
 really only makes sense at the end of path.

 :return: A promise representing the return value of this jobs :meth:`toil.job.Job.run`
 method.

 :rtype: toil.job.Promise
 """
 return Promise(self, path)

 def registerPromise(self, path):
 if self._promiseJobStore is None:
 # We haven't had a job store set to put our return value into, so
 # we must not have been hit yet in job topological order.
 raise JobPromiseConstraintError(self)
 # TODO: can we guarantee self.jobStoreID is populated and so pass that here?
 with self._promiseJobStore.writeFileStream() as (fileHandle, jobStoreFileID):
 promise = UnfulfilledPromiseSentinel(str(self.description), False)
 pickle.dump(promise, fileHandle, pickle.HIGHEST_PROTOCOL)
 self._rvs[path].append(jobStoreFileID)
 return self._promiseJobStore.config.jobStore, jobStoreFileID

[docs] def prepareForPromiseRegistration(self, jobStore):
 """
 Ensure that a promise by this job (the promissor) can register with the promissor when
 another job referring to the promise (the promissee) is being serialized. The promissee
 holds the reference to the promise (usually as part of the the job arguments) and when it
 is being pickled, so will the promises it refers to. Pickling a promise triggers it to be
 registered with the promissor.

 :return:
 """
 self._promiseJobStore = jobStore

 def _disablePromiseRegistration(self):
 """
 Called when the job data is about to be saved in the JobStore.
 No promises should attempt to register with the job after this has been
 called, because that registration would not be persisted.
 """

 self._promiseJobStore = None

 ##
 #Cycle/connectivity checking
 ##

[docs] def checkJobGraphForDeadlocks(self):
 """
 Ensures that a graph of Jobs (that hasn't yet been saved to the
 JobStore) doesn't contain any pathological relationships between jobs
 that would result in deadlocks if we tried to run the jobs.

 See :func:`toil.job.Job.checkJobGraphConnected`,
 :func:`toil.job.Job.checkJobGraphAcyclic` and
 :func:`toil.job.Job.checkNewCheckpointsAreLeafVertices` for more info.

 :raises toil.job.JobGraphDeadlockException: if the job graph
 is cyclic, contains multiple roots or contains checkpoint jobs that are
 not leaf vertices when defined (see :func:`toil.job.Job.checkNewCheckpointsAreLeaves`).
 """
 self.checkJobGraphConnected()
 self.checkJobGraphAcylic()
 self.checkNewCheckpointsAreLeafVertices()

[docs] def getRootJobs(self) -> Set['Job']:
 """
 Returns the set of root job objects that contain this job.
 A root job is a job with no predecessors (i.e. which are not children, follow-ons, or services).

 Only deals with jobs created here, rather than loaded from the job store.
 """

 # Start assuming all jobs are roots
 roots = set(self._registry.keys())

 for job in self._registry.values():
 for otherID in job.description.successorsAndServiceHosts():
 # If anything is a successor or service of anything else, it isn't a root.
 if otherID in roots:
 # Remove it if we still think it is
 roots.remove(otherID)

 return {self._registry[jid] for jid in roots}

[docs] def checkJobGraphConnected(self):
 """
 :raises toil.job.JobGraphDeadlockException: if :func:`toil.job.Job.getRootJobs` does \
 not contain exactly one root job.

 As execution always starts from one root job, having multiple root jobs will \
 cause a deadlock to occur.

 Only deals with jobs created here, rather than loaded from the job store.
 """
 rootJobs = self.getRootJobs()
 if len(rootJobs) != 1:
 raise JobGraphDeadlockException("Graph does not contain exactly one"
 " root job: %s" % rootJobs)

[docs] def checkJobGraphAcylic(self):
 """
 :raises toil.job.JobGraphDeadlockException: if the connected component \
 of jobs containing this job contains any cycles of child/followOn dependencies \
 in the *augmented job graph* (see below). Such cycles are not allowed \
 in valid job graphs.

 A follow-on edge (A, B) between two jobs A and B is equivalent \
 to adding a child edge to B from (1) A, (2) from each child of A, \
 and (3) from the successors of each child of A. We call each such edge \
 an edge an "implied" edge. The augmented job graph is a job graph including \
 all the implied edges.

 For a job graph G = (V, E) the algorithm is ``O(|V|^2)``. It is ``O(|V| + |E|)`` for \
 a graph with no follow-ons. The former follow-on case could be improved!

 Only deals with jobs created here, rather than loaded from the job store.
 """
 #Get the root jobs
 roots = self.getRootJobs()
 if len(roots) == 0:
 raise JobGraphDeadlockException("Graph contains no root jobs due to cycles")

 #Get implied edges
 extraEdges = self._getImpliedEdges(roots)

 #Check for directed cycles in the augmented graph
 visited = set()
 for root in roots:
 root._checkJobGraphAcylicDFS([], visited, extraEdges)

 def _checkJobGraphAcylicDFS(self, stack, visited, extraEdges):
 """
 DFS traversal to detect cycles in augmented job graph.
 """
 if self not in visited:
 visited.add(self)
 stack.append(self)
 for successor in [self._registry[jID] for jID in self.description.allSuccessors() if jID in self._registry] + extraEdges[self]:
 # Grab all the successors in the current registry (i.e. added form this node) and look at them.
 successor._checkJobGraphAcylicDFS(stack, visited, extraEdges)
 assert stack.pop() == self
 if self in stack:
 stack.append(self)
 raise JobGraphDeadlockException("A cycle of job dependencies has been detected '%s'" % stack)

 @staticmethod
 def _getImpliedEdges(roots):
 """
 Gets the set of implied edges (between children and follow-ons of a common job). Used in Job.checkJobGraphAcylic.

 Only deals with jobs created here, rather than loaded from the job store.

 :returns: dict from Job object to list of Job objects that must be done before it can start.
 """
 #Get nodes (Job objects) in job graph
 nodes = set()
 for root in roots:
 root._collectAllSuccessors(nodes)

 ##For each follow-on edge calculate the extra implied edges
 #Adjacency list of implied edges, i.e. map of jobs to lists of jobs
 #connected by an implied edge
 extraEdges = dict([(n, []) for n in nodes])
 for job in nodes:
 for depth in range(1, len(job.description.stack)):
 # Add edges from all jobs in the earlier/upper subtrees to all
 # the roots of the later/lower subtrees

 upper = job.description.stack[depth]
 lower = job.description.stack[depth - 1]

 # Find everything in the upper subtree
 reacheable = set()
 for upperID in upper:
 if upperID in job._registry:
 # This is a locally added job, not an already-saved job
 upperJob = job._registry[upperID]
 upperJob._collectAllSuccessors(reacheable)

 for inUpper in reacheable:
 # Add extra edges to the roots of all the lower subtrees
 # But skip anything in the lower subtree not in the current _registry (i.e. not created hear)
 extraEdges[inUpper] += [job._registry[lowerID] for lowerID in lower if lowerID in job._registry]

 return extraEdges

[docs] def checkNewCheckpointsAreLeafVertices(self):
 """
 A checkpoint job is a job that is restarted if either it fails, or if any of \
 its successors completely fails, exhausting their retries.

 A job is a leaf it is has no successors.

 A checkpoint job must be a leaf when initially added to the job graph. When its \
 run method is invoked it can then create direct successors. This restriction is made
 to simplify implementation.

 Only works on connected components of jobs not yet added to the JobStore.

 :raises toil.job.JobGraphDeadlockException: if there exists a job being added to the graph for which \
 checkpoint=True and which is not a leaf.
 """
 roots = self.getRootJobs() # Roots jobs of component, these are preexisting jobs in the graph

 # All jobs in the component of the job graph containing self
 jobs = set()
 list(map(lambda x : x._collectAllSuccessors(jobs), roots))

 # Check for each job for which checkpoint is true that it is a cut vertex or leaf
 for y in [x for x in jobs if x.checkpoint]:
 if y not in roots: # The roots are the prexisting jobs
 if not Job._isLeafVertex(y):
 raise JobGraphDeadlockException("New checkpoint job %s is not a leaf in the job graph" % y)

 ##
 #Deferred function system
 ##

[docs] def defer(self, function, *args, **kwargs):
 """
 Register a deferred function, i.e. a callable that will be invoked after the current
 attempt at running this job concludes. A job attempt is said to conclude when the job
 function (or the :meth:`toil.job.Job.run` method for class-based jobs) returns, raises an
 exception or after the process running it terminates abnormally. A deferred function will
 be called on the node that attempted to run the job, even if a subsequent attempt is made
 on another node. A deferred function should be idempotent because it may be called
 multiple times on the same node or even in the same process. More than one deferred
 function may be registered per job attempt by calling this method repeatedly with
 different arguments. If the same function is registered twice with the same or different
 arguments, it will be called twice per job attempt.

 Examples for deferred functions are ones that handle cleanup of resources external to
 Toil, like Docker containers, files outside the work directory, etc.

 :param callable function: The function to be called after this job concludes.

 :param list args: The arguments to the function

 :param dict kwargs: The keyword arguments to the function
 """
 if self._defer is None:
 raise Exception('A deferred function may only be registered with a job while that job is running.')
 self._defer(DeferredFunction.create(function, *args, **kwargs))

 ##
 #The following nested classes are used for
 #creating jobtrees (Job.Runner),
 #and defining a service (Job.Service)
 ##

[docs] class Runner():
 """
 Used to setup and run Toil workflow.
 """
[docs] @staticmethod
 def getDefaultArgumentParser():
 """
 Get argument parser with added toil workflow options.

 :returns: The argument parser used by a toil workflow with added Toil options.
 :rtype: :class:`argparse.ArgumentParser`
 """
 parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
 Job.Runner.addToilOptions(parser)
 return parser

[docs] @staticmethod
 def getDefaultOptions(jobStore):
 """
 Get default options for a toil workflow.

 :param string jobStore: A string describing the jobStore \
 for the workflow.
 :returns: The options used by a toil workflow.
 :rtype: argparse.ArgumentParser values object
 """
 parser = Job.Runner.getDefaultArgumentParser()
 return parser.parse_args(args=[jobStore])

[docs] @staticmethod
 def addToilOptions(parser):
 """
 Adds the default toil options to an :mod:`optparse` or :mod:`argparse`
 parser object.

 :param parser: Options object to add toil options to.
 :type parser: optparse.OptionParser or argparse.ArgumentParser
 """
 addOptions(parser)

[docs] @staticmethod
 def startToil(job, options):
 """
 Deprecated by toil.common.Toil.start. Runs the toil workflow using the given options
 (see Job.Runner.getDefaultOptions and Job.Runner.addToilOptions) starting with this
 job.
 :param toil.job.Job job: root job of the workflow
 :raises: toil.leader.FailedJobsException if at the end of function \
 their remain failed jobs.
 :return: The return value of the root job's run function.
 :rtype: Any
 """
 set_logging_from_options(options)
 with Toil(options) as toil:
 if not options.restart:
 return toil.start(job)
 else:
 return toil.restart()

[docs] class Service(Requirer, metaclass=ABCMeta):
 """
 Abstract class used to define the interface to a service.

 Should be subclassed by the user to define services.

 Is not executed as a job; runs within a ServiceHostJob.
 """
[docs] def __init__(self, memory=None, cores=None, disk=None, preemptable=None, unitName=None):
 """
 Memory, core and disk requirements are specified identically to as in \
 :func:`toil.job.Job.__init__`.
 """

 # Save the requirements in ourselves so they are visible on `self` to user code.
 super().__init__({'memory': memory, 'cores': cores, 'disk': disk, 'preemptable': preemptable})

 # And the unit name
 self.unitName = unitName

 # And the name for the hosting job
 self.jobName = self.__class__.__name__

 # Record that we have as of yet no ServiceHostJob
 self.hostID = None

[docs] @abstractmethod
 def start(self, job):
 """
 Start the service.

 :param toil.job.Job job: The underlying host job that the service is being run in.
 Can be used to register deferred functions, or to access
 the fileStore for creating temporary files.

 :returns: An object describing how to access the service. The object must be pickleable
 and will be used by jobs to access the service (see :func:`toil.job.Job.addService`).
 """

[docs] @abstractmethod
 def stop(self, job):
 """
 Stops the service. Function can block until complete.

 :param toil.job.Job job: The underlying host job that the service is being run in.
 Can be used to register deferred functions, or to access
 the fileStore for creating temporary files.
 """

[docs] def check(self):
 """
 Checks the service is still running.

 :raise exceptions.RuntimeError: If the service failed, this will cause the service job to be labeled failed.
 :returns: True if the service is still running, else False. If False then the service job will be terminated,
 and considered a success. Important point: if the service job exits due to a failure, it should raise a
 RuntimeError, not return False!
 """

 def _addPredecessor(self, predecessorJob):
 """Adds a predecessor job to the set of predecessor jobs."""
 if predecessorJob in self._directPredecessors:
 raise ConflictingPredecessorError(predecessorJob, self)
 self._directPredecessors.add(predecessorJob)

 # Record the need for the predecessor to finish
 self._description.addPredecessor()

 @staticmethod
 def _isLeafVertex(job):
 return next(job.description.successorsAndServiceHosts(), None) is None

 @classmethod
 def _loadUserModule(cls, userModule):
 """
 Imports and returns the module object represented by the given module descriptor.

 :type userModule: ModuleDescriptor
 """
 return userModule.load()

 @classmethod
 def _unpickle(cls, userModule, fileHandle, requireInstanceOf=None):
 """
 Unpickles an object graph from the given file handle while loading symbols \
 referencing the __main__ module from the given userModule instead.

 :param userModule:
 :param fileHandle: An open, binary-mode file handle.
 :param requireInstanceOf: If set, require result to be an instance of this class.
 :returns:
 """

 def filter_main(module_name, class_name):
 try:
 if module_name == '__main__':
 return getattr(userModule, class_name)
 else:
 return getattr(importlib.import_module(module_name), class_name)
 except:
 if module_name == '__main__':
 logger.debug('Failed getting %s from module %s.', class_name, userModule)
 else:
 logger.debug('Failed getting %s from module %s.', class_name, module_name)
 raise

 class FilteredUnpickler(pickle.Unpickler):
 def find_class(self, module, name):
 return filter_main(module, name)

 unpickler = FilteredUnpickler(fileHandle)

 runnable = unpickler.load()
 if requireInstanceOf is not None:
 assert isinstance(runnable, requireInstanceOf), "Did not find a {} when expected".format(requireInstanceOf)

 return runnable

 def getUserScript(self):
 return self.userModule

 def _fulfillPromises(self, returnValues, jobStore):
 """
 Sets the values for promises using the return values from this job's run() function.
 """
 for path, promiseFileStoreIDs in self._rvs.items():
 if not path:
 # Note that its possible for returnValues to be a promise, not an actual return
 # value. This is the case if the job returns a promise from another job. In
 # either case, we just pass it on.
 promisedValue = returnValues
 else:
 # If there is an path ...
 if isinstance(returnValues, Promise):
 # ... and the value itself is a Promise, we need to created a new, narrower
 # promise and pass it on.
 promisedValue = Promise(returnValues.job, path)
 else:
 # Otherwise, we just select the desired component of the return value.
 promisedValue = returnValues
 for index in path:
 promisedValue = promisedValue[index]
 for promiseFileStoreID in promiseFileStoreIDs:
 # File may be gone if the job is a service being re-run and the accessing job is
 # already complete.
 if jobStore.fileExists(promiseFileStoreID):
 with jobStore.updateFileStream(promiseFileStoreID) as fileHandle:
 pickle.dump(promisedValue, fileHandle, pickle.HIGHEST_PROTOCOL)

 # Functions associated with Job.checkJobGraphAcyclic to establish that the job graph does not
 # contain any cycles of dependencies:

 def _collectAllSuccessors(self, visited):
 """
 Adds the job and all jobs reachable on a directed path from current node to the given set.

 Only considers jobs in this job's subgraph that are newly added, not loaded from the job store.
 """

 # Keep our own stack since we may have a stick in the graph long enough
 # to exhaust the real stack
 todo = [self]

 while len(todo) > 0:
 job = todo[-1]
 todo.pop()
 if job not in visited:
 visited.add(job)
 for successorID in job.description.allSuccessors():
 if successorID in self._registry:
 # We added this successor locally
 todo.append(self._registry[successorID])

[docs] def getTopologicalOrderingOfJobs(self):
 """
 :returns: a list of jobs such that for all pairs of indices i, j for which i < j, \
 the job at index i can be run before the job at index j.

 Only considers jobs in this job's subgraph that are newly added, not loaded from the job store.

 Ignores service jobs.

 :rtype: list[Job]
 """

 # List of Job objects in order.
 ordering = []
 # Set of IDs of visited jobs.
 visited = set()

 # We need to recurse and traverse the graph without exhausting Python's
 # stack, so we keep our own stack of Job objects
 todo = [self]

 while len(todo) > 0:
 job = todo[-1]
 todo.pop()

 #Do not add the job to the ordering until all its predecessors have been
 #added to the ordering
 outstandingPredecessor = False
 for predJob in job._directPredecessors:
 if predJob.jobStoreID not in visited:
 outstandingPredecessor = True
 break
 if outstandingPredecessor:
 continue

 if job.jobStoreID not in visited:
 visited.add(job.jobStoreID)
 ordering.append(job)

 for otherID in itertools.chain(job.description.followOnIDs, job.description.childIDs):
 if otherID in self._registry:
 # Stack up descendants so we process children and then follow-ons.
 # So stack up follow-ons deeper
 todo.append(self._registry[otherID])

 return ordering

 ##
 #Storing Jobs into the JobStore
 ##

 def _register(self, jobStore):
 """
 If this job lacks a JobStore-assigned ID, assign this job an ID.
 Must be called for each job before it is saved to the JobStore for the first time.

