Toil Documentation
Release 5.8.0

UCSC Computational Genomics Lab

Jan 04, 2023

Getting Started

Installation 3
1.1 Preparing Your Python Runtime Environment 3
1.2 BasicInstallation e 4
1.3 Installing Toil with Extra Features i 4
1.4 Building from Source e e e 5
Quickstart Examples 7
2.1 Running abasic workflow e 7
2.2 Running abasic CWL workflow e 8
2.3 Runningabasic WDL workflow e 9
24 A (more) real-worldexample e e e e e 9
2.5 Launching a Toil Workflow in AWS 16
2.6 Running a CWL Workflow on AWS e 17
2.7 Running a Workflow with Autoscaling-Cactus 18
Introduction 21
3.1 JobStore . ..o e e e 21
32 Batch System e e e 22
33 Provisioner 22
Commandline Options 23
4.1 ThelJobStore L e e e 23
4.2 Commandline Options v v v v i e e e e e e e e e e e e e e e e e e e 23
43 Restart Option o o o e e e e e e e e e e e e e e e e 30
4.4 Running Workflows with Services L o 31
4.5 Setting Options directly with the Toil Seript 0oL 31
Toil Debugging 33
5.1 Introspecting the Jobstore L e 33
5.2 Statsand Status L L e e e e e e e e 33
5.3 UsingaPythondebugger. e 34
Running in the Cloud 35
6.1 Managing a Cluster of Virtual Machines (Provisioning) 35
6.2 Storage (Toil jobStore) L e 35
Cloud Platforms 37

7.1 Running on Kubernetes e
7.2 Running in AWS L e e e e e
7.3 Running in Google Compute Engine (GCE)
7.4 Cluster UtlIities o o o o e e e e e e e e e e e e e e e e
7.5 StatsCommand L. e e e e e e e e e e
7.6 Status Command L. e e e e
7.7 Clean Command e e e e e e e
7.8 Launch-Cluster Command e e
7.9 Ssh-Cluster Command 0 0 e e e e e e e e e
7.10 Rsync-Cluster Command o . 0 e e e e e e e e e
7.11 Destroy-Cluster Command L e e e e
7.12 KillCommand oL e e e e e e

HPC Environments
8.1 Standard Output/Error from Batch System Jobs

CWL in Toil

9.1 RunningCWL Locally e
9.2 Detailed Usage InStructions o o i vt ittt e e e e e
9.3 Running CWLinthe Cloud i e e e e e e e
9.4 Running CWL within Toil Scripts 0 o e e e
9.5 Running CWL workflows with InplaceUpdateRequirement
9.6 Toll & CWLTIPS . . . v v vt it e e e e e e e e e e e e e e

10 WDL in Toil

10.1 HowtoRunaWDLfileinToil
10.2 ENCODE Example from ENCODE-DCC et
10.3 GATK Examples fromthe Broad
104 toilwdlpy Options o it e e e e e e e e e e e e e e e
10.5 Running WDL within Toil Scripts o e
10.6 WDL Specifications e e e

11 Workflow Execution Service (WES)

11.1 Preparing your WES environment e e
11.2 Startinga WES server e
11.3 Running the Server with docker-compose o
11.4 RunningonaToilcluster. L e
11.5 WES APIEndpoints o i e e e e e e e e e e e e e e
11.6 Submittinga Workflow oL e e
11.7 Monitoring a Workflow L

12 Developing a Workflow

12.1 Scripting Quick Start L e e e e e e e e
122 JobBasics e
12.3 Invokinga Workflow e
12.4 Specifying Commandline Arguments L e e e e
12.5 Resuming a Workflow e e
12.6 Functionsand JobFunctions L
12.7 Workflows with Multiple Jobs L
12.8 Dynamic Job Creation o i i e e e e e e e e e e e
129 Promises e e e e
12.10 Promised Requirements L e e e e e
1211 FileID
12.12 Managing files withinaworkflow L o oo
12.13 Using Docker Containersin Toil o

65
65
65
66
67
68
68

73
73
73
74
75
75
76

77
77
77
78
80
80
81
83

13

14

15

16

17

1214 SErvices o v v i i e e e e e e e
12.15 Checkpoints o v o e e e e e e e e e e e e e
12.16 Encapsulation e e e e e
12.17 Depending on Toil e
12.18 Best Practices for Dockerizing Toil Workflows

Toil Class API
Job Store API

Toil Job API

15.1 FunctionWrappingJob e
15.2 JobFunctionWrappingJob e e e e
15.3 EncapsulatedJob L e e e e
15.4 Promise e e e

Job Methods API
16.1 JobDescription e e e e e e e e

Job.Runner API

18 job.fileStore API

19

20

21

22

23

24

25

26

Batch System API
19.1 Batch System Enivronmental Variables oL o oL
19.2 Batch System APL o e

Job.Service API
Exceptions API

Running Tests

22.1 Running Tests With pytest o o i e e e e e e e e e e e e
22.2 Running Integration Tests L e e e e e e e e e
22.3 Test Environment Variables L e e e e e e e
224 Using Docker with Quay e
225 Running Mesos Tests o o o e e e e

Developing with Docker
23.1 Making Your Own Toil Docker Image
23.2 RunningaCluster Locally e

Maintainer’s Guidelines

24.1 Naming COonventions ¢ v v v v v vt vt et e e e e e e e e e e e e e e e e
242 PullRequests o e e
24.3 PublishingaRelease e e e e e e e
244 Using GitHOOKS o o o e e e e e e e e
245 AddingRetriestoaFunctiono e

Pull Request Checklists
25.1 Reviewing Pull Requests o e e e e e
25.2 Merging Pull Requests e

Toil Architecture
26.1 Jobs and JobDescriptions e e e e e e e e e e e e e
26.2 OptimizationS v v v v e it e

103

107

117
117
117
118
120

123
129

133

135

141
141
142

145

147

149
150
150
150
151
151

153
153
154

157
157
158
158
159
159

163
163
164

26.3 Toil support for Common Workflow Language

27 Minimum AWS IAM permissions

28 Auto-Deployment

28.1 Auto Deployment with Sibling Modules o oL
28.2 Auto-Deploying a Package Hierarchy

28.3 Relying on Shared Filesystems
29 Environment Variables

Index

171

173
174
175
176

177

179

Toil Documentation, Release 5.8.0

Toil is an open-source pure-Python workflow engine that lets people write better pipelines.

Check out our website for a comprehensive list of Toil’s features and read our paper to learn what Toil can do in the
real world. Please subscribe to our low-volume announce mailing list and feel free to also join us on GitHub and
Gitter.

If using Toil for your research, please cite

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., ... Paten, B. (2017). Toil
enables reproducible, open source, big biomedical data analyses. Nature Biotechnology, 35(4), 314-316.
http://doi.org/10.1038/nbt.3772

Getting Started 1

http://toil.ucsc-cgl.org/
http://biorxiv.org/content/early/2016/07/07/062497
https://groups.google.com/forum/#!forum/toil-announce
https://github.com/BD2KGenomics/toil
https://gitter.im/bd2k-genomics-toil/Lobby
http://doi.org/10.1038/nbt.3772

Toil Documentation, Release 5.8.0

2 Getting Started

CHAPTER 1

Installation

This document describes how to prepare for and install Toil. Note that Toil requires that the user run all commands
inside of a Python virtualenv. Instructions for installing and creating a Python virtual environment are provided below.

1.1 Preparing Your Python Runtime Environment

Toil currently supports Python 3.7, 3.8, 3.9, and 3.10, and requires a virtualenv to be active to install.

If not already present, please install the latest Python virtualenv using pip:

’$ sudo pip install virtualenv

And create a virtual environment called venv in your home directory:

’$ virtualenv ~/venv

If the user does not have root privileges, there are a few more steps, but one can download a specific virtualenv package
directly, untar the file, create, and source the virtualenv (version 15.1.0 as an example) using

$ curl -O https://pypi.python.org/packages/d4/0c/
—9840c08189e030873387a73b90ada981885010dd9%aeal34d6de30cd24cb8/virtualenv-15.1.0.tar.
—Jz

$ tar xvfz virtualenv-15.1.0.tar.gz

$ cd virtualenv-15.1.0

$ python virtualenv.py ~/venv

Now that you’ve created your virtualenv, activate your virtual environment:

$ source ~/venv/bin/activate

https://virtualenv.pypa.io/en/stable/
https://pip.readthedocs.io/en/latest/installing/

Toil Documentation, Release 5.8.0

1.2 Basic Installation

If you need only the basic version of Toil, it can be easily installed using pip:

’$ pip install toil

Now you’re ready to run your first Toil workflow!

(If you need any of the extra features don’t do this yet and instead skip to the next section.)

1.3 Installing Toil with Extra Features

Python headers and static libraries

Needed for the mesos, aws, google, and encryption extras.

On Ubuntu:
’$ sudo apt—-get install build-essential python-dev ‘

On macOS:

’$ xcode-select —--install ‘

Encryption specific headers and library

Needed for the encryption extra.

On Ubuntu:
’$ sudo apt—-get install libssl-dev libffi-dev ‘

On macOS:
’$ brew install libssl 1libffi ‘

Or see Cryptography for other systems.

Some optional features, called extras, are not included in the basic installation of Toil. To install Toil with all its bells
and whistles, first install any necessary headers and libraries (python-dev, libffi-dev). Then run

’$ pip install toil[aws,google,mesos,encryption,cwl,wdl, kubernetes, server] ‘

or

’$ pip install toilfall] ‘

Here’s what each extra provides:

4 Chapter 1. Installation

https://cryptography.io/en/latest/installation/

Toil Documentation, Release 5.8.0

Extra Description

all Installs all extras (though htcondor is linux-only and
will be skipped if not on a linux computer).

aws Provides support for managing a cluster on Amazon

Web Service (AWS) using Toil’s built in Cluster Util-
ities. Clusters can scale up and down automatically. It
also supports storing workflow state.

google Experimental. Stores workflow state in Google Cloud
Storage.
mesos Provides support for running Toil on an Apache Mesos

cluster. Note that running Toil on other batch systems
does not require an extra. The mesos extra requires the
following native dependencies:

¢ Apache Mesos (Tested with Mesos v1.0.0)

* Python headers and static libraries

Important: If launching toil remotely on a mesos
instance, to install Toil with the mesos extra in
a virtualenv, be sure to create that virtualenv with
the ——system-site-packages flag (only use re-
motely!):

$ virtualenv ~/venv —-system-site-
—packages

Otherwise, you’ll see something like this:

ImportError: No module named mesos.native

htcondor Support for the htcondor batch system. This currently is
a linux only extra.

encryption Provides client-side encryption for files stored in the
AWS job store. This extra requires the following native
dependencies:

* Python headers and static libraries
* libffi headers and library

cwl Provides support for running workflows written using
the Common Workflow Language.
wdl Provides support for running workflows written using

the Workflow Description Language. This extra has no
native dependencies.

kubernetes Provides support for running workflows written using a
Kubernetes cluster.
server Provides support for Toil server mode, including sup-

port for the GA4GH Workflow Execution Service API.

1.4 Building from Source

If developing with Toil, you will need to build from source. This allows changes you make to Toil to be reflected
immediately in your runtime environment.

1.4. Building from Source 5

https://aws.amazon.com/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/gettingstarted/
http://www.commonwl.org/
https://software.broadinstitute.org/wdl/
https://kubernetes.io/docs/concepts/overview/
https://ga4gh.github.io/workflow-execution-service-schemas/docs/

Toil Documentation, Release 5.8.0

First, clone the source:

$ git clone https://github.com/DataBiosphere/toil.git
$ cd toil

Then, create and activate a virtualenv:

$ virtualenv venv
$. venv/bin/activate

From there, you can list all available Make targets by running make. First and foremost, we want to install Toil’s build
requirements (these are additional packages that Toil needs to be tested and built but not to be run):

’$ make prepare

Now, we can install Toil in development mode (such that changes to the source code will immediately affect the
virtualenv):

’$ make develop

Or, to install with support for all optional /nstalling Toil with Extra Features:

’$ make develop extras=[aws,mesos,google,encryption, cwl]
Or:
’$ make develop extras=[all]

To build the docs, run make develop with all extras followed by

’$ make docs

To run a quick batch of tests (this should take less than 30 minutes) run

’$ export TOIL_TEST QUICK=True; make test

For more information on testing see Running Tests.

6 Chapter 1. Installation

CHAPTER 2

Quickstart Examples

2.1 Running a basic workflow

A Toil workflow can be run with just three steps:
1. Install Toil (see Installation)

2. Copy and paste the following code block into a new file called helloWorld.py:

from toil.common import Toil
from toil. job import Job

def helloWorld(message, memory="1G", cores=1, disk="1G"):
return f"Hello, world!, here's a message: {message}"

if _ name_ == "_ main_ ":
parser = Job.Runner.getDefaultArgumentParser ()
options = parser.parse_args ()
options.clean = "always"

with Toil (options) as toil:
output = toil.start (Job.wrapFn (helloWorld, "You did it!"))
print (output)

3. Specify the name of the job store and run the workflow:

(venv) $ python helloWorld.py file:my-job-store

Note: Don’t actually type (venv) $ in at the beginning of each command. This is intended only to remind the user
that they should have their virtual environment running.

Congratulations! You’ve run your first Toil workflow using the default Batch System, singleMachine, using the
file job store.

Toil Documentation, Release 5.8.0

Toil uses batch systems to manage the jobs it creates.

The singleMachine batch system is primarily used to prepare and debug workflows on a local machine. Once
validated, try running them on a full-fledged batch system (see Batch System API). Toil supports many different batch
systems such as Apache Mesos and Grid Engine; its versatility makes it easy to run your workflow in all kinds of
places.

Toil is totally customizable! Run python helloWorld.py —-help to see a complete list of available options.

For something beyond a “Hello, world!” example, refer to A (more) real-world example.

2.2 Running a basic CWL workflow

The Common Workflow Language (CWL) is an emerging standard for writing workflows that are portable across
multiple workflow engines and platforms. Running CWL workflows using Toil is easy.

1. First ensure that Toil is installed with the cw1 extra (see Installing Toil with Extra Features):

(venv) $ pip install 'toil[cwl]'

This installs the toil—-cwl-runner executable.

2. Copy and paste the following code block into example.cwl:

cwlVersion: v1.0
class: CommandLineTool
baseCommand: echo
stdout: output.txt
inputs:
message:
type: string
inputBinding:
position: 1
outputs:
output:
type: stdout

and this code into example—-job.yaml:

’message: Hello world!

3. To run the workflow simply enter

’(venv) $ toil-cwl-runner example.cwl example-job.yaml

Your output will be in output . txt:

(venv) $ cat output.txt
Hello world!

To learn more about CWL, see the CWL User Guide (from where this example was shamelessly borrowed).
To run this workflow on an AWS cluster have a look at Running a CWL Workflow on AWS.

For information on using CWL with Toil see the section CWL in Toil

8 Chapter 2. Quickstart Examples

https://mesos.apache.org/getting-started/
http://www.commonwl.org/
https://www.commonwl.org/user_guide/

Toil Documentation, Release 5.8.0

2.3 Running a basic WDL workflow

The Workflow Description Language (WDL) is another emerging language for writing workflows that are portable
across multiple workflow engines and platforms. Running WDL workflows using Toil is still in alpha, and currently
experimental. Toil currently supports basic workflow syntax (see WDL in Toil for more details and examples). Here
we go over running a basic WDL helloworld workflow.

1. First ensure that Toil is installed with the wd1 extra (see Installing Toil with Extra Features):

(venv) $ pip install 'toil[wdl]'

This installs the toil-wdl—-runner executable.

2. Copy and paste the following code block into wdl-helloworld.wdl:

workflow write_simple_file {
call write_file
}
task write_file {
String message
command { echo ${message} > wdl-helloworld-output.txt }
output { File test = "wdl-helloworld-output.txt" }
}

and this code into " “wdl-helloworld.json™ " ::

"write_simple_file.write_file.message": "Hello world!"

3. To run the workflow simply enter

(venv) $ toil-wdl-runner wdl-helloworld.wdl wdl-helloworld. json

Your output will be in wdl-helloworld-output.txt:

(venv) $ cat wdl-helloworld-output.txt
Hello world!

To learn more about WDL, see the main WDL website .

2.4 A (more) real-world example

For a more detailed example and explanation, we’ve developed a sample pipeline that merge-sorts a temporary file.
This is not supposed to be an efficient sorting program, rather a more fully worked example of what Toil is capable of.

2.4.1 Running the example

1. Download the example code

2. Run it with the default settings:

(venv) $ python sort.py file:jobStore

2.3. Running a basic WDL workflow 9

https://software.broadinstitute.org/wdl/
https://software.broadinstitute.org/wdl/

Toil Documentation, Release 5.8.0

The workflow created a file called sortedFile.txt in your current directory. Have a look at it and notice
that it contains a whole lot of sorted lines!

This workflow does a smart merge sort on a file it generates, fileToSort.txt. The sort is smart because
each step of the process—splitting the file into separate chunks, sorting these chunks, and merging them back
together—is compartmentalized into a job. Each job can specify its own resource requirements and will only
be run after the jobs it depends upon have run. Jobs without dependencies will be run in parallel.

Note: Delete fileToSort .txt before moving on to #3. This example introduces options that specify dimensions
for fileToSort.txt, if it does not already exist. If it exists, this workflow will use the existing file and the results
will be the same as #2.

3. Run with custom options:

(venv) $ python sort.py file:jobStore \
—-numLines=5000 \
—-lineLength=10 \
—-—overwriteOutput=True \
——workDir=/tmp/

Here we see that we can add our own options to a Toil script. As noted above, the first two options,
——numLines and ——lineLength, determine the number of lines and how many characters are in each
line. ——overwriteOutput causes the current contents of sortedFile.txt to be overwritten, if it al-
ready exists. The last option, ——workD1ir, is an option built into Toil to specify where temporary files unique
to a job are kept.

2.4.2 Describing the source code

To understand the details of what’s going on inside. Let’s start with the main () function. It looks like a lot of code,
but don’t worry—we’ll break it down piece by piece.

def main (options=None) :
if not options:
deal with command line arguments

parser = ArgumentParser ()

Job.Runner.addToilOptions (parser)

parser.add_argument ('-—-numLines', default=defaultLines, help='Number of lines_
—in file to sort.', type=int)

parser.add_argument ('-—linelLength', default=defaultlLinelen, help='Length of
—lines in file to sort.', type=int)

parser.add_argument ("--fileToSort", help="The file you wish to sort")

parser.add_argument ("-—-outputFile", help="Where the sorted output will go")

parser.add_argument ("--overwriteOutput", help="Write over the output file if |
—it already exists.", default=True)

parser.add_argument ("--N", dest="N",

help="The threshold below which a serial sort function is_
—used to sort file. "
"All lines must of length less than or equal to N or,
—program will fail",
default=10000)
parser.add_argument ('-—-downCheckpoints', action='store_true',
help='If this option is set, the workflow will make_
—checkpoints on its way through'
'the recursive "down" part of the sort')
parser.add_argument ("--sortMemory", dest="sortMemory",

(continues on next page)

10 Chapter 2. Quickstart Examples

Toil Documentation, Release 5.8.0

(continued from previous page)

help="Memory for jobs that sort chunks of the file.",
default=None)

parser.add_argument ("--mergeMemory", dest="mergeMemory",
help="Memory for jobs that collate results.",
default=None)

options = parser.parse_args()

if not hasattr(options, "sortMemory") or not options.sortMemory:
options.sortMemory = sortMemory

if not hasattr (options, "mergeMemory") or not options.mergeMemory:
options.mergeMemory = sortMemory

do some input verification

sortedFileName = options.outputFile or "sortedFile.txt"

if not options.overwriteOutput and os.path.exists (sortedFileName) :
print (f'Output file {sortedFileName/ already exists. !

f'Delete it to run the sort example again or use —-overwriteOutput=True
")
exit ()
fileName = options.fileToSort
if options.fileToSort is None:
make the file ourselves
fileName = 'fileToSort.txt'
if os.path.exists (fileName) :
print (f'Sorting existing file: {fileName)}')
else:
print (f'No sort file specified. Generating one automatically called:
< {fileName/.")
makeFileToSort (fileName=fileName, lines=options.numLines, linelLen=options.
—lineLength)
else:
if not os.path.exists (options.fileToSort):

noo

raise RuntimeError ("File to sort does not exist: ¢s" % options.fileToSort)

if int (options.N) <= O0O:
raise RuntimeError ("Invalid value of N: %s" % options.N)

Now we are ready to run
with Toil (options) as workflow:

sortedFileURL = 'file://' + os.path.abspath(sortedFileName)
if not workflow.options.restart:
sortFileURL = 'file://' + os.path.abspath (fileName)

sortFileID = workflow.importFile (sortFileURL)
sortedFileID = workflow.start (Job.wrapJobFn (setup,
sortFilelD,
int (options.N),
options.downCheckpoints,
options=options,
memory=sortMemory))
else:
sortedFileID = workflow.restart ()
workflow.exportFile (sortedFileID, sortedFileURL)

First we make a parser to process command line arguments using the argparse module. It’s important that we add the
call to Job.Runner.addToilOptions () to initialize our parser with all of Toil’s default options. Then we add

2.4. A (more) real-world example 11

https://docs.python.org/2.7/library/argparse.html

Toil Documentation, Release 5.8.0

the command line arguments unique to this workflow, and parse the input. The help message listed with the arguments
should give you a pretty good idea of what they can do.

Next we do a little bit of verification of the input arguments. The option ——fileToSort allows you to spec-
ify a file that needs to be sorted. If this option isn’t given, it’s here that we make our own file with the call to
makeFileToSort ().

Finally we come to the context manager that initializes the workflow. We create a path to the input file prepended with

'file://"' asperthe documentation for toil.common. Toil () when staging a file that is stored locally. Notice
that we have to check whether or not the workflow is restarting so that we don’t import the file more than once. Finally
we can kick off the workflow by calling toil.common.Toil.start () on the job setup. When the workflow
ends we capture its output (the sorted file’s fileID) and use thatin toil.common.Toil.exportFile () to move
the sorted file from the job store back into “userland”.

Next let’s look at the job that begins the actual workflow, setup.

def setup(job, inputFile, N, downCheckpoints, options):
Sets up the sort.
Returns the FileID of the sorted file
Realtimelogger.info ("Starting the merge sort")
return job.addChildJobFn (down,
inputFile, N, 'root',
downCheckpoints,
options = options,
preemptable=True,
memory=sortMemory) .rv ()

setup really only does two things. First it writes to the logs using Job . 1og () and then calls addChildJobFn ().
Child jobs run directly after the current job. This function turns the ‘job function’ down into an actual job and passes
in the inputs including an optional resource requirement, memory. The job doesn’t actually get run until the call to
Job.rv (). Once the job down finishes, its output is returned here.

