
Toil Documentation
Release 5.4.0

UCSC Computational Genomics Lab

Jun 25, 2021

Getting Started

1 Installation 3
1.1 Preparing Your Python Runtime Environment . 3
1.2 Basic Installation . 4
1.3 Installing Toil with Extra Features . 4
1.4 Building from Source . 5

2 Quickstart Examples 7
2.1 Running a basic workflow . 7
2.2 Running a basic CWL workflow . 8
2.3 Running a basic WDL workflow . 9
2.4 A (more) real-world example . 9
2.5 Launching a Toil Workflow in AWS . 16
2.6 Running a CWL Workflow on AWS . 17
2.7 Running a Workflow with Autoscaling - Cactus . 18

3 Introduction 21
3.1 Job Store . 21
3.2 Batch System . 22
3.3 Provisioner . 22

4 Commandline Options 23
4.1 The Job Store . 23
4.2 Commandline Options . 23
4.3 Restart Option . 28
4.4 Running Workflows with Services . 28
4.5 Setting Options directly with the Toil Script . 28

5 Toil Debugging 31
5.1 Introspecting the Jobstore . 31
5.2 Stats and Status . 31
5.3 Using a Python debugger . 32

6 Running in the Cloud 33
6.1 Managing a Cluster of Virtual Machines (Provisioning) . 33
6.2 Storage (Toil jobStore) . 33

7 Cloud Platforms 35

i

7.1 Running on Kubernetes . 35
7.2 Running in AWS . 43
7.3 Running in Google Compute Engine (GCE) . 50
7.4 Cluster Utilities . 53
7.5 Stats Command . 54
7.6 Status Command . 56
7.7 Clean Command . 56
7.8 Launch-Cluster Command . 57
7.9 Ssh-Cluster Command . 58
7.10 Rsync-Cluster Command . 59
7.11 Destroy-Cluster Command . 59
7.12 Kill Command . 59

8 HPC Environments 61
8.1 Standard Output/Error from Batch System Jobs . 61

9 CWL in Toil 63
9.1 Running CWL Locally . 63
9.2 Detailed Usage Instructions . 63
9.3 Running CWL in the Cloud . 64
9.4 Running CWL within Toil Scripts . 65
9.5 Toil & CWL Tips . 66

10 WDL in Toil 71
10.1 How to Run a WDL file in Toil . 71
10.2 ENCODE Example from ENCODE-DCC . 71
10.3 GATK Examples from the Broad . 72
10.4 toilwdl.py Options . 73
10.5 Running WDL within Toil Scripts . 73
10.6 WDL Specifications . 74

11 Developing a Workflow 75
11.1 Scripting Quick Start . 75
11.2 Job Basics . 76
11.3 Invoking a Workflow . 76
11.4 Specifying Commandline Arguments . 77
11.5 Resuming a Workflow . 78
11.6 Functions and Job Functions . 78
11.7 Workflows with Multiple Jobs . 79
11.8 Dynamic Job Creation . 81
11.9 Promises . 82
11.10 Promised Requirements . 83
11.11 FileID . 84
11.12 Managing files within a workflow . 84
11.13 Using Docker Containers in Toil . 87
11.14 Services . 88
11.15 Checkpoints . 90
11.16 Encapsulation . 90
11.17 Depending on Toil . 91
11.18 Best Practices for Dockerizing Toil Workflows . 91

12 Toil Class API 93

13 Job Store API 95

ii

14 Toil Job API 105
14.1 FunctionWrappingJob . 105
14.2 JobFunctionWrappingJob . 105
14.3 EncapsulatedJob . 106
14.4 Promise . 108

15 Job Methods API 111

16 Job.Runner API 119

17 job.fileStore API 121

18 Batch System API 127
18.1 Batch System Enivronmental Variables . 127
18.2 Batch System API . 128

19 Job.Service API 131

20 Exceptions API 133

21 Running Tests 135
21.1 Running Tests with pytest . 136
21.2 Running Integration Tests . 136
21.3 Test Environment Variables . 136
21.4 Using Docker with Quay . 137
21.5 Running Mesos Tests . 137

22 Developing with Docker 139
22.1 Making Your Own Toil Docker Image . 139
22.2 Running a Cluster Locally . 140

23 Maintainer’s Guidelines 143
23.1 Naming Conventions . 143
23.2 Pull Requests . 144
23.3 Publishing a Release . 144
23.4 Adding Retries to a Function . 145

24 Pull Request Checklists 149
24.1 Reviewing Pull Requests . 149
24.2 Merging Pull Requests . 150

25 Toil Architecture 151
25.1 Optimizations . 153
25.2 Toil support for Common Workflow Language . 154

26 Minimum AWS IAM permissions 157

27 Auto-Deployment 159
27.1 Auto Deployment with Sibling Modules . 160
27.2 Auto-Deploying a Package Hierarchy . 161
27.3 Relying on Shared Filesystems . 162

28 Environment Variables 163

Index 167

iii

iv

Toil Documentation, Release 5.4.0

Toil is an open-source pure-Python workflow engine that lets people write better pipelines.

Check out our website for a comprehensive list of Toil’s features and read our paper to learn what Toil can do in the
real world. Please subscribe to our low-volume announce mailing list and feel free to also join us on GitHub and
Gitter.

If using Toil for your research, please cite

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., . . . Paten, B. (2017). Toil
enables reproducible, open source, big biomedical data analyses. Nature Biotechnology, 35(4), 314–316.
http://doi.org/10.1038/nbt.3772

Getting Started 1

http://toil.ucsc-cgl.org/
http://biorxiv.org/content/early/2016/07/07/062497
https://groups.google.com/forum/#!forum/toil-announce
https://github.com/BD2KGenomics/toil
https://gitter.im/bd2k-genomics-toil/Lobby
http://doi.org/10.1038/nbt.3772

Toil Documentation, Release 5.4.0

2 Getting Started

CHAPTER 1

Installation

This document describes how to prepare for and install Toil. Note that Toil requires that the user run all commands
inside of a Python virtualenv. Instructions for installing and creating a Python virtual environment are provided below.

1.1 Preparing Your Python Runtime Environment

Toil currently supports Python 2.7, 3.5, and 3.6, and requires a virtualenv to be active to install.

If not already present, please install the latest Python virtualenv using pip:

$ sudo pip install virtualenv

And create a virtual environment called venv in your home directory:

$ virtualenv ~/venv

If the user does not have root privileges, there are a few more steps, but one can download a specific virtualenv package
directly, untar the file, create, and source the virtualenv (version 15.1.0 as an example) using

$ curl -O https://pypi.python.org/packages/d4/0c/
→˓9840c08189e030873387a73b90ada981885010dd9aea134d6de30cd24cb8/virtualenv-15.1.0.tar.
→˓gz
$ tar xvfz virtualenv-15.1.0.tar.gz
$ cd virtualenv-15.1.0
$ python virtualenv.py ~/venv

Now that you’ve created your virtualenv, activate your virtual environment:

$ source ~/venv/bin/activate

3

https://virtualenv.pypa.io/en/stable/
https://pip.readthedocs.io/en/latest/installing/

Toil Documentation, Release 5.4.0

1.2 Basic Installation

If you need only the basic version of Toil, it can be easily installed using pip:

$ pip install toil

Now you’re ready to run your first Toil workflow!

(If you need any of the extra features don’t do this yet and instead skip to the next section.)

1.3 Installing Toil with Extra Features

Python headers and static libraries

Needed for the mesos, aws, google, and encryption extras.

On Ubuntu:
$ sudo apt-get install build-essential python-dev

On macOS:
$ xcode-select --install

Encryption specific headers and library

Needed for the encryption extra.

On Ubuntu:
$ sudo apt-get install libssl-dev libffi-dev

On macOS:
$ brew install libssl libffi

Or see Cryptography for other systems.

Some optional features, called extras, are not included in the basic installation of Toil. To install Toil with all its bells
and whistles, first install any necessary headers and libraries (python-dev, libffi-dev). Then run

$ pip install toil[aws,mesos,google,encryption,cwl]

or

$ pip install toil[all]

Here’s what each extra provides:

4 Chapter 1. Installation

https://cryptography.io/en/latest/installation/

Toil Documentation, Release 5.4.0

Extra Description
all Installs all extras (though htcondor is linux-only and

will be skipped if not on a linux computer).
aws Provides support for managing a cluster on Amazon

Web Service (AWS) using Toil’s built in Cluster Util-
ities. Clusters can scale up and down automatically. It
also supports storing workflow state.

google Experimental. Stores workflow state in Google Cloud
Storage.

mesos Provides support for running Toil on an Apache Mesos
cluster. Note that running Toil on other batch systems
does not require an extra. The mesos extra requires the
following native dependencies:

• Apache Mesos (Tested with Mesos v1.0.0)
• Python headers and static libraries

Important: If launching toil remotely on a mesos
instance, to install Toil with the mesos extra in
a virtualenv, be sure to create that virtualenv with
the --system-site-packages flag (only use re-
motely!):

$ virtualenv ~/venv --system-site-
→˓packages

Otherwise, you’ll see something like this:

ImportError: No module named mesos.native

htcondor Support for the htcondor batch system. This currently is
a linux only extra.

encryption Provides client-side encryption for files stored in the
AWS job store. This extra requires the following native
dependencies:

• Python headers and static libraries
• libffi headers and library

cwl Provides support for running workflows written using
the Common Workflow Language.

wdl Provides support for running workflows written using
the Workflow Description Language. This extra has no
native dependencies.

1.4 Building from Source

If developing with Toil, you will need to build from source. This allows changes you make to Toil to be reflected
immediately in your runtime environment.

First, clone the source:

$ git clone https://github.com/DataBiosphere/toil.git
$ cd toil

1.4. Building from Source 5

https://aws.amazon.com/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/gettingstarted/
http://www.commonwl.org/
https://software.broadinstitute.org/wdl/

Toil Documentation, Release 5.4.0

Then, create and activate a virtualenv:

$ virtualenv venv
$. venv/bin/activate

From there, you can list all available Make targets by running make. First and foremost, we want to install Toil’s build
requirements (these are additional packages that Toil needs to be tested and built but not to be run):

$ make prepare

Now, we can install Toil in development mode (such that changes to the source code will immediately affect the
virtualenv):

$ make develop

Or, to install with support for all optional Installing Toil with Extra Features:

$ make develop extras=[aws,mesos,google,encryption,cwl]

Or:

$ make develop extras=[all]

To build the docs, run make develop with all extras followed by

$ make docs

To run a quick batch of tests (this should take less than 30 minutes) run

$ export TOIL_TEST_QUICK=True; make test

For more information on testing see Running Tests.

6 Chapter 1. Installation

CHAPTER 2

Quickstart Examples

2.1 Running a basic workflow

A Toil workflow can be run with just three steps:

1. Install Toil (see Installation)

2. Copy and paste the following code block into a new file called helloWorld.py:

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="1G", cores=1, disk="1G"):
return "Hello, world!, here's a message: %s" % message

if __name__ == "__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
options.clean = "always"
with Toil(options) as toil:

output = toil.start(Job.wrapFn(helloWorld, "You did it!"))
print(output)

3. Specify the name of the job store and run the workflow:

(venv) $ python helloWorld.py file:my-job-store

Note: Don’t actually type (venv) $ in at the beginning of each command. This is intended only to remind the user
that they should have their virtual environment running.

Congratulations! You’ve run your first Toil workflow using the default Batch System, singleMachine, using the
file job store.

7

Toil Documentation, Release 5.4.0

Toil uses batch systems to manage the jobs it creates.

The singleMachine batch system is primarily used to prepare and debug workflows on a local machine. Once
validated, try running them on a full-fledged batch system (see Batch System API). Toil supports many different batch
systems such as Apache Mesos and Grid Engine; its versatility makes it easy to run your workflow in all kinds of
places.

Toil is totally customizable! Run python helloWorld.py --help to see a complete list of available options.

For something beyond a “Hello, world!” example, refer to A (more) real-world example.

2.2 Running a basic CWL workflow

The Common Workflow Language (CWL) is an emerging standard for writing workflows that are portable across
multiple workflow engines and platforms. Running CWL workflows using Toil is easy.

1. First ensure that Toil is installed with the cwl extra (see Installing Toil with Extra Features):

(venv) $ pip install 'toil[cwl]'

This installs the toil-cwl-runner executable.

2. Copy and paste the following code block into example.cwl:

cwlVersion: v1.0
class: CommandLineTool
baseCommand: echo
stdout: output.txt
inputs:
message:
type: string
inputBinding:
position: 1

outputs:
output:

type: stdout

and this code into example-job.yaml:

message: Hello world!

3. To run the workflow simply enter

(venv) $ toil-cwl-runner example.cwl example-job.yaml

Your output will be in output.txt:

(venv) $ cat output.txt
Hello world!

To learn more about CWL, see the CWL User Guide (from where this example was shamelessly borrowed).

To run this workflow on an AWS cluster have a look at Running a CWL Workflow on AWS.

For information on using CWL with Toil see the section CWL in Toil

8 Chapter 2. Quickstart Examples

https://mesos.apache.org/getting-started/
http://www.commonwl.org/
https://www.commonwl.org/user_guide/

Toil Documentation, Release 5.4.0

2.3 Running a basic WDL workflow

The Workflow Description Language (WDL) is another emerging language for writing workflows that are portable
across multiple workflow engines and platforms. Running WDL workflows using Toil is still in alpha, and currently
experimental. Toil currently supports basic workflow syntax (see WDL in Toil for more details and examples). Here
we go over running a basic WDL helloworld workflow.

1. First ensure that Toil is installed with the wdl extra (see Installing Toil with Extra Features):

(venv) $ pip install 'toil[wdl]'

This installs the toil-wdl-runner executable.

2. Copy and paste the following code block into wdl-helloworld.wdl:

workflow write_simple_file {
call write_file

}
task write_file {

String message
command { echo ${message} > wdl-helloworld-output.txt }
output { File test = "wdl-helloworld-output.txt" }

}

and this code into ``wdl-helloworld.json``::

{
"write_simple_file.write_file.message": "Hello world!"

}

3. To run the workflow simply enter

(venv) $ toil-wdl-runner wdl-helloworld.wdl wdl-helloworld.json

Your output will be in wdl-helloworld-output.txt:

(venv) $ cat wdl-helloworld-output.txt
Hello world!

To learn more about WDL, see the main WDL website .

2.4 A (more) real-world example

For a more detailed example and explanation, we’ve developed a sample pipeline that merge-sorts a temporary file.
This is not supposed to be an efficient sorting program, rather a more fully worked example of what Toil is capable of.

2.4.1 Running the example

1. Download the example code

2. Run it with the default settings:

(venv) $ python sort.py file:jobStore

2.3. Running a basic WDL workflow 9

https://software.broadinstitute.org/wdl/
https://software.broadinstitute.org/wdl/

Toil Documentation, Release 5.4.0

The workflow created a file called sortedFile.txt in your current directory. Have a look at it and notice
that it contains a whole lot of sorted lines!

This workflow does a smart merge sort on a file it generates, fileToSort.txt. The sort is smart because
each step of the process—splitting the file into separate chunks, sorting these chunks, and merging them back
together—is compartmentalized into a job. Each job can specify its own resource requirements and will only
be run after the jobs it depends upon have run. Jobs without dependencies will be run in parallel.

Note: Delete fileToSort.txt before moving on to #3. This example introduces options that specify dimensions
for fileToSort.txt, if it does not already exist. If it exists, this workflow will use the existing file and the results
will be the same as #2.

3. Run with custom options:

(venv) $ python sort.py file:jobStore \
--numLines=5000 \
--lineLength=10 \
--overwriteOutput=True \
--workDir=/tmp/

Here we see that we can add our own options to a Toil script. As noted above, the first two options,
--numLines and --lineLength, determine the number of lines and how many characters are in each
line. --overwriteOutput causes the current contents of sortedFile.txt to be overwritten, if it al-
ready exists. The last option, --workDir, is an option built into Toil to specify where temporary files unique
to a job are kept.

2.4.2 Describing the source code

To understand the details of what’s going on inside. Let’s start with the main() function. It looks like a lot of code,
but don’t worry—we’ll break it down piece by piece.

def main(options=None):
if not options:

deal with command line arguments
parser = ArgumentParser()
Job.Runner.addToilOptions(parser)
parser.add_argument('--numLines', default=defaultLines, help='Number of lines

→˓in file to sort.', type=int)
parser.add_argument('--lineLength', default=defaultLineLen, help='Length of

→˓lines in file to sort.', type=int)
parser.add_argument("--fileToSort", help="The file you wish to sort")
parser.add_argument("--outputFile", help="Where the sorted output will go")
parser.add_argument("--overwriteOutput", help="Write over the output file if

→˓it already exists.", default=True)
parser.add_argument("--N", dest="N",

help="The threshold below which a serial sort function is
→˓used to sort file. "

"All lines must of length less than or equal to N or
→˓program will fail",

default=10000)
parser.add_argument('--downCheckpoints', action='store_true',

help='If this option is set, the workflow will make
→˓checkpoints on its way through'

'the recursive "down" part of the sort')
parser.add_argument("--sortMemory", dest="sortMemory",

(continues on next page)

10 Chapter 2. Quickstart Examples

Toil Documentation, Release 5.4.0

(continued from previous page)

help="Memory for jobs that sort chunks of the file.",
default=None)

parser.add_argument("--mergeMemory", dest="mergeMemory",
help="Memory for jobs that collate results.",
default=None)

options = parser.parse_args()
if not hasattr(options, "sortMemory") or not options.sortMemory:

options.sortMemory = sortMemory
if not hasattr(options, "mergeMemory") or not options.mergeMemory:

options.mergeMemory = sortMemory

do some input verification
sortedFileName = options.outputFile or "sortedFile.txt"
if not options.overwriteOutput and os.path.exists(sortedFileName):

print(f'Output file {sortedFileName} already exists. '
f'Delete it to run the sort example again or use --overwriteOutput=True

→˓')
exit()

fileName = options.fileToSort
if options.fileToSort is None:

make the file ourselves
fileName = 'fileToSort.txt'
if os.path.exists(fileName):

print(f'Sorting existing file: {fileName}')
else:

print(f'No sort file specified. Generating one automatically called:
→˓{fileName}.')

makeFileToSort(fileName=fileName, lines=options.numLines, lineLen=options.
→˓lineLength)

else:
if not os.path.exists(options.fileToSort):

raise RuntimeError("File to sort does not exist: %s" % options.fileToSort)

if int(options.N) <= 0:
raise RuntimeError("Invalid value of N: %s" % options.N)

Now we are ready to run
with Toil(options) as workflow:

sortedFileURL = 'file://' + os.path.abspath(sortedFileName)
if not workflow.options.restart:

sortFileURL = 'file://' + os.path.abspath(fileName)
sortFileID = workflow.importFile(sortFileURL)
sortedFileID = workflow.start(Job.wrapJobFn(setup,

sortFileID,
int(options.N),
options.downCheckpoints,
options=options,
memory=sortMemory))

else:
sortedFileID = workflow.restart()

workflow.exportFile(sortedFileID, sortedFileURL)

First we make a parser to process command line arguments using the argparse module. It’s important that we add the
call to Job.Runner.addToilOptions() to initialize our parser with all of Toil’s default options. Then we add

2.4. A (more) real-world example 11

https://docs.python.org/2.7/library/argparse.html

Toil Documentation, Release 5.4.0

the command line arguments unique to this workflow, and parse the input. The help message listed with the arguments
should give you a pretty good idea of what they can do.

Next we do a little bit of verification of the input arguments. The option --fileToSort allows you to spec-
ify a file that needs to be sorted. If this option isn’t given, it’s here that we make our own file with the call to
makeFileToSort().

Finally we come to the context manager that initializes the workflow. We create a path to the input file prepended with
'file://' as per the documentation for toil.common.Toil() when staging a file that is stored locally. Notice
that we have to check whether or not the workflow is restarting so that we don’t import the file more than once. Finally
we can kick off the workflow by calling toil.common.Toil.start() on the job setup. When the workflow
ends we capture its output (the sorted file’s fileID) and use that in toil.common.Toil.exportFile() to move
the sorted file from the job store back into “userland”.

Next let’s look at the job that begins the actual workflow, setup.

def setup(job, inputFile, N, downCheckpoints, options):
"""
Sets up the sort.
Returns the FileID of the sorted file
"""
RealtimeLogger.info("Starting the merge sort")
return job.addChildJobFn(down,

inputFile, N, 'root',
downCheckpoints,
options = options,
preemptable=True,
memory=sortMemory).rv()

setup really only does two things. First it writes to the logs using Job.log() and then calls addChildJobFn().
Child jobs run directly after the current job. This function turns the ‘job function’ down into an actual job and passes
in the inputs including an optional resource requirement, memory. The job doesn’t actually get run until the call to
Job.rv(). Once the job down finishes, its output is returned here.

Now we can look at what down does.

def down(job, inputFileStoreID, N, path, downCheckpoints, options, memory=sortMemory):
"""
Input is a file, a subdivision size N, and a path in the hierarchy of jobs.
If the range is larger than a threshold N the range is divided recursively and
a follow on job is then created which merges back the results else
the file is sorted and placed in the output.
"""

RealtimeLogger.info("Down job starting: %s" % path)

Read the file
inputFile = job.fileStore.readGlobalFile(inputFileStoreID, cache=False)
length = os.path.getsize(inputFile)
if length > N:

We will subdivide the file
RealtimeLogger.critical("Splitting file: %s of size: %s"

% (inputFileStoreID, length))
Split the file into two copies
midPoint = getMidPoint(inputFile, 0, length)
t1 = job.fileStore.getLocalTempFile()
with open(t1, 'w') as fH:

fH.write(copySubRangeOfFile(inputFile, 0, midPoint+1))

(continues on next page)

12 Chapter 2. Quickstart Examples

Toil Documentation, Release 5.4.0

(continued from previous page)

t2 = job.fileStore.getLocalTempFile()
with open(t2, 'w') as fH:

fH.write(copySubRangeOfFile(inputFile, midPoint+1, length))
Call down recursively. By giving the rv() of the two jobs as inputs to the

→˓follow-on job, up,
we communicate the dependency without hindering concurrency.
result = job.addFollowOnJobFn(up,

job.addChildJobFn(down, job.fileStore.
→˓writeGlobalFile(t1), N, path + '/0',

downCheckpoints,
→˓checkpoint=downCheckpoints, options=options,

preemptable=True,
→˓memory=options.sortMemory).rv(),

job.addChildJobFn(down, job.fileStore.
→˓writeGlobalFile(t2), N, path + '/1',

downCheckpoints,
→˓checkpoint=downCheckpoints, options=options,

preemptable=True,
→˓memory=options.mergeMemory).rv(),

path + '/up', preemptable=True, options=options,
→˓memory=options.sortMemory).rv()

else:
We can sort this bit of the file
RealtimeLogger.critical("Sorting file: %s of size: %s"

% (inputFileStoreID, length))
Sort the copy and write back to the fileStore
shutil.copyfile(inputFile, inputFile + '.sort')
sort(inputFile + '.sort')
result = job.fileStore.writeGlobalFile(inputFile + '.sort')

RealtimeLogger.info("Down job finished: %s" % path)
return result

Down is the recursive part of the workflow. First we read the file into the local filestore by calling job.fileStore.
readGlobalFile(). This puts a copy of the file in the temp directory for this particular job. This storage will
disappear once this job ends. For a detailed explanation of the filestore, job store, and their interfaces have a look at
Managing files within a workflow.

Next down checks the base case of the recursion: is the length of the input file less than N (remember N was an option
we added to the workflow in main)? In the base case, we just sort the file, and return the file ID of this new sorted
file.

If the base case fails, then the file is split into two new tempFiles using job.fileStore.getLocalTempFile()
and the helper function copySubRangeOfFile. Finally we add a follow on Job up with job.
addFollowOnJobFn(). We’ve already seen child jobs. A follow-on Job is a job that runs after the current job
and all of its children (and their children and follow-ons) have completed. Using a follow-on makes sense because
up is responsible for merging the files together and we don’t want to merge the files together until we know they are
sorted. Again, the return value of the follow-on job is requested using Job.rv().

Looking at up

def up(job, inputFileID1, inputFileID2, path, options, memory=sortMemory):
"""
Merges the two files and places them in the output.
"""

RealtimeLogger.info("Up job starting: %s" % path)
(continues on next page)

2.4. A (more) real-world example 13

Toil Documentation, Release 5.4.0

(continued from previous page)

with job.fileStore.writeGlobalFileStream() as (fileHandle, outputFileStoreID):
fileHandle = codecs.getwriter('utf-8')(fileHandle)
with job.fileStore.readGlobalFileStream(inputFileID1) as inputFileHandle1:

inputFileHandle1 = codecs.getreader('utf-8')(inputFileHandle1)
with job.fileStore.readGlobalFileStream(inputFileID2) as inputFileHandle2:

inputFileHandle2 = codecs.getreader('utf-8')(inputFileHandle2)
RealtimeLogger.info("Merging %s and %s to %s"

% (inputFileID1, inputFileID2, outputFileStoreID))
merge(inputFileHandle1, inputFileHandle2, fileHandle)

Cleanup up the input files - these deletes will occur after the completion
→˓is successful.

job.fileStore.deleteGlobalFile(inputFileID1)
job.fileStore.deleteGlobalFile(inputFileID2)

RealtimeLogger.info("Up job finished: %s" % path)

return outputFileStoreID

we see that the two input files are merged together and the output is written to a new file using job.fileStore.
writeGlobalFileStream(). After a little cleanup, the output file is returned.

Once the final up finishes and all of the rv() promises are fulfilled, main receives the sorted file’s ID which it uses
in exportFile to send it to the user.

There are other things in this example that we didn’t go over such as Checkpoints and the details of much of the Toil
Class API.

At the end of the script the lines

if __name__ == '__main__'
main()

are included to ensure that the main function is only run once in the ‘__main__’ process invoked by you, the user.
In Toil terms, by invoking the script you created the leader process in which the main() function is run. A worker
process is a separate process whose sole purpose is to host the execution of one or more jobs defined in that script. In
any Toil workflow there is always one leader process, and potentially many worker processes.

When using the single-machine batch system (the default), the worker processes will be running on the same machine
as the leader process. With full-fledged batch systems like Mesos the worker processes will typically be started on
separate machines. The boilerplate ensures that the pipeline is only started once—on the leader—but not when its job
functions are imported and executed on the individual workers.

Typing python sort.py --help will show the complete list of arguments for the workflow which includes both
Toil’s and ones defined inside sort.py. A complete explanation of Toil’s arguments can be found in Commandline
Options.

2.4.3 Logging

By default, Toil logs a lot of information related to the current environment in addition to messages from the batch
system and jobs. This can be configured with the --logLevel flag. For example, to only log CRITICAL level
messages to the screen:

(venv) $ python sort.py file:jobStore \
--logLevel=critical \
--overwriteOutput=True

14 Chapter 2. Quickstart Examples

Toil Documentation, Release 5.4.0

This hides most of the information we get from the Toil run. For more detail, we can run the pipeline with
--logLevel=debug to see a comprehensive output. For more information, see Commandline Options.

2.4.4 Error Handling and Resuming Pipelines

With Toil, you can recover gracefully from a bug in your pipeline without losing any progress from successfully
completed jobs. To demonstrate this, let’s add a bug to our example code to see how Toil handles a failure and how
we can resume a pipeline after that happens. Add a bad assertion at line 52 of the example (the first line of down()):

def down(job, inputFileStoreID, N, downCheckpoints, memory=sortMemory):
...
assert 1 == 2, "Test error!"

When we run the pipeline, Toil will show a detailed failure log with a traceback:

(venv) $ python sort.py file:jobStore
...
---TOIL WORKER OUTPUT LOG---
...
m/j/jobonrSMP Traceback (most recent call last):
m/j/jobonrSMP File "toil/src/toil/worker.py", line 340, in main
m/j/jobonrSMP job._runner(jobGraph=jobGraph, jobStore=jobStore,
→˓fileStore=fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1270, in _runner
m/j/jobonrSMP returnValues = self._run(jobGraph, fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1217, in _run
m/j/jobonrSMP return self.run(fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1383, in run
m/j/jobonrSMP rValue = userFunction(*((self,) + tuple(self._args)), **self._
→˓kwargs)
m/j/jobonrSMP File "toil/example.py", line 30, in down
m/j/jobonrSMP assert 1 == 2, "Test error!"
m/j/jobonrSMP AssertionError: Test error!

If we try and run the pipeline again, Toil will give us an error message saying that a job store of the same name already
exists. By default, in the event of a failure, the job store is preserved so that the workflow can be restarted, starting
from the previously failed jobs. We can restart the pipeline by running

(venv) $ python sort.py file:jobStore \
--restart \
--overwriteOutput=True

We can also change the number of times Toil will attempt to retry a failed job:

(venv) $ python sort.py file:jobStore \
--retryCount 2 \
--restart \
--overwriteOutput=True

You’ll now see Toil attempt to rerun the failed job until it runs out of tries. --retryCount is useful for non-systemic
errors, like downloading a file that may experience a sporadic interruption, or some other non-deterministic failure.

To successfully restart our pipeline, we can edit our script to comment out line 30, or remove it, and then run

(venv) $ python sort.py file:jobStore \
--restart \
--overwriteOutput=True

2.4. A (more) real-world example 15

Toil Documentation, Release 5.4.0

The pipeline will run successfully, and the job store will be removed on the pipeline’s completion.

2.4.5 Collecting Statistics

Please see the Stats Command section for more on gathering runtime and resource info on jobs.

2.5 Launching a Toil Workflow in AWS

After having installed the aws extra for Toil during the Installation and set up AWS (see Preparing your AWS envi-
ronment), the user can run the basic helloWorld.py script (Running a basic workflow) on a VM in AWS just by
modifying the run command.

Note that when running in AWS, users can either run the workflow on a single instance or run it on a cluster (which is
running across multiple containers on multiple AWS instances). For more information on running Toil workflows on
a cluster, see Running in AWS.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise
things may not be cleaned up properly.

1. Launch a cluster in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
--keyPairName <AWS-key-pair-name> \
--leaderNodeType t2.medium \
--zone us-west-2a

The arguments keyPairName, leaderNodeType, and zone are required to launch a cluster.

2. Copy helloWorld.py to the /tmp directory on the leader node using the Rsync-Cluster Command com-
mand:

(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> helloWorld.py :/tmp

Note that the command requires defining the file to copy as well as the target location on the cluster leader node.

3. Login to the cluster leader node using the Ssh-Cluster Command command:

(venv) $ toil ssh-cluster --zone us-west-2a <cluster-name>

Note that this command will log you in as the root user.

4. Run the Toil script in the cluster:

$ python /tmp/helloWorld.py aws:us-west-2:my-S3-bucket

In this particular case, we create an S3 bucket called my-S3-bucket in the us-west-2 availability zone to
store intermediate job results.

Along with some other INFO log messages, you should get the following output in your terminal window:
Hello, world!, here's a message: You did it!.

5. Exit from the SSH connection.

$ exit

6. Use the Destroy-Cluster Command command to destroy the cluster:

16 Chapter 2. Quickstart Examples

Toil Documentation, Release 5.4.0

(venv) $ toil destroy-cluster --zone us-west-2a <cluster-name>

Note that this command will destroy the cluster leader node and any resources created to run the job, including
the S3 bucket.

2.6 Running a CWL Workflow on AWS

After having installed the aws and cwl extras for Toil during the Installation and set up AWS (see Preparing your
AWS environment), the user can run a CWL workflow with Toil on AWS.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise
things may not be cleaned up properly.

1. First launch a node in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
--keyPairName <AWS-key-pair-name> \
--leaderNodeType t2.medium \
--zone us-west-2a

2. Copy example.cwl and example-job.yaml from the CWL example to the node using the Rsync-Cluster
Command command:

(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> example.cwl :/tmp
(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> example-job.yaml :/
→˓tmp

3. SSH into the cluster’s leader node using the Ssh-Cluster Command utility:

(venv) $ toil ssh-cluster --zone us-west-2a <cluster-name>

4. Once on the leader node, it’s a good idea to update and install the following:

sudo apt-get update
sudo apt-get -y upgrade
sudo apt-get -y dist-upgrade
sudo apt-get -y install git
sudo pip install mesos.cli

5. Now create a new virtualenv with the --system-site-packages option and activate:

virtualenv --system-site-packages venv
source venv/bin/activate

6. Now run the CWL workflow:

(venv) $ toil-cwl-runner \
--provisioner aws \
--jobStore aws:us-west-2a:any-name \
/tmp/example.cwl /tmp/example-job.yaml

Tip: When running a CWL workflow on AWS, input files can be provided either on the local file system or in
S3 buckets using s3:// URI references. Final output files will be copied to the local file system of the leader
node.

2.6. Running a CWL Workflow on AWS 17

Toil Documentation, Release 5.4.0

7. Finally, log out of the leader node and from your local computer, destroy the cluster:

(venv) $ toil destroy-cluster --zone us-west-2a <cluster-name>

2.7 Running a Workflow with Autoscaling - Cactus

Cactus is a reference-free, whole-genome multiple alignment program that can be run on any of the cloud platforms
Toil supports.

Note: Cloud Independence:

This example provides a “cloud agnostic” view of running Cactus with Toil. Most options will not change be-
tween cloud providers. However, each provisioner has unique inputs for --leaderNodeType, --nodeType
and --zone. We recommend the following:

Option Used in AWS Google
--leaderNodeType launch-cluster t2.medium n1-standard-1
--zone launch-cluster us-west-2a us-west1-a
--zone cactus us-west-2
--nodeType cactus c3.4xlarge n1-standard-8

When executing toil launch-cluster with gce specified for --provisioner, the option --boto must be
specified and given a path to your .boto file. See Running in Google Compute Engine (GCE) for more information
about the --boto option.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise
things may not be cleaned up properly.

1. Download pestis.tar.gz

2. Launch a leader node using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
--provisioner <aws, gce> \
--keyPairName <key-pair-name> \
--leaderNodeType <type> \
--zone <zone>

Note: A Helpful Tip

When using AWS, setting the environment variable eliminates having to specify the --zone option for each
command. This will be supported for GCE in the future.