 :returns: A list with either one old ID, new ID pair, or an empty list
 :rtype: list
 """

 # TODO: This doesn't really have much to do with the registry. Rename
 # the registry.

 if isinstance(self.jobStoreID, TemporaryID):
 # We need to get an ID.

 # Save our fake ID
 fake = self.jobStoreID

 # Replace it with a real ID
 jobStore.assignID(self.description)

 # Make sure the JobDescription can do its JobStore-related setup.
 self.description.onRegistration(jobStore)

 # Return the fake to real mapping
 return [(fake, self.description.jobStoreID)]
 else:
 # We already have an ID. No assignment or reference rewrite necessary.
 return []

 def _renameReferences(self, renames):
 """
 Apply the given dict of ID renames to all references to other jobs.

 Ignores the registry, which is shared and assumed to already be updated.

 IDs not present in the renames dict are left as-is.

 :param dict(TemporaryID, str) renames: Rename operations to apply.
 """

 # Do renames in the description
 self._description.renameReferences(renames)

[docs] def saveBody(self, jobStore):
 """
 Save the execution data for just this job to the JobStore, and fill in
 the JobDescription with the information needed to retrieve it.

 The Job's JobDescription must have already had a real jobStoreID assigned to it.

 Does not save the JobDescription.

 :param toil.jobStores.abstractJobStore.AbstractJobStore jobStore: The job store
 to save the job body into.
 """

 # We can't save the job in the right place for cleanup unless the
 # description has a real ID.
 assert not isinstance(self.jobStoreID, TemporaryID), "Tried to save job {} without ID assigned!".format(self)

 # Note that we can't accept any more requests for our return value
 self._disablePromiseRegistration()

 # Clear out old Cactus compatibility fields that don't need to be
 # preserved and shouldn't be serialized.
 if hasattr(self, '_services'):
 delattr(self, '_services')

 # Remember fields we will overwrite
 description = self._description
 registry = self._registry
 directPredecessors = self._directPredecessors

 try:
 try:
 # Drop out the description, which the job store will manage separately
 self._description = None
 # Fix up the registry and direct predecessors for when the job is
 # loaded to be run: the registry should contain just the job itself and
 # there should be no predecessors available when the job actually runs.
 self._registry = {description.jobStoreID: self}
 self._directPredecessors = set()

 # Save the body of the job
 with jobStore.writeFileStream(description.jobStoreID, cleanup=True) as (fileHandle, fileStoreID):
 pickle.dump(self, fileHandle, pickle.HIGHEST_PROTOCOL)
 finally:
 # Restore important fields (before handling errors)
 self._directPredecessors = directPredecessors
 self._registry = registry
 self._description = description
 except JobPromiseConstraintError as e:
 # The user is passing promises without regard to predecessor constraints.
 if e.recipientJob is None:
 # Add ourselves as the recipient job that wanted the promise.
 e = JobPromiseConstraintError(e.promisingJob, self)
 raise e

 # Find the user script.
 # Note that getUserScript() may have been overridden. This is intended. If we used
 # self.userModule directly, we'd be getting a reference to job.py if the job was
 # specified as a function (as opposed to a class) since that is where FunctionWrappingJob
 # is defined. What we really want is the module that was loaded as __main__,
 # and FunctionWrappingJob overrides getUserScript() to give us just that. Only then can
 # filter_main() in _unpickle() do its job of resolving any user-defined type or function.
 userScript = self.getUserScript().globalize()

 # The command connects the body of the job to the JobDescription
 self._description.command = ' '.join(('_toil', fileStoreID) + userScript.toCommand())

 def _saveJobGraph(self, jobStore, saveSelf=False, returnValues=None):
 """
 Save job data and new JobDescriptions to the given job store for this
 job and all descending jobs, including services.

 Used to save the initial job graph containing the root job of the workflow.

 :param toil.jobStores.abstractJobStore.AbstractJobStore jobStore: The job store
 to save the jobs into.
 :param bool saveSelf: Set to True to save this job along with its children,
 follow-ons, and services, or False to just save the children, follow-ons,
 and services and to populate the return value.
 :param returnValues: The collection of values returned when executing
 the job (or starting the service the job is hosting). If saveSelf
 is not set, will be used to fulfill the job's return value promises.
 """

 # Prohibit cycles and multiple roots
 self.checkJobGraphForDeadlocks()

 # Make sure everybody in the registry is registered with the job store
 # and has an ID. Also rewrite ID references.
 allJobs = list(self._registry.values())
 # We use one big dict from fake ID to corresponding real ID to rewrite references.
 fakeToReal = {}
 for job in allJobs:
 # Register the job, get the old ID to new ID pair if any, and save that in the fake to real mapping
 fakeToReal.update(job._register(jobStore))
 if len(fakeToReal) > 0:
 # Some jobs changed ID. We need to rebuild the registry and apply the reference rewrites.

 # Remake the registry in place
 self._registry.clear()
 self._registry.update({job.jobStoreID: job for job in allJobs})

 for job in allJobs:
 # Tell all the jobs (and thus their descriptions and services)
 # about the renames.
 job._renameReferences(fakeToReal)

 # Make sure the whole component is ready for promise registration
 for job in allJobs:
 job.prepareForPromiseRegistration(jobStore)

 # Get an ordering on the non-service jobs which we use for pickling the
 # jobs in the correct order to ensure the promises are properly
 # established
 ordering = self.getTopologicalOrderingOfJobs()

 # Set up to save last job first, so promises flow the right way
 ordering.reverse()

 logger.info("Saving graph of %d jobs, %d new", len(allJobs), len(fakeToReal))

 # Make sure we're the root
 assert ordering[-1] == self

 # Don't verify the ordering length: it excludes service host jobs.

 if not saveSelf:
 # Fulfil promises for return values (even if value is None)
 self._fulfillPromises(returnValues, jobStore)

 for job in ordering:
 logger.info("Processing job %s", job.description)
 for serviceBatch in reversed(list(job.description.serviceHostIDsInBatches())):
 # For each batch of service host jobs in reverse order they start
 for serviceID in serviceBatch:
 logger.info("Processing service %s", serviceID)
 if serviceID in self._registry:
 # It's a new service

 # Find the actual job
 serviceJob = self._registry[serviceID]
 logger.info("Saving service %s", serviceJob.description)
 # Pickle the service body, which triggers all the promise stuff
 serviceJob.saveBody(jobStore)
 if job != self or saveSelf:
 # Now pickle the job itself
 job.saveBody(jobStore)

 # Now that the job data is on disk, commit the JobDescriptions in
 # reverse execution order, in a batch if supported.
 with jobStore.batch():
 for job in ordering:
 for serviceBatch in job.description.serviceHostIDsInBatches():
 for serviceID in serviceBatch:
 if serviceID in self._registry:
 jobStore.create(self._registry[serviceID].description)
 if job != self or saveSelf:
 jobStore.create(job.description)

[docs] def saveAsRootJob(self, jobStore):
 """
 Save this job to the given jobStore as the root job of the workflow.

 :param toil.jobStores.abstractJobStore.AbstractJobStore jobStore:
 :return: the JobDescription describing this job.
 """

 # Check if the workflow root is a checkpoint but not a leaf vertex.
 # All other job vertices in the graph are checked by checkNewCheckpointsAreLeafVertices
 if self.checkpoint and not Job._isLeafVertex(self):
 raise JobGraphDeadlockException(
 'New checkpoint job %s is not a leaf in the job graph' % self)

 # Save the root job and all descendants and services
 self._saveJobGraph(jobStore, saveSelf=True)

 # Store the name of the first job in a file in case of restart. Up to this point the
 # root job is not recoverable. FIXME: "root job" or "first job", which one is it?
 jobStore.setRootJob(self.jobStoreID)

 # Assign the config from the JobStore as if we were loaded.
 # TODO: Find a better way to make this the JobStore's responsibility
 self.description.assignConfig(jobStore.config)

 return self.description

[docs] @classmethod
 def loadJob(cls, jobStore, jobDescription):
 """
 Retrieves a :class:`toil.job.Job` instance from a JobStore

 :param toil.jobStores.abstractJobStore.AbstractJobStore jobStore: The job store.
 :param toil.job.JobDescription jobDescription: the JobDescription of the job to retrieve.
 :returns: The job referenced by the JobDescription.
 :rtype: toil.job.Job
 """

 # Grab the command that connects the description to the job body
 command = jobDescription.command

 commandTokens = command.split()
 assert "_toil" == commandTokens[0]
 userModule = ModuleDescriptor.fromCommand(commandTokens[2:])
 logger.debug('Loading user module %s.', userModule)
 userModule = cls._loadUserModule(userModule)
 pickleFile = commandTokens[1]

 # Get a directory to download the job in
 directory = tempfile.mkdtemp()
 # Initialize a blank filename so the finally below can't fail due to a
 # missing variable
 filename = ''

 try:
 # Get a filename to download the job to.
 # Don't use mkstemp because we would need to delete and replace the
 # file.
 # Don't use a NamedTemporaryFile context manager because its
 # context manager exit will crash if we deleted it.
 filename = os.path.join(directory, 'job')

 # Download the job
 if pickleFile == "firstJob":
 jobStore.readSharedFile(pickleFile, filename)
 else:
 jobStore.readFile(pickleFile, filename)

 # Open and unpickle
 with open(filename, 'rb') as fileHandle:
 job = cls._unpickle(userModule, fileHandle, requireInstanceOf=Job)
 # Fill in the current description
 job._description = jobDescription

 # Set up the registry again, so children and follow-ons can be added on the worker
 job._registry = {job.jobStoreID: job}

 return job

 # TODO: We ought to just unpickle straight from a streaming read
 finally:
 # Clean up the file
 if os.path.exists(filename):
 os.unlink(filename)
 # Clean up the directory we put it in
 shutil.rmtree(directory)

 def _run(self, jobGraph=None, fileStore=None, **kwargs):
 """
 Function which worker calls to ultimately invoke
 a job's Job.run method, and then handle created
 children/followOn jobs.

 May be (but currently is not) overridden by specialized Toil-internal jobs.

 Should not be overridden by non-Toil code!

 Despite this, it has been overridden by non-Toil code, so we keep it
 around and use a hardened kwargs-based interface to try and tolerate
 bad behavior by workflows (e.g. Cactus).

 When everyone has upgraded to a sufficiently new Cactus, we can remove
 this!

 :param NoneType jobGraph: Ignored. Here for compatibility with old
 Cactus versions that pass two positional arguments.
 :param toil.fileStores.abstractFileStore.AbstractFileStore fileStore: the
 FileStore to use to access files when running the job. Required.
 """
 return self.run(fileStore)

 @contextmanager
 def _executor(self, stats, fileStore):
 """
 This is the core wrapping method for running the job within a worker. It sets up the stats
 and logging before yielding. After completion of the body, the function will finish up the
 stats and logging, and starts the async update process for the job.

 Will modify the job's description with changes that need to be committed back to the JobStore.
 """
 if stats is not None:
 startTime = time.time()
 startClock = get_total_cpu_time()
 baseDir = os.getcwd()

 yield

 # If the job is not a checkpoint job, add the promise files to delete
 # to the list of jobStoreFileIDs to delete
 # TODO: why is Promise holding a global list here???
 if not self.checkpoint:
 for jobStoreFileID in Promise.filesToDelete:
 # Make sure to wrap the job store ID in a FileID object so the file store will accept it
 # TODO: talk directly to the job sotre here instead.
 fileStore.deleteGlobalFile(FileID(jobStoreFileID, 0))
 else:
 # Else copy them to the job description to delete later
 self.description.checkpointFilesToDelete = list(Promise.filesToDelete)
 Promise.filesToDelete.clear()
 # Now indicate the asynchronous update of the job can happen
 fileStore.startCommit(jobState=True)
 # Change dir back to cwd dir, if changed by job (this is a safety issue)
 if os.getcwd() != baseDir:
 os.chdir(baseDir)
 # Finish up the stats
 if stats is not None:
 totalCpuTime, totalMemoryUsage = get_total_cpu_time_and_memory_usage()
 stats.jobs.append(
 Expando(
 time=str(time.time() - startTime),
 clock=str(totalCpuTime - startClock),
 class_name=self._jobName(),
 memory=str(totalMemoryUsage)
)
)

 def _runner(self, jobStore=None, fileStore=None, defer=None, **kwargs):
 """
 This method actually runs the job, and serialises the next jobs.

 It marks the job as completed (by clearing its command) and creates the
 successor relationships to new successors, but it doesn't actually
 commit those updates to the current job into the JobStore.

 We take all arguments as keyword arguments, and accept and ignore
 additional keyword arguments, for compatibility with workflows (*cough*
 Cactus *cough*) which are reaching in and overriding _runner (which
 they aren't supposed to do). If everything is passed as name=value it
 won't break as soon as we add or remove a parameter.

 :param class jobStore: Instance of the job store
 :param toil.fileStores.abstractFileStore.AbstractFileStore fileStore: Instance
 of a cached or uncached filestore
 :param defer: Function yielded by open() context
 manager of :class:`toil.DeferredFunctionManager`, which is called to
 register deferred functions.
 :param kwargs: Catch-all to accept superfluous arguments passed by old
 versions of Cactus. Cactus shouldn't override this method, but it does.
 :return:
 """

 # Make deferred function registration available during run().
 self._defer = defer
 # Make fileStore available as an attribute during run() ...
 self._fileStore = fileStore
 # ... but also pass it to _run() as an argument for backwards
 # compatibility with workflows that tinker around with our internals,
 # and send a fake jobGraph in case they still think jobGraph exists.
 returnValues = self._run(jobGraph=None, fileStore=fileStore)

 # Clean up state changes made for run()
 self._defer = None
 self._fileStore = None

 # Serialize the new Jobs defined by the run method to the jobStore
 self._saveJobGraph(jobStore, saveSelf=False, returnValues=returnValues)

 # Clear out the command, because the job is done.
 self.description.command = None

 # That and the new child/follow-on relationships will need to be
 # recorded later by an update() of the JobDescription.

 def _jobName(self):
 """
 :rtype : string, used as identifier of the job class in the stats report.
 """
 return self._description.displayName

[docs]class JobException(Exception):
 """
 General job exception.
 """
[docs] def __init__(self, message):
 super().__init__(message)

[docs]class JobGraphDeadlockException(JobException):
 """
 An exception raised in the event that a workflow contains an unresolvable \
 dependency, such as a cycle. See :func:`toil.job.Job.checkJobGraphForDeadlocks`.
 """
[docs] def __init__(self, string):
 super().__init__(string)

[docs]class FunctionWrappingJob(Job):
 """
 Job used to wrap a function. In its `run` method the wrapped function is called.
 """
[docs] def __init__(self, userFunction, *args, **kwargs):
 """
 :param callable userFunction: The function to wrap. It will be called with ``*args`` and
 ``**kwargs`` as arguments.

 The keywords ``memory``, ``cores``, ``disk``, ``preemptable`` and ``checkpoint`` are
 reserved keyword arguments that if specified will be used to determine the resources
 required for the job, as :func:`toil.job.Job.__init__`. If they are keyword arguments to
 the function they will be extracted from the function definition, but may be overridden
 by the user (as you would expect).
 """
 # Use the user-specified requirements, if specified, else grab the default argument
 # from the function, if specified, else default to None
 argSpec = inspect.getfullargspec(userFunction)

 if argSpec.defaults is None:
 argDict = {}
 else:
 argDict = dict(list(zip(argSpec.args[-len(argSpec.defaults):], argSpec.defaults)))

 def resolve(key, default=None, dehumanize=False):
 try:
 # First, try constructor arguments, ...
 value = kwargs.pop(key)
 except KeyError:
 try:
 # ..., then try default value for function keyword arguments, ...
 value = argDict[key]
 except KeyError:
 # ... and finally fall back to a default value.
 value = default
 # Optionally, convert strings with metric or binary prefixes.
 if dehumanize and isinstance(value, str):
 value = human2bytes(value)
 return value

 super().__init__(memory=resolve('memory', dehumanize=True),
 cores=resolve('cores', dehumanize=True),
 disk=resolve('disk', dehumanize=True),
 preemptable=resolve('preemptable'),
 checkpoint=resolve('checkpoint', default=False),
 unitName=resolve('name', default=None))

 self.userFunctionModule = ModuleDescriptor.forModule(userFunction.__module__).globalize()
 self.userFunctionName = str(userFunction.__name__)
 self.jobName = self.userFunctionName
 self._args = args
 self._kwargs = kwargs

 def _getUserFunction(self):
 logger.debug('Loading user function %s from module %s.',
 self.userFunctionName,
 self.userFunctionModule)
 userFunctionModule = self._loadUserModule(self.userFunctionModule)
 return getattr(userFunctionModule, self.userFunctionName)

[docs] def run(self,fileStore):
 userFunction = self._getUserFunction()
 return userFunction(*self._args, **self._kwargs)

 def getUserScript(self):
 return self.userFunctionModule

 def _jobName(self):
 return ".".join((self.__class__.__name__,self.userFunctionModule.name,self.userFunctionName))

[docs]class JobFunctionWrappingJob(FunctionWrappingJob):
 """
 A job function is a function whose first argument is a :class:`.Job`
 instance that is the wrapping job for the function. This can be used to
 add successor jobs for the function and perform all the functions the
 :class:`.Job` class provides.