Now we can look at what down does.

def down (job, inputFileStoreID, N, path, downCheckpoints, options, memory=sortMemory) :
mrmamn
Input is a file, a subdivision size N, and a path in the hierarchy of jobs.
If the range is larger than a threshold N the range is divided recursively and
a follow on job 1is then created which merges back the results else
the file is sorted and placed in the output.

mmn

RealtimeLogger.info ("Down job starting: " % path)

Read the file
inputFile = job.fileStore.readGlobalFile (inputFileStoreID, cache=False)
length = os.path.getsize (inputFile)
if length > N:
We will subdivide the file
Realtimelogger.critical ("Splitting file: of size:
% (inputFileStoreID, length))
Split the file into two copies
midPoint = getMidPoint (inputFile, 0, length)
tl = job.fileStore.getLocalTempFile ()
with open(tl, 'w') as fH:
fH.write (copySubRangeOfFile (inputFile, 0, midPoint+1l))

(continues on next page)

12 Chapter 2. Quickstart Examples

Toil Documentation, Release 5.8.0

(continued from previous page)

t2 = job.fileStore.getLocalTempFile ()
with open(t2, 'w') as fH:
fH.write (copySubRangeOfFile (inputFile, midPoint+1, length))
Call down recursively. By giving the rv() of the two jobs as inputs to the_
—~follow-on job, up,
we communicate the dependency without hindering concurrency.
result = job.addFollowOnJobFn (up,
job.addChildJobFn (down, Jjob.fileStore.
—writeGlobalFile(tl), N, path + '/0°',
downCheckpoints,
—checkpoint=downCheckpoints, options=options,
preemptable=True,
—memory=options.sortMemory) .rv (),
job.addChildJobFn (down, Jjob.fileStore.
—writeGlobalFile(t2), N, path + '/1°',
downCheckpoints,
—checkpoint=downCheckpoints, options=options,
preemptable=True,
—memory=options.mergeMemory) .rv (),
path + '"/up', preemptable=True, options=options,
—memory=options.sortMemory) .rv ()
else:
We can sort this bit of the file
RealtimelLogger.critical ("Sorting file: of size: "
% (inputFileStoreID, length))
Sort the copy and write back to the fileStore
shutil.copyfile (inputFile, inputFile + '.sort')

sort (inputFile + '.sort'")
result = job.fileStore.writeGlobalFile (inputFile + '.sort')
RealtimeLogger.info ("Down job finished: " % path)

return result

Down is the recursive part of the workflow. First we read the file into the local filestore by calling job.fileStore.
readGlobalFile (). This puts a copy of the file in the temp directory for this particular job. This storage will
disappear once this job ends. For a detailed explanation of the filestore, job store, and their interfaces have a look at
Managing files within a workflow.

Next down checks the base case of the recursion: is the length of the input file less than N (remember N was an option
we added to the workflow in main)? In the base case, we just sort the file, and return the file ID of this new sorted
file.

If the base case fails, then the file is split into two new tempFiles using job.fileStore.getLocalTempFile ()
and the helper function copySubRangeOfFile. Finally we add a follow on Job up with job.
addFollowOnJobFn (). We’ve already seen child jobs. A follow-on Job is a job that runs after the current job
and all of its children (and their children and follow-ons) have completed. Using a follow-on makes sense because
up is responsible for merging the files together and we don’t want to merge the files together until we know they are
sorted. Again, the return value of the follow-on job is requested using Job.rv ().

Looking at up

def up(job, inputFileIDl, inputFileID2, path, options, memory=sortMemory) :

mmn

Merges the two files and places them in the output.

mmn

n oo

RealtimeLogger.info ("Up Jjob starting: % path)

(continues on next page)

2.4. A (more) real-world example 13

Toil Documentation, Release 5.8.0

(continued from previous page)

with job.fileStore.writeGlobalFileStream() as (fileHandle, outputFileStoreID):
fileHandle = codecs.getwriter ('utf-8"') (fileHandle)
with Jjob.fileStore.readGlobalFileStream(inputFileID1l) as inputFileHandlel:
inputFileHandlel = codecs.getreader ('utf-8") (inputFileHandlel)
with job.fileStore.readGlobalFileStream(inputFileID2) as inputFileHandle2:
inputFileHandle2 = codecs.getreader ('utf-8") (inputFileHandle2)
Realtimelogger.info ("Merging and to "
% (inputFileID1l, inputFileID2, outputFileStorelD))
merge (inputFileHandlel, inputFileHandle2, fileHandle)
Cleanup up the input files - these deletes will occur after the completion_
—1s successful.
job.fileStore.deleteGlobalFile (inputFileID1)
job.fileStore.deleteGlobalFile (inputFileID2)

RealtimeLogger.info ("Up Jjob finished: " % path)

return outputFileStorelID

we see that the two input files are merged together and the output is written to a new file using job.fileStore.
writeGlobalFileStream (). After a little cleanup, the output file is returned.

Once the final up finishes and all of the rv () promises are fulfilled, main receives the sorted file’s ID which it uses
in exportFile to send it to the user.

There are other things in this example that we didn’t go over such as Checkpoints and the details of much of the 7oil
Class API.

At the end of the script the lines

if name == '_ _main

main ()

are included to ensure that the main function is only run once in the ‘__main__’ process invoked by you, the user.
In Toil terms, by invoking the script you created the leader process in which the main () function is run. A worker
process is a separate process whose sole purpose is to host the execution of one or more jobs defined in that script. In
any Toil workflow there is always one leader process, and potentially many worker processes.

When using the single-machine batch system (the default), the worker processes will be running on the same machine
as the leader process. With full-fledged batch systems like Mesos the worker processes will typically be started on
separate machines. The boilerplate ensures that the pipeline is only started once—on the leader—but not when its job
functions are imported and executed on the individual workers.

Typing python sort.py --help will show the complete list of arguments for the workflow which includes both
Toil’s and ones defined inside sort .py. A complete explanation of Toil’s arguments can be found in Commandline
Options.

2.4.3 Logging

By default, Toil logs a lot of information related to the current environment in addition to messages from the batch
system and jobs. This can be configured with the -—1ogLevel flag. For example, to only log CRITICAL level
messages to the screen:

(venv) $ python sort.py file:jobStore \
--logLevel=critical \
—-—-overwriteOutput=True

14 Chapter 2. Quickstart Examples

Toil Documentation, Release 5.8.0

This hides most of the information we get from the Toil run. For more detail, we can run the pipeline with
——logLevel=debug to see a comprehensive output. For more information, see Commandline Options.

2.4.4 Error Handling and Resuming Pipelines

With Toil, you can recover gracefully from a bug in your pipeline without losing any progress from successfully
completed jobs. To demonstrate this, let’s add a bug to our example code to see how Toil handles a failure and how
we can resume a pipeline after that happens. Add a bad assertion at line 52 of the example (the first line of down ()):

def down (job, inputFileStoreID, N, downCheckpoints, memory=sortMemory) :

assert 1 == 2, "Test error!"

When we run the pipeline, Toil will show a detailed failure log with a traceback:

(venv) $ python sort.py file:jobStore
———TOIL WORKER OUTPUT LOG——-—

m/ j/jobonrSMP Traceback (most recent call last):

m/ 3/ jobonrSMP File "toil/src/toil/worker.py", line 340, in main
m/j/jobonrSMP job._runner (jobGraph=jobGraph, jobStore=jobStore,
—fileStore=fileStore)

m/ 3/ jobonrSMP File "toil/src/toil/job.py", line 1270, in _runner
m/j/jobonrSMP returnValues = self._run (jobGraph, fileStore)
m/j/jobonrSMP File "toil/src/toil/job.py", line 1217, in _run

m/ 3/ jobonrSMP return self.run(fileStore)

m/j/jobonrSMP File "toil/src/toil/job.py", line 1383, in run

m/ j/jobonrSMP rValue = userFunction(* ((self,) + tuple(self._args)), =*xself._
—kwargs)

m/Jj/jobonrSMP File "toil/example.py", line 30, in down

m/ j/jobonrSMP assert 1 == 2, "Test error!"

m/j/jobonrSMP AssertionError: Test error!

If we try and run the pipeline again, Toil will give us an error message saying that a job store of the same name already
exists. By default, in the event of a failure, the job store is preserved so that the workflow can be restarted, starting
from the previously failed jobs. We can restart the pipeline by running

(venv) $ python sort.py file:jobStore \
—-restart \
—-—overwriteOutput=True

We can also change the number of times Toil will attempt to retry a failed job:

(venv) $ python sort.py file:jobStore \
—--retryCount 2 \
—-restart \
—-—overwriteOutput=True

You’ll now see Toil attempt to rerun the failed job until it runs out of tries. ——retryCount is useful for non-systemic
errors, like downloading a file that may experience a sporadic interruption, or some other non-deterministic failure.

To successfully restart our pipeline, we can edit our script to comment out line 30, or remove it, and then run

(venv) $ python sort.py file:jobStore \
——restart \
—-—overwriteOutput=True

2.4. A (more) real-world example 15

Toil Documentation, Release 5.8.0

The pipeline will run successfully, and the job store will be removed on the pipeline’s completion.

2.4.5 Collecting Statistics

Please see the Stats Command section for more on gathering runtime and resource info on jobs.

2.5 Launching a Toil Workflow in AWS

After having installed the aws extra for Toil during the Installation and set up AWS (see Preparing your AWS envi-
ronment), the user can run the basic helloWorld. py script (Running a basic workflow) on a VM in AWS just by
modifying the run command.

Note that when running in AWS, users can either run the workflow on a single instance or run it on a cluster (which is
running across multiple containers on multiple AWS instances). For more information on running Toil workflows on
a cluster, see Running in AWS.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise
things may not be cleaned up properly.

1. Launch a cluster in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster—-name> \
——keyPairName <AWS-key-pair-name> \
--leaderNodeType t2.medium \

—-—zone us-west-2a

The arguments keyPairName, leaderNodeType, and zone are required to launch a cluster.

2. Copy helloWorld.py to the /tmp directory on the leader node using the Rsync-Cluster Command com-
mand:

’(venv) $ toil rsync-cluster --zone us-west-2a <cluster—-name> helloWorld.py :/tmp ‘

Note that the command requires defining the file to copy as well as the target location on the cluster leader node.

3. Login to the cluster leader node using the Ssh-Cluster Command command:

’(venv) $ toil ssh-cluster —--zone us-west—-2a <cluster—-name>

Note that this command will log you in as the root user.

4. Run the Toil script in the cluster:

’$ python /tmp/helloWorld.py aws:us-west-2:my-S3-bucket ‘

In this particular case, we create an S3 bucket called my-S3-bucket in the us-west -2 availability zone to
store intermediate job results.

Along with some other INFO log messages, you should get the following output in your terminal window:
Hello, world!, here's a message: You did it!.

5. Exit from the SSH connection.

$ exit

6. Use the Destroy-Cluster Command command to destroy the cluster:

16 Chapter 2. Quickstart Examples

Toil Documentation, Release 5.8.0

(venv) $ toil destroy-cluster —--zone us-west—-2a <cluster-name>

Note that this command will destroy the cluster leader node and any resources created to run the job, including
the S3 bucket.

2.6 Running a CWL Workflow on AWS

After having installed the aws and cwl extras for Toil during the Installation and set up AWS (see Preparing your
AWS environment), the user can run a CWL workflow with Toil on AWS.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise
things may not be cleaned up properly.

1. First launch a node in AWS using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster—-name> \
—--keyPairName <AWS-key-pair-name> \
—-—leaderNodeType t2.medium \

—-—zone us-west-2a

. Copy example.cwl and example—-job.yaml from the CWL example to the node using the Rsync-Cluster

Command command:

(venv) $ toil rsync-cluster --zone us-west-2a <cluster-name> example.cwl :/tmp
(venv) $ toil rsync-cluster --zone us-west-2a <cluster—-name> example-job.yaml :/
—tmp

3. SSH into the cluster’s leader node using the Ssi-Cluster Command utility:

(venv) $ toil ssh-cluster —--zone us-west-2a <cluster—-name>
4. Once on the leader node, it’s a good idea to update and install the following:
sudo apt-get update
sudo apt-get -y upgrade
sudo apt-get -y dist-upgrade
sudo apt-get -y install git
sudo pip install mesos.cli
5. Now create a new virtualenv with the ——system—-site-packages option and activate:
virtualenv --system-site-packages venv
source venv/bin/activate
6. Now run the CWL workflow:
(venv) $ toil-cwl-runner \
--provisioner aws \
—-—jobStore aws:us-west-2a:any-name \
/tmp/example.cwl /tmp/example-job.yaml
Tip: When running a CWL workflow on AWS, input files can be provided either on the local file system or in
S3 buckets using s3:// URI references. Final output files will be copied to the local file system of the leader
node.
2.6. Running a CWL Workflow on AWS 17

Toil Documentation, Release 5.8.0

7. Finally, log out of the leader node and from your local computer, destroy the cluster:

’(venv) $ toil destroy-cluster —--zone us-west-2a <cluster—-name>

2.7 Running a Workflow with Autoscaling - Cactus

Cactus is a reference-free, whole-genome multiple alignment program that can be run on any of the cloud platforms
Toil supports.

Note: Cloud Independence:

This example provides a “cloud agnostic” view of running Cactus with Toil. Most options will not change be-
tween cloud providers. However, each provisioner has unique inputs for ——leaderNodeType, ——nodeType
and ——zone. We recommend the following:

Option Used in AWS Google
——leaderNodeType | launch-cluster | t2.medium | nl-standard-1
—--zone launch-cluster | us-west-2a | us-westl-a
—--zone cactus us-west-2

—--nodeType cactus c3.4xlarge | nl-standard-8

When executing toil launch-cluster with gce specified for ——provisioner, the option ——bot o must be
specified and given a path to your .boto file. See Running in Google Compute Engine (GCE) for more information
about the ——boto option.

Also! Remember to use the Destroy-Cluster Command command when finished to destroy the cluster! Otherwise
things may not be cleaned up properly.

1. Download pestis.tar.gz

2. Launch a leader node using the Launch-Cluster Command command:

(venv) $ toil launch-cluster <cluster—name> \
--provisioner <aws, gce> \
-—keyPairName <key-pair—-name> \
-—leaderNodeType <type> \

-—zone <zone>

Note: A Helpful Tip

When using AWS, setting the environment variable eliminates having to specify the ——zone option for each
command. This will be supported for GCE in the future.

(venv) $ export TOIL_AWS_ZONE=us-west-2c

3. Create appropriate directory for uploading files:

(venv) $ toil ssh-cluster --provisioner <aws, gce> <cluster—-name>
$ mkdir /root/cact_ex
$ exit

18 Chapter 2. Quickstart Examples

https://github.com/ComparativeGenomicsToolkit/cactus

Toil Documentation, Release 5.8.0

4. Copy the required files, i.e., seqFile.txt (a text file containing the locations of the input sequences as well as their
phylogenetic tree, see here), organisms’ genome sequence files in FASTA format, and configuration files (e.g.
blockTrim1.xml, if desired), up to the leader node:

(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> pestis-short-—
—aws—-seqgFile.txt :/root/cact_ex

(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000169655.
—1_ASM16965v1_genomic.fna :/root/cact_ex

(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster—-name> GCF_000006645.
—1_ASM664v]l_genomic.fna :/root/cact_ex

(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000182485.
—1_ASM18248vl_genomic.fna :/root/cact_ex

(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> GCF_000013805.
—1_ASM1380vl_genomic.fna :/root/cact_ex

(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> setup_
—leaderNode.sh :/root/cact_ex

(venv) $ toil rsync-cluster -—-provisioner <aws, gce> <cluster-name> blockTriml.
—xml :/root/cact_ex

(venv) $ toil rsync-cluster --provisioner <aws, gce> <cluster-name> blockTrim3.
—xml :/root/cact_ex

5. Log in to the leader node:

(venv) $ toil ssh-cluster --provisioner <aws, gce> <cluster—-name>

6. Set up the environment of the leader node to run Cactus:

$ bash /root/cact_ex/setup_leaderNode.sh
S source cact_venv/bin/activate
(cact_venv) $ cd cactus

(cact_venv) $ pip install --upgrade

7. Run Cactus as an autoscaling workflow:

(cact_venv) $ TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:3.14.0 cactus \

—--provisioner <aws, gce> \

--nodeType <type> \

—-maxNodes 2 \

-—-minNodes 0 \

--retry 10 \

—-—batchSystem mesos \

-—logDebug \

—-logFile /logFile_pestis3 \

——configFile \

/root/cact_ex/blockTrim3.xml <aws, google>:<zone>:cactus-pestis,,
<\

/root/cact_ex/pestis—-short-aws—-seqgFile.txt \

/root/cact_ex/pestis_output3.hal

Note: Pieces of the Puzzle:

TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:3.14.0 — specifies the version of Toil being
used, 3.14.0; if the latest one is desired, please eliminate.

—-—nodeType — determines the instance type used for worker nodes. The instance type specified here must be
on the same cloud provider as the one specified with ——1eaderNodeType

-—-maxNodes 2 — creates up to two instances of the type specified with ——nodeType and launches Mesos

2.7. Running a Workflow with Autoscaling - Cactus 19

https://github.com/ComparativeGenomicsToolkit/cactus#seqfile-the-input-file
https://github.com/ComparativeGenomicsToolkit/cactus

Toil Documentation, Release 5.8.0

worker containers inside them.
——logDebug — equivalent to ——logLevel DEBUG.
—-—logFile /logFile_pestis3 — writes logs in a file named logFile_pestis3 under / folder.

——configFile — this is not required depending on whether a specific configuration file is intended to run
the alignment.

<aws, google>:<zone>:cactus—-pestis — creates a bucket, named cactus-pestis, with the
specified cloud provider to store intermediate job files and metadata. NOTE: If you want to use a GCE-based
jobstore, specify google here, not gce.

The result file, named pestis_output3.hal, is stored under /root /cact_ex folder of the leader node.

Use cactus —-help to see all the Cactus and Toil flags available.

8. Log out of the leader node:

(cact_venv) $ exit

9. Download the resulted output to local machine:

(venv) $ toil rsync-cluster \
--provisioner <aws, gce> <cluster—name> \
:/root/cact_ex/pestis_output3.hal \
<path-of-folder-on-local-machine>

10. Destroy the cluster:

(venv) $ toil destroy-cluster —--provisioner <aws, gce> <cluster—-name>

20 Chapter 2. Quickstart Examples

CHAPTER 3

Introduction

Toil runs in various environments, including locally and in the cloud (Amazon Web Services and Google Compute
Engine). Toil also supports two DSLs: CWL and (Amazon Web Services and Google Compute Engine). Toil also
supports two DSLs: CWL and WDL (experimental).

Toil is built in a modular way so that it can be used on lots of different systems, and with different configurations. The
three configurable pieces are the

e Job Store API: A filepath or url that can host and centralize all files for a workflow (e.g. a local folder, or an
AWS s3 bucket url).

* Batch System API: Specifies either a local single-machine or a currently supported HPC environment (Isf, para-
sol, mesos, slurm, torque, htcondor, kubernetes, or grid_engine). Mesos is a special case, and is launched for
cloud environments.

* Provisioner: For running in the cloud only. This specifies which cloud provider provides instances to do the
“work” of your workflow.

3.1 Job Store

The job store is a storage abstraction which contains all of the information used in a Toil run. This centralizes all of
the files used by jobs in the workflow and also the details of the progress of the run. If a workflow crashes or fails, the
job store contains all of the information necessary to resume with minimal repetition of work.

Several different job stores are supported, including the file job store and cloud job stores.

3.1.1 File Job Store

The file job store is for use locally, and keeps the workflow information in a directory on the machine where the
workflow is launched. This is the simplest and most convenient job store for testing or for small runs.

For an example that uses the file job store, see Running a basic workflow.

21

Toil Documentation, Release 5.8.0

3.1.2 Cloud Job Stores

Toil currently supports the following cloud storage systems as job stores:

o AWS Job Store: An AWS S3 bucket formatted as “aws:<zone>:<bucketname>" where only numbers, letters, and
dashes are allowed in the bucket name. Example: aws:us-west-2:my-aws-jobstore-name.

* Google Job Store: A Google Cloud Storage bucket formatted as “gce:<zone>:<bucketname>" where only num-
bers, letters, and dashes are allowed in the bucket name. Example: gce:us-west2-a:my-google-jobstore-name.

These use cloud buckets to house all of the files. This is useful if there are several different worker machines all
running jobs that need to access the job store.

3.2 Batch System

A Toil batch system is either a local single-machine (one computer) or a currently supported HPC cluster of computers
(Isf, parasol, mesos, slurm, torque, htcondor, or grid_engine). Mesos is a special case, and is launched for cloud
environments. These environments manage individual worker nodes under a leader node to process the work required
in a workflow. The leader and its workers all coordinate their tasks and files through a centralized job store location.

See Batch System API for a more detailed description of different batch systems.

3.3 Provisioner

The Toil provisioner provides a tool set for running a Toil workflow on a particular cloud platform.

The Cluster Utilities are command line tools used to provision nodes in your desired cloud platform. They allows you
to launch nodes, ssh to the leader, and rsync files back and forth.

For detailed instructions for using the provisioner see Running in AWS or Running in Google Compute Engine (GCE).

22 Chapter 3. Introduction

CHAPTER 4

Commandline Options

A quick way to see all of Toil’s commandline options is by executing the following on a toil script:

’$ toil example.py —--help

For a basic toil workflow, Toil has one mandatory argument, the job store. All other arguments are optional.

4.1 The Job Store

Running toil scripts requires a filepath or url to a centralizing location for all of the files of the workflow.
This is Toil’s one required positional argument: the job store. To use the quickstart example, if you’re
on a node that has a large /scratch volume, you can specify that the jobstore be created there by execut-
ing: python HelloWorld.py /scratch/my—-job-store,or more explicitly, python HelloWorld.py
file:/scratch/my-job-store.

Syntax for specifying different job stores:
Local: file: job—store—name
AWS: aws:region—-here: job—-store—name
Google: google:projectID-here: job-store—-name

Different types of job store options can be found below.

4.2 Commandline Options

Core Toil Options Options to specify the location of the Toil workflow and turn on stats collation about the perfor-
mance of jobs.

--workDir WORKDIR Absolute path to directory where temporary files generated dur-
ing the Toil run should be placed. Standard output and error from

23

Toil Documentation, Release 5.8.0

batch system jobs (unless —noStdOutErr) will be placed in this direc-
tory. A cache directory may be placed in this directory. Temp files
and folders will be placed in a toil-<workflowID> within workDir.
The workflowlID is generated by Toil and will be reported in the
workflow logs. Default is determined by the variables (TMPDIR,
TEMP, TMP) via mkdtemp. This directory needs to exist on all
machines running jobs; if capturing standard output and error from
batch system jobs is desired, it will generally need to be on a shared
file system. When sharing a cache between containers on a host, this
directory must be shared between the containers.

--coordinationDir COORDINATION_DIR Absolute path to directory where Toil will

--noStdOutErr
--stats

--clean=STATE

keep state and lock files. When sharing a cache between containers
on a host, this directory must be shared between the containers.

Do not capture standard output and error from batch system jobs.
Records statistics about the toil workflow to be used by ‘toil stats’.

Determines the deletion of the jobStore upon completion of the pro-
gram. Choices: ‘always’, ‘onError’,’never’, or ‘onSuccess’. The
—stats option requires information from the jobStore upon comple-
tion so the jobStore will never be deleted with that flag. If you wish
to be able to restart the run, choose ‘never’ or ‘onSuccess’. Default
is ‘never’ if stats is enabled, and ‘onSuccess’ otherwise

--cleanWorkDir STATE Determines deletion of temporary worker directory upon com-

pletion of a job. Choices: ‘always’, ‘onError’, ‘never’, or ‘onSuc-
cess’. Default = always. WARNING: This option should be changed
for debugging only. Running a full pipeline with this option could
fill your disk with intermediate data.

--clusterStats FILEPATH If enabled, writes out JSON resource usage statistics to a file.