(venv) $ export TOIL_AWS_ZONE=us-west-2c

3. Create appropriate directory for uploading files:

(venv) $ toil ssh-cluster --provisioner <aws, gce> <cluster-name>
$ mkdir /root/cact_ex
$ exit

18 Chapter 2. Quickstart Examples

https://github.com/ComparativeGenomicsToolkit/cactus

Toil Documentation, Release 5.4.0

4. Copy the required files, i.e., seqFile.txt (a text file containing the locations of the input sequences as well as their
phylogenetic tree, see here), organisms’ genome sequence files in FASTA format, and configuration files (e.g.
blockTrim1.xml, if desired), up to the leader node:

(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> pestis-short-
→˓aws-seqFile.txt :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000169655.
→˓1_ASM16965v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000006645.
→˓1_ASM664v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000182485.
→˓1_ASM18248v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000013805.
→˓1_ASM1380v1_genomic.fna :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> setup_
→˓leaderNode.sh :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> blockTrim1.
→˓xml :/root/cact_ex
(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> blockTrim3.
→˓xml :/root/cact_ex

5. Log in to the leader node:

(venv) $ toil ssh-cluster --provisioner <aws, gce> <cluster-name>

6. Set up the environment of the leader node to run Cactus:

$ bash /root/cact_ex/setup_leaderNode.sh
$ source cact_venv/bin/activate
(cact_venv) $ cd cactus
(cact_venv) $ pip install --upgrade .

7. Run Cactus as an autoscaling workflow:

(cact_venv) $ TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:3.14.0 cactus \
--provisioner <aws, gce> \
--nodeType <type> \
--maxNodes 2 \
--minNodes 0 \
--retry 10 \
--batchSystem mesos \
--logDebug \
--logFile /logFile_pestis3 \
--configFile \
/root/cact_ex/blockTrim3.xml <aws, google>:<zone>:cactus-pestis

→˓\
/root/cact_ex/pestis-short-aws-seqFile.txt \
/root/cact_ex/pestis_output3.hal

Note: Pieces of the Puzzle:

TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:3.14.0 — specifies the version of Toil being
used, 3.14.0; if the latest one is desired, please eliminate.

--nodeType — determines the instance type used for worker nodes. The instance type specified here must be
on the same cloud provider as the one specified with --leaderNodeType

--maxNodes 2 — creates up to two instances of the type specified with --nodeType and launches Mesos

2.7. Running a Workflow with Autoscaling - Cactus 19

https://github.com/ComparativeGenomicsToolkit/cactus#seqfile-the-input-file
https://github.com/ComparativeGenomicsToolkit/cactus

Toil Documentation, Release 5.4.0

worker containers inside them.

--logDebug — equivalent to --logLevel DEBUG.

--logFile /logFile_pestis3 — writes logs in a file named logFile_pestis3 under / folder.

--configFile — this is not required depending on whether a specific configuration file is intended to run
the alignment.

<aws, google>:<zone>:cactus-pestis — creates a bucket, named cactus-pestis, with the
specified cloud provider to store intermediate job files and metadata. NOTE: If you want to use a GCE-based
jobstore, specify google here, not gce.

The result file, named pestis_output3.hal, is stored under /root/cact_ex folder of the leader node.

Use cactus --help to see all the Cactus and Toil flags available.

8. Log out of the leader node:

(cact_venv) $ exit

9. Download the resulted output to local machine:

(venv) $ toil rsync-cluster \
--provisioner <aws, gce> <cluster-name> \
:/root/cact_ex/pestis_output3.hal \
<path-of-folder-on-local-machine>

10. Destroy the cluster:

(venv) $ toil destroy-cluster --provisioner <aws, gce> <cluster-name>

20 Chapter 2. Quickstart Examples

CHAPTER 3

Introduction

Toil runs in various environments, including locally and in the cloud (Amazon Web Services and Google Compute
Engine). Toil also supports two DSLs: CWL and (Amazon Web Services and Google Compute Engine). Toil also
supports two DSLs: CWL and WDL (experimental).

Toil is built in a modular way so that it can be used on lots of different systems, and with different configurations. The
three configurable pieces are the

• Job Store API: A filepath or url that can host and centralize all files for a workflow (e.g. a local folder, or an
AWS s3 bucket url).

• Batch System API: Specifies either a local single-machine or a currently supported HPC environment (lsf, para-
sol, mesos, slurm, torque, htcondor, kubernetes, or grid_engine). Mesos is a special case, and is launched for
cloud environments.

• Provisioner: For running in the cloud only. This specifies which cloud provider provides instances to do the
“work” of your workflow.

3.1 Job Store

The job store is a storage abstraction which contains all of the information used in a Toil run. This centralizes all of
the files used by jobs in the workflow and also the details of the progress of the run. If a workflow crashes or fails, the
job store contains all of the information necessary to resume with minimal repetition of work.

Several different job stores are supported, including the file job store and cloud job stores.

3.1.1 File Job Store

The file job store is for use locally, and keeps the workflow information in a directory on the machine where the
workflow is launched. This is the simplest and most convenient job store for testing or for small runs.

For an example that uses the file job store, see Running a basic workflow.

21

Toil Documentation, Release 5.4.0

3.1.2 Cloud Job Stores

Toil currently supports the following cloud storage systems as job stores:

• AWS Job Store: An AWS S3 bucket formatted as “aws:<zone>:<bucketname>” where only numbers, letters, and
dashes are allowed in the bucket name. Example: aws:us-west-2:my-aws-jobstore-name.

• Google Job Store: A Google Cloud Storage bucket formatted as “gce:<zone>:<bucketname>” where only num-
bers, letters, and dashes are allowed in the bucket name. Example: gce:us-west2-a:my-google-jobstore-name.

These use cloud buckets to house all of the files. This is useful if there are several different worker machines all
running jobs that need to access the job store.

3.2 Batch System

A Toil batch system is either a local single-machine (one computer) or a currently supported HPC cluster of computers
(lsf, parasol, mesos, slurm, torque, htcondor, or grid_engine). Mesos is a special case, and is launched for cloud
environments. These environments manage individual worker nodes under a leader node to process the work required
in a workflow. The leader and its workers all coordinate their tasks and files through a centralized job store location.

See Batch System API for a more detailed description of different batch systems.

3.3 Provisioner

The Toil provisioner provides a tool set for running a Toil workflow on a particular cloud platform.

The Cluster Utilities are command line tools used to provision nodes in your desired cloud platform. They allows you
to launch nodes, ssh to the leader, and rsync files back and forth.

For detailed instructions for using the provisioner see Running in AWS or Running in Google Compute Engine (GCE).

22 Chapter 3. Introduction

CHAPTER 4

Commandline Options

A quick way to see all of Toil’s commandline options is by executing the following on a toil script:

$ toil example.py --help

For a basic toil workflow, Toil has one mandatory argument, the job store. All other arguments are optional.

4.1 The Job Store

Running toil scripts requires a filepath or url to a centralizing location for all of the files of the workflow.
This is Toil’s one required positional argument: the job store. To use the quickstart example, if you’re
on a node that has a large /scratch volume, you can specify that the jobstore be created there by execut-
ing: python HelloWorld.py /scratch/my-job-store, or more explicitly, python HelloWorld.py
file:/scratch/my-job-store.

Syntax for specifying different job stores:

Local: file:job-store-name

AWS: aws:region-here:job-store-name

Google: google:projectID-here:job-store-name

Different types of job store options can be found below.

4.2 Commandline Options

Core Toil Options

--workDir WORKDIR Absolute path to directory where temporary files generated dur-
ing the Toil run should be placed. Temp files and folders, as well
as standard output and error from batch system jobs (unless –noS-
tdOutErr), will be placed in a directory toil-<workflowID> within

23

Toil Documentation, Release 5.4.0

workDir. The workflowID is generated by Toil and will be reported
in the workflow logs. Default is determined by the variables (TM-
PDIR, TEMP, TMP) via mkdtemp. This directory needs to exist
on all machines running jobs; if capturing standard output and error
from batch system jobs is desired, it will generally need to be on a
shared file system.

--noStdOutErr Do not capture standard output and error from batch system jobs.

--stats Records statistics about the toil workflow to be used by ‘toil stats’.

--clean=STATE Determines the deletion of the jobStore upon completion of the pro-
gram. Choices: ‘always’, ‘onError’,’never’, or ‘onSuccess’. The
–stats option requires information from the jobStore upon comple-
tion so the jobStore will never be deleted with that flag. If you wish
to be able to restart the run, choose ‘never’ or ‘onSuccess’. Default
is ‘never’ if stats is enabled, and ‘onSuccess’ otherwise

--cleanWorkDir STATE Determines deletion of temporary worker directory upon com-
pletion of a job. Choices: ‘always’, ‘never’, ‘onSuccess’. Default =
always. WARNING: This option should be changed for debugging
only. Running a full pipeline with this option could fill your disk
with intermediate data.

--clusterStats FILEPATH If enabled, writes out JSON resource usage statistics to a file.
The default location for this file is the current working directory, but
an absolute path can also be passed to specify where this file should
be written. This option only applies when using scalable batch sys-
tems.

--restart If –restart is specified then will attempt to restart existing workflow
at the location pointed to by the –jobStore option. Will raise an ex-
ception if the workflow does not exist.

Logging Options

Toil hides stdout and stderr by default except in case of job failure. Log levels in toil are based on priority from the
logging module:

--logOff Only CRITICAL log levels are shown. Equivalent to
--logLevel=OFF or --logLevel=CRITICAL.

--logCritical Only CRITICAL log levels are shown. Equivalent to
--logLevel=OFF or --logLevel=CRITICAL.

--logError Only ERROR, and CRITICAL log levels are shown. Equivalent to
--logLevel=ERROR.

--logWarning Only WARN, ERROR, and CRITICAL log levels are shown. Equiv-
alent to --logLevel=WARNING.

--logInfo All log statements are shown, except DEBUG. Equivalent to
--logLevel=INFO.

--logDebug All log statements are shown. Equivalent to --logLevel=DEBUG.

--logLevel=LOGLEVEL May be set to: OFF (or CRITICAL), ERROR, WARN (or
WARNING), INFO, or DEBUG.

--logFile FILEPATH Specifies a file path to write the logging output to.

24 Chapter 4. Commandline Options

Toil Documentation, Release 5.4.0

--rotatingLogging Turn on rotating logging, which prevents log files from getting too
big (set using --maxLogFileSize BYTESIZE).

--maxLogFileSize BYTESIZE Sets the maximum log file size in bytes
(--rotatingLogging must be active).

Batch System Options

--batchSystem BATCHSYSTEM The type of batch system to run the job(s) with, cur-
rently can be one of lsf, Mesos, slurm, torque, htcondor, sin-
gle_machine, parasol, grid_engine’, kubernetes. (default: sin-
gle_machine)

--parasolCommand PARASOLCOMMAND The name or path of the parasol program.
Will be looked up on PATH unless it starts with a slash. (default:
parasol)

--parasolMaxBatches PARASOLMAXBATCHES Maximum number of job batches
the Parasol batch is allowed to create. One batch is created for jobs
with a unique set of resource requirements. (default: 1000)

--scale SCALE A scaling factor to change the value of all submitted tasks’ submitted
cores. Used in singleMachine batch system. (default: 1)

--linkImports When using Toil’s importFile function for staging, input files are
copied to the job store. Specifying this option saves space by sym-
linking imported files. As long as caching is enabled Toil will protect
the file automatically by changing the permissions to read-only.

--mesosMaster MESOSMASTERADDRESS The host and port of the Mesos master
separated by a colon. (default: 169.233.147.202:5050)

Autoscaling Options

--provisioner CLOUDPROVIDER The provisioner for cluster auto-scaling. The cur-
rently supported choices are ‘aws’ or ‘gce’. The default is None.

--nodeTypes NODETYPES Specifies a list of comma-separated node types, each of
which is composed of slash-separated instance types, and an optional
spot bid set off by a colon, making the node type preemptable. In-
stance types may appear in multiple node types, and the same node
type may appear as both preemptable and non-preemptable. Valid
argument specifying two node types:

c5.4xlarge/c5a.4xlarge:0.42,t2.large

Node types: c5.4xlarge/c5a.4xlarge:0.42 and t2.large

Instance types: c5.4xlarge, c5a.4xlarge, and t2.large

Semantics: Bid $0.42/hour for either c5.4xlarge or c5a.4xlarge in-
stances, treated interchangeably, while they are available at that
price, and buy t2.large instances at full price

--minNodes MINNODES Minimum number of nodes of each type in the cluster, if using
auto-scaling. This should be provided as a comma-separated list of
the same length as the list of node types. default=0

--maxNodes MAXNODES Maximum number of nodes of each type in the cluster, if us-
ing autoscaling, provided as a comma-separated list. The first value
is used as a default if the list length is less than the number of node-
Types. default=10

4.2. Commandline Options 25

Toil Documentation, Release 5.4.0

--preemptableCompensation PREEMPTABLECOMPENSATION The preference of
the autoscaler to replace preemptable nodes with non-preemptable
nodes, when preemptable nodes cannot be started for some reason.
Defaults to 0.0. This value must be between 0.0 and 1.0, inclusive.
A value of 0.0 disables such compensation, a value of 0.5 compen-
sates two missing preemptable nodes with a non-preemptable one. A
value of 1.0 replaces every missing pre-emptable node with a non-
preemptable one.

--nodeStorage NODESTORAGE Specify the size of the root volume of worker nodes
when they are launched in gigabytes. You may want to set this if
your jobs require a lot of disk space. The default value is 50.

--nodeStorageOverrides NODESTORAGEOVERRIDES Comma-separated list of
nodeType:nodeStorage that are used to override the default value
from –nodeStorage for the specified nodeType(s). This is useful for
heterogeneous jobs where some tasks require much more disk than
others.

--metrics Enable the prometheus/grafana dashboard for monitoring
CPU/RAM usage, queue size, and issued jobs.

--defaultMemory INT The default amount of memory to request for a job. Only applica-
ble to jobs that do not specify an explicit value for this requirement.
Standard suffixes like K, Ki, M, Mi, G or Gi are supported. Default
is 2.0G

--defaultCores FLOAT The default number of CPU cores to dedicate a job. Only applica-
ble to jobs that do not specify an explicit value for this requirement.
Fractions of a core (for example 0.1) are supported on some batch
systems, namely Mesos and singleMachine. Default is 1.0

--defaultDisk INT The default amount of disk space to dedicate a job. Only applicable
to jobs that do not specify an explicit value for this requirement.
Standard suffixes like K, Ki, M, Mi, G or Gi are supported. Default
is 2.0G

--defaultPreemptable BOOL Set if jobs that do not specifically prohibit it should able to
run on preemptable (spot) nodes.

--maxCores INT The maximum number of CPU cores to request from the batch sys-
tem at any one time. Standard suffixes like K, Ki, M, Mi, G or Gi are
supported.

--maxMemory INT The maximum amount of memory to request from the batch system
at any one time. Standard suffixes like K, Ki, M, Mi, G or Gi are
supported.

--maxDisk INT The maximum amount of disk space to request from the batch system
at any one time. Standard suffixes like K, Ki, M, Mi, G or Gi are
supported.

--retryCount RETRYCOUNT Number of times to retry a failing job before giving up
and labeling job failed. default=1

--doubleMem If set, batch jobs which die due to reaching memory limit on batch
schedulers will have their memory doubled and they will be retried.
The remaining retry count will be reduced by 1. Currently only sup-
ported by LSF. default=False.

26 Chapter 4. Commandline Options

Toil Documentation, Release 5.4.0

--maxJobDuration MAXJOBDURATION Maximum runtime of a job (in seconds) be-
fore we kill it (this is a lower bound, and the actual time before killing
the job may be longer).

--rescueJobsFrequency RESCUEJOBSFREQUENCY Period of time to wait (in sec-
onds) between checking for missing/overlong jobs, that is jobs which
get lost by the batch system.

--maxServiceJobs MAXSERVICEJOBS The maximum number of service jobs that can
be run concurrently, excluding service jobs running on preemptable
nodes. default=9223372036854775807

--maxPreemptableServiceJobs MAXPREEMPTABLESERVICEJOBS The max-
imum number of service jobs that can run concurrently on
preemptable nodes. default=9223372036854775807

--deadlockWait DEADLOCKWAIT Time, in seconds, to tolerate the workflow running
only the same service jobs, with no jobs to use them, before declaring
the workflow to be deadlocked and stopping. default=60

--deadlockCheckInterval DEADLOCKCHECKINTERVAL Time, in seconds, to wait
between checks to see if the workflow is stuck running only service
jobs, with no jobs to use them. Should be shorter than –deadlock-
Wait. May need to be increased if the batch system cannot enumerate
running jobs quickly enough, or if polling for running jobs is placing
an unacceptable load on a shared cluster. default=30

--statePollingWait STATEPOLLINGWAIT Time, in seconds, to wait before doing a
scheduler query for job state. Return cached results if within the
waiting period.

Miscellaneous Options

--disableCaching Disables caching in the file store. This flag must be set to use a batch
system that does not support cleanup, such as Parasol.

--disableChaining Disables chaining of jobs (chaining uses one job’s resource alloca-
tion for its successor job if possible).

--maxLogFileSize MAXLOGFILESIZE The maximum size of a job log file to keep (in
bytes), log files larger than this will be truncated to the last X bytes.
Setting this option to zero will prevent any truncation. Setting this
option to a negative value will truncate from the beginning. De-
fault=62.5 K

--writeLogs FILEPATH Write worker logs received by the leader into their own files at
the specified path. Any non-empty standard output and error from
failed batch system jobs will also be written into files at this path.
The current working directory will be used if a path is not specified
explicitly. Note: By default only the logs of failed jobs are returned
to leader. Set log level to ‘debug’ to get logs back from successful
jobs, and adjust ‘maxLogFileSize’ to control the truncation limit for
worker logs.

--writeLogsGzip FILEPATH Identical to –writeLogs except the logs files are gzipped on
the leader.

--realTimeLogging Enable real-time logging from workers to masters.

--sseKey SSEKEY Path to file containing 32 character key to be used for server-side
encryption on awsJobStore or googleJobStore. SSE will not be used

4.2. Commandline Options 27

Toil Documentation, Release 5.4.0

if this flag is not passed.

--setEnv NAME NAME=VALUE or NAME, -e NAME=VALUE or NAME are also
valid. Set an environment variable early on in the worker. If VALUE
is omitted, it will be looked up in the current environment. Inde-
pendently of this option, the worker will try to emulate the leader’s
environment before running a job. Using this option, a variable can
be injected into the worker process itself before it is started.

--servicePollingInterval SERVICEPOLLINGINTERVAL Interval of time service jobs
wait between polling for the existence of the keep-alive flag (de-
fault=60)

--debugWorker Experimental no forking mode for local debugging. Specifically,
workers are not forked and stderr/stdout are not redirected to the log.
(default=False)

--disableProgress Disables the progress bar shown when standard error is a terminal.

4.3 Restart Option

In the event of failure, Toil can resume the pipeline by adding the argument --restart and rerunning the python
script. Toil pipelines can even be edited and resumed which is useful for development or troubleshooting.

4.4 Running Workflows with Services

Toil supports jobs, or clusters of jobs, that run as services to other accessor jobs. Example services include server
databases or Apache Spark Clusters. As service jobs exist to provide services to accessor jobs their runtime is depen-
dent on the concurrent running of their accessor jobs. The dependencies between services and their accessor jobs can
create potential deadlock scenarios, where the running of the workflow hangs because only service jobs are being run
and their accessor jobs can not be scheduled because of too limited resources to run both simultaneously. To cope
with this situation Toil attempts to schedule services and accessors intelligently, however to avoid a deadlock with
workflows running service jobs it is advisable to use the following parameters:

• --maxServiceJobs: The maximum number of service jobs that can be run concurrently, excluding service
jobs running on preemptable nodes.

• --maxPreemptableServiceJobs: The maximum number of service jobs that can run concurrently on
preemptable nodes.

Specifying these parameters so that at a maximum cluster size there will be sufficient resources to run accessors in
addition to services will ensure that such a deadlock can not occur.

If too low a limit is specified then a deadlock can occur in which toil can not schedule sufficient service jobs concur-
rently to complete the workflow. Toil will detect this situation if it occurs and throw a toil.DeadlockException
exception. Increasing the cluster size and these limits will resolve the issue.

4.5 Setting Options directly with the Toil Script

It’s good to remember that commandline options can be overridden in the Toil script itself. For example, toil.job.
Job.Runner.getDefaultOptions() can be used to run toil with all default options, and in this example, it
will override commandline args to run the default options and always run with the “./toilWorkflow” directory specified
as the jobstore:

28 Chapter 4. Commandline Options

Toil Documentation, Release 5.4.0

options = Job.Runner.getDefaultOptions("./toilWorkflow") # Get the options object

with Toil(options) as toil:
toil.start(Job()) # Run the script

However, each option can be explicitly set within the script by supplying arguments (in this example, we are setting
logLevel = "DEBUG" (all log statements are shown) and clean="ALWAYS" (always delete the jobstore) like
so:

options = Job.Runner.getDefaultOptions("./toilWorkflow") # Get the options object
options.logLevel = "DEBUG" # Set the log level to the debug level.
options.clean = "ALWAYS" # Always delete the jobStore after a run

with Toil(options) as toil:
toil.start(Job()) # Run the script

However, the usual incantation is to accept commandline args from the user with the following:

parser = Job.Runner.getDefaultArgumentParser() # Get the parser
options = parser.parse_args() # Parse user args to create the options object

with Toil(options) as toil:
toil.start(Job()) # Run the script

Which can also, of course, then accept script supplied arguments as before (which will overwrite any user supplied
args):

parser = Job.Runner.getDefaultArgumentParser() # Get the parser
options = parser.parse_args() # Parse user args to create the options object
options.logLevel = "DEBUG" # Set the log level to the debug level.
options.clean = "ALWAYS" # Always delete the jobStore after a run

with Toil(options) as toil:
toil.start(Job()) # Run the script

4.5. Setting Options directly with the Toil Script 29

Toil Documentation, Release 5.4.0

30 Chapter 4. Commandline Options

CHAPTER 5

Toil Debugging

Toil has a number of tools to assist in debugging. Here we provide help in working through potential problems that a
user might encounter in attempting to run a workflow.

5.1 Introspecting the Jobstore

Note: Currently these features are only implemented for use locally (single machine) with the fileJobStore.

To view what files currently reside in the jobstore, run the following command:

$ toil debug-file file:path-to-jobstore-directory \
--listFilesInJobStore

When run from the commandline, this should generate a file containing the contents of the job store (in addition to
displaying a series of log messages to the terminal). This file is named “jobstore_files.txt” by default and will be
generated in the current working directory.

If one wishes to copy any of these files to a local directory, one can run for example:

$ toil debug-file file:path-to-jobstore \
--fetch overview.txt *.bam *.fastq \
--localFilePath=/home/user/localpath

To fetch overview.txt, and all .bam and .fastq files. This can be used to recover previously used input and
output files for debugging or reuse in other workflows, or use in general debugging to ensure that certain outputs were
imported into the jobStore.

5.2 Stats and Status

See Stats Command for more about gathering statistics about job success, runtime, and resource usage from workflows.

31

Toil Documentation, Release 5.4.0

5.3 Using a Python debugger

If you execute a workflow using the --debugWorker flag, Toil will not fork in order to run jobs, which means you
can either use pdb, or an IDE that supports debugging Python as you would normally. Note that the --debugWorker
flag will only work with the singleMachine batch system (the default), and not any of the custom job schedulers.

32 Chapter 5. Toil Debugging

https://docs.python.org/3/library/pdb.html
https://wiki.python.org/moin/PythonDebuggingTools#IDEs_with_Debug_Capabilities

CHAPTER 6

Running in the Cloud

Toil supports Amazon Web Services (AWS) and Google Compute Engine (GCE) in the cloud and has autoscaling
capabilities that can adapt to the size of your workflow, whether your workflow requires 10 instances or 20,000.

Toil does this by creating a virtual cluster with Apache Mesos. Apache Mesos requires a leader node to coordinate
the workflow, and worker nodes to execute the various tasks within the workflow. As the workflow runs, Toil will
“autoscale”, creating and terminating workers as needed to meet the demands of the workflow.

Once a user is familiar with the basics of running toil locally (specifying a jobStore, and how to write a toil script),
they can move on to the guides below to learn how to translate these workflows into cloud ready workflows.

6.1 Managing a Cluster of Virtual Machines (Provisioning)

Toil can launch and manage a cluster of virtual machines to run using the provisioner to run a workflow distributed
over several nodes. The provisioner also has the ability to automatically scale up or down the size of the cluster to
handle dynamic changes in computational demand (autoscaling). Currently we have working provisioners with AWS
and GCE (Azure support has been deprecated).

Toil uses Apache Mesos as the Batch System.

See here for instructions for Running in AWS.

See here for instructions for Running in Google Compute Engine (GCE).

6.2 Storage (Toil jobStore)

Toil can make use of cloud storage such as AWS or Google buckets to take care of storage needs.

This is useful when running Toil in single machine mode on any cloud platform since it allows you to make use of
their integrated storage systems.

For an overview of the job store see Job Store.

For instructions configuring a particular job store see:

33

https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/gettingstarted/

Toil Documentation, Release 5.4.0

• AWS Job Store

• Google Job Store

34 Chapter 6. Running in the Cloud

CHAPTER 7

Cloud Platforms

7.1 Running on Kubernetes

Kubernetes is a very popular container orchestration tool that has become a de facto cross-cloud-provider API for ac-
cessing cloud resources. Major cloud providers like Amazon, Microsoft, Kubernetes owner Google, and DigitalOcean
have invested heavily in making Kubernetes work well on their platforms, by writing their own deployment documen-
tation and developing provider-managed Kubernetes-based products. Using minikube, Kubernetes can even be run on
a single machine.

Toil supports running Toil workflows against a Kubernetes cluster, either in the cloud or deployed on user-owned
hardware.

7.1.1 Preparing your Kubernetes environment

1. Get a Kubernetes cluster

To run Toil workflows on Kubernetes, you need to have a Kubernetes cluster set up. This will not be covered
here, but there are many options available, and which one you choose will depend on which cloud ecosystem if
any you use already, and on pricing. If you are just following along with the documentation, use minikube on
your local machine.

Note that currently the only way to run a Toil workflow on Kubernetes is to use the AWS Job Store, so
your Kubernetes workflow will currently have to store its data in Amazon’s cloud regardless of where you
run it. This can result in significant egress charges from Amazon if you run it outside of Amazon.

Kubernetes Cluster Providers:

• Your own institution

• Amazon EKS

• Microsoft Azure AKS

• Google GKE

• DigitalOcean Kubernetes

35

https://kubernetes.io/
https://aws.amazon.com/kubernetes/
https://azure.microsoft.com/en-us/overview/kubernetes-getting-started/
https://cloud.google.com/kubernetes-engine/
https://www.digitalocean.com/products/kubernetes/
https://github.com/kubernetes/minikube
https://aws.amazon.com/eks/
https://docs.microsoft.com/en-us/azure/aks/
https://cloud.google.com/kubernetes-engine/
https://www.digitalocean.com/docs/kubernetes/

Toil Documentation, Release 5.4.0

• minikube

2. Get a Kubernetes context on your local machine

There are two main ways to run Toil workflows on Kubernetes. You can either run the Toil leader on a machine
outside the cluster, with jobs submitted to and run on the cluster, or you can submit the Toil leader itself as a job
and have it run inside the cluster. Either way, you will need to configure your own machine to be able to submit
jobs to the Kubernetes cluster. Generally, this involves creating and populating a file named .kube/config
in your user’s home directory, and specifying the cluster to connect to, the certificate and token information
needed for mutual authentication, and the Kubernetes namespace within which to work. However, Kubernetes
configuration can also be picked up from other files in the .kube directory, environment variables, and the
enclosing host when running inside a Kubernetes-managed container.

You will have to do different things here depending on where you got your Kubernetes cluster:

• Configuring for Amazon EKS

• Configuring for Microsoft Azure AKS

• Configuring for Google GKE

• Configuring for DigitalOcean Kubernetes Clusters

• Configuring for minikube

Toil’s internal Kubernetes configuration logic mirrors that of the kubectl command. Toil workflows will use
the current kubectl context to launch their Kubernetes jobs.

3. If running the Toil leader in the cluster, get a service account

If you are going to run your workflow’s leader within the Kubernetes cluster (see Option 1: Running the Leader
Inside Kubernetes), you will need a service account in your chosen Kubernetes namespace. Most namespaces
should have a service account named default which should work fine. If your cluster requires you to use
a different service account, you will need to obtain its name and use it when launching the Kubernetes job
containing the Toil leader.

4. Set up appropriate permissions

Your local Kubernetes context and/or the service account you are using to run the leader in the cluster will need
to have certain permissions in order to run the workflow. Toil needs to be able to interact with jobs and pods in
the cluster, and to retrieve pod logs. You as a user may need permission to set up an AWS credentials secret, if
one is not already available. Additionally, it is very useful for you as a user to have permission to interact with
nodes, and to shell into pods.

The appropriate permissions may already be available to you and your service account by default, especially in
managed or ease-of-use-optimized setups such as EKS or minikube.

However, if the appropriate permissions are not already available, you or your cluster administrator will have
to grant them manually. The following Role (toil-user) and ClusterRole (node-reader), to be
applied with kubectl apply -f filename.yaml, should grant sufficient permissions to run Toil work-
flows when bound to your account and the service account used by Toil workflows. Be sure to replace
YOUR_NAMESPACE_HERE with the namespace you are running your workflows in

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: YOUR_NAMESPACE_HERE
name: toil-user

rules:
- apiGroups: ["*"]
resources: ["*"]
verbs: ["explain", "get", "watch", "list", "describe", "logs", "attach", "exec",

→˓ "port-forward", "proxy", "cp", "auth"] (continues on next page)

36 Chapter 7. Cloud Platforms

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az-aks-get-credentials
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl
https://www.digitalocean.com/docs/kubernetes/how-to/connect-to-cluster/
https://kubernetes.io/docs/setup/learning-environment/minikube/#kubectl

Toil Documentation, Release 5.4.0

(continued from previous page)

- apiGroups: ["batch"]
resources: ["*"]
verbs: ["get", "watch", "list", "create", "run", "set", "delete"]

- apiGroups: [""]
resources: ["secrets", "pods", "pods/attach", "podtemplates", "configmaps",

→˓"events", "services"]
verbs: ["patch", "get", "update", "watch", "list", "create", "run", "set",

→˓"delete", "exec"]
- apiGroups: [""]
resources: ["pods", "pods/log"]
verbs: ["get", "list"]

- apiGroups: [""]
resources: ["pods/exec"]
verbs: ["create"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: node-reader

rules:
- apiGroups: [""]
resources: ["nodes"]
verbs: ["get", "list", "describe"]

- apiGroups: [""]
resources: ["namespaces"]
verbs: ["get", "list", "describe"]

- apiGroups: ["metrics.k8s.io"]
resources: ["*"]
verbs: ["*"]

To bind a user or service account to the Role or ClusterRole and actually grant the permissions, you will
need a RoleBinding and a ClusterRoleBinding, respectively. Make sure to fill in the namespace,
username, and service account name, and add more user stanzas if your cluster is to support multiple Toil users.

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: toil-developer-member
namespace: toil

subjects:
- kind: User
name: YOUR_KUBERNETES_USERNAME_HERE
apiGroup: rbac.authorization.k8s.io

- kind: ServiceAccount
name: YOUR_SERVICE_ACCOUNT_NAME_HERE
namespace: YOUR_NAMESPACE_HERE

roleRef:
kind: Role
name: toil-user
apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: read-nodes

subjects:
(continues on next page)

7.1. Running on Kubernetes 37

Toil Documentation, Release 5.4.0

(continued from previous page)

- kind: User
name: YOUR_KUBERNETES_USERNAME_HERE
apiGroup: rbac.authorization.k8s.io

- kind: ServiceAccount
name: YOUR_SERVICE_ACCOUNT_NAME_HERE
namespace: YOUR_NAMESPACE_HERE

roleRef:
kind: ClusterRole
name: node-reader
apiGroup: rbac.authorization.k8s.io

7.1.2 AWS Job Store for Kubernetes

Currently, the only job store, which is what Toil uses to exchange data between jobs, that works with jobs running on
Kubernetes is the AWS Job Store. This requires that the Toil leader and Kubernetes jobs be able to connect to and use
Amazon S3 and Amazon SimpleDB. It also requires that you have an Amazon Web Services account.

1. Get access to AWS S3 and SimpleDB

In your AWS account, you need to create an AWS access key. First go to the IAM dashboard; for “us-west1”,
the link would be:

https://console.aws.amazon.com/iam/home?region=us-west-1#/home

Then create an access key, and save the Access Key ID and the Secret Key. As documented in the AWS
documentation:

1. On the IAM Dashboard page, choose your account name in the navigation bar, and then choose My Secu-
rity Credentials.

2. Expand the Access keys (access key ID and secret access key) section.

3. Choose Create New Access Key. Then choose Download Key File to save the access key ID and secret
access key to a file on your computer. After you close the dialog box, you can’t retrieve this secret access
key again.

Make sure that, if your AWS infrastructure requires your user to authenticate with a multi-factor authentication
(MFA) token, you obtain a second secret key and access key that don’t have this requirement. The secret key
and access key used to populate the Kubernetes secret that allows the jobs to contact the job store need to be
usable without human intervention.

2. Configure AWS access from the local machine

This only really needs to happen if you run the leader on the local machine. But we need the files in place to fill
in the secret in the next step. Run:

$ aws configure

Then when prompted, enter your secret key and access key. This should create a file ~/.aws/credentials
that looks like this:

[default]
aws_access_key_id = BLAH
aws_secret_access_key = blahblahblah

3. Create a Kubernetes secret to give jobs access to AWS

Go into the directory where the credentials file is:

38 Chapter 7. Cloud Platforms

https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html
https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html

Toil Documentation, Release 5.4.0

$ cd ~/.aws

Then, create a Kubernetes secret that contains it. We’ll call it aws-credentials:

$ kubectl create secret generic aws-credentials --from-file credentials

7.1.3 Configuring Toil for your Kubernetes environment

To configure your workflow to run on Kubernetes, you will have to configure several environment variables, in addition
to passing the --batchSystem kubernetes option. Doing the research to figure out what values to give these
variables may require talking to your cluster provider.

1. TOIL_AWS_SECRET_NAME is the most important, and must be set to the secret that contains your AWS
credentials file, if your cluster nodes don’t otherwise have access to S3 and SimpleDB (such as through
IAM roles). This is required for the AWS job store to work, which is currently the only job store that can be
used on Kubernetes. In this example we are using aws-credentials.