 To enable the job function to get access to the
 :class:`toil.fileStores.abstractFileStore.AbstractFileStore` instance (see
 :func:`toil.job.Job.run`), it is made a variable of the wrapping job called
 fileStore.

 To specify a job's resource requirements the following default keyword arguments
 can be specified:

 - memory
 - disk
 - cores

 For example to wrap a function into a job we would call::

 Job.wrapJobFn(myJob, memory='100k', disk='1M', cores=0.1)

 """

 @property
 def fileStore(self):
 return self._fileStore

[docs] def run(self, fileStore):
 userFunction = self._getUserFunction()
 rValue = userFunction(*((self,) + tuple(self._args)), **self._kwargs)
 return rValue

class PromisedRequirementFunctionWrappingJob(FunctionWrappingJob):
 """
 Handles dynamic resource allocation using :class:`toil.job.Promise` instances.
 Spawns child function using parent function parameters and fulfilled promised
 resource requirements.
 """
 def __init__(self, userFunction, *args, **kwargs):
 self._promisedKwargs = kwargs.copy()
 # Replace resource requirements in intermediate job with small values.
 kwargs.update(dict(disk='1M', memory='32M', cores=0.1))
 super().__init__(userFunction, *args, **kwargs)

 @classmethod
 def create(cls, userFunction, *args, **kwargs):
 """
 Creates an encapsulated Toil job function with unfulfilled promised resource
 requirements. After the promises are fulfilled, a child job function is created
 using updated resource values. The subgraph is encapsulated to ensure that this
 child job function is run before other children in the workflow. Otherwise, a
 different child may try to use an unresolved promise return value from the parent.
 """
 return EncapsulatedJob(cls(userFunction, *args, **kwargs))

 def run(self, fileStore):
 # Assumes promises are fulfilled when parent job is run
 self.evaluatePromisedRequirements()
 userFunction = self._getUserFunction()
 return self.addChildFn(userFunction, *self._args, **self._promisedKwargs).rv()

 def evaluatePromisedRequirements(self):
 requirements = ["disk", "memory", "cores"]
 # Fulfill resource requirement promises
 for requirement in requirements:
 try:
 if isinstance(self._promisedKwargs[requirement], PromisedRequirement):
 self._promisedKwargs[requirement] = self._promisedKwargs[requirement].getValue()
 except KeyError:
 pass

class PromisedRequirementJobFunctionWrappingJob(PromisedRequirementFunctionWrappingJob):
 """
 Handles dynamic resource allocation for job functions.
 See :class:`toil.job.JobFunctionWrappingJob`
 """

 def run(self, fileStore):
 self.evaluatePromisedRequirements()
 userFunction = self._getUserFunction()
 return self.addChildJobFn(userFunction, *self._args, **self._promisedKwargs).rv()

[docs]class EncapsulatedJob(Job):
 """
 A convenience Job class used to make a job subgraph appear to be a single job.

 Let A be the root job of a job subgraph and B be another job we'd like to run after A
 and all its successors have completed, for this use encapsulate::

 # Job A and subgraph, Job B
 A, B = A(), B()
 Aprime = A.encapsulate()
 Aprime.addChild(B)
 # B will run after A and all its successors have completed, A and its subgraph of
 # successors in effect appear to be just one job.

 If the job being encapsulated has predecessors (e.g. is not the root job), then the encapsulated
 job will inherit these predecessors. If predecessors are added to the job being encapsulated
 after the encapsulated job is created then the encapsulating job will NOT inherit these
 predecessors automatically. Care should be exercised to ensure the encapsulated job has the
 proper set of predecessors.

 The return value of an encapsulatd job (as accessed by the :func:`toil.job.Job.rv` function)
 is the return value of the root job, e.g. A().encapsulate().rv() and A().rv() will resolve to
 the same value after A or A.encapsulate() has been run.
 """
[docs] def __init__(self, job, unitName=None):
 """
 :param toil.job.Job job: the job to encapsulate.
 :param str unitName: human-readable name to identify this job instance.
 """

 if job is not None:
 # Initial construction, when encapsulating a job

 # Giving the root of the subgraph the same resources as the first job in the subgraph.
 super().__init__(**job.description.requirements, unitName=unitName)
 # Ensure that the encapsulated job has the same direct predecessors as the job
 # being encapsulated.
 for predJob in job._directPredecessors:
 predJob.addChild(self)
 self.encapsulatedJob = job
 Job.addChild(self, job)
 # Use small resource requirements for dummy Job instance.
 # But not too small, or the job won't have enough resources to safely start up Toil.
 self.encapsulatedFollowOn = Job(disk='100M', memory='512M', cores=0.1, unitName=None if unitName is None else unitName + '-followOn')
 Job.addFollowOn(self, self.encapsulatedFollowOn)
 else:
 # Unpickling on the worker, to be run as a no-op.
 # No need to try and hook things up, but nobody can add children or
 # follow-ons to us now either.
 super().__init__()
 self.encapsulatedJob = None
 self.encapsulatedFollowOn = None

[docs] def addChild(self, childJob):
 assert self.encapsulatedFollowOn is not None, \
 "Children cannot be added to EncapsulatedJob while it is running"
 return Job.addChild(self.encapsulatedFollowOn, childJob)

[docs] def addService(self, service, parentService=None):
 assert self.encapsulatedFollowOn is not None, \
 "Services cannot be added to EncapsulatedJob while it is running"
 return Job.addService(self.encapsulatedFollowOn, service, parentService=parentService)

[docs] def addFollowOn(self, followOnJob):
 assert self.encapsulatedFollowOn is not None, \
 "Follow-ons cannot be added to EncapsulatedJob while it is running"
 return Job.addFollowOn(self.encapsulatedFollowOn, followOnJob)

[docs] def rv(self, *path):
 assert self.encapsulatedJob is not None
 return self.encapsulatedJob.rv(*path)

[docs] def prepareForPromiseRegistration(self, jobStore):
 # This one will be called after execution when re-serializing the
 # (unchanged) graph of jobs rooted here.
 super().prepareForPromiseRegistration(jobStore)
 if self.encapsulatedJob is not None:
 # Running where the job was created.
 self.encapsulatedJob.prepareForPromiseRegistration(jobStore)

 def _disablePromiseRegistration(self):
 assert self.encapsulatedJob is not None
 super()._disablePromiseRegistration()
 self.encapsulatedJob._disablePromiseRegistration()

 def __reduce__(self):
 """
 Called during pickling to define the pickled representation of the job.

 We don't want to pickle our internal references to the job we
 encapsulate, so we elide them here. When actually run, we're just a
 no-op job that can maybe chain.
 """

 return self.__class__, (None,)

 def getUserScript(self):
 assert self.encapsulatedJob is not None
 return self.encapsulatedJob.getUserScript()

class ServiceHostJob(Job):
 """
 Job that runs a service. Used internally by Toil. Users should subclass Service instead of using this.
 """
 def __init__(self, service):
 """
 This constructor should not be called by a user.

 :param service: The service to wrap in a job.
 :type service: toil.job.Job.Service
 """

 # Make sure the service hasn't been given a host already.
 assert service.hostID is None

 # Make ourselves with name info from the Service and a
 # ServiceJobDescription that has the service control flags.
 super().__init__(**service.requirements,
 unitName=service.unitName, descriptionClass=ServiceJobDescription)

 # Make sure the service knows it has a host now
 service.hostID = self.jobStoreID

 # service.__module__ is the module defining the class service is an instance of.
 # Will need to be loaded before unpickling the Service
 self.serviceModule = ModuleDescriptor.forModule(service.__module__).globalize()

 # The service to run, or None if it is still pickled.
 # We can't just pickle as part of ourselves because we may need to load
 # an additional module.
 self.service = service
 # The pickled service, or None if it isn't currently pickled.
 # We can't just pickle right away because we may owe promises from it.
 self.pickledService = None

 # Pick up our name form the service.
 self.jobName = service.jobName
 # This references the parent job wrapper. It is initialised just before
 # the job is run. It is used to access the start and terminate flags.
 self.jobGraph = None

 @property
 def fileStore(self):
 """
 Return the file store, which the Service may need.
 """
 return self._fileStore

 def _renameReferences(self, renames):
 # When the job store finally hads out IDs we have to fix up the
 # back-reference from our Service to us.
 super()._renameReferences(renames)
 if self.service is not None:
 self.service.hostID = renames[self.service.hostID]

 # Since the running service has us, make sure they don't try to tack more
 # stuff onto us.

 def addChild(self, child):
 raise RuntimeError("Service host jobs cannot have children, follow-ons, or services")

 def addFollowOn(self, followOn):
 raise RuntimeError("Service host jobs cannot have children, follow-ons, or services")

 def addService(self, service, parentService=None):
 raise RuntimeError("Service host jobs cannot have children, follow-ons, or services")

 def saveBody(self, jobStore):
 """
 Serialize the service itself before saving the host job's body.
 """
 # Save unpickled service
 service = self.service
 # Serialize service
 self.pickledService = pickle.dumps(self.service, protocol=pickle.HIGHEST_PROTOCOL)
 # Clear real service until we have the module to load it back
 self.service = None
 # Save body as normal
 super().saveBody(jobStore)
 # Restore unpickled service
 self.service = service
 self.pickledService = None

 def run(self, fileStore):
 # Unpickle the service
 logger.debug('Loading service module %s.', self.serviceModule)
 userModule = self._loadUserModule(self.serviceModule)
 service = self._unpickle(userModule, BytesIO(self.pickledService), requireInstanceOf=Job.Service)
 self.pickledService = None
 # Make sure it has the config, since it wasn't load()-ed via the JobStore
 service.assignConfig(fileStore.jobStore.config)
 #Start the service
 startCredentials = service.start(self)
 try:
 #The start credentials must be communicated to processes connecting to
 #the service, to do this while the run method is running we
 #cheat and set the return value promise within the run method
 self._fulfillPromises(startCredentials, fileStore.jobStore)
 self._rvs = {} # Set this to avoid the return values being updated after the
 #run method has completed!

 #Now flag that the service is running jobs can connect to it
 logger.debug("Removing the start jobStoreID to indicate that establishment of the service")
 assert self.description.startJobStoreID != None
 if fileStore.jobStore.fileExists(self.description.startJobStoreID):
 fileStore.jobStore.deleteFile(self.description.startJobStoreID)
 assert not fileStore.jobStore.fileExists(self.description.startJobStoreID)

 #Now block until we are told to stop, which is indicated by the removal
 #of a file
 assert self.description.terminateJobStoreID != None
 while True:
 # Check for the terminate signal
 if not fileStore.jobStore.fileExists(self.description.terminateJobStoreID):
 logger.debug("Detected that the terminate jobStoreID has been removed so exiting")
 if not fileStore.jobStore.fileExists(self.description.errorJobStoreID):
 raise RuntimeError("Detected the error jobStoreID has been removed so exiting with an error")
 break

 # Check the service's status and exit if failed or complete
 try:
 if not service.check():
 logger.debug("The service has finished okay, exiting")
 break
 except RuntimeError:
 logger.debug("Detected termination of the service")
 raise

 time.sleep(fileStore.jobStore.config.servicePollingInterval) #Avoid excessive polling

 logger.debug("Service is done")
 finally:
 # The stop function is always called
 service.stop(self)

 def getUserScript(self):
 return self.serviceModule

[docs]class Promise:
 """
 References a return value from a :meth:`toil.job.Job.run` or
 :meth:`toil.job.Job.Service.start` method as a *promise* before the method itself is run.

 Let T be a job. Instances of :class:`.Promise` (termed a *promise*) are returned by T.rv(),
 which is used to reference the return value of T's run function. When the promise is passed
 to the constructor (or as an argument to a wrapped function) of a different, successor job
 the promise will be replaced by the actual referenced return value. This mechanism allows a
 return values from one job's run method to be input argument to job before the former job's
 run function has been executed.
 """
 _jobstore = None
 """
 Caches the job store instance used during unpickling to prevent it from being instantiated
 for each promise

 :type: toil.jobStores.abstractJobStore.AbstractJobStore
 """

 filesToDelete = set()
 """
 A set of IDs of files containing promised values when we know we won't need them anymore
 """
[docs] def __init__(self, job, path):
 """
 :param Job job: the job whose return value this promise references
 :param path: see :meth:`.Job.rv`
 """
 self.job = job
 self.path = path

 def __reduce__(self):
 """
 Called during pickling when a promise (an instance of this class) is about to be be
 pickled. Returns the Promise class and construction arguments that will be evaluated
 during unpickling, namely the job store coordinates of a file that will hold the promised
 return value. By the time the promise is about to be unpickled, that file should be
 populated.
 """
 # The allocation of the file in the job store is intentionally lazy, we only allocate an
 # empty file in the job store if the promise is actually being pickled. This is done so
 # that we do not allocate files for promises that are never used.
 jobStoreLocator, jobStoreFileID = self.job.registerPromise(self.path)
 # Returning a class object here causes the pickling machinery to attempt to instantiate
 # the class. We will catch that with __new__ and return an the actual return value instead.
 return self.__class__, (jobStoreLocator, jobStoreFileID)

 @staticmethod
 def __new__(cls, *args):
 assert len(args) == 2
 if isinstance(args[0], Job):
 # Regular instantiation when promise is created, before it is being pickled
 return super().__new__(cls)
 else:
 # Attempted instantiation during unpickling, return promised value instead
 return cls._resolve(*args)

 @classmethod
 def _resolve(cls, jobStoreLocator, jobStoreFileID):
 # Initialize the cached job store if it was never initialized in the current process or
 # if it belongs to a different workflow that was run earlier in the current process.
 if cls._jobstore is None or cls._jobstore.config.jobStore != jobStoreLocator:
 cls._jobstore = Toil.resumeJobStore(jobStoreLocator)
 cls.filesToDelete.add(jobStoreFileID)
 with cls._jobstore.readFileStream(jobStoreFileID) as fileHandle:
 # If this doesn't work then the file containing the promise may not exist or be
 # corrupted
 value = safeUnpickleFromStream(fileHandle)
 return value

[docs]class PromisedRequirement:
[docs] def __init__(self, valueOrCallable, *args):
 """
 Class for dynamically allocating job function resource requirements involving
 :class:`toil.job.Promise` instances.

 Use when resource requirements depend on the return value of a parent function.
 PromisedRequirements can be modified by passing a function that takes the
 :class:`.Promise` as input.

 For example, let f, g, and h be functions. Then a Toil workflow can be
 defined as follows::
 A = Job.wrapFn(f)
 B = A.addChildFn(g, cores=PromisedRequirement(A.rv())
 C = B.addChildFn(h, cores=PromisedRequirement(lambda x: 2*x, B.rv()))

 :param valueOrCallable: A single Promise instance or a function that
 takes args as input parameters.
 :param args: variable length argument list
 :type args: int or .Promise
 """
 if hasattr(valueOrCallable, '__call__'):
 assert len(args) != 0, 'Need parameters for PromisedRequirement function.'
 func = valueOrCallable
 else:
 assert len(args) == 0, 'Define a PromisedRequirement function to handle multiple arguments.'
 func = lambda x: x
 args = [valueOrCallable]

 self._func = dill.dumps(func)
 self._args = list(args)

[docs] def getValue(self):
 """
 Returns PromisedRequirement value
 """
 func = dill.loads(self._func)
 return func(*self._args)

[docs] @staticmethod
 def convertPromises(kwargs):
 """
 Returns True if reserved resource keyword is a Promise or
 PromisedRequirement instance. Converts Promise instance
 to PromisedRequirement.

 :param kwargs: function keyword arguments
 :return: bool
 """
 for r in ["disk", "memory", "cores"]:
 if isinstance(kwargs.get(r), Promise):
 kwargs[r] = PromisedRequirement(kwargs[r])
 return True
 elif isinstance(kwargs.get(r), PromisedRequirement):
 return True
 return False

class UnfulfilledPromiseSentinel:
 """This should be overwritten by a proper promised value. Throws an
 exception when unpickled."""
 def __init__(self, fulfillingJobName, unpickled):
 self.fulfillingJobName = fulfillingJobName

 @staticmethod
 def __setstate__(stateDict):
 """Only called when unpickling. This won't be unpickled unless the
 promise wasn't resolved, so we throw an exception."""
 jobName = stateDict['fulfillingJobName']
 raise RuntimeError("This job was passed a promise that wasn't yet resolved when it "
 "ran. The job {jobName} that fulfills this promise hasn't yet "
 "finished. This means that there aren't enough constraints to "
 "ensure the current job always runs after {jobName}. Consider adding a "
 "follow-on indirection between this job and its parent, or adding "
 "this job as a child/follow-on of {jobName}.".format(jobName=jobName))

 toil.batchSystems.abstractBatchSystem

 Source code for toil.batchSystems.abstractBatchSystem

Copyright (C) 2015-2021 Regents of the University of California
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
import enum
import logging
import os
import shutil
from abc import ABC, abstractmethod
from contextlib import contextmanager
from typing import Any, Optional, Tuple, Union, Dict, NamedTuple

from toil.batchSystems.registry import (BATCH_SYSTEM_FACTORY_REGISTRY,
 DEFAULT_BATCH_SYSTEM)
from toil.common import Toil, cacheDirName, Config
from toil.deferred import DeferredFunctionManager
from toil.fileStores.abstractFileStore import AbstractFileStore
from toil.lib.threading import LastProcessStandingArena

try:
 from toil.cwl.cwltoil import CWL_INTERNAL_JOBS
except ImportError:
 # CWL extra not installed
 CWL_INTERNAL_JOBS = ()

Value to use as exitStatus in UpdatedBatchJobInfo.exitStatus when status is not available.
EXIT_STATUS_UNAVAILABLE_VALUE = 255
logger = logging.getLogger(__name__)

UpdatedBatchJobInfo = NamedTuple('UpdatedBatchJobInfo',
 [('jobID', str),
 # The exit status (integer value) of the job. 0 implies successful.
 # EXIT_STATUS_UNAVAILABLE_VALUE is used when the exit status is not available (e.g. job is lost).
 ('exitStatus', int),
 ('exitReason', Union[int, None]), # The exit reason, if available. One of BatchJobExitReason enum.
 ('wallTime', Union[float, int, None])])

Information required for worker cleanup on shutdown of the batch system.
WorkerCleanupInfo = NamedTuple('WorkerCleanupInfo',
 [('workDir', str), # workdir path (where the cache would go)
 ('workflowID', int), # used to identify files specific to this workflow
 ('cleanWorkDir', bool)])

class BatchJobExitReason(enum.Enum):
 FINISHED: int = 1 # Successfully finished.
 FAILED: int = 2 # Job finished, but failed.
 LOST: int = 3 # Preemptable failure (job's executing host went away).
 KILLED: int = 4 # Job killed before finishing.
 ERROR: int = 5 # Internal error.
 MEMLIMIT: int = 6 # Job hit batch system imposed memory limit

[docs]class AbstractBatchSystem(ABC):
 """
 An abstract (as far as Python currently allows) base class to represent the interface the batch
 system must provide to Toil.
 """
[docs] @classmethod
 @abstractmethod
 def supportsAutoDeployment(cls):
 """
 Whether this batch system supports auto-deployment of the user script itself. If it does,
 the :meth:`.setUserScript` can be invoked to set the resource object representing the user
 script.