--restart

The default location for this file is the current working directory, but
an absolute path can also be passed to specify where this file should
be written. This option only applies when using scalable batch sys-
tems.

If —restart is specified then will attempt to restart existing workflow
at the location pointed to by the —jobStore option. Will raise an ex-
ception if the workflow does not exist.

Logging Options Toil hides stdout and stderr by default except in case of job failure. Log levels in toil

priority from the logging module:

--logOff

--logCritical

--logError

--logWarning

--logInfo

--logDebug

Only CRITICAL log levels are shown. Equivalent to
——logLevel=0FF or ——logLevel=CRITICAL.

Only CRITICAL log levels are shown. Equivalent to
——logLevel=0FF or ——logLevel=CRITICAL.

Only ERROR, and CRITICAL log levels are shown. Equivalent to
——logLevel=ERROR.

Only WARN, ERROR, and CRITICAL log levels are shown. Equiv-
alent to ——logLevel=WARNING.

All log statements are shown, except DEBUG. Equivalent to
——-logLevel=INFO.

All log statements are shown. Equivalent to ——1ogLevel=DEBUG.

are based on

24

Chapter 4. Commandline Options

Toil Documentation, Release 5.8.0

--logLevel=LOGLEVEL May be set to: OFF (or CRITICAL), ERROR, WARN (or
WARNING), INFO, or DEBUG.

--logFile FILEPATH Specifies a file path to write the logging output to.

--rotatinglLogging Turn on rotating logging, which prevents log files from getting too
big (set using ——maxLogFileSize BYTESIZE).

--maxLogFileSize BYTESIZE The maximum size of a job log file to keep (in bytes), log
files larger than this will be truncated to the last X bytes. Setting this
option to zero will prevent any truncation. Setting this option to a
negative value will truncate from the beginning. Default=62.5KiB
Sets the maximum log file size in bytes (-—rotatingLogging
must be active).

--log-dir DIRPATH For CWL and local file system only. Log stdout and stderr (if tool
requests stdout/stderr) to the DIRPATH.

Batch System Options

--batchSystem BATCHSYSTEM The type of batch system to run the job(s) with,
currently can be one of aws_batch, parasol, single_machine,
grid_engine, 1Isf, mesos, slurm, tes, torque, htcondor, kubernetes.
(default: single_machine)

--disableAutoDeployment Should auto-deployment of the user script be deactivated? If
True, the user script/package should be present at the same location
on all workers. Default = False.

--maxLocalJobs MAXLOCALJOBS For batch systems that support a local queue
for housekeeping jobs (Mesos, GridEngine, htcondor, Isf, slurm,
torque). Specifies the maximum number of these housekeeping jobs
to run on the local system. The default (equal to the number of cores)
is a maximum of concurrent local housekeeping jobs.

--manualMemArgs Do not add the default arguments: ‘hv=MEMORY’ &
‘h_vmem=MEMORY’ to the qsub call, and instead rely on
TOIL_GRIDGENGINE_ARGS to supply alternative arguments.
Requires that TOIL_GRIDGENGINE_ARGS be set.

--runCwlInternalJobsOnWorkers Whether to run CWL internal jobs (e.g. CWLScat-
ter) on the worker nodes instead of the primary node. If false (de-
fault), then all such jobs are run on the primary node. Setting this to
true can speed up the pipeline for very large workflows with many
sub-workflows and/or scatters, provided that the worker pool is large
enough.

--coalesceStatusCalls Coalese status calls to prevent the batch system from being over-
loaded. Currently only supported for LSF.

--statePollingWait STATEPOLLINGWAIT Time, in seconds, to wait before doing a
scheduler query for job state. Return cached results if within the
waiting period. Only works for grid engine batch systems such as
gridengine, htcondor, torque, slurm, and Isf.

--parasolCommand PARASOLCOMMAND The name or path of the parasol program.
Will be looked up on PATH unless it starts with a slash. (default:
parasol)

--parasolMaxBatches PARASOLMAXBATCHES Maximum number of job batches
the Parasol batch is allowed to create. One batch is created for jobs

4.2. Commandline Options 25

Toil Documentation, Release 5.8.0

with a unique set of resource requirements. (default: 1000)

--mesosEndpoint MESOSENDPOINT The host and port of the Mesos server separated
by a colon. (default: <leader IP>:5050)

--kubernetesHostPath KUBERNETES_HOST_PATH Path on Kubernetes hosts to use
as shared inter-pod temp directory.

--kubernetesOwner KUBERNETES_OWNER Username to mark Kubernetes jobs
with.

--kubernetesServiceAccount KUBERNETES_SERVICE_ACCOUNT Service ac-
count to run jobs as.

--kubernetesPodTimeout KUBERNETES POD_TIMEOUT Seconds to wait for a
scheduled Kubernetes pod to start running. (default: 120s)

--tesEndpoint TES_ENDPOINT The http(s) URL of the TES server. (default: http:
/I<leader IP>:8000)

--tesUser TES_USER User name to use for basic authentication to TES server.

--tesPassword TES_PASSWORD Password to use for basic authentication to TES
Server.

--tesBearerToken TES_BEARER_TOKEN Bearer token to use for authentication to
TES server.

--awsBatchRegion AWS_BATCH_REGION The AWS region containing the AWS
Batch queue to submit to.

--awsBatchQueue AWS_BATCH_QUEUE The name or ARN of the AWS Batch queue
to submit to.

--awsBatchJobRoleArn AWS_BATCH_JOB_ROLE_ARN The ARN of an IAM role
to run AWS Batch jobs as, so they can e.g. access a job store. Must
be assumable by ecs-tasks.amazonaws.com

--scale SCALE A scaling factor to change the value of all submitted tasks’ submit-
ted cores. Used in single_machine batch system. Useful for running
workflows on smaller machines than they were designed for, by set-
ting a value less than 1. (default: 1)

Data Storage Options Allows configuring Toil’s data storage.

--linkImports When using a filesystem based job store, CWL input files are by de-
fault symlinked in. Specifying this option instead copies the files
into the job store, which may protect them from being modified ex-
ternally. When not specified and as long as caching is enabled, Toil
will protect the file automatically by changing the permissions to
read-only.

--moveExports When using a filesystem based job store, output files are by default
moved to the output directory, and a symlink to the moved exported
file is created at the initial location. Specifying this option instead
copies the files into the output directory. Applies to filesystem-based
job stores only.

--disableCaching Disables caching in the file store. This flag must be set to use a batch
system that does not support cleanup, such as Parasol.

Autoscaling Options Allows the specification of the minimum and maximum number of nodes in an autoscaled
cluster, as well as parameters to control the level of provisioning.

26 Chapter 4. Commandline Options

http:/
http:/

Toil Documentation, Release 5.8.0

--provisioner CLOUDPROVIDER The provisioner for cluster auto-scaling. This is the
main Toil —provisioner option, and defaults to None for running on
single_machine and non-auto-scaling batch systems. The currently
supported choices are ‘aws’ or ‘gce’.

--nodeTypes NODETYPES Specifies a list of comma-separated node types, each of
which is composed of slash-separated instance types, and an optional
spot bid set off by a colon, making the node type preemptable. In-
stance types may appear in multiple node types, and the same node
type may appear as both preemptable and non-preemptable.

Valid argument specifying two node types:
c5.4xlarge/cSa.4xlarge:0.42,t2. large

Node types: c5.4xlarge/c5a.4xlarge:0.42 and t2.large
Instance types: c5.4xlarge, c5a.4xlarge, and t2.large

Semantics: Bid $0.42/hour for either c5.4xlarge or cSa.4xlarge in-
stances, treated interchangeably, while they are available at that
price, and buy t2.large instances at full price

--minNodes MINNODES Minimum number of nodes of each type in the cluster, if using
auto-scaling. This should be provided as a comma-separated list of
the same length as the list of node types. default=0

--maxNodes MAXNODES Maximum number of nodes of each type in the cluster, if us-
ing autoscaling, provided as a comma-separated list. The first value
is used as a default if the list length is less than the number of node-
Types. default=10

--targetTime TARGETTIME Sets how rapidly you aim to complete jobs in seconds.
Shorter times mean more aggressive parallelization. The autoscaler
attempts to scale up/down so that it expects all queued jobs will com-
plete within targetTime seconds. (Default: 1800)

--betalnertia BETAINERTIA A smoothing parameter to prevent unnecessary oscilla-
tions in the number of provisioned nodes. This controls an exponen-
tially weighted moving average of the estimated number of nodes. A
value of 0.0 disables any smoothing, and a value of 0.9 will smooth
so much that few changes will ever be made. Must be between 0.0
and 0.9. (Default: 0.1)

--scaleInterval SCALEINTERVAL The interval (seconds) between assessing if the scale
of the cluster needs to change. (Default: 60)

--preemptableCompensation PREEMPTABLECOMPENSATION The preference of
the autoscaler to replace preemptable nodes with non-preemptable
nodes, when preemptable nodes cannot be started for some reason.
Defaults to 0.0. This value must be between 0.0 and 1.0, inclusive.
A value of 0.0 disables such compensation, a value of 0.5 compen-
sates two missing preemptable nodes with a non-preemptable one. A
value of 1.0 replaces every missing pre-emptable node with a non-
preemptable one.

--nodeStorage NODESTORAGE Specify the size of the root volume of worker nodes
when they are launched in gigabytes. You may want to set this if
your jobs require a lot of disk space. The default value is 50.

4.2. Commandline Options

27

Toil Documentation, Release 5.8.0

--nodeStorageOverrides NODESTORAGEOVERRIDES Comma-separated list of
nodeType:nodeStorage that are used to override the default value
from —nodeStorage for the specified nodeType(s). This is useful for
heterogeneous jobs where some tasks require much more disk than
others.

--metrics Enable the prometheus/grafana dashboard for monitoring
CPU/RAM usage, queue size, and issued jobs.

--assumeZeroOverhead Ignore scheduler and OS overhead and assume jobs can use ev-
ery last byte of memory and disk on a node when autoscaling.

Service Options Allows the specification of the maximum number of service jobs in a cluster. By keeping this limited
we can avoid nodes occupied with services causing deadlocks. (Not for CWL).

--maxServiceJobs MAXSERVICEJOBS The maximum number of service jobs that can
be run concurrently, excluding service jobs running on preemptable
nodes. default=9223372036854775807

--maxPreemptableService Jobs MAXPREEMPTABLESERVICEJOBS The max-
imum number of service jobs that can run concurrently on
preemptable nodes. default=9223372036854775807

--deadlockWait DEADLOCKWAIT Time, in seconds, to tolerate the workflow running
only the same service jobs, with no jobs to use them, before declaring
the workflow to be deadlocked and stopping. default=60

--deadlockCheckInterval DEADLOCKCHECKINTERVAL Time, in seconds, to wait
between checks to see if the workflow is stuck running only ser-
vice jobs, with no jobs to use them. Should be shorter than —
deadlockWait. May need to be increased if the batch system can-
not enumerate running jobs quickly enough, or if polling for running
jobs is placing an unacceptable load on a shared cluster. default=30

Resource Options The options to specify default cores/memory requirements (if not specified by the jobs themselves),
and to limit the total amount of memory/cores requested from the batch system.

--defaultMemory INT The default amount of memory to request for a job. Only applica-
ble to jobs that do not specify an explicit value for this requirement.
Standard suffixes like K, Ki, M, Mi, G or Gi are supported. Default
is 2.0G

--defaultCores FLOAT The default number of CPU cores to dedicate a job. Only applica-
ble to jobs that do not specify an explicit value for this requirement.
Fractions of a core (for example 0.1) are supported on some batch
systems, namely Mesos and singleMachine. Default is 1.0

--defaultDisk INT The default amount of disk space to dedicate a job. Only applicable
to jobs that do not specify an explicit value for this requirement.
Standard suffixes like K, Ki, M, Mi, G or Gi are supported. Default
is 2.0G

--defaultAccelerators ACCELERATOR The default amount of accelerators to request
for a job. Only applicable to jobs that do not specify an explicit value
for this requirement. Each accelerator specification can have a type
(gpu [default], nvidia, amd, cuda, rocm, opencl, or a specific model
like nvidia-tesla-k80), and a count [default: 1]. If both a type and a
count are used, they must be separated by a colon. If multiple types
of accelerators are used, the specifications are separated by commas.
Default is [].

28 Chapter 4. Commandline Options

Toil Documentation, Release 5.8.0

--defaultPreemptable BOOL Make all jobs able to run on preemptable (spot) nodes by
default.

--maxCores INT The maximum number of CPU cores to request from the batch sys-
tem at any one time. Standard suffixes like K, Ki, M, Mi, G or Gi are
supported.

--maxMemory INT The maximum amount of memory to request from the batch system
at any one time. Standard suffixes like K, Ki, M, Mi, G or Gi are
supported.

--maxDisk INT The maximum amount of disk space to request from the batch system
at any one time. Standard suffixes like K, Ki, M, Mi, G or Gi are
supported.

Options for rescuing/killing/restarting jobs. The options for jobs that either run too long/fail or get lost (some batch
systems have issues!).

--retryCount RETRYCOUNT Number of times to retry a failing job before giving up
and labeling job failed. default=1

--enableUnlimitedPreemptableRetries If set, preemptable failures (or any failure due to
an instance getting unexpectedly terminated) will not count towards
job failures and —retryCount.

--doubleMem If set, batch jobs which die due to reaching memory limit on batch
schedulers will have their memory doubled and they will be retried.
The remaining retry count will be reduced by 1. Currently only sup-
ported by LSF. default=False.

--maxJobDuration MAXJOBDURATION Maximum runtime of a job (in seconds) be-
fore we kill it (this is a lower bound, and the actual time before killing
the job may be longer).

--rescueJobsFrequency RESCUEJOBSFREQUENCY Period of time to wait (in sec-
onds) between checking for missing/overlong jobs, that is jobs which
get lost by the batch system. Expert parameter.

Log Management Options

--maxLogFileSize MAXLOGFILESIZE The maximum size of a job log file to keep (in
bytes), log files larger than this will be truncated to the last X bytes.
Setting this option to zero will prevent any truncation. Setting this

option to a negative value will truncate from the beginning. De-
fault=62.5 K

--writeLogs FILEPATH Write worker logs received by the leader into their own files at
the specified path. Any non-empty standard output and error from
failed batch system jobs will also be written into files at this path.
The current working directory will be used if a path is not specified
explicitly. Note: By default only the logs of failed jobs are returned
to leader. Set log level to ‘debug’ or enable —writeLogsFromAllJobs
to get logs back from successful jobs, and adjust —-maxLogFileSize
to control the truncation limit for worker logs.

--writeLogsGzip FILEPATH Identical to —writeLogs except the logs files are gzipped on
the leader.

--writeMessages FILEPATH File to send messages from the leader’s message bus to.

--realTimeLogging Enable real-time logging from workers to leader.

4.2. Commandline Options 29

Toil Documentation, Release 5.8.0

Miscellaneous Options

--disableChaining Disables chaining of jobs (chaining uses one job’s resource alloca-
tion for its successor job if possible).

--disable JobStoreChecksumVerification Disables checksum verification for files trans-
ferred to/from the job store. Checksum verification is a safety check
to ensure the data is not corrupted during transfer. Currently only
supported for non-streaming AWS files

--sseKey SSEKEY Path to file containing 32 character key to be used for server-side
encryption on awsJobStore or googleJobStore. SSE will not be used
if this flag is not passed.

--setEnv NAME, -e NAME NAME=VALUE or NAME, -e NAME=VALUE or NAME
are also valid. Set an environment variable early on in the worker.
If VALUE is omitted, it will be looked up in the current environ-
ment. Independently of this option, the worker will try to emulate
the leader’s environment before running a job, except for some vari-
ables known to vary across systems. Using this option, a variable
can be injected into the worker process itself before it is started.

--servicePollingInterval SERVICEPOLLINGINTERVAL Interval of time service jobs
wait between polling for the existence of the keep-alive flag (de-
fault=60)

--forceDockerAppliance Disables sanity checking the existence of the docker image
specified by TOIL_APPLIANCE_SELF, which Toil uses to provi-
sion mesos for autoscaling.

--statusWait INT Seconds to wait between reports of running jobs. (default=3600)
--disableProgress = Disables the progress bar shown when standard error is a terminal.
Debug Options Debug options for finding problems or helping with testing.

--debugWorker Experimental no forking mode for local debugging. Specifically,
workers are not forked and stderr/stdout are not redirected to the log.
(default=False)

--disableWorkerOutputCapture Let worker output go to worker’s standard out/error in-
stead of per-job logs.

--badWorker BADWORKER For testing purposes randomly kill -badWorker propor-
tion of jobs using SIGKILL. (Default: 0.0)

--badWorkerFaillnterval BADWORKERFAILINTERVAL When killing the job pick
uniformly within the interval from 0.0 to —badWorkerFaillnterval
seconds after the worker starts. (Default: 0.01)

--kill_polling_interval KILL_POLLING_INTERVAL Interval of time (in seconds) the
leader waits between polling for the kill flag inside the job store set
by the “toil kill” command. (default=5)

4.3 Restart Option

In the event of failure, Toil can resume the pipeline by adding the argument ——restart and rerunning the python
script. Toil pipelines (but not CWL pipelines) can even be edited and resumed which is useful for development or
troubleshooting.

30 Chapter 4. Commandline Options

Toil Documentation, Release 5.8.0

4.4 Running Workflows with Services

Toil supports jobs, or clusters of jobs, that run as services to other accessor jobs. Example services include server
databases or Apache Spark Clusters. As service jobs exist to provide services to accessor jobs their runtime is depen-
dent on the concurrent running of their accessor jobs. The dependencies between services and their accessor jobs can
create potential deadlock scenarios, where the running of the workflow hangs because only service jobs are being run
and their accessor jobs can not be scheduled because of too limited resources to run both simultaneously. To cope
with this situation Toil attempts to schedule services and accessors intelligently, however to avoid a deadlock with
workflows running service jobs it is advisable to use the following parameters:

* ——maxServiceJobs: The maximum number of service jobs that can be run concurrently, excluding service
jobs running on preemptable nodes.

e ——maxPreemptableServiceJobs: The maximum number of service jobs that can run concurrently on
preemptable nodes.

Specifying these parameters so that at a maximum cluster size there will be sufficient resources to run accessors in
addition to services will ensure that such a deadlock can not occur.

If too low a limit is specified then a deadlock can occur in which toil can not schedule sufficient service jobs concur-
rently to complete the workflow. Toil will detect this situation if it occurs and throw a toil.DeadlockException
exception. Increasing the cluster size and these limits will resolve the issue.

4.5 Setting Options directly with the Toil Script

It’s good to remember that commandline options can be overridden in the Toil script itself. For example, toil. job.
Job.Runner.getDefaultOptions () can be used to run toil with all default options, and in this example, it
will override commandline args to run the default options and always run with the “./toilWorkflow” directory specified
as the jobstore:

options = Job.Runner.getDefaultOptions ("./toilWorkflow") # Get the options object

with Toil (options) as toil:
toil.start (Job()) # Run the script

However, each option can be explicitly set within the script by supplying arguments (in this example, we are setting
logLevel = "DEBUG" (all log statements are shown) and clean="ALWAYS" (always delete the jobstore) like
so:

options = Job.Runner.getDefaultOptions ("./toilWorkflow") # Get the options object
options.loglLevel = "DEBUG" # Set the log level to the debug level.
options.clean = "ALWAYS" # Always delete the jobStore after a run

with Toil (options) as toil:
toil.start (Job()) # Run the script

However, the usual incantation is to accept commandline args from the user with the following:

parser = Job.Runner.getDefaultArgumentParser () # Get the parser
options = parser.parse_args() # Parse user args to create the options object

with Toil (options) as toil:
toil.start (Job()) # Run the script

Which can also, of course, then accept script supplied arguments as before (which will overwrite any user supplied
args):

4.4. Running Workflows with Services 31

Toil Documentation, Release 5.8.0

parser = Job.Runner.getDefaultArgumentParser () # Get the parser

options = parser.parse_args() # Parse user args to create the options object
options.loglevel = "DEBUG" # Set the log level to the debug level.
options.clean = "ALWAYS" # Always delete the jobStore after a run

with Toil (options) as toil:
toil.start (Job()) # Run the script

32 Chapter 4. Commandline Options

CHAPTER B

Toil Debugging

Toil has a number of tools to assist in debugging. Here we provide help in working through potential problems that a
user might encounter in attempting to run a workflow.

5.1 Introspecting the Jobstore

Note: Currently these features are only implemented for use locally (single machine) with the fileJobStore.

To view what files currently reside in the jobstore, run the following command:

$ toil debug-file file:path-to-jobstore-directory \
——-listFilesInJobStore

When run from the commandline, this should generate a file containing the contents of the job store (in addition to
displaying a series of log messages to the terminal). This file is named “jobstore_files.txt” by default and will be
generated in the current working directory.

If one wishes to copy any of these files to a local directory, one can run for example:

$ toil debug-file file:path-to-jobstore \
——fetch overview.txt x.bam x.fastqg \
——-localFilePath=/home/user/localpath

To fetch overview.txt, and all .bam and . fastq files. This can be used to recover previously used input and
output files for debugging or reuse in other workflows, or use in general debugging to ensure that certain outputs were
imported into the jobStore.

5.2 Stats and Status

See Stats Command for more about gathering statistics about job success, runtime, and resource usage from workflows.

33

Toil Documentation, Release 5.8.0

5.3 Using a Python debugger

If you execute a workflow using the ——debugWorker flag, Toil will not fork in order to run jobs, which means you
can either use pdb, or an IDE that supports debugging Python as you would normally. Note that the ——debugWorker
flag will only work with the singleMachine batch system (the default), and not any of the custom job schedulers.

34 Chapter 5. Toil Debugging

https://docs.python.org/3/library/pdb.html
https://wiki.python.org/moin/PythonDebuggingTools#IDEs_with_Debug_Capabilities

CHAPTER O

Running in the Cloud

Toil supports Amazon Web Services (AWS) and Google Compute Engine (GCE) in the cloud and has autoscaling
capabilities that can adapt to the size of your workflow, whether your workflow requires 10 instances or 20,000.

Toil does this by creating a virtual cluster with Apache Mesos. Apache Mesos requires a leader node to coordinate
the workflow, and worker nodes to execute the various tasks within the workflow. As the workflow runs, Toil will
“autoscale”, creating and terminating workers as needed to meet the demands of the workflow.

Once a user is familiar with the basics of running toil locally (specifying a jobStore, and how to write a toil script),
they can move on to the guides below to learn how to translate these workflows into cloud ready workflows.

6.1 Managing a Cluster of Virtual Machines (Provisioning)

Toil can launch and manage a cluster of virtual machines to run using the provisioner to run a workflow distributed
over several nodes. The provisioner also has the ability to automatically scale up or down the size of the cluster to
handle dynamic changes in computational demand (autoscaling). Currently we have working provisioners with AWS
and GCE (Azure support has been deprecated).

Toil uses Apache Mesos as the Barch System.
See here for instructions for Running in AWS.

See here for instructions for Running in Google Compute Engine (GCE).

6.2 Storage (Toil jobStore)

Toil can make use of cloud storage such as AWS or Google buckets to take care of storage needs.

This is useful when running Toil in single machine mode on any cloud platform since it allows you to make use of
their integrated storage systems.

For an overview of the job store see Job Store.