2. TOIL_KUBERNETES_HOST_PATH can be set to allow Toil jobs on the same physical host to share a cache. It
should be set to a path on the host where the shared cache should be stored. It will be mounted as /var/lib/
toil, or at TOIL_WORKDIR if specified, inside the container. This path must already exist on the host, and
must have as much free space as your Kubernetes node offers to jobs. In this example, we are using /data/
scratch. To actually make use of caching, make sure to also pass --disableCaching false to your
Toil workflow.

3. TOIL_KUBERNETES_OWNER should be set to the username of the user running the Toil workflow. The jobs
that Toil creates will include this username, so they can be more easily recognized, and cleaned up by the user
if anything happens to the Toil leader. In this example we are using demo-user.

Note that Docker containers cannot be run inside of unprivileged Kubernetes pods (which are themselves containers).
The Docker daemon does not (yet) support this. Other tools, such as Singularity in its user-namespace mode, are able
to run containers from within containers. If using Singularity to run containerized tools, and you want downloaded
container images to persist between Toil jobs, you will also want to set TOIL_KUBERNETES_HOST_PATH and make
sure that Singularity is downloading its containers under the Toil work directory (/var/lib/toil buy default) by
setting SINGULARITY_CACHEDIR. However, you will need to make sure that no two jobs try to download the same
container at the same time; Singularity has no synchronization or locking around its cache, but the cache is also not safe
for simultaneous access by multiple Singularity invocations. Some Toil workflows use their own custom workaround
logic for this problem; this work is likely to be made part of Toil in a future release.

7.1.4 Running workflows

To run the workflow, you will need to run the Toil leader process somewhere. It can either be run inside Kubernetes
as a Kubernetes job, or outside Kubernetes as a normal command.

Option 1: Running the Leader Inside Kubernetes

Once you have determined a set of environment variable values for your workflow run, write a YAML file that defines
a Kubernetes job to run your workflow with that configuration. Some configuration items (such as your username, and
the name of your AWS credentials secret) need to be written into the YAML so that they can be used from the leader
as well.

Note that the leader pod will need your workflow script, its other dependencies, and Toil all installed. An easy way to
get Toil installed is to start with the Toil appliance image for the version of Toil you want to use. In this example, we
use quay.io/ucsc_cgl/toil:4.1.0.

7.1. Running on Kubernetes 39

Toil Documentation, Release 5.4.0

Here’s an example YAML file to run a test workflow:

apiVersion: batch/v1
kind: Job
metadata:

It is good practice to include your username in your job name.
Also specify it in TOIL_KUBERNETES_OWNER
name: demo-user-toil-test

Do not try and rerun the leader job if it fails

spec:
backoffLimit: 0
template:
spec:

Do not restart the pod when the job fails, but keep it around so the
log can be retrieved
restartPolicy: Never
volumes:
- name: aws-credentials-vol

secret:
Make sure the AWS credentials are available as a volume.
This should match TOIL_AWS_SECRET_NAME
secretName: aws-credentials

You may need to replace this with a different service account name as
appropriate for your cluster.
serviceAccountName: default
containers:
- name: main

image: quay.io/ucsc_cgl/toil:4.1.0
env:
Specify your username for inclusion in job names
- name: TOIL_KUBERNETES_OWNER
value: demo-user

Specify where to find the AWS credentials to access the job store with
- name: TOIL_AWS_SECRET_NAME
value: aws-credentials

Specify where per-host caches should be stored, on the Kubernetes hosts.
Needs to be set for Toil's caching to be efficient.
- name: TOIL_KUBERNETES_HOST_PATH
value: /data/scratch

volumeMounts:
Mount the AWS credentials volume
- mountPath: /root/.aws
name: aws-credentials-vol

resources:
Make sure to set these resource limits to values large enough
to accomodate the work your workflow does in the leader
process, but small enough to fit on your cluster.
#
Since no request values are specified, the limits are also used
for the requests.
limits:
cpu: 2
memory: "4Gi"
ephemeral-storage: "10Gi"

command:
- /bin/bash
- -c

(continues on next page)

40 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.4.0

(continued from previous page)

- |
This Bash script will set up Toil and the workflow to run, and run them.
set -e
We make sure to create a work directory; Toil can't hot-deploy a
script from the root of the filesystem, which is where we start.
mkdir /tmp/work
cd /tmp/work
We make a virtual environment to allow workflow dependencies to be
hot-deployed.
#
We don't really make use of it in this example, but for workflows
that depend on PyPI packages we will need this.
#
We use --system-site-packages so that the Toil installed in the
appliance image is still available.
virtualenv --python python3 --system-site-packages venv
. venv/bin/activate
Now we install the workflow. Here we're using a demo workflow
script from Toil itself.
wget https://raw.githubusercontent.com/DataBiosphere/toil/releases/4.1.0/src/

→˓toil/test/docs/scripts/tutorial_helloworld.py
Now we run the workflow. We make sure to use the Kubernetes batch
system and an AWS job store, and we set some generally useful
logging options. We also make sure to enable caching.
python3 tutorial_helloworld.py \

aws:us-west-2:demouser-toil-test-jobstore \
--batchSystem kubernetes \
--realTimeLogging \
--logInfo \
--disableCaching false

You can save this YAML as leader.yaml, and then run it on your Kubernetes installation with:

$ kubectl apply -f leader.yaml

To monitor the progress of the leader job, you will want to read its logs. If you are using a Kubernetes dashboard such
as k9s, you can simply find the pod created for the job in the dashboard, and view its logs there. If not, you will need
to locate the pod by hand.

Monitoring and Debugging Kubernetes Jobs and Pods

The following techniques are most useful for looking at the pod which holds the Toil leader, but they can also be
applied to individual Toil jobs on Kubernetes, even when the leader is outside the cluster.

Kubernetes names pods for jobs by appending a short random string to the name of the job. You can find the name of
the pod for your job by doing:

$ kubectl get pods | grep demo-user-toil-test
demo-user-toil-test-g5496 1/1 Running
→˓0 2m

Assuming you have set TOIL_KUBERNETES_OWNER correctly, you should be able to find all of your workflow’s
pods by searching for your username:

$ kubectl get pods | grep demo-user

7.1. Running on Kubernetes 41

https://github.com/derailed/k9s

Toil Documentation, Release 5.4.0

If the status of a pod is anything other than Pending, you will be able to view its logs with:

$ kubectl logs demo-user-toil-test-g5496

This will dump the pod’s logs from the beginning to now and terminate. To follow along with the logs from a running
pod, add the -f option:

$ kubectl logs -f demo-user-toil-test-g5496

A status of ImagePullBackoff suggests that you have requested to use an image that is not available. Check the
image section of your YAML if you are looking at a leader, or the value of TOIL_APPLIANCE_SELF if you are
delaying with a worker job. You also might want to check your Kubernetes node’s Internet connectivity and DNS
function; in Kubernetes, DNS depends on system-level pods which can be terminated or evicted in cases of resource
oversubscription, just like user workloads.

If your pod seems to be stuck Pending, ContainerCreating, you can get information on what is wrong with it
by using kubectl describe pod:

$ kubectl describe pod demo-user-toil-test-g5496

Pay particular attention to the Events: section at the end of the output. An indication that a job is too big for the
available nodes on your cluster, or that your cluster is too busy for your jobs, is FailedScheduling events:

Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 13s (x79 over 100m) default-scheduler 0/4 nodes are
→˓available: 1 Insufficient cpu, 1 Insufficient ephemeral-storage, 4 Insufficient
→˓memory.

If a pod is running but seems to be behaving erratically, or seems stuck, you can shell into it and look around:

$ kubectl exec -ti demo-user-toil-test-g5496 /bin/bash

One common cause of stuck pods is attempting to use more memory than allowed by Kubernetes (or by the Toil
job’s memory resource requirement), but in a way that does not trigger the Linux OOM killer to terminate the pod’s
processes. In these cases, the pod can remain stuck at nearly 100% memory usage more or less indefinitely, and
attempting to shell into the pod (which needs to start a process within the pod, using some of its memory) will fail.
In these cases, the recommended solution is to kill the offending pod and increase its (or its Toil job’s) memory
requirement, or reduce its memory needs by adapting user code.

When Things Go Wrong

The Toil Kubernetes batch system includes cleanup code to terminate worker jobs when the leader shuts down. How-
ever, if the leader pod is removed by Kubernetes, is forcibly killed or otherwise suffers a sudden existence failure, it
can go away while its worker jobs live on. It is not recommended to restart a workflow in this state, as jobs from the
previous invocation will remain running and will be trying to modify the job store concurrently with jobs from the new
invocation.

To clean up dangling jobs, you can use the following snippet:

$ kubectl get jobs | grep demo-user | cut -f1 -d' ' | xargs -n10 kubectl delete job

This will delete all jobs with demo-user’s username in their names, in batches of 10. You can also use the UUID
that Toil assigns to a particular workflow invocation in the filter, to clean up only the jobs pertaining to that workflow
invocation.

42 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.4.0

Option 2: Running the Leader Outside Kubernetes

If you don’t want to run your Toil leader inside Kubernetes, you can run it locally instead. This can be useful when
developing a workflow; files can be hot-deployed from your local machine directly to Kubernetes. However, your
local machine will have to have (ideally role-assumption- and MFA-free) access to AWS, and access to Kubernetes.
Real time logging will not work unless your local machine is able to listen for incoming UDP packets on arbitrary
ports on the address it uses to contact the IPv4 Internet; Toil does no NAT traversal or detection.

Note that if you set TOIL_WORKDIR when running your workflow like this, it will need to be a directory that exists
both on the host and in the Toil appliance.

Here is an example of running our test workflow leader locally, outside of Kubernetes:

$ export TOIL_KUBERNETES_OWNER=demo-user # This defaults to your local username if
→˓not set
$ export TOIL_AWS_SECRET_NAME=aws-credentials
$ export TOIL_KUBERNETES_HOST_PATH=/data/scratch
$ virtualenv --python python3 --system-site-packages venv
$. venv/bin/activate
$ wget https://raw.githubusercontent.com/DataBiosphere/toil/releases/4.1.0/src/toil/
→˓test/docs/scripts/tutorial_helloworld.py
$ python3 tutorial_helloworld.py \

aws:us-west-2:demouser-toil-test-jobstore \
--batchSystem kubernetes \
--realTimeLogging \
--logInfo \
--disableCaching false

7.2 Running in AWS

Toil jobs can be run on a variety of cloud platforms. Of these, Amazon Web Services (AWS) is currently the best-
supported solution. Toil provides the Cluster Utilities to conveniently create AWS clusters, connect to the leader of the
cluster, and then launch a workflow. The leader handles distributing the jobs over the worker nodes and autoscaling to
optimize costs.

The Running a Workflow with Autoscaling section details how to create a cluster and run a workflow that will dynam-
ically scale depending on the workflow’s needs.

The Static Provisioning section explains how a static cluster (one that won’t automatically change in size) can be
created and provisioned (grown, shrunk, destroyed, etc.).

7.2.1 Preparing your AWS environment

To use Amazon Web Services (AWS) to run Toil or to just use S3 to host the files during the computation of a workflow,
first set up and configure an account with AWS:

1. If necessary, create and activate an AWS account

2. Next, generate a key pair for AWS with the command (do NOT generate your key pair with the Amazon
browser):

$ ssh-keygen -t rsa

3. This should prompt you to save your key. Please save it in

7.2. Running in AWS 43

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/

Toil Documentation, Release 5.4.0

~/.ssh/id_rsa

4. Now move this to where your OS can see it as an authorized key:

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

5. Next, you’ll need to add your key to the ssh-agent:

$ eval `ssh-agent -s`
$ ssh-add

If your key has a passphrase, you will be prompted to enter it here once.

6. You’ll also need to chmod your private key (good practice but also enforced by AWS):

$ chmod 400 id_rsa

7. Now you’ll need to add the key to AWS via the browser. For example, on us-west1, this address would accessible
at:

https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1
→˓#KeyPairs:sort=keyName

8. Now click on the “Import Key Pair” button to add your key:

9. Next, you need to create an AWS access key. First go to the IAM dashboard, again; for “us-west1”, the example
link would be here:

https://console.aws.amazon.com/iam/home?region=us-west-1#/home

10. The directions (transcribed from: https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.
html) are now:

1. On the IAM Dashboard page, choose your account name in the navigation bar, and then choose My Secu-
rity Credentials.

2. Expand the Access keys (access key ID and secret access key) section.

3. Choose Create New Access Key. Then choose Download Key File to save the access key ID and secret
access key to a file on your computer. After you close the dialog box, you can’t retrieve this secret access
key again.

11. Now you should have a newly generated “AWS Access Key ID” and “AWS Secret Access Key”. We can now
install the AWS CLI and make sure that it has the proper credentials:

$ pip install awscli --upgrade --user

44 Chapter 7. Cloud Platforms

https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1#KeyPairs:sort=keyName
https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html
https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html

Toil Documentation, Release 5.4.0

12. Now configure your AWS credentials with:

$ aws configure

13. Add your “AWS Access Key ID” and “AWS Secret Access Key” from earlier and your region and output format:

" AWS Access Key ID [****************Q65Q]: "
" AWS Secret Access Key [****************G0ys]: "
" Default region name [us-west-1]: "
" Default output format [json]: "

This will create the files ~/.aws/config and ~/.aws/credentials.

14. If not done already, install toil (example uses version 5.3.0, but we recommend the latest release):

$ virtualenv venv
$ source venv/bin/activate
$ pip install toil[all]==5.3.0

15. Now that toil is installed and you are running a virtualenv, an example of launching a toil leader node would
be the following (again, note that we set TOIL_APPLIANCE_SELF to toil version 5.3.0 in this example, but
please set the version to the installed version that you are using if you’re using a different version):

$ TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:5.3.0 \
toil launch-cluster clustername \
--leaderNodeType t2.medium \
--zone us-west-1a \
--keyPairName id_rsa

To further break down each of these commands:

TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:latest — This is optional. It specifies a mesos
docker image that we maintain with the latest version of toil installed on it. If you want to use a dif-
ferent version of toil, please specify the image tag you need from https://quay.io/repository/ucsc_cgl/toil?
tag=latest&tab=tags.

toil launch-cluster — Base command in toil to launch a cluster.

clustername — Just choose a name for your cluster.

–leaderNodeType t2.medium — Specify the leader node type. Make a t2.medium (2CPU; 4Gb RAM;
$0.0464/Hour). List of available AWS instances: https://aws.amazon.com/ec2/pricing/on-demand/

–zone us-west-1a — Specify the AWS zone you want to launch the instance in. Must have the same
prefix as the zone in your awscli credentials (which, in the example of this tutorial is: “us-west-1”).

–keyPairName id_rsa — The name of your key pair, which should be “id_rsa” if you’ve followed this
tutorial.

7.2.2 AWS Job Store

Using the AWS job store is straightforward after you’ve finished Preparing your AWS environment; all you need to do
is specify the prefix for the job store name.

To run the sort example sort example with the AWS job store you would type

$ python sort.py aws:us-west-2:my-aws-sort-jobstore

7.2. Running in AWS 45

https://quay.io/repository/ucsc_cgl/toil?tag=latest&tab=tags
https://quay.io/repository/ucsc_cgl/toil?tag=latest&tab=tags
https://aws.amazon.com/ec2/pricing/on-demand/

Toil Documentation, Release 5.4.0

7.2.3 Toil Provisioner

The Toil provisioner is included in Toil alongside the [aws] extra and allows us to spin up a cluster.

Getting started with the provisioner is simple:

1. Make sure you have Toil installed with the AWS extras. For detailed instructions see Installing Toil with Extra
Features.

2. You will need an AWS account and you will need to save your AWS credentials on your local machine. For
help setting up an AWS account see here. For setting up your AWS credentials follow instructions here.

The Toil provisioner is built around the Toil Appliance, a Docker image that bundles Toil and all its requirements (e.g.
Mesos). This makes deployment simple across platforms, and you can even simulate a cluster locally (see Developing
with Docker for details).

Choosing Toil Appliance Image

When using the Toil provisioner, the appliance image will be automatically chosen based on the pip-installed version of
Toil on your system. That choice can be overridden by setting the environment variables TOIL_DOCKER_REGISTRY
and TOIL_DOCKER_NAME or TOIL_APPLIANCE_SELF. See Environment Variables for more information on these
variables. If you are developing with autoscaling and want to test and build your own appliance have a look at
Developing with Docker.

For information on using the Toil Provisioner have a look at Running a Workflow with Autoscaling.

7.2.4 Details about Launching a Cluster in AWS

Using the provisioner to launch a Toil leader instance is simple using the launch-cluster command. For example,
to launch a cluster named “my-cluster” with a t2.medium leader in the us-west-2a zone, run

(venv) $ toil launch-cluster my-cluster \
--leaderNodeType t2.medium \
--zone us-west-2a \
--keyPairName <your-AWS-key-pair-name>

The cluster name is used to uniquely identify your cluster and will be used to populate the instance’s Name tag. Also,
the Toil provisioner will automatically tag your cluster with an Owner tag that corresponds to your keypair name to
facilitate cost tracking. In addition, the ToilNodeType tag can be used to filter “leader” vs. “worker” nodes in your
cluster.

The leaderNodeType is an EC2 instance type. This only affects the leader node.

The --zone parameter specifies which EC2 availability zone to launch the cluster in. Alternatively, you can specify
this option via the TOIL_AWS_ZONE environment variable. Note: the zone is different from an EC2 region. A region
corresponds to a geographical area like us-west-2 (Oregon), and availability zones are partitions of this area
like us-west-2a.

By default, Toil creates an IAM role for each cluster with sufficient permissions to perform cluster operations (e.g.
full S3, EC2, and SDB access). If the default permissions are not sufficient for your use case (e.g. if you need access
to ECR), you may create a custom IAM role with all necessary permissions and set the --awsEc2ProfileArn
parameter when launching the cluster. Note that your custom role must at least have these permissions in order for the
Toil cluster to function properly.

In addition, Toil creates a new security group with the same name as the cluster name with default rules
(e.g. opens port 22 for SSH access). If you require additional security groups, you may use the
--awsEc2ExtraSecurityGroupId parameter when launching the cluster. Note: Do not use the same name

46 Chapter 7. Cloud Platforms

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files
https://aws.amazon.com/ec2/instance-types/

Toil Documentation, Release 5.4.0

as the cluster name for the extra security groups as any security group matching the cluster name will be deleted once
the cluster is destroyed.

For more information on options try:

(venv) $ toil launch-cluster --help

Static Provisioning

Toil can be used to manage a cluster in the cloud by using the Cluster Utilities. The cluster utilities also make it easy
to run a toil workflow directly on this cluster. We call this static provisioning because the size of the cluster does not
change. This is in contrast with Running a Workflow with Autoscaling.

To launch worker nodes alongside the leader we use the -w option:

(venv) $ toil launch-cluster my-cluster \
--leaderNodeType t2.small -z us-west-2a \
--keyPairName your-AWS-key-pair-name \
--nodeTypes m3.large,t2.micro -w 1,4

This will spin up a leader node of type t2.small with five additional workers — one m3.large instance and four t2.micro.

Currently static provisioning is only possible during the cluster’s creation. The ability to add new nodes and remove
existing nodes via the native provisioner is in development. Of course the cluster can always be deleted with the
Destroy-Cluster Command utility.

Uploading Workflows

Now that our cluster is launched, we use the Rsync-Cluster Command utility to copy the workflow to the leader. For a
simple workflow in a single file this might look like

(venv) $ toil rsync-cluster -z us-west-2a my-cluster toil-workflow.py :/

Note: If your toil workflow has dependencies have a look at the Auto-Deployment section for a detailed explanation
on how to include them.

Running a Workflow with Autoscaling

Autoscaling is a feature of running Toil in a cloud whereby additional cloud instances are launched to run the workflow.
Autoscaling leverages Mesos containers to provide an execution environment for these workflows.

Note: Make sure you’ve done the AWS setup in Preparing your AWS environment.

1. Download sort.py

2. Launch the leader node in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster-name> \
--keyPairName <AWS-key-pair-name> \
--leaderNodeType t2.medium \
--zone us-west-2a

7.2. Running in AWS 47

Toil Documentation, Release 5.4.0

3. Copy the sort.py script up to the leader node:

(venv) $ toil rsync-cluster -z us-west-2a <cluster-name> sort.py :/root

4. Login to the leader node:

(venv) $ toil ssh-cluster -z us-west-2a <cluster-name>

5. Run the script as an autoscaling workflow:

$ python /root/sort.py aws:us-west-2:<my-jobstore-name> \
--provisioner aws \
--nodeTypes c3.large \
--maxNodes 2 \
--batchSystem mesos

Note: In this example, the autoscaling Toil code creates up to two instances of type c3.large and launches Mesos
slave containers inside them. The containers are then available to run jobs defined by the sort.py script. Toil also
creates a bucket in S3 called aws:us-west-2:autoscaling-sort-jobstore to store intermediate job results. The Toil au-
toscaler can also provision multiple different node types, which is useful for workflows that have jobs with varying
resource requirements. For example, one could execute the script with --nodeTypes c3.large,r3.xlarge
--maxNodes 5,1, which would allow the provisioner to create up to five c3.large nodes and one r3.xlarge node for
memory-intensive jobs. In this situation, the autoscaler would avoid creating the more expensive r3.xlarge node until
needed, running most jobs on the c3.large nodes.

1. View the generated file to sort:

$ head fileToSort.txt

2. View the sorted file:

$ head sortedFile.txt

For more information on other autoscaling (and other) options have a look at Commandline Options and/or run

$ python my-toil-script.py --help

Important: Some important caveats about starting a toil run through an ssh session are explained in the Ssh-Cluster
Command section.

Preemptability

Toil can run on a heterogeneous cluster of both preemptable and non-preemptable nodes. Being preemptable node
simply means that the node may be shut down at any time, while jobs are running. These jobs can then be restarted
later somewhere else.

A node type can be specified as preemptable by adding a spot bid to its entry in the list of node types provided with
the --nodeTypes flag. If spot instance prices rise above your bid, the preemptable node whill be shut down.

While individual jobs can each explicitly specify whether or not they should be run on preemptable nodes via
the boolean preemptable resource requirement, the --defaultPreemptable flag will allow jobs without
a preemptable requirement to run on preemptable machines.

48 Chapter 7. Cloud Platforms

https://aws.amazon.com/ec2/spot/pricing/

Toil Documentation, Release 5.4.0

Specify Preemptability Carefully

Ensure that your choices for --nodeTypes and --maxNodes <> make sense for your workflow and won’t cause
it to hang. You should make sure the provisioner is able to create nodes large enough to run the largest job in the
workflow, and that non-preemptable node types are allowed if there are non-preemptable jobs in the workflow.

Finally, the --preemptableCompensation flag can be used to handle cases where preemptable nodes may not
be available but are required for your workflow. With this flag enabled, the autoscaler will attempt to compensate for
a shortage of preemptable nodes of a certain type by creating non-preemptable nodes of that type, if non-preemptable
nodes of that type were specified in --nodeTypes.

Using MinIO and S3-Compatible object stores

Toil can be configured to access files stored in an S3-compatible object store such as MinIO. The following environ-
ment variables can be used to configure the S3 connection used:

• TOIL_S3_HOST: the IP address or hostname to use for connecting to S3

• TOIL_S3_PORT: the port number to use for connecting to S3, if needed

• TOIL_S3_USE_SSL: enable or disable the usage of SSL for connecting to S3 (True by default)

Examples:

TOIL_S3_HOST=127.0.0.1
TOIL_S3_PORT=9010
TOIL_S3_USE_SSL=False

7.2.5 Dashboard

Toil provides a dashboard for viewing the RAM and CPU usage of each node, the number of issued jobs of each type,
the number of failed jobs, and the size of the jobs queue. To launch this dashboard for a toil workflow, include the
--metrics flag in the toil script command. The dashboard can then be viewed in your browser at localhost:3000
while connected to the leader node through toil ssh-cluster:

To change the default port number, you can use the --grafana_port argument:

(venv) $ toil ssh-cluster -z us-west-2a --grafana_port 8000 <cluster-name>

On AWS, the dashboard keeps track of every node in the cluster to monitor CPU and RAM usage, but it can also
be used while running a workflow on a single machine. The dashboard uses Grafana as the front end for displaying
real-time plots, and Prometheus for tracking metrics exported by toil:

7.2. Running in AWS 49

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://min.io/

Toil Documentation, Release 5.4.0

In order to use the dashboard for a non-released toil version, you will have to build the containers locally with make
docker, since the prometheus, grafana, and mtail containers used in the dashboard are tied to a specific toil version.

7.3 Running in Google Compute Engine (GCE)

Toil supports a provisioner with Google, and a Google Job Store. To get started, follow instructions for Preparing
your Google environment.

7.3.1 Preparing your Google environment

Toil supports using the Google Cloud Platform. Setting this up is easy!

1. Make sure that the google extra (Installing Toil with Extra Features) is installed

2. Follow Google’s Instructions to download credentials and set the GOOGLE_APPLICATION_CREDENTIALS
environment variable

3. Create a new ssh key with the proper format. To create a new ssh key run the command

$ ssh-keygen -t rsa -f ~/.ssh/id_rsa -C [USERNAME]

where [USERNAME] is something like jane@example.com. Make sure to leave your password blank.

Warning: This command could overwrite an old ssh key you may be using. If you have an existing ssh key
you would like to use, it will need to be called id_rsa and it needs to have no password set.

Make sure only you can read the SSH keys:

50 Chapter 7. Cloud Platforms

https://cloud.google.com/storage/
https://cloud.google.com/docs/authentication/getting-started

Toil Documentation, Release 5.4.0

$ chmod 400 ~/.ssh/id_rsa ~/.ssh/id_rsa.pub

4. Add your newly formatted public key to Google. To do this, log into your Google Cloud account and go to
metadata section under the Compute tab.

Near the top of the screen click on ‘SSH Keys’, then edit, add item, and paste the key. Then save:

7.3. Running in Google Compute Engine (GCE) 51

https://console.cloud.google.com/compute/metadata

Toil Documentation, Release 5.4.0

For more details look at Google’s instructions for adding SSH keys.

7.3.2 Google Job Store

To use the Google Job Store you will need to set the GOOGLE_APPLICATION_CREDENTIALS environment variable
by following Google’s instructions.

Then to run the sort example with the Google job store you would type

$ python sort.py google:my-project-id:my-google-sort-jobstore

7.3.3 Running a Workflow with Autoscaling

Warning: Google Autoscaling is in beta!

The steps to run a GCE workflow are similar to those of AWS (Running a Workflow with Autoscaling), except you will
need to explicitly specify the --provisioner gce option which otherwise defaults to aws.

1. Download sort.py

2. Launch the leader node in GCE using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <CLUSTER-NAME> \
--provisioner gce \
--leaderNodeType n1-standard-1 \
--keyPairName <SSH-KEYNAME> \
--zone us-west1-a

Where <SSH-KEYNAME> is the first part of [USERNAME] used when setting up your ssh key. For example if
[USERNAME] was jane@example.com, <SSH-KEYNAME> should be jane.

52 Chapter 7. Cloud Platforms

https://cloud.google.com/compute/docs/instances/adding-removing-ssh-keys
https://cloud.google.com/docs/authentication/getting-started
mailto:jane@example.com

Toil Documentation, Release 5.4.0

The --keyPairName option is for an SSH key that was added to the Google account. If your ssh key
[USERNAME] was jane@example.com, then your key pair name will be just jane.

3. Upload the sort example and ssh into the leader:

(venv) $ toil rsync-cluster --provisioner gce <CLUSTER-NAME> sort.py :/root
(venv) $ toil ssh-cluster --provisioner gce <CLUSTER-NAME>

4. Run the workflow:

$ python /root/sort.py google:<PROJECT-ID>:<JOBSTORE-NAME> \
--provisioner gce \
--batchSystem mesos \
--nodeTypes n1-standard-2 \
--maxNodes 2

5. Clean up:

$ exit # this exits the ssh from the leader node
(venv) $ toil destroy-cluster --provisioner gce <CLUSTER-NAME>

7.4 Cluster Utilities

There are several utilities used for starting and managing a Toil cluster using the AWS provisioner. They are installed
via the [aws] or [google] extra. For installation details see Toil Provisioner. The cluster utilities are used for Run-
ning in AWS and are comprised of toil launch-cluster, toil rsync-cluster, toil ssh-cluster,
and toil destroy-cluster entry points.

Cluster commands specific to toil are:

status — Reports runtime and resource usage for all jobs in a specified jobstore (workflow must have
originally been run using the –stats option).

stats — Inspects a job store to see which jobs have failed, run successfully, etc.

destroy-cluster — For autoscaling. Terminates the specified cluster and associated resources.

launch-cluster — For autoscaling. This is used to launch a toil leader instance with the specified
provisioner.

rsync-cluster — For autoscaling. Used to transfer files to a cluster launched with toil
launch-cluster.

ssh-cluster — SSHs into the toil appliance container running on the leader of the cluster.

clean — Delete the job store used by a previous Toil workflow invocation.

kill — Kills any running jobs in a rogue toil.

For information on a specific utility run:

toil launch-cluster --help

for a full list of its options and functionality.

The cluster utilities can be used for Running in Google Compute Engine (GCE) and Running in AWS.

7.4. Cluster Utilities 53

Toil Documentation, Release 5.4.0

Tip: By default, all of the cluster utilities expect to be running on AWS. To run with Google you will need to specify
the --provisioner gce option for each utility.

Note: Boto must be configured with AWS credentials before using cluster utilities.

Running in Google Compute Engine (GCE) contains instructions for

7.5 Stats Command

To use the stats command, a workflow must first be run using the --stats option. Using this command makes
certain that toil does not delete the job store, no matter what other options are specified (i.e. normally the option
--clean=always would delete the job, but --stats will override this).

An example of this would be running the following:

python discoverfiles.py file:my-jobstore --stats

Where discoverfiles.py is the following:

import os
import subprocess

from toil.common import Toil
from toil.job import Job

class discoverFiles(Job):
"""Views files at a specified path using ls."""
def __init__(self, path, *args, **kwargs):

self.path = path
super(discoverFiles, self).__init__(*args, **kwargs)

def run(self, fileStore):
if os.path.exists(self.path):

subprocess.check_call(["ls", self.path])

def main():
options = Job.Runner.getDefaultArgumentParser().parse_args()
options.clean = "always"

job1 = discoverFiles(path="/sys/", displayName='sysFiles')
job2 = discoverFiles(path=os.path.expanduser("~"), displayName='userFiles')
job3 = discoverFiles(path="/tmp/")

job1.addChild(job2)
job2.addChild(job3)

with Toil(options) as toil:
if not toil.options.restart:

toil.start(job1)
else:

toil.restart()

(continues on next page)

54 Chapter 7. Cloud Platforms

http://boto3.readthedocs.io/en/latest/guide/quickstart.html#configuration

Toil Documentation, Release 5.4.0

(continued from previous page)

if __name__ == '__main__':
main()

Notice the displayName key, which can rename a job, giving it an alias when it is finally displayed in stats. Running
this workflow file should record three job names: sysFiles (job1), userFiles (job2), and discoverFiles
(job3). To see the runtime and resources used for each job when it was run, type

toil stats file:my-jobstore

This should output the following:

Batch System: singleMachine
Default Cores: 1 Default Memory: 2097152K
Max Cores: 9.22337e+18
Total Clock: 0.56 Total Runtime: 1.01
Worker

Count | Time* |
→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓max total | min med ave max total | min med ave
→˓ max total

1 | 0.14 0.14 0.14 0.14 0.14 | 0.13 0.13 0.13 0.
→˓13 0.13 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K
→˓ 76K 76K
Job
Worker Jobs | min med ave max

| 3 3 3 3
Count | Time* |

→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓max total | min med ave max total | min med ave
→˓ max total

3 | 0.01 0.06 0.05 0.07 0.14 | 0.00 0.06 0.04 0.
→˓07 0.12 | 0.00 0.01 0.00 0.01 0.01 | 76K 76K 76K
→˓ 76K 229K
sysFiles

Count | Time* |
→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓max total | min med ave max total | min med ave
→˓ max total

1 | 0.01 0.01 0.01 0.01 0.01 | 0.00 0.00 0.00 0.
→˓00 0.00 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K
→˓ 76K 76K
userFiles

Count | Time* |
→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓max total | min med ave max total | min med ave
→˓ max total

1 | 0.06 0.06 0.06 0.06 0.06 | 0.06 0.06 0.06 0.
→˓06 0.06 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K
→˓ 76K 76K (continues on next page)

7.5. Stats Command 55

Toil Documentation, Release 5.4.0

(continued from previous page)

discoverFiles
Count | Time* |

→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓max total | min med ave max total | min med ave
→˓ max total

1 | 0.07 0.07 0.07 0.07 0.07 | 0.07 0.07 0.07 0.
→˓07 0.07 | 0.00 0.00 0.00 0.00 0.00 | 76K 76K 76K
→˓ 76K 76K

Once we’re done, we can clean up the job store by running

toil clean file:my-jobstore

7.6 Status Command

Continuing the example from the stats section above, if we ran our workflow with the command

python discoverfiles.py file:my-jobstore --stats

We could interrogate our jobstore with the status command, for example:

toil status file:my-jobstore

If the run was successful, this would not return much valuable information, something like

2018-01-11 19:31:29,739 - toil.lib.bioio - INFO - Root logger is at level 'INFO',
→˓'toil' logger at level 'INFO'.
2018-01-11 19:31:29,740 - toil.utils.toilStatus - INFO - Parsed arguments
2018-01-11 19:31:29,740 - toil.utils.toilStatus - INFO - Checking if we have files
→˓for Toil
The root job of the job store is absent, the workflow completed successfully.

Otherwise, the status command should return the following:

There are x unfinished jobs, y parent jobs with children, z jobs with services, a services, and b totally
failed jobs currently in c.

7.7 Clean Command

If a Toil pipeline didn’t finish successfully, or was run using --clean=always or --stats, the job store will exist
until it is deleted. toil clean <jobStore> ensures that all artifacts associated with a job store are removed.
This is particularly useful for deleting AWS job stores, which reserves an SDB domain as well as an S3 bucket.

The deletion of the job store can be modified by the --clean argument, and may be set to always, onError,
never, or onSuccess (default).

Temporary directories where jobs are running can also be saved from deletion using the --cleanWorkDir, which
has the same options as --clean. This option should only be run when debugging, as intermediate jobs will fill up
disk space.