 Note to implementors: If your implementation returns True here, it should also override

 :rtype: bool
 """
 raise NotImplementedError()

[docs] @classmethod
 @abstractmethod
 def supportsWorkerCleanup(cls):
 """
 Indicates whether this batch system invokes
 :meth:`BatchSystemSupport.workerCleanup` after the last job for a
 particular workflow invocation finishes. Note that the term *worker*
 refers to an entire node, not just a worker process. A worker process
 may run more than one job sequentially, and more than one concurrent
 worker process may exist on a worker node, for the same workflow. The
 batch system is said to *shut down* after the last worker process
 terminates.

 :rtype: bool
 """
 raise NotImplementedError()

[docs] def setUserScript(self, userScript):
 """
 Set the user script for this workflow. This method must be called before the first job is
 issued to this batch system, and only if :meth:`.supportsAutoDeployment` returns True,
 otherwise it will raise an exception.

 :param toil.resource.Resource userScript: the resource object representing the user script
 or module and the modules it depends on.
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def issueBatchJob(self, jobDesc):
 """
 Issues a job with the specified command to the batch system and returns a unique jobID.

 :param jobDesc a toil.job.JobDescription

 :return: a unique jobID that can be used to reference the newly issued job
 :rtype: int
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def killBatchJobs(self, jobIDs):
 """
 Kills the given job IDs. After returning, the killed jobs will not
 appear in the results of getRunningBatchJobIDs. The killed job will not
 be returned from getUpdatedBatchJob.

 :param jobIDs: list of IDs of jobs to kill
 :type jobIDs: list[int]
 """
 raise NotImplementedError()

 # FIXME: Return value should be a set (then also fix the tests)

[docs] @abstractmethod
 def getIssuedBatchJobIDs(self):
 """
 Gets all currently issued jobs

 :return: A list of jobs (as jobIDs) currently issued (may be running, or may be
 waiting to be run). Despite the result being a list, the ordering should not
 be depended upon.
 :rtype: list[str]
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def getRunningBatchJobIDs(self):
 """
 Gets a map of jobs as jobIDs that are currently running (not just waiting)
 and how long they have been running, in seconds.

 :return: dictionary with currently running jobID keys and how many seconds they have
 been running as the value
 :rtype: dict[int,float]
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def getUpdatedBatchJob(self, maxWait):
 """
 Returns information about job that has updated its status (i.e. ceased
 running, either successfully or with an error). Each such job will be
 returned exactly once.

 Does not return info for jobs killed by killBatchJobs, although they
 may cause None to be returned earlier than maxWait.

 :param float maxWait: the number of seconds to block, waiting for a result

 :rtype: UpdatedBatchJobInfo or None
 :return: If a result is available, returns UpdatedBatchJobInfo.
 Otherwise it returns None. wallTime is the number of seconds (a strictly
 positive float) in wall-clock time the job ran for, or None if this
 batch system does not support tracking wall time.
 """
 raise NotImplementedError()

[docs] def getSchedulingStatusMessage(self):
 """
 Get a log message fragment for the user about anything that might be
 going wrong in the batch system, if available.

 If no useful message is available, return None.

 This can be used to report what resource is the limiting factor when
 scheduling jobs, for example. If the leader thinks the workflow is
 stuck, the message can be displayed to the user to help them diagnose
 why it might be stuck.

 :rtype: str or None
 :return: User-directed message about scheduling state.
 """

 # Default implementation returns None.
 # Override to provide scheduling status information.
 return None

[docs] @abstractmethod
 def shutdown(self):
 """
 Called at the completion of a toil invocation.
 Should cleanly terminate all worker threads.
 """
 raise NotImplementedError()

[docs] def setEnv(self, name, value=None):
 """
 Set an environment variable for the worker process before it is launched. The worker
 process will typically inherit the environment of the machine it is running on but this
 method makes it possible to override specific variables in that inherited environment
 before the worker is launched. Note that this mechanism is different to the one used by
 the worker internally to set up the environment of a job. A call to this method affects
 all jobs issued after this method returns. Note to implementors: This means that you
 would typically need to copy the variables before enqueuing a job.

 If no value is provided it will be looked up from the current environment.
 """
 raise NotImplementedError()

[docs] @classmethod
 def setOptions(cls, setOption):
 """
 Process command line or configuration options relevant to this batch system.
 The

 :param setOption: A function with signature setOption(varName, parsingFn=None, checkFn=None, default=None)
 used to update run configuration
 """

[docs] def getWorkerContexts(self):
 """
 Get a list of picklable context manager objects to wrap worker work in,
 in order.

 Can be used to ask the Toil worker to do things in-process (such as
 configuring environment variables, hot-deploying user scripts, or
 cleaning up a node) that would otherwise require a wrapping "executor"
 process.

 :rtype: list
 """
 return []

class BatchSystemSupport(AbstractBatchSystem):
 """
 Partial implementation of AbstractBatchSystem, support methods.
 """

 def __init__(self, config: Config, maxCores: float, maxMemory: int, maxDisk: int):
 """
 Initializes initial state of the object

 :param toil.common.Config config: object is setup by the toilSetup script and
 has configuration parameters for the jobtree. You can add code
 to that script to get parameters for your batch system.

 :param float maxCores: the maximum number of cores the batch system can
 request for any one job

 :param int maxMemory: the maximum amount of memory the batch system can
 request for any one job, in bytes

 :param int maxDisk: the maximum amount of disk space the batch system can
 request for any one job, in bytes
 """
 super(BatchSystemSupport, self).__init__()
 self.config = config
 self.maxCores = maxCores
 self.maxMemory = maxMemory
 self.maxDisk = maxDisk
 self.environment: Dict[str, str] = {}
 self.workerCleanupInfo = WorkerCleanupInfo(workDir=self.config.workDir,
 workflowID=self.config.workflowID,
 cleanWorkDir=self.config.cleanWorkDir)

 def checkResourceRequest(self, memory: int, cores: float, disk: int, job_name: str = '', detail: str = ''):
 """
 Check resource request is not greater than that available or allowed.

 :param int memory: amount of memory being requested, in bytes

 :param float cores: number of cores being requested

 :param int disk: amount of disk space being requested, in bytes

 :param str job_name: Name of the job being checked, for generating a useful error report.

 :param str detail: Batch-system-specific message to include in the error.

 :raise InsufficientSystemResources: raised when a resource is requested in an amount
 greater than allowed
 """
 batch_system = self.__class__.__name__ or 'this batch system'
 for resource, requested, available in [('cores', cores, self.maxCores),
 ('memory', memory, self.maxMemory),
 ('disk', disk, self.maxDisk)]:
 assert requested is not None
 if requested > available:
 unit = 'bytes of ' if resource in ('disk', 'memory') else ''
 R = f'The job {job_name} is r' if job_name else 'R'
 if resource == 'disk':
 msg = (f'{R}equesting {requested} {unit}{resource} for temporary space, '
 f'more than the maximum of {available} {unit}{resource} of free space on '
 f'{self.config.workDir} that {batch_system} was configured with, or enforced '
 f'by --max{resource.capitalize()}. Try setting/changing the toil option '
 f'"--workDir" or changing the base temporary directory by setting TMPDIR.')
 else:
 msg = (f'{R}equesting {requested} {unit}{resource}, more than the maximum of '
 f'{available} {unit}{resource} that {batch_system} was configured with, '
 f'or enforced by --max{resource.capitalize()}.')
 if detail:
 msg += detail

 raise InsufficientSystemResources(msg)

 def setEnv(self, name, value=None):
 """
 Set an environment variable for the worker process before it is launched. The worker
 process will typically inherit the environment of the machine it is running on but this
 method makes it possible to override specific variables in that inherited environment
 before the worker is launched. Note that this mechanism is different to the one used by
 the worker internally to set up the environment of a job. A call to this method affects
 all jobs issued after this method returns. Note to implementors: This means that you
 would typically need to copy the variables before enqueuing a job.

 If no value is provided it will be looked up from the current environment.

 :param str name: the environment variable to be set on the worker.

 :param str value: if given, the environment variable given by name will be set to this value.
 if None, the variable's current value will be used as the value on the worker

 :raise RuntimeError: if value is None and the name cannot be found in the environment
 """
 if value is None:
 try:
 value = os.environ[name]
 except KeyError:
 raise RuntimeError(f"{name} does not exist in current environment")
 self.environment[name] = value

 def formatStdOutErrPath(self, toil_job_id: int, cluster_job_id: str, std: str) -> str:
 """
 Format path for batch system standard output/error and other files
 generated by the batch system itself.

 Files will be written to the Toil work directory (which may
 be on a shared file system) with names containing both the Toil and
 batch system job IDs, for ease of debugging job failures.

 :param: int toil_job_id : The unique id that Toil gives a job.
 :param: cluster_job_id : What the cluster, for example, GridEngine, uses as its internal job id.
 :param: string std : The provenance of the stream (for example: 'err' for 'stderr' or 'out' for 'stdout')

 :rtype: string : Formatted filename; however if self.config.noStdOutErr is true,
 returns '/dev/null' or equivalent.
 """
 if self.config.noStdOutErr:
 return os.devnull

 fileName: str = f'toil_{self.config.workflowID}.{toil_job_id}.{cluster_job_id}.{std}.log'
 workDir: str = Toil.getToilWorkDir(self.config.workDir)
 return os.path.join(workDir, fileName)

 @staticmethod
 def workerCleanup(info: WorkerCleanupInfo) -> None:
 """
 Cleans up the worker node on batch system shutdown. Also see :meth:`supportsWorkerCleanup`.

 :param WorkerCleanupInfo info: A named tuple consisting of all the relevant information
 for cleaning up the worker.
 """
 assert isinstance(info, WorkerCleanupInfo)
 workflowDir = Toil.getLocalWorkflowDir(info.workflowID, info.workDir)
 DeferredFunctionManager.cleanupWorker(workflowDir)
 workflowDirContents = os.listdir(workflowDir)
 AbstractFileStore.shutdownFileStore(workflowDir, info.workflowID)
 if (info.cleanWorkDir == 'always'
 or info.cleanWorkDir in ('onSuccess', 'onError')
 and workflowDirContents in ([], [cacheDirName(info.workflowID)])):
 shutil.rmtree(workflowDir, ignore_errors=True)

class BatchSystemLocalSupport(BatchSystemSupport):
 """
 Adds a local queue for helper jobs, useful for CWL & others
 """

 def __init__(self, config, maxCores, maxMemory, maxDisk):
 super(BatchSystemLocalSupport, self).__init__(config, maxCores, maxMemory, maxDisk)
 self.localBatch = BATCH_SYSTEM_FACTORY_REGISTRY[DEFAULT_BATCH_SYSTEM]()(
 config, config.maxLocalJobs, maxMemory, maxDisk)

 def handleLocalJob(self, jobDesc): # type: (Any) -> Optional[int]
 """
 To be called by issueBatchJobs.

 Returns the jobID if the jobDesc has been submitted to the local queue,
 otherwise returns None
 """
 if (not self.config.runCwlInternalJobsOnWorkers
 and jobDesc.jobName.startswith(CWL_INTERNAL_JOBS)):
 return self.localBatch.issueBatchJob(jobDesc)
 else:
 return None

 def killLocalJobs(self, jobIDs):
 """
 To be called by killBatchJobs. Will kill all local jobs that match the
 provided jobIDs.
 """
 self.localBatch.killBatchJobs(jobIDs)

 def getIssuedLocalJobIDs(self):
 """To be called by getIssuedBatchJobIDs"""
 return self.localBatch.getIssuedBatchJobIDs()

 def getRunningLocalJobIDs(self):
 """To be called by getRunningBatchJobIDs()."""
 return self.localBatch.getRunningBatchJobIDs()

 def getUpdatedLocalJob(self, maxWait):
 # type: (int) -> Optional[Tuple[int, int, int]]
 """To be called by getUpdatedBatchJob()"""
 return self.localBatch.getUpdatedBatchJob(maxWait)

 def getNextJobID(self): # type: () -> int
 """
 Must be used to get job IDs so that the local and batch jobs do not
 conflict.
 """
 with self.localBatch.jobIndexLock:
 jobID = self.localBatch.jobIndex
 self.localBatch.jobIndex += 1
 return jobID

 def shutdownLocal(self): # type: () -> None
 """To be called from shutdown()"""
 self.localBatch.shutdown()

class BatchSystemCleanupSupport(BatchSystemLocalSupport):
 """
 Adds cleanup support when the last running job leaves a node, for batch
 systems that can't provide it using the backing scheduler.
 """

 @classmethod
 def supportsWorkerCleanup(cls):
 return True

 def getWorkerContexts(self):
 # Tell worker to register for and invoke cleanup

 # Create a context manager that has a copy of our cleanup info
 context = WorkerCleanupContext(self.workerCleanupInfo)

 # Send it along so the worker works inside of it
 contexts = super(BatchSystemCleanupSupport, self).getWorkerContexts()
 contexts.append(context)
 return contexts

 def __init__(self, config, maxCores, maxMemory, maxDisk):
 super(BatchSystemCleanupSupport, self).__init__(config, maxCores, maxMemory, maxDisk)

class WorkerCleanupContext:
 """
 Context manager used by :class:`BatchSystemCleanupSupport` to implement
 cleanup on a node after the last worker is done working.

 Gets wrapped around the worker's work.
 """

 def __init__(self, workerCleanupInfo):
 """
 Wrap the given workerCleanupInfo in a context manager.

 :param WorkerCleanupInfo workerCleanupInfo: Info to use to clean up the worker if we are
 the last to exit the context manager.
 """

 self.workerCleanupInfo = workerCleanupInfo
 self.arena = None

 def __enter__(self):
 # Set up an arena so we know who is the last worker to leave
 self.arena = LastProcessStandingArena(Toil.getToilWorkDir(self.workerCleanupInfo.workDir),
 self.workerCleanupInfo.workflowID + '-cleanup')
 self.arena.enter()

 def __exit__(self, type, value, traceback):
 for _ in self.arena.leave():
 # We are the last concurrent worker to finish.
 # Do batch system cleanup.
 logger.debug('Cleaning up worker')
 BatchSystemSupport.workerCleanup(self.workerCleanupInfo)
 # We have nothing to say about exceptions
 return False

class NodeInfo(object):
 """
 The coresUsed attribute is a floating point value between 0 (all cores idle) and 1 (all cores
 busy), reflecting the CPU load of the node.

 The memoryUsed attribute is a floating point value between 0 (no memory used) and 1 (all memory
 used), reflecting the memory pressure on the node.

 The coresTotal and memoryTotal attributes are the node's resources, not just the used resources

 The requestedCores and requestedMemory attributes are all the resources that Toil Jobs have reserved on the
 node, regardless of whether the resources are actually being used by the Jobs.

 The workers attribute is an integer reflecting the number of workers currently active workers
 on the node.
 """
 def __init__(self, coresUsed, memoryUsed, coresTotal, memoryTotal,
 requestedCores, requestedMemory, workers):
 self.coresUsed = coresUsed
 self.memoryUsed = memoryUsed

 self.coresTotal = coresTotal
 self.memoryTotal = memoryTotal

 self.requestedCores = requestedCores
 self.requestedMemory = requestedMemory

 self.workers = workers

class AbstractScalableBatchSystem(AbstractBatchSystem):
 """
 A batch system that supports a variable number of worker nodes. Used by :class:`toil.
 provisioners.clusterScaler.ClusterScaler` to scale the number of worker nodes in the cluster
 up or down depending on overall load.
 """

 @abstractmethod
 def getNodes(self, preemptable=None):
 """
 Returns a dictionary mapping node identifiers of preemptable or non-preemptable nodes to
 NodeInfo objects, one for each node.

 :param bool preemptable: If True (False) only (non-)preemptable nodes will be returned.
 If None, all nodes will be returned.