For instructions configuring a particular job store see:

35

https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/gettingstarted/

Toil Documentation, Release 5.8.0

* AWS Job Store
* Google Job Store

36 Chapter 6. Running in the Cloud

CHAPTER /

Cloud Platforms

7.1 Running on Kubernetes

Kubernetes is a very popular container orchestration tool that has become a de facto cross-cloud-provider API for ac-
cessing cloud resources. Major cloud providers like Amazon, Microsoft, Kubernetes owner Google, and DigitalOcean
have invested heavily in making Kubernetes work well on their platforms, by writing their own deployment documen-
tation and developing provider-managed Kubernetes-based products. Using minikube, Kubernetes can even be run on
a single machine.

Toil supports running Toil workflows against a Kubernetes cluster, either in the cloud or deployed on user-owned
hardware.

7.1.1 Preparing your Kubernetes environment

1. Get a Kubernetes cluster

To run Toil workflows on Kubernetes, you need to have a Kubernetes cluster set up. This will not be covered
here, but there are many options available, and which one you choose will depend on which cloud ecosystem if
any you use already, and on pricing. If you are just following along with the documentation, use minikube on
your local machine.

Note that currently the only way to run a Toil workflow on Kubernetes is to use the AWS Job Store, so
your Kubernetes workflow will currently have to store its data in Amazon’s cloud regardless of where you
run it. This can result in significant egress charges from Amazon if you run it outside of Amazon.

Kubernetes Cluster Providers:
* Your own institution
* Amazon EKS
* Microsoft Azure AKS
* Google GKE

¢ DigitalOcean Kubernetes

37

https://kubernetes.io/
https://aws.amazon.com/kubernetes/
https://azure.microsoft.com/en-us/overview/kubernetes-getting-started/
https://cloud.google.com/kubernetes-engine/
https://www.digitalocean.com/products/kubernetes/
https://github.com/kubernetes/minikube
https://aws.amazon.com/eks/
https://docs.microsoft.com/en-us/azure/aks/
https://cloud.google.com/kubernetes-engine/
https://www.digitalocean.com/docs/kubernetes/

Toil Documentation, Release 5.8.0

¢ minikube

2. Get a Kubernetes context on your local machine

There are two main ways to run Toil workflows on Kubernetes. You can either run the Toil leader on a machine
outside the cluster, with jobs submitted to and run on the cluster, or you can submit the Toil leader itself as a job
and have it run inside the cluster. Either way, you will need to configure your own machine to be able to submit
jobs to the Kubernetes cluster. Generally, this involves creating and populating a file named . kube/config
in your user’s home directory, and specifying the cluster to connect to, the certificate and token information
needed for mutual authentication, and the Kubernetes namespace within which to work. However, Kubernetes
configuration can also be picked up from other files in the .kube directory, environment variables, and the
enclosing host when running inside a Kubernetes-managed container.

You will have to do different things here depending on where you got your Kubernetes cluster:
* Configuring for Amazon EKS
* Configuring for Microsoft Azure AKS
» Configuring for Google GKE
* Configuring for DigitalOcean Kubernetes Clusters
¢ Configuring for minikube

Toil’s internal Kubernetes configuration logic mirrors that of the kubect 1 command. Toil workflows will use
the current kubect 1 context to launch their Kubernetes jobs.

. If running the Toil leader in the cluster, get a service account

If you are going to run your workflow’s leader within the Kubernetes cluster (see Option I: Running the Leader
Inside Kubernetes), you will need a service account in your chosen Kubernetes namespace. Most namespaces
should have a service account named default which should work fine. If your cluster requires you to use
a different service account, you will need to obtain its name and use it when launching the Kubernetes job
containing the Toil leader.

. Set up appropriate permissions

Your local Kubernetes context and/or the service account you are using to run the leader in the cluster will need
to have certain permissions in order to run the workflow. Toil needs to be able to interact with jobs and pods in
the cluster, and to retrieve pod logs. You as a user may need permission to set up an AWS credentials secret, if
one is not already available. Additionally, it is very useful for you as a user to have permission to interact with
nodes, and to shell into pods.

The appropriate permissions may already be available to you and your service account by default, especially in
managed or ease-of-use-optimized setups such as EKS or minikube.

However, if the appropriate permissions are not already available, you or your cluster administrator will have
to grant them manually. The following Role (toil-user) and ClusterRole (node-reader), to be
applied with kubectl apply —-f filename.yaml, should grant sufficient permissions to run Toil work-
flows when bound to your account and the service account used by Toil workflows. Be sure to replace
YOUR_NAMESPACE_HERE with the namespace you are running your workflows in

apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:

namespace: YOUR_NAMESPACE_HERE

name: toil-user

rules:
- apiGroups: ["*"]
resources: ["+"]
verbs: ["explain", "get", "watch", "list", "describe", "logs", "attach", "exec",

— "port-forward", "proxy", "cp", "auth"] (continues on next page)

38

Chapter 7. Cloud Platforms

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az-aks-get-credentials
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl
https://www.digitalocean.com/docs/kubernetes/how-to/connect-to-cluster/
https://kubernetes.io/docs/setup/learning-environment/minikube/#kubectl

Toil Documentation, Release 5.8.0

(continued from previous page)

- apiGroups: ["batch"]

resources: ["+"]

verbs: ["get", "watch", "list", "create", "run", "set", "delete"]
- apiGroups: [""]

resources: ["secrets", "pods", "pods/attach", "podtemplates", "configmaps",
—"events", "services"]

verbs: ["patch", "get", "update", "watch", "list", "create", "run", "set",
—"delete", "exec"]
- apiGroups: [""]

resources: ["pods", "pods/log"]

verbs: ["get", "list"]
- apiGroups: [""]

resources: ["pods/exec"]

verbs: ["create']

apiVersion: rbac.authorization.k8s.io/vl
kind: ClusterRole

metadata:
name: node-reader
rules:
- apiGroups: [""]
resources: ["nodes"]
verbs: ["get", "list", "describe"]
- apiGroups: [""]
resources: ["namespaces"]
verbs: ["get", "list", "describe"]
- apiGroups: ["metrics.k8s.io"]
resources: ["+"]
verbs: ["*"]

To bind a user or service account to the Role or ClusterRole and actually grant the permissions, you will
need a RoleBinding and a ClusterRoleBinding, respectively. Make sure to fill in the namespace,
username, and service account name, and add more user stanzas if your cluster is to support multiple Toil users.

apiVersion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:
name: toil-developer-member
namespace: toil
subjects:
— kind: User
name: YOUR_KUBERNETES_USERNAME_HERE
apiGroup: rbac.authorization.k8s.io
— kind: ServiceAccount
name: YOUR_SERVICE_ACCOUNT_NAME_HERE
namespace: YOUR_NAMESPACE_HERE
roleRef:
kind: Role
name: toil-user
apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/vl
kind: ClusterRoleBinding
metadata:
name: read-nodes
subjects:

(continues on next page)

7.1. Running on Kubernetes 39

Toil Documentation, Release 5.8.0

(continued from previous page)

- kind: User

name: YOUR_KUBERNETES_USERNAME_HERE

apiGroup: rbac.authorization.k8s.io
— kind: ServiceAccount

name: YOUR_SERVICE_ACCOUNT_NAME_HERE

namespace: YOUR_NAMESPACE_HERE
roleRef:

kind: ClusterRole

name: node-reader

apiGroup: rbac.authorization.k8s.io

7.1.2 AWS Job Store for Kubernetes

Currently, the only job store, which is what Toil uses to exchange data between jobs, that works with jobs running on
Kubernetes is the AWS Job Store. This requires that the Toil leader and Kubernetes jobs be able to connect to and use
Amazon S3 and Amazon SimpleDB. It also requires that you have an Amazon Web Services account.

1. Get access to AWS S3 and SimpleDB

In your AWS account, you need to create an AWS access key. First go to the IAM dashboard; for “us-west1”,
the link would be:

https://console.aws.amazon.com/iam/home?region=us-west-1#/home

Then create an access key, and save the Access Key ID and the Secret Key. As documented in the AWS
documentation:

1. On the IAM Dashboard page, choose your account name in the navigation bar, and then choose My Secu-
rity Credentials.

2. Expand the Access keys (access key ID and secret access key) section.

3. Choose Create New Access Key. Then choose Download Key File to save the access key ID and secret
access key to a file on your computer. After you close the dialog box, you can’t retrieve this secret access
key again.

Make sure that, if your AWS infrastructure requires your user to authenticate with a multi-factor authentication
(MFA) token, you obtain a second secret key and access key that don’t have this requirement. The secret key
and access key used to populate the Kubernetes secret that allows the jobs to contact the job store need to be
usable without human intervention.

2. Configure AWS access from the local machine

This only really needs to happen if you run the leader on the local machine. But we need the files in place to fill
in the secret in the next step. Run:

$ aws configure

Then when prompted, enter your secret key and access key. This should create a file ~/ . aws/credentials
that looks like this:

[default]
aws_access_key_id = BLAH
aws_secret_access_key = Dblahblahblah

3. Create a Kubernetes secret to give jobs access to AWS

Go into the directory where the credentials file is:

40 Chapter 7. Cloud Platforms

https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html
https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html

Toil Documentation, Release 5.8.0

’$ cd ~/.aws ‘

Then, create a Kubernetes secret that contains it. We’ll call it aws—credentials:

’$ kubectl create secret generic aws-credentials —--from-file credentials

7.1.3 Configuring Toil for your Kubernetes environment

To configure your workflow to run on Kubernetes, you will have to configure several environment variables, in addition
to passing the ——batchSystem kubernetes option. Doing the research to figure out what values to give these
variables may require talking to your cluster provider.

1. TOIL_AWS_SECRET_NAME is the most important, and must be set to the secret that contains your AWS
credentials file, if your cluster nodes don’t otherwise have access to S3 and SimpleDB (such as through
IAM roles). This is required for the AWS job store to work, which is currently the only job store that can be
used on Kubernetes. In this example we are using aws—credentials.

2. TOIL_KUBERNETES_HOST_PATH can be set to allow Toil jobs on the same physical host to share a cache. It
should be set to a path on the host where the shared cache should be stored. It will be mounted as /var/1ib/
toil, or at TOIL_WORKDIR if specified, inside the container. This path must already exist on the host, and
must have as much free space as your Kubernetes node offers to jobs. In this example, we are using /data/
scratch. To actually make use of caching, make sure not to use ——disableCaching.

3. TOIL_KUBERNETES_OWNER should be set to the username of the user running the Toil workflow. The jobs
that Toil creates will include this username, so they can be more easily recognized, and cleaned up by the user
if anything happens to the Toil leader. In this example we are using demo-user.

Note that Docker containers cannot be run inside of unprivileged Kubernetes pods (which are themselves containers).
The Docker daemon does not (yet) support this. Other tools, such as Singularity in its user-namespace mode, are able
to run containers from within containers. If using Singularity to run containerized tools, and you want downloaded
container images to persist between Toil jobs, you will also want to set TOIL_KUBERNETES_HOST_PATH and make
sure that Singularity is downloading its containers under the Toil work directory (/var/1lib/toil buy default) by
setting SINGULARITY_CACHEDIR. However, you will need to make sure that no two jobs try to download the same
container at the same time; Singularity has no synchronization or locking around its cache, but the cache is also not safe
for simultaneous access by multiple Singularity invocations. Some Toil workflows use their own custom workaround
logic for this problem; this work is likely to be made part of Toil in a future release.

7.1.4 Running workflows

To run the workflow, you will need to run the Toil leader process somewhere. It can either be run inside Kubernetes
as a Kubernetes job, or outside Kubernetes as a normal command.

Option 1: Running the Leader Inside Kubernetes

Once you have determined a set of environment variable values for your workflow run, write a YAML file that defines
a Kubernetes job to run your workflow with that configuration. Some configuration items (such as your username, and
the name of your AWS credentials secret) need to be written into the YAML so that they can be used from the leader
as well.

Note that the leader pod will need your workflow script, its other dependencies, and Toil all installed. An easy way to
get Toil installed is to start with the Toil appliance image for the version of Toil you want to use. In this example, we
use quay.io/ucsc_cgl/toil:5.5.0.

Here’s an example YAML file to run a test workflow:

7.1. Running on Kubernetes 4

Toil Documentation, Release 5.8.0

apiVersion: batch/vl

kind: Job

metadata:
It is good practice to include your username in your job name.
Also specify it in TOIL_KUBERNETES_OWNER
name: demo-user-toil-test

Do not try and rerun the leader job if it fails

spec:
backofflLimit: 0
template:
spec:
Do not restart the pod when the job fails, but keep it around so the
log can be retrieved
restartPolicy: Never
volumes:
- name: aws-credentials-vol
secret:
Make sure the AWS credentials are available as a volume.
This should match TOIL_AWS_SECRET_NAME
secretName: aws-credentials
You may need to replace this with a different service account name as
appropriate for your cluster.
serviceAccountName: default
containers:
- name: main
image: quay.io/ucsc_cgl/toil:5.5.0
env:
Specify your username for inclusion in job names
— name: TOIL_KUBERNETES_OWNER
value: demo-user
Specify where to find the AWS credentials to access the job store with
— name: TOIL_AWS_SECRET_NAME
value: aws-credentials
Specify where per-host caches should be stored, on the Kubernetes hosts.
Needs to be set for Toil's caching to be efficient.
— name: TOIL_KUBERNETES_HOST_PATH
value: /data/scratch
volumeMounts:
Mount the AWS credentials volume
- mountPath: /root/.aws
name: aws-credentials-vol
resources:
Make sure to set these resource limits to values large enough
to accommodate the work your workflow does in the leader
process, but small enough to fit on your cluster.
#
Since no request values are specified, the limits are also used
for the requests.
limits:
cpu: 2
memory: "4Gi"
ephemeral-storage: "10Gi"
command:
- /bin/bash
- -C

(continues on next page)

42 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.8.0

(continued from previous page)

This Bash script will set up Toil and the workflow to run, and run them.

set -e

We make sure to create a work directory; Toil can't hot-deploy a

script from the root of the filesystem, which is where we start.

mkdir /tmp/work

cd /tmp/work
We make a virtual environment to allow workflow dependencies to be
hot-deployed.

#

#

#

We don't really make use of it in this example, but for workflows
that depend on PyPI packages we will need this.
#
#
#

We use —--system—-site-packages so that the Toil installed in the
appliance image is still available.
virtualenv —-python python3 --system-site-packages venv
venv/bin/activate
Now we install the workflow. Here we're using a demo workflow
script from Toil itself.
wget https://raw.githubusercontent.com/DataBiosphere/toil/releases/4.1.0/src/
—toil/test/docs/scripts/tutorial_helloworld.py
Now we run the workflow. We make sure to use the Kubernetes batch
system and an AWS job store, and we set some generally useful
logging options. We also make sure to enable caching.
python3 tutorial_helloworld.py \
aws:us-west-2:demouser-toil-test—-jobstore \
-—batchSystem kubernetes \
—-realTimeLogging \
—--logInfo

You can save this YAML as 1leader.yaml, and then run it on your Kubernetes installation with:

$ kubectl apply -f leader.yaml

To monitor the progress of the leader job, you will want to read its logs. If you are using a Kubernetes dashboard such
as k9s, you can simply find the pod created for the job in the dashboard, and view its logs there. If not, you will need
to locate the pod by hand.

Monitoring and Debugging Kubernetes Jobs and Pods

The following techniques are most useful for looking at the pod which holds the Toil leader, but they can also be
applied to individual Toil jobs on Kubernetes, even when the leader is outside the cluster.

Kubernetes names pods for jobs by appending a short random string to the name of the job. You can find the name of
the pod for your job by doing:

$ kubectl get pods | grep demo-user-toil-test
demo-user-toil-test-g5496 1/1 Running
-0 2m

Assuming you have set TOIL_KUBERNETES_OWNER correctly, you should be able to find all of your workflow’s
pods by searching for your username:

$ kubectl get pods | grep demo-user

If the status of a pod is anything other than Pending, you will be able to view its logs with:

7.1. Running on Kubernetes 43

https://github.com/derailed/k9s

Toil Documentation, Release 5.8.0

’$ kubectl logs demo-user-toil-test-g5496

This will dump the pod’s logs from the beginning to now and terminate. To follow along with the logs from a running
pod, add the - option:

’$ kubectl logs —-f demo-user-toil-test-g5496

A status of ImagePullBackoff suggests that you have requested to use an image that is not available. Check the
image section of your YAML if you are looking at a leader, or the value of TOIL_APPLIANCE_SELF if you are
delaying with a worker job. You also might want to check your Kubernetes node’s Internet connectivity and DNS
function; in Kubernetes, DNS depends on system-level pods which can be terminated or evicted in cases of resource
oversubscription, just like user workloads.

If your pod seems to be stuck Pending, ContainerCreating, you can get information on what is wrong with it
by using kubectl describe pod:

$ kubectl describe pod demo-user-toil-test-g5496

Pay particular attention to the Events: section at the end of the output. An indication that a job is too big for the
available nodes on your cluster, or that your cluster is too busy for your jobs, is FailedScheduling events:

Type Reason Age From Message

Warning FailedScheduling 13s (x79 over 100m) default-scheduler 0/4 nodes are_
—available: 1 Insufficient cpu, 1 Insufficient ephemeral-storage, 4 Insufficient

—memory.

If a pod is running but seems to be behaving erratically, or seems stuck, you can shell into it and look around:

$ kubectl exec —-ti demo-user-toil-test-g5496 /bin/bash

One common cause of stuck pods is attempting to use more memory than allowed by Kubernetes (or by the Toil
job’s memory resource requirement), but in a way that does not trigger the Linux OOM Kkiller to terminate the pod’s
processes. In these cases, the pod can remain stuck at nearly 100% memory usage more or less indefinitely, and
attempting to shell into the pod (which needs to start a process within the pod, using some of its memory) will fail.
In these cases, the recommended solution is to kill the offending pod and increase its (or its Toil job’s) memory
requirement, or reduce its memory needs by adapting user code.

When Things Go Wrong

The Toil Kubernetes batch system includes cleanup code to terminate worker jobs when the leader shuts down. How-
ever, if the leader pod is removed by Kubernetes, is forcibly killed or otherwise suffers a sudden existence failure, it
can go away while its worker jobs live on. It is not recommended to restart a workflow in this state, as jobs from the
previous invocation will remain running and will be trying to modify the job store concurrently with jobs from the new
Invocation.

To clean up dangling jobs, you can use the following snippet:

$ kubectl get jobs | grep demo-user | cut -fl -d' ' | xargs -nl0 kubectl delete job

This will delete all jobs with demo-user’s username in their names, in batches of 10. You can also use the UUID
that Toil assigns to a particular workflow invocation in the filter, to clean up only the jobs pertaining to that workflow
invocation.

44 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.8.0

Option 2: Running the Leader Outside Kubernetes

If you don’t want to run your Toil leader inside Kubernetes, you can run it locally instead. This can be useful when
developing a workflow; files can be hot-deployed from your local machine directly to Kubernetes. However, your
local machine will have to have (ideally role-assumption- and MFA-free) access to AWS, and access to Kubernetes.
Real time logging will not work unless your local machine is able to listen for incoming UDP packets on arbitrary
ports on the address it uses to contact the IPv4 Internet; Toil does no NAT traversal or detection.

Note that if you set TOIL_WORKDIR when running your workflow like this, it will need to be a directory that exists
both on the host and in the Toil appliance.

Here is an example of running our test workflow leader locally, outside of Kubernetes:

$ export TOIL_KUBERNETES_OWNER=demo-user # This defaults to your local username if
—not set
$ export TOIL_AWS_SECRET_NAME=aws-credentials
$ export TOIL_KUBERNETES_HOST_PATH=/data/scratch
$ virtualenv —--python python3 --system-site-packages venv
S . venv/bin/activate
$ wget https://raw.githubusercontent.com/DataBiosphere/toil/releases/4.1.0/src/toil/
—test/docs/scripts/tutorial_helloworld.py
$ python3 tutorial_helloworld.py \
aws:us-west-2:demouser—-toil-test-jobstore \
—-batchSystem kubernetes \
—-realTimeLogging \
—-—-logInfo

7.2 Running in AWS

Toil jobs can be run on a variety of cloud platforms. Of these, Amazon Web Services (AWS) is currently the best-
supported solution. Toil provides the Cluster Utilities to conveniently create AWS clusters, connect to the leader of the
cluster, and then launch a workflow. The leader handles distributing the jobs over the worker nodes and autoscaling to
optimize costs.

The Running a Workflow with Autoscaling section details how to create a cluster and run a workflow that will dynam-
ically scale depending on the workflow’s needs.

The Static Provisioning section explains how a static cluster (one that won’t automatically change in size) can be
created and provisioned (grown, shrunk, destroyed, etc.).

7.2.1 Preparing your AWS environment
To use Amazon Web Services (AWS) to run Toil or to just use S3 to host the files during the computation of a workflow,
first set up and configure an account with AWS:

1. If necessary, create and activate an AWS account

2. Next, generate a key pair for AWS with the command (do NOT generate your key pair with the Amazon
browser):

’$ ssh-keygen -t rsa

3. This should prompt you to save your key. Please save it in

~/.ssh/id_rsa

7.2. Running in AWS 45

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/

Toil Documentation, Release 5.8.0

4. Now move this to where your OS can see it as an authorized key:

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

5. Next, you’ll need to add your key to the ssh-agent:

$ eval “ssh-agent -s°
$ ssh-add

If your key has a passphrase, you will be prompted to enter it here once.

6. You’ll also need to chmod your private key (good practice but also enforced by AWS):

$ chmod 400 id_rsa

7. Now you’ll need to add the key to AWS via the browser. For example, on us-west1, this address would accessible

at:

https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1
—#KeyPairs:sort=keyName

8. Now click on the “Import Key Pair” button to add your key:

J Services v Resource Groups v % LA I - - cciomia v+ Support v
EC2 Dashboard Create Key Pair ‘\!mpor(Key pair))
Events —
Tags (] 1todof4
Reports ’
Key pair name ~ Fingerprint
Limits
fresh
id_rsa
Instances
keyk
Launch Templates
teston
Spot Requests
Reserved Instances
Dedicated Hosts
Select a key pair L_}_}a=]

AMIs
Bundle Tasks

9. Next, you need to create an AWS access key. First go to the IAM dashboard, again; for “us-westl”, the example

link would be here:

https://console.aws.amazon.com/iam/home?region=us-west-1#/home

10. The directions (transcribed from: https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.

html) are now:

1. On the IAM Dashboard page, choose your account name in the navigation bar, and then choose My Secu-

rity Credentials.

2. Expand the Access keys (access key ID and secret access key) section.

3. Choose Create New Access Key. Then choose Download Key File to save the access key ID and secret
access key to a file on your computer. After you close the dialog box, you can’t retrieve this secret access

key again.

11. Now you should have a newly generated “AWS Access Key ID” and “AWS Secret Access Key”. We can now

install the AWS CLI and make sure that it has the proper credentials:

$ pip install awscli --upgrade —--user

12. Now configure your AWS credentials with:

46 Chapter 7. Cloud Platforms

https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1#KeyPairs:sort=keyName
https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html
https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html

Toil Documentation, Release 5.8.0

$ aws configure

13. Add your “AWS Access Key ID” and “AWS Secret Access Key” from earlier and your region and output format:

" AWS Access Key ID [#**x*xxxxxxx*kx*x*xQ65Q] :
" AWS Secret Access Key [xxxx*xkkhkxxxxxxxxGO0ys]:

" Default region name [us-west-1]:
" Default output format [json]:

This will create the files ~/.aws/config and ~/.aws/credentials.