56 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.4.0

7.8 Launch-Cluster Command

Running toil launch-cluster starts up a leader for a cluster. Workers can be added to the initial cluster by
specifying the -w option. An example would be

$ toil launch-cluster my-cluster \
--leaderNodeType t2.small -z us-west-2a \
--keyPairName your-AWS-key-pair-name \
--nodeTypes m3.large,t2.micro -w 1,4

Options are listed below. These can also be displayed by running

$ toil launch-cluster --help

launch-cluster’s main positional argument is the clusterName. This is simply the name of your cluster. If it does not
exist yet, Toil will create it for you.

Launch-Cluster Options

--help -h also accepted. Displays this help menu.

--tempDirRoot TEMPDIRROOT Path to the temporary directory where all temp files
are created, by default uses the current working directory as the base.

--version Display version.

--provisioner CLOUDPROVIDER -p CLOUDPROVIDER also accepted. The provi-
sioner for cluster auto-scaling. Both AWS and GCE are currently
supported.

--zone ZONE -z ZONE also accepted. The availability zone of the leader.
This parameter can also be set via the TOIL_AWS_ZONE
or TOIL_GCE_ZONE environment variables, or by the
ec2_region_name parameter in your .boto file if using AWS,
or derived from the instance metadata if using this utility on an
existing EC2 instance.

--leaderNodeType LEADERNODETYPE Non-preemptable node type to use for the
cluster leader.

--keyPairName KEYPAIRNAME The name of the AWS or ssh key pair to include on
the instance.

--boto BOTOPATH The path to the boto credentials directory. This is transferred to all
nodes in order to access the AWS jobStore from non-AWS instances.

--tag KEYVALUE KEYVALUE is specified as KEY=VALUE. -t KEY=VALUE also
accepted. Tags are added to the AWS cluster for this node and all of
its children. Tags are of the form: -t key1=value1 –tag key2=value2.
Multiple tags are allowed and each tag needs its own flag. By default
the cluster is tagged with: { “Name”: clusterName, “Owner”: IAM
username }.

--vpcSubnet VPCSUBNET VPC subnet ID to launch cluster in. Uses default subnet if
not specified. This subnet needs to have auto assign IPs turned on.

--nodeTypes NODETYPES Comma-separated list of node types to create while launch-
ing the leader. The syntax for each node type depends on the pro-
visioner used. For the AWS provisioner this is the name of an EC2
instance type followed by a colon and the price in dollars to bid for a

7.8. Launch-Cluster Command 57

Toil Documentation, Release 5.4.0

spot instance, for example ‘c3.8xlarge:0.42’. Must also provide the
–workers argument to specify how many workers of each node type
to create.

--workers WORKERS -w WORKERS also accepted. Comma-separated list of the num-
ber of workers of each node type to launch alongside the leader when
the cluster is created. This can be useful if running toil without auto-
scaling but with need of more hardware support.

--leaderStorage LEADERSTORAGE Specify the size (in gigabytes) of the root volume
for the leader instance. This is an EBS volume.

--nodeStorage NODESTORAGE Specify the size (in gigabytes) of the root volume for
any worker instances created when using the -w flag. This is an EBS
volume.

--nodeStorageOverrides NODESTORAGEOVERRIDES Comma-separated list of
nodeType:nodeStorage that are used to override the default value
from –nodeStorage for the specified nodeType(s). This is useful for
heterogeneous jobs where some tasks require much more disk than
others.

Logging Options

--logOff Same as –logCritical.

--logCritical Turn on logging at level CRITICAL and above. (default is INFO)

--logError Turn on logging at level ERROR and above. (default is INFO)

--logWarning Turn on logging at level WARNING and above. (default is INFO)

--logInfo Turn on logging at level INFO and above. (default is INFO)

--logDebug Turn on logging at level DEBUG and above. (default is INFO)

--logLevel LOGLEVEL Log at given level (may be either OFF (or CRITICAL), ERROR,
WARN (or WARNING), INFO or DEBUG). (default is INFO)

--logFile LOGFILE File to log in.

--rotatingLogging Turn on rotating logging, which prevents log files getting too big.

7.9 Ssh-Cluster Command

Toil provides the ability to ssh into the leader of the cluster. This can be done as follows:

$ toil ssh-cluster CLUSTER-NAME-HERE

This will open a shell on the Toil leader and is used to start an Running a Workflow with Autoscaling run. Issues with
docker prevent using screen and tmux when sshing the cluster (The shell doesn’t know that it is a TTY which
prevents it from allocating a new screen session). This can be worked around via

$ script
$ screen

Simply running screen within script will get things working properly again.

Finally, you can execute remote commands with the following syntax:

58 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.4.0

$ toil ssh-cluster CLUSTER-NAME-HERE remoteCommand

It is not advised that you run your Toil workflow using remote execution like this unless a tool like nohup is used to
ensure the process does not die if the SSH connection is interrupted.

For an example usage, see Running a Workflow with Autoscaling.

7.10 Rsync-Cluster Command

The most frequent use case for the rsync-cluster utility is deploying your Toil script to the Toil leader. Note that
the syntax is the same as traditional rsync with the exception of the hostname before the colon. This is not needed in
toil rsync-cluster since the hostname is automatically determined by Toil.

Here is an example of its usage:

$ toil rsync-cluster CLUSTER-NAME-HERE \
~/localFile :/remoteDestination

7.11 Destroy-Cluster Command

The destroy-cluster command is the advised way to get rid of any Toil cluster launched using the Launch-
Cluster Command command. It ensures that all attached nodes, volumes, security groups, etc. are deleted. If a node or
cluster is shut down using Amazon’s online portal residual resources may still be in use in the background. To delete
a cluster run

$ toil destroy-cluster CLUSTER-NAME-HERE

7.12 Kill Command

To kill all currently running jobs for a given jobstore, use the command

toil kill file:my-jobstore

7.10. Rsync-Cluster Command 59

https://linux.die.net/man/1/nohup
https://linux.die.net/man/1/rsync

Toil Documentation, Release 5.4.0

60 Chapter 7. Cloud Platforms

CHAPTER 8

HPC Environments

Toil is a flexible framework that can be leveraged in a variety of environments, including high-performance computing
(HPC) environments. Toil provides support for a number of batch systems, including Grid Engine, Slurm, Torque
and LSF, which are popular schedulers used in these environments. Toil also supports HTCondor, which is a popu-
lar scheduler for high-throughput computing (HTC). To use one of these batch systems specify the “–batchSystem”
argument to the toil script.

Due to the cost and complexity of maintaining support for these schedulers we currently consider them to be “com-
munity supported”, that is the core development team does not regularly test or develop support for these systems.
However, there are members of the Toil community currently deploying Toil in HPC environments and we welcome
external contributions.

Developing the support of a new or existing batch system involves extending the abstract batch system class toil.
batchSystems.abstractBatchSystem.AbstractBatchSystem.

8.1 Standard Output/Error from Batch System Jobs

Standard output and error from batch system jobs (except for the Parasol and Mesos batch systems) are redirected to
files in the toil-<workflowID> directory created within the temporary directory specified by the --workDir
option; see Commandline Options. Each file is named as follows: toil_job_<Toil job ID>_batch_<name
of batch system>_<job ID from batch system>_<file description>.log, where <file
description> is std_output for standard output, and std_error for standard error. HTCondor will also
write job event log files with <file description> = job_events.

If capturing standard output and error is desired, --workDir will generally need to be on a shared file system;
otherwise if these are written to local temporary directories on each node (e.g. /tmp) Toil will not be able to retrieve
them. Alternatively, the --noStdOutErr option forces Toil to discard all standard output and error from batch
system jobs.

61

http://www.univa.com/oracle
https://www.schedmd.com/
http://www.adaptivecomputing.com/products/open-source/torque/
https://en.wikipedia.org/wiki/Platform_LSF
https://research.cs.wisc.edu/htcondor/

Toil Documentation, Release 5.4.0

62 Chapter 8. HPC Environments

CHAPTER 9

CWL in Toil

The Common Workflow Language (CWL) is an emerging standard for writing workflows that are portable across
multiple workflow engines and platforms. Toil has full support for the CWL v1.0.1 specification.

9.1 Running CWL Locally

The toil-cwl-runner command provides cwl-parsing functionality using cwltool, and leverages the job-scheduling and
batch system support of Toil.

To run in local batch mode, provide the CWL file and the input object file:

$ toil-cwl-runner example.cwl example-job.yml

For a simple example of CWL with Toil see Running a basic CWL workflow.

9.1.1 Note for macOS + Docker + Toil

When invoking CWL documents that make use of Docker containers if you see errors that look like

docker: Error response from daemon: Mounts denied:
The paths /var/...tmp are not shared from OS X and are not known to Docker.

you may need to add

export TMPDIR=/tmp/docker_tmp

either in your startup file (.bashrc) or add it manually in your shell before invoking toil.

9.2 Detailed Usage Instructions

Help information can be found by using this toil command:

63

Toil Documentation, Release 5.4.0

$ toil-cwl-runner -h

A more detailed example shows how we can specify both Toil and cwltool arguments for our workflow:

$ toil-cwl-runner \
--singularity \
--jobStore my_jobStore \
--batchSystem lsf \
--workDir `pwd` \
--outdir `pwd` \
--logFile cwltoil.log \
--writeLogs `pwd` \
--logLevel DEBUG \
--retryCount 2 \
--maxLogFileSize 20000000000 \
--stats \
standard_bam_processing.cwl \
inputs.yaml

In this example, we set the following options, which are all passed to Toil:

--singularity: Specifies that all jobs with Docker fornat containers specified should be run using the Singularity
container engine instead of the Docker container engine.

--jobStore: Path to a folder that already exists, which will contain the Toil jobstore and all related job-tracking
information.

--batchSystem: Use the specified HPC or Cloud-based cluster platform.

--workDir: The directory where all temporary files will be created for the workflow. A subdirectory of this will be
set as the $TMPDIR environment variable and this subdirectory can be referenced using the CWL parameter reference
$(runtime.tmpdir) in CWL tools and workflows.

--outdir: Directory where final File and Directory outputs will be written. References to these and other
output types will be in the JSON object printed to the stdout stream after workflow execution.

--logFile: Path to the main logfile with logs from all jobs.

--writeLogs: Directory where all job logs will be stored.

--retryCount: How many times to retry each Toil job.

--maxLogFileSize: Logs that get larger than this value will be truncated.

--stats: Save resources usages in json files that can be collected with the toil stats command after the
workflow is done.

9.3 Running CWL in the Cloud

To run in cloud and HPC configurations, you may need to provide additional command line parameters to select and
configure the batch system to use.

To run a CWL workflow in AWS with toil see Running a CWL Workflow on AWS.

64 Chapter 9. CWL in Toil

Toil Documentation, Release 5.4.0

9.4 Running CWL within Toil Scripts

A CWL workflow can be run indirectly in a native Toil script. However, this is not the standard way to run CWL
workflows with Toil and doing so comes at the cost of job efficiency. For some use cases, such as running one process
on multiple files, it may be useful. For example, if you want to run a CWL workflow with 3 YML files specifying
different samples inputs, it could look something like:

import os
import subprocess

from toil.common import Toil
from toil.job import Job

def initialize_jobs(job):
job.fileStore.logToMaster('initialize_jobs')

def runQC(job, cwl_file, cwl_filename, yml_file, yml_filename, outputs_dir, output_
→˓num):

job.fileStore.logToMaster("runQC")
tempDir = job.fileStore.getLocalTempDir()

cwl = job.fileStore.readGlobalFile(cwl_file, userPath=os.path.join(tempDir, cwl_
→˓filename))

yml = job.fileStore.readGlobalFile(yml_file, userPath=os.path.join(tempDir, yml_
→˓filename))

subprocess.check_call(["toil-cwl-runner", cwl, yml])

output_filename = "output.txt"
output_file = job.fileStore.writeGlobalFile(output_filename)
job.fileStore.readGlobalFile(output_file, userPath=os.path.join(outputs_dir,

→˓"sample_" + output_num + "_" + output_filename))
return output_file

if __name__ == "__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"
with Toil(options) as toil:

specify the folder where the cwl and yml files live
inputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)),

→˓"cwlExampleFiles")
specify where you wish the outputs to be written
outputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)),

→˓"cwlExampleFiles")

job0 = Job.wrapJobFn(initialize_jobs)

cwl_filename = "hello.cwl"
cwl_file = toil.importFile("file://" + os.path.abspath(os.path.join(inputs_

→˓dir, cwl_filename)))

add list of yml config inputs here or import and construct from file

(continues on next page)

9.4. Running CWL within Toil Scripts 65

Toil Documentation, Release 5.4.0

(continued from previous page)

yml_files = ["hello1.yml", "hello2.yml", "hello3.yml"]
i = 0
for yml in yml_files:

i = i + 1
yml_file = toil.importFile("file://" + os.path.abspath(os.path.

→˓join(inputs_dir, yml)))
yml_filename = yml
job = Job.wrapJobFn(runQC, cwl_file, cwl_filename, yml_file, yml_filename,

→˓ outputs_dir, output_num=str(i))
job0.addChild(job)

toil.start(job0)

9.5 Toil & CWL Tips

See logs for just one job by using the full log file

This requires knowing the job’s toil-generated ID, which can be found in the log files.

cat cwltoil.log | grep jobVM1fIs

Grep for full tool commands from toil logs

This gives you a more concise view of the commands being run (note that this information is only available from Toil
when running with –logDebug).

pcregrep -M "\[job .*\.cwl.*$\n(.* .*$\n)*" cwltoil.log
^allows for multiline matching

Find Bams that have been generated for specific step while pipeline is running:

find . | grep -P '^./out_tmpdir.*_MD\.bam$'

See what jobs have been run

cat log/cwltoil.log | grep -oP "\[job .*.cwl\]" | sort | uniq

or:

cat log/cwltoil.log | grep -i "issued job"

Get status of a workflow

$ toil status /home/johnsoni/TEST_RUNS_3/TEST_run/tmp/jobstore-09ae0acc-c800-11e8-
→˓9d09-70106fb1697e
<hostname> 2018-10-04 15:01:44,184 MainThread INFO toil.lib.bioio: Root logger is at
→˓level 'INFO', 'toil' logger at level 'INFO'.
<hostname> 2018-10-04 15:01:44,185 MainThread INFO toil.utils.toilStatus: Parsed
→˓arguments
<hostname> 2018-10-04 15:01:47,081 MainThread INFO toil.utils.toilStatus: Traversing
→˓the job graph gathering jobs. This may take a couple of minutes.

Of the 286 jobs considered, there are 179 jobs with children, 107 jobs ready to run,
→˓0 zombie jobs, 0 jobs with services, 0 services, and 0 jobs with log files
→˓currently in file:/home/user/jobstore-09ae0acc-c800-11e8-9d09-70106fb1697e.

66 Chapter 9. CWL in Toil

Toil Documentation, Release 5.4.0

Toil Stats

You can get run statistics broken down by CWL file. This only works once the workflow is finished:

$ toil stats /path/to/jobstore

The output will contain CPU, memory, and walltime information for all CWL job types:

<hostname> 2018-10-15 12:06:19,003 MainThread INFO toil.lib.bioio: Root logger is at
→˓level 'INFO', 'toil' logger at level 'INFO'.
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Parsed
→˓arguments
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Checking if
→˓we have files for toil
<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Checked
→˓arguments
Batch System: lsf
Default Cores: 1 Default Memory: 10485760K
Max Cores: 9.22337e+18
Total Clock: 106608.01 Total Runtime: 86634.11
Worker

Count | Time* |
→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓ max total | min med ave max total | min
→˓med ave max total

1659 | 0.00 0.80 264.87 12595.59 439424.40 | 0.00 0.46 449.05
→˓42240.74 744968.80 | -35336.69 0.16 -184.17 4230.65 -305544.39 | 48K
→˓ 223K 1020K 40235K 1692300K
Job
Worker Jobs | min med ave max

| 1077 1077 1077 1077
Count | Time* |

→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓ max total | min med ave max total | min
→˓med ave max total

1077 | 0.04 1.18 407.06 12593.43 438404.73 | 0.01 0.28 691.17
→˓42240.35 744394.14 | -35336.83 0.27 -284.11 4230.49 -305989.41 | 135K
→˓ 268K 1633K 40235K 1759734K
ResolveIndirect

Count | Time* |
→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓ max total | min med ave max total | min
→˓med ave max total

205 | 0.04 0.07 0.16 2.29 31.95 | 0.01 0.02 0.02
→˓ 0.14 3.60 | 0.02 0.05 0.14 2.28 28.35 | 190K
→˓266K 256K 314K 52487K
CWLGather

Count | Time* |
→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓ max total | min med ave max total | min
→˓med ave max total

(continues on next page)

9.5. Toil & CWL Tips 67

Toil Documentation, Release 5.4.0

(continued from previous page)

40 | 0.05 0.17 0.29 1.90 11.62 | 0.01 0.02 0.02
→˓ 0.05 0.80 | 0.03 0.14 0.27 1.88 10.82 | 188K
→˓265K 250K 316K 10039K
CWLWorkflow

Count | Time* |
→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓ max total | min med ave max total | min
→˓med ave max total

205 | 0.09 0.40 0.98 13.70 200.82 | 0.04 0.15 0.16
→˓ 1.08 31.78 | 0.04 0.26 0.82 12.62 169.04 | 190K
→˓270K 257K 316K 52826K
file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/
→˓group_waltz_files.cwl

Count | Time* |
→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓ max total | min med ave max total | min
→˓med ave max total

99 | 0.29 0.49 0.59 2.50 58.11 | 0.14 0.26 0.29
→˓ 1.04 28.95 | 0.14 0.22 0.29 1.48 29.16 | 135K
→˓135K 135K 136K 13459K
file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/
→˓make_sample_output_dirs.cwl

Count | Time* |
→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓ max total | min med ave max total | min
→˓med ave max total

11 | 0.34 0.52 0.74 2.63 8.18 | 0.20 0.30 0.41
→˓ 1.17 4.54 | 0.14 0.20 0.33 1.45 3.65 | 136K
→˓136K 136K 136K 1496K
file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/
→˓consolidate_files.cwl

Count | Time* |
→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓ max total | min med ave max total | min
→˓med ave max total

8 | 0.31 0.59 0.71 1.80 5.69 | 0.18 0.35 0.37
→˓ 0.63 2.94 | 0.13 0.27 0.34 1.17 2.75 | 136K
→˓136K 136K 136K 1091K
file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/bwa-mem/bwa-mem.cwl

Count | Time* |
→˓ Clock | Wait |
→˓ Memory

n | min med* ave max total | min med ave
→˓ max total | min med ave max total | min
→˓med ave max total

22 | 895.76 3098.13 3587.34 12593.43 78921.51 | 2127.02 7910.31 8123.06
→˓16959.13 178707.34 | -11049.84 -3827.96 -4535.72 19.49 -99785.83 | 5659K
→˓5950K 5854K 6128K 128807K

68 Chapter 9. CWL in Toil

Toil Documentation, Release 5.4.0

Understanding toil log files

There is a worker_log.txt file for each job, this file is written to while the job is running, and deleted after the job
finishes. The contents are printed to the main log file and transferred to a log file in the –logDir folder once the job is
completed successfully.

The new log file will be named something like:

file:<path to cwl tool>.cwl_<job ID>.log

file:---home-johnsoni-pipeline_1.1.14-ACCESS--Pipeline-cwl_tools-marianas-
→˓ProcessLoopUMIFastq.cwl_I-O-jobfGsQQw000.log

This is the toil job command with spaces replaced by dashes.

9.5. Toil & CWL Tips 69

Toil Documentation, Release 5.4.0

70 Chapter 9. CWL in Toil

CHAPTER 10

WDL in Toil

Support is still in the alpha phase and should be able to handle basic wdl files. See the specification below for more
details.

10.1 How to Run a WDL file in Toil

Recommended best practice when running wdl files is to first use the Broad’s wdltool for syntax validation and gener-
ating the needed json input file. Full documentation can be found on the repository, and a precompiled jar binary can
be downloaded here: wdltool (this requires java7).

That means two steps. First, make sure your wdl file is valid and devoid of syntax errors by running

java -jar wdltool.jar validate example_wdlfile.wdl

Second, generate a complementary json file if your wdl file needs one. This json will contain keys for every necessary
input that your wdl file needs to run:

java -jar wdltool.jar inputs example_wdlfile.wdl

When this json template is generated, open the file, and fill in values as necessary by hand. WDL files all require json
files to accompany them. If no variable inputs are needed, a json file containing only ‘{}’ may be required.

Once a wdl file is validated and has an appropriate json file, workflows can be run in toil using:

toil-wdl-runner example_wdlfile.wdl example_jsonfile.json

See options below for more parameters.

10.2 ENCODE Example from ENCODE-DCC

To follow this example, you will need docker installed. The original workflow can be found here: https://github.com/
ENCODE-DCC/pipeline-container

71

https://github.com/broadinstitute/wdltool
https://github.com/broadinstitute/wdltool/releases
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
https://github.com/ENCODE-DCC/pipeline-container
https://github.com/ENCODE-DCC/pipeline-container

Toil Documentation, Release 5.4.0

We’ve included the wdl file and data files in the toil repository needed to run this example. First, download the example
code and unzip. The file needed is “testENCODE/encode_mapping_workflow.wdl”.

Next, use wdltool (this requires java7) to validate this file:

java -jar wdltool.jar validate encode_mapping_workflow.wdl

Next, use wdltool to generate a json file for this wdl file:

java -jar wdltool.jar inputs encode_mapping_workflow.wdl

This json file once opened should look like this:

{
"encode_mapping_workflow.fastqs": "Array[File]",
"encode_mapping_workflow.trimming_parameter": "String",
"encode_mapping_workflow.reference": "File"
}

The trimming_parameter should be set to ‘native’. Download the example code and unzip. Inside are two data files
required for the run

ENCODE_data/reference/GRCh38_chr21_bwa.tar.gz ENCODE_data/ENCFF000VOL_chr21.
fq.gz

Editing the json to include these as inputs, the json should now look something like this:

{
"encode_mapping_workflow.fastqs": ["/path/to/unzipped/ENCODE_data/ENCFF000VOL_chr21.
→˓fq.gz"],
"encode_mapping_workflow.trimming_parameter": "native",
"encode_mapping_workflow.reference": "/path/to/unzipped/ENCODE_data/reference/GRCh38_
→˓chr21_bwa.tar.gz"
}

The wdl and json files can now be run using the command

toil-wdl-runner encode_mapping_workflow.wdl encode_mapping_workflow.json

This should deposit the output files in the user’s current working directory (to change this, specify a new directory
with the ‘-o’ option).

10.3 GATK Examples from the Broad

Simple examples of WDL can be found on the Broad’s website as tutorials: https://software.broadinstitute.org/wdl/
documentation/topic?name=wdl-tutorials.

One can follow along with these tutorials, write their own wdl files following the directions and run them using either
cromwell or toil. For example, in tutorial 1, if you’ve followed along and named your wdl file ‘helloHaplotype-
Call.wdl’, then once you’ve validated your wdl file using wdltool (this requires java7) using

java -jar wdltool.jar validate helloHaplotypeCaller.wdl

and generated a json file (and subsequently typed in appropriate filepaths* and variables) using

java -jar wdltool.jar inputs helloHaplotypeCaller.wdl

• Absolute filepath inputs are recommended for local testing.

then the wdl script can be run using

toil-wdl-runner helloHaplotypeCaller.wdl helloHaplotypeCaller_inputs.json

72 Chapter 10. WDL in Toil

http://toil-datasets.s3.amazonaws.com/ENCODE_data.zip
https://github.com/broadinstitute/wdltool/releases
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
http://toil-datasets.s3.amazonaws.com/ENCODE_data.zip
https://software.broadinstitute.org/wdl/documentation/topic?name=wdl-tutorials
https://software.broadinstitute.org/wdl/documentation/topic?name=wdl-tutorials
https://github.com/broadinstitute/wdltool/releases
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html

Toil Documentation, Release 5.4.0

10.4 toilwdl.py Options

‘-o’ or ‘–outdir’: Specifies the output folder, and defaults to the current working directory if not specified by the user.

‘–dev_mode’: Creates “AST.out”, which holds a printed AST of the wdl file and “mappings.out”, which holds the
printed task, workflow, csv, and tsv dictionaries generated by the parser. Also saves the compiled toil python workflow
file for debugging.

Any number of arbitrary options may also be specified. These options will not be parsed immediately, but passed
down as toil options once the wdl/json files are processed. For valid toil options, see the documentation: http://toil.
readthedocs.io/en/latest/running/cliOptions.html

10.5 Running WDL within Toil Scripts

Note: A cromwell.jar file is needed in order to run a WDL workflow.

A WDL workflow can be run indirectly in a native Toil script. However, this is not the standard way to run WDL
workflows with Toil and doing so comes at the cost of job efficiency. For some use cases, such as running one process
on multiple files, it may be useful. For example, if you want to run a WDL workflow with 3 JSON files specifying
different samples inputs, it could look something like:

import os
import subprocess

from toil.common import Toil
from toil.job import Job

def initialize_jobs(job):
job.fileStore.logToMaster("initialize_jobs")

def runQC(job, wdl_file, wdl_filename, json_file, json_filename, outputs_dir, jar_loc,
→˓output_num):

job.fileStore.logToMaster("runQC")
tempDir = job.fileStore.getLocalTempDir()

wdl = job.fileStore.readGlobalFile(wdl_file, userPath=os.path.join(tempDir, wdl_
→˓filename))

json = job.fileStore.readGlobalFile(json_file, userPath=os.path.join(tempDir,
→˓json_filename))

subprocess.check_call(["java","-jar",jar_loc,"run",wdl,"--inputs",json])

output_filename = "output.txt"
output_file = job.fileStore.writeGlobalFile(outputs_dir + output_filename)
job.fileStore.readGlobalFile(output_file, userPath=os.path.join(outputs_dir,

→˓"sample_" + output_num + "_" + output_filename))
return output_file

if __name__ == "__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")

(continues on next page)

10.4. toilwdl.py Options 73

http://toil.readthedocs.io/en/latest/running/cliOptions.html
http://toil.readthedocs.io/en/latest/running/cliOptions.html

Toil Documentation, Release 5.4.0

(continued from previous page)

options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:

specify the folder where the wdl and json files live
inputs_dir = "wdlExampleFiles/"
specify where you wish the outputs to be written
outputs_dir = "wdlExampleFiles/"
specify the location of your cromwell jar
jar_loc = os.path.abspath("wdlExampleFiles/cromwell-35.jar")

job0 = Job.wrapJobFn(initialize_jobs)

wdl_filename = "hello.wdl"
wdl_file = toil.importFile("file://" + os.path.abspath(os.path.join(inputs_

→˓dir, wdl_filename)))

add list of yml config inputs here or import and construct from file
json_files = ["hello1.json", "hello2.json", "hello3.json"]
i = 0
for json in json_files:

i = i + 1
json_file = toil.importFile("file://" + os.path.join(inputs_dir, json))
json_filename = json
job = Job.wrapJobFn(runQC, wdl_file, wdl_filename, json_file, json_

→˓filename, outputs_dir, jar_loc, output_num=str(i))
job0.addChild(job)

toil.start(job0)

10.6 WDL Specifications

WDL language specifications can be found here: https://github.com/broadinstitute/wdl/blob/develop/SPEC.md

Implementing support for more features is currently underway, but a basic roadmap so far is:

CURRENTLY IMPLEMENTED:

• Scatter

• Many Built-In Functions

• Docker Calls

• Handles Priority, and Output File Wrangling

• Currently Handles Primitives and Arrays

TO BE IMPLEMENTED:

• Integrate Cloud Autoscaling Capacity More Robustly

• WDL Files That “Import” Other WDL Files (Including URI Handling for ‘http://’ and ‘https://’)

74 Chapter 10. WDL in Toil

https://github.com/broadinstitute/wdl/blob/develop/SPEC.md
http://
https://

CHAPTER 11

Developing a Workflow

This tutorial walks through the features of Toil necessary for developing a workflow using the Toil Python API.

Note: “script” and “workflow” will be used interchangeably

11.1 Scripting Quick Start

To begin, consider this short toil script which illustrates defining a workflow:

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
return "Hello, world!, here's a message: %s" % message

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "OFF"
options.clean = "always"

hello_job = Job.wrapFn(helloWorld, "Woot")

with Toil(options) as toil:
print(toil.start(hello_job)) #Prints Hello, world!, ...

The workflow consists of a single job. The resource requirements for that job are (optionally) specified by keyword
arguments (memory, cores, disk). The script is run using toil.job.Job.Runner.getDefaultOptions().
Below we explain the components of this code in detail.

75

Toil Documentation, Release 5.4.0

11.2 Job Basics

The atomic unit of work in a Toil workflow is a Job. User scripts inherit from this base class to define units of work.
For example, here is a more long-winded class-based version of the job in the quick start example:

from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return "Hello, world! Here's a message: %s" % self.message

In the example a class, HelloWorld, is defined. The constructor requests 2 gigabytes of memory, 2 cores and 3
gigabytes of local disk to complete the work.

The toil.job.Job.run() method is the function the user overrides to get work done. Here it just logs a message
using toil.job.Job.log(), which will be registered in the log output of the leader process of the workflow.

11.3 Invoking a Workflow

We can add to the previous example to turn it into a complete workflow by adding the necessary function calls to
create an instance of HelloWorld and to run this as a workflow containing a single job. This uses the toil.job.
Job.Runner class, which is used to start and resume Toil workflows. For example:

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return "Hello, world!, here's a message: %s" % self.message

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "OFF"
options.clean = "always"

hello_job = HelloWorld("Woot")

with Toil(options) as toil:
print(toil.start(hello_job))

Note: Do not include a . in the name of your python script (besides .py at the end). This is to allow toil to import the
types and functions defined in your file while starting a new process.

Alternatively, the more powerful toil.common.Toil class can be used to run and resume workflows. It is used as
a context manager and allows for preliminary setup, such as staging of files into the job store on the leader node. An

76 Chapter 11. Developing a Workflow

Toil Documentation, Release 5.4.0

instance of the class is initialized by specifying an options object. The actual workflow is then invoked by calling the
toil.common.Toil.start() method, passing the root job of the workflow, or, if a workflow is being restarted,
toil.common.Toil.restart() should be used. Note that the context manager should have explicit if else
branches addressing restart and non restart cases. The boolean value for these if else blocks is toil.options.restart.

For example:

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
self.log("Hello, world!, I have a message: {}".format(self.message))

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
if not toil.options.restart:

job = HelloWorld("Woot!")
toil.start(job)

else:
toil.restart()

The call to toil.job.Job.Runner.getDefaultOptions() creates a set of default options for the workflow.
The only argument is a description of how to store the workflow’s state in what we call a job-store. Here the job-store
is contained in a directory within the current working directory called “toilWorkflowRun”. Alternatively this string
can encode other ways to store the necessary state, e.g. an S3 bucket object store location. By default the job-store is
deleted if the workflow completes successfully.

The workflow is executed in the final line, which creates an instance of HelloWorld and runs it as a workflow. Note all
Toil workflows start from a single starting job, referred to as the root job. The return value of the root job is returned
as the result of the completed workflow (see promises below to see how this is a useful feature!).

11.4 Specifying Commandline Arguments

To allow command line control of the options we can use the toil.job.Job.Runner.
getDefaultArgumentParser() method to create a argparse.ArgumentParser object which can
be used to parse command line options for a Toil script. For example:

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
def __init__(self, message):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.message = message

(continues on next page)

11.4. Specifying Commandline Arguments 77

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.4.0

(continued from previous page)

def run(self, fileStore):
return "Hello, world!, here's a message: %s" % self.message

if __name__=="__main__":
parser = Job.Runner.getDefaultArgumentParser()
options = parser.parse_args()
options.logLevel = "OFF"
options.clean = "always"

hello_job = HelloWorld("Woot")

with Toil(options) as toil:
print(toil.start(hello_job))

Creates a fully fledged script with all the options Toil exposed as command line arguments. Running this script with
“–help” will print the full list of options.

Alternatively an existing argparse.ArgumentParser or optparse.OptionParser object can have Toil
script command line options added to it with the toil.job.Job.Runner.addToilOptions() method.

11.5 Resuming a Workflow

In the event that a workflow fails, either because of programmatic error within the jobs being run, or because of node
failure, the workflow can be resumed. Workflows can only not be reliably resumed if the job-store itself becomes
corrupt.

Critical to resumption is that jobs can be rerun, even if they have apparently completed successfully. Put succinctly,
a user defined job should not corrupt its input arguments. That way, regardless of node, network or leader failure the
job can be restarted and the workflow resumed.

To resume a workflow specify the “restart” option in the options object passed to toil.common.Toil.start().
If node failures are expected it can also be useful to use the integer “retryCount” option, which will attempt to rerun a
job retryCount number of times before marking it fully failed.

In the common scenario that a small subset of jobs fail (including retry attempts) within a workflow Toil will continue
to run other jobs until it can do no more, at which point toil.common.Toil.start() will raise a toil.
leader.FailedJobsException exception. Typically at this point the user can decide to fix the script and
resume the workflow or delete the job-store manually and rerun the complete workflow.

11.6 Functions and Job Functions

Defining jobs by creating class definitions generally involves the boilerplate of creating a constructor. To avoid this the
classes toil.job.FunctionWrappingJob and toil.job.JobFunctionWrappingTarget allow func-
tions to be directly converted to jobs. For example, the quick start example (repeated here):

from toil.common import Toil
from toil.job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
return "Hello, world!, here's a message: %s" % message

(continues on next page)

78 Chapter 11. Developing a Workflow

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/optparse.html#optparse.OptionParser

Toil Documentation, Release 5.4.0

(continued from previous page)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "OFF"
options.clean = "always"

hello_job = Job.wrapFn(helloWorld, "Woot")

with Toil(options) as toil:
print(toil.start(hello_job)) #Prints Hello, world!, ...

Is equivalent to the previous example, but using a function to define the job.

The function call:

Job.wrapFn(helloWorld, "Woot")

Creates the instance of the toil.job.FunctionWrappingTarget that wraps the function.

The keyword arguments memory, cores and disk allow resource requirements to be specified as before. Even if they
are not included as keyword arguments within a function header they can be passed as arguments when wrapping a
function as a job and will be used to specify resource requirements.