 :rtype: dict[str,NodeInfo]
 """
 raise NotImplementedError()

 @abstractmethod
 def nodeInUse(self, nodeIP):
 """
 Can be used to determine if a worker node is running any tasks. If the node is doesn't
 exist, this function should simply return False.

 :param str nodeIP: The worker nodes private IP address

 :return: True if the worker node has been issued any tasks, else False
 :rtype: bool
 """
 raise NotImplementedError()

 @abstractmethod
 @contextmanager
 def nodeFiltering(self, filter):
 """
 Used to prevent races in autoscaling where
 1) nodes have reported to the autoscaler as having no jobs
 2) scaler decides to terminate these nodes. In parallel the batch system assigns jobs to the same nodes
 3) scaler terminates nodes, resulting in job failures for all jobs on that node.

 Call this method prior to node termination to ensure that nodes being considered for termination are not
 assigned new jobs. Call the method again passing None as the filter to disable the filtering
 after node termination is done.

 :param method: This will be used as a filter on nodes considered when assigning new jobs.
 After this context manager exits the filter should be removed
 :rtype: None
 """
 raise NotImplementedError()

 @abstractmethod
 def ignoreNode(self, nodeAddress):
 """
 Stop sending jobs to this node. Used in autoscaling
 when the autoscaler is ready to terminate a node, but
 jobs are still running. This allows the node to be terminated
 after the current jobs have finished.

 :param str: IP address of node to ignore.
 :rtype: None
 """
 raise NotImplementedError()

 @abstractmethod
 def unignoreNode(self, nodeAddress):
 """
 Stop ignoring this address, presumably after
 a node with this address has been terminated. This allows for the
 possibility of a new node having the same address as a terminated one.
 """
 raise NotImplementedError()

class InsufficientSystemResources(Exception):
 pass

 toil.fileStores.abstractFileStore

 Source code for toil.fileStores.abstractFileStore

Copyright (C) 2015-2021 Regents of the University of California
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
import logging
import os
import tempfile
from abc import ABC, abstractmethod
from contextlib import contextmanager
from threading import Event, Semaphore
from typing import Callable, Generator, Union

import dill

from toil.common import cacheDirName
from toil.fileStores import FileID
from toil.jobStores.abstractJobStore import AbstractJobStore
from toil.lib.io import WriteWatchingStream
from toil.job import Job, JobDescription
logger = logging.getLogger(__name__)

[docs]class AbstractFileStore(ABC):
 """
 Interface used to allow user code run by Toil to read and write files.

 Also provides the interface to other Toil facilities used by user code,
 including:

 * normal (non-real-time) logging
 * finding the correct temporary directory for scratch work
 * importing and exporting files into and out of the workflow

 Stores user files in the jobStore, but keeps them separate from actual
 jobs.

 May implement caching.

 Passed as argument to the :meth:`toil.job.Job.run` method.

 Access to files is only permitted inside the context manager provided by
 :meth:`toil.fileStores.abstractFileStore.AbstractFileStore.open`.

 Also responsible for committing completed jobs back to the job store with
 an update operation, and allowing that commit operation to be waited for.
 """
 # Variables used for syncing reads/writes
 _pendingFileWritesLock = Semaphore()
 _pendingFileWrites = set()
 _terminateEvent = Event() # Used to signify crashes in threads

[docs] def __init__(self, jobStore: AbstractJobStore, jobDesc: JobDescription, localTempDir: str, waitForPreviousCommit: Callable[[],None]) -> None:
 """
 Create a new file store object.

 :param toil.jobStores.abstractJobStore.AbstractJobStore jobStore: the job store
 in use for the current Toil run.
 :param toil.job.JobDescription jobDesc: the JobDescription object for the currently
 running job.
 :param str localTempDir: the per-worker local temporary directory, under which
 per-job directories will be created. Assumed to be inside the
 workflow directory, which is assumed to be inside the work directory.

 :param waitForPreviousCommit: the waitForCommit method of the previous job's file
 store, when jobs are running in sequence on the same worker. Used to
 prevent this file store's startCommit and the previous job's
 startCommit methods from running at the same time and racing. If
 they did race, it might be possible for the later job to be fully
 marked as completed in the job store before the eralier job was.
 """
 self.jobStore = jobStore
 self.jobDesc = jobDesc
 self.localTempDir: str = os.path.abspath(localTempDir)
 self.workFlowDir: str = os.path.dirname(self.localTempDir)
 self.workDir: str = os.path.dirname(self.localTempDir)
 self.jobName: str = self.jobDesc.command.split()[1]
 self.waitForPreviousCommit = waitForPreviousCommit
 self.loggingMessages = []
 # Records file IDs of files deleted during the current job. Doesn't get
 # committed back until the job is completely successful, because if the
 # job is re-run it will need to be able to re-delete these files.
 # This is a set of str objects, not FileIDs.
 self.filesToDelete = set()
 # Records IDs of jobs that need to be deleted when the currently
 # running job is cleaned up.
 # May be modified by the worker to actually delete jobs!
 self.jobsToDelete = set()
 # Holds records of file ID, or file ID and local path, for reporting
 # the accessed files of failed jobs.
 self._accessLog = []

 @staticmethod
 def createFileStore(jobStore, jobDesc, localTempDir, waitForPreviousCommit, caching):
 # Defer these imports until runtime, since these classes depend on us
 from toil.fileStores.cachingFileStore import CachingFileStore
 from toil.fileStores.nonCachingFileStore import NonCachingFileStore
 fileStoreCls = CachingFileStore if caching else NonCachingFileStore
 return fileStoreCls(jobStore, jobDesc, localTempDir, waitForPreviousCommit)

[docs] @staticmethod
 def shutdownFileStore(workflowDir, workflowID):
 """
 Carry out any necessary filestore-specific cleanup.

 This is a destructive operation and it is important to ensure that there are no other running
 processes on the system that are modifying or using the file store for this workflow.

 This is the intended to be the last call to the file store in a Toil run, called by the
 batch system cleanup function upon batch system shutdown.

 :param str workflowDir: The path to the cache directory
 :param str workflowID: The workflow ID for this invocation of the workflow
 """

 # Defer these imports until runtime, since these classes depend on our file
 from toil.fileStores.cachingFileStore import CachingFileStore
 from toil.fileStores.nonCachingFileStore import NonCachingFileStore

 cacheDir = os.path.join(workflowDir, cacheDirName(workflowID))
 if os.path.exists(cacheDir):
 # The presence of the cacheDir suggests this was a cached run. We don't need the cache lock
 # for any of this since this is the final cleanup of a job and there should be no other
 # conflicting processes using the cache.
 CachingFileStore.shutdown(cacheDir)
 else:
 # This absence of cacheDir suggests otherwise.
 NonCachingFileStore.shutdown(workflowDir)

[docs] @contextmanager
 def open(self, job: Job) -> Generator[None, None, None]:
 """
 The context manager used to conduct tasks prior-to, and after a job has
 been run. File operations are only permitted inside the context
 manager.

 Implementations must only yield from within `with super().open(job):`.

 :param toil.job.Job job: The job instance of the toil job to run.
 """

 failed = True
 try:
 yield
 failed = False
 finally:
 # Do a finally instead of an except/raise because we don't want
 # to appear as "another exception occurred" in the stack trace.
 if failed:
 self._dumpAccessLogs()

 # Functions related to temp files and directories
[docs] def getLocalTempDir(self):
 """
 Get a new local temporary directory in which to write files that persist for the duration of
 the job.

 :return: The absolute path to a new local temporary directory. This directory will exist
 for the duration of the job only, and is guaranteed to be deleted once the job
 terminates, removing all files it contains recursively.
 :rtype: str
 """
 return os.path.abspath(tempfile.mkdtemp(dir=self.localTempDir))

[docs] def getLocalTempFile(self):
 """
 Get a new local temporary file that will persist for the duration of the job.

 :return: The absolute path to a local temporary file. This file will exist for the
 duration of the job only, and is guaranteed to be deleted once the job terminates.
 :rtype: str
 """
 handle, tmpFile = tempfile.mkstemp(prefix="tmp", suffix=".tmp", dir=self.localTempDir)
 os.close(handle)
 return os.path.abspath(tmpFile)

[docs] def getLocalTempFileName(self):
 """
 Get a valid name for a new local file. Don't actually create a file at the path.

 :return: Path to valid file
 :rtype: str
 """
 # Create, and then delete a temp file. Creating will guarantee you a unique, unused
 # file name. There is a very, very, very low chance that another job will create the
 # same file name in the span of this one being deleted and then being used by the user.
 tempFile = self.getLocalTempFile()
 os.remove(tempFile)
 return tempFile

 # Functions related to reading, writing and removing files to/from the job store
[docs] @abstractmethod
 def writeGlobalFile(self, localFileName, cleanup=False):
 """
 Takes a file (as a path) and uploads it to the job store. If the file
 is in a FileStore-managed temporary directory (i.e. from
 :func:`toil.fileStores.abstractFileStore.AbstractFileStore.getLocalTempDir`),
 it will become a local copy of the file, eligible for deletion by
 :func:`toil.fileStores.abstractFileStore.AbstractFileStore.deleteLocalFile`.

 If an executable file on the local filesystem is uploaded, its executability will
 be preserved when it is downloaded again.

 :param string localFileName: The path to the local file to upload. The
 last path component (basename of the file) will remain
 associated with the file in the file store, if supported by the
 backing JobStore, so that the file can be searched for by name
 or name glob.
 :param bool cleanup: if True then the copy of the global file will be deleted once the
 job and all its successors have completed running. If not the global file must be
 deleted manually.
 :return: an ID that can be used to retrieve the file.
 :rtype: toil.fileStores.FileID
 """
 raise NotImplementedError()

[docs] @contextmanager
 def writeGlobalFileStream(self, cleanup=False, basename=None, encoding=None, errors=None):
 """
 Similar to writeGlobalFile, but allows the writing of a stream to the job store.
 The yielded file handle does not need to and should not be closed explicitly.

 :param str encoding: the name of the encoding used to decode the file. Encodings are the same as
 for decode(). Defaults to None which represents binary mode.

 :param str errors: an optional string that specifies how encoding errors are to be handled. Errors
 are the same as for open(). Defaults to 'strict' when an encoding is specified.

 :param bool cleanup: is as in :func:`toil.fileStores.abstractFileStore.AbstractFileStore.writeGlobalFile`.

 :param str basename: If supported by the backing JobStore, use the given
 file basename so that when searching the job store with a query
 matching that basename, the file will be detected.

 :return: A context manager yielding a tuple of
 1) a file handle which can be written to and
 2) the toil.fileStores.FileID of the resulting file in the job store.
 """

 with self.jobStore.writeFileStream(self.jobDesc.jobStoreID, cleanup, basename,
 encoding, errors) as (backingStream, fileStoreID):

 # We have a string version of the file ID, and the backing stream.
 # We need to yield a stream the caller can write to, and a FileID
 # that accurately reflects the size of the data written to the
 # stream. We assume the stream is not seekable.

 # Make and keep a reference to the file ID, which is currently empty
 fileID = FileID(fileStoreID, 0)

 # Wrap the stream to increment the file ID's size for each byte written
 wrappedStream = WriteWatchingStream(backingStream)

 # When the stream is written to, count the bytes
 def handle(numBytes):
 # No scope problem here, because we don't assign to a fileID local
 fileID.size += numBytes
 wrappedStream.onWrite(handle)

 yield wrappedStream, fileID

 def _dumpAccessLogs(self):
 """
 When something goes wrong, log a report of the files that were accessed
 while the file store was open.
 """

 if len(self._accessLog) > 0:
 logger.warning('Failed job accessed files:')

 for item in self._accessLog:
 # For each access record
 if len(item) == 2:
 # If it has a name, dump wit the name
 logger.warning('Downloaded file \'%s\' to path \'%s\'', *item)
 else:
 # Otherwise dump without the name
 logger.warning('Streamed file \'%s\'', *item)

[docs] def logAccess(self, fileStoreID: Union[FileID, str], destination: Union[str, None] = None):
 """
 Record that the given file was read by the job, to be announced if the
 job fails. If destination is not None, it gives the path that the file
 was downloaded to. Otherwise, assumes that the file was streamed.

 Must be called by :meth:`readGlobalFile` and :meth:`readGlobalFileStream`
 implementations.
 """

 if destination is not None:
 self._accessLog.append((fileStoreID, destination))
 else:
 self._accessLog.append((fileStoreID,))

[docs] @abstractmethod
 def readGlobalFile(self, fileStoreID, userPath=None, cache=True, mutable=False, symlink=False):
 """
 Makes the file associated with fileStoreID available locally. If mutable is True,
 then a copy of the file will be created locally so that the original is not modified
 and does not change the file for other jobs. If mutable is False, then a link can
 be created to the file, saving disk resources. The file that is downloaded will be
 executable if and only if it was originally uploaded from an executable file on the
 local filesystem.

 If a user path is specified, it is used as the destination. If a user path isn't
 specified, the file is stored in the local temp directory with an encoded name.

 The destination file must not be deleted by the user; it can only be
 deleted through deleteLocalFile.

 Implementations must call :meth:`logAccess` to report the download.

 :param toil.fileStores.FileID or str fileStoreID: job store id for the file
 :param string userPath: a path to the name of file to which the global file will be copied
 or hard-linked (see below).
 :param bool cache: Described in :func:`toil.fileStores.CachingFileStore.readGlobalFile`
 :param bool mutable: Described in :func:`toil.fileStores.CachingFileStore.readGlobalFile`
 :return: An absolute path to a local, temporary copy of the file keyed by fileStoreID.
 :rtype: str
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def readGlobalFileStream(self, fileStoreID, encoding=None, errors=None):
 """
 Similar to readGlobalFile, but allows a stream to be read from the job store. The yielded
 file handle does not need to and should not be closed explicitly.

 :param str encoding: the name of the encoding used to decode the file. Encodings are the same as
 for decode(). Defaults to None which represents binary mode.

 :param str errors: an optional string that specifies how encoding errors are to be handled. Errors
 are the same as for open(). Defaults to 'strict' when an encoding is specified.

 Implementations must call :meth:`logAccess` to report the download.

 :return: a context manager yielding a file handle which can be read from.
 """
 raise NotImplementedError()

[docs] def getGlobalFileSize(self, fileStoreID):
 """
 Get the size of the file pointed to by the given ID, in bytes.

 If a FileID or something else with a non-None 'size' field, gets that.

 Otherwise, asks the job store to poll the file's size.

 Note that the job store may overestimate the file's size, for example
 if it is encrypted and had to be augmented with an IV or other
 encryption framing.

 :param toil.fileStores.FileID or str fileStoreID: File ID for the file
 :return: File's size in bytes, as stored in the job store
 :rtype: int
 """

 # First try and see if the size is still attached
 size = getattr(fileStoreID, 'size', None)

 if size is None:
 # It fell off
 # Someone is mixing FileStore and JobStore file APIs, or serializing FileIDs as strings.
 size = self.jobStore.getFileSize(fileStoreID)

 return size

[docs] @abstractmethod
 def deleteLocalFile(self, fileStoreID):
 """
 Deletes local copies of files associated with the provided job store ID.

 Raises an OSError with an errno of errno.ENOENT if no such local copies
 exist. Thus, cannot be called multiple times in succession.

 The files deleted are all those previously read from this file ID via
 readGlobalFile by the current job into the job's file-store-provided
 temp directory, plus the file that was written to create the given file
 ID, if it was written by the current job from the job's
 file-store-provided temp directory.

 :param toil.fileStores.FileID or str fileStoreID: File Store ID of the file to be deleted.
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def deleteGlobalFile(self, fileStoreID):
 """
 Deletes local files with the provided job store ID and then permanently deletes them from
 the job store. To ensure that the job can be restarted if necessary, the delete will not
 happen until after the job's run method has completed.

 :param toil.fileStores.FileID or str fileStoreID: the File Store ID of the file to be deleted.
 """
 raise NotImplementedError()

 # Functions used to read and write files directly between a source url and the job store.
 def importFile(self, srcUrl, sharedFileName=None):
 return self.jobStore.importFile(srcUrl, sharedFileName=sharedFileName)

 def exportFile(self, jobStoreFileID, dstUrl):
 raise NotImplementedError()

 # A utility method for accessing filenames
 def _resolveAbsoluteLocalPath(self, filePath):
 """
 Return the absolute path to filePath. This is a wrapper for os.path.abspath because mac OS
 symlinks /tmp and /var (the most common places for a default tempdir) to /private/tmp and
 /private/var respectively.

 :param str filePath: The absolute or relative path to the file. If relative, it must be
 relative to the local temp working dir
 :return: Absolute path to key
 :rtype: str
 """
 if os.path.isabs(filePath):
 return os.path.abspath(filePath)
 else:
 return os.path.join(self.localTempDir, filePath)

 class _StateFile(object):
 """
 Utility class to read and write dill-ed state dictionaries from/to a file into a namespace.
 """
 def __init__(self, stateDict):
 assert isinstance(stateDict, dict)
 self.__dict__.update(stateDict)

 @classmethod
 @abstractmethod
 @contextmanager
 def open(cls, outer=None):
 """
 This is a context manager that state file and reads it into an object that is returned
 to the user in the yield.

 :param outer: Instance of the calling class (to use outer methods).
 """
 raise NotImplementedError()

 @classmethod
 def _load(cls, fileName):
 """
 Load the state of the cache from the state file

 :param str fileName: Path to the cache state file.
 :return: An instance of the state as a namespace.
 :rtype: _StateFile
 """
 # Read the value from the cache state file then initialize and instance of
 # _CacheState with it.
 with open(fileName, 'rb') as fH:
 infoDict = dill.load(fH)
 return cls(infoDict)

 def write(self, fileName):
 """
 Write the current state into a temporary file then atomically rename it to the main
 state file.