14. If not done already, install toil (example uses version 5.3.0, but we recommend the latest release):

S virtualenv venv
$ source venv/bin/activate
$ pip install toil[all]==5.3.0

15. Now that toil is installed and you are running a virtualenv, an example of launching a toil leader node would
be the following (again, note that we set TOIL_APPLIANCE_SELF to toil version 5.3.0 in this example, but
please set the version to the installed version that you are using if you’re using a different version):

$ TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:5.3.0 \
toil launch-cluster clustername \
——leaderNodeType t2.medium \
—-—-zone us-west-la \
—-—keyPairName id_rsa

To further break down each of these commands:

TOIL_APPLIANCE_SELF=quay.io/ucsc_cgl/toil:latest — This is optional. It specifies a mesos
docker image that we maintain with the latest version of toil installed on it. If you want to use a dif-
ferent version of toil, please specify the image tag you need from https://quay.io/repository/ucsc_cgl/toil?
tag=latest&tab=tags.

toil launch-cluster — Base command in toil to launch a cluster.
clustername — Just choose a name for your cluster.

—leaderNodeType t2.medium — Specify the leader node type. Make a t2.medium (2CPU; 4Gb RAM;
$0.0464/Hour). List of available AWS instances: https://aws.amazon.com/ec2/pricing/on-demand/

—zone us-west-la — Specify the AWS zone you want to launch the instance in. Must have the same
prefix as the zone in your awscli credentials (which, in the example of this tutorial is: “us-west-1").

—keyPairName id_rsa — The name of your key pair, which should be “id_rsa” if you’ve followed this
tutorial.

Note: You can set the TOIL_AWS_TAGS environment variable to a JSON object to specify arbitrary tags for AWS re-
sources. For example, if you export TOIL_AWS_TAGS='{"project—-name": "variant-calling"}'
in your shell before using Toil, AWS resources created by Toil will be tagged with a project-name tag with the
value variant-calling.

7.2.2 AWS Job Store

Using the AWS job store is straightforward after you’ve finished Preparing your AWS environment; all you need to do
is specify the prefix for the job store name.

7.2. Running in AWS 47

https://quay.io/repository/ucsc_cgl/toil?tag=latest&tab=tags
https://quay.io/repository/ucsc_cgl/toil?tag=latest&tab=tags
https://aws.amazon.com/ec2/pricing/on-demand/

Toil Documentation, Release 5.8.0

To run the sort example sort example with the AWS job store you would type

$ python sort.py aws:us-west-2:my-aws-sort-jobstore

7.2.3 Toil Provisioner

The Toil provisioner is included in Toil alongside the [aws] extra and allows us to spin up a cluster.
Getting started with the provisioner is simple:

1. Make sure you have Toil installed with the AWS extras. For detailed instructions see Installing Toil with Extra
Features.

2. You will need an AWS account and you will need to save your AWS credentials on your local machine. For
help setting up an AWS account see here. For setting up your AWS credentials follow instructions here.

The Toil provisioner is built around the Toil Appliance, a Docker image that bundles Toil and all its requirements (e.g.
Mesos). This makes deployment simple across platforms, and you can even simulate a cluster locally (see Developing
with Docker for details).

Choosing Toil Appliance Image

When using the Toil provisioner, the appliance image will be automatically chosen based on the pip-installed version of
Toil on your system. That choice can be overridden by setting the environment variables TOIL_DOCKER_REGISTRY
and TOIL_DOCKER_NAME or TOIL_APPLIANCE_SELF. See Environment Variables for more information on these
variables. If you are developing with autoscaling and want to test and build your own appliance have a look at
Developing with Docker.

For information on using the Toil Provisioner have a look at Running a Workflow with Autoscaling.

7.2.4 Details about Launching a Cluster in AWS

Using the provisioner to launch a Toil leader instance is simple using the 1aunch-cluster command. For example,
to launch a cluster named “my-cluster” with a t2.medium leader in the us-west-2a zone, run

(venv) $ toil launch-cluster my-cluster \
—-leaderNodeType t2.medium \
—-—-zone us-west-2a \
—-keyPairName <your-AWS-key-pair-name>

The cluster name is used to uniquely identify your cluster and will be used to populate the instance’s Name tag. Also,
the Toil provisioner will automatically tag your cluster with an Owner tag that corresponds to your keypair name to
facilitate cost tracking. In addition, the Toi1NodeType tag can be used to filter “leader” vs. “worker” nodes in your
cluster.

The leaderNodeType is an EC2 instance type. This only affects the leader node.

The —-zone parameter specifies which EC2 availability zone to launch the cluster in. Alternatively, you can specify
this option via the TOIL_AWS_ ZONE environment variable. Note: the zone is different from an EC2 region. A region
corresponds to a geographical area like us-west-2 (Oregon), and availability zones are partitions of this area
like us-west-2a.

By default, Toil creates an IAM role for each cluster with sufficient permissions to perform cluster operations (e.g.
full S3, EC2, and SDB access). If the default permissions are not sufficient for your use case (e.g. if you need access
to ECR), you may create a custom IAM role with all necessary permissions and set the ——awsEc2ProfileArn

48 Chapter 7. Cloud Platforms

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files
https://aws.amazon.com/ec2/instance-types/

Toil Documentation, Release 5.8.0

parameter when launching the cluster. Note that your custom role must at least have these permissions in order for the
Toil cluster to function properly.

In addition, Toil creates a new security group with the same name as the cluster name with default rules
(e.g. opens port 22 for SSH access). If you require additional security groups, you may use the
—-—awsEc2ExtraSecurityGroupId parameter when launching the cluster. Note: Do not use the same name
as the cluster name for the extra security groups as any security group matching the cluster name will be deleted once
the cluster is destroyed.

For more information on options try:

(venv) $ toil launch-cluster —--help

Static Provisioning

Toil can be used to manage a cluster in the cloud by using the Cluster Utilities. The cluster utilities also make it easy
to run a toil workflow directly on this cluster. We call this static provisioning because the size of the cluster does not
change. This is in contrast with Running a Workflow with Autoscaling.

To launch worker nodes alongside the leader we use the —w option:

(venv) $ toil launch-cluster my-cluster \
—--leaderNodeType t2.small -z us-west-2a \
—-keyPairName your-AWS-key-pair-name \
--nodeTypes m3.large,t2.micro -w 1,4

This will spin up a leader node of type t2.small with five additional workers — one m3.1arge instance and four t2.micro.

Currently static provisioning is only possible during the cluster’s creation. The ability to add new nodes and remove
existing nodes via the native provisioner is in development. Of course the cluster can always be deleted with the
Destroy-Cluster Command utility.

Uploading Workflows

Now that our cluster is launched, we use the Rsync-Cluster Command utility to copy the workflow to the leader. For a
simple workflow in a single file this might look like

(venv) $ toil rsync-cluster -z us-west-2a my-cluster toil-workflow.py :/

Note: If your toil workflow has dependencies have a look at the Auto-Deployment section for a detailed explanation
on how to include them.

Running a Workflow with Autoscaling

Autoscaling is a feature of running Toil in a cloud whereby additional cloud instances are launched to run the workflow.
Autoscaling leverages Mesos containers to provide an execution environment for these workflows.

Note: Make sure you’ve done the AWS setup in Preparing your AWS environment.

1. Download sort.py

2. Launch the leader node in AWS using the Launch-Cluster Command command:

7.2. Running in AWS 49

Toil Documentation, Release 5.8.0

(venv) $ toil launch-cluster <cluster—-name> \
——keyPairName <AWS-key-pair-name> \
--leaderNodeType t2.medium \

—-—zone us-west-2a

3. Copy the sort . py script up to the leader node:

’(venv) $ toil rsync-cluster -z us-west-2a <cluster-name> sort.py :/root

4. Login to the leader node:

’(venv) $ toil ssh-cluster -z us—-west-2a <cluster—-name>

5. Run the script as an autoscaling workflow:

$ python /root/sort.py aws:us-west-2:<my-jobstore-name> \
—-provisioner aws \
—--nodeTypes c3.large \
--maxNodes 2 \
——batchSystem mesos

Note: In this example, the autoscaling Toil code creates up to two instances of type c3.large and launches Mesos
slave containers inside them. The containers are then available to run jobs defined by the sorz.py script. Toil also
creates a bucket in S3 called aws:us-west-2:autoscaling-sort-jobstore to store intermediate job results. The Toil au-
toscaler can also provision multiple different node types, which is useful for workflows that have jobs with varying
resource requirements. For example, one could execute the script with ——nodeTypes c3.large,r3.xlarge
--maxNodes 5, 1, which would allow the provisioner to create up to five c3.large nodes and one r3.xlarge node for
memory-intensive jobs. In this situation, the autoscaler would avoid creating the more expensive r3.xlarge node until
needed, running most jobs on the c3.large nodes.

1. View the generated file to sort:

’5 head fileToSort.txt

2. View the sorted file:

’$ head sortedFile.txt

For more information on other autoscaling (and other) options have a look at Commandline Options and/or run

’$ python my-toil-script.py --help

Important: Some important caveats about starting a toil run through an ssh session are explained in the Ssi-Cluster
Command section.

Preemptability

Toil can run on a heterogeneous cluster of both preemptable and non-preemptable nodes. Being preemptable node
simply means that the node may be shut down at any time, while jobs are running. These jobs can then be restarted
later somewhere else.

50 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.8.0

A node type can be specified as preemptable by adding a spot bid to its entry in the list of node types provided with
the -——nodeTypes flag. If spot instance prices rise above your bid, the preemptable node whill be shut down.

While individual jobs can each explicitly specify whether or not they should be run on preemptable nodes via
the boolean preemptable resource requirement, the ——defaultPreemptable flag will allow jobs without
a preemptable requirement to run on preemptable machines.

Specify Preemptability Carefully

Ensure that your choices for —~—nodeTypes and ——maxNodes <> make sense for your workflow and won’t cause
it to hang. You should make sure the provisioner is able to create nodes large enough to run the largest job in the
workflow, and that non-preemptable node types are allowed if there are non-preemptable jobs in the workflow.

Finally, the ——preemptableCompensation flag can be used to handle cases where preemptable nodes may not
be available but are required for your workflow. With this flag enabled, the autoscaler will attempt to compensate for
a shortage of preemptable nodes of a certain type by creating non-preemptable nodes of that type, if non-preemptable
nodes of that type were specified in ——nodeTypes.

Using MinlO and S3-Compatible object stores
Toil can be configured to access files stored in an S3-compatible object store such as MinlO. The following environ-
ment variables can be used to configure the S3 connection used:

e TOIL_S3_HOST: the IP address or hostname to use for connecting to S3

* TOIL_S3_PORT: the port number to use for connecting to S3, if needed

e TOIL_S3_USE_SSL: enable or disable the usage of SSL for connecting to S3 (True by default)

Examples:

TOIL_S3_HOST=127.0.0.1
TOIL_S3_PORT=9010
TOIL_S3_USE_SSL=False

7.2.5 Dashboard

Toil provides a dashboard for viewing the RAM and CPU usage of each node, the number of issued jobs of each type,
the number of failed jobs, and the size of the jobs queue. To launch this dashboard for a toil workflow, include the
--metrics flag in the toil script command. The dashboard can then be viewed in your browser at localhost:3000
while connected to the leader node through toil ssh-cluster:

To change the default port number, you can use the ——grafana_port argument:

(venv) $ toil ssh-cluster -z us-west-2a --grafana_port 8000 <cluster-name>

On AWS, the dashboard keeps track of every node in the cluster to monitor CPU and RAM usage, but it can also
be used while running a workflow on a single machine. The dashboard uses Grafana as the front end for displaying
real-time plots, and Prometheus for tracking metrics exported by toil:

7.2. Running in AWS 51

https://aws.amazon.com/ec2/spot/pricing/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://min.io/

Toil Documentation, Release 5.8.0

15 toil stats - Grafana X New Tab x | 4+ (+]
< C ® localhost:3000/?0rgld=1&refresh=30s&from=now-5m&to=now Q e Guest

88 General / toil stats

CPU usage Memory usage

18
05008

0B

15:51:30 15:5200 155230 155300 155330 155400 15:54:30 155500 155530 15:56:00 15:51:30 155200 155230 155300 155330 155400 155430 155500 155530 15:56:00

Cluster size Queue size

No data
2021-05-18 15:54:30
—Queuesize: 20

Bl [
1551:30 155200 155230 155300 155330 15:54:00 15:54:30 155500 155530 15:56:00 1551:30 155200 1552:30 155300 155330 155400 155430 155500 155530 155600

Running or queued jobs (log scale) Failed jobs

1

0.500

No data
0
I I I l . . -

1
1551:30 1552:00 1552:30 155300 15:53:30 155400 155430 155500 15:5530 15:56:00 15:51:30 155200 155230 155300 1553:30 155400 1554:30 155500 155530 15:56:00

100
10
1
3

®

In order to use the dashboard for a non-released toil version, you will have to build the containers locally with make
docker, since the prometheus, grafana, and mtail containers used in the dashboard are tied to a specific toil version.

7.3 Running in Google Compute Engine (GCE)

Toil supports a provisioner with Google, and a Google Job Store. To get started, follow instructions for Preparing
your Google environment.

7.3.1 Preparing your Google environment

Toil supports using the Google Cloud Platform. Setting this up is easy!
1. Make sure that the google extra (Installing Toil with Extra Features) is installed

2. Follow Google’s Instructions to download credentials and set the GOOGLE_APPLICATION_CREDENTIALS
environment variable

3. Create a new ssh key with the proper format. To create a new ssh key run the command

$ ssh-keygen -t rsa -f ~/.ssh/id_rsa —-C [USERNAME]

where [USERNAME] is something like jane@example.com. Make sure to leave your password blank.

Warning: This command could overwrite an old ssh key you may be using. If you have an existing ssh key
you would like to use, it will need to be called id_rsa and it needs to have no password set.

Make sure only you can read the SSH keys:

52 Chapter 7. Cloud Platforms

https://cloud.google.com/storage/
https://cloud.google.com/docs/authentication/getting-started

Toil Documentation, Release 5.8.0

$ chmod 400 ~/.ssh/id_rsa ~/.ssh/id_rsa.pub

4. Add your newly formatted public key to Google. To do this, log into your Google Cloud account and go to
metadata section under the Compute tab.

Google Cloud Platform $e toildev ~

Cloud Launcher

Vi instances

Ba Billing
Instance groups
API APls & Services > Instance templates
. Disks
Support >
Ll PP Snapshots
© 1AM & admin > | mages
Committed use discounts
@ Getting started Metadata
Health checks
COMPUTE
Zones
@ App Engine > Operations
Quotas
' ?
{2} Compute Engine Settings

Near the top of the screen click on ‘SSH Keys’, then edit, add item, and paste the key. Then save:

7.3. Running in Google Compute Engine (GCE) 53

https://console.cloud.google.com/compute/metadata

Toil Documentation, Release 5.8.0

Google Cloud Platform 3e toildev ~

Compute Engine Metadata

VM instances Metadata S5H Keys

Instance groups
Enter entire key data
Instance templates
Disks »

Snapshots

Images

| =+ Add item

Committed use discounts
Cancel
Metadata m

Health checks

For more details look at Google’s instructions for adding SSH keys.

7.3.2 Google Job Store

To use the Google Job Store you will need to set the GOOGLE_APPLICATION_CREDENTIALS environment variable
by following Google’s instructions.

Then to run the sort example with the Google job store you would type

$ python sort.py google:my-project—-id:my-google-sort—jobstore

7.3.3 Running a Workflow with Autoscaling

Warning: Google Autoscaling is in beta!

The steps to run a GCE workflow are similar to those of AWS (Running a Workflow with Autoscaling), except you will
need to explicitly specify the ——provisioner gce option which otherwise defaults to aws.

1. Download sort .py

2. Launch the leader node in GCE using the Launch-Cluster Command command:

(venv)

$ toil launch-cluster <CLUSTER-NAME> \
——-provisioner gce \
——leaderNodeType nl-standard-1 \
—-keyPairName <SSH-KEYNAME> \
—-—zone us-westl-a

Where <SSH-KEYNAME> is the first part of [USERNAME] used when setting up your ssh key. For example if
[USERNAME] was jane @example.com, <SSH-KEYNAME> should be jane.

54

Chapter 7. Cloud Platforms

https://cloud.google.com/compute/docs/instances/adding-removing-ssh-keys
https://cloud.google.com/docs/authentication/getting-started
mailto:jane@example.com

Toil Documentation, Release 5.8.0

The ——keyPairName option is for an SSH key that was added to the Google account. If your ssh key
[USERNAME] was jane@example.com, then your key pair name will be just jane.

3. Upload the sort example and ssh into the leader:

(venv) $ toil rsync-cluster —--provisioner gce <CLUSTER-NAME> sort.py :/root
(venv) $ toil ssh-cluster --provisioner gce <CLUSTER-NAME>

4. Run the workflow:

$ python /root/sort.py google:<PROJECT-ID>:<JOBSTORE-NAME> \
—-—-provisioner gce \
—-batchSystem mesos \
--nodeTypes nl-standard-2 \
——maxNodes 2

5. Clean up:

$ exit # this exits the ssh from the leader node
(venv) $ toil destroy-cluster —--provisioner gce <CLUSTER-NAME>

7.4 Cluster Utilities

There are several utilities used for starting and managing a Toil cluster using the AWS provisioner. They are installed
viathe [aws] or [google] extra. For installation details see Toil Provisioner. The cluster utilities are used for Run-
ning in AWS and are comprised of toil launch-cluster,toil rsync-cluster,toil ssh-cluster,
and toil destroy-cluster entry points.

Cluster commands specific to toil are:

status — Reports runtime and resource usage for all jobs in a specified jobstore (workflow must have
originally been run using the —stats option).

stats — Inspects a job store to see which jobs have failed, run successfully, etc.
destroy-cluster — For autoscaling. Terminates the specified cluster and associated resources.

launch-cluster — For autoscaling. This is used to launch a toil leader instance with the specified
provisioner.

rsync—-cluster — For autoscaling. Used to transfer files to a cluster launched with toil
launch-cluster.

ssh-cluster — SSHs into the toil appliance container running on the leader of the cluster.
clean — Delete the job store used by a previous Toil workflow invocation.
kill — Kills any running jobs in a rogue toil.

For information on a specific utility run:

toil launch-cluster —--help

for a full list of its options and functionality.

The cluster utilities can be used for Running in Google Compute Engine (GCE) and Running in AWS.

7.4. Cluster Utilities 55

Toil Documentation, Release 5.8.0

Tip: By default, all of the cluster utilities expect to be running on AWS. To run with Google you will need to specify
the ——provisioner gce option for each utility.

Note: Boto must be configured with AWS credentials before using cluster utilities.

Running in Google Compute Engine (GCE) contains instructions for

7.5 Stats Command

To use the stats command, a workflow must first be run using the ——stats option. Using this command makes
certain that toil does not delete the job store, no matter what other options are specified (i.e. normally the option
-—clean=always would delete the job, but ——stats will override this).

An example of this would be running the following:

python discoverfiles.py file:my-jobstore —-stats

Where discoverfiles.py is the following:

import os
import subprocess

from toil.common import Toil

from toil. job import Job

class discoverFiles (Job) :
"""Views files at a specified path using Is."""

def _ _init__ (self, path, *args, xxkwargs):
self.path = path
super () .__init__ (xargs, =xkwargs)

def run(self, fileStore):
if os.path.exists(self.path):

subprocess.check_call (["1ls", self.path])
def main():
options = Job.Runner.getDefaultArgumentParser () .parse_args ()
options.clean = "always"

jobl = discoverFiles (path="/sys/", displayName='sysFiles")
job2 discoverFiles (path=os.path.expanduser ("~"), displayName='userFiles")
job3 = discoverFiles (path="/tmp/")

jobl.addChild (job2)
job2.addChild (job3)

with Toil (options) as toil:
if not toil.options.restart:
toil.start (jobl)

(continues on next page)

56 Chapter 7. Cloud Platforms

http://boto3.readthedocs.io/en/latest/guide/quickstart.html#configuration

Toil Documentation, Release 5.8.0

(continued from previous page)

else:
toil.restart ()

v L

if name == main

main ()

Notice the displayName key, which can rename a job, giving it an alias when it is finally displayed in stats. Running
this workflow file should record three job names: sysFiles (jobl), userFiles (job2), and discoverFiles
(job3). To see the runtime and resources used for each job when it was run, type

toil stats file:my-jobstore

This should output the following:

Batch System: singleMachine

Default Cores: 1 Default Memory: 2097152K
Max Cores: 9.22337e+18

Total Clock: 0.56 Total Runtime: 1.01

Worker
Count | Timex | o
AN Clock | Wait | o
— Memory
n | min medx* ave max total | min med ave .
—max total | min med ave max total | min med ave
— max total
1] 0.14 0.14 0.14 0.14 0.14 | 0.13 0.13 0.13 0.
—13 0.13 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K o
— 76K 76K
Job
Worker Jobs | min med ave max
| 3 3 3 3
Count | Timex | o
. Clock | Wait | o
— Memory
n | min medx* ave max total | min med ave .
. max total | min med ave max total | min med ave
— max total
3 0.01 0.06 0.05 0.07 0.14 | 0.00 0.06 0.04 0.
07 0.12 | 0.00 0.01 0.00 0.01 0.01 | 76K 76K 76K o
— 76K 229K
sysFiles
Count | Timex | o
— Clock | Wait | o
— Memory
n | min med* ave max total | min med ave .
—max total | min med ave max total | min med ave
— max total
1 0.01 0.01 0.01 0.01 0.01 | 0.00 0.00 0.00 0.
00 0.00 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K o
— 76K 76K
userFiles
Count | Timex | o
— Clock | Wait | o
s Memory
n | min med* ave max total | min med ave .
—max total | min med ave max total | min med ave |
. max total (continues on next page)

7.5. Stats Command 57

Toil Documentation, Release 5.8.0

(continued from previous page)

1] 0.06 0.06 0.06 0.06 0.06 | 0.06 0.06 0.06 0.
—06 0.06 | 0.01 0.01 0.01 0.01 0.01 | 76K 76K 76K .
— 76K 76K
discoverFiles

Count | Timex | o

. Clock | Wait | o
s Memory

n | min medx* ave max total | min med ave .
—max total | min med ave max total | min med ave
— max total

1| 0.07 0.07 0.07 0.07 0.07 | 0.07 0.07 0.07 0.
07 0.07 | 0.00 0.00 0.00 0.00 0.00 | 76K 76K 76K .
— 76K 76K

Once we’re done, we can clean up the job store by running

’toil clean file:my-jobstore

7.6 Status Command

Continuing the example from the stats section above, if we ran our workflow with the command

’python discoverfiles.py file:my-jobstore --stats

We could interrogate our jobstore with the status command, for example:

’toil status file:my-Jjobstore

If the run was successful, this would not return much valuable information, something like

2018-01-11 19:31:29,739 - toil.lib.bioio - INFO - Root logger is at level 'INFO',
—'toil' logger at level 'INFO'.

2018-01-11 19:31:29,740 - toil.utils.toilStatus - INFO - Parsed arguments
2018-01-11 19:31:29,740 - toil.utils.toilStatus - INFO - Checking if we have files
—for Toil

The root job of the job store is absent, the workflow completed successfully.