We can also use the function wrapping syntax to a job function, a function whose first argument is a reference to
the wrapping job. Just like a self argument in a class, this allows access to the methods of the wrapping job, see
toil.job.JobFunctionWrappingTarget. For example:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message):
job.log("Hello world, I have a message: {}".format(message))

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

hello_job = Job.wrapJobFn(helloWorld, "Woot!")

with Toil(options) as toil:
toil.start(hello_job)

Here helloWorld() is a job function. It uses the toil.job.Job.log() to log a message that will be printed
to the output console. Here the only subtle difference to note is the line:

hello_job = Job.wrapJobFn(helloWorld, "Woot")

Which uses the function toil.job.Job.wrapJobFn() to wrap the job function instead of toil.job.Job.
wrapFn() which wraps a vanilla function.

11.7 Workflows with Multiple Jobs

A parent job can have child jobs and follow-on jobs. These relationships are specified by methods of the job class, e.g.
toil.job.Job.addChild() and toil.job.Job.addFollowOn().

11.7. Workflows with Multiple Jobs 79

Toil Documentation, Release 5.4.0

Considering a set of jobs the nodes in a job graph and the child and follow-on relationships the directed edges of
the graph, we say that a job B that is on a directed path of child/follow-on edges from a job A in the job graph is a
successor of A, similarly A is a predecessor of B.

A parent job’s child jobs are run directly after the parent job has completed, and in parallel. The follow-on jobs of a
job are run after its child jobs and their successors have completed. They are also run in parallel. Follow-ons allow
the easy specification of cleanup tasks that happen after a set of parallel child tasks. The following shows a simple
example that uses the earlier helloWorld() job function:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.log("Hello world, I have a message: {}".format(message))

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = Job.wrapJobFn(helloWorld, "second or third")
j3 = Job.wrapJobFn(helloWorld, "second or third")
j4 = Job.wrapJobFn(helloWorld, "last")
j1.addChild(j2)
j1.addChild(j3)
j1.addFollowOn(j4)

with Toil(options) as toil:
toil.start(j1)

In the example four jobs are created, first j1 is run, then j2 and j3 are run in parallel as children of j1, finally j4 is
run as a follow-on of j1.

There are multiple short hand functions to achieve the same workflow, for example:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.log("Hello world, I have a message: {}".format(message))

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = j1.addChildJobFn(helloWorld, "second or third")
j3 = j1.addChildJobFn(helloWorld, "second or third")
j4 = j1.addFollowOnJobFn(helloWorld, "last")

with Toil(options) as toil:
toil.start(j1)

Equivalently defines the workflow, where the functions toil.job.Job.addChildJobFn() and toil.job.
Job.addFollowOnJobFn() are used to create job functions as children or follow-ons of an earlier job.

80 Chapter 11. Developing a Workflow

Toil Documentation, Release 5.4.0

Jobs graphs are not limited to trees, and can express arbitrary directed acyclic graphs. For a precise definition of legal
graphs see toil.job.Job.checkJobGraphForDeadlocks(). The previous example could be specified as a
DAG as follows:

from toil.common import Toil
from toil.job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.log("Hello world, I have a message: {}".format(message))

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

j1 = Job.wrapJobFn(helloWorld, "first")
j2 = j1.addChildJobFn(helloWorld, "second or third")
j3 = j1.addChildJobFn(helloWorld, "second or third")
j4 = j2.addChildJobFn(helloWorld, "last")
j3.addChild(j4)

with Toil(options) as toil:
toil.start(j1)

Note the use of an extra child edge to make j4 a child of both j2 and j3.

11.8 Dynamic Job Creation

The previous examples show a workflow being defined outside of a job. However, Toil also allows jobs to be created
dynamically within jobs. For example:

from toil.common import Toil
from toil.job import Job

def binaryStringFn(job, depth, message=""):
if depth > 0:

job.addChildJobFn(binaryStringFn, depth-1, message + "0")
job.addChildJobFn(binaryStringFn, depth-1, message + "1")

else:
job.log("Binary string: {}".format(message))

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
toil.start(Job.wrapJobFn(binaryStringFn, depth=5))

The job function binaryStringFn logs all possible binary strings of length n (here n=5), creating a total of
2^(n+2) - 1 jobs dynamically and recursively. Static and dynamic creation of jobs can be mixed in a Toil work-
flow, with jobs defined within a job or job function being created at run time.

11.8. Dynamic Job Creation 81

Toil Documentation, Release 5.4.0

11.9 Promises

The previous example of dynamic job creation shows variables from a parent job being passed to a child job. Such
forward variable passing is naturally specified by recursive invocation of successor jobs within parent jobs. This can
also be achieved statically by passing around references to the return variables of jobs. In Toil this is achieved with
promises, as illustrated in the following example:

from toil.common import Toil
from toil.job import Job

def fn(job, i):
job.log("i is: %s" % i, level=100)
return i+1

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

j1 = Job.wrapJobFn(fn, 1)
j2 = j1.addChildJobFn(fn, j1.rv())
j3 = j1.addFollowOnJobFn(fn, j2.rv())

with Toil(options) as toil:
toil.start(j1)

Running this workflow results in three log messages from the jobs: i is 1 from j1, i is 2 from j2 and i is
3 from j3.

The return value from the first job is promised to the second job by the call to toil.job.Job.rv() in the following
line:

j2 = j1.addChildFn(fn, j1.rv())

The value of j1.rv() is a promise, rather than the actual return value of the function, because j1 for the given input
has at that point not been evaluated. A promise (toil.job.Promise) is essentially a pointer to for the return value
that is replaced by the actual return value once it has been evaluated. Therefore, when j2 is run the promise becomes
2.

Promises also support indexing of return values:

def parent(job):
indexable = Job.wrapJobFn(fn)
job.addChild(indexable)
job.addFollowOnFn(raiseWrap, indexable.rv(2))

def raiseWrap(arg):
raise RuntimeError(arg) # raises "2"

def fn(job):
return (0, 1, 2, 3)

Promises can be quite useful. For example, we can combine dynamic job creation with promises to achieve a job
creation process that mimics the functional patterns possible in many programming languages:

82 Chapter 11. Developing a Workflow

Toil Documentation, Release 5.4.0

from toil.common import Toil
from toil.job import Job

def binaryStrings(job, depth, message=""):
if depth > 0:

s = [job.addChildJobFn(binaryStrings, depth-1, message + "0").rv(),
job.addChildJobFn(binaryStrings, depth-1, message + "1").rv()]

return job.addFollowOnFn(merge, s).rv()
return [message]

def merge(strings):
return strings[0] + strings[1]

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.loglevel = "OFF"
options.clean = "always"

with Toil(options) as toil:
print(toil.start(Job.wrapJobFn(binaryStrings, depth=5)))

The return value l of the workflow is a list of all binary strings of length 10, computed recursively. Although a toy
example, it demonstrates how closely Toil workflows can mimic typical programming patterns.

11.10 Promised Requirements

Promised requirements are a special case of Promises that allow a job’s return value to be used as another job’s resource
requirements.

This is useful when, for example, a job’s storage requirement is determined by a file staged to the job store by an
earlier job:

import os

from toil.common import Toil
from toil.job import Job, PromisedRequirement

def parentJob(job):
downloadJob = Job.wrapJobFn(stageFn, "File://"+os.path.realpath(__file__),

→˓cores=0.1, memory='32M', disk='1M')
job.addChild(downloadJob)

analysis = Job.wrapJobFn(analysisJob, fileStoreID=downloadJob.rv(0),
disk=PromisedRequirement(downloadJob.rv(1)))

job.addFollowOn(analysis)

def stageFn(job, url, cores=1):
importedFile = job.fileStore.importFile(url)
return importedFile, importedFile.size

def analysisJob(job, fileStoreID, cores=2):
now do some analysis on the file
pass

(continues on next page)

11.10. Promised Requirements 83

Toil Documentation, Release 5.4.0

(continued from previous page)

if __name__ == "__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
toil.start(Job.wrapJobFn(parentJob))

Note that this also makes use of the size attribute of the FileID object. This promised requirements mechanism can
also be used in combination with an aggregator for multiple jobs’ output values:

def parentJob(job):
aggregator = []
for fileNum in range(0,10):

downloadJob = Job.wrapJobFn(stageFn, "File://"+os.path.realpath(__file__),
→˓cores=0.1, memory='32M', disk='1M')

job.addChild(downloadJob)
aggregator.append(downloadJob)

analysis = Job.wrapJobFn(analysisJob, fileStoreID=downloadJob.rv(0),
disk=PromisedRequirement(lambda xs: sum(xs), [j.rv(1)

→˓for j in aggregator]))
job.addFollowOn(analysis)

Limitations

Just like regular promises, the return value must be determined prior to scheduling any job that depends on the return
value. In our example above, notice how the dependent jobs were follow ons to the parent while promising jobs are
children of the parent. This ordering ensures that all promises are properly fulfilled.

11.11 FileID

The toil.fileStore.FileID class is a small wrapper around Python’s builtin string class. It is used to rep-
resent a file’s ID in the file store, and has a size attribute that is the file’s size in bytes. This object is returned by
importFile and writeGlobalFile.

11.12 Managing files within a workflow

It is frequently the case that a workflow will want to create files, both persistent and temporary, during its run. The
toil.fileStores.abstractFileStore.AbstractFileStore class is used by jobs to manage these
files in a manner that guarantees cleanup and resumption on failure.

The toil.job.Job.run() method has a file store instance as an argument. The following example shows how
this can be used to create temporary files that persist for the length of the job, be placed in a specified local disk of the
node and that will be cleaned up, regardless of failure, when the job finishes:

from toil.common import Toil
from toil.job import Job

(continues on next page)

84 Chapter 11. Developing a Workflow

Toil Documentation, Release 5.4.0

(continued from previous page)

class LocalFileStoreJob(Job):
def run(self, fileStore):

self.TempDir will always contain the name of a directory within the
→˓allocated disk space reserved for the job

scratchDir = self.tempDir

Similarly create a temporary file.
scratchFile = fileStore.getLocalTempFile()

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

Create an instance of FooJob which will have at least 2 gigabytes of storage
→˓space.

j = LocalFileStoreJob(disk="2G")

#Run the workflow
with Toil(options) as toil:

toil.start(j)

Job functions can also access the file store for the job. The equivalent of the LocalFileStoreJob class is

def localFileStoreJobFn(job):
scratchDir = job.tempDir
scratchFile = job.fileStore.getLocalTempFile()

Note that the fileStore attribute is accessed as an attribute of the job argument.

In addition to temporary files that exist for the duration of a job, the file store allows the creation of files in a global
store, which persists during the workflow and are globally accessible (hence the name) between jobs. For example:

import os

from toil.common import Toil
from toil.job import Job

def globalFileStoreJobFn(job):
job.log("The following example exercises all the methods provided"

" by the toil.fileStores.abstractFileStore.AbstractFileStore class")

Create a local temporary file.
scratchFile = job.fileStore.getLocalTempFile()

Write something in the scratch file.
with open(scratchFile, 'w') as fH:

fH.write("What a tangled web we weave")

Write a copy of the file into the file-store; fileID is the key that can be
→˓used to retrieve the file.

This write is asynchronous by default
fileID = job.fileStore.writeGlobalFile(scratchFile)

Write another file using a stream; fileID2 is the

(continues on next page)

11.12. Managing files within a workflow 85

Toil Documentation, Release 5.4.0

(continued from previous page)

key for this second file.
with job.fileStore.writeGlobalFileStream(cleanup=True) as (fH, fileID2):

fH.write(b"Out brief candle")

Now read the first file; scratchFile2 is a local copy of the file that is read-
→˓only by default.

scratchFile2 = job.fileStore.readGlobalFile(fileID)

Read the second file to a desired location: scratchFile3.
scratchFile3 = os.path.join(job.tempDir, "foo.txt")
job.fileStore.readGlobalFile(fileID2, userPath=scratchFile3)

Read the second file again using a stream.
with job.fileStore.readGlobalFileStream(fileID2) as fH:

print(fH.read()) #This prints "Out brief candle"

Delete the first file from the global file-store.
job.fileStore.deleteGlobalFile(fileID)

It is unnecessary to delete the file keyed by fileID2 because we used the
→˓cleanup flag,

which removes the file after this job and all its successors have run (if the
→˓file still exists)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
toil.start(Job.wrapJobFn(globalFileStoreJobFn))

The example demonstrates the global read, write and delete functionality of the file-store, using both local copies of
the files and streams to read and write the files. It covers all the methods provided by the file store interface.

What is obvious is that the file-store provides no functionality to update an existing “global” file, meaning that files
are, barring deletion, immutable. Also worth noting is that there is no file system hierarchy for files in the global file
store. These limitations allow us to fairly easily support different object stores and to use caching to limit the amount
of network file transfer between jobs.

11.12.1 Staging of Files into the Job Store

External files can be imported into or exported out of the job store prior to running a workflow when the toil.
common.Toil context manager is used on the leader. The context manager provides methods toil.common.
Toil.importFile(), and toil.common.Toil.exportFile() for this purpose. The destination and
source locations of such files are described with URLs passed to the two methods. A list of the currently supported
URLs can be found at toil.jobStores.abstractJobStore.AbstractJobStore.importFile(). To
import an external file into the job store as a shared file, pass the optional sharedFileName parameter to that
method.

If a workflow fails for any reason an imported file acts as any other file in the job store. If the workflow was configured
such that it not be cleaned up on a failed run, the file will persist in the job store and needs not be staged again when
the workflow is resumed.

Example:

86 Chapter 11. Developing a Workflow

Toil Documentation, Release 5.4.0

import os

from toil.common import Toil
from toil.job import Job

class HelloWorld(Job):
def __init__(self, id):

Job.__init__(self, memory="2G", cores=2, disk="3G")
self.inputFileID = id

def run(self, fileStore):
with fileStore.readGlobalFileStream(self.inputFileID, encoding='utf-8') as fi:

with fileStore.writeGlobalFileStream(encoding='utf-8') as (fo,
→˓outputFileID):

fo.write(fi.read() + 'World!')
return outputFileID

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
if not toil.options.restart:

ioFileDirectory = os.path.join(os.path.dirname(os.path.abspath(__file__)),
→˓ "stagingExampleFiles")

inputFileID = toil.importFile("file://" + os.path.abspath(os.path.
→˓join(ioFileDirectory, "in.txt")))

outputFileID = toil.start(HelloWorld(inputFileID))
else:

outputFileID = toil.restart()

toil.exportFile(outputFileID, "file://" + os.path.abspath(os.path.
→˓join(ioFileDirectory, "out.txt")))

11.13 Using Docker Containers in Toil

Docker containers are commonly used with Toil. The combination of Toil and Docker allows for pipelines to be fully
portable between any platform that has both Toil and Docker installed. Docker eliminates the need for the user to do
any other tool installation or environment setup.

In order to use Docker containers with Toil, Docker must be installed on all workers of the cluster. Instructions for
installing Docker can be found on the Docker website.

When using Toil-based autoscaling, Docker will be automatically set up on the cluster’s worker nodes, so no additional
installation steps are necessary. Further information on using Toil-based autoscaling can be found in the Running a
Workflow with Autoscaling documentation.

In order to use docker containers in a Toil workflow, the container can be built locally or downloaded in real time from
an online docker repository like Quay. If the container is not in a repository, the container’s layers must be accessible
on each node of the cluster.

When invoking docker containers from within a Toil workflow, it is strongly recommended that you use
dockerCall(), a toil job function provided in toil.lib.docker. dockerCall leverages docker’s own

11.13. Using Docker Containers in Toil 87

https://docs.docker.com/engine/getstarted/step_one/
quay.io

Toil Documentation, Release 5.4.0

python API, and provides container cleanup on job failure. When docker containers are run without this feature, failed
jobs can result in resource leaks. Docker’s API can be found at docker-py.

In order to use dockerCall, your installation of Docker must be set up to run without sudo. Instructions for setting
this up can be found here.

An example of a basic dockerCall is below:

dockerCall(job=job,
tool='quay.io/ucsc_cgl/bwa',
workDir=job.tempDir,
parameters=['index', '/data/reference.fa'])

Note the assumption that reference.fa file is located in /data. This is Toil’s standard convention as a mount location
to reduce boilerplate when calling dockerCall. Users can choose their own mount locations by supplying a volumes
kwarg to dockerCall, such as: volumes={working_dir: {‘bind’: ‘/data’, ‘mode’: ‘rw’}}, where working_dir is an
absolute path on the user’s filesystem.

dockerCall can also be added to workflows like any other job function:

import os

from toil.common import Toil
from toil.job import Job
from toil.lib.docker import apiDockerCall

align = Job.wrapJobFn(apiDockerCall,
image='ubuntu',
working_dir=os.getcwd(),
parameters=['ls', '-lha'])

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
toil.start(align)

cgl-docker-lib contains dockerCall-compatible Dockerized tools that are commonly used in bioinformatics analy-
sis.

The documentation provides guidelines for developing your own Docker containers that can be used with Toil and
dockerCall. In order for a container to be compatible with dockerCall, it must have an ENTRYPOINT set to
a wrapper script, as described in cgl-docker-lib containerization standards. This can be set by passing in the optional
keyword argument, ‘entrypoint’. Example:

entrypoint=[“/bin/bash”,”-c”]

dockerCall supports currently the 75 keyword arguments found in the python Docker API, under the ‘run’ command.

11.14 Services

It is sometimes desirable to run services, such as a database or server, concurrently with a workflow. The toil.job.
Job.Service class provides a simple mechanism for spawning such a service within a Toil workflow, allowing
precise specification of the start and end time of the service, and providing start and end methods to use for initialization
and cleanup. The following simple, conceptual example illustrates how services work:

88 Chapter 11. Developing a Workflow

https://docker-py.readthedocs.io/en/stable/
https://docs.docker.com/engine/installation/linux/ubuntulinux/#/create-a-docker-group
https://github.com/BD2KGenomics/cgl-docker-lib/blob/master/README.md
https://docker-py.readthedocs.io/en/stable/containers.html

Toil Documentation, Release 5.4.0

from toil.common import Toil
from toil.job import Job

class DemoService(Job.Service):

def start(self, fileStore):
Start up a database/service here
Return a value that enables another process to connect to the database
return "loginCredentials"

def check(self):
A function that if it returns False causes the service to quit
If it raises an exception the service is killed and an error is reported
return True

def stop(self, fileStore):
Cleanup the database here
pass

j = Job()
s = DemoService()
loginCredentialsPromise = j.addService(s)

def dbFn(loginCredentials):
Use the login credentials returned from the service's start method to connect

→˓to the service
pass

j.addChildFn(dbFn, loginCredentialsPromise)

if __name__=="__main__":
options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
toil.start(j)

In this example the DemoService starts a database in the start method, returning an object from the start method
indicating how a client job would access the database. The service’s stop method cleans up the database, while the
service’s check method is polled periodically to check the service is alive.

A DemoService instance is added as a service of the root job j, with resource requirements specified. The return value
from toil.job.Job.addService() is a promise to the return value of the service’s start method. When the
promised is fulfilled it will represent how to connect to the database. The promise is passed to a child job of j, which
uses it to make a database connection. The services of a job are started before any of its successors have been run and
stopped after all the successors of the job have completed successfully.

Multiple services can be created per job, all run in parallel. Additionally, services can define sub-services using
toil.job.Job.Service.addChild(). This allows complex networks of services to be created, e.g. Apache
Spark clusters, within a workflow.

11.14. Services 89

Toil Documentation, Release 5.4.0

11.15 Checkpoints

Services complicate resuming a workflow after failure, because they can create complex dependencies between jobs.
For example, consider a service that provides a database that multiple jobs update. If the database service fails and
loses state, it is not clear that just restarting the service will allow the workflow to be resumed, because jobs that
created that state may have already finished. To get around this problem Toil supports checkpoint jobs, specified as the
boolean keyword argument checkpoint to a job or wrapped function, e.g.:

j = Job(checkpoint=True)

A checkpoint job is rerun if one or more of its successors fails its retry attempts, until it itself has exhausted its retry
attempts. Upon restarting a checkpoint job all its existing successors are first deleted, and then the job is rerun to
define new successors. By checkpointing a job that defines a service, upon failure of the service the database and the
jobs that access the service can be redefined and rerun.

To make the implementation of checkpoint jobs simple, a job can only be a checkpoint if when first defined it has no
successors, i.e. it can only define successors within its run method.

11.16 Encapsulation

Let A be a root job potentially with children and follow-ons. Without an encapsulated job the simplest way to specify
a job B which runs after A and all its successors is to create a parent of A, call it Ap, and then make B a follow-on of
Ap. e.g.:

from toil.common import Toil
from toil.job import Job

if __name__=="__main__":
A is a job with children and follow-ons, for example:
A = Job()
A.addChild(Job())
A.addFollowOn(Job())

B is a job which needs to run after A and its successors
B = Job()

The way to do this without encapsulation is to make a parent of A, Ap, and make
→˓B a follow-on of Ap.

Ap = Job()
Ap.addChild(A)
Ap.addFollowOn(B)

options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
print(toil.start(Ap))

An encapsulated job E(A) of A saves making Ap, instead we can write:

from toil.common import Toil
from toil.job import Job

(continues on next page)

90 Chapter 11. Developing a Workflow

Toil Documentation, Release 5.4.0

(continued from previous page)

if __name__=="__main__":
A
A = Job()
A.addChild(Job())
A.addFollowOn(Job())

Encapsulate A
A = A.encapsulate()

B is a job which needs to run after A and its successors
B = Job()

With encapsulation A and its successor subgraph appear to be a single job,
→˓hence:

A.addChild(B)

options = Job.Runner.getDefaultOptions("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

with Toil(options) as toil:
print(toil.start(A))

Note the call to toil.job.Job.encapsulate() creates the toil.job.Job.EncapsulatedJob.

11.17 Depending on Toil

If you are packing your workflow(s) as a pip-installable distribution on PyPI, you might be tempted to declare Toil as
a dependency in your setup.py, via the install_requires keyword argument to setup(). Unfortunately,
this does not work, for two reasons: For one, Toil uses Setuptools’ extra mechanism to manage its own optional
dependencies. If you explicitly declared a dependency on Toil, you would have to hard-code a particular combination
of extras (or no extras at all), robbing the user of the choice what Toil extras to install. Secondly, and more importantly,
declaring a dependency on Toil would only lead to Toil being installed on the leader node of a cluster, but not the
worker nodes. Auto-deployment does not work here because Toil cannot auto-deploy itself, the classic “Which came
first, chicken or egg?” problem.

In other words, you shouldn’t explicitly depend on Toil. Document the dependency instead (as in “This workflow
needs Toil version X.Y.Z to be installed”) and optionally add a version check to your setup.py. Refer to the
check_version() function in the toil-lib project’s setup.py for an example. Alternatively, you can also just
depend on toil-lib and you’ll get that check for free.

If your workflow depends on a dependency of Toil, consider not making that dependency explicit either. If you do, you
risk a version conflict between your project and Toil. The pip utility may silently ignore that conflict, breaking either
Toil or your workflow. It is safest to simply assume that Toil installs that dependency for you. The only downside is
that you are locked into the exact version of that dependency that Toil declares. But such is life with Python, which,
unlike Java, has no means of dependencies belonging to different software components within the same process, and
whose favored software distribution utility is incapable of properly resolving overlapping dependencies and detecting
conflicts.

11.18 Best Practices for Dockerizing Toil Workflows

Computational Genomics Lab’s Dockstore based production system provides workflow authors a way to run Dock-

11.17. Depending on Toil 91

https://github.com/BD2KGenomics/toil-lib/blob/master/setup.py
https://github.com/pypa/pip/issues/988
https://cgl.genomics.ucsc.edu/
https://dockstore.org/docs

Toil Documentation, Release 5.4.0

erized versions of their pipeline in an automated, scalable fashion. To be compatible with this system of a workflow
should meet the following requirements. In addition to the Docker container, a common workflow language descriptor
file is needed. For inputs:

• Only command line arguments should be used for configuring the workflow. If the workflow relies on a config-
uration file, like Toil-RNAseq or ProTECT, a wrapper script inside the Docker container can be used to parse
the CLI and generate the necessary configuration file.

• All inputs to the pipeline should be explicitly enumerated rather than implicit. For example, don’t rely on one
FASTQ read’s path to discover the location of its pair. This is necessary since all inputs are mapped to their own
isolated directories when the Docker is called via Dockstore.

• All inputs must be documented in the CWL descriptor file. Examples of this file can be seen in both Toil-
RNAseq and ProTECT.

For outputs:

• All outputs should be written to a local path rather than S3.

• Take care to package outputs in a local and user-friendly way. For example, don’t tar up all output if there are
specific files that will care to see individually.

• All output file names should be deterministic and predictable. For example, don’t prepend the name of an output
file with PASS/FAIL depending on the outcome of the pipeline.

• All outputs must be documented in the CWL descriptor file. Examples of this file can be seen in both Toil-
RNAseq and ProTECT.

92 Chapter 11. Developing a Workflow

https://dockstore.org/docs/getting-started-with-cwl
https://dockstore.org/docs/getting-started-with-cwl
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/protect
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/protect
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/toil-rnaseq
https://github.com/BD2KGenomics/protect

CHAPTER 12

Toil Class API

The Toil class configures and starts a Toil run.

class toil.common.Toil(options)
A context manager that represents a Toil workflow, specifically the batch system, job store, and its configuration.

__init__(options)
Initialize a Toil object from the given options. Note that this is very light-weight and that the bulk of the
work is done when the context is entered.

Parameters options (argparse.Namespace) – command line options specified by the
user

config = None

Type toil.common.Config

start(rootJob)
Invoke a Toil workflow with the given job as the root for an initial run. This method must be called in the
body of a with Toil(...) as toil: statement. This method should not be called more than once
for a workflow that has not finished.

Parameters rootJob (toil.job.Job) – The root job of the workflow

Returns The root job’s return value

restart()
Restarts a workflow that has been interrupted.

Returns The root job’s return value

classmethod getJobStore(locator)
Create an instance of the concrete job store implementation that matches the given locator.

Parameters locator (str) – The location of the job store to be represent by the instance

Returns an instance of a concrete subclass of AbstractJobStore

Return type toil.jobStores.abstractJobStore.AbstractJobStore

93

https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

static createBatchSystem(config)
Creates an instance of the batch system specified in the given config.

Parameters config (toil.common.Config) – the current configuration

Return type batchSystems.abstractBatchSystem.AbstractBatchSystem

Returns an instance of a concrete subclass of AbstractBatchSystem

importFile(srcUrl, sharedFileName=None, symlink=False)
Imports the file at the given URL into job store.

See toil.jobStores.abstractJobStore.AbstractJobStore.importFile() for a full
description

exportFile(jobStoreFileID, dstUrl)
Exports file to destination pointed at by the destination URL.

See toil.jobStores.abstractJobStore.AbstractJobStore.exportFile() for a full
description

static getToilWorkDir(configWorkDir: Optional[str] = None)→ str
Returns a path to a writable directory under which per-workflow directories exist. This directory is always
required to exist on a machine, even if the Toil worker has not run yet. If your workers and leader have
different temp directories, you may need to set TOIL_WORKDIR.

Parameters configWorkDir (str) – Value passed to the program using the –workDir flag

Returns Path to the Toil work directory, constant across all machines

Return type str

classmethod getLocalWorkflowDir(workflowID, configWorkDir=None)
Returns a path to the directory where worker directories and the cache will be located for this workflow on
this machine.

Parameters configWorkDir (str) – Value passed to the program using the –workDir flag

Returns Path to the local workflow directory on this machine

Return type str

writePIDFile()
Write a the pid of this process to a file in the jobstore.

Overwriting the current contents of pid.log is a feature, not a bug of this method. Other methods will rely
on always having the most current pid available. So far there is no reason to store any old pids.

94 Chapter 12. Toil Class API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER 13

Job Store API

The job store interface is an abstraction layer that that hides the specific details of file storage, for example standard
file systems, S3, etc. The AbstractJobStore API is implemented to support a give file store, e.g. S3. Implement
this API to support a new file store.

class toil.jobStores.abstractJobStore.AbstractJobStore
Represents the physical storage for the jobs and files in a Toil workflow.

JobStores are responsible for storing toil.job.JobDescription (which relate jobs to each other) and
files.

Actual toil.job.Job objects are stored in files, referenced by JobDescriptions. All the non-file CRUD
methods the JobStore provides deal in JobDescriptions and not full, executable Jobs.

To actually get ahold of a toil.job.Job, use toil.job.Job.loadJob() with a JobStore and the
relevant JobDescription.

__init__()→ None
Create an instance of the job store. The instance will not be fully functional until either initialize()
or resume() is invoked. Note that the destroy() method may be invoked on the object with or
without prior invocation of either of these two methods.

initialize(config: toil.common.Config)→ None
Create the physical storage for this job store, allocate a workflow ID and persist the given Toil configuration
to the store.

Parameters config (toil.common.Config) – the Toil configuration to initialize this job
store with. The given configuration will be updated with the newly allocated workflow ID.

Raises JobStoreExistsException – if the physical storage for this job store already ex-
ists

writeConfig()→ None
Persists the value of the AbstractJobStore.config attribute to the job store, so that it can be
retrieved later by other instances of this class.

95

Toil Documentation, Release 5.4.0

resume()→ None
Connect this instance to the physical storage it represents and load the Toil configuration into the
AbstractJobStore.config attribute.

Raises NoSuchJobStoreException – if the physical storage for this job store doesn’t exist

config
The Toil configuration associated with this job store.

Return type toil.common.Config

setRootJob(rootJobStoreID: toil.fileStores.FileID)→ None
Set the root job of the workflow backed by this job store

Parameters rootJobStoreID (str) – The ID of the job to set as root

loadRootJob()→ toil.job.JobDescription
Loads the JobDescription for the root job in the current job store.

Raises toil.job.JobException – If no root job is set or if the root job doesn’t exist in
this job store

Returns The root job.

Return type toil.job.JobDescription

createRootJob(desc: toil.job.JobDescription)→ toil.job.JobDescription
Create the given JobDescription and set it as the root job in this job store

Parameters desc (toil.job.JobDescription) – JobDescription to save and make the
root job.

Return type toil.job.JobDescription

getRootJobReturnValue()→ Any
Parse the return value from the root job.

Raises an exception if the root job hasn’t fulfilled its promise yet.

importFile(srcUrl: str, sharedFileName: Optional[str] = None, hardlink: bool = False, symlink:
bool = False)→ Optional[toil.fileStores.FileID]

Imports the file at the given URL into job store. The ID of the newly imported file is returned. If the name
of a shared file name is provided, the file will be imported as such and None is returned. If an executable
file on the local filesystem is uploaded, its executability will be preserved when it is downloaded.

Currently supported schemes are:

• ‘s3’ for objects in Amazon S3 e.g. s3://bucket/key

• ‘file’ for local files e.g. file:///local/file/path

• ‘http’ e.g. http://someurl.com/path

• ‘gs’ e.g. gs://bucket/file

Parameters

• srcUrl (str) – URL that points to a file or object in the storage mechanism of a sup-
ported URL scheme e.g. a blob in an AWS s3 bucket.

• sharedFileName (str) – Optional name to assign to the imported file within the job
store

Returns The jobStoreFileID of the imported file or None if sharedFileName was given

Return type toil.fileStores.FileID or None

96 Chapter 13. Job Store API

https://docs.python.org/3/library/stdtypes.html#str
file:///local/file/path
http://someurl.com/path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Toil Documentation, Release 5.4.0

exportFile(jobStoreFileID: toil.fileStores.FileID, dstUrl: str)→ None
Exports file to destination pointed at by the destination URL. The exported file will be executable if and
only if it was originally uploaded from an executable file on the local filesystem.

Refer to AbstractJobStore.importFile() documentation for currently supported URL schemes.

Note that the helper method _exportFile is used to read from the source and write to destination. To imple-
ment any optimizations that circumvent this, the _exportFile method should be overridden by subclasses
of AbstractJobStore.

Parameters

• jobStoreFileID (str) – The id of the file in the job store that should be exported.

• dstUrl (str) – URL that points to a file or object in the storage mechanism of a sup-
ported URL scheme e.g. a blob in an AWS s3 bucket.

classmethod getSize(url: urllib.parse.ParseResult)→ None
Get the size in bytes of the file at the given URL, or None if it cannot be obtained.

Parameters url (urlparse.ParseResult) – URL that points to a file or object in the
storage mechanism of a supported URL scheme e.g. a blob in an AWS s3 bucket.

destroy()→ None
The inverse of initialize(), this method deletes the physical storage represented by this instance.
While not being atomic, this method is at least idempotent, as a means to counteract potential issues with
eventual consistency exhibited by the underlying storage mechanisms. This means that if the method
fails (raises an exception), it may (and should be) invoked again. If the underlying storage mechanism is
eventually consistent, even a successful invocation is not an ironclad guarantee that the physical storage
vanished completely and immediately. A successful invocation only guarantees that the deletion will
eventually happen. It is therefore recommended to not immediately reuse the same job store location for a
new Toil workflow.

getEnv()→ Dict[str, str]
Returns a dictionary of environment variables that this job store requires to be set in order to function
properly on a worker.

Return type dict[str,str]

clean(jobCache: Optional[Dict[str, toil.job.JobDescription]] = None)→ toil.job.JobDescription
Function to cleanup the state of a job store after a restart. Fixes jobs that might have been partially updated.
Resets the try counts and removes jobs that are not successors of the current root job.

Parameters jobCache (dict[str,toil.job.JobDescription]) – if a value it must
be a dict from job ID keys to JobDescription object values. Jobs will be loaded from the
cache (which can be downloaded from the job store in a batch) instead of piecemeal when
recursed into.

Return type toil.job.JobDescription

assignID(jobDescription: toil.job.JobDescription)→ None
Get a new jobStoreID to be used by the described job, and assigns it to the JobDescription.

Files associated with the assigned ID will be accepted even if the JobDescription has never been created
or updated.

Parameters jobDescription (toil.job.JobDescription) – The JobDescription to
give an ID to

batch()→ Iterator[None]
If supported by the batch system, calls to create() with this context manager active will be performed in a
batch after the context manager is released.

97

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

create(jobDescription: toil.job.JobDescription)→ toil.job.JobDescription
Writes the given JobDescription to the job store. The job must have an ID assigned already.

Returns The JobDescription passed.

Return type toil.job.JobDescription

exists(jobStoreID: str)→ bool
Indicates whether a description of the job with the specified jobStoreID exists in the job store

Return type bool

getPublicUrl(fileName: str)→ str
Returns a publicly accessible URL to the given file in the job store. The returned URL may expire as early
as 1h after its been returned. Throw an exception if the file does not exist.