 :param str fileName: Path to the state file.
 """
 with open(fileName + '.tmp', 'wb') as fH:
 # Based on answer by user "Mark" at:
 # http://stackoverflow.com/questions/2709800/how-to-pickle-yourself
 # We can't pickle nested classes. So we have to pickle the variables of the class
 # If we ever change this, we need to ensure it doesn't break FileID
 dill.dump(self.__dict__, fH)
 os.rename(fileName + '.tmp', fileName)

 # Functions related to logging
[docs] def logToMaster(self, text: str, level: int =logging.INFO) -> None:
 """
 Send a logging message to the leader. The message will also be \
 logged by the worker at the same level.

 :param text: The string to log.
 :param int level: The logging level.
 """
 logger.log(level=level, msg=("LOG-TO-MASTER: " + text))
 self.loggingMessages.append(dict(text=text, level=level))

 # Functions run after the completion of the job.
[docs] @abstractmethod
 def startCommit(self, jobState=False):
 """
 Update the status of the job on the disk.

 May start an asynchronous process. Call waitForCommit() to wait on that process.

 :param bool jobState: If True, commit the state of the FileStore's job,
 and file deletes. Otherwise, commit only file creates/updates.

 """
 raise NotImplementedError()

[docs] @abstractmethod
 def waitForCommit(self):
 """
 Blocks while startCommit is running. This function is called by this job's
 successor to ensure that it does not begin modifying the job store until after this job has
 finished doing so.

 Might be called when startCommit is never called on a particular
 instance, in which case it does not block.

 :return: Always returns True
 :rtype: bool
 """
 raise NotImplementedError()

[docs] @classmethod
 @abstractmethod
 def shutdown(cls, dir_):
 """
 Shutdown the filestore on this node.

 This is intended to be called on batch system shutdown.

 :param dir_: The implementation-specific directory containing the required information for
 shutting down the file store and removing all its state and all job local temp
 directories from the node.
 """
 raise NotImplementedError()

 toil.jobStores.abstractJobStore

 Source code for toil.jobStores.abstractJobStore

Copyright (C) 2015-2021 Regents of the University of California
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
import logging
import pickle
import re
import shutil
import urllib.parse as urlparse

from abc import ABC, ABCMeta, abstractmethod
from contextlib import closing, contextmanager
from datetime import timedelta
from http.client import BadStatusLine
from io import BytesIO
from requests.exceptions import HTTPError
from urllib.request import urlopen
from uuid import uuid4

from toil.common import safeUnpickleFromStream, Config
from toil.fileStores import FileID
from toil.job import (CheckpointJobDescription,
 TemporaryID,
 JobException,
 JobDescription,
 ServiceJobDescription)
from toil.lib.memoize import memoize
from toil.lib.io import WriteWatchingStream
from toil.lib.retry import ErrorCondition, retry
from typing import (cast, IO, List, TextIO, Tuple, Dict, Iterator, Callable,
 ValuesView, Set, Union, Optional, Any)

logger = logging.getLogger(__name__)

try:
 from botocore.exceptions import ProxyConnectionError # type: ignore
except ImportError:
 class ProxyConnectionError(BaseException): # type: ignore
 pass

class InvalidImportExportUrlException(Exception):
 def __init__(self, url: urlparse.ParseResult):
 """
 :param urlparse.ParseResult url: The given URL
 """
 super().__init__("The URL '%s' is invalid." % url.geturl())

[docs]class NoSuchJobException(Exception):
 """Indicates that the specified job does not exist."""
[docs] def __init__(self, jobStoreID: FileID):
 """
 :param str jobStoreID: the jobStoreID that was mistakenly assumed to exist
 """
 super().__init__("The job '%s' does not exist." % jobStoreID)

[docs]class ConcurrentFileModificationException(Exception):
 """Indicates that the file was attempted to be modified by multiple processes at once."""
[docs] def __init__(self, jobStoreFileID: FileID):
 """
 :param str jobStoreFileID: the ID of the file that was modified by multiple workers
 or processes concurrently
 """
 super().__init__('Concurrent update to file %s detected.' % jobStoreFileID)

[docs]class NoSuchFileException(Exception):
 """Indicates that the specified file does not exist."""
[docs] def __init__(self, jobStoreFileID: FileID, customName: Optional[str] = None, *extra: Any):
 """
 :param str jobStoreFileID: the ID of the file that was mistakenly assumed to exist
 :param str customName: optionally, an alternate name for the nonexistent file
 :param list extra: optional extra information to add to the error message
 """
 # Having the extra argument may help resolve the __init__() takes at
 # most three arguments error reported in
 # https://github.com/DataBiosphere/toil/issues/2589#issuecomment-481912211
 if customName is None:
 message = "File '%s' does not exist." % jobStoreFileID
 else:
 message = "File '%s' (%s) does not exist." % (customName, jobStoreFileID)

 if extra:
 # Append extra data.
 message += " Extra info: " + " ".join((str(x) for x in extra))

 super().__init__(message)

[docs]class NoSuchJobStoreException(Exception):
 """Indicates that the specified job store does not exist."""
[docs] def __init__(self, locator: str):
 """
 :param str locator: The location of the job store
 """
 super().__init__("The job store '%s' does not exist, so there is nothing to restart." % locator)

[docs]class JobStoreExistsException(Exception):
 """Indicates that the specified job store already exists."""
[docs] def __init__(self, locator: str):
 """
 :param str locator: The location of the job store
 """
 super().__init__(
 "The job store '%s' already exists. Use --restart to resume the workflow, or remove "
 "the job store with 'toil clean' to start the workflow from scratch." % locator)

[docs]class AbstractJobStore(ABC):
 """
 Represents the physical storage for the jobs and files in a Toil workflow.

 JobStores are responsible for storing :class:`toil.job.JobDescription`
 (which relate jobs to each other) and files.

 Actual :class:`toil.job.Job` objects are stored in files, referenced by
 JobDescriptions. All the non-file CRUD methods the JobStore provides deal
 in JobDescriptions and not full, executable Jobs.

 To actually get ahold of a :class:`toil.job.Job`, use
 :meth:`toil.job.Job.loadJob` with a JobStore and the relevant JobDescription.
 """

[docs] def __init__(self) -> None:
 """
 Create an instance of the job store. The instance will not be fully functional until
 either :meth:`.initialize` or :meth:`.resume` is invoked. Note that the :meth:`.destroy`
 method may be invoked on the object with or without prior invocation of either of these two
 methods.
 """
 self.__config = None

[docs] def initialize(self, config: Config) -> None:
 """
 Create the physical storage for this job store, allocate a workflow ID and persist the
 given Toil configuration to the store.

 :param toil.common.Config config: the Toil configuration to initialize this job store
 with. The given configuration will be updated with the newly allocated workflow ID.

 :raises JobStoreExistsException: if the physical storage for this job store already exists
 """
 assert config.workflowID is None
 config.workflowID = str(uuid4())
 logger.debug("The workflow ID is: '%s'" % config.workflowID)
 self.__config = config
 self.writeConfig()

[docs] def writeConfig(self) -> None:
 """
 Persists the value of the :attr:`AbstractJobStore.config` attribute to the
 job store, so that it can be retrieved later by other instances of this class.
 """
 with self.writeSharedFileStream('config.pickle', isProtected=False) as fileHandle:
 pickle.dump(self.__config, fileHandle, pickle.HIGHEST_PROTOCOL)

[docs] def resume(self) -> None:
 """
 Connect this instance to the physical storage it represents and load the Toil configuration
 into the :attr:`AbstractJobStore.config` attribute.

 :raises NoSuchJobStoreException: if the physical storage for this job store doesn't exist
 """
 with self.readSharedFileStream('config.pickle') as fileHandle:
 config = safeUnpickleFromStream(fileHandle)
 assert config.workflowID is not None
 self.__config = config

 @property
 def config(self) -> Config:
 """
 The Toil configuration associated with this job store.

 :rtype: toil.common.Config
 """
 return self.__config

 rootJobStoreIDFileName = 'rootJobStoreID'

[docs] def setRootJob(self, rootJobStoreID: FileID) -> None:
 """
 Set the root job of the workflow backed by this job store

 :param str rootJobStoreID: The ID of the job to set as root
 """
 with self.writeSharedFileStream(self.rootJobStoreIDFileName) as f:
 f.write(rootJobStoreID.encode('utf-8'))

[docs] def loadRootJob(self) -> JobDescription:
 """
 Loads the JobDescription for the root job in the current job store.

 :raises toil.job.JobException: If no root job is set or if the root job doesn't exist in
 this job store

 :return: The root job.
 :rtype: toil.job.JobDescription
 """
 try:
 with self.readSharedFileStream(self.rootJobStoreIDFileName) as f:
 rootJobStoreID = f.read().decode('utf-8')
 except NoSuchFileException:
 raise JobException('No job has been set as the root in this job store')
 if not self.exists(rootJobStoreID):
 raise JobException("The root job '%s' doesn't exist. Either the Toil workflow "
 "is finished or has never been started" % rootJobStoreID)
 return self.load(rootJobStoreID)

 # FIXME: This is only used in tests, why do we have it?

[docs] def createRootJob(self, desc: JobDescription) -> JobDescription:
 """
 Create the given JobDescription and set it as the root job in this job store

 :param toil.job.JobDescription desc: JobDescription to save and make the root job.

 :rtype: toil.job.JobDescription
 """
 self.create(desc)
 self.setRootJob(desc.jobStoreID)
 return desc

[docs] def getRootJobReturnValue(self) -> Any:
 """
 Parse the return value from the root job.

 Raises an exception if the root job hasn't fulfilled its promise yet.
 """
 # Parse out the return value from the root job
 with self.readSharedFileStream('rootJobReturnValue') as fH:
 return safeUnpickleFromStream(fH)

 # due to https://github.com/python/mypy/issues/1362
 @property # type: ignore
 @memoize
 def _jobStoreClasses(self) -> List['AbstractJobStore']:
 """
 A list of concrete AbstractJobStore implementations whose dependencies are installed.

 :rtype: List[AbstractJobStore]
 """
 jobStoreClassNames = (
 "toil.jobStores.fileJobStore.FileJobStore",
 "toil.jobStores.googleJobStore.GoogleJobStore",
 "toil.jobStores.aws.jobStore.AWSJobStore",
 "toil.jobStores.abstractJobStore.JobStoreSupport")
 jobStoreClasses = []
 for className in jobStoreClassNames:
 moduleName, className = className.rsplit('.', 1)
 from importlib import import_module
 try:
 module = import_module(moduleName)
 except (ImportError, ProxyConnectionError):
 logger.debug("Unable to import '%s' as is expected if the corresponding extra was "
 "omitted at installation time.", moduleName)
 else:
 jobStoreClass = getattr(module, className)
 jobStoreClasses.append(jobStoreClass)
 return jobStoreClasses

 def _findJobStoreForUrl(self, url: urlparse.ParseResult, export: bool = False) -> 'AbstractJobStore':
 """
 Returns the AbstractJobStore subclass that supports the given URL.

 :param urlparse.ParseResult url: The given URL

 :param bool export: Determines if the url is supported for exporting

 :rtype: toil.jobStore.AbstractJobStore
 """
 for jobStoreCls in self._jobStoreClasses:
 if jobStoreCls._supportsUrl(url, export):
 return cast('AbstractJobStore', jobStoreCls)
 raise RuntimeError("No job store implementation supports %sporting for URL '%s'" %
 ('ex' if export else 'im', url.geturl()))

[docs] def importFile(self, srcUrl: str, sharedFileName: Optional[str] = None, hardlink: bool = False,
 symlink: bool = False) -> Optional[FileID]:
 """
 Imports the file at the given URL into job store. The ID of the newly imported file is
 returned. If the name of a shared file name is provided, the file will be imported as
 such and None is returned. If an executable file on the local filesystem is uploaded, its
 executability will be preserved when it is downloaded.

 Currently supported schemes are:

 - 's3' for objects in Amazon S3
 e.g. s3://bucket/key

 - 'file' for local files
 e.g. file:///local/file/path

 - 'http'
 e.g. http://someurl.com/path

 - 'gs'
 e.g. gs://bucket/file

 :param str srcUrl: URL that points to a file or object in the storage mechanism of a
 supported URL scheme e.g. a blob in an AWS s3 bucket.

 :param str sharedFileName: Optional name to assign to the imported file within the job store

 :return: The jobStoreFileID of the imported file or None if sharedFileName was given
 :rtype: toil.fileStores.FileID or None
 """
 # Note that the helper method _importFile is used to read from the source and write to
 # destination (which is the current job store in this case). To implement any
 # optimizations that circumvent this, the _importFile method should be overridden by
 # subclasses of AbstractJobStore.
 parseResult = urlparse.urlparse(srcUrl)
 otherCls = self._findJobStoreForUrl(parseResult)
 return self._importFile(otherCls, parseResult, sharedFileName=sharedFileName, hardlink=hardlink, symlink=symlink)

 def _importFile(self, otherCls: 'AbstractJobStore', url: urlparse.ParseResult, sharedFileName: Optional[str] = None,
 hardlink: bool = False, symlink: bool = False) -> Optional[FileID]:
 """
 Import the file at the given URL using the given job store class to retrieve that file.
 See also :meth:`.importFile`. This method applies a generic approach to importing: it
 asks the other job store class for a stream and writes that stream as either a regular or
 a shared file.

 :param AbstractJobStore otherCls: The concrete subclass of AbstractJobStore that supports
 reading from the given URL and getting the file size from the URL.

 :param urlparse.ParseResult url: The location of the file to import.

 :param str sharedFileName: Optional name to assign to the imported file within the job store

 :return The jobStoreFileID of imported file or None if sharedFileName was given
 :rtype: toil.fileStores.FileID or None
 """
 if sharedFileName is None:
 with self.writeFileStream() as (writable, jobStoreFileID):
 size, executable = otherCls._readFromUrl(url, writable)
 return FileID(jobStoreFileID, size, executable)
 else:
 self._requireValidSharedFileName(sharedFileName)
 with self.writeSharedFileStream(sharedFileName) as writable:
 otherCls._readFromUrl(url, writable)
 return None

[docs] def exportFile(self, jobStoreFileID: FileID, dstUrl: str) -> None:
 """
 Exports file to destination pointed at by the destination URL. The exported file will be
 executable if and only if it was originally uploaded from an executable file on the
 local filesystem.

 Refer to :meth:`.AbstractJobStore.importFile` documentation for currently supported URL schemes.

 Note that the helper method _exportFile is used to read from the source and write to
 destination. To implement any optimizations that circumvent this, the _exportFile method
 should be overridden by subclasses of AbstractJobStore.

 :param str jobStoreFileID: The id of the file in the job store that should be exported.

 :param str dstUrl: URL that points to a file or object in the storage mechanism of a
 supported URL scheme e.g. a blob in an AWS s3 bucket.
 """
 parseResult = urlparse.urlparse(dstUrl)
 otherCls = self._findJobStoreForUrl(parseResult, export=True)
 self._exportFile(otherCls, jobStoreFileID, parseResult)

 def _exportFile(self, otherCls: 'AbstractJobStore', jobStoreFileID: FileID, url: urlparse.ParseResult) -> None:
 """
 Refer to exportFile docstring for information about this method.

 :param AbstractJobStore otherCls: The concrete subclass of AbstractJobStore that supports
 exporting to the given URL. Note that the type annotation here is not completely
 accurate. This is not an instance, it's a class, but there is no way to reflect
 that in :pep:`484` type hints.

 :param str jobStoreFileID: The id of the file that will be exported.

 :param urlparse.ParseResult url: The parsed URL of the file to export to.
 """
 self._defaultExportFile(otherCls, jobStoreFileID, url)

 def _defaultExportFile(self, otherCls: 'AbstractJobStore', jobStoreFileID: FileID, url: urlparse.ParseResult) -> None:
 """
 Refer to exportFile docstring for information about this method.

 :param AbstractJobStore otherCls: The concrete subclass of AbstractJobStore that supports
 exporting to the given URL. Note that the type annotation here is not completely
 accurate. This is not an instance, it's a class, but there is no way to reflect
 that in :pep:`484` type hints.

 :param str jobStoreFileID: The id of the file that will be exported.

 :param urlparse.ParseResult url: The parsed URL of the file to export to.
 """
 executable = False
 with self.readFileStream(jobStoreFileID) as readable:
 if getattr(jobStoreFileID, 'executable', False):
 executable = jobStoreFileID.executable
 otherCls._writeToUrl(readable, url, executable)

[docs] @classmethod
 @abstractmethod
 def getSize(cls, url: urlparse.ParseResult) -> None:
 """
 Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

 :param urlparse.ParseResult url: URL that points to a file or object in the storage
 mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.
 """
 raise NotImplementedError

 @classmethod
 @abstractmethod
 def _readFromUrl(cls, url: urlparse.ParseResult, writable: IO[bytes]) -> Tuple[int, bool]:
 """
 Reads the contents of the object at the specified location and writes it to the given
 writable stream.

 Refer to :func:`~AbstractJobStore.importFile` documentation for currently supported URL schemes.

 :param urlparse.ParseResult url: URL that points to a file or object in the storage
 mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.