Otherwise, the status command should return the following:

There are x unfinished jobs, y parent jobs with children, z jobs with services, a services, and b totally
failed jobs currently in c.

7.7 Clean Command

If a Toil pipeline didn’t finish successfully, or was run using ——clean=always or ——stats, the job store will exist
until it is deleted. toil clean <JjobStore> ensures that all artifacts associated with a job store are removed.
This is particularly useful for deleting AWS job stores, which reserves an SDB domain as well as an S3 bucket.

The deletion of the job store can be modified by the ——clean argument, and may be set to always, onError,
never, or onSuccess (default).

58 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.8.0

Temporary directories where jobs are running can also be saved from deletion using the ——cleanWorkDir, which
has the same options as ——clean. This option should only be run when debugging, as intermediate jobs will fill up
disk space.

7.8 Launch-Cluster Command

Running toil launch-cluster starts up a leader for a cluster. Workers can be added to the initial cluster by
specifying the —w option. An example would be

$ toil launch-cluster my-cluster \
—--leaderNodeType t2.small -z us-west-2a \
—-keyPairName your-AWS-key-pair-name \
--nodeTypes m3.large,t2.micro -w 1,4

Options are listed below. These can also be displayed by running

$ toil launch-cluster --help

launch-cluster’s main positional argument is the clusterName. This is simply the name of your cluster. If it does not
exist yet, Toil will create it for you.

Launch-Cluster Options
--help -h also accepted. Displays this help menu.

--tempDirRoot TEMPDIRROOT Path to the temporary directory where all temp files
are created, by default uses the current working directory as the base.

--version Display version.

--provisioner CLOUDPROVIDER -p CLOUDPROVIDER also accepted. The provi-
sioner for cluster auto-scaling. Both AWS and GCE are currently
supported.

--zone ZONE -z ZONE also accepted. The availability zone of the leader.
This parameter can also be set via the TOIL_AWS_ZONE
or TOIL_GCE_ZONE environment variables, or by the
ec2_region_name parameter in your .boto file if using AWS,
or derived from the instance metadata if using this utility on an
existing EC2 instance.

--leaderNodeType LEADERNODETYPE Non-preemptable node type to use for the
cluster leader.

--keyPairName KEYPAIRNAME The name of the AWS or ssh key pair to include on
the instance.

--owner OWNER The owner tag for all instances. If not given, the value in
TOIL_OWNER_TAG will be used, or else the value of —keyPair-
Name.

--boto BOTOPATH The path to the boto credentials directory. This is transferred to all
nodes in order to access the AWS jobStore from non-AWS instances.

--tag KEYVALUE KEYVALUE is specified as KEY=VALUE. -t KEY=VALUE also
accepted. Tags are added to the AWS cluster for this node and all of
its children. Tags are of the form: -t keyl=valuel —tag key2=value2.
Multiple tags are allowed and each tag needs its own flag. By default

7.8. Launch-Cluster Command 59

Toil Documentation, Release 5.8.0

the cluster is tagged with: { “Name”: clusterName, “Owner”: [AM
username }.

--vpcSubnet VPCSUBNET VPC subnet ID to launch cluster leader in. Uses default sub-
net if not specified. This subnet needs to have auto assign IPs turned
on.

--nodeTypes NODETYPES Comma-separated list of node types to create while launch-
ing the leader. The syntax for each node type depends on the pro-
visioner used. For the AWS provisioner this is the name of an EC2
instance type followed by a colon and the price in dollars to bid for a
spot instance, for example ‘c3.8xlarge:0.42’. Must also provide the
—workers argument to specify how many workers of each node type
to create.

--workers WORKERS -w WORKERS also accepted. Comma-separated list of the num-
ber of workers of each node type to launch alongside the leader when
the cluster is created. This can be useful if running toil without auto-
scaling but with need of more hardware support.

--leaderStorage LEADERSTORAGE Specify the size (in gigabytes) of the root volume
for the leader instance. This is an EBS volume.

--nodeStorage NODESTORAGE Specify the size (in gigabytes) of the root volume for
any worker instances created when using the -w flag. This is an EBS
volume.

--nodeStorageOverrides NODESTORAGEOVERRIDES Comma-separated list of
nodeType:nodeStorage that are used to override the default value
from —nodeStorage for the specified nodeType(s). This is useful for
heterogeneous jobs where some tasks require much more disk than

others.

Logging Options
--logOff Same as —logCritical.
--logCeritical Turn on logging at level CRITICAL and above. (default is INFO)
--logError Turn on logging at level ERROR and above. (default is INFO)
--logWarning Turn on logging at level WARNING and above. (default is INFO)
--logInfo Turn on logging at level INFO and above. (default is INFO)
--logDebug Turn on logging at level DEBUG and above. (default is INFO)

--loglevel LOGLEVEL Log at given level (may be either OFF (or CRITICAL), ERROR,
WARN (or WARNING), INFO or DEBUG). (default is INFO)

--logFile LOGFILE File to log in.

--rotatinglLogging = Turn on rotating logging, which prevents log files getting too big.

7.9 Ssh-Cluster Command

Toil provides the ability to ssh into the leader of the cluster. This can be done as follows:

’$ toil ssh-cluster CLUSTER-NAME-HERE

60 Chapter 7. Cloud Platforms

Toil Documentation, Release 5.8.0

This will open a shell on the Toil leader and is used to start an Running a Workflow with Autoscaling run. Issues with
docker prevent using screen and tmux when sshing the cluster (The shell doesn’t know that it is a TTY which
prevents it from allocating a new screen session). This can be worked around via

$ script
$ screen

Simply running screen within script will get things working properly again.

Finally, you can execute remote commands with the following syntax:

$ toil ssh-cluster CLUSTER-NAME-HERE remoteCommand

It is not advised that you run your Toil workflow using remote execution like this unless a tool like nohup is used to
ensure the process does not die if the SSH connection is interrupted.

For an example usage, see Running a Workflow with Autoscaling.

7.10 Rsync-Cluster Command

The most frequent use case for the rsync—cluster utility is deploying your Toil script to the Toil leader. Note that
the syntax is the same as traditional rsync with the exception of the hostname before the colon. This is not needed in
toil rsync-cluster since the hostname is automatically determined by Toil.

Here is an example of its usage:

$ toil rsync-cluster CLUSTER-NAME-HERE \
~/localFile :/remoteDestination

7.11 Destroy-Cluster Command

The destroy-cluster command is the advised way to get rid of any Toil cluster launched using the Launch-
Cluster Command command. It ensures that all attached nodes, volumes, security groups, etc. are deleted. If a node or
cluster is shut down using Amazon’s online portal residual resources may still be in use in the background. To delete
a cluster run

’$ toil destroy-cluster CLUSTER-NAME-HERE

7.12 Kill Command

To kill all currently running jobs for a given jobstore, use the command

’toil kill file:my-jobstore

7.10. Rsync-Cluster Command 61

https://linux.die.net/man/1/nohup
https://linux.die.net/man/1/rsync

Toil Documentation, Release 5.8.0

62 Chapter 7. Cloud Platforms

CHAPTER 8

HPC Environments

Toil is a flexible framework that can be leveraged in a variety of environments, including high-performance computing
(HPC) environments. Toil provides support for a number of batch systems, including Grid Engine, Slurm, Torque
and LSF, which are popular schedulers used in these environments. Toil also supports HTCondor, which is a popu-
lar scheduler for high-throughput computing (HTC). To use one of these batch systems specify the “—batchSystem”
argument to the toil script.

Due to the cost and complexity of maintaining support for these schedulers we currently consider them to be “com-
munity supported”, that is the core development team does not regularly test or develop support for these systems.
However, there are members of the Toil community currently deploying Toil in HPC environments and we welcome
external contributions.

Developing the support of a new or existing batch system involves extending the abstract batch system class toil.
batchSystems.abstractBatchSystem.AbstractBatchSystem.

8.1 Standard Output/Error from Batch System Jobs

Standard output and error from batch system jobs (except for the Parasol and Mesos batch systems) are redirected to
files in the toil-<workflowID> directory created within the temporary directory specified by the ——workDir
option; see Commandline Options. Each file is named as follows: toil_job_<Toil job ID>_batch_<name
of batch system>_<Jjob ID from batch system>_<file description>.log, where <file
description> is std_output for standard output, and std_error for standard error. HTCondor will also
write job event log files with <file description> = Jjob_events.

If capturing standard output and error is desired, ——workDir will generally need to be on a shared file system;
otherwise if these are written to local temporary directories on each node (e.g. /tmp) Toil will not be able to retrieve
them. Alternatively, the ——noStdOutErr option forces Toil to discard all standard output and error from batch
system jobs.

63

http://www.univa.com/oracle
https://www.schedmd.com/
http://www.adaptivecomputing.com/products/open-source/torque/
https://en.wikipedia.org/wiki/Platform_LSF
https://research.cs.wisc.edu/htcondor/

Toil Documentation, Release 5.8.0

64 Chapter 8. HPC Environments

CHAPTER 9

CWL in Toil

The Common Workflow Language (CWL) is an emerging standard for writing workflows that are portable across
multiple workflow engines and platforms. Toil has full support for the CWL v1.0, v1.1, and v1.2 standards.

9.1 Running CWL Locally

The toil-cwl-runner command provides cwl-parsing functionality using cwltool, and leverages the job-scheduling and
batch system support of Toil.

To run in local batch mode, provide the CWL file and the input object file:

$ toil-cwl-runner example.cwl example-job.yml

For a simple example of CWL with Toil see Running a basic CWL workflow.

9.1.1 Note for macOS + Docker + Toil

When invoking CWL documents that make use of Docker containers if you see errors that look like

docker: Error response from daemon: Mounts denied:
The paths /var/...tmp are not shared from OS X and are not known to Docker.

you may need to add

’export TMPDIR=/tmp/docker_tmp

either in your startup file (. bashrc) or add it manually in your shell before invoking toil.

9.2 Detailed Usage Instructions

Help information can be found by using this toil command:

65

Toil Documentation, Release 5.8.0

$ toil-cwl-runner -h

A more detailed example shows how we can specify both Toil and cwltool arguments for our workflow:

$ toil-cwl-runner \
—--singularity \
—--jobStore my_jobStore \
—-batchSystem 1lsf \
——workDir “pwd® \
——outdir “pwd’ \
—-logFile cwltoil.log \
-—writeLogs “pwd® \
--logLevel DEBUG \
—--retryCount 2 \
——maxLogFileSize 20000000000 \
--stats \
standard_bam_processing.cwl \
inputs.yaml

In this example, we set the following options, which are all passed to Toil:

-—singularity: Specifies that all jobs with Docker format containers specified should be run using the Singularity
container engine instead of the Docker container engine.

—-—jobStore: Path to a folder which doesn’t exist yet, which will contain the Toil jobstore and all related job-tracking
information.

——batchSystem: Use the specified HPC or Cloud-based cluster platform.

-—workDir: The directory where all temporary files will be created for the workflow. A subdirectory of this will be
set as the $TMPD IR environment variable and this subdirectory can be referenced using the CWL parameter reference
$ (runtime.tmpdir) in CWL tools and workflows.

——outdir: Directory where final File and Directory outputs will be written. References to these and other
output types will be in the JSON object printed to the stdout stream after workflow execution.

——logFile: Path to the main logfile with logs from all jobs.
--writeLogs: Directory where all job logs will be stored.
——retryCount: How many times to retry each Toil job.
--maxLogFileSize: Logs that get larger than this value will be truncated.

—-—stats: Save resources usages in json files that can be collected with the toil stats command after the
workflow is done.

-—disable-streaming: Does not allow streaming of input files. This is enabled by default for files marked with
streamable flag True and only for remote files when the jobStore is not on local machine.

9.3 Running CWL in the Cloud

To run in cloud and HPC configurations, you may need to provide additional command line parameters to select and
configure the batch system to use.

To run a CWL workflow in AWS with toil see Running a CWL Workflow on AWS.

66 Chapter 9. CWL in Toil

Toil Documentation, Release 5.8.0

9.4 Running CWL within Toil Scripts

A CWL workflow can be run indirectly in a native Toil script. However, this is not the standard way to run CWL
workflows with Toil and doing so comes at the cost of job efficiency. For some use cases, such as running one process
on multiple files, it may be useful. For example, if you want to run a CWL workflow with 3 YML files specifying
different samples inputs, it could look something like:

import os
import subprocess

from toil.common import Toil
from toil. job import Job

def initialize_jobs (job):
job.fileStore.logToMaster ('initialize_jobs'")

def runQC(job, cwl_file, cwl_filename, yml_file, yml_filename, outputs_dir, output_
—num) :

job.fileStore.logToMaster ("runQC")

tempDir = job.fileStore.getLocalTempDir ()

cwl = job.fileStore.readGlobalFile(cwl_file, userPath=os.path.join(tempDir, cwl_
—~filename))

yml = job.fileStore.readGlobalFile(yml_file, userPath=os.path.join(tempDir, yml_
—filename))

subprocess.check_call(["toil-cwl-runner", cwl, yml])

output_filename = "output.txt"

output_file = job.fileStore.writeGlobalFile (output_filename)

job.fileStore.readGlobalFile (output_file, userPath=os.path.join (outputs_dir,
—"sample_" + output_num + "_" + output_filename))

return output_file

if name_ == "_ main_ ":

options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")
options.logLevel = "INEO"

options.clean = "always"

with Toil (options) as toil:

specify the folder where the cwl and yml files live

inputs_dir = os.path.join(os.path.dirname (os.path.abspath(file)),
—"cwlExampleFiles")

specify where you wish the outputs to be written

outputs_dir = os.path.join(os.path.dirname (os.path.abspath(file)),
—"cwlExampleFiles")

job0 = Job.wrapJobFn(initialize_jobs)
cwl_filename = "hello.cwl"
cwl_file = toil.importFile("file://" + os.path.abspath(os.path.join (inputs_

—~dir, cwl_filename)))

add 1list of yml config inputs here or import and construct from file

(continues on next page)

9.4. Running CWL within Toil Scripts 67

Toil Documentation, Release 5.8.0

(continued from previous page)

yml_files = ["hellol.yml", "hello2.yml", "hello3.yml"]
i=20
for yml in yml_files:

i=1+1

yml_file = toil.importFile("file://" + os.path.abspath(os.path.
—Jjoin (inputs_dir, yml)))

yml_filename = yml

job = Job.wrapJobFn (runQC, cwl_file, cwl_filename, yml_file, yml_filename,
— outputs_dir, output_num=str(i))

job0.addChild (job)

toil.start (jobO0)

9.5 Running CWL workflows with InplaceUpdateRequirement

Some CWL workflows use the InplaceUpdateRequirement feature, which requires that operations on files
have visible side effects that Toil’s file store cannot support. If you need to run a workflow like this, you can
make sure that all of your worker nodes have a shared filesystem, and use the ——bypass—-file—store option
to toil-cwl-runner. This will make it leave all CWL intermediate files on disk and share them between jobs
using file paths, instead of storing them in the file store and downloading them when jobs need them.

9.6 Toil & CWL Tips

See logs for just one job by using the full log file

This requires knowing the job’s toil-generated ID, which can be found in the log files.

cat cwltoil.log | grep jobVM1lfIs

Grep for full tool commands from toil logs

This gives you a more concise view of the commands being run (note that this information is only available from Toil
when running with —logDebug).

pcregrep -M "\[job .*\.cwl.*S$\n(.x* .+$\n) «" cwltoil.log
“allows for multiline matching

Find Bams that have been generated for specific step while pipeline is running:

’find . | grep -P '""./out_tmpdir.x_MD\.bam$'

See what jobs have been run

’cat log/cwltoil.log | grep —-oP "\[job .x.cwl\]" | sort | uniqg

or:

’cat log/cwltoil.log | grep —-i "issued job"

Get status of a workflow

68 Chapter 9. CWL in Toil

Toil Documentation, Release 5.8.0

$ toil status /home/johnsoni/TEST_RUNS_3/TEST_run/tmp/jobstore-09aelacc-c800-11e8~-
—9d09-70106fb1697e

<hostname> 2018-10-04 15:01:44,184 MainThread INFO toil.lib.bioio: Root logger is at_,
—~level 'INFO', 'toil' logger at level 'INFO'.

<hostname> 2018-10-04 15:01:44,185 MainThread INFO toil.utils.toilStatus: Parsed
—arguments

<hostname> 2018-10-04 15:01:47,081 MainThread INFO toil.utils.toilStatus: Traversing,
—the job graph gathering jobs. This may take a couple of minutes.

Of the 286 Jjobs considered, there are 179 jobs with children, 107 jobs ready to run,
—0 zombie Jjobs, 0 jobs with services, 0 services, and 0 jobs with log files,
—currently in file:/home/user/jobstore-09aelacc-c800-11e8-9d09-70106fbl697e.

Toil Stats

You can get run statistics broken down by CWL file. This only works once the workflow is finished:

$ toil stats /path/to/jobstore

The output will contain CPU, memory, and walltime information for all CWL job types:

<hostname> 2018-10-15 12:06:19,003 MainThread INFO toil.lib.bioio: Root logger is at_,
—level '"INFO', 'toil' logger at level '"INFO'.

<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Parsed,
—arguments

<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Checking if |
—we have files for toil

<hostname> 2018-10-15 12:06:19,004 MainThread INFO toil.utils.toilStats: Checked
—arguments

Batch System: 1lsf

Default Cores: 1 Default Memory: 10485760K

Max Cores: 9.22337e+18

Total Clock: 106608.01 Total Runtime: 86634.11

Worker

Count Timex* o
— Clock | Wait | o
PN Memory

n | min med* ave max total | min med ave
N max total | min med ave max total | min o
—med ave max total
1659 | 0.00 0.80 264.87 12595.59 439424.40 | 0.00 0.46 449.05_,
—42240.74 744968.80 | -35336.69 0.16 -184.17 4230.65 -305544.39 48K |
— 223K 1020K 40235K 1692300K
Job
Worker Jobs | min med ave max
| 1077 1077 1077 1077

Count | Timex | o
. Clock | Wait | o
— Memory

n | min med* ave max total | min med ave
— max total | min med ave max total | min o
—med ave max total
1077 | 0.04 1.18 407.06 12593.43 438404.73 | 0.01 0.28 691.17_,

—42240.35 744394.14 | -35336.83 0.27 -284.11 4230.49 -305989.41 | 135K |
— 268K 1633K 40235K 1759734K
ResolveIndirect

Count | Timex | o
AN Clock | Wait | o
[Memory (continues on next page)

9.6. Toil & CWL Tips 69

Toil Documentation, Release 5.8.0

(continued from previous page)

n | min med*
— max total | min
—med ave max total
205 | 0.04 0.07
— 0.14 3.60 | 0.02
266K 256K 314K 52487K
CWLGather
Count |
o Clock |
— Memory
n | min med~*
[max total | min
—med ave max total
40 | 0.05 0.17
— 0.05 0.80 | 0.03
— 265K 250K 316K 10039K
CWLWorkflow
Count |
[Clock |
. Memory
n | min medx*
o max total | min
—med ave max total
205 | 0.09 0.40
-~ 1.08 31.78 | 0.04
270K 257K 316K 52826K

0.

0.

ave
med

max

ave
med

max

29 1.90

ave
med

max

98 13.70
0.26

0

ave

.27

ave

2
.82

total |
max
31.95 |
2.28
Timex |
total
max
11.62 |
1.88
Timex |
total |
max
00.82 |
12.62

0

0

0

min
t

.01
2

min
t

.01
1

min
t

.04
16

med ave
otal | min o

0.02 0.02
8.35 | 190K o
Wait | o

med ave
otal | min o

0.02 0.02
0.82 | 188K o
Wait | o

med ave |
otal | min o

0.15 0.16
9.04 | 190K

file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/

—group_waltz_files.cwl

Count |

[Clock |

s Memory
n | min med~*

N max total | min

—med ave max total
99 | 0.29 0.49

- 1.04 28.95 | 0.14

— 135K 135K 136K 13459K

0.

ave
med

max

59 2.
0.22

50

0.

ave

29

Timex

total

58.11

1.

max

\
48

0

min
t

.14
2

Wait | o
med ave
otal | min o
0.26 0.29
9.16 | 135K

[

file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/

—make_sample_output_dirs.cwl

Count |

N Clock |

s Memory
n | min medx*

— max total | min

—med ave max total
11 | 0.34 0.52

- 1.17 4.54 | 0.14

— 136K 136K 136K 1496K

ave
med

max

Timex

min
t

.20

Wait | o
med ave |
otal | min o
0.30 0.41
3.65 | 136K

[

file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/expression_tools/

—consolidate_files.cwl

Count | Timex | o

— Clock | Wait | o
s Memory

n | min med* ave max total | min med ave
[max total | min med ave max total | min o
—med ave max total

8 | 0.31 0.59 0.71 1.80 5.69 | 0.18 0.35 0.37
< 0.63 2.94 | 0.13 0.27 0.34 1.17 2 .75 | (continugsieiknext page)
136K 136K 136K 1091K
70 Chapter 9. CWL in Toil

Toil Documentation, Release 5.8.0

(continued from previous page)

file:///home/johnsoni/pipeline_0.0.39/ACCESS-Pipeline/cwl_tools/bwa-mem/bwa-mem.cwl

Count | Timex | o
N Clock | Wait | o
s Memory
n | min med* ave max total | min med ave
[N max total | min med ave max total | min o
—med ave max total
22 | 895.76 3098.13 3587.34 12593.43 78921.51 | 2127.02 7910.31 8123.06_,
—16959.13 178707.34 | -11049.84 -3827.96 —-4535.72 19.49 -99785.83 | 5659K

—~5950K 5854K 6128K 128807K

Understanding toil log files

There is a worker_log.txt file for each job, this file is written to while the job is running, and deleted after the job
finishes. The contents are printed to the main log file and transferred to a log file in the —logDir folder once the job is
completed successfully.

The new log file will be named something like:

file:<path to cwl tool>.cwl_<job ID>.log

file:——-home-johnsoni-pipeline_1.1.14-ACCESS--Pipeline-cwl_tools-marianas-
—ProcessLoopUMIFastg.cwl_I-0O-JobfGsQQw000.log

This is the toil job command with spaces replaced by dashes.

9.6. Toil & CWL Tips 71

Toil Documentation, Release 5.8.0

72 Chapter 9. CWL in Toil

cHAaPTER 10

WDL in Toll

Support is still in the alpha phase and should be able to handle basic wdl files. See the specification below for more
details.

10.1 How to Run a WDL file in Toil

Recommended best practice when running wdl files is to first use the Broad’s wdltool for syntax validation and gener-
ating the needed json input file. Full documentation can be found on the repository, and a precompiled jar binary can
be downloaded here: wdltool (this requires java7).

That means two steps. First, make sure your wdl file is valid and devoid of syntax errors by running
java —-Jjar wdltool.jar validate example_wdlfile.wdl

Second, generate a complementary json file if your wdl file needs one. This json will contain keys for every necessary
input that your wdl file needs to run:

java —jar wdltool.jar inputs example_wdlfile.wdl

When this json template is generated, open the file, and fill in values as necessary by hand. WDL files all require json
files to accompany them. If no variable inputs are needed, a json file containing only ‘{}’ may be required.

Once a wdl file is validated and has an appropriate json file, workflows can be run in toil using:
toil-wdl-runner example_wdlfile.wdl example_jsonfile. json

See options below for more parameters.