Parameters fileName (str) – the jobStoreFileID of the file to generate a URL for

Raises NoSuchFileException – if the specified file does not exist in this job store

Return type str

getSharedPublicUrl(sharedFileName: str)→ str
Differs from getPublicUrl() in that this method is for generating URLs for shared files written by
writeSharedFileStream().

Returns a publicly accessible URL to the given file in the job store. The returned URL starts with ‘http:’,
‘https:’ or ‘file:’. The returned URL may expire as early as 1h after its been returned. Throw an exception
if the file does not exist.

Parameters sharedFileName (str) – The name of the shared file to generate a publically
accessible url for.

Raises NoSuchFileException – raised if the specified file does not exist in the store

Return type str

load(jobStoreID: str)→ toil.job.JobDescription
Loads the description of the job referenced by the given ID, assigns it the job store’s config, and returns it.

May declare the job to have failed (see toil.job.JobDescription.
setupJobAfterFailure()) if there is evidence of a failed update attempt.

Parameters jobStoreID (str) – the ID of the job to load

Raises NoSuchJobException – if there is no job with the given ID

Return type toil.job.JobDescription

update(jobDescription: toil.job.JobDescription)→ None
Persists changes to the state of the given JobDescription in this store atomically.

Parameters job (toil.job.JobDescription) – the job to write to this job store

delete(jobStoreID: str)→ None
Removes the JobDescription from the store atomically. You may not then subsequently call load(), write(),
update(), etc. with the same jobStoreID or any JobDescription bearing it.

This operation is idempotent, i.e. deleting a job twice or deleting a non-existent job will succeed silently.

Parameters jobStoreID (str) – the ID of the job to delete from this job store

jobs()→ Iterator[toil.job.JobDescription]
Best effort attempt to return iterator on JobDescriptions for all jobs in the store. The iterator may not
return all jobs and may also contain orphaned jobs that have already finished successfully and should not

98 Chapter 13. Job Store API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

be rerun. To guarantee you get any and all jobs that can be run instead construct a more expensive ToilState
object

Returns Returns iterator on jobs in the store. The iterator may or may not contain all jobs and
may contain invalid jobs

Return type Iterator[toil.job.jobDescription]

writeFile(localFilePath: str, jobStoreID: Optional[str] = None, cleanup: bool = False)→ str
Takes a file (as a path) and places it in this job store. Returns an ID that can be used to retrieve the file at
a later time. The file is written in a atomic manner. It will not appear in the jobStore until the write has
successfully completed.

Parameters

• localFilePath (str) – the path to the local file that will be uploaded to the job store.
The last path component (basename of the file) will remain associated with the file in the
file store, if supported, so that the file can be searched for by name or name glob.

• jobStoreID (str) – the id of a job, or None. If specified, the may be associated with
that job in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

Returns an ID referencing the newly created file and can be used to read the file in the future.

Return type str

writeFileStream(jobStoreID: Optional[str] = None, cleanup: bool = False, basename: Op-
tional[str] = None, encoding: Optional[str] = None, errors: Optional[str] =
None)→ Iterator[Tuple[IO[bytes], str]]

Similar to writeFile, but returns a context manager yielding a tuple of 1) a file handle which can be written
to and 2) the ID of the resulting file in the job store. The yielded file handle does not need to and should
not be closed explicitly. The file is written in a atomic manner. It will not appear in the jobStore until the
write has successfully completed.

Parameters

• jobStoreID (str) – the id of a job, or None. If specified, the may be associated with
that job in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (str) – If supported by the implementation, use the given file basename so
that when searching the job store with a query matching that basename, the file will be
detected.

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

99

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchJobException – if the job specified via jobStoreID does not exist

FIXME: some implementations may not raise this

Returns a context manager yielding a file handle which can be written to and an ID that refer-
ences the newly created file and can be used to read the file in the future.

Return type Iterator[Tuple[IO[bytes], str]]

getEmptyFileStoreID(jobStoreID: Optional[str] = None, cleanup: bool = False, basename: Op-
tional[str] = None)→ str

Creates an empty file in the job store and returns its ID. Call to fileEx-
ists(getEmptyFileStoreID(jobStoreID)) will return True.

Parameters

• jobStoreID (str) – the id of a job, or None. If specified, the may be associated with
that job in a job-store-specific way. This may influence the returned ID.

• cleanup (bool) – Whether to attempt to delete the file when the job whose jobStoreID
was given as jobStoreID is deleted with jobStore.delete(job). If jobStoreID was not given,
does nothing.

• basename (str) – If supported by the implementation, use the given file basename so
that when searching the job store with a query matching that basename, the file will be
detected.

Returns a jobStoreFileID that references the newly created file and can be used to reference the
file in the future.

Return type str

readFile(jobStoreFileID: str, localFilePath: str, symlink: bool = False)→ None
Copies or hard links the file referenced by jobStoreFileID to the given local file path. The version will
be consistent with the last copy of the file written/updated. If the file in the job store is later modified
via updateFile or updateFileStream, it is implementation-defined whether those writes will be visible at
localFilePath. The file is copied in an atomic manner. It will not appear in the local file system until the
copy has completed.

The file at the given local path may not be modified after this method returns!

Note! Implementations of readFile need to respect/provide the executable attribute on FileIDs.

Parameters

• jobStoreFileID (str) – ID of the file to be copied

• localFilePath (str) – the local path indicating where to place the contents of the
given file in the job store

• symlink (bool) – whether the reader can tolerate a symlink. If set to true, the job store
may create a symlink instead of a full copy of the file or a hard link.

readFileStream(jobStoreFileID: str, encoding: Optional[str] = None, errors: Optional[str] =
None)→ Iterator[Union[_io.BytesIO, TextIO]]

Similar to readFile, but returns a context manager yielding a file handle which can be read from. The
yielded file handle does not need to and should not be closed explicitly.

100 Chapter 13. Job Store API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.4.0

Parameters

• jobStoreFileID (str) – ID of the file to get a readable file handle for

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Returns a context manager yielding a file handle which can be read from

Return type Iterator[Union[BytesIO, TextIO]]

deleteFile(jobStoreFileID: str)→ None
Deletes the file with the given ID from this job store. This operation is idempotent, i.e. deleting a file twice
or deleting a non-existent file will succeed silently.

Parameters jobStoreFileID (str) – ID of the file to delete

fileExists(jobStoreFileID: str)→ bool
Determine whether a file exists in this job store.

Parameters jobStoreFileID (str) – an ID referencing the file to be checked

Return type bool

getFileSize(jobStoreFileID: str)→ int
Get the size of the given file in bytes, or 0 if it does not exist when queried.

Note that job stores which encrypt files might return overestimates of file sizes, since the encrypted file
may have been padded to the nearest block, augmented with an initialization vector, etc.

Parameters jobStoreFileID (str) – an ID referencing the file to be checked

Return type int

updateFile(jobStoreFileID: str, localFilePath: str)→ None
Replaces the existing version of a file in the job store. Throws an exception if the file does not exist.

Parameters

• jobStoreFileID (str) – the ID of the file in the job store to be updated

• localFilePath (str) – the local path to a file that will overwrite the current version
in the job store

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchFileException – if the specified file does not exist

updateFileStream(jobStoreFileID: str, encoding: Optional[str] = None, errors: Optional[str] =
None)→ None

Replaces the existing version of a file in the job store. Similar to writeFile, but returns a context manager
yielding a file handle which can be written to. The yielded file handle does not need to and should not be
closed explicitly.

Parameters

• jobStoreFileID (str) – the ID of the file in the job store to be updated

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises

• ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

• NoSuchFileException – if the specified file does not exist

writeSharedFileStream(sharedFileName: str, isProtected: Optional[bool] = None, encod-
ing: Optional[str] = None, errors: Optional[str] = None) → Itera-
tor[IO[bytes]]

Returns a context manager yielding a writable file handle to the global file referenced by the given name.
File will be created in an atomic manner.

Parameters

• sharedFileName (str) – A file name matching AbstractJobStore.fileNameRegex,
unique within this job store

• isProtected (bool) – True if the file must be encrypted, None if it may be encrypted
or False if it must be stored in the clear.

• encoding (str) – the name of the encoding used to encode the file. Encodings are the
same as for encode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

Returns a context manager yielding a writable file handle

Return type Iterator[IO[bytes]]

readSharedFileStream(sharedFileName: str, encoding: Optional[str] = None, errors: Op-
tional[str] = None)→ Iterator[_io.BytesIO]

Returns a context manager yielding a readable file handle to the global file referenced by the given name.

Parameters

• sharedFileName (str) – A file name matching AbstractJobStore.fileNameRegex,
unique within this job store

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Returns a context manager yielding a readable file handle

Return type Iterator[BytesIO]

writeStatsAndLogging(statsAndLoggingString: str)→ None
Adds the given statistics/logging string to the store of statistics info.

Parameters statsAndLoggingString (str) – the string to be written to the stats file

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

102 Chapter 13. Job Store API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

readStatsAndLogging(callback: Callable[[...], Any], readAll: bool = False)→ int
Reads stats/logging strings accumulated by the writeStatsAndLogging() method. For each stats/logging
string this method calls the given callback function with an open, readable file handle from which the stats
string can be read. Returns the number of stats/logging strings processed. Each stats/logging string is only
processed once unless the readAll parameter is set, in which case the given callback will be invoked for all
existing stats/logging strings, including the ones from a previous invocation of this method.

Parameters

• callback (Callable) – a function to be applied to each of the stats file handles found

• readAll (bool) – a boolean indicating whether to read the already processed stats files
in addition to the unread stats files

Raises ConcurrentFileModificationException – if the file was modified concur-
rently during an invocation of this method

Returns the number of stats files processed

Return type int

103

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.4.0

104 Chapter 13. Job Store API

CHAPTER 14

Toil Job API

Functions to wrap jobs and return values (promises).

14.1 FunctionWrappingJob

The subclass of Job for wrapping user functions.

class toil.job.FunctionWrappingJob(userFunction, *args, **kwargs)
Job used to wrap a function. In its run method the wrapped function is called.

__init__(userFunction, *args, **kwargs)

Parameters userFunction (callable) – The function to wrap. It will be called with
*args and **kwargs as arguments.

The keywords memory, cores, disk, preemptable and checkpoint are reserved keyword argu-
ments that if specified will be used to determine the resources required for the job, as toil.job.Job.
__init__(). If they are keyword arguments to the function they will be extracted from the function
definition, but may be overridden by the user (as you would expect).

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters fileStore (toil.fileStores.abstractFileStore.
AbstractFileStore) – Used to create local and globally sharable temporary files
and to send log messages to the leader process.

Returns The return value of the function can be passed to other jobs by means of toil.job.
Job.rv().

14.2 JobFunctionWrappingJob

The subclass of FunctionWrappingJob for wrapping user job functions.

105

Toil Documentation, Release 5.4.0

class toil.job.JobFunctionWrappingJob(userFunction, *args, **kwargs)
A job function is a function whose first argument is a Job instance that is the wrapping job for the function.
This can be used to add successor jobs for the function and perform all the functions the Job class provides.

To enable the job function to get access to the toil.fileStores.abstractFileStore.
AbstractFileStore instance (see toil.job.Job.run()), it is made a variable of the wrapping job
called fileStore.

To specify a job’s resource requirements the following default keyword arguments can be specified:

• memory

• disk

• cores

For example to wrap a function into a job we would call:

Job.wrapJobFn(myJob, memory='100k', disk='1M', cores=0.1)

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters fileStore (toil.fileStores.abstractFileStore.
AbstractFileStore) – Used to create local and globally sharable temporary files
and to send log messages to the leader process.

Returns The return value of the function can be passed to other jobs by means of toil.job.
Job.rv().

14.3 EncapsulatedJob

The subclass of Job for encapsulating a job, allowing a subgraph of jobs to be treated as a single job.

class toil.job.EncapsulatedJob(job, unitName=None)
A convenience Job class used to make a job subgraph appear to be a single job.

Let A be the root job of a job subgraph and B be another job we’d like to run after A and all its successors have
completed, for this use encapsulate:

Job A and subgraph, Job B
A, B = A(), B()
Aprime = A.encapsulate()
Aprime.addChild(B)
B will run after A and all its successors have completed, A and its subgraph of
successors in effect appear to be just one job.

If the job being encapsulated has predecessors (e.g. is not the root job), then the encapsulated job will inherit
these predecessors. If predecessors are added to the job being encapsulated after the encapsulated job is created
then the encapsulating job will NOT inherit these predecessors automatically. Care should be exercised to ensure
the encapsulated job has the proper set of predecessors.

The return value of an encapsulatd job (as accessed by the toil.job.Job.rv() function) is the return value
of the root job, e.g. A().encapsulate().rv() and A().rv() will resolve to the same value after A or A.encapsulate()
has been run.

__init__(job, unitName=None)

Parameters

106 Chapter 14. Toil Job API

Toil Documentation, Release 5.4.0

• job (toil.job.Job) – the job to encapsulate.

• unitName (str) – human-readable name to identify this job instance.

addChild(childJob)
Adds childJob to be run as child of this job. Child jobs will be run directly after this job’s toil.job.
Job.run() method has completed.

Parameters childJob (toil.job.Job) –

Returns childJob

Return type toil.job.Job

addService(service, parentService=None)
Add a service.

The toil.job.Job.Service.start() method of the service will be called after the run method
has completed but before any successors are run. The service’s toil.job.Job.Service.stop()
method will be called once the successors of the job have been run.

Services allow things like databases and servers to be started and accessed by jobs in a workflow.

Raises toil.job.JobException – If service has already been made the child of a job or
another service.

Parameters

• service (toil.job.Job.Service) – Service to add.

• parentService (toil.job.Job.Service) – Service that will be started before
‘service’ is started. Allows trees of services to be established. parentService must be a
service of this job.

Returns a promise that will be replaced with the return value from toil.job.Job.
Service.start() of service in any successor of the job.

Return type toil.job.Promise

addFollowOn(followOnJob)
Adds a follow-on job, follow-on jobs will be run after the child jobs and their successors have been run.

Parameters followOnJob (toil.job.Job) –

Returns followOnJob

Return type toil.job.Job

rv(*path)
Creates a promise (toil.job.Promise) representing a return value of the job’s run method, or, in case
of a function-wrapping job, the wrapped function’s return value.

Parameters path ((Any)) – Optional path for selecting a component of the promised return
value. If absent or empty, the entire return value will be used. Otherwise, the first element
of the path is used to select an individual item of the return value. For that to work, the
return value must be a list, dictionary or of any other type implementing the __getitem__()
magic method. If the selected item is yet another composite value, the second element of
the path can be used to select an item from it, and so on. For example, if the return value is
[6,{‘a’:42}], .rv(0) would select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3.
To select a slice from a return value that is slicable, e.g. tuple or list, the path element should
be a slice object. For example, assuming that the return value is [6, 7, 8, 9] then .rv(slice(1,
3)) would select [7, 8]. Note that slicing really only makes sense at the end of path.

Returns A promise representing the return value of this jobs toil.job.Job.run()method.

14.3. EncapsulatedJob 107

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

Return type toil.job.Promise

prepareForPromiseRegistration(jobStore)
Ensure that a promise by this job (the promissor) can register with the promissor when another job referring
to the promise (the promissee) is being serialized. The promissee holds the reference to the promise
(usually as part of the the job arguments) and when it is being pickled, so will the promises it refers to.
Pickling a promise triggers it to be registered with the promissor.

Returns

14.4 Promise

The class used to reference return values of jobs/services not yet run/started.

class toil.job.Promise(job, path)
References a return value from a toil.job.Job.run() or toil.job.Job.Service.start()
method as a promise before the method itself is run.

Let T be a job. Instances of Promise (termed a promise) are returned by T.rv(), which is used to reference the
return value of T’s run function. When the promise is passed to the constructor (or as an argument to a wrapped
function) of a different, successor job the promise will be replaced by the actual referenced return value. This
mechanism allows a return values from one job’s run method to be input argument to job before the former job’s
run function has been executed.

filesToDelete = {}
A set of IDs of files containing promised values when we know we won’t need them anymore

__init__(job, path)

Parameters

• job (Job) – the job whose return value this promise references

• path – see Job.rv()

class toil.job.PromisedRequirement(valueOrCallable, *args)

__init__(valueOrCallable, *args)
Class for dynamically allocating job function resource requirements involving toil.job.Promise
instances.

Use when resource requirements depend on the return value of a parent function. PromisedRequirements
can be modified by passing a function that takes the Promise as input.

For example, let f, g, and h be functions. Then a Toil workflow can be defined as follows::
A = Job.wrapFn(f) B = A.addChildFn(g, cores=PromisedRequirement(A.rv()) C = B.addChildFn(h,
cores=PromisedRequirement(lambda x: 2*x, B.rv()))

Parameters

• valueOrCallable – A single Promise instance or a function that takes args as input
parameters.

• args (int or Promise) – variable length argument list

getValue()
Returns PromisedRequirement value

108 Chapter 14. Toil Job API

https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.4.0

static convertPromises(kwargs)
Returns True if reserved resource keyword is a Promise or PromisedRequirement instance. Converts
Promise instance to PromisedRequirement.

Parameters kwargs – function keyword arguments

Returns bool

14.4. Promise 109

Toil Documentation, Release 5.4.0

110 Chapter 14. Toil Job API

CHAPTER 15

Job Methods API

Jobs are the units of work in Toil which are composed into workflows.

class toil.job.Job(memory=None, cores=None, disk=None, preemptable=None, unitName=”, check-
point=False, displayName=”, descriptionClass=None)

Class represents a unit of work in toil.

__init__(memory=None, cores=None, disk=None, preemptable=None, unitName=”, check-
point=False, displayName=”, descriptionClass=None)

This method must be called by any overriding constructor.

Parameters

• memory (int or string convertible by toil.lib.conversions.
human2bytes to an int) – the maximum number of bytes of memory the job will
require to run.

• cores (float, int, or string convertible by toil.lib.
conversions.human2bytes to an int) – the number of CPU cores required.

• disk (int or string convertible by toil.lib.conversions.
human2bytes to an int) – the amount of local disk space required by the job,
expressed in bytes.

• preemptable (bool, int in {0, 1}, or string in {'false',
'true'} in any case) – if the job can be run on a preemptable node.

• unitName (str) – Human-readable name for this instance of the job.

• checkpoint (bool) – if any of this job’s successor jobs completely fails, exhaust-
ing all their retries, remove any successor jobs and rerun this job to restart the subtree.
Job must be a leaf vertex in the job graph when initially defined, see toil.job.Job.
checkNewCheckpointsAreCutVertices().

• displayName (str) – Human-readable job type display name.

• descriptionClass (class) – Override for the JobDescription class used to describe
the job.

111

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

jobStoreID
Get the ID of this Job.

Return type str|toil.job.TemporaryID

description
Expose the JobDescription that describes this job.

Return type toil.job.JobDescription

disk
The maximum number of bytes of disk the job will require to run.

Return type int

memory
The maximum number of bytes of memory the job will require to run.

Return type int

cores

The number of CPU cores required.

Return type int|float

preemptable
Whether the job can be run on a preemptable node.

Return type bool

checkpoint
Determine if the job is a checkpoint job or not.

Return type bool

assignConfig(config)
Assign the given config object to be used by various actions implemented inside the Job class.

Parameters config (toil.common.Config) – Config object to query

run(fileStore)
Override this function to perform work and dynamically create successor jobs.

Parameters fileStore (toil.fileStores.abstractFileStore.
AbstractFileStore) – Used to create local and globally sharable temporary files
and to send log messages to the leader process.

Returns The return value of the function can be passed to other jobs by means of toil.job.
Job.rv().

addChild(childJob)
Adds childJob to be run as child of this job. Child jobs will be run directly after this job’s toil.job.
Job.run() method has completed.

Parameters childJob (toil.job.Job) –

Returns childJob

Return type toil.job.Job

hasChild(childJob)
Check if childJob is already a child of this job.

Parameters childJob (toil.job.Job) –

112 Chapter 15. Job Methods API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.4.0

Returns True if childJob is a child of the job, else False.

Return type bool

addFollowOn(followOnJob)
Adds a follow-on job, follow-on jobs will be run after the child jobs and their successors have been run.

Parameters followOnJob (toil.job.Job) –

Returns followOnJob

Return type toil.job.Job

hasPredecessor(job: toil.job.Job)→ bool
Check if a given job is already a predecessor of this job.

hasFollowOn(followOnJob)
Check if given job is already a follow-on of this job.

Parameters followOnJob (toil.job.Job) –

Returns True if the followOnJob is a follow-on of this job, else False.

Return type bool

addService(service, parentService=None)
Add a service.

The toil.job.Job.Service.start() method of the service will be called after the run method
has completed but before any successors are run. The service’s toil.job.Job.Service.stop()
method will be called once the successors of the job have been run.

Services allow things like databases and servers to be started and accessed by jobs in a workflow.

Raises toil.job.JobException – If service has already been made the child of a job or
another service.

Parameters

• service (toil.job.Job.Service) – Service to add.

• parentService (toil.job.Job.Service) – Service that will be started before
‘service’ is started. Allows trees of services to be established. parentService must be a
service of this job.

Returns a promise that will be replaced with the return value from toil.job.Job.
Service.start() of service in any successor of the job.

Return type toil.job.Promise

hasService(service)
Returns True if the given Service is a service of this job, and False otherwise.

addChildFn(fn, *args, **kwargs)
Adds a function as a child job.

Parameters fn – Function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments used to
specify resource requirements.

Returns The new child job that wraps fn.

Return type toil.job.FunctionWrappingJob

addFollowOnFn(fn, *args, **kwargs)
Adds a function as a follow-on job.

113

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.4.0

Parameters fn – Function to be run as a follow-on job with *args and **kwargs as argu-
ments to this function. See toil.job.FunctionWrappingJob for reserved keyword arguments
used to specify resource requirements.

Returns The new follow-on job that wraps fn.

Return type toil.job.FunctionWrappingJob

addChildJobFn(fn, *args, **kwargs)
Adds a job function as a child job. See toil.job.JobFunctionWrappingJob for a definition of a
job function.

Parameters fn – Job function to be run as a child job with *args and **kwargs as arguments
to this function. See toil.job.JobFunctionWrappingJob for reserved keyword arguments used
to specify resource requirements.

Returns The new child job that wraps fn.

Return type toil.job.JobFunctionWrappingJob

addFollowOnJobFn(fn, *args, **kwargs)
Add a follow-on job function. See toil.job.JobFunctionWrappingJob for a definition of a job
function.

Parameters fn – Job function to be run as a follow-on job with *args and **kwargs as
arguments to this function. See toil.job.JobFunctionWrappingJob for reserved keyword ar-
guments used to specify resource requirements.

Returns The new follow-on job that wraps fn.

Return type toil.job.JobFunctionWrappingJob

tempDir
Shortcut to calling job.fileStore.getLocalTempDir(). Temp dir is created on first call and will
be returned for first and future calls :return: Path to tempDir. See job.fileStore.getLocalTempDir :rtype: str

log(text, level=20)
convenience wrapper for fileStore.logToMaster()

static wrapFn(fn, *args, **kwargs)
Makes a Job out of a function. Convenience function for constructor of toil.job.
FunctionWrappingJob.

Parameters fn – Function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource
requirements.

Returns The new function that wraps fn.

Return type toil.job.FunctionWrappingJob

static wrapJobFn(fn, *args, **kwargs)
Makes a Job out of a job function. Convenience function for constructor of toil.job.
JobFunctionWrappingJob.

Parameters fn – Job function to be run with *args and **kwargs as arguments. See
toil.job.JobFunctionWrappingJob for reserved keyword arguments used to specify resource
requirements.

Returns The new job function that wraps fn.

Return type toil.job.JobFunctionWrappingJob

114 Chapter 15. Job Methods API

Toil Documentation, Release 5.4.0

encapsulate(name=None)
Encapsulates the job, see toil.job.EncapsulatedJob. Convenience function for constructor of
toil.job.EncapsulatedJob.

Parameters name (str) – Human-readable name for the encapsulated job.

Returns an encapsulated version of this job.

Return type toil.job.EncapsulatedJob

rv(*path)
Creates a promise (toil.job.Promise) representing a return value of the job’s run method, or, in case
of a function-wrapping job, the wrapped function’s return value.

Parameters path ((Any)) – Optional path for selecting a component of the promised return
value. If absent or empty, the entire return value will be used. Otherwise, the first element
of the path is used to select an individual item of the return value. For that to work, the
return value must be a list, dictionary or of any other type implementing the __getitem__()
magic method. If the selected item is yet another composite value, the second element of
the path can be used to select an item from it, and so on. For example, if the return value is
[6,{‘a’:42}], .rv(0) would select 6 , rv(1) would select {‘a’:3} while rv(1,’a’) would select 3.
To select a slice from a return value that is slicable, e.g. tuple or list, the path element should
be a slice object. For example, assuming that the return value is [6, 7, 8, 9] then .rv(slice(1,
3)) would select [7, 8]. Note that slicing really only makes sense at the end of path.

Returns A promise representing the return value of this jobs toil.job.Job.run()method.

Return type toil.job.Promise

prepareForPromiseRegistration(jobStore)
Ensure that a promise by this job (the promissor) can register with the promissor when another job referring
to the promise (the promissee) is being serialized. The promissee holds the reference to the promise
(usually as part of the the job arguments) and when it is being pickled, so will the promises it refers to.
Pickling a promise triggers it to be registered with the promissor.

Returns

checkJobGraphForDeadlocks()
Ensures that a graph of Jobs (that hasn’t yet been saved to the JobStore) doesn’t contain any pathological
relationships between jobs that would result in deadlocks if we tried to run the jobs.

See toil.job.Job.checkJobGraphConnected(), toil.job.Job.
checkJobGraphAcyclic() and toil.job.Job.checkNewCheckpointsAreLeafVertices()
for more info.

Raises toil.job.JobGraphDeadlockException – if the job graph is cyclic, contains
multiple roots or contains checkpoint jobs that are not leaf vertices when defined (see toil.
job.Job.checkNewCheckpointsAreLeaves()).

getRootJobs()→ Set[toil.job.Job]
Returns the set of root job objects that contain this job. A root job is a job with no predecessors (i.e. which
are not children, follow-ons, or services).

Only deals with jobs created here, rather than loaded from the job store.

checkJobGraphConnected()

Raises toil.job.JobGraphDeadlockException – if toil.job.Job.
getRootJobs() does not contain exactly one root job.

As execution always starts from one root job, having multiple root jobs will cause a deadlock to occur.

Only deals with jobs created here, rather than loaded from the job store.

115

https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

checkJobGraphAcylic()

Raises toil.job.JobGraphDeadlockException – if the connected component of jobs
containing this job contains any cycles of child/followOn dependencies in the augmented job
graph (see below). Such cycles are not allowed in valid job graphs.

A follow-on edge (A, B) between two jobs A and B is equivalent to adding a child edge to B from (1) A,
(2) from each child of A, and (3) from the successors of each child of A. We call each such edge an edge
an “implied” edge. The augmented job graph is a job graph including all the implied edges.

For a job graph G = (V, E) the algorithm is O(|V|^2). It is O(|V| + |E|) for a graph with no
follow-ons. The former follow-on case could be improved!

Only deals with jobs created here, rather than loaded from the job store.

checkNewCheckpointsAreLeafVertices()
A checkpoint job is a job that is restarted if either it fails, or if any of its successors completely fails,
exhausting their retries.

A job is a leaf it is has no successors.

A checkpoint job must be a leaf when initially added to the job graph. When its run method is invoked it
can then create direct successors. This restriction is made to simplify implementation.

Only works on connected components of jobs not yet added to the JobStore.

Raises toil.job.JobGraphDeadlockException – if there exists a job being added to
the graph for which checkpoint=True and which is not a leaf.

defer(function, *args, **kwargs)
Register a deferred function, i.e. a callable that will be invoked after the current attempt at running this
job concludes. A job attempt is said to conclude when the job function (or the toil.job.Job.run()
method for class-based jobs) returns, raises an exception or after the process running it terminates abnor-
mally. A deferred function will be called on the node that attempted to run the job, even if a subsequent
attempt is made on another node. A deferred function should be idempotent because it may be called
multiple times on the same node or even in the same process. More than one deferred function may be
registered per job attempt by calling this method repeatedly with different arguments. If the same function
is registered twice with the same or different arguments, it will be called twice per job attempt.

Examples for deferred functions are ones that handle cleanup of resources external to Toil, like Docker
containers, files outside the work directory, etc.

Parameters

• function (callable) – The function to be called after this job concludes.

• args (list) – The arguments to the function

• kwargs (dict) – The keyword arguments to the function

getTopologicalOrderingOfJobs()

Returns a list of jobs such that for all pairs of indices i, j for which i < j, the job at index i can
be run before the job at index j.

Only considers jobs in this job’s subgraph that are newly added, not loaded from the job store.

Ignores service jobs.

Return type list[Job]

saveBody(jobStore)
Save the execution data for just this job to the JobStore, and fill in the JobDescription with the information
needed to retrieve it.

116 Chapter 15. Job Methods API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Toil Documentation, Release 5.4.0

The Job’s JobDescription must have already had a real jobStoreID assigned to it.

Does not save the JobDescription.

Parameters jobStore (toil.jobStores.abstractJobStore.
AbstractJobStore) – The job store to save the job body into.

saveAsRootJob(jobStore)
Save this job to the given jobStore as the root job of the workflow.

Parameters jobStore (toil.jobStores.abstractJobStore.
AbstractJobStore) –

Returns the JobDescription describing this job.

classmethod loadJob(jobStore, jobDescription)
Retrieves a toil.job.Job instance from a JobStore

Parameters

• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –
The job store.

• jobDescription (toil.job.JobDescription) – the JobDescription of the job
to retrieve.

Returns The job referenced by the JobDescription.

Return type toil.job.Job

117

Toil Documentation, Release 5.4.0

118 Chapter 15. Job Methods API

CHAPTER 16

Job.Runner API

The Runner contains the methods needed to configure and start a Toil run.

class Job.Runner
Used to setup and run Toil workflow.

static getDefaultArgumentParser()
Get argument parser with added toil workflow options.

Returns The argument parser used by a toil workflow with added Toil options.

Return type argparse.ArgumentParser

static getDefaultOptions(jobStore)
Get default options for a toil workflow.

Parameters jobStore (string) – A string describing the jobStore for the workflow.

Returns The options used by a toil workflow.

Return type argparse.ArgumentParser values object

static addToilOptions(parser)
Adds the default toil options to an optparse or argparse parser object.

Parameters parser (optparse.OptionParser or argparse.
ArgumentParser) – Options object to add toil options to.

static startToil(job, options)
Deprecated by toil.common.Toil.start. Runs the toil workflow using the given options (see
Job.Runner.getDefaultOptions and Job.Runner.addToilOptions) starting with this job. :param toil.job.Job
job: root job of the workflow :raises: toil.leader.FailedJobsException if at the end of function their remain
failed jobs. :return: The return value of the root job’s run function. :rtype: Any

119

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/optparse.html#module-optparse
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/optparse.html#optparse.OptionParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.4.0

120 Chapter 16. Job.Runner API

CHAPTER 17

job.fileStore API

The AbstractFileStore is an abstraction of a Toil run’s shared storage.

class toil.fileStores.abstractFileStore.AbstractFileStore(jobStore:
toil.jobStores.abstractJobStore.AbstractJobStore,
jobDesc:
toil.job.JobDescription,
localTempDir: str, wait-
ForPreviousCommit:
Callable[[], None])

Interface used to allow user code run by Toil to read and write files.

Also provides the interface to other Toil facilities used by user code, including:

• normal (non-real-time) logging

• finding the correct temporary directory for scratch work

• importing and exporting files into and out of the workflow

Stores user files in the jobStore, but keeps them separate from actual jobs.

May implement caching.

Passed as argument to the toil.job.Job.run() method.

Access to files is only permitted inside the context manager provided by toil.fileStores.
abstractFileStore.AbstractFileStore.open().

Also responsible for committing completed jobs back to the job store with an update operation, and allowing
that commit operation to be waited for.

__init__(jobStore: toil.jobStores.abstractJobStore.AbstractJobStore, jobDesc:
toil.job.JobDescription, localTempDir: str, waitForPreviousCommit: Callable[[], None])
→ None

Create a new file store object.

Parameters

121

Toil Documentation, Release 5.4.0

• jobStore (toil.jobStores.abstractJobStore.AbstractJobStore) –
the job store in use for the current Toil run.

• jobDesc (toil.job.JobDescription) – the JobDescription object for the cur-
rently running job.

• localTempDir (str) – the per-worker local temporary directory, under which per-job
directories will be created. Assumed to be inside the workflow directory, which is assumed
to be inside the work directory.

• waitForPreviousCommit – the waitForCommit method of the previous job’s file
store, when jobs are running in sequence on the same worker. Used to prevent this file
store’s startCommit and the previous job’s startCommit methods from running at the same
time and racing. If they did race, it might be possible for the later job to be fully marked
as completed in the job store before the eralier job was.

static shutdownFileStore(workflowDir, workflowID)
Carry out any necessary filestore-specific cleanup.

This is a destructive operation and it is important to ensure that there are no other running processes on the
system that are modifying or using the file store for this workflow.

This is the intended to be the last call to the file store in a Toil run, called by the batch system cleanup
function upon batch system shutdown.

Parameters

• workflowDir (str) – The path to the cache directory

• workflowID (str) – The workflow ID for this invocation of the workflow

open(job: toil.job.Job)→ Generator[None, None, None]
The context manager used to conduct tasks prior-to, and after a job has been run. File operations are only
permitted inside the context manager.

Implementations must only yield from within with super().open(job):.

Parameters job (toil.job.Job) – The job instance of the toil job to run.

getLocalTempDir()
Get a new local temporary directory in which to write files that persist for the duration of the job.

Returns The absolute path to a new local temporary directory. This directory will exist for the
duration of the job only, and is guaranteed to be deleted once the job terminates, removing
all files it contains recursively.

Return type str

getLocalTempFile()
Get a new local temporary file that will persist for the duration of the job.

Returns The absolute path to a local temporary file. This file will exist for the duration of the
job only, and is guaranteed to be deleted once the job terminates.

Return type str

getLocalTempFileName()
Get a valid name for a new local file. Don’t actually create a file at the path.