 :param IO[bytes] writable: a writable stream

 :return: The size of the file in bytes and whether the executable permission bit is set
 :rtype: Tuple[int, bool]
 """
 raise NotImplementedError()

 @classmethod
 @abstractmethod
 def _writeToUrl(cls, readable: Union[BytesIO, TextIO], url: urlparse.ParseResult, executable: bool = False) -> None:
 """
 Reads the contents of the given readable stream and writes it to the object at the
 specified location.

 Refer to AbstractJobStore.importFile documentation for currently supported URL schemes.

 :param Union[BytesIO, TextIO] readable: a readable stream

 :param urlparse.ParseResult url: URL that points to a file or object in the storage
 mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.

 :param bool executable: determines if the file has executable permissions
 """
 raise NotImplementedError()

 @classmethod
 @abstractmethod
 def _supportsUrl(cls, url: urlparse.ParseResult, export: bool = False) -> bool:
 """
 Returns True if the job store supports the URL's scheme.

 Refer to AbstractJobStore.importFile documentation for currently supported URL schemes.

 :param urlparse.ParseResult url: a parsed URL that may be supported

 :param bool export: Determines if the url is supported for exported

 :return bool: returns true if the cls supports the URL
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def destroy(self) -> None:
 """
 The inverse of :meth:`.initialize`, this method deletes the physical storage represented
 by this instance. While not being atomic, this method *is* at least idempotent,
 as a means to counteract potential issues with eventual consistency exhibited by the
 underlying storage mechanisms. This means that if the method fails (raises an exception),
 it may (and should be) invoked again. If the underlying storage mechanism is eventually
 consistent, even a successful invocation is not an ironclad guarantee that the physical
 storage vanished completely and immediately. A successful invocation only guarantees that
 the deletion will eventually happen. It is therefore recommended to not immediately reuse
 the same job store location for a new Toil workflow.
 """
 raise NotImplementedError()

[docs] def getEnv(self) -> Dict[str, str]:
 """
 Returns a dictionary of environment variables that this job store requires to be set in
 order to function properly on a worker.

 :rtype: dict[str,str]
 """
 return {}

 # Cleanup functions

[docs] def clean(self, jobCache: Optional[Dict[str, JobDescription]] = None) -> JobDescription:
 """
 Function to cleanup the state of a job store after a restart.
 Fixes jobs that might have been partially updated. Resets the try counts and removes jobs
 that are not successors of the current root job.

 :param dict[str,toil.job.JobDescription] jobCache: if a value it must be a dict
 from job ID keys to JobDescription object values. Jobs will be loaded from the cache
 (which can be downloaded from the job store in a batch) instead of piecemeal when
 recursed into.

 :rtype: toil.job.JobDescription
 """
 if jobCache is None:
 logger.warning("Cleaning jobStore recursively. This may be slow.")

 # Functions to get and check the existence of jobs, using the jobCache if present
 def getJobDescription(jobId: str) -> JobDescription:
 if jobCache is not None:
 try:
 return jobCache[jobId]
 except KeyError:
 return self.load(jobId)
 else:
 return self.load(jobId)

 def haveJob(jobId: str) -> bool:
 assert len(jobId) > 1, "Job ID {} too short; is a string being used as a list?".format(jobId)
 if jobCache is not None:
 if jobId in jobCache:
 return True
 else:
 return self.exists(jobId)
 else:
 return self.exists(jobId)

 def deleteJob(jobId: str) -> None:
 if jobCache is not None:
 if jobId in jobCache:
 del jobCache[jobId]
 self.delete(jobId)

 def updateJobDescription(jobDescription: JobDescription) -> None:
 if jobCache is not None:
 jobCache[jobDescription.jobStoreID] = jobDescription
 self.update(jobDescription)

 def getJobDescriptions() -> Union[ValuesView[JobDescription], Iterator[JobDescription]]:
 if jobCache is not None:
 return jobCache.values()
 else:
 return self.jobs()

 def get_jobs_reachable_from_root() -> Set[Union[TemporaryID, str]]:
 """
 Traverse the job graph from the root job and return a flattened set of all active jobstore IDs.

 Note: Jobs returned by self.jobs(), but not this function, are orphaned, and can be removed as dead jobs.

 :rtype: Set[Union[TemporaryID, str]]
 """
 # Iterate from the root JobDescription and collate all jobs that are reachable from it.
 root_job_description = self.loadRootJob()
 reachable_from_root = set()

 # Add first root job outside of the loop below.
 reachable_from_root.add(root_job_description.jobStoreID)
 # add all of root's linked service jobs as well
 for service_jobstore_id in root_job_description.services:
 if haveJob(service_jobstore_id):
 reachable_from_root.add(service_jobstore_id)

 # Unprocessed means it might have successor jobs we need to add.
 unprocessed_job_descriptions = [root_job_description]

 while unprocessed_job_descriptions:
 new_job_descriptions_to_process = [] # Reset.
 for job_description in unprocessed_job_descriptions:
 for jobs in job_description.stack:
 for successor_jobstore_id in jobs:
 if successor_jobstore_id not in reachable_from_root and haveJob(successor_jobstore_id):
 successor_job_description = getJobDescription(successor_jobstore_id)

 # Add each successor job.
 reachable_from_root.add(successor_job_description.jobStoreID)
 # Add all of the successor's linked service jobs as well.
 for service_jobstore_id in successor_job_description.services:
 if haveJob(service_jobstore_id):
 reachable_from_root.add(service_jobstore_id)

 new_job_descriptions_to_process.append(successor_job_description)
 unprocessed_job_descriptions = new_job_descriptions_to_process

 logger.debug(f"{len(reachable_from_root)} jobs reachable from root.")
 return reachable_from_root

 reachable_from_root = get_jobs_reachable_from_root()

 # Cleanup jobs that are not reachable from the root, and therefore orphaned
 # TODO: Avoid reiterating reachable_from_root (which may be very large)
 jobsToDelete = [x for x in getJobDescriptions() if x.jobStoreID not in reachable_from_root]
 for jobDescription in jobsToDelete:
 # clean up any associated files before deletion
 for fileID in jobDescription.filesToDelete:
 # Delete any files that should already be deleted
 logger.warning(f"Deleting file '{fileID}'. It is marked for deletion but has not yet been removed.")
 self.deleteFile(fileID)
 # Delete the job from us and the cache
 deleteJob(jobDescription.jobStoreID)

 jobDescriptionsReachableFromRoot = {id: getJobDescription(id) for id in reachable_from_root}

 # Clean up any checkpoint jobs -- delete any successors it
 # may have launched, and restore the job to a pristine state
 jobsDeletedByCheckpoints = set()
 for jobDescription in [desc for desc in jobDescriptionsReachableFromRoot.values() if isinstance(desc, CheckpointJobDescription)]:
 if jobDescription.jobStoreID in jobsDeletedByCheckpoints:
 # This is a checkpoint that was nested within an
 # earlier checkpoint, so it and all its successors are
 # already gone.
 continue
 if jobDescription.checkpoint is not None:
 # The checkpoint actually started and needs to be restarted
 logger.debug("Restarting checkpointed job %s" % jobDescription)
 deletedThisRound = jobDescription.restartCheckpoint(self)
 jobsDeletedByCheckpoints |= set(deletedThisRound)
 updateJobDescription(jobDescription)
 for jobID in jobsDeletedByCheckpoints:
 del jobDescriptionsReachableFromRoot[jobID]

 # Clean up jobs that are in reachable from the root
 for jobDescription in jobDescriptionsReachableFromRoot.values():
 # jobDescription here are necessarily in reachable from root.

 changed = [False] # This is a flag to indicate the jobDescription state has
 # changed

 # If the job has files to delete delete them.
 if len(jobDescription.filesToDelete) != 0:
 # Delete any files that should already be deleted
 for fileID in jobDescription.filesToDelete:
 logger.critical("Removing file in job store: %s that was "
 "marked for deletion but not previously removed" % fileID)
 self.deleteFile(fileID)
 jobDescription.filesToDelete = []
 changed[0] = True

 # For a job whose command is already executed, remove jobs from the stack that are
 # already deleted. This cleans up the case that the jobDescription had successors to run,
 # but had not been updated to reflect this.
 if jobDescription.command is None:
 stackSizeFn = lambda: sum(map(len, jobDescription.stack))
 startStackSize = stackSizeFn()
 # Remove deleted jobs
 jobDescription.filterSuccessors(haveJob)
 # Check if anything got removed
 if stackSizeFn() != startStackSize:
 changed[0] = True

 # Cleanup any services that have already been finished.
 # Filter out deleted services and update the flags for services that exist
 # If there are services then renew
 # the start and terminate flags if they have been removed
 def subFlagFile(jobStoreID: str, jobStoreFileID: str, flag: int) -> str:
 if self.fileExists(jobStoreFileID):
 return jobStoreFileID

 # Make a new flag
 newFlag = self.getEmptyFileStoreID(jobStoreID, cleanup=False)

 # Load the jobDescription for the service and initialise the link
 serviceJobDescription = getJobDescription(jobStoreID)

 # Make sure it really is a service
 assert isinstance(serviceJobDescription, ServiceJobDescription)

 if flag == 1:
 logger.debug("Recreating a start service flag for job: %s, flag: %s",
 jobStoreID, newFlag)
 serviceJobDescription.startJobStoreID = newFlag
 elif flag == 2:
 logger.debug("Recreating a terminate service flag for job: %s, flag: %s",
 jobStoreID, newFlag)
 serviceJobDescription.terminateJobStoreID = newFlag
 else:
 logger.debug("Recreating a error service flag for job: %s, flag: %s",
 jobStoreID, newFlag)
 assert flag == 3
 serviceJobDescription.errorJobStoreID = newFlag

 # Update the service job on disk
 updateJobDescription(serviceJobDescription)

 changed[0] = True

 return newFlag

 servicesSizeFn = lambda: len(jobDescription.services)
 startServicesSize = servicesSizeFn()

 def replaceFlagsIfNeeded(serviceJobDescription: ServiceJobDescription) -> None:
 # Make sure it really is a service
 assert isinstance(serviceJobDescription, ServiceJobDescription)
 serviceJobDescription.startJobStoreID = subFlagFile(serviceJobDescription.jobStoreID, serviceJobDescription.startJobStoreID, 1)
 serviceJobDescription.terminateJobStoreID = subFlagFile(serviceJobDescription.jobStoreID, serviceJobDescription.terminateJobStoreID, 2)
 serviceJobDescription.errorJobStoreID = subFlagFile(serviceJobDescription.jobStoreID, serviceJobDescription.errorJobStoreID, 3)

 # remove all services that no longer exist
 jobDescription.filterServiceHosts(haveJob)

 for serviceID in jobDescription.services:
 replaceFlagsIfNeeded(getJobDescription(serviceID))

 if servicesSizeFn() != startServicesSize:
 changed[0] = True

 # Reset the try count of the JobDescription so it will use the default.
 changed[0] |= jobDescription.clearRemainingTryCount()

 # This cleans the old log file which may
 # have been left if the job is being retried after a failure.
 if jobDescription.logJobStoreFileID != None:
 self.deleteFile(jobDescription.logJobStoreFileID)
 jobDescription.logJobStoreFileID = None
 changed[0] = True

 if changed[0]: # Update, but only if a change has occurred
 logger.critical("Repairing job: %s" % jobDescription.jobStoreID)
 updateJobDescription(jobDescription)

 # Remove any crufty stats/logging files from the previous run
 logger.debug("Discarding old statistics and logs...")
 # We have to manually discard the stream to avoid getting
 # stuck on a blocking write from the job store.
 def discardStream(stream: Union[BytesIO, TextIO]) -> None:
 """Read the stream 4K at a time until EOF, discarding all input."""
 while len(stream.read(4096)) != 0:
 pass
 self.readStatsAndLogging(discardStream)

 logger.debug("Job store is clean")
 # TODO: reloading of the rootJob may be redundant here
 return self.loadRootJob()

 ##
 # The following methods deal with creating/loading/updating/writing/checking for the
 # existence of jobs
 ##

[docs] @abstractmethod
 def assignID(self, jobDescription: JobDescription) -> None:
 """
 Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

 Files associated with the assigned ID will be accepted even if the JobDescription has never been created or updated.

 :param toil.job.JobDescription jobDescription: The JobDescription to give an ID to
 """
 raise NotImplementedError()

[docs] @contextmanager
 def batch(self) -> Iterator[None]:
 """
 If supported by the batch system, calls to create() with this context
 manager active will be performed in a batch after the context manager
 is released.
 """
 yield

[docs] @abstractmethod
 def create(self, jobDescription: JobDescription) -> JobDescription:
 """
 Writes the given JobDescription to the job store. The job must have an ID assigned already.

 :return: The JobDescription passed.
 :rtype: toil.job.JobDescription
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def exists(self, jobStoreID: str) -> bool:
 """
 Indicates whether a description of the job with the specified jobStoreID exists in the job store

 :rtype: bool
 """
 raise NotImplementedError()

 # One year should be sufficient to finish any pipeline ;-)
 publicUrlExpiration = timedelta(days=365)

[docs] @abstractmethod
 def getPublicUrl(self, fileName: str) -> str:
 """
 Returns a publicly accessible URL to the given file in the job store. The returned URL may
 expire as early as 1h after its been returned. Throw an exception if the file does not
 exist.

 :param str fileName: the jobStoreFileID of the file to generate a URL for

 :raise NoSuchFileException: if the specified file does not exist in this job store

 :rtype: str
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def getSharedPublicUrl(self, sharedFileName: str) -> str:
 """
 Differs from :meth:`getPublicUrl` in that this method is for generating URLs for shared
 files written by :meth:`writeSharedFileStream`.

 Returns a publicly accessible URL to the given file in the job store. The returned URL
 starts with 'http:', 'https:' or 'file:'. The returned URL may expire as early as 1h
 after its been returned. Throw an exception if the file does not exist.

 :param str sharedFileName: The name of the shared file to generate a publically accessible url for.

 :raise NoSuchFileException: raised if the specified file does not exist in the store

 :rtype: str
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def load(self, jobStoreID: str) -> JobDescription:
 """
 Loads the description of the job referenced by the given ID, assigns it
 the job store's config, and returns it.

 May declare the job to have failed (see
 :meth:`toil.job.JobDescription.setupJobAfterFailure`) if there is
 evidence of a failed update attempt.

 :param str jobStoreID: the ID of the job to load

 :raise NoSuchJobException: if there is no job with the given ID

 :rtype: toil.job.JobDescription
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def update(self, jobDescription: JobDescription) -> None:
 """
 Persists changes to the state of the given JobDescription in this store atomically.

 :param toil.job.JobDescription job: the job to write to this job store
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def delete(self, jobStoreID: str) -> None:
 """
 Removes the JobDescription from the store atomically. You may not then
 subsequently call load(), write(), update(), etc. with the same
 jobStoreID or any JobDescription bearing it.

 This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job
 will succeed silently.

 :param str jobStoreID: the ID of the job to delete from this job store
 """
 raise NotImplementedError()

[docs] def jobs(self) -> Iterator[JobDescription]:
 """
 Best effort attempt to return iterator on JobDescriptions for all jobs
 in the store. The iterator may not return all jobs and may also contain
 orphaned jobs that have already finished successfully and should not be
 rerun. To guarantee you get any and all jobs that can be run instead
 construct a more expensive ToilState object

 :return: Returns iterator on jobs in the store. The iterator may or may not contain all jobs and may contain
 invalid jobs
 :rtype: Iterator[toil.job.jobDescription]
 """
 raise NotImplementedError()

 ##
 # The following provide an way of creating/reading/writing/updating files
 # associated with a given job.
 ##

[docs] @abstractmethod
 def writeFile(self, localFilePath: str, jobStoreID: Optional[str] = None, cleanup: bool = False) -> str:
 """
 Takes a file (as a path) and places it in this job store. Returns an ID that can be used
 to retrieve the file at a later time. The file is written in a atomic manner. It will
 not appear in the jobStore until the write has successfully completed.

 :param str localFilePath: the path to the local file that will be uploaded to the job store.
 The last path component (basename of the file) will remain
 associated with the file in the file store, if supported, so
 that the file can be searched for by name or name glob.

 :param str jobStoreID: the id of a job, or None. If specified, the may be associated
 with that job in a job-store-specific way. This may influence the returned ID.

 :param bool cleanup: Whether to attempt to delete the file when the job
 whose jobStoreID was given as jobStoreID is deleted with
 jobStore.delete(job). If jobStoreID was not given, does nothing.

 :raise ConcurrentFileModificationException: if the file was modified concurrently during
 an invocation of this method

 :raise NoSuchJobException: if the job specified via jobStoreID does not exist

 FIXME: some implementations may not raise this

 :return: an ID referencing the newly created file and can be used to read the
 file in the future.
 :rtype: str
 """
 raise NotImplementedError()

[docs] @abstractmethod
 @contextmanager
 def writeFileStream(self, jobStoreID: Optional[str] = None, cleanup: bool = False, basename: Optional[str] = None,
 encoding: Optional[str] = None, errors: Optional[str] = None) -> Iterator[Tuple[IO[bytes], str]]:
 """
 Similar to writeFile, but returns a context manager yielding a tuple of
 1) a file handle which can be written to and 2) the ID of the resulting
 file in the job store. The yielded file handle does not need to and
 should not be closed explicitly. The file is written in a atomic manner.
 It will not appear in the jobStore until the write has successfully
 completed.

 :param str jobStoreID: the id of a job, or None. If specified, the may be associated
 with that job in a job-store-specific way. This may influence the returned ID.