10.2 ENCODE Example from ENCODE-DCC

To follow this example, you will need docker installed. The original workflow can be found here: https://github.com/
ENCODE-DCC/pipeline-container

73

https://github.com/broadinstitute/wdltool
https://github.com/broadinstitute/wdltool/releases
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
https://github.com/ENCODE-DCC/pipeline-container
https://github.com/ENCODE-DCC/pipeline-container

Toil Documentation, Release 5.8.0

We’ve included the wdl file and data files in the toil repository needed to run this example. First, download the example
code and unzip. The file needed is “testENCODE/encode_mapping_workflow.wdl”.

Next, use wdltool (this requires java7) to validate this file:

java —jar wdltool.jar validate encode_mapping workflow.wdl
Next, use wdltool to generate a json file for this wdl file:

java —jar wdltool.jar inputs encode_mapping_workflow.wdl

This json file once opened should look like this:

{

"encode_mapping_workflow.fastgs": "Array[File]",
"encode_mapping_workflow.trimming_parameter": "String",
"encode_mapping_workflow.reference": "File"

}

The trimming_parameter should be set to ‘native’. Download the example code and unzip. Inside are two data files
required for the run

ENCODE_data/reference/GRCh38_chr2l_bwa.tar.gz ENCODE_data/ENCFF000VOL_chr21.
fg.gz

Editing the json to include these as inputs, the json should now look something like this:

{

"encode_mapping_workflow.fastgs": ["/path/to/unzipped/ENCODE_data/ENCFF000VOL_chr2l.
—fg.gz"],

"encode_mapping_workflow.trimming_parameter": "native",
"encode_mapping_workflow.reference": "/path/to/unzipped/ENCODE_data/reference/GRCh38_

—chr2l_bwa.tar.gz"

}

The wdl and json files can now be run using the command
toil-wdl-runner encode_mapping_workflow.wdl encode_mapping_workflow. json

This should deposit the output files in the user’s current working directory (to change this, specify a new directory
with the ‘-0’ option).

10.3 GATK Examples from the Broad

Simple examples of WDL can be found on the Broad’s website as tutorials: https://software.broadinstitute.org/wdl/
documentation/topic’7name=wdl-tutorials.

One can follow along with these tutorials, write their own wdl files following the directions and run them using either
cromwell or toil. For example, in tutorial 1, if you’ve followed along and named your wdl file ‘helloHaplotype-
Call.wdl’, then once you’ve validated your wdl file using wdltool (this requires java7) using

java —-Jjar wdltool.jar validate helloHaplotypeCaller.wdl
and generated a json file (and subsequently typed in appropriate filepaths* and variables) using
java —jar wdltool.jar inputs helloHaplotypeCaller.wdl
* Absolute filepath inputs are recommended for local testing.
then the wdl script can be run using

toil-wdl-runner helloHaplotypeCaller.wdl helloHaplotypeCaller_ inputs.json

74 Chapter 10. WDL in Toil

http://toil-datasets.s3.amazonaws.com/ENCODE_data.zip
https://github.com/broadinstitute/wdltool/releases
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html
http://toil-datasets.s3.amazonaws.com/ENCODE_data.zip
https://software.broadinstitute.org/wdl/documentation/topic?name=wdl-tutorials
https://software.broadinstitute.org/wdl/documentation/topic?name=wdl-tutorials
https://github.com/broadinstitute/wdltool/releases
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html

Toil Documentation, Release 5.8.0

10.4 toilwdl.py Options

‘-0’ or ‘—outdir’: Specifies the output folder, and defaults to the current working directory if not specified by the user.

‘~dev_mode’: Creates “AST.out”, which holds a printed AST of the wdl file and “mappings.out”, which holds the
printed task, workflow, csv, and tsv dictionaries generated by the parser. Also saves the compiled toil python workflow
file for debugging.

Any number of arbitrary options may also be specified. These options will not be parsed immediately, but passed
down as toil options once the wdl/json files are processed. For valid toil options, see the documentation: http://toil.
readthedocs.io/en/latest/running/cliOptions.html

10.5 Running WDL within Toil Scripts

Note: A cromwell.jar file is needed in order to run a WDL workflow.

A WDL workflow can be run indirectly in a native Toil script. However, this is not the standard way to run WDL
workflows with Toil and doing so comes at the cost of job efficiency. For some use cases, such as running one process
on multiple files, it may be useful. For example, if you want to run a WDL workflow with 3 JSON files specifying
different samples inputs, it could look something like:

import os
import subprocess

from toil.common import Toil
from toil. job import Job

def initialize_jobs (job):
job.fileStore.logToMaster ("initialize_ jobs")

def runQC(job, wdl_file, wdl_filename, json_file, json_filename, outputs_dir, jar_loc,
—output_num) :

job.fileStore.logToMaster ("runQC")

tempDir = job.fileStore.getLocalTempDir ()

wdl = Jjob.fileStore.readGlobalFile(wdl_file, userPath=os.path.join (tempDir, wdl_
—filename))

json = job.fileStore.readGlobalFile (json_file, userPath=os.path.join(tempDir,
—Jjson_filename))

subprocess.check_call (["java","-jar", jar_loc, "run",wdl, "-—inputs", json])

output_filename = "output.txt"

output_file = job.fileStore.writeGlobalFile (outputs_dir + output_filename)

job.fileStore.readGlobalFile (output_file, userPath=os.path.join (outputs_dir,
—"sample_ " + output_num + "_" + output_filename))

return output_file

if name == "_ _main_ ":

options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")

(continues on next page)

10.4. toilwdl.py Options 75

http://toil.readthedocs.io/en/latest/running/cliOptions.html
http://toil.readthedocs.io/en/latest/running/cliOptions.html

Toil Documentation, Release 5.8.0

(continued from previous page)

options.logLevel = "INEO"
options.clean = "always"

with Toil (options) as toil:

specify the folder where the wdl and json files live

inputs_dir = "wdlExampleFiles/"
specify where you wish the outputs to be written
outputs_dir = "wdlExampleFiles/"

specify the location of your cromwell jar
jJar_loc = os.path.abspath ("wdlExampleFiles/cromwell-35.jar")

job0 = Job.wrapJobFn (initialize_jobs)
wdl_filename = "hello.wdl"

wdl_file = toil.importFile("file://" + os.path.abspath(os.path. join (inputs_
—dir, wdl_filename)))

add list of yml config inputs here or import and construct from file

json_files = ["hellol.json", "hello2.json", "hello3.json"]
i=20
for json in Jjson_files:
i=1+1
json_file = toil.importFile("file://" + os.path.Jjoin (inputs_dir, json))
json_filename = Jjson
job = Job.wrapJobFn (runQC, wdl_file, wdl_filename, json_file, json_

—filename, outputs_dir, jar_loc, output_num=str(i))
job0.addChild (job)

toil.start (job0)

10.6 WDL Specifications

WDL language specifications can be found here: https://github.com/broadinstitute/wdl/blob/develop/SPEC.md
Implementing support for more features is currently underway, but a basic roadmap so far is:
CURRENTLY IMPLEMENTED:

* Scatter

* Many Built-In Functions

Docker Calls

* Handles Priority, and Output File Wrangling
* Currently Handles Primitives and Arrays
TO BE IMPLEMENTED:
* Integrate Cloud Autoscaling Capacity More Robustly
e WDL Files That “Import” Other WDL Files (Including URI Handling for ‘http://> and ‘https://*)

76 Chapter 10. WDL in Toil

https://github.com/broadinstitute/wdl/blob/develop/SPEC.md
http://
https://

cHAPTER 11

Workflow Execution Service (WES)

The GA4GH Workflow Execution Service (WES) is a standardized API for submitting and monitoring workflows.
Toil has experimental support for setting up a WES server and executing CWL, WDL, and Toil workflows using the
WES API. More information about the WES API specification can be found here.

To get started with the Toil WES server, make sure that the server extra (Installing Toil with Extra Features) is
installed.

11.1 Preparing your WES environment

The WES server requires Celery to distribute and execute workflows. To set up Celery:

1. Start RabbitMQ, which is the broker between the WES server and Celery workers:

’docker run -d —-name wes-rabbitmg -p 5672:5672 rabbitmg:3.9.5

2. Start Celery workers:

celery —-A toil.server.celery_app worker --loglevel=INFO

11.2 Starting a WES server

To start a WES server on the default port 8080, run the Toil command:

’$ toil server

The WES API will be hosted on the following URL:

’http://localhost:8080/ga4gh/wes/v1

To use another port, e.g.: 3000, you can specify the ——port argument:

77

https://ga4gh.github.io/workflow-execution-service-schemas/docs/
https://docs.celeryproject.org/en/stable/getting-started/introduction.html

Toil Documentation, Release 5.8.0

’$ toil server —--port 3000 ‘

There are many other command line options. Help information can be found by using this command:

’$ toil server --help ‘

Below is a detailed summary of all server-specific options:

--debug Enable debug mode.

--bypass_celery Skip sending workflows to Celery and just run them under the server. For testing.
--host HOST The host interface that the Toil server binds on. (default: “127.0.0.1).

--port PORT The port that the Toil server listens on. (default: 8080).

--swagger_ui If True, the swagger UI will be enabled and hosted on the {api_base_pathj}/ui

endpoint. (default: False)

--Ccors Enable Cross Origin Resource Sharing (CORS). This should only be turned on if
the server is intended to be used by a website or domain. (default: False).

--cors_origins CORS_ORIGIN Ignored if -//-cors is False. This sets the allowed origins for CORS.
For details about CORS and its security risks, see the GA4GH docs on CORS.
(default: “*”).

--workers WORKERS, -w WORKERS Ignored if —debug is True. The number of worker processes
launched by the WSGI server. (default: 2).

--work_dir WORK_DIR The directory where workflows should be stored. This directory should be
empty or only contain previous workflows. (default: ‘./workflows’).

--state_store STATE_STORE The local path or S3 URL where workflow state metadata should be
stored. (default: in —work_dir)

--opt OPT, -0 OPT Specify the default parameters to be sent to the workflow engine for each run.
Options taking arguments must use = syntax. Accepts multiple values. Example:
—opt=—logLevel=CRITICAL —opt=—workDir=/tmp.

--dest_bucket_base DEST_BUCKET_BASE Direct CWL workflows to save output files to dynami-
cally generated unique paths under the given URL. Supports AWS S3.

--wes_dialect DIALECT Restrict WES responses to a dialect compatible with clients that do not fully
implement the WES standard. (default: ‘standard’)

11.3 Running the Server with docker-compose

Instead of manually setting up the server components (toil server, RabbitMQ, and Celery), you can use the
following docker-compose . yml file to orchestrate and link them together.

Make sure to change the credentials for basic authentication by updating the traefik.http.middlewares.
auth.basicauth.users label. The passwords can be generated with tools like htpasswd like this. (Note that
single $ signs need to be replaced with $$ in the yaml file).

When running on a different host other than 1ocalhost, make sure to change the Host to your tartget host in the
traefik.http.routers.wes.ruleand traefik.http.routers.wespublic.rule labels.

You can also change /tmp/toil-workflows if you want Toil workflows to live somewhere else, and create the
directory before starting the server.

78 Chapter 11. Workflow Execution Service (WES)

https://w3id.org/ga4gh/product-approval-support/cors
https://doc.traefik.io/traefik/v2.0/middlewares/basicauth/#configuration-examples

Toil Documentation, Release 5.8.0

In order to run workflows that require Docker, the docker . sock socket must be mounted as volume for Celery. Ad-
ditionally, the TOIL_WORKDIR directory (defaults to: /var/lib/toil) and /var/lib/cwl (if running CWL
workflows with DockerRequirement) should exist on the host and also be mounted as volumes.

Also make sure to run it behind a firewall; it opens up the Toil server on port 8080 to anyone who connects.

docker—compose.yml
version: "3.8"

services:
rabbitmqg:
image: rabbitmg:3.9.5
hostname: rabbitmg
celery:
image: ${TOIL_APPLIANCE_SELF}
volumes:
- /var/run/docker.sock:/var/run/docker.sock
- /var/lib/docker:/var/lib/docker
- /var/lib/toil:/var/lib/toil
- /var/lib/cwl:/var/lib/cwl
- /tmp/toil-workflows:/tmp/toil-workflows
command: celery —--broker=amgp://guest:guest@rabbitmq:5672// —-A toil.server.celery_
—app worker —--loglevel=INFO
depends_on:
- rabbitmg
wes-server:
image: ${TOIL_APPLIANCE_SELF}
volumes:
- /tmp/toil-workflows:/tmp/toil-workflows
environment:
— TOIL_WES_BROKER_URL=amgp://guest:guest@rabbitmg:5672//
command: toil server --host 0.0.0.0 —--port 8000 —--work_dir /tmp/toil-workflows
expose:
- 8000
labels:
- "traefik.enable=true"
- "traefik.http.routers.wes.rule=Host (' localhost)"
- "traefik.http.routers.wes.entrypoints=web"
- "traefik.http.routers.wes.middlewares=auth"
— "traefik.http.middlewares.auth.basicauth.users=test:$$2y$$12SSci.
—4U63YX83CwkyUr jgxAucnmi2xXOI1EF6T/KAP9824f1Rf1iyNG"
- "traefik.http.routers.wespublic.rule=Host (" localhost’) && Path (' /gadgh/wes/vl/
—service—-info)"
depends_on:
- rabbitmg
- celery
traefik:
image: traefik:v2.2
command:
- "——providers.docker"
- "——providers.docker.exposedbydefault=false"
- "——entrypoints.web.address=:8080"
ports:
- "8080:8080"
volumes:
- /var/run/docker.sock:/var/run/docker.sock

Further customization can also be made as needed. For example, if you have a domain, you can set up HTTPS with
Let’s Encrypt.

11.3. Running the Server with docker-compose 79

https://doc.traefik.io/traefik/user-guides/docker-compose/acme-http/
https://doc.traefik.io/traefik/user-guides/docker-compose/acme-http/

Toil Documentation, Release 5.8.0

Once everything is configured, simply run docker—compose up to start the containers. Run docker-compose
down to stop and remove all containers.

Note: docker-compose is not installed on the Toil appliance by default. See the following section to set up the
WES server on a Toil cluster.

11.4 Running on a Toil cluster

To run the server on a Toil leader instance on EC2:
1. Launch a Toil cluster with the toil launch-cluster command with the AWS provisioner
2. SSH into your cluster with the ~——sshOption=-L8080:1localhost :8080 option to forward port 8080

3. Install Docker Compose by running the following commands from the Docker docs:

curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker—
—compose~-$ (uname —s)-$ (uname -m)" -o /usr/local/bin/docker—-compose
chmod +x /usr/local/bin/docker-compose

check installation
docker—-compose —-version

or, install a different version of Docker Compose by changing "1.29.2" to another version.

4. Copy the docker—compose . yml file from (Running the Server with docker-compose) to an empty directory,
and modify the configuration as needed.

5. Now, run docker-compose up -d to start the WES server in detach mode on the Toil appliance.

6. To stop the server, run docker—-compose down.

11.5 WES API Endpoints

As defined by the GA4GH WES API specification, the following endpoints with base path ga4dgh/wes/v1/ are
supported by Toil:

GET /service-info Get information about the Workflow Execution Service.

GET /runs List the workflow runs.

POST /runs Run a workflow. This endpoint creates a new workflow run and returns a run_id to
monitor its progress.

GET /runs/{run_id} Get detailed info about a workflow run.

POST Cancel a running workflow.

/runs/{run_id}/cancel

GET Get the status (overall state) of a workflow run.

/runs/{run_id}/status

When running the WES server with the docker-compose setup above, most endpoints (except GET /
service-info) will be protected with basic authentication. Make sure to set the Authorization header with the
correct credentials when submitting or retrieving a workflow.

80 Chapter 11. Workflow Execution Service (WES)

https://docs.docker.com/compose/install/#install-compose

Toil Documentation, Release 5.8.0

11.6 Submitting a Workflow

Now that the WES API is up and running, we can submit and monitor workflows remotely using the WES API
endpoints. A workflow can be submitted for execution using the POST /runs endpoint.

As a quick example, we can submit the example CWL workflow from Running a basic CWL workflow to our WES
API:

example.cwl
cwlVersion: v1.0
class: CommandLineTool
baseCommand: echo
stdout: output.txt
inputs:
message:
type: string
inputBinding:
position: 1
outputs:
output:
type: stdout

using cURL.:

$ curl --location --request POST 'http://localhost:8080/gad4dgh/wes/v1/runs' \
--user test:test \

——form 'workflow_url="example.cwl"' \

——form 'workflow_type="cwl"' \

——form 'workflow_type_version="v1.0"' \

——form 'workflow_params="{\"message\": \"Hello world!\"}"' \

——form 'workflow_attachment=@"./toil_test_files/example.cwl"'

"run_id": "4deb8beb24894e9eb7c74b0£010305d1"

Note that the ——user argument is used to attach the basic authentication credentials along with the request. Make
sure to change test :test to the username and password you configured for your WES server. Alternatively, you
can also set the Authorization header manually as "Authorization: Basic base64_encoded_auth".

If the workflow is submitted successfully, a JSON object containing a run_id will be returned. The run_id is a
unique identifier of your requested workflow, which can be used to monitor or cancel the run.

There are a few required parameters that have to be set for all workflow submissions, which are the following:

workflow_url The URL of the workflow to run. This can refer to a file from workflow_attachment.
work- The type of workflow language. Toil currently supports one of the following: "CWL", "WDL",
flow_type or "py". To run a Toil native python script, set this to "py".

work- The version of the workflow language. Supported versions can be found by accessing the GET
flow_type_versipn/ service-info endpoint of your WES server.

work- A JSON object that specifies the inputs of the workflow.

flow_params

Additionally, the following optional parameters are also available:

11.6. Submitting a Workflow 81

Toil Documentation, Release 5.8.0

work- A list of files associated with the workflow run.

flow_attachment

work- A JSON key-value map of workflow engine parameters to send to the runner.
flow_engine_paramelexample: {"--logLevel": "INFO", "--workDir": "/tmp/"}
tags A JSON key-value map of metadata associated with the workflow.

For more details about these parameters, refer to the Run Workflow section in the WES API spec.

11.6.1 Upload multiple files
Looking at the body of the request of the previous example, note that the workflow_url is a relative URL that
refers to the example . cwl file uploaded from the local path . /toil_test_files/example.cwl.

To specify the file name (or subdirectory) of the remote destination file, set the filename field in
the Content-Disposition header. You could also upload more than one file by providing the
workflow_attachment parameter multiple times with different files.

This can be shown by the following example:

$ curl --location —--request POST 'http://localhost:8080/gad4dgh/wes/v1/runs' \
——user test:test \
—-—form 'workflow_url="example.cwl"' \
——form 'workflow_type="cwl"' \

——form 'workflow_type_version="v1.0"' \
——form 'workflow_params="{\"message\": \"Hello world!\"}"' \
——form 'workflow_attachment=@"./toil_ test_files/example.cwl"' \

——form 'workflow_attachment=@"./toil_test_files/2.fasta";filename=inputs/test.
—fasta' \

——form 'workflow_attachment=Q@"./toil_test_files/2.fastq";filename=inputs/test.
—fastqg'

On the server, the execution directory would have the following structure from the above request:

execution/
example.cwl
inputs
|: test.fasta
| test.fastqg

— wes_inputs. json

11.6.2 Specify Toil options
To pass Toil-specific parameters to the workflow, you can include the workflow_engine_parameters parame-
ter along with your request.

For example, to set the logging level to INFO, and change the working directory of the workflow, simply include the
following as workflow_engine_parameters:

{"--logLevel": "INFO", "--workDir": "/tmp/"}

These options would be appended at the end of existing parameters during command construction, which would
override the default parameters if provided. (Default parameters that can be passed multiple times would not be
overridden).

82 Chapter 11. Workflow Execution Service (WES)

https://ga4gh.github.io/workflow-execution-service-schemas/docs/#operation/RunWorkflow

Toil Documentation, Release 5.8.0

11.7 Monitoring a Workflow

With the run_ id returned when submitting the workflow, we can check the status or get the full logs of the workflow
run.

11.7.1 Checking the state

The GET /runs/{run_id}/status endpoint can be used to get a simple result with the overall state of your
run:

$ curl --user test:test http://localhost:8080/gadgh/wes/vl/runs/
—4deb8beb24894e9eb7c74b0£010305d1/status
{

"run_id": "4deb8beb24894e9eb7c74b0£010305d1",

"state": "RUNNING"

The possible states here are: QUEUED, INITIALIZING, RUNNING, COMPLETE, EXECUTOR_ERROR,
SYSTEM_ERROR, CANCELING, and CANCELED.

11.7.2 Getting the full logs

To get the detailed information about a workflow run, use the GET /runs/{run_id} endpoint:

$ curl --user test:test http://localhost:8080/gadgh/wes/v1/runs/
—4deb8beb24894e9eb7c74b0£f010305d1
{
"run_id": "4deb8beb24894e9eb7c74b0f010305d1",
"request": {
"workflow_attachment": [
"example.cwl"

]l

"workflow_url": "example.cwl",
"workflow_type": "cwl",
"workflow_type_version": "v1.0",
"workflow_params": {
"message": "Hello world!"

}

}I

"state": "RUNNING",

"run_log": {
"emd": [

"toil-cwl-runner —--outdir=/home/toil/workflows/4deb8beb24894e9eb7c74b0£010305d1/
—outputs —--jobStore=file:/home/toil/workflows/4deb8beb24894e9eb7c74b0£010305d1/toil__
—Jjob_store /home/toil/workflows/4deb8beb24894e9eb7c74b0£f010305d1l/execution/example.
—cwl /home/workflows/4deb8beb24894e9eb7c74b0£f010305d1l/execution/wes_inputs. json"

]I
"start_time": "2021-08-30T17:35:50z",
"end_time": null,
"stdout": null,
"stderr": null,
"exit_code": null
}I
"task_logs": [],

(continues on next page)

11.7. Monitoring a Workflow 83

Toil Documentation, Release 5.8.0

(continued from previous page)

"outputs": {}

11.7.3 Canceling a run

To cancel a workflow run, use the POST /runs/{run_id}/cancel endpoint:

$ curl --location —--request POST 'http://localhost:8080/gad4gh/wes/v1/runs/

—4deb8beb24894e9eb7¢c74b0£f010305d1/cancel' \
——user test:test
{
"run_id": "4deb8beb24894e9eb7c74b0£010305d1"

84

Chapter 11. Workflow Execution Service (WES)

cHAPTER 12

Developing a Workflow

This tutorial walks through the features of Toil necessary for developing a workflow using the Toil Python API.

Note: “script” and “workflow” will be used interchangeably

12.1 Scripting Quick Start

To begin, consider this short toil script which illustrates defining a workflow:

from toil.common import Toil
from toil. job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):

return f"Hello, world!, here's a message: {message/"
if name_ == "_ main_ ":
options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")
options.logLevel = "OFF"
options.clean = "always"

hello_job = Job.wrapFn (helloWorld, "Woot")

with Toil (options) as toil:
print (toil.start (hello_job)) # prints "Hello, world!, ..."

The workflow consists of a single job. The resource requirements for that job are (optionally) specified by keyword
arguments (memory, cores, disk). The script is run using toil. job.Job.Runner.getDefaultOptions ().
Below we explain the components of this code in detail.