Returns Path to valid file

Return type str

122 Chapter 17. job.fileStore API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

writeGlobalFile(localFileName, cleanup=False)
Takes a file (as a path) and uploads it to the job store. If the file is in a FileStore-managed tem-
porary directory (i.e. from toil.fileStores.abstractFileStore.AbstractFileStore.
getLocalTempDir()), it will become a local copy of the file, eligible for deletion by toil.
fileStores.abstractFileStore.AbstractFileStore.deleteLocalFile().

If an executable file on the local filesystem is uploaded, its executability will be preserved when it is
downloaded again.

Parameters

• localFileName (string) – The path to the local file to upload. The last path compo-
nent (basename of the file) will remain associated with the file in the file store, if supported
by the backing JobStore, so that the file can be searched for by name or name glob.

• cleanup (bool) – if True then the copy of the global file will be deleted once the job and
all its successors have completed running. If not the global file must be deleted manually.

Returns an ID that can be used to retrieve the file.

Return type toil.fileStores.FileID

writeGlobalFileStream(cleanup=False, basename=None, encoding=None, errors=None)
Similar to writeGlobalFile, but allows the writing of a stream to the job store. The yielded file handle does
not need to and should not be closed explicitly.

Parameters

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

• cleanup (bool) – is as in toil.fileStores.abstractFileStore.
AbstractFileStore.writeGlobalFile().

• basename (str) – If supported by the backing JobStore, use the given file basename so
that when searching the job store with a query matching that basename, the file will be
detected.

Returns A context manager yielding a tuple of 1) a file handle which can be written to and 2)
the toil.fileStores.FileID of the resulting file in the job store.

logAccess(fileStoreID: Union[toil.fileStores.FileID, str], destination: Optional[str] = None)
Record that the given file was read by the job, to be announced if the job fails. If destination is not None,
it gives the path that the file was downloaded to. Otherwise, assumes that the file was streamed.

Must be called by readGlobalFile() and readGlobalFileStream() implementations.

readGlobalFile(fileStoreID, userPath=None, cache=True, mutable=False, symlink=False)
Makes the file associated with fileStoreID available locally. If mutable is True, then a copy of the file will
be created locally so that the original is not modified and does not change the file for other jobs. If mutable
is False, then a link can be created to the file, saving disk resources. The file that is downloaded will be
executable if and only if it was originally uploaded from an executable file on the local filesystem.

If a user path is specified, it is used as the destination. If a user path isn’t specified, the file is stored in the
local temp directory with an encoded name.

The destination file must not be deleted by the user; it can only be deleted through deleteLocalFile.

Implementations must call logAccess() to report the download.

Parameters

123

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

• or str fileStoreID (toil.fileStores.FileID) – job store id for the file

• userPath (string) – a path to the name of file to which the global file will be copied
or hard-linked (see below).

• cache (bool) – Described in toil.fileStores.CachingFileStore.
readGlobalFile()

• mutable (bool) – Described in toil.fileStores.CachingFileStore.
readGlobalFile()

Returns An absolute path to a local, temporary copy of the file keyed by fileStoreID.

Return type str

readGlobalFileStream(fileStoreID, encoding=None, errors=None)
Similar to readGlobalFile, but allows a stream to be read from the job store. The yielded file handle does
not need to and should not be closed explicitly.

Parameters

• encoding (str) – the name of the encoding used to decode the file. Encodings are the
same as for decode(). Defaults to None which represents binary mode.

• errors (str) – an optional string that specifies how encoding errors are to be handled.
Errors are the same as for open(). Defaults to ‘strict’ when an encoding is specified.

Implementations must call logAccess() to report the download.

Returns a context manager yielding a file handle which can be read from.

getGlobalFileSize(fileStoreID)
Get the size of the file pointed to by the given ID, in bytes.

If a FileID or something else with a non-None ‘size’ field, gets that.

Otherwise, asks the job store to poll the file’s size.

Note that the job store may overestimate the file’s size, for example if it is encrypted and had to be aug-
mented with an IV or other encryption framing.

Parameters or str fileStoreID (toil.fileStores.FileID) – File ID for the file

Returns File’s size in bytes, as stored in the job store

Return type int

deleteLocalFile(fileStoreID)
Deletes local copies of files associated with the provided job store ID.

Raises an OSError with an errno of errno.ENOENT if no such local copies exist. Thus, cannot be called
multiple times in succession.

The files deleted are all those previously read from this file ID via readGlobalFile by the current job into
the job’s file-store-provided temp directory, plus the file that was written to create the given file ID, if it
was written by the current job from the job’s file-store-provided temp directory.

Parameters or str fileStoreID (toil.fileStores.FileID) – File Store ID of
the file to be deleted.

deleteGlobalFile(fileStoreID)
Deletes local files with the provided job store ID and then permanently deletes them from the job store. To
ensure that the job can be restarted if necessary, the delete will not happen until after the job’s run method
has completed.

124 Chapter 17. job.fileStore API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Toil Documentation, Release 5.4.0

Parameters or str fileStoreID (toil.fileStores.FileID) – the File Store ID
of the file to be deleted.

logToMaster(text: str, level: int = 20)→ None
Send a logging message to the leader. The message will also be logged by the worker at the same level.

Parameters

• text – The string to log.

• level (int) – The logging level.

startCommit(jobState=False)
Update the status of the job on the disk.

May start an asynchronous process. Call waitForCommit() to wait on that process.

Parameters jobState (bool) – If True, commit the state of the FileStore’s job, and file
deletes. Otherwise, commit only file creates/updates.

waitForCommit()
Blocks while startCommit is running. This function is called by this job’s successor to ensure that it does
not begin modifying the job store until after this job has finished doing so.

Might be called when startCommit is never called on a particular instance, in which case it does not block.

Returns Always returns True

Return type bool

classmethod shutdown(dir_)
Shutdown the filestore on this node.

This is intended to be called on batch system shutdown.

Parameters dir – The implementation-specific directory containing the required information
for shutting down the file store and removing all its state and all job local temp directories
from the node.

class toil.fileStores.FileID(fileStoreID, size, executable=False)
A small wrapper around Python’s builtin string class. It is used to represent a file’s ID in the file store, and has
a size attribute that is the file’s size in bytes. This object is returned by importFile and writeGlobalFile.

Calls into the file store can use bare strings; size will be queried from the job store if unavailable in the ID.

__init__(fileStoreID, size, executable=False)
Initialize self. See help(type(self)) for accurate signature.

pack()
Pack the FileID into a string so it can be passed through external code.

classmethod unpack(packedFileStoreID)
Unpack the result of pack() into a FileID object.

125

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Toil Documentation, Release 5.4.0

126 Chapter 17. job.fileStore API

CHAPTER 18

Batch System API

The batch system interface is used by Toil to abstract over different ways of running batches of jobs, for example
Slurm, GridEngine, Mesos, Parasol and a single node. The toil.batchSystems.abstractBatchSystem.
AbstractBatchSystem API is implemented to run jobs using a given job management system, e.g. Mesos.

18.1 Batch System Enivronmental Variables

Environmental variables allow passing of scheduler specific parameters.

For SLURM:

export TOIL_SLURM_ARGS="-t 1:00:00 -q fatq"

For TORQUE there are two environment variables - one for everything but the resource requirements, and another -
for resources requirements (without the -l prefix):

export TOIL_TORQUE_ARGS="-q fatq"
export TOIL_TORQUE_REQS="walltime=1:00:00"

For GridEngine (SGE, UGE), there is an additional environmental variable to define the parallel environment for
running multicore jobs:

export TOIL_GRIDENGINE_PE='smp'
export TOIL_GRIDENGINE_ARGS='-q batch.q'

For HTCondor, additional parameters can be included in the submit file passed to condor_submit:

export TOIL_HTCONDOR_PARAMS='requirements = TARGET.has_sse4_2 == true; accounting_
→˓group = test'

The environment variable is parsed as a semicolon-separated string of parameter = value pairs.

127

http://www.softpanorama.org/HPC/Grid_engine/parallel_environment.shtml#Important_details

Toil Documentation, Release 5.4.0

18.2 Batch System API

class toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
An abstract (as far as Python currently allows) base class to represent the interface the batch system must provide
to Toil.

classmethod supportsAutoDeployment()
Whether this batch system supports auto-deployment of the user script itself. If it does, the
setUserScript() can be invoked to set the resource object representing the user script.

Note to implementors: If your implementation returns True here, it should also override

Return type bool

classmethod supportsWorkerCleanup()
Indicates whether this batch system invokes BatchSystemSupport.workerCleanup() after the
last job for a particular workflow invocation finishes. Note that the term worker refers to an entire node,
not just a worker process. A worker process may run more than one job sequentially, and more than one
concurrent worker process may exist on a worker node, for the same workflow. The batch system is said
to shut down after the last worker process terminates.

Return type bool

setUserScript(userScript)
Set the user script for this workflow. This method must be called before the first job is issued to this batch
system, and only if supportsAutoDeployment() returns True, otherwise it will raise an exception.

Parameters userScript (toil.resource.Resource) – the resource object represent-
ing the user script or module and the modules it depends on.

issueBatchJob(jobDesc)
Issues a job with the specified command to the batch system and returns a unique jobID.

:param jobDesc a toil.job.JobDescription

Returns a unique jobID that can be used to reference the newly issued job

Return type int

killBatchJobs(jobIDs)
Kills the given job IDs. After returning, the killed jobs will not appear in the results of getRunningBatchJo-
bIDs. The killed job will not be returned from getUpdatedBatchJob.

Parameters jobIDs (list[int]) – list of IDs of jobs to kill

getIssuedBatchJobIDs()
Gets all currently issued jobs

Returns A list of jobs (as jobIDs) currently issued (may be running, or may be waiting to be
run). Despite the result being a list, the ordering should not be depended upon.

Return type list[str]

getRunningBatchJobIDs()
Gets a map of jobs as jobIDs that are currently running (not just waiting) and how long they have been
running, in seconds.

Returns dictionary with currently running jobID keys and how many seconds they have been
running as the value

Return type dict[int,float]

128 Chapter 18. Batch System API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Toil Documentation, Release 5.4.0

getUpdatedBatchJob(maxWait)
Returns information about job that has updated its status (i.e. ceased running, either successfully or with
an error). Each such job will be returned exactly once.

Does not return info for jobs killed by killBatchJobs, although they may cause None to be returned earlier
than maxWait.

Parameters maxWait (float) – the number of seconds to block, waiting for a result

Return type UpdatedBatchJobInfo or None

Returns If a result is available, returns UpdatedBatchJobInfo. Otherwise it returns None. wall-
Time is the number of seconds (a strictly positive float) in wall-clock time the job ran for, or
None if this batch system does not support tracking wall time.

getSchedulingStatusMessage()
Get a log message fragment for the user about anything that might be going wrong in the batch system, if
available.

If no useful message is available, return None.

This can be used to report what resource is the limiting factor when scheduling jobs, for example. If the
leader thinks the workflow is stuck, the message can be displayed to the user to help them diagnose why it
might be stuck.

Return type str or None

Returns User-directed message about scheduling state.

shutdown()
Called at the completion of a toil invocation. Should cleanly terminate all worker threads.

setEnv(name, value=None)
Set an environment variable for the worker process before it is launched. The worker process will typically
inherit the environment of the machine it is running on but this method makes it possible to override specific
variables in that inherited environment before the worker is launched. Note that this mechanism is different
to the one used by the worker internally to set up the environment of a job. A call to this method affects all
jobs issued after this method returns. Note to implementors: This means that you would typically need to
copy the variables before enqueuing a job.

If no value is provided it will be looked up from the current environment.

classmethod setOptions(setOption)
Process command line or configuration options relevant to this batch system. The

Parameters setOption – A function with signature setOption(varName, parsingFn=None,
checkFn=None, default=None) used to update run configuration

getWorkerContexts()
Get a list of picklable context manager objects to wrap worker work in, in order.

Can be used to ask the Toil worker to do things in-process (such as configuring environment variables,
hot-deploying user scripts, or cleaning up a node) that would otherwise require a wrapping “executor”
process.

Return type list

18.2. Batch System API 129

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list

Toil Documentation, Release 5.4.0

130 Chapter 18. Batch System API

CHAPTER 19

Job.Service API

The Service class allows databases and servers to be spawned within a Toil workflow.

class Job.Service(memory=None, cores=None, disk=None, preemptable=None, unitName=None)
Abstract class used to define the interface to a service.

Should be subclassed by the user to define services.

Is not executed as a job; runs within a ServiceHostJob.

__init__(memory=None, cores=None, disk=None, preemptable=None, unitName=None)
Memory, core and disk requirements are specified identically to as in toil.job.Job.__init__().

start(job)
Start the service.

Parameters job (toil.job.Job) – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access the fileStore for creating temporary
files.

Returns An object describing how to access the service. The object must be pickleable and will
be used by jobs to access the service (see toil.job.Job.addService()).

stop(job)
Stops the service. Function can block until complete.

Parameters job (toil.job.Job) – The underlying host job that the service is being run in.
Can be used to register deferred functions, or to access the fileStore for creating temporary
files.

check()
Checks the service is still running.

Raises exceptions.RuntimeError – If the service failed, this will cause the service job
to be labeled failed.

Returns True if the service is still running, else False. If False then the service job will be
terminated, and considered a success. Important point: if the service job exits due to a
failure, it should raise a RuntimeError, not return False!

131

Toil Documentation, Release 5.4.0

132 Chapter 19. Job.Service API

CHAPTER 20

Exceptions API

Toil specific exceptions.

exception toil.job.JobException(message)
General job exception.

__init__(message)
Initialize self. See help(type(self)) for accurate signature.

exception toil.job.JobGraphDeadlockException(string)
An exception raised in the event that a workflow contains an unresolvable dependency, such as a cycle. See
toil.job.Job.checkJobGraphForDeadlocks().

__init__(string)
Initialize self. See help(type(self)) for accurate signature.

exception toil.jobStores.abstractJobStore.ConcurrentFileModificationException(jobStoreFileID:
toil.fileStores.FileID)

Indicates that the file was attempted to be modified by multiple processes at once.

__init__(jobStoreFileID: toil.fileStores.FileID)

Parameters jobStoreFileID (str) – the ID of the file that was modified by multiple work-
ers or processes concurrently

exception toil.jobStores.abstractJobStore.JobStoreExistsException(locator:
str)

Indicates that the specified job store already exists.

__init__(locator: str)

Parameters locator (str) – The location of the job store

exception toil.jobStores.abstractJobStore.NoSuchFileException(jobStoreFileID:
toil.fileStores.FileID,
customName:
Optional[str] =
None, *extra)

Indicates that the specified file does not exist.

133

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Toil Documentation, Release 5.4.0

__init__(jobStoreFileID: toil.fileStores.FileID, customName: Optional[str] = None, *extra)

Parameters

• jobStoreFileID (str) – the ID of the file that was mistakenly assumed to exist

• customName (str) – optionally, an alternate name for the nonexistent file

• extra (list) – optional extra information to add to the error message

exception toil.jobStores.abstractJobStore.NoSuchJobException(jobStoreID:
toil.fileStores.FileID)

Indicates that the specified job does not exist.

__init__(jobStoreID: toil.fileStores.FileID)

Parameters jobStoreID (str) – the jobStoreID that was mistakenly assumed to exist

exception toil.jobStores.abstractJobStore.NoSuchJobStoreException(locator:
str)

Indicates that the specified job store does not exist.

__init__(locator: str)

Parameters locator (str) – The location of the job store

134 Chapter 20. Exceptions API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER 21

Running Tests

Test make targets, invoked as $ make <target>, subject to which environment variables are set (see Running
Integration Tests).

TARGET DESCRIPTION
test Invokes all tests.
integra-
tion_test

Invokes only the integration tests.

test_offline Skips building the Docker appliance and only invokes tests that have no docker dependencies.
integra-
tion_test_local

Makes integration tests easier to debug locally by running the integration tests serially and doesn’t
redirect output. This makes it appears on the terminal as expected.

Before running tests for the first time, initialize your virtual environment following the steps in Building from Source.

Run all tests (including slow tests):

$ make test

Run only quick tests (as of Jul 25, 2018, this was ~ 20 minutes):

$ export TOIL_TEST_QUICK=True; make test

Run an individual test with:

$ make test tests=src/toil/test/sort/sortTest.py::SortTest::testSort

The default value for tests is "src" which includes all tests in the src/ subdirectory of the project root. Tests that
require a particular feature will be skipped implicitly. If you want to explicitly skip tests that depend on a currently
installed feature, use

$ make test tests="-m 'not aws' src"

This will run only the tests that don’t depend on the aws extra, even if that extra is currently installed. Note the
distinction between the terms feature and extra. Every extra is a feature but there are features that are not extras, such

135

Toil Documentation, Release 5.4.0

as the gridengine and parasol features. To skip tests involving both the parasol feature and the aws extra,
use the following:

$ make test tests="-m 'not aws and not parasol' src"

21.1 Running Tests with pytest

Often it is simpler to use pytest directly, instead of calling the make wrapper. This usually works as expected, but
some tests need some manual preparation. To run a specific test with pytest, use the following:

python -m pytest src/toil/test/sort/sortTest.py::SortTest::testSort

For more information, see the pytest documentation.

21.2 Running Integration Tests

These tests are generally only run using in our CI workflow due to their resource requirements and cost. However,
they can be made available for local testing:

• Running tests that make use of Docker (e.g. autoscaling tests and Docker tests) require an appliance image to
be hosted. First, make sure you have gone through the set up found in Using Docker with Quay. Then to build
and host the appliance image run the make target push_docker.

$ make push_docker

• Running integration tests require activation via an environment variable as well as exporting information relevant
to the desired tests. Enable the integration tests:

$ export TOIL_TEST_INTEGRATIVE=True

• Finally, set the environment variables for keyname and desired zone:

$ export TOIL_X_KEYNAME=[Your Keyname]
$ export TOIL_X_ZONE=[Desired Zone]

Where X is one of our currently supported cloud providers (GCE, AWS).

• See the above sections for guidance on running tests.

21.3 Test Environment Variables

TOIL_TEST_TEMP An absolute path to a directory where Toil tests will write their temporary files. Defaults to
the system’s standard temporary directory.

TOIL_TEST_INTEGRATIVEIf True, this allows the integration tests to run. Only valid when running the tests from the
source directory via make test or make test_parallel.

TOIL_AWS_KEYNAMEAn AWS keyname (see Preparing your AWS environment), which is required to run the AWS
tests.

TOIL_GOOGLE_PROJECTIDA Google Cloud account projectID (see Running in Google Compute Engine (GCE)), which
is required to to run the Google Cloud tests.

TOIL_TEST_QUICKIf True, long running tests are skipped.

136 Chapter 21. Running Tests

https://docs.pytest.org/en/latest/
https://docs.python.org/2/library/tempfile.html#tempfile.gettempdir

Toil Documentation, Release 5.4.0

Partial install and failing tests

Some tests may fail with an ImportError if the required extras are not installed. Install Toil with all of the extras do
prevent such errors.

21.4 Using Docker with Quay

Docker is needed for some of the tests. Follow the appropriate installation instructions for your system on their website
to get started.

When running make test you might still get the following error:

$ make test
Please set TOIL_DOCKER_REGISTRY, e.g. to quay.io/USER.

To solve, make an account with Quay and specify it like so:

$ TOIL_DOCKER_REGISTRY=quay.io/USER make test

where USER is your Quay username.

For convenience you may want to add this variable to your bashrc by running

$ echo 'export TOIL_DOCKER_REGISTRY=quay.io/USER' >> $HOME/.bashrc

21.5 Running Mesos Tests

If you’re running Toil’s Mesos tests, be sure to create the virtualenv with --system-site-packages to include
the Mesos Python bindings. Verify this by activating the virtualenv and running pip list | grep mesos. On
macOS, this may come up empty. To fix it, run the following:

for i in /usr/local/lib/python2.7/site-packages/*mesos*; do ln -snf $i venv/lib/
→˓python2.7/site-packages/; done

21.4. Using Docker with Quay 137

https://www.docker.com/products/docker
https://quay.io/

Toil Documentation, Release 5.4.0

138 Chapter 21. Running Tests

CHAPTER 22

Developing with Docker

To develop on features reliant on the Toil Appliance (the docker image toil uses for AWS autoscaling), you should
consider setting up a personal registry on Quay or Docker Hub. Because the Toil Appliance images are tagged with
the Git commit they are based on and because only commits on our master branch trigger an appliance build on Quay,
as soon as a developer makes a commit or dirties the working copy they will no longer be able to rely on Toil to
automatically detect the proper Toil Appliance image. Instead, developers wishing to test any appliance changes in
autoscaling should build and push their own appliance image to a personal Docker registry. This is described in the
next section.

22.1 Making Your Own Toil Docker Image

Note! Toil checks if the docker image specified by TOIL_APPLIANCE_SELF exists prior to launching by using the
docker v2 schema. This should be valid for any major docker repository, but there is an option to override this if
desired using the option: –forceDockerAppliance.

Here is a general workflow (similar instructions apply when using Docker Hub):

1. Make some changes to the provisioner of your local version of Toil

2. Go to the location where you installed the Toil source code and run

$ make docker

to automatically build a docker image that can now be uploaded to your personal Quay account. If you have not
installed Toil source code yet see Building from Source.

3. If it’s not already you will need Docker installed and need to log into Quay. Also you will want to make sure
that your Quay account is public.

4. Set the environment variable TOIL_DOCKER_REGISTRY to your Quay account. If you find yourself doing
this often you may want to add

export TOIL_DOCKER_REGISTRY=quay.io/<MY_QUAY_USERNAME>

to your .bashrc or equivalent.

139

https://quay.io/
https://hub.docker.com/
https://quay.io/
https://docs.quay.io/solution/getting-started.html

Toil Documentation, Release 5.4.0

5. Now you can run

$ make push_docker

which will upload the docker image to your Quay account. Take note of the image’s tag for the next step.

6. Finally you will need to tell Toil from where to pull the Appliance image you’ve created (it uses the Toil release
you have installed by default). To do this set the environment variable TOIL_APPLIANCE_SELF to the url of
your image. For more info see Environment Variables.

7. Now you can launch your cluster! For more information see Running a Workflow with Autoscaling.

22.2 Running a Cluster Locally

The Toil Appliance container can also be useful as a test environment since it can simulate a Toil cluster locally. An
important caveat for this is autoscaling, since autoscaling will only work on an EC2 instance and cannot (at this time)
be run on a local machine.

To spin up a local cluster, start by using the following Docker run command to launch a Toil leader container:

docker run \
--entrypoint=mesos-master \
--net=host \
-d \
--name=leader \
--volume=/home/jobStoreParentDir:/jobStoreParentDir \
quay.io/ucsc_cgl/toil:3.6.0 \
--registry=in_memory \
--ip=127.0.0.1 \
--port=5050 \
--allocation_interval=500ms

A couple notes on this command: the -d flag tells Docker to run in daemon mode so the container will run in the
background. To verify that the container is running you can run docker ps to see all containers. If you want to
run your own container rather than the official UCSC container you can simply replace the quay.io/ucsc_cgl/
toil:3.6.0 parameter with your own container name.

Also note that we are not mounting the job store directory itself, but rather the location where the job store will be
written. Due to complications with running Docker on MacOS, I recommend only mounting directories within your
home directory. The next command will launch the Toil worker container with similar parameters:

docker run \
--entrypoint=mesos-slave \
--net=host \
-d \
--name=worker \
--volume=/home/jobStoreParentDir:/jobStoreParentDir \
quay.io/ucsc_cgl/toil:3.6.0 \
--work_dir=/var/lib/mesos \
--master=127.0.0.1:5050 \
--ip=127.0.0.1 \
---attributes=preemptable:False \
--resources=cpus:2

Note here that we are specifying 2 CPUs and a non-preemptable worker. We can easily change either or both of these
in a logical way. To change the number of cores we can change the 2 to whatever number you like, and to change the
worker to be preemptable we change preemptable:False to preemptable:True. Also note that the same

140 Chapter 22. Developing with Docker

Toil Documentation, Release 5.4.0

volume is mounted into the worker. This is needed since both the leader and worker write and read from the job store.
Now that your cluster is running, you can run

docker exec -it leader bash

to get a shell in your leader ‘node’. You can also replace the leader parameter with worker to get shell access in
your worker.

Docker-in-Docker issues

If you want to run Docker inside this Docker cluster (Dockerized tools, perhaps), you should also mount in the
Docker socket via -v /var/run/docker.sock:/var/run/docker.sock. This will give the Docker client
inside the Toil Appliance access to the Docker engine on the host. Client/engine version mismatches have been
known to cause issues, so we recommend using Docker version 1.12.3 on the host to be compatible with the Docker
client installed in the Appliance. Finally, be careful where you write files inside the Toil Appliance - ‘child’ Docker
containers launched in the Appliance will actually be siblings to the Appliance since the Docker engine is located on
the host. This means that the ‘child’ container can only mount in files from the Appliance if the files are located in a
directory that was originally mounted into the Appliance from the host - that way the files are accessible to the sibling
container. Note: if Docker can’t find the file/directory on the host it will silently fail and mount in an empty directory.

22.2. Running a Cluster Locally 141

Toil Documentation, Release 5.4.0

142 Chapter 22. Developing with Docker

CHAPTER 23

Maintainer’s Guidelines

In general, as developers and maintainers of the code, we adhere to the following guidelines:

• We strive to never break the build on master. All development should be done on branches, in either the main
Toil repository or in developers’ forks.

• Pull requests should be used for any and all changes (except truly trivial ones).

• Pull requests should be in response to issues. If you find yourself making a pull request without an issue, you
should create the issue first.

23.1 Naming Conventions

• Commit messages should be great. Most importantly, they must:

– Have a short subject line. If in need of more space, drop down two lines and write a body to explain what
is changing and why it has to change.

– Write the subject line as a command: Destroy all humans, not All humans destroyed.

– Reference the issue being fixed in a Github-parseable format, such as (resolves #1234) at the end of the
subject line, or This will fix #1234. somewhere in the body. If no single commit on its own fixes the issue,
the cross-reference must appear in the pull request title or body instead.

• Branches in the main Toil repository must start with issues/, followed by the issue number (or numbers,
separated by a dash), followed by a short, lowercase, hyphenated description of the change. (There can be many
open pull requests with their associated branches at any given point in time and this convention ensures that we
can easily identify branches.)

Say there is an issue numbered #123 titled Foo does not work. The branch name would be issues/
123-fix-foo and the title of the commit would be Fix foo in case of bar (resolves #123).

143

https://chris.beams.io/posts/git-commit/#seven-rules

Toil Documentation, Release 5.4.0

23.2 Pull Requests

• All pull requests must be reviewed by a person other than the request’s author. Review the PR by following the
Reviewing Pull Requests checklist.

• Modified pull requests must be re-reviewed before merging. Note that Github does not enforce this!

• Merge pull requests by following the Merging Pull Requests checklist.

• When merging a pull request, make sure to update the Draft Changelog on the Github wiki, which we will use
to produce the changelog for the next release. The PR template tells you to do this, so don’t forget. New entries
should go at the bottom.

• Pull requests will not be merged unless Travis and Gitlab CI tests pass. Gitlab tests are only run on code in the
main Toil repository on some branch, so it is the responsibility of the approving reviewer to make sure that pull
requests from outside repositories are copied to branches in the main repository. This can be accomplished with
(from a Toil clone):

./contrib/admin/test-pr theirusername their-branch issues/123-fix-description-here

This must be repeated every time the PR submitter updates their PR, after checking to see that the update is not
malicious.

If there is no issue corresponding to the PR, after which the branch can be named, the reviewer of the PR should
first create the issue.

Developers who have push access to the main Toil repository are encouraged to make their pull requests from
within the repository, to avoid this step.

• Prefer using “Squash and marge” when merging pull requests to master especially when the PR contains a
“single unit” of work (i.e. if one were to rewrite the PR from scratch with all the fixes included, they would have
one commit for the entire PR). This makes the commit history on master more readable and easier to debug in
case of a breakage.

When squashing a PR from multiple authors, please add Co-authored-by to give credit to all contributing authors.

See Issue #2816 for more details.

23.3 Publishing a Release

These are the steps to take to publish a Toil release:

• Determine the release version X.Y.Z. This should follow semantic versioning; if user-workflow-breaking
changes are made, X should be incremented, and Y and Z should be zero. If non-breaking changes are made
but new functionality is added, X should remain the same as the last release, Y should be incremented, and Z
should be zero. If only patches are released, X and Y should be the same as the last release and Z should be
incremented.

• If it does not exist already, create a release branch in the Toil repo named X.Y.x, where x is a literal lower-case
“x”. For patch releases, find the existing branch and make sure it is up to date with the patch commits that are
to be released. They may be cherry-picked over from master.

• On the release branch, edit version_template.py in the root of the repository. Find the line that looks
like this (slightly different for patch releases):

baseVersion = 'X.Y.0a1'

Make it look like this instead:

144 Chapter 23. Maintainer’s Guidelines

https://github.com/DataBiosphere/toil/wiki/Draft-Changelog
https://github.blog/2018-01-29-commit-together-with-co-authors/
https://github.com/DataBiosphere/toil/issues/2816
https://semver.org/
https://trunkbaseddevelopment.com/branch-for-release/

Toil Documentation, Release 5.4.0

baseVersion = 'X.Y.Z'

Commit your change to the branch.

• Tag the current state of the release branch as releases/X.Y.Z.

• Make the Github release here, referencing that tag. For a non-patch release, fill in the description with the
changelog from the wiki page, which you should clear. For a patch release, just describe the patch.

• For a non-patch release, set up the main branch so that development builds will declare themselves to be alpha
versions of what the next release will probably be. Edit version_template.py in the root of the repository
on the main branch to set baseVersion like this:

baseVersion = 'X.Y+1.0a1'

Make sure to replace X and Y+1 with actual numbers.

23.4 Adding Retries to a Function

See toil.lib.retry .

retry() can be used to decorate any function based on the list of errors one wishes to retry on.

This list of errors can contain normal Exception objects, and/or RetryCondition objects wrapping Exceptions to include
additional conditions.

For example, retrying on a one Exception (HTTPError):

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError])
def update_my_wallpaper():

return get('https://www.deviantart.com/')

Or:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[HTTPError, ValueError])
def update_my_wallpaper():

return get('https://www.deviantart.com/')

The examples above will retry for the default interval on any errors specified the “errors=” arg list.

To retry on specifically 500/502/503/504 errors, you could specify an ErrorCondition object instead, for example:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
ErrorCondition(

error=HTTPError,
error_codes=[500, 502, 503, 504]

)])
def update_my_wallpaper():

return requests.get('https://www.deviantart.com/')

23.4. Adding Retries to a Function 145

https://github.com/DataBiosphere/toil/releases/new
https://github.com/DataBiosphere/toil/wiki/Draft-Changelog
https://github.com/DataBiosphere/toil/blob/master/src/toil/lib/retry.py

Toil Documentation, Release 5.4.0

To retry on specifically errors containing the phrase “NotFound”:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
ErrorCondition(

error=HTTPError,
error_message_must_include="NotFound"

)])
def update_my_wallpaper():

return requests.get('https://www.deviantart.com/')

To retry on all HTTPError errors EXCEPT an HTTPError containing the phrase “NotFound”:

from requests import get
from requests.exceptions import HTTPError

@retry(errors=[
HTTPError,
ErrorCondition(

error=HTTPError,
error_message_must_include="NotFound",
retry_on_this_condition=False

)])
def update_my_wallpaper():

return requests.get('https://www.deviantart.com/')

To retry on boto3’s specific status errors, an example of the implementation is:

import boto3
from botocore.exceptions import ClientError

@retry(errors=[
ErrorCondition(

error=ClientError,
boto_error_codes=["BucketNotFound"]

)])
def boto_bucket(bucket_name):

boto_session = boto3.session.Session()
s3_resource = boto_session.resource('s3')
return s3_resource.Bucket(bucket_name)

Any combination of these will also work, provided the codes are matched to the correct exceptions. A ValueError will
not return a 404, for example.

The retry function as a decorator should make retrying functions easier and clearer. It also encourages smaller inde-
pendent functions, as opposed to lumping many different things that may need to be retried on different conditions in
the same function.

The ErrorCondition object tries to take some of the heavy lifting of writing specific retry conditions and boil it down
to an API that covers all common use-cases without the user having to write any new bespoke functions.

Use-cases covered currently:

1. Retrying on a normal error, like a KeyError.

2. Retrying on HTTP error codes (use ErrorCondition).

3. Retrying on boto’s specific status errors, like “BucketNotFound” (use ErrorCondition).

146 Chapter 23. Maintainer’s Guidelines

Toil Documentation, Release 5.4.0

4. Retrying when an error message contains a certain phrase (use ErrorCondition).

5. Explicitly NOT retrying on a condition (use ErrorCondition).

If new functionality is needed, it’s currently best practice in Toil to add functionality to the ErrorCondition itself rather
than making a new custom retry method.

23.4. Adding Retries to a Function 147

Toil Documentation, Release 5.4.0

148 Chapter 23. Maintainer’s Guidelines

CHAPTER 24

Pull Request Checklists

This document contains checklists for dealing with PRs. More general PR information is available at Pull Requests.

24.1 Reviewing Pull Requests

This checklist is to be kept in sync with the checklist in the pull request template.

When reviewing a PR, do the following:

• Make sure it is coming from issues/XXXX-fix-the-thing in the Toil repo, or from an external repo.

– If it is coming from an external repo, make sure to pull it in for CI with:

contrib/admin/test-pr otheruser theirbranchname issues/XXXX-fix-the-thing

– If there is no associated issue, create one.

• Read through the code changes. Make sure that it doesn’t have:

– Addition of trailing whitespace.

– New variable or member names in camelCase that want to be in snake_case.

– New functions without type hints.

– New functions or classes without informative docstrings.

– Changes to semantics not reflected in the relevant docstrings.

– New or changed command line options for Toil workflows that are not reflected in docs/running/
cliOptions.rst

– New features without tests.

• Comment on the lines of code where problems exist with a review comment. You can shift-click the line numbers
in the diff to select multiple lines.

149

https://github.com/DataBiosphere/toil/issues/new
https://docs.python.org/3/library/typing.html

Toil Documentation, Release 5.4.0

• Finish the review with an overall description of your opinion.

24.2 Merging Pull Requests

This checklist is to be kept in sync with the checklist in the pull request template.

When merging a PR, do the following:

• Make sure the PR passes tests.

• Make sure the PR has been reviewed since its last modification. If not, review it.

• Merge with the Github “Squash and merge” feature.

– If there are multiple authors’ commits, add Co-authored-by to give credit to all contributing authors.