 :param bool cleanup: Whether to attempt to delete the file when the job
 whose jobStoreID was given as jobStoreID is deleted with
 jobStore.delete(job). If jobStoreID was not given, does nothing.

 :param str basename: If supported by the implementation, use the given
 file basename so that when searching the job store with a query
 matching that basename, the file will be detected.

 :param str encoding: the name of the encoding used to encode the file. Encodings are the same
 as for encode(). Defaults to None which represents binary mode.

 :param str errors: an optional string that specifies how encoding errors are to be handled. Errors
 are the same as for open(). Defaults to 'strict' when an encoding is specified.

 :raise ConcurrentFileModificationException: if the file was modified concurrently during
 an invocation of this method

 :raise NoSuchJobException: if the job specified via jobStoreID does not exist

 FIXME: some implementations may not raise this

 :return: a context manager yielding a file handle which can be written to and an ID that references
 the newly created file and can be used to read the file in the future.
 :rtype: Iterator[Tuple[IO[bytes], str]]
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def getEmptyFileStoreID(self, jobStoreID: Optional[str] = None, cleanup: bool = False, basename: Optional[str] = None) -> str:
 """
 Creates an empty file in the job store and returns its ID.
 Call to fileExists(getEmptyFileStoreID(jobStoreID)) will return True.

 :param str jobStoreID: the id of a job, or None. If specified, the may be associated
 with that job in a job-store-specific way. This may influence the returned ID.

 :param bool cleanup: Whether to attempt to delete the file when the job
 whose jobStoreID was given as jobStoreID is deleted with
 jobStore.delete(job). If jobStoreID was not given, does nothing.

 :param str basename: If supported by the implementation, use the given
 file basename so that when searching the job store with a query
 matching that basename, the file will be detected.

 :return: a jobStoreFileID that references the newly created file and can be used to reference the
 file in the future.
 :rtype: str
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def readFile(self, jobStoreFileID: str, localFilePath: str, symlink: bool = False) -> None:
 """
 Copies or hard links the file referenced by jobStoreFileID to the given
 local file path. The version will be consistent with the last copy of
 the file written/updated. If the file in the job store is later
 modified via updateFile or updateFileStream, it is
 implementation-defined whether those writes will be visible at
 localFilePath. The file is copied in an atomic manner. It will not
 appear in the local file system until the copy has completed.

 The file at the given local path may not be modified after this method returns!

 Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

 :param str jobStoreFileID: ID of the file to be copied

 :param str localFilePath: the local path indicating where to place the contents of the
 given file in the job store

 :param bool symlink: whether the reader can tolerate a symlink. If set to true, the job
 store may create a symlink instead of a full copy of the file or a hard link.
 """
 raise NotImplementedError()

[docs] @abstractmethod
 @contextmanager
 def readFileStream(self, jobStoreFileID: str, encoding: Optional[str] = None,
 errors: Optional[str] = None) -> Iterator[Union[BytesIO, TextIO]]:
 """
 Similar to readFile, but returns a context manager yielding a file handle which can be
 read from. The yielded file handle does not need to and should not be closed explicitly.

 :param str jobStoreFileID: ID of the file to get a readable file handle for

 :param str encoding: the name of the encoding used to decode the file. Encodings are the same as
 for decode(). Defaults to None which represents binary mode.

 :param str errors: an optional string that specifies how encoding errors are to be handled. Errors
 are the same as for open(). Defaults to 'strict' when an encoding is specified.

 :return: a context manager yielding a file handle which can be read from
 :rtype: Iterator[Union[BytesIO, TextIO]]
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def deleteFile(self, jobStoreFileID: str) -> None:
 """
 Deletes the file with the given ID from this job store. This operation is idempotent, i.e.
 deleting a file twice or deleting a non-existent file will succeed silently.

 :param str jobStoreFileID: ID of the file to delete
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def fileExists(self, jobStoreFileID: str) -> bool:
 """
 Determine whether a file exists in this job store.

 :param str jobStoreFileID: an ID referencing the file to be checked

 :rtype: bool
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def getFileSize(self, jobStoreFileID: str) -> int:
 """
 Get the size of the given file in bytes, or 0 if it does not exist when queried.

 Note that job stores which encrypt files might return overestimates of
 file sizes, since the encrypted file may have been padded to the
 nearest block, augmented with an initialization vector, etc.

 :param str jobStoreFileID: an ID referencing the file to be checked

 :rtype: int
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def updateFile(self, jobStoreFileID: str, localFilePath: str) -> None:
 """
 Replaces the existing version of a file in the job store. Throws an exception if the file
 does not exist.

 :param str jobStoreFileID: the ID of the file in the job store to be updated

 :param str localFilePath: the local path to a file that will overwrite the current version
 in the job store

 :raise ConcurrentFileModificationException: if the file was modified concurrently during
 an invocation of this method
 :raise NoSuchFileException: if the specified file does not exist
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def updateFileStream(self, jobStoreFileID: str, encoding: Optional[str] = None, errors: Optional[str] = None) -> None:
 """
 Replaces the existing version of a file in the job store. Similar to writeFile, but
 returns a context manager yielding a file handle which can be written to. The
 yielded file handle does not need to and should not be closed explicitly.

 :param str jobStoreFileID: the ID of the file in the job store to be updated

 :param str encoding: the name of the encoding used to encode the file. Encodings are the same
 as for encode(). Defaults to None which represents binary mode.

 :param str errors: an optional string that specifies how encoding errors are to be handled. Errors
 are the same as for open(). Defaults to 'strict' when an encoding is specified.

 :raise ConcurrentFileModificationException: if the file was modified concurrently during
 an invocation of this method

 :raise NoSuchFileException: if the specified file does not exist
 """
 raise NotImplementedError()

 ##
 # The following methods deal with shared files, i.e. files not associated
 # with specific jobs.
 ##

 sharedFileNameRegex = re.compile(r'^[a-zA-Z0-9._-]+$')

 # FIXME: Rename to updateSharedFileStream

[docs] @abstractmethod
 @contextmanager
 def writeSharedFileStream(self, sharedFileName: str, isProtected: Optional[bool] = None, encoding: Optional[str] = None,
 errors: Optional[str] = None) -> Iterator[IO[bytes]]:
 """
 Returns a context manager yielding a writable file handle to the global file referenced
 by the given name. File will be created in an atomic manner.

 :param str sharedFileName: A file name matching AbstractJobStore.fileNameRegex, unique within
 this job store

 :param bool isProtected: True if the file must be encrypted, None if it may be encrypted or
 False if it must be stored in the clear.

 :param str encoding: the name of the encoding used to encode the file. Encodings are the same
 as for encode(). Defaults to None which represents binary mode.

 :param str errors: an optional string that specifies how encoding errors are to be handled. Errors
 are the same as for open(). Defaults to 'strict' when an encoding is specified.

 :raise ConcurrentFileModificationException: if the file was modified concurrently during
 an invocation of this method

 :return: a context manager yielding a writable file handle
 :rtype: Iterator[IO[bytes]]
 """
 raise NotImplementedError()

[docs] @abstractmethod
 @contextmanager
 def readSharedFileStream(self, sharedFileName: str, encoding: Optional[str] = None, errors: Optional[str] = None) -> Iterator[BytesIO]:
 """
 Returns a context manager yielding a readable file handle to the global file referenced
 by the given name.

 :param str sharedFileName: A file name matching AbstractJobStore.fileNameRegex, unique within
 this job store

 :param str encoding: the name of the encoding used to decode the file. Encodings are the same
 as for decode(). Defaults to None which represents binary mode.

 :param str errors: an optional string that specifies how encoding errors are to be handled. Errors
 are the same as for open(). Defaults to 'strict' when an encoding is specified.

 :return: a context manager yielding a readable file handle
 :rtype: Iterator[BytesIO]
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def writeStatsAndLogging(self, statsAndLoggingString: str) -> None:
 """
 Adds the given statistics/logging string to the store of statistics info.

 :param str statsAndLoggingString: the string to be written to the stats file

 :raise ConcurrentFileModificationException: if the file was modified concurrently during
 an invocation of this method
 """
 raise NotImplementedError()

[docs] @abstractmethod
 def readStatsAndLogging(self, callback: Callable[..., Any], readAll: bool = False) -> int:
 """
 Reads stats/logging strings accumulated by the writeStatsAndLogging() method. For each
 stats/logging string this method calls the given callback function with an open,
 readable file handle from which the stats string can be read. Returns the number of
 stats/logging strings processed. Each stats/logging string is only processed once unless
 the readAll parameter is set, in which case the given callback will be invoked for all
 existing stats/logging strings, including the ones from a previous invocation of this
 method.

 :param Callable callback: a function to be applied to each of the stats file handles found

 :param bool readAll: a boolean indicating whether to read the already processed stats files
 in addition to the unread stats files

 :raise ConcurrentFileModificationException: if the file was modified concurrently during
 an invocation of this method

 :return: the number of stats files processed
 :rtype: int
 """
 raise NotImplementedError()

 ## Helper methods for subclasses

 def _defaultTryCount(self) -> int:
 return int(self.config.retryCount + 1)

 @classmethod
 def _validateSharedFileName(cls, sharedFileName: str) -> bool:
 return bool(cls.sharedFileNameRegex.match(sharedFileName))

 @classmethod
 def _requireValidSharedFileName(cls, sharedFileName: str) -> None:
 if not cls._validateSharedFileName(sharedFileName):
 raise ValueError("Not a valid shared file name: '%s'." % sharedFileName)

class JobStoreSupport(AbstractJobStore, metaclass=ABCMeta):
 @classmethod
 def _supportsUrl(cls, url: urlparse.ParseResult, export: bool = False) -> bool:
 return url.scheme.lower() in ('http', 'https', 'ftp') and not export

 @classmethod
 @retry(errors=[BadStatusLine] + [
 ErrorCondition(
 error=HTTPError,
 error_codes=[408, 500, 503]
)
])
 def getSize(cls, url: urlparse.ParseResult) -> Optional[int]:
 if url.scheme.lower() == 'ftp':
 return None
 with closing(urlopen(url.geturl())) as readable:
 # just read the header for content length
 size = readable.info().get('content-length')
 return int(size) if size is not None else None

 @classmethod
 @retry(errors=[BadStatusLine] + [
 ErrorCondition(
 error=HTTPError,
 error_codes=[408, 500, 503]
)
])
 def _readFromUrl(cls, url: urlparse.ParseResult, writable: Union[BytesIO, TextIO]) -> Tuple[int, bool]:
 # We can only retry on errors that happen as responses to the request.
 # If we start getting file data, and the connection drops, we fail.
 # So we don't have to worry about writing the start of the file twice.
 with closing(urlopen(url.geturl())) as readable:
 # Make something to count the bytes we get
 # We need to put the actual count in a container so our
 # nested function can modify it without creating its own
 # local with the same name.
 size = [0]
 def count(l: int) -> None:
 size[0] += l
 counter = WriteWatchingStream(writable)
 counter.onWrite(count)

 # Do the download
 shutil.copyfileobj(readable, counter)
 return size[0], False

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/toil_architecture.jpg
Worker Node

u Worker

Batch Node
Job Store System Provisioner
Stats & Leader

Logger

_images/googleScreenShot.png
Google Cloud Platform

Cloud Launcher

& Biling

API APIs & Services >
4 Support >
© 1AM &admin >
® Getting started

COMPUTE

-®- App Engine >
{&f Compute Engine >

VMinstances
Instance groups

Instance templates

Disks

Snapshots

Images

Committed use discounts
Metadata

Health checks

Zones

Operations

Quotas.

Settings.

_images/googleScreenShot2.png
Google Cloud Platform

{e} Compute Engine Metadata

B VMinstances Metadata SSHKeys

@ Instance groups
Enter entire key data
B Instance templates
O Disks X
Snapshots

] Images

[+ Add item

A Committed use discounts
Cancel
wetadsta B3 e

A Health checks.

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Toil Documentation

 		
 Installation

 		
 Preparing Your Python Runtime Environment

 		
 Basic Installation

 		
 Installing Toil with Extra Features

 		
 Building from Source

 		
 Quickstart Examples

 		
 Running a basic workflow

 		
 Running a basic CWL workflow

 		
 Running a basic WDL workflow

 		
 A (more) real-world example

 		
 Running the example

 		
 Describing the source code

 		
 Logging

 		
 Error Handling and Resuming Pipelines

 		
 Collecting Statistics

 		
 Launching a Toil Workflow in AWS

 		
 Running a CWL Workflow on AWS

 		
 Running a Workflow with Autoscaling - Cactus

 		
 Introduction

 		
 Job Store

 		
 File Job Store

 		
 Cloud Job Stores

 		
 Batch System

 		
 Provisioner

 		
 Commandline Options

 		
 The Job Store

 		
 Commandline Options

 		
 Restart Option

 		
 Running Workflows with Services

 		
 Setting Options directly with the Toil Script

 		
 Toil Debugging

 		
 Introspecting the Jobstore

 		
 Stats and Status

 		
 Using a Python debugger

 		
 Running in the Cloud

 		
 Managing a Cluster of Virtual Machines (Provisioning)

 		
 Storage (Toil jobStore)

 		
 Cloud Platforms

 		
 Running on Kubernetes

 		
 Preparing your Kubernetes environment

 		
 AWS Job Store for Kubernetes

 		
 Configuring Toil for your Kubernetes environment

 		
 Running workflows

 		
 Running in AWS

 		
 Preparing your AWS environment

 		
 AWS Job Store

 		
 Toil Provisioner

 		
 Details about Launching a Cluster in AWS

 		
 Dashboard

 		
 Running in Google Compute Engine (GCE)

 		
 Preparing your Google environment

 		
 Google Job Store

 		
 Running a Workflow with Autoscaling

 		
 Cluster Utilities

 		
 Stats Command

 		
 Status Command

 		
 Clean Command

 		
 Launch-Cluster Command

 		
 Ssh-Cluster Command

 		
 Rsync-Cluster Command

 		
 Destroy-Cluster Command

 		
 Kill Command

 		
 HPC Environments

 		
 Standard Output/Error from Batch System Jobs

 		
 CWL in Toil

 		
 Running CWL Locally

 		
 Note for macOS + Docker + Toil

 		
 Detailed Usage Instructions

 		
 Running CWL in the Cloud

 		
 Running CWL within Toil Scripts

 		
 Toil & CWL Tips

 		
 WDL in Toil

 		
 How to Run a WDL file in Toil

 		
 ENCODE Example from ENCODE-DCC

 		
 GATK Examples from the Broad

 		
 toilwdl.py Options

 		
 Running WDL within Toil Scripts

 		
 WDL Specifications

 		
 Developing a Workflow

 		
 Scripting Quick Start

 		
 Job Basics

 		
 Invoking a Workflow

 		
 Specifying Commandline Arguments

 		
 Resuming a Workflow

 		
 Functions and Job Functions

 		
 Workflows with Multiple Jobs

 		
 Dynamic Job Creation

 		
 Promises

 		
 Promised Requirements

 		
 FileID

 		
 Managing files within a workflow

 		
 Staging of Files into the Job Store

 		
 Using Docker Containers in Toil

 		
 Services

 		
 Checkpoints

 		
 Encapsulation

 		
 Depending on Toil

 		
 Best Practices for Dockerizing Toil Workflows

 		
 Toil Class API

 		
 Job Store API

 		
 Toil Job API

 		
 FunctionWrappingJob

 		
 JobFunctionWrappingJob

 		
 EncapsulatedJob

 		
 Promise

 		
 Job Methods API

 		
 Job.Runner API

 		
 job.fileStore API

 		
 Batch System API

 		
 Batch System Enivronmental Variables

 		
 Batch System API

 		
 Job.Service API

 		
 Exceptions API

 		
 Running Tests

 		
 Running Tests with pytest

 		
 Running Integration Tests

 		
 Test Environment Variables

 		
 Using Docker with Quay

 		
 Running Mesos Tests

 		
 Developing with Docker

 		
 Making Your Own Toil Docker Image

 		
 Running a Cluster Locally

 		
 Maintainerâ��s Guidelines

 		
 Naming Conventions

 		
 Pull Requests

 		
 Publishing a Release

 		
 Adding Retries to a Function

 		
 Pull Request Checklists

 		
 Reviewing Pull Requests

 		
 Merging Pull Requests

 		
 Toil Architecture

 		
 Optimizations

 		
 Read-only leader

 		
 Job chaining

 		
 Preemptable node support

 		
 Caching

 		
 Toil support for Common Workflow Language

 		
 Minimum AWS IAM permissions

 		
 Auto-Deployment

 		
 Auto Deployment with Sibling Modules

 		
 Auto-Deploying a Package Hierarchy

 		
 Relying on Shared Filesystems

 		
 Toil Appliance

 		
 Environment Variables

_images/caching_benefits.png
TCGA-33-AASS

PU: Population of Jobstore
Aln: Alignment and Haplotyping
MC: Mutation Caling

+: Epitope Prediction

400 - = Cached Workflow
300 = Uncached Workflow

0 1 2 3 4 5 6 7

Time Elapsed (Hours)

TCGA77-6842

Bl Al MC E3

© 630 <
% 500 o
8 400 4
B 300 4
2 200 4

100 -

0 1 2 3 4 5 6 7 8 9

Time Elapsed (Hours)

TCGA-18-3410

5 Pl A Ne 4]

© 630 o
% 500 -
8 400 4
300
35200
100
0 T T T T T T T u T T T T T

0 1 2 3 4 5 6 7 8 ¢ 10 11 12 138 14 15 16 17 18

Time Elapsed (Hours)

_static/file.png

_images/dashboard_screenshot.png