85

Toil Documentation, Release 5.8.0

12.2 Job Basics

The atomic unit of work in a Toil workflow is a Job. User scripts inherit from this base class to define units of work.
For example, here is a more long-winded class-based version of the job in the quick start example:

from toil. job import Job

class HelloWorld (Job) :
def _ _init__ (self, message):
Job.__init__ (self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return f"Hello, world! Here's a message: {self.message/"

In the example a class, HelloWorld, is defined. The constructor requests 2 gigabytes of memory, 2 cores and 3
gigabytes of local disk to complete the work.

The toil. job.Job.run () method is the function the user overrides to get work done. Here it just returns a
message.

It is also possible to log a message using toil. job.Job. log (), which will be registered in the log output of the
leader process of the workflow:

def run(self, fileStore):
self.log(f"Hello, world! Here's a message: self.message /")

12.3 Invoking a Workflow

We can add to the previous example to turn it into a complete workflow by adding the necessary function calls to create
an instance of HelloWorld and to run this as a workflow containing a single job. For example:

from toil.common import Toil
from toil. job import Job

class HelloWorld (Job) :
def _ _init__ (self, message):
Job.__init__ (self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):

return f"Hello, world!, here's a message: {self.message}"
if name == "_ _main_ ":
options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")
options.logLevel = "OFE"
options.clean = "always"

hello_job = HelloWorld("Woot")

with Toil (options) as toil:
print (toil.start (hello_job))

86 Chapter 12. Developing a Workflow

Toil Documentation, Release 5.8.0

Note: Do not include a. in the name of your python script (besides .py at the end). This is to allow toil to import the
types and functions defined in your file while starting a new process.

This uses the toil.common. Toil class, which is used to run and resume Toil workflows. It is used as a context
manager and allows for preliminary setup, such as staging of files into the job store on the leader node. An instance
of the class is initialized by specifying an options object. The actual workflow is then invoked by calling the toi 1.
common.Toil.start () method, passing the root job of the workflow, or, if a workflow is being restarted, toi 1.
common.Toil.restart () should be used. Note that the context manager should have explicit if else branches
addressing restart and non restart cases. The boolean value for these if else blocks is toil.options.restart.

For example:

from toil.common import Toil
from toil. job import Job

class HelloWorld (Job) :
def _ _init__ (self, message):
Job.__init__ (self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):

return f"Hello, world!, I have a message: {self.message/"
if _ name_ == "_ _main_ ":
options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")
options.logLevel = "INEFO"
options.clean = "always"

with Toil (options) as toil:
if not toil.options.restart:
job = HelloWorld ("Woot!"™)
output = toil.start (job)
else:
output = toil.restart ()
print (output)

Thecallto toil. job.Job.Runner.getDefaultOptions () creates a set of default options for the workflow.
The only argument is a description of how to store the workflow’s state in what we call a job-store. Here the job-store
is contained in a directory within the current working directory called “toilWorkflowRun”. Alternatively this string
can encode other ways to store the necessary state, e.g. an S3 bucket object store location. By default the job-store is
deleted if the workflow completes successfully.

The workflow is executed in the final line, which creates an instance of HelloWorld and runs it as a workflow. Note all
Toil workflows start from a single starting job, referred to as the root job. The return value of the root job is returned
as the result of the completed workflow (see promises below to see how this is a useful feature!).

12.4 Specifying Commandline Arguments

To allow command line control of the options we can use the toil.job.Job.Runner.
getDefaultArgumentParser () method to create a argparse.ArgumentParser object which can
be used to parse command line options for a Toil script. For example:

12.4. Specifying Commandline Arguments 87

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Toil Documentation, Release 5.8.0

from toil.common import Toil
from toil. job import Job

class HelloWorld (Job) :
def _ _init__ (self, message):
Job.__init__ (self, memory="2G", cores=2, disk="3G")
self.message = message

def run(self, fileStore):
return "Hello, world!, here's a message: " % self.message

n n

if name == "_ main_ ":

parser = Job.Runner.getDefaultArgumentParser ()
options = parser.parse_args()

options.logLevel = "OFF"

options.clean = "always"
hello_job = HelloWorld("Woot")

with Toil (options) as toil:
print (toil.start (hello_job))

Creates a fully fledged script with all the options Toil exposed as command line arguments. Running this script with
“~help” will print the full list of options.

Alternatively an existing argparse.ArgumentParser or optparse.OptionParser object can have Toil
script command line options added to it with the toil. job.Job.Runner.addToilOptions () method.

12.5 Resuming a Workflow

In the event that a workflow fails, either because of programmatic error within the jobs being run, or because of node
failure, the workflow can be resumed. Workflows can only not be reliably resumed if the job-store itself becomes
corrupt.

Critical to resumption is that jobs can be rerun, even if they have apparently completed successfully. Put succinctly,
a user defined job should not corrupt its input arguments. That way, regardless of node, network or leader failure the
job can be restarted and the workflow resumed.

To resume a workflow specify the “restart” option in the options object passed to toil.common.Toil.start ().
If node failures are expected it can also be useful to use the integer “retryCount” option, which will attempt to rerun a
job retryCount number of times before marking it fully failed.

In the common scenario that a small subset of jobs fail (including retry attempts) within a workflow Toil will continue
to run other jobs until it can do no more, at which point to0il.common.Toil.start () will raise a toil.
leader.FailedJobsException exception. Typically at this point the user can decide to fix the script and
resume the workflow or delete the job-store manually and rerun the complete workflow.

12.6 Functions and Job Functions

Defining jobs by creating class definitions generally involves the boilerplate of creating a constructor. To avoid this the
classes toil. job.FunctionWrappingJdoband toil. job.JobFunctionWrappingTarget allow func-
tions to be directly converted to jobs. For example, the quick start example (repeated here):

88 Chapter 12. Developing a Workflow

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/optparse.html#optparse.OptionParser

Toil Documentation, Release 5.8.0

from toil.common import Toil
from toil. job import Job

def helloWorld(message, memory="2G", cores=2, disk="3G"):
return f"Hello, world!, here's a message: {message}"

if name == "_ _main__ ":

options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")

options.logLevel = "OFF"
options.clean = "always"

hello_job = Job.wrapFn (helloWorld, "Woot")

with Toil (options) as toil:

print (toil.start (hello_job)) # prints "Hello, world!,

"

Is equivalent to the previous example, but using a function to define the job.

The function call:

Job.wrapFn (helloWorld, "Woot")

Creates the instance of the toil. job.FunctionWrappingTarget that wraps the function.

The keyword arguments memory, cores and disk allow resource requirements to be specified as before. Even if they
are not included as keyword arguments within a function header they can be passed as arguments when wrapping a

function as a job and will be used to specify resource requirements.

We can also use the function wrapping syntax to a job function, a function whose first argument is a reference to
the wrapping job. Just like a self argument in a class, this allows access to the methods of the wrapping job, see

toil.job.JobFunctionWrappingTarget. For example:

from toil.common import Toil
from toil. job import Job

def helloWorld(job, message) :
job.log (f"Hello world, I have a message: {message/")

if name == "_ _main_ ":

options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")

options.logLevel = "INEFO"
options.clean = "always"

hello_job = Job.wrapJobFn (helloWorld, "Woot!")

with Toil (options) as toil:
toil.start (hello_job)

Here helloWorld () is a job function. It uses the toil. job.Job.log () tolog a message that will be printed

to the output console. Here the only subtle difference to note is the line:

hello_job = Job.wrapJobFn (helloWorld, "Woot")

Which uses the function toil. job.Job.wrapJobFn () to wrap the job function instead of toil. job. Job.

wrapFn () which wraps a vanilla function.

12.6. Functions and Job Functions

89

Toil Documentation, Release 5.8.0

12.7 Workflows with Multiple Jobs

A parent job can have child jobs and follow-on jobs. These relationships are specified by methods of the job class, e.g.
toil. job.Job.addChild() and toil. job.Job.addFollowOn ().

Considering a set of jobs the nodes in a job graph and the child and follow-on relationships the directed edges of
the graph, we say that a job B that is on a directed path of child/follow-on edges from a job A in the job graph is a
successor of A, similarly A is a predecessor of B.

A parent job’s child jobs are run directly after the parent job has completed, and in parallel. The follow-on jobs of a
job are run after its child jobs and their successors have completed. They are also run in parallel. Follow-ons allow
the easy specification of cleanup tasks that happen after a set of parallel child tasks. The following shows a simple
example that uses the earlier helloWorld () job function:

from toil.common import Toil
from toil. job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.log (f"Hello world, I have a message: {[message/")

if _ name_ == "_ _main_ ":
parser = Job.Runner.getDefaultArgumentParser ()
options = parser.parse_args()
options.logLevel = "INEFO"
options.clean = "always"

jl1 = Job.wrapJobFn (helloWorld, "first")
j2 = Job.wrapJdobFn (helloWorld, "second or third")
j3 = Job.wrapJobFn (helloWorld, "second or third")
j4 = Job.wrapJobFn (helloWorld, "last")

§1.addChild (32)
§1.addChild (33)
j1.addFollowOn (j4)

with Toil (options) as toil:
toil.start (j1)

In the example four jobs are created, first j1 is run, then 72 and j3 are run in parallel as children of j1, finally j4 is
run as a follow-on of 1.

There are multiple short hand functions to achieve the same workflow, for example:

from toil.common import Toil
from toil. job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.log (f"Hello world, I have a message: {[message/")

if _ name_ == "_ _main_ ":
parser = Job.Runner.getDefaultArgumentParser ()
options = parser.parse_args|()
options.logLevel = "INEFO"
options.clean = "always"

(continues on next page)

90 Chapter 12. Developing a Workflow

Toil Documentation, Release 5.8.0

(continued from previous page)

jl = Job.wrapJobFn (helloWorld, "first")

j2 = jl.addChildJobFn (helloWorld, "second or third")
j3 = jl.addChildJobFn (helloWorld, "second or third")
j4 = jl.addFollowOnJobFn (helloWorld, "last")

with Toil (options) as toil:
toil.start (j1)

Equivalently defines the workflow, where the functions toil. job.Job.addChildJobFn () and toil. job.
Job.addFollowOnJobFn () are used to create job functions as children or follow-ons of an earlier job.

Jobs graphs are not limited to trees, and can express arbitrary directed acyclic graphs. For a precise definition of legal
graphs see toil. job.Job.checkdJobGraphForDeadlocks (). The previous example could be specified as a
DAG as follows:

from toil.common import Toil
from toil. job import Job

def helloWorld(job, message, memory="2G", cores=2, disk="3G"):
job.log (f"Hello world, I have a message: {[message/")

if _ name_ == "_ _main__ ":
parser = Job.Runner.getDefaultArgumentParser ()
options = parser.parse_args()
options.logLevel = "INEFO"
options.clean = "always"

jl = Job.wrapJobFn (helloWorld, "first")

j2 = jl.addChildJobFn (helloWorld, "second or third")
j3 = jl.addChildJobFn (helloWorld, "second or third")
j4 = j2.addChildJobFn (helloWorld, "last™)
j3.addChild (j4)

with Toil (options) as toil:
toil.start (j1)

Note the use of an extra child edge to make j4 a child of both j2 and j3.

12.8 Dynamic Job Creation

The previous examples show a workflow being defined outside of a job. However, Toil also allows jobs to be created
dynamically within jobs. For example:

from toil.common import Toil
from toil. job import Job

def binaryStringFn(job, depth, message=""):
if depth > O:
job.addChildJobFn (binaryStringFn, depth-1, message + "0")
job.addChildJobFn (binaryStringFn, depth-1, message + "1")

(continues on next page)

12.8. Dynamic Job Creation 91

Toil Documentation, Release 5.8.0

(continued from previous page)

else:
job.log (f"Binary string: {message/")

if name_ == "_ main_ ":
options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")
options.logLevel = "INEO"

options.clean = "always"

with Toil (options) as toil:
toil.start (Job.wrapJobFn (binaryStringFn, depth=5))

The job function binaryStringFn logs all possible binary strings of length n (here n=5), creating a total of
27 (n+2) - 1 jobs dynamically and recursively. Static and dynamic creation of jobs can be mixed in a Toil work-
flow, with jobs defined within a job or job function being created at run time.

12.9 Promises

The previous example of dynamic job creation shows variables from a parent job being passed to a child job. Such
forward variable passing is naturally specified by recursive invocation of successor jobs within parent jobs. This can
also be achieved statically by passing around references to the return variables of jobs. In Toil this is achieved with
promises, as illustrated in the following example:

from toil.common import Toil
from toil. job import Job

def fn(job, 1i):
job.log("i is: "% i, level=100)
return i + 1

if name == "_ _main_ ":

options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")
options.logLevel = "INEFO"
options.clean = "always"

jl1 = Job.wrapJdobFn (fn, 1)
j2 = jl.addChildJobFn (fn, jl.rv())
j3 jl.addFollowOnJobFn (fn, j2.rv())

with Toil (options) as toil:
toil.start (j1)

Running this workflow results in three log messages from the jobs: 1 is 1 from j1,1 is 2 from j2andi is
3 from 33.

The return value from the first job is promised to the second job by the callto toil. job. Job. rv () inthe following
line:

42 = 41.addChildFn(fn, 3J1.rv())

The value of j1.rv () is a promise, rather than the actual return value of the function, because j1 for the given input
has at that point not been evaluated. A promise (toil. job.Promise)is essentially a pointer to for the return value

92 Chapter 12. Developing a Workflow

Toil Documentation, Release 5.8.0

that is replaced by the actual return value once it has been evaluated. Therefore, when j2 is run the promise becomes
2.

Promises also support indexing of return values:

def parent (job) :
indexable = Job.wrapJobFn (fn)
job.addChild (indexable)
job.addFollowOnFn (raiseWrap, indexable.rv(2))

def raiseWrap(arg):
raise RuntimeError (arg) # raises "2"

def fn(job):
return (0, 1, 2, 3)

Promises can be quite useful. For example, we can combine dynamic job creation with promises to achieve a job
creation process that mimics the functional patterns possible in many programming languages:

from toil.common import Toil
from toil. job import Job

def binaryStrings (job, depth, message=""):
if depth > O:
s = [Jjob.addChildJobFn (binaryStrings, depth - 1, message + "0").rv(),
job.addChildJobFn (binaryStrings, depth - 1, message + "1").rv()]
return job.addFollowOnFn (merge, s).rv()
return [message]

def merge (strings) :
return strings[0] + strings[1l]

if name_ == "_ _main_ ":
options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")
options.loglevel = "OFE"

options.clean = "always"

with Toil (options) as toil:
print (toil.start (Job.wrapJobFn (binaryStrings, depth=5)))

The return value 1 of the workflow is a list of all binary strings of length 10, computed recursively. Although a toy
example, it demonstrates how closely Toil workflows can mimic typical programming patterns.

12.10 Promised Requirements

Promised requirements are a special case of Promises that allow a job’s return value to be used as another job’s resource
requirements.

This is useful when, for example, a job’s storage requirement is determined by a file staged to the job store by an
earlier job:

import os

(continues on next page)

12.10. Promised Requirements 93

Toil Documentation, Release 5.8.0

(continued from previous page)

from toil.common import Toil
from toil. job import Job, PromisedRequirement

def parentJob (job) :

downloadJob = Job.wrapJobFn (stageFn, "file://" + os.path.realpath(file
—~cores=0.1, memory='32M', disk='1M")

job.addChild (downloadJob)

analysis = Job.wrapJobFn (analysisJob,
fileStoreID=downloadJob.rv (0),
disk=PromisedRequirement (downloadJob.rv(1l)))
job.addFollowOn (analysis)

def stageFn(job, url, cores=1):
importedFile = job.fileStore.import_file (url)
return importedFile, importedFile.size

def analysisJob (job, fileStorelID, cores=2):
now do some analysis on the file
pass

if name_ == "_ _main_ ":
options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")
options.logLevel = "INEO"
options.clean = "always"

with Toil (options) as toil:
toil.start (Job.wrapJobFn (parentJob))

Note that this also makes use of the size attribute of the File/D object. This promised requirements mechanism can
also be used in combination with an aggregator for multiple jobs’ output values:

def parentJob (job) :
aggregator = []
for fileNum in range (0, 10):
downloadJob = Job.wrapJobFn (stageFn, "file://" + os.path.realpath(file
—~cores=0.1, memory='32M', disk='1M")
job.addChild (downloadJdob)
aggregator.append (downloadJob)

analysis = Job.wrapJobFn (analysisJob,
fileStoreID=downloadJob.rv (0),
disk=PromisedRequirement (lambda xs: sum(xs), [Jj.rv(l)

—for j in aggregator]))
job.addFollowOn (analysis)

Limitations

Just like regular promises, the return value must be determined prior to scheduling any job that depends on the return
value. In our example above, notice how the dependent jobs were follow ons to the parent while promising jobs are
children of the parent. This ordering ensures that all promises are properly fulfilled.

94 Chapter 12. Developing a Workflow

Toil Documentation, Release 5.8.0

12.11 FilelD

The toil.fileStore.FileID class is a small wrapper around Python’s builtin string class. It is used to rep-
resent a file’s ID in the file store, and has a size attribute that is the file’s size in bytes. This object is returned by
importFile and writeGlobalFile.

12.12 Managing files within a workflow

It is frequently the case that a workflow will want to create files, both persistent and temporary, during its run. The
toil.fileStores.abstractFileStore.AbstractFileStore class is used by jobs to manage these
files in a manner that guarantees cleanup and resumption on failure.

The toil. job.Job.run () method has a file store instance as an argument. The following example shows how
this can be used to create temporary files that persist for the length of the job, be placed in a specified local disk of the
node and that will be cleaned up, regardless of failure, when the job finishes:

from toil.common import Toil
from toil. job import Job

class LocalFileStoreJdob (Job) :
def run(self, fileStore):
self.tempDir will always contain the name of a directory within the_
—allocated disk space reserved for the job
scratchDir = self.tempDir

Similarly create a temporary file.
scratchFile = fileStore.getLocalTempFile ()

if name == "_ _main_ ":

options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")

options.logLevel = "INEFO"

options.clean = "always"

Create an instance of FooJob which will have at least 2 gigabytes of storage_
—space.

j = LocalFileStoredJob (disk="2G")

Run the workflow
with Toil (options) as toil:
toil.start (j)

Job functions can also access the file store for the job. The equivalent of the LocalFileStoreJob classis

def localFileStoreJobFn (job) :
scratchDir = job.tempDir
scratchFile = job.fileStore.getLocalTempFile ()

Note that the fileStore attribute is accessed as an attribute of the job argument.

In addition to temporary files that exist for the duration of a job, the file store allows the creation of files in a global
store, which persists during the workflow and are globally accessible (hence the name) between jobs. For example:

12.11. FilelD 95

Toil Documentation, Release 5.8.0

import os

from toil.common import Toil
from toil. job import Job

def globalFileStoreJobFn (job) :
job.log ("The following example exercises all the methods provided "
"by the toil.fileStores.abstractFileStore.AbstractFileStore class")

Create a local temporary file.
scratchFile = job.fileStore.getLocalTempFile ()

Write something in the scratch file.
with open(scratchFile, 'w') as fH:
fH.write ("What a tangled web we weave")

Write a copy of the file into the file-store; fileID is the key that can be_
—used to retrieve the file.

This write is asynchronous by default

fileID = job.fileStore.writeGlobalFile (scratchFile)

Write another file using a stream; fileID2 is the

key for this second file.

with job.fileStore.writeGlobalFileStream(cleanup=True) as (fH, fileID2):
fH.write (b"Out brief candle™)

Now read the first file; scratchFile2 is a local copy of the file that is read-
—only by default.
scratchFile2 = job.fileStore.readGlobalFile (filelID)

Read the second file to a desired location: scratchFile3.
scratchFile3 = os.path.join(job.tempDir, "foo.txt")
job.fileStore.readGlobalFile (fileID2, userPath=scratchFile3)

Read the second file again using a stream.
with job.fileStore.readGlobalFileStream(fileID2) as fH:
print (fH.read()) # This prints "Out brief candle"

Delete the first file from the global file-store.
job.fileStore.deleteGlobalFile (filelID)

It is unnecessary to delete the file keyed by fileID2 because we used the,
—cleanup flag,

which removes the file after this job and all its successors have run (if the,
—~file still exists)

if name == "__main_ ":

options = Job.Runner.getDefaultOptions ("./toilWorkflowRun")
options.logLevel = "INFO"
options.clean = "always"

with Toil (options) as toil:
toil.start (Job.wrapJobFn (globalFileStoreJobFn))

The example demonstrates the global read, write and delete functionality of the file-store, using both local copies of
the files and streams to read and write the files. It covers all the methods provided by the file store interface.

96 Chapter 12. Developing a Workflow

Toil Documentation, Release 5.8.0

What is obvious is that the file-store provides no functionality to update an existing “global” file, meaning that files
are, barring deletion, immutable. Also worth noting is that there is no file system hierarchy for files in the global file
store. These limitations allow us to fairly easily support different object stores and to use caching to limit the amount
of network file transfer between jobs.

12.12.1 Staging of Files into the Job Store

External files can be imported into or exported out of the job store prior to running a workflow when the toil.
common. Toil context manager is used on the leader. The context manager provides methods toil.common.
Toil.importFile (), and toil.common.Toil.exportFile () for this purpose. The destination and
source locations of such files are described with URLs passed to the two methods. Local files can be imported and
exported as relative paths, and should be relative to the directory where the toil workflow is initially run from.

Using absolute paths and appropriate schema where possible (prefixing with “file://” or “s3:/” for example), make
imports and exports less ambiguous and is recommended.

A list of the currently supported URLs can be found at toil.jobStores.abstractJobStore.
AbstractJobStore.importFile (). To import an external file into the job store as a shared file, pass the
optional sharedFileName parameter to that method.

If a workflow fails for any reason an imported file acts as any other file in the job store. If the workflow was configured
such that it not be cleaned up on a failed run, the file will persist in the job store and needs not be staged again when
the workflow is resumed.

Example:

import os

from toil.common import Toil
from toil. job import Job

class HelloWorld (Job) :
def _ init_ (self, id):
Job.__init_ (self, memory="2G", cores=2, disk="3G")
self.inputFileID = id

def run(self, fileStore):
with fileStore.readGlobalFileStream(self.inputFileID, encoding='utf-8'"') as fi:
with fileStore.writeGlobalFileStream(encoding='utf-8'") as (fo,
—outputFilelID) :
fo.write(fi.read () + 'World!")
return outputFilelID

if _ name_ == "_ _main_ ":
options = Job.Runner.getDefaultOptions ("./toilWorkflowRun™)
options.logLevel = "INEO"
options.clean = "always"

with Toil (options) as toil:
if not toil.options.restart:
ioFileDirectory = os.path.join(os.path.dirname (os.path.abspath(file)),
— "stagingExampleFiles")
inputFileID = toil.importFile("file://" + os.path.abspath (os.path.
—Jjoin(ioFileDirectory, "in.txt")))
outputFileID = toil.start (HelloWorld (inputFileID))

(continues on next page)

12.12. Managing files within a workflow 97

file://

Toil Documentation, Release 5.8.0

(continued from previous page)

else:
outputFileID = toil.restart ()

toil.exportFile (outputFileID, "file://" + os.path.abspath (os.path.
—Jjoin(ioFileDirectory, "out.txt")))

12.13 Using Docker Containers in Toil

Docker containers are commonly used with Toil. The combination of Toil and Docker allows for pipelines to be fully
portable between any platform that has both Toil and Docker installed. Docker eliminates the need for the user to do
any other tool installation or environment setup.

In order to use Docker containers with Toil, Docker must be installed on all workers of the cluster. Instructions for
installing Doc