• Copy its recommended changelog entry to the Draft Changelog.

• Append the issue number in parentheses to the changelog entry.

150 Chapter 24. Pull Request Checklists

https://github.blog/2018-01-29-commit-together-with-co-authors/
https://github.com/DataBiosphere/toil/wiki/Draft-Changelog

CHAPTER 25

Toil Architecture

The following diagram layouts out the software architecture of Toil.

These components are described below:

• the leader: The leader is responsible for deciding which jobs should be run. To do this it traverses the job
graph. Currently this is a single threaded process, but we make aggressive steps to prevent it becoming
a bottleneck (see Read-only Leader described below).

• the job-store: Handles all files shared between the components. Files in the job-store are the means by
which the state of the workflow is maintained. Each job is backed by a file in the job store, and atomic
updates to this state are used to ensure the workflow can always be resumed upon failure. The job-
store can also store all user files, allowing them to be shared between jobs. The job-store is defined
by the AbstractJobStore class. Multiple implementations of this class allow Toil to support
different back-end file stores, e.g.: S3, network file systems, Google file store, etc.

• workers: The workers are temporary processes responsible for running jobs, one at a time per worker.
Each worker process is invoked with a job argument that it is responsible for running. The worker
monitors this job and reports back success or failure to the leader by editing the job’s state in the
file-store. If the job defines successor jobs the worker may choose to immediately run them (see Job
Chaining below).

• the batch-system: Responsible for scheduling the jobs given to it by the leader, creating a worker com-
mand for each job. The batch-system is defined by the AbstractBatchSystem class. Toil uses
multiple existing batch systems to schedule jobs, including Apache Mesos, GridEngine and a multi-
process single node implementation that allows workflows to be run without any of these frameworks.
Toil can therefore fairly easily be made to run a workflow using an existing cluster.

• the node provisioner: Creates worker nodes in which the batch system schedules workers. It is defined
by the AbstractProvisioner class.

• the statistics and logging monitor: Monitors logging and statistics produced by the workers and reports
them. Uses the job-store to gather this information.

151

Toil Documentation, Release 5.4.0

Fig. 1: Figure 1: The basic components of Toil’s architecture.

152 Chapter 25. Toil Architecture

Toil Documentation, Release 5.4.0

25.1 Optimizations

Toil implements lots of optimizations designed for scalability. Here we detail some of the key optimizations.

25.1.1 Read-only leader

The leader process is currently implemented as a single thread. Most of the leader’s tasks revolve around processing
the state of jobs, each stored as a file within the job-store. To minimise the load on this thread, each worker does as
much work as possible to manage the state of the job it is running. As a result, with a couple of minor exceptions,
the leader process never needs to write or update the state of a job within the job-store. For example, when a job is
complete and has no further successors the responsible worker deletes the job from the job-store, marking it complete.
The leader then only has to check for the existence of the file when it receives a signal from the batch-system to know
that the job is complete. This off-loading of state management is orthogonal to future parallelization of the leader.

25.1.2 Job chaining

The scheduling of successor jobs is partially managed by the worker, reducing the number of individual jobs the leader
needs to process. Currently this is very simple: if the there is a single next successor job to run and its resources fit
within the resources of the current job and closely match the resources of the current job then the job is run immediately
on the worker without returning to the leader. Further extensions of this strategy are possible, but for many workflows
which define a series of serial successors (e.g. map sequencing reads, post-process mapped reads, etc.) this pattern is
very effective at reducing leader workload.

25.1.3 Preemptable node support

Critical to running at large-scale is dealing with intermittent node failures. Toil is therefore designed to always be
resumable providing the job-store does not become corrupt. This robustness allows Toil to run on preemptible nodes,
which are only available when others are not willing to pay more to use them. Designing workflows that divide
into many short individual jobs that can use preemptable nodes allows for workflows to be efficiently scheduled and
executed.

25.1.4 Caching

Running bioinformatic pipelines often require the passing of large datasets between jobs. Toil caches the results from
jobs such that child jobs running on the same node can directly use the same file objects, thereby eliminating the need
for an intermediary transfer to the job store. Caching also reduces the burden on the local disks, because multiple jobs
can share a single file. The resulting drop in I/O allows pipelines to run faster, and, by the sharing of files, allows users
to run more jobs in parallel by reducing overall disk requirements.

To demonstrate the efficiency of caching, we ran an experimental internal pipeline on 3 samples from the TCGA
Lung Squamous Carcinoma (LUSC) dataset. The pipeline takes the tumor and normal exome fastqs, and the tu-
mor rna fastq and input, and predicts MHC presented neoepitopes in the patient that are potential targets for T-cell
based immunotherapies. The pipeline was run individually on the samples on c3.8xlarge machines on AWS (60GB
RAM,600GB SSD storage, 32 cores). The pipeline aligns the data to hg19-based references, predicts MHC haplotypes
using PHLAT, calls mutations using 2 callers (MuTect and RADIA) and annotates them using SnpEff, then predicts
MHC:peptide binding using the IEDB suite of tools before running an in-house rank boosting algorithm on the final
calls.

To optimize time taken, The pipeline is written such that mutations are called on a per-chromosome basis from the
whole-exome bams and are merged into a complete vcf. Running mutect in parallel on whole exome bams requires
each mutect job to download the complete Tumor and Normal Bams to their working directories – An operation that

25.1. Optimizations 153

Toil Documentation, Release 5.4.0

quickly fills the disk and limits the parallelizability of jobs. The script was run in Toil, with and without caching, and
Figure 2 shows that the workflow finishes faster in the cached case while using less disk on average than the uncached
run. We believe that benefits of caching arising from file transfers will be much higher on magnetic disk-based storage
systems as compared to the SSD systems we tested this on.

25.2 Toil support for Common Workflow Language

The CWL document and input document are loaded using the ‘cwltool.load_tool’ module. This performs normaliza-
tion and URI expansion (for example, relative file references are turned into absolute file URIs), validates the document
against the CWL schema, initializes Python objects corresponding to major document elements (command line tools,
workflows, workflow steps), and performs static type checking that sources and sinks have compatible types.

Input files referenced by the CWL document and input document are imported into the Toil file store. CWL documents
may use any URI scheme supported by Toil file store, including local files and object storage.

The ‘location’ field of File references are updated to reflect the import token returned by the Toil file store.

For directory inputs, the directory listing is stored in Directory object. Each individual files is imported into Toil file
store.

An initial workflow Job is created from the toplevel CWL document. Then, control passes to the Toil engine which
schedules the initial workflow job to run.

When the toplevel workflow job runs, it traverses the CWL workflow and creates a toil job for each step. The depen-
dency graph is expressed by making downstream jobs children of upstream jobs, and initializing the child jobs with
an input object containing the promises of output from upstream jobs.

Because Toil jobs have a single output, but CWL permits steps to have multiple output parameters that may feed into
multiple other steps, the input to a CWLJob is expressed with an “indirect dictionary”. This is a dictionary of input
parameters, where each entry value is a tuple of a promise and a promise key. When the job runs, the indirect dictionary
is turned into a concrete input object by resolving each promise into its actual value (which is always a dict), and then
looking up the promise key to get the actual value for the the input parameter.

If a workflow step specifies a scatter, then a scatter job is created and connected into the workflow graph as described
above. When the scatter step runs, it creates child jobs for each parameterizations of the scatter. A gather job is added
as a follow-on to gather the outputs into arrays.

When running a command line tool, it first creates output and temporary directories under the Toil local temp dir. It
runs the command line tool using the single_job_executor from CWLTool, providing a Toil-specific constructor for
filesystem access, and overriding the default PathMapper to use ToilPathMapper.

The ToilPathMapper keeps track of a file’s symbolic identifier (the Toil FileID), its local path on the host (the value
returned by readGlobalFile) and the the location of the file inside the Docker container.

After executing single_job_executor from CWLTool, it gets back the output object and status. If the underlying job
failed, raise an exception. Files from the output object are added to the file store using writeGlobalFile and the
‘location’ field of File references are updated to reflect the token returned by the Toil file store.

When the workflow completes, it returns an indirect dictionary linking to the outputs of the job steps that contribute to
the final output. This is the value returned by toil.start() or toil.restart(). This is resolved to get the final output object.
The files in this object are exported from the file store to ‘outdir’ on the host file system, and the ‘location’ field of File
references are updated to reflect the final exported location of the output files.

154 Chapter 25. Toil Architecture

Toil Documentation, Release 5.4.0

Fig. 2: Figure 2: Efficiency gain from caching. The lower half of each plot describes the disk used by the pipeline
recorded every 10 minutes over the duration of the pipeline, and the upper half shows the corresponding stage of the
pipeline that is being processed. Since jobs requesting the same file shared the same inode, the effective load on the
disk is considerably lower than in the uncached case where every job downloads a personal copy of every file it needs.
We see that in all cases, the uncached run uses almost 300-400GB more that the cached run in the resource heavy
mutation calling step. We also see a benefit in terms of wall time for each stage since we eliminate the time taken for
file transfers.

25.2. Toil support for Common Workflow Language 155

Toil Documentation, Release 5.4.0

156 Chapter 25. Toil Architecture

CHAPTER 26

Minimum AWS IAM permissions

Toil requires at least the following permissions in an IAM role to operate on a cluster. These are added by default when
launching a cluster. However, ensure that they are present if creating a custom IAM role when launching a cluster
with the --awsEc2ProfileArn parameter.

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"ec2:*",
"s3:*",
"sdb:*",
"iam:PassRole"

],
"Resource": "*"

}
]

}

157

Toil Documentation, Release 5.4.0

158 Chapter 26. Minimum AWS IAM permissions

CHAPTER 27

Auto-Deployment

If you want to run your workflow in a distributed environment, on multiple worker machines, either in the cloud or
on a bare-metal cluster, your script needs to be made available to those other machines. If your script imports other
modules, those modules also need to be made available on the workers. Toil can automatically do that for you, with a
little help on your part. We call this feature auto-deployment of a workflow.

Let’s first examine various scenarios of auto-deploying a workflow, which, as we’ll see shortly cannot be auto-
deployed. Lastly, we’ll deal with the issue of declaring Toil as a dependency of a workflow that is packaged as a
setuptools distribution.

Toil can be easily deployed to a remote host. First, assuming you’ve followed our Preparing your AWS environment
section to install Toil and use it to create a remote leader node on (in this example) AWS, you can now log into this
into using Ssh-Cluster Command and once on the remote host, create and activate a virtualenv (noting to make sure to
use the --system-site-packages option!):

$ virtualenv --system-site-packages venv
$. venv/bin/activate

Note the --system-site-packages option, which ensures that globally-installed packages are accessible inside
the virtualenv. Do not (re)install Toil after this! The --system-site-packages option has already transferred
Toil and the dependencies from your local installation of Toil for you.

From here, you can install a project and its dependencies:

$ tree
.

util
__init__.py
sort

__init__.py
quick.py

workflow
__init__.py
main.py

(continues on next page)

159

Toil Documentation, Release 5.4.0

(continued from previous page)

3 directories, 5 files
$ pip install matplotlib
$ cp -R workflow util venv/lib/python2.7/site-packages

Ideally, your project would have a setup.py file (see setuptools) which streamlines the installation process:

$ tree
.

util
__init__.py
sort

__init__.py
quick.py

workflow
__init__.py
main.py

setup.py

3 directories, 6 files
$ pip install .

Or, if your project has been published to PyPI:

$ pip install my-project

In each case, we have created a virtualenv with the --system-site-packages flag in the venv subdirectory
then installed the matplotlib distribution from PyPI along with the two packages that our project consists of.
(Again, both Python and Toil are assumed to be present on the leader and all worker nodes.)

We can now run our workflow:

$ python main.py --batchSystem=mesos ...

Important: If workflow’s external dependencies contain native code (i.e. are not pure Python) then they must be
manually installed on each worker.

Warning: Neither python setup.py develop nor pip install -e . can be used in this process as,
instead of copying the source files, they create .egg-link files that Toil can’t auto-deploy. Similarly, python
setup.py install doesn’t work either as it installs the project as a Python .egg which is also not currently
supported by Toil (though it could be in the future).

Also note that using the --single-version-externally-managed flag with setup.py will prevent
the installation of your package as an .egg. It will also disable the automatic installation of your project’s
dependencies.

27.1 Auto Deployment with Sibling Modules

This scenario applies if the user script imports modules that are its siblings:

160 Chapter 27. Auto-Deployment

http://setuptools.readthedocs.io/en/latest/index.html
https://github.com/BD2KGenomics/toil/issues/1367

Toil Documentation, Release 5.4.0

$ cd my_project
$ ls
userScript.py utilities.py
$./userScript.py --batchSystem=mesos ...

Here userScript.py imports additional functionality from utilities.py. Toil detects that userScript.
py has sibling modules and copies them to the workers, alongside the user script. Note that sibling modules will be
auto-deployed regardless of whether they are actually imported by the user script–all .py files residing in the same
directory as the user script will automatically be auto-deployed.

Sibling modules are a suitable method of organizing the source code of reasonably complicated workflows.

27.2 Auto-Deploying a Package Hierarchy

Recall that in Python, a package is a directory containing one or more .py files—one of which must be called
__init__.py—and optionally other packages. For more involved workflows that contain a significant amount of
code, this is the recommended way of organizing the source code. Because we use a package hierarchy, we can’t
really refer to the user script as such, we call it the user module instead. It is merely one of the modules in the package
hierarchy. We need to inform Toil that we want to use a package hierarchy by invoking Python’s -m option. That
enables Toil to identify the entire set of modules belonging to the workflow and copy all of them to each worker. Note
that while using the -m option is optional in the scenarios above, it is mandatory in this one.

The following shell session illustrates this:

$ cd my_project
$ tree
.

utils
__init__.py
sort

__init__.py
quick.py

workflow
__init__.py
main.py

3 directories, 5 files
$ python -m workflow.main --batchSystem=mesos ...

Here the user module main.py does not reside in the current directory, but is part of a package called util, in a
subdirectory of the current directory. Additional functionality is in a separate module called util.sort.quick
which corresponds to util/sort/quick.py. Because we invoke the user module via python -m workflow.
main, Toil can determine the root directory of the hierarchy–my_project in this case–and copy all Python modules
underneath it to each worker. The -m option is documented here

When -m is passed, Python adds the current working directory to sys.path, the list of root directories to be con-
sidered when resolving a module name like workflow.main. Without that added convenience we’d have to run the
workflow as PYTHONPATH="$PWD" python -m workflow.main. This also means that Toil can detect the
root directory of the user module’s package hierarchy even if it isn’t the current working directory. In other words we
could do this:

$ cd my_project
$ export PYTHONPATH="$PWD"
$ cd /some/other/dir
$ python -m workflow.main --batchSystem=mesos ...

27.2. Auto-Deploying a Package Hierarchy 161

https://docs.python.org/2/tutorial/modules.html#packages
https://docs.python.org/2/using/cmdline.html#cmdoption-m

Toil Documentation, Release 5.4.0

Also note that the root directory itself must not be package, i.e. must not contain an __init__.py.

27.3 Relying on Shared Filesystems

Bare-metal clusters typically mount a shared file system like NFS on each node. If every node has that file system
mounted at the same path, you can place your project on that shared filesystem and run your user script from there.
Additionally, you can clone the Toil source tree into a directory on that shared file system and you won’t even need
to install Toil on every worker. Be sure to add both your project directory and the Toil clone to PYTHONPATH. Toil
replicates PYTHONPATH from the leader to every worker.

Using a shared filesystem

Toil currently only supports a tempdir set to a local, non-shared directory.

27.3.1 Toil Appliance

The term Toil Appliance refers to the Mesos Docker image that Toil uses to simulate the machines in the virtual mesos
cluster. It’s easily deployed, only needs Docker, and allows for workflows to be run in single-machine mode and for
clusters of VMs to be provisioned. To specify a different image, see the Toil Environment Variables section. For more
information on the Toil Appliance, see the Running in AWS section.

162 Chapter 27. Auto-Deployment

CHAPTER 28

Environment Variables

There are several environment variables that affect the way Toil runs.

163

Toil Documentation, Release 5.4.0

TOIL_CHECK_ENVA flag that determines whether Toil will try to refer back to a Python virtual environment in which
it is installed when composing commands that may be run on other hosts. If set to True, if Toil is
installed in the current virtual environment, it will use absolute paths to its own executables (and the
virtual environment must thus be available on at the same path on all nodes). Otherwise, Toil internal
commands such as _toil_worker will be resolved according to the PATH on the node where they
are executed. This setting can be useful in a shared HPC environment, where users may have their own
Toil installations in virtual environments.

TOIL_WORKDIRAn absolute path to a directory where Toil will write its temporary files. This directory must exist on
each worker node and may be set to a different value on each worker. The --workDir command
line option overrides this. When using the Toil docker container, such as on Kubernetes, this defaults
to /var/lib/toil. When using Toil autoscaling with Mesos, this is somewhere inside the Mesos
sandbox. In all other cases, the system’s standard temporary directory is used.

TOIL_WORKDIR_OVERRIDEAn absolute path to a directory where Toil will write its temporary files. This overrides
TOIL_WORKDIR and the --workDir command line option.

TOIL_KUBERNETES_HOST_PATHA path on Kubernetes hosts that will be mounted as /tmp in the workers, to allow for shared caching.
TOIL_KUBERNETES_OWNERA name prefix for easy identification of Kubernetes jobs. If not set, Toil will use the current user name.
KUBE_WATCH_ENABLEDA boolean variable that allows for users to utilize kubernetes watch stream feature intead of polling for

running jobs. Default value is set to False.
TOIL_APPLIANCE_SELFThe fully qualified reference for the Toil Appliance you wish to use, in the form REPO/IMAGE:TAG.

quay.io/ucsc_cgl/toil:3.6.0 and cket/toil:3.5.0 are both examples of valid options.
Note that since Docker defaults to Dockerhub repos, only quay.io repos need to specify their registry.

TOIL_DOCKER_REGISTRYThe URL of the registry of the Toil Appliance image you wish to use. Docker will use Dockerhub
by default, but the quay.io registry is also very popular and easily specifiable by setting this option to
quay.io.

TOIL_DOCKER_NAMEThe name of the Toil Appliance image you wish to use. Generally this is simply toil but this option
is provided to override this, since the image can be built with arbitrary names.

TOIL_AWS_SECRET_NAMEFor the Kubernetes batch system, the name of a Kubernetes secret which contains a credentials
file granting access to AWS resources. Will be mounted as ~/.aws inside Kubernetes-managed Toil
containers. Enables the AWSJobStore to be used with the Kubernetes batch system, if the credentials
allow access to S3 and SimpleDB.

TOIL_AWS_ZONEThe EC2 zone to provision nodes in if using Toil’s provisioner.
TOIL_AWS_AMIID of the AMI to use in node provisioning. If in doubt, don’t set this variable.
TOIL_AWS_NODE_DEBUGDetermines whether to preserve nodes that have failed health checks. If set to True, nodes that fail

EC2 health checks won’t immediately be terminated so they can be examined and the cause of failure
determined. If any EC2 nodes are left behind in this manner, the security group will also be left behind
by necessity as it cannot be deleted until all associated nodes have been terminated.

TOIL_GOOGLE_PROJECTIDThe Google project ID to use when generating Google job store names for tests or CWL workflows.
TOIL_SLURM_ARGSArguments for sbatch for the slurm batch system. Do not pass CPU or memory specifications here.

Instead, define resource requirements for the job. There is no default value for this variable.
TOIL_GRIDENGINE_ARGSArguments for qsub for the gridengine batch system. Do not pass CPU or memory specifications here.

Instead, define resource requirements for the job. There is no default value for this variable.
TOIL_GRIDENGINE_PEParallel environment arguments for qsub and for the gridengine batch system. There is no default value

for this variable.
TOIL_TORQUE_ARGSArguments for qsub for the Torque batch system. Do not pass CPU or memory specifications

here. Instead, define extra parameters for the job such as queue. Example: -q medium Use
TOIL_TORQUE_REQS to pass extra values for the -l resource requirements parameter. There is no
default value for this variable.

TOIL_TORQUE_REQSArguments for the resource requirements for Torque batch system. Do not pass CPU or memory spec-
ifications here. Instead, define extra resource requirements as a string that goes after the -l argument to
qsub. Example: walltime=2:00:00,file=50gb There is no default value for this variable.

TOIL_LSF_ARGSAdditional arguments for the LSF’s bsub command. Instead, define extra parameters for the job such as
queue. Example: -q medium. There is no default value for this variable.

TOIL_HTCONDOR_PARAMSAdditional parameters to include in the HTCondor submit file passed to condor_submit. Do not pass
CPU or memory specifications here. Instead define extra parameters which may be required by HTCon-
dor. This variable is parsed as a semicolon-separated string of parameter = value pairs. Exam-
ple: requirements = TARGET.has_sse4_2 == true; accounting_group = test.
There is no default value for this variable.

TOIL_CUSTOM_DOCKER_INIT_COMMANDAny custom bash command to run in the Toil docker container prior to running the Toil services.
Can be used for any custom initialization in the worker and/or primary nodes such as private docker
docker authentication. Example for AWS ECR: pip install awscli && eval $(aws ecr
get-login --no-include-email --region us-east-1).

TOIL_CUSTOM_INIT_COMMANDAny custom bash command to run prior to starting the Toil appliance. Can be used for any custom initial-
ization in the worker and/or primary nodes such as private docker authentication for the Toil appliance
itself (i.e. from TOIL_APPLIANCE_SELF).

TOIL_S3_HOSTthe IP address or hostname to use for connecting to S3. Example: TOIL_S3_HOST=127.0.0.1
TOIL_S3_PORTa port number to use for connecting to S3. Example: TOIL_S3_PORT=9001
TOIL_S3_USE_SSLenable or disable the usage of SSL for connecting to S3 (True by default). Example:

TOIL_S3_USE_SSL=False
TOIL_OWNER_TAGThis will tag cloud resources with a tag reading: “Owner: $TOIL_OWNER_TAG”. Currently only on

AWS buckets, this is an internal UCSC flag to stop a bot we have that terminates untagged resources.
SIN-
GU-
LAR-
ITY_DOCKER_HUB_MIRROR

An http or https URL for the Singularity wrapper in the Toil Docker container to use as a mirror for
Docker Hub.

164 Chapter 28. Environment Variables

https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir

Toil Documentation, Release 5.4.0

• genindex

• search

165

Toil Documentation, Release 5.4.0

166 Chapter 28. Environment Variables

Index

Symbols
__init__() (toil.common.Toil method), 93
__init__() (toil.fileStores.FileID method), 125
__init__() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 121
__init__() (toil.job.EncapsulatedJob method), 106
__init__() (toil.job.FunctionWrappingJob method),

105
__init__() (toil.job.Job method), 111
__init__() (toil.job.Job.Service method), 131
__init__() (toil.job.JobException method), 133
__init__() (toil.job.JobGraphDeadlockException

method), 133
__init__() (toil.job.Promise method), 108
__init__() (toil.job.PromisedRequirement method),

108
__init__() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 95
__init__() (toil.jobStores.abstractJobStore.ConcurrentFileModificationException

method), 133
__init__() (toil.jobStores.abstractJobStore.JobStoreExistsException

method), 133
__init__() (toil.jobStores.abstractJobStore.NoSuchFileException

method), 133
__init__() (toil.jobStores.abstractJobStore.NoSuchJobException

method), 134
__init__() (toil.jobStores.abstractJobStore.NoSuchJobStoreException

method), 134

A
AbstractBatchSystem (class in

toil.batchSystems.abstractBatchSystem),
128

AbstractFileStore (class in
toil.fileStores.abstractFileStore), 121

AbstractJobStore (class in
toil.jobStores.abstractJobStore), 95

addChild() (toil.job.EncapsulatedJob method), 107
addChild() (toil.job.Job method), 112

addChildFn() (toil.job.Job method), 113
addChildJobFn() (toil.job.Job method), 114
addFollowOn() (toil.job.EncapsulatedJob method),

107
addFollowOn() (toil.job.Job method), 113
addFollowOnFn() (toil.job.Job method), 113
addFollowOnJobFn() (toil.job.Job method), 114
addService() (toil.job.EncapsulatedJob method),

107
addService() (toil.job.Job method), 113
addToilOptions() (toil.job.Job.Runner static

method), 119
assignConfig() (toil.job.Job method), 112
assignID() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 97

B
batch() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 97

C
check() (toil.job.Job.Service method), 131
checkJobGraphAcylic() (toil.job.Job method),

115
checkJobGraphConnected() (toil.job.Job

method), 115
checkJobGraphForDeadlocks() (toil.job.Job

method), 115
checkNewCheckpointsAreLeafVertices()

(toil.job.Job method), 116
checkpoint (toil.job.Job attribute), 112
clean() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 97
ConcurrentFileModificationException, 133
config (toil.common.Toil attribute), 93
config (toil.jobStores.abstractJobStore.AbstractJobStore

attribute), 96
convertPromises() (toil.job.PromisedRequirement

static method), 108

167

Toil Documentation, Release 5.4.0

cores (toil.job.Job attribute), 112
create() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 97
createBatchSystem() (toil.common.Toil static

method), 93
createRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 96

D
defer() (toil.job.Job method), 116
delete() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 98
deleteFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 101
deleteGlobalFile()

(toil.fileStores.abstractFileStore.AbstractFileStore
method), 124

deleteLocalFile()
(toil.fileStores.abstractFileStore.AbstractFileStore
method), 124

description (toil.job.Job attribute), 112
destroy() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 97
disk (toil.job.Job attribute), 112

E
encapsulate() (toil.job.Job method), 114
EncapsulatedJob (class in toil.job), 106
exists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 98
exportFile() (toil.common.Toil method), 94
exportFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 97

F
fileExists() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 101
FileID (class in toil.fileStores), 125
filesToDelete (toil.job.Promise attribute), 108
FunctionWrappingJob (class in toil.job), 105

G
getDefaultArgumentParser()

(toil.job.Job.Runner static method), 119
getDefaultOptions() (toil.job.Job.Runner static

method), 119
getEmptyFileStoreID()

(toil.jobStores.abstractJobStore.AbstractJobStore
method), 100

getEnv() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 97

getFileSize() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 101

getGlobalFileSize()
(toil.fileStores.abstractFileStore.AbstractFileStore
method), 124

getIssuedBatchJobIDs()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 128

getJobStore() (toil.common.Toil class method), 93
getLocalTempDir()

(toil.fileStores.abstractFileStore.AbstractFileStore
method), 122

getLocalTempFile()
(toil.fileStores.abstractFileStore.AbstractFileStore
method), 122

getLocalTempFileName()
(toil.fileStores.abstractFileStore.AbstractFileStore
method), 122

getLocalWorkflowDir() (toil.common.Toil class
method), 94

getPublicUrl() (toil.jobStores.abstractJobStore.AbstractJobStore
method), 98

getRootJobReturnValue()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 96

getRootJobs() (toil.job.Job method), 115
getRunningBatchJobIDs()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 128

getSchedulingStatusMessage()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 129

getSharedPublicUrl()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 98

getSize() (toil.jobStores.abstractJobStore.AbstractJobStore
class method), 97

getToilWorkDir() (toil.common.Toil static method),
94

getTopologicalOrderingOfJobs()
(toil.job.Job method), 116

getUpdatedBatchJob()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 128

getValue() (toil.job.PromisedRequirement method),
108

getWorkerContexts()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
method), 129

H
hasChild() (toil.job.Job method), 112
hasFollowOn() (toil.job.Job method), 113
hasPredecessor() (toil.job.Job method), 113
hasService() (toil.job.Job method), 113

168 Index

Toil Documentation, Release 5.4.0

I
importFile() (toil.common.Toil method), 94
importFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 96
initialize() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 95
issueBatchJob() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 128

J
Job (class in toil.job), 111
Job.Runner (class in toil.job), 119
Job.Service (class in toil.job), 131
JobException, 133
JobFunctionWrappingJob (class in toil.job), 105
JobGraphDeadlockException, 133
jobs() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 98
JobStoreExistsException, 133
jobStoreID (toil.job.Job attribute), 111

K
killBatchJobs() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 128

L
load() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 98
loadJob() (toil.job.Job class method), 117
loadRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 96
log() (toil.job.Job method), 114
logAccess() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 123
logToMaster() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 125

M
memory (toil.job.Job attribute), 112

N
NoSuchFileException, 133
NoSuchJobException, 134
NoSuchJobStoreException, 134

O
open() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 122

P
pack() (toil.fileStores.FileID method), 125
preemptable (toil.job.Job attribute), 112

prepareForPromiseRegistration()
(toil.job.EncapsulatedJob method), 108

prepareForPromiseRegistration()
(toil.job.Job method), 115

Promise (class in toil.job), 108
PromisedRequirement (class in toil.job), 108

R
readFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 100
readFileStream() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 100
readGlobalFile() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 123
readGlobalFileStream()

(toil.fileStores.abstractFileStore.AbstractFileStore
method), 124

readSharedFileStream()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 102

readStatsAndLogging()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 102

restart() (toil.common.Toil method), 93
resume() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 95
run() (toil.job.FunctionWrappingJob method), 105
run() (toil.job.Job method), 112
run() (toil.job.JobFunctionWrappingJob method), 106
rv() (toil.job.EncapsulatedJob method), 107
rv() (toil.job.Job method), 115

S
saveAsRootJob() (toil.job.Job method), 117
saveBody() (toil.job.Job method), 116
setEnv() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 129
setOptions() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

class method), 129
setRootJob() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 96
setUserScript() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 128
shutdown() (toil.batchSystems.abstractBatchSystem.AbstractBatchSystem

method), 129
shutdown() (toil.fileStores.abstractFileStore.AbstractFileStore

class method), 125
shutdownFileStore()

(toil.fileStores.abstractFileStore.AbstractFileStore
static method), 122

start() (toil.common.Toil method), 93
start() (toil.job.Job.Service method), 131
startCommit() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 125

Index 169

Toil Documentation, Release 5.4.0

startToil() (toil.job.Job.Runner static method), 119
stop() (toil.job.Job.Service method), 131
supportsAutoDeployment()

(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 128

supportsWorkerCleanup()
(toil.batchSystems.abstractBatchSystem.AbstractBatchSystem
class method), 128

T
tempDir (toil.job.Job attribute), 114
Toil (class in toil.common), 93

U
unpack() (toil.fileStores.FileID class method), 125
update() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 98
updateFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 101
updateFileStream()

(toil.jobStores.abstractJobStore.AbstractJobStore
method), 101

W
waitForCommit() (toil.fileStores.abstractFileStore.AbstractFileStore

method), 125
wrapFn() (toil.job.Job static method), 114
wrapJobFn() (toil.job.Job static method), 114
writeConfig() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 95
writeFile() (toil.jobStores.abstractJobStore.AbstractJobStore

method), 99
writeFileStream()

(toil.jobStores.abstractJobStore.AbstractJobStore
method), 99

writeGlobalFile()
(toil.fileStores.abstractFileStore.AbstractFileStore
method), 122

writeGlobalFileStream()
(toil.fileStores.abstractFileStore.AbstractFileStore
method), 123

writePIDFile() (toil.common.Toil method), 94
writeSharedFileStream()

(toil.jobStores.abstractJobStore.AbstractJobStore
method), 102

writeStatsAndLogging()
(toil.jobStores.abstractJobStore.AbstractJobStore
method), 102

170 Index

	Installation
	Preparing Your Python Runtime Environment
	Basic Installation
	Installing Toil with Extra Features
	Building from Source

	Quickstart Examples
	Running a basic workflow
	Running a basic CWL workflow
	Running a basic WDL workflow
	A (more) real-world example
	Launching a Toil Workflow in AWS
	Running a CWL Workflow on AWS
	Running a Workflow with Autoscaling - Cactus

	Introduction
	Job Store
	Batch System
	Provisioner

	Commandline Options
	The Job Store
	Commandline Options
	Restart Option
	Running Workflows with Services
	Setting Options directly with the Toil Script

	Toil Debugging
	Introspecting the Jobstore
	Stats and Status
	Using a Python debugger

	Running in the Cloud
	Managing a Cluster of Virtual Machines (Provisioning)
	Storage (Toil jobStore)

	Cloud Platforms
	Running on Kubernetes
	Running in AWS
	Running in Google Compute Engine (GCE)
	Cluster Utilities
	Stats Command
	Status Command
	Clean Command
	Launch-Cluster Command
	Ssh-Cluster Command
	Rsync-Cluster Command
	Destroy-Cluster Command
	Kill Command

	HPC Environments
	Standard Output/Error from Batch System Jobs

	CWL in Toil
	Running CWL Locally
	Detailed Usage Instructions
	Running CWL in the Cloud
	Running CWL within Toil Scripts
	Toil & CWL Tips

	WDL in Toil
	How to Run a WDL file in Toil
	ENCODE Example from ENCODE-DCC
	GATK Examples from the Broad
	toilwdl.py Options
	Running WDL within Toil Scripts
	WDL Specifications

	Developing a Workflow
	Scripting Quick Start
	Job Basics
	Invoking a Workflow
	Specifying Commandline Arguments
	Resuming a Workflow
	Functions and Job Functions
	Workflows with Multiple Jobs
	Dynamic Job Creation
	Promises
	Promised Requirements
	FileID
	Managing files within a workflow
	Using Docker Containers in Toil
	Services
	Checkpoints
	Encapsulation
	Depending on Toil
	Best Practices for Dockerizing Toil Workflows

	Toil Class API
	Job Store API
	Toil Job API
	FunctionWrappingJob
	JobFunctionWrappingJob
	EncapsulatedJob
	Promise

	Job Methods API
	Job.Runner API
	job.fileStore API
	Batch System API
	Batch System Enivronmental Variables
	Batch System API

	Job.Service API
	Exceptions API
	Running Tests
	Running Tests with pytest
	Running Integration Tests
	Test Environment Variables
	Using Docker with Quay
	Running Mesos Tests

	Developing with Docker
	Making Your Own Toil Docker Image
	Running a Cluster Locally

	Maintainer’s Guidelines
	Naming Conventions
	Pull Requests
	Publishing a Release
	Adding Retries to a Function

	Pull Request Checklists
	Reviewing Pull Requests
	Merging Pull Requests

	Toil Architecture
	Optimizations
	Toil support for Common Workflow Language

	Minimum AWS IAM permissions
	Auto-Deployment
	Auto Deployment with Sibling Modules
	Auto-Deploying a Package Hierarchy
	Relying on Shared Filesystems

	Environment Variables
	Index